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Introduction

The use of numerical techniques applied to the analysis of microwaves circuits is one of the

most interesting issues in the telecommunications industry. By using these computational

techniques, we can reduce the time invested in development. This allows that the required

components in communication systems could be designed and analysed by a computer.

Among these methods, the integral equation technique [1] has proved to be powerful

due to its possibilities to carry out an efficient analysis of some structures. This tech-

nique has been successfully employed in numerous scenarios: both evaluation of radiated

electromagnetic fields by antennas in free-space, analysis of multilayered radiofrequency

circuits and problems and circuits which involve the analysis of waveguides and cavities.

One of the numerical techniques that can be used to solve integral equations is the

Method of Moments (MoM) [1]. On the other hand, the solution of this kind of elec-

tromagnetic problems in periodic structures requires the computation of periodic Green’s

functions as the kernel of the corresponding integral equations.

The difficulty of the implementation of the integral equation techniques arises from the

fact that these periodic Green’s functions in homogeneous media can be written either as

spatial or spectral infinite series. These series can present singularities and can exhibit

a slowly convergent behaviour. According to this, one of the most important challenge

in the implementation of many integral equation techniques is the efficient and accurate

computation of periodic Green’s functions.

A number of techniques, either analytical or numerical, have been developed in the past

to accelerate the convergence of the series involved in the evaluation of Green’s functions.

Among these techniques, we should mention Ewald’s method [4]. As commented in [5],

the original series that converges slowly can be split into two functions which exhibit

Gaussian convergence. Nevertheless, these new series required the computation of special

mathematical functions that can increase the total computational time.

Another technique employed to accelerate the convergence of slow series is Kummer’s

transformation [3,6]. This technique has been efficiently applied in [2] and consists of ex-

xiii
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tracting the asymptotic behaviour to accelerate the original series and summing efficiently

the retained terms.

In addition to the previous techniques, we should mention Veisoglu’s transformation [7],

Shanks’s transformation [8] and the summation by parts algorithm [9], among other ana-

lytical and numerical methods [3]. Most publications that carry out a comparative study

between the different analytical and numerical methods for the acceleration of these se-

ries [3,10] seem to indicate that Ewald’s method is the best choice in most scenarios. That

is probably due to its versatility and good compromise between accuracy and efficiency.

In the described context, the main aim of this work will be the review of the integral

equation technique applied to the analysis of periodic structures.

Specifically, we will try to extend the formulation of 2-D Green’s functions with 1-D

periodicity reported in [11]. We also go into detail about the acceleration of the functions

involved in parallel-plate waveguide problems.

As a continuation of the work developed in [11], some transformations will be carried out

to 2-D Green’s functions with 2-D periodicity. In particular, we will study Ewald’s method

and the spectral Kummer’s transformation. In addition, we also review the acceleration

of the Green’s functions involved in cavity and rectangular waveguide problems.

By means of the developed software tool, we could compare the convergence and the

computational time required by all the reported methods for both 2-D Green’s functions

with 1-D periodicity and 2-D Green’s functions with 2-D periodicity. Thanks to that,

results and conclusions about the efficiency of the applied techniques will be summarized.

Finally and attending to the second line of research of this project, some structures based

on coaxial to microstrip transition will be analysed by using the software tool FEST3D.

Hence, we will be able to achieve meaningful conclusions through comparing the analysis

of the same structures carried out with FEST3D and with another commercial tool HFSS.

To conclude, we will report the most important reached conclusions and explain our

future lines of investigation.

Project Structure

Chapter 1. The 2-D Green’s Functions With 1-D Periodicity. This first chapter

is the continuation of my Final Degree Project [11] in the study of the 2-D Green’s functions

with 1-D periodicity.
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On the one hand, the formulation developed in [11] will be extended thanks to the

acquired knowledge in the spectral Kummer’s transformation. We will explain different

approaches when we retain the asymptotic terms in Kummer’s transformation and accord-

ing to this, different ways of summing the retained terms.

On the other hand, we will show how to apply this technique to the functions involved in

parallel-plate waveguide problems with the intention of reducing the computational time.

This means a practical implementation of the theory that was outlined in [11].

Chapter 2. The 2-D Green’s Functions With 2-D Periodicity. In this chapter,

the formulation developed for the 2-D Green’s functions with 1-D periodicity is extended

to the computation of the double series involved in problems with 2-D periodicity.

Firstly, the formulation of both the spatial and spectral Green’s functions is obtained.

We also formulate the gradient of these Green’s functions that can be useful in the inte-

gral equation technique for the evaluation of the electromagnetic scattering produced by

dielectric or magnetic objects inside waveguides.

After that, Ewald’s method and the spectral Kummer’s transformation are applied to

accelerate the convergence of these functions [2]. In the application of Kummer’s transfor-

mation, we also distinguish between different approaches to retain the asymptotic terms.

As a consequence, the extracted terms could be summed in different ways.

On the other hand, we will show a practical implementation of the outlined theory

applying this technique to the Green’s functions involved in cavity and waveguide problems

with the intention of reducing the computational time.

Chapter 3. Numerical Results. In this chapter, the numerical results that have been

obtained when we implement the methods described in Chapter 1 and Chapter 2 for the

2-D Green’s functions with 1-D and 2-D periodicities are shown. These comparisons have

been carried out with a software developed in Matlab.

In relation to the 2-D Green’s functions with 1-D periodicity, the convergence of the

new strategy of applying Kummer’s transformation will be compared with the previous

approach reported in [11].

Regarding the 2-D Green’s functions with 2-D periodicity, the convergence of both

Green’s functions and their gradients for different scenarios will be shown. We compare

these ones with the convergence in the case of applying the techniques that have been

proposed in Chapter 2 (Ewald’s method and Kummer’s transformation). In the case of
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Kummer’s transformation, the advantages of using either approach in the retention of

terms are justified.

Using this software, we will be able to compare the efficiency of the applied methods

and to deduce outstanding conclusions.

Chapter 4. Using FEST3D to Analyse Microstrip Structures. This chapter is

about the second line of investigation carried out in this project in collaboration with

our external partners Marco Guglielmi and Vicente Boria at Universidad Politécnica de

Valencia.

Here, the software tool FEST3D is used in order to analyse some structures based on a

coaxial to microstrip transition. The aim of this chapter is to study the convergence pa-

rameters to obtain accurate simulated performances in comparison to the results obtained

by the use of HFSS.

Chapter 5. General Conclusions and Future Lines of Research. In this last

chapter, we will discuss the general conclusions of this master’s thesis, its applications and

usefulness and we will present the future research lines.



Chapter 1

The 2-D Green’s Functions With

1-D Periodicity

The Green’s functions with 1-D periodicity was previously studied in my Final Degree

Project [11]. In [11], we worked on the demonstration and the acceleration of the spatial

and spectral Green’s functions for the case of 1-D periodicity and their gradients.

Specifically, we applied Ewald’s method and Kummer’s transformation. Consequently,

through programming we could compare the efficiency of the proposed techniques.

In this chapter, the formulation about the spectral Kummer’s transformation developed

in [11] is extended. Different approaches when we retain the asymptotic terms in Kummer’s

transformation are explained and according to this, different ways of adding the retained

terms are studied.

It should be noted that this problem has a practical interest since the Green’s functions

for the proposed problem are the basis for the analysis, through the integral equation

technique, of inductive obstacles in rectangular waveguide [12]. They are widely used in

space applications and in devices with emerging technologies such as Substrate Integrated

Waveguide (SIW) [13] and Substrate Integrated Non-Radiative Dielectric (SINRD) [14].

In fact, we apply the theoretical functions studies to the case of electromagnetic problems

associated with the computation of Green’s functions such as parallel-plate waveguides.

We show how to accelerate the convergence of these functions with the intention of reducing

the computational time.

1
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Figure 1.1: Physical configuration of an infinite distribution of line sources which are
infinite and invariant on y-direction and are separated with a period d in x-direction.

1.1 Revisited of the Spectral Kummer’s Transformation

It is important to remember that the structure under discussion here is a one-dimensional

array of line sources that are parallel to the z-axis and periodically located in a homoge-

neous medium along the x-direction (see Fig. 1.1).

The periodic 2-D Green’s function generated by this array of line sources is given by

G(r̄, r̄′) =
1

4j

+∞∑
m=−∞

H
(2)
0 (kRm)e−jkx0md (1.1)

where kx0 = k sin(θ) is the phase per period imposed by the excitation plane wave and

Rm is the spatial distance between the observation point and the line sources.

Rm =
√

(x− x′ −md)2 + (z − z′)2 (1.2)

This is the spatial series representation. If the 1-D version of Poisson’s formula is applied

to (1.1), we obtain the spectral representation given by

G̃(r̄, r̄′) =
1

2d

+∞∑
m=−∞

e−γm|z−z
′|

γm
e−jkxm(x−x′) (1.3)

where kxm = kx0 + 2πm
d = k sin(θ) + 2πm

d and γm =
√
k2
xm − k2.
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Both series are slowly convergent in most cases. For this reason, Kummer’s transfor-

mation [6] is one of the techniques used to accelerate the convergence of these series.

According to [3], this technique can be applied in the spectral or in the spatial domain.

In this case, we retain the asymptotic terms of the spectral function (1.3), applying the

spectral Kummer’s transformation, as follows

G̃k(r̄, r̄
′) =

1

2d

+∞∑
m=−∞
m 6=0

(
e−γm|z−z

′|

γm
− G̃m

)
e−jkxm(x−x′) + G̃0 +

1

2d

+∞∑
m=−∞
m6=0

G̃m e
−jkxm(x−x′)

(1.4)

where G̃0 is the contribution of the term m = 0 in which we do not apply the extraction.

The asymptotic retained term G̃e(r̄, r̄
′) has to be efficiently added.

G̃e(r̄, r̄
′) =

1

2d

+∞∑
m=−∞
m6=0

G̃m e
−jkxm(x−x′) (1.5)

The novel consideration is that G̃m can be obtained by two different ways resulting in

two different approaches of formulating the dynamic part. Consequently, two different

ways of adding the retained part can be used. The advantages of each approach will be

studied in Chapter 3, where we can see that the improvement of each approach is different.

It should be pointed out that in both strategies the exponential e−γm|z−z
′| is approx-

imated by its first order expansion, so that, we use e−|kxm||z−z
′|. This is because when

the observation point is near the source (critical case), |z − z′| → 0 and the exponential

become not very significant and its first order approximation is enough.

The first option, which is not the strategy explained previously in [11], is the following

1

γm
=

1√
k2
xm − k2

=
1

|kxm|

√√√√√1−
(

k

kxm

)2

︸ ︷︷ ︸
u

(1.6)

Using Taylor expansion in u = 0

1√
1− u

= 1 +
1

2
u+

3

8
u2 +

5

16
u3 +

35

128
u4 + ... =

+∞∑
q=0

∏q−1
n=0(2n+ 1)

2q q!
uq (1.7)
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G̃m can be written as

G̃m =
1

|kxm|

(
1 +

1

2

(
k

kxm

)2

+
3

8

(
k

kxm

)4

+
5

16

(
k

kxm

)6

+ ...

)
e−|kxm||z−z

′|

=

(
1

|kxm|
+

k2

2|kxm|3
+

3k4

8|kxm|5
+

5k6

16|kxm|7
+ ...

)
e−|kxm||z−z

′|

=

Q∑
q=0

∏q−1
n=0(2n+ 1)

2q q!

k2q

|kxm|2q+1 e
−|kxm||z−z′|

(1.8)

where Q is the number of the retained terms that we use in the approximation of the

asymptotic series G̃m.

It is important to note that 1
γm

is positive, so here the absolute value has been omitted

because all these terms are positive due to its own absolutes values. Using this G̃m

approach, the series G̃e(r̄, r̄
′) that we have to efficiently sum is

G̃e(r̄, r̄
′) =

1

2d

+∞∑
m=−∞
m 6=0

(
1

|kxm|
+

k2

2|kxm|3
+

3k4

8|kxm|5
+

5k6

16|kxm|7
+ ...

)
e−|kxm||z−z

′| e−jkxm(x−x′)

=
e−jkx0(x−x′)

2d

+∞∑
m=−∞
m 6=0


Q∑
q=0

∏q−1
n=0(2n+ 1)

2q q!︸ ︷︷ ︸
fq

k2q

|kxm|2q+1

 e−|kxm||z−z
′| e−j

2πm
d

(x−x′)

(1.9)

In advance, we can realize that this approach will result in a better approximation of

the spectral series and therefore in a faster convergence rate in comparison to the other

one. The options that we propose to sum efficiently this series are:

• Option A.1: Sum by Ewald’s method.

• Option A.2: Lerch transcendent.

• Option A.3: Summation by parts technique.

The formulation of each option will be developed in the subsections 1.1.1, 1.1.2 and

1.1.3, respectively.



1.1. Revisited of the Spectral Kummer’s Transformation 5

The other approach to extract the asymptotic terms is shown in [11] and is based on

1√
k2
xm − k2

=
1√(

kx0 + 2πm
d

)2 − k2

=
1√

k2
x0 + 22πm

d kx0 +
(

2πm
d

)2 − k2

=
1(

2πm
d

)√√√√√√1 +
kx0d

πm
+
k2
x0 − k2(
2πm
d

)2︸ ︷︷ ︸
u

(1.10)

Carrying out the expansion using Taylor series when m → ∞ or, what is the same,

u→ 0, we have the following approximation

1√
1 + u

= 1− 1

2
u+

3

8
u2 − 5

16
u3 +

35

128
u4 − .... =

+∞∑
q=0

(−1)q
∏q−1
n=0(2n+ 1)

2q q!︸ ︷︷ ︸
fq

uq (1.11)

and taking into account that the powers of u are

u =

(
1

0

)
kx0d

πm
+

(
1

1

)
(k2
x0 − k2)d2

(2πm)2
(1.12a)

u2 =

(
2

0

)
k2
x0d

2

(πm)2
+

(
2

1

)
kx0d

πm

(k2
x0 − k2)d2

(2πm)2
+

(
2

2

)
(k2
x0 − k2)2d4

24(πm)4

=

(
2

0

)
k2
x0d

2

(πm)2
+

(
2

1

)
kx0(k2

x0 − k2)d3

22(πm)3
+

(
2

2

)
(k2
x0 − k2)2d4

24(πm)4

(1.12b)

u3 =

(
3

0

)
k3
x0d

3

(πm)3
+

(
3

1

)
k2
x0d

2

(πm)2

(k2
x0 − k2)d2

(2πm)2
+

(
3

2

)
kx0d

(πm)

(k2
x0 − k2)2d4

24(πm)4
+

(
3

3

)
(k2
x0 − k2)3d6

26(πm)6

=

(
3

0

)
k3
x0d

3

(πm)3
+

(
3

1

)
k2
x0(k2

x0 − k2)d4

22(πm)4
+

(
3

2

)
kx0(k2

x0 − k2)2d5

24(πm)5
+

(
3

3

)
(k2
x0 − k2)3d6

26(πm)6

(1.12c)
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u4 =

(
4

0

)
k4
x0d

4

(πm)4
+

(
4

1

)
k3
x0d

3

(πm)3

(k2
x0 − k2)d2

(2πm)2
+

(
4

2

)
k2
x0d

2

(πm)2

(k2
x0 − k2)2d4

24(πm)4

+

(
4

3

)
kx0d

(πm)

(k2
x0 − k2)3d6

26(πm)6
+

(
4

4

)
(k2
x0 − k2)4d8

28(πm)8

=

(
4

0

)
k4
x0d

4

(πm)4
+

(
4

1

)
k3
x0(k2

x0 − k2)d5

22(πm)5
+

(
4

2

)
k2
x0(k2

x0 − k2)2d6

24(πm)6

+

(
4

3

)
kx0(k2

x0 − k2)3d7

26(πm)7
+

(
4

4

)
(k2
x0 − k2)4d8

28(πm)8

(1.12d)

In general, the powers of u can be expressed as

uq =

q∑
a=0

(
q

a

)
k

(q−a)
x0 (k2

x0 − k2)a

22a

(
d

πm

)q+a
(1.13)

therefore, 1
γm

can be approximated by Q terms as

1

γm
≈

∣∣∣∣∣
Q∑
q=0

q∑
a=0

(
q

a

)
k

(q−a)
x0 (k2

x0 − k2)a

22a+1

(
d

πm

)q+a+1

fq

∣∣∣∣∣ (1.14)

and finally G̃m(r̄, r̄′) is

G̃m(r̄, r̄′) =

∣∣∣∣∣ d

2πm
− kx0d

2

(2πm)2
+

(k2 − k2
x0)d3

2(2πm)3
+ ...

∣∣∣∣∣e−| 2πmd +kx0||z−z′|

=

∣∣∣∣∣
Q∑
q=0

q∑
a=0

(
q

a

)
k

(q−a)
x0 (k2

x0 − k2)a

22a+1

(
d

πm

)q+a+1

fq

∣∣∣∣∣e−| 2πmd +kx0||z−z′|
(1.15)

Using this G̃m approach, the series G̃e(r̄, r̄
′) that we have to efficiently sum is
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G̃e(r̄, r̄
′) =

1

2d

+∞∑
m=−∞
m6=0

∣∣∣∣∣ d

2πm
− kx0d

2

(2πm)2
+

(k2 − k2
x0)d3

2(2πm)3
+ ...

∣∣∣∣∣ e−| 2πmd +kx0||z−z′| e−jkxm(x−x′)

=
1

2d

+∞∑
m=−∞
m6=0

∣∣∣∣∣
Q∑
q=0

q∑
a=0

(
q

a

)
k

(q−a)
x0 (k2

x0 − k2)a

22a+1

(
d

πm

)q+a+1

fq

∣∣∣∣∣e−| 2πmd +kx0||z−z′|e−jkxm(x−x′)

(1.16)

On the other hand, if we are interested in grouping the terms respect to the powers of

m, we can proceed as follows

m→
(

1

0

)
kx0d

πm
(1.17a)

m2 →
(

2

0

)
k2
x0d

2

(πm)2
+

(
1

1

)
(k2
x0 − k2)d2

22(πm)2
(1.17b)

m3 →
(

3

0

)
k3
x0d

3

(πm)3
+

(
2

1

)
kx0(k2

x0 − k2)d3

22(πm)3
(1.17c)

m4 →
(

4

0

)
k4
x0d

4

(πm)4
+

(
3

1

)
k2
x0(k2

x0 − k2)d4

22(πm)4
+

(
2

2

)
(k2
x0 − k2)2d4

24(πm)4
(1.17d)

m5 →
(

5

0

)
k5
x0d

5

(πm)5
+

(
4

1

)
k3
x0(k2

x0 − k2)d5

22(πm)5
+

(
3

2

)
kx0(k2

x0 − k2)2d5

24(πm)5
(1.17e)

Now, if we define t =
⌊ q

2

⌋
, we can write the powers of m as

mq → dq

(πm)q

t∑
a=0

k
(q−2a)
x0 (k2

x0 − k2)a

22a

(
q − a
a

)
(1.18)

where each term goes with its factor fq

mq → dq

(πm)q

t∑
a=0

k
(q−2a)
x0 (k2

x0 − k2)a

22a

(
q − a
a

)
fq−a (1.19)

The use of this leads to the following Q-th order approximation of 1
γm
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1

γm
≈

∣∣∣∣∣ d

2πm

 Q∑
q=0

dq

(πm)q

t∑
a=0

k
(q−2a)
x0 (k2

x0 − k2)a

22a

(
q − a
a

)
fq−a

∣∣∣∣∣
=

∣∣∣∣∣
Q∑
q=0

dq+1

(πm)q+1

t∑
a=0

k
(q−2a)
x0 (k2

x0 − k2)a

22a+1

(
q − a
a

)
fq−a

∣∣∣∣∣
(1.20)

and finally G̃m(r̄, r̄′) is

G̃m(r̄, r̄′) =

∣∣∣∣∣ d

2πm
− kx0d

2

(2πm)2
+

(k2 − k2
x0)d3

2(2πm)3
+ ...

∣∣∣∣∣e−| 2πmd +kx0||z−z′|

=

∣∣∣∣∣
Q∑
q=0

dq+1

(πm)q+1

t∑
a=0

k
(q−2a)
x0 (k2

x0 − k2)a

22a+1

(
q − a
a

)
fq−a

∣∣∣∣∣e−| 2πmd +kx0||z−z′|
(1.21)

Using this G̃m approach, the series G̃e(r̄, r̄
′) that we have to efficiently sum is

G̃e(r̄, r̄
′) =

1

2d

+∞∑
m=−∞
m 6=0

∣∣∣∣∣ d

2πm
− kx0d

2

(2πm)2
+

(k2 − k2
x0)d3

2(2πm)3
+ ...

∣∣∣∣∣ e−| 2πmd +kx0||z−z′| e−jkxm(x−x′)

=
1

2d

+∞∑
m=−∞
m 6=0

∣∣∣∣∣
Q∑
q=0

dq+1

(πm)q+1

t∑
a=0

k
(q−2a)
x0 (k2

x0 − k2)a

22a+1

(
q − a
a

)
fq−a

∣∣∣∣∣e−| 2πmd +kx0||z−z′|e−jkxm(x−x′)

(1.22)

It is important to note that 1
γm

is positive so here we have to use the absolute value

because not all these terms are positive. In advance, we can realize that this approach

will result in a worse approximation of the spectral series and for this reason in a slower

convergence rate in comparison with the previous one. However, the advantage here is

that the remaining series is quasi-static, so that, it would be better in the case of problems

that require a frequency sweep, such as those corresponding to the analysis of practical

microwave devices like filters.

The options that we propose to sum efficiently this series are:

• Option B.1: Sum by Ewald’s method.

• Option B.2: Polylogarithmic functions.
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• Option B.3: Summation by parts technique.

The formulation of each option will be detailed in the subsections 1.1.4, 1.1.5 and 1.1.6,

respectively.

To summarize, in the option A we are assuming that
(
kx0 + 2πm

d

)
is more significant

than k, in the approximation of 1
γm

but in the option B we are assuming that not only

is
(

2πm
d

)
more important than k but also than kx0. For this reason, the approximation

A is more complete than B and therefore the improvement resulted through the option A

would be better. On the contrary, it has the disadvantage of containing the frequency in

the term kx0. Depending on the problem to be solved, we can choose which to use.

In the following subsections, we explain how to sum efficiently the remaining part of

the Kummer’s series G̃e(r̄, r̄
′) using both approaches. Whenever possible, we will try to

explain the methods in a general way for the extraction of Q asymptotic terms.

1.1.1 Option A.1. Approach of kxm: Sum by Ewald’s Method.

The first alternative to sum the asymptotic retained terms obtained by the application

of this first approach of Kummer’s transformation is using the corresponding terms in

Ewald’s method. This can be considered a combination of both techniques. By using this

proposed Kummer-Ewald technique we are able to choose the effort that we want to invest

in each technique.

We first start with the connection between the first asymptotic term in the spectral

domain and the first asymptotic term in Ewald’s method. Then, we extract the second

term and we show how to sum it by using Ewald’s method.

• Extraction of one term.

In this case, the G̃e(r̄, r̄
′) series that we have to efficiently sum is

G̃e(r̄, r̄
′) =

1

2d

+∞∑
m=−∞
m 6=0

e−|kxm||z−z
′|

|kxm|
e−jkxm(x−x′)

(1.23)

The idea is to identify this series with an approximation of the spectral one and then

use Ewald’s transformation to sum the asymptotic term.
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G̃e(r̄, r̄
′) =

1

2d

+∞∑
m=−∞
m6=0

e−|kxm||z−z
′|

|kxm|
e−jkxm(x−x′)

=
1

2d

+∞∑
m=−∞

e−|kxm||z−z
′|

|kxm|
e−jkxm(x−x′)

︸ ︷︷ ︸
S

− 1

2d

e−|kx0||z−z′|

|kx0|
e−jkx0(x−x′)

(1.24)

Using this notation, G̃e(r̄, r̄
′) is

G̃e(r̄, r̄
′) = S − 1

2d

e−|kx0||z−z′|

|kx0|
e−jkx0(x−x′) (1.25)

Taking into account that the spectral Green’s function is

G̃(r̄, r̄′) =
1

2d

+∞∑
m=−∞

e−γm|z−z
′|

γm
e−jkxm(x−x′) (1.26)

we can obtain its approximation when m→∞ as

G̃(r̄, r̄′)
∣∣
m→∞ =

1

2d

+∞∑
m=−∞

e−γm|z−z
′|

γm
e−jkxm(x−x′)

∣∣∣∣∣
m→∞

=
1

2d

+∞∑
m=−∞

e−|kxm||z−z
′|

|kxm|
e−jkxm(x−x′)

(1.27)

Now, the series S obtained in the retained first term (1.25) can be identified with

this approximation of the spectral formulation G̃(r̄, r̄′)
∣∣
m→∞ and since

G̃(r̄, r̄′)
∣∣
m→∞ = GEwald(r̄, r̄

′)
∣∣
m→∞ =

[
Gspectral(r̄, r̄

′) +Gspatial(r̄, r̄
′)
] ∣∣
m→∞

(1.28)

we can sum S by means of Ewald’s transformation by the use of the approximation

of the Ewald’s method components when m → ∞. Remembering that the spectral

Ewald’s method component Gspectral(r̄, r̄
′) is [5, 11]

Gspectral(r̄, r̄
′) =

1

4d

+∞∑
p=−∞

e−jkxp(x−x′)

jkzp

×
[
ejkzp|z−z

′| erfc

(
|z − z′|ε+

jkzp
2ε

)
+ e−jkzp|z−z

′| erfc

(
−|z − z′|ε+

jkzp
2ε

)]
(1.29)
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where k2
zp = k2 − k2

xp. The approximation of Gspectral(r̄, r̄
′) is given by

Gspectral(r̄, r̄
′)
∣∣
m→∞ =

1

4d

+∞∑
p=−∞

e−jkxp(x−x′)

jkzp

×
[
ejkzp|z−z

′| erfc

(
|z − z′|ε+

jkzp
2ε

)
+ e−jkzp|z−z

′| erfc

(
−|z − z′|ε+

jkzp
2ε

)]∣∣∣∣∣
m→∞

=
1

4d

+∞∑
p=−∞

e−jkxp(x−x′)

|kxp|

×
[
e|kxp||z−z

′| erfc

(
|z − z′|ε+

|kxp|
2ε

)
+ e−|kxp||z−z

′| erfc

(
−|z − z′|ε+

|kxp|
2ε

)]
(1.30)

We separate the term p = 0 because we are not interested in summing it directly

1

4d

+∞∑
p=−∞

e−jkxp(x−x′)

|kxp|
×

[
e|kxp||z−z

′| erfc

(
|z − z′|ε+

|kxp|
2ε

)
+ e−|kxp||z−z

′|

erfc

(
−|z − z′|ε+

|kxp|
2ε

)]

=
1

4d

+∞∑
p=−∞
p 6=0

e−jkxp(x−x′)

|kxp|
×

[
e|kxp||z−z

′| erfc

(
|z − z′|ε+

|kxp|
2ε

)
+ e−|kxp||z−z

′|

erfc

(
−|z − z′|ε+

|kxp|
2ε

)]
+

1

4d

e−jkx0(x−x′)

|kx0|
×

[
e|kx0||z−z′| erfc

(
|z − z′|ε+

|kx0|
2ε

)

+ e−|kx0||z−z′| erfc

(
−|z − z′|ε+

|kx0|
2ε

)]
(1.31)

On the other hand, recalling that the spatial Ewald’s method componentGspatial(r̄, r̄
′)

is [5, 11]

Gspatial(r̄, r̄
′) =

1

4π

+∞∑
m=−∞

e−jkx0md
+∞∑
q=0

(
k

2ε

)2q 1

q!
Eq+1(Rm

2ε2) (1.32)

and taking into account that the approximation when m→∞ in the spectral domain

corresponds to k → 0 in the spatial domain, the limit of Gspatial(r̄, r̄
′) when k → 0
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is given by

lim
k→0

Gspatial(r̄, r̄
′) = lim

k→0

{
1

4π

+∞∑
m=−∞

e−jkx0md
+∞∑
q=0

(
k

2ε

)2q 1

q!
Eq+1(Rm

2ε2)

}

=
1

4π

+∞∑
m=−∞

e−jkx0md E1(R2
mε

2)

(1.33)

The found approximations of Ewald’s method components can be used to sum the

series S

S =
1

4d

+∞∑
p=−∞
p 6=0

e−jkxp(x−x′)

|kxp|
×

[
e|kxp||z−z

′| erfc

(
|z − z′|ε+

|kxp|
2ε

)
+ e−|kxp||z−z

′|

erfc

(
−|z − z′|ε+

|kxp|
2ε

)]
+

1

4d

e−jkx0(x−x′)

|kx0|
×

[
e|kx0||z−z′| erfc

(
|z − z′|ε+

|kx0|
2ε

)

+ e−|kx0||z−z′| erfc

(
−|z − z′|ε+

|kx0|
2ε

)]
+

1

4π

+∞∑
m=−∞

e−jkx0md E1(R2
mε

2)

(1.34)

and using this transformation of S, we can rewrite G̃e(r̄, r̄
′) as follows

G̃e(r̄, r̄
′) = S − 1

2d

e−|kx0||z−z′|

|kx0|
e−jkx0(x−x′) =

1

4d

+∞∑
p=−∞
p6=0

e−jkxp(x−x′)

|kxp|

×
[
e|kxp||z−z

′| erfc

(
|z − z′|ε+

|kxp|
2ε

)
+ e−|kxp||z−z

′| erfc

(
−|z − z′|ε+

|kxp|
2ε

)]
+

1

4d

e−jkx0(x−x′)

|kx0|

×
[
e|kx0||z−z′| erfc

(
|z − z′|ε+

|kx0|
2ε

)
+ e−|kx0||z−z′| erfc

(
−|z − z′|ε+

|kx0|
2ε

)]
+

1

4π

+∞∑
m=−∞

e−jkx0md E1(R2
mε

2)− 1

2d

e−|kx0||z−z′|

|kx0|
e−jkx0(x−x′)

(1.35)
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Regrouping terms and summing together the residual terms in m = 0 and p = 0,

the first asymptotic series G̃e(r̄, r̄
′) can be expressed as

G̃e(r̄, r̄
′) =

1

4d

+∞∑
p=−∞
p6=0

e−jkxp(x−x′)

|kxp|
×

[
e|kxp||z−z

′| erfc

(
|z − z′|ε+

|kxp|
2ε

)

+ e−|kxp||z−z
′| erfc

(
−|z − z′|ε+

|kxp|
2ε

)]
+

1

4π

+∞∑
m=−∞

e−jkx0md E1(R2
mε

2)

+
1

2d

e−jkx0(x−x′)

|kx0|

[
1

2

(
e|kx0||z−z′| erfc

(
|z − z′|ε+

|kx0|
2ε

)

+ e−|kx0||z−z′| erfc

(
−|z − z′|ε+

|kx0|
2ε

))
− e−|kx0||z−z′|

]
(1.36)

where the last term T contains the residual value when m = 0

T =
1

2d

e−jkx0(x−x′)

|kx0|

[
1

2

(
e|kx0||z−z′| erfc

(
|z − z′|ε+

|kx0|
2ε

)

+ e−|kx0||z−z′| erfc

(
−|z − z′|ε+

|kx0|
2ε

))
− e−|kx0||z−z′|

] (1.37)

Despite there is no problem with T when kx0 6= 0, we have to use its limit when

kx0 = 0.

lim
kx0→0

T = lim
kx0→0

{
1

2d

e−jkx0(x−x′)

|kx0|

[
1

2

(
e|kx0||z−z′| erfc

(
|z − z′|ε+

|kx0|
2ε

)

+ e−|kx0||z−z′| erfc

(
−|z − z′|ε+

|kx0|
2ε

))
− e−|kx0||z−z′|

]}

=
|z − z′|

2d
− e−|z−z

′|2ε2

2εd
√
π
− |z − z

′| erf(|z − z′|ε)
2d

(1.38)

• Extraction of two terms.

In this part, we try to apply this procedure to the extraction of one more term in

order to accelerate even more the convergence of the spectral 2-D Green’s function

with 1-D periodicity.

In [11], the spectral series was reported by a mathematical development based on the

Sommerfeld identity. To carry out this approach, we need to go into detail about the

spectral proof by the same procedure as the components of Ewald’s method. This

is because we are going to identify the corresponding terms in both developments in
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order to sum the asymptotic spectral terms through Ewald’s method. This can be

consider a way to sum efficiently the non-analytical retained part.

For this purpose, the start from the spatial series (1.1) given by

G(r̄, r̄′) =
∞∑

m=−∞
e−jkx0md 1

4j
H

(2)
0 (kRm) (1.39)

and we use the Sommerfeld identity for 2-D cylindrical radiated fields

1

4j
H

(2)
0 (kRm) =

1

2π

∫ ∞
0

e−R
2
ms

2+ k2

4s2

s
ds (1.40)

where s is the complex variable of integration. On the other hand, 1-D Poisson’s

formula is given by
+∞∑

m=−∞
f(md) =

1

d

+∞∑
m=−∞

f̃

(
2πm

d

)
(1.41)

where f̃(kx) is the Fourier transform of f(ξ), that is

f̃(kx) =

∫ +∞

−∞
f(ξ)e−jkxξ dξ (1.42)

If we start from (1.40) and we identify terms, we can write f(md) as

f(md) =
1

2π
e−jkx0md

∫ ∞
0

e−R
2
ms

2+ k2

4s2

s
ds (1.43)

where we can replace Rm as

f(md) =
1

2π
e−jkx0md

∫ ∞
0

e−[(z−z′)2+(x−x′−md)2]s2+ k2

4s2

s
ds (1.44)

According to this, f(ξ) is written as follows

f(ξ) =
1

2π
e−jkx0ξ

∫ ∞
0

e−[(z−z′)2+(x−x′−ξ)2]s2+ k2

4s2

s
ds (1.45)

Using the equation given in (1.42), f̃(kx) can be expressed as

f̃(kx) =

∫ ∞
−∞

1

2π
e−jkx0ξ

∫ ∞
0

e−[(z−z′)2+(x−x′−ξ)2]s2+ k2

4s2

s
ds e−jkxξdξ (1.46)
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Thus, if kx is kx = 2πm
d , the previous equation remains

f̃

(
2πm

d

)
=

∫ ∞
−∞

1

2π
e−jkx0ξ

∫ ∞
0

e−[(z−z′)2+(x−x′−ξ)2]s2+ k2

4s2

s
ds e−j(

2πm
d

)ξdξ (1.47)

grouping terms

f̃

(
2πm

d

)
=

1

2π

∫ ∞
−∞

dξ

∫ ∞
0

ds
1

s
e−[(z−z′)2+(x−x′−ξ)2]s2+ k2

4s2 e−j(
2πm
d

+kx0)ξ (1.48)

If we name kxm as kxm = kx0 + 2πm
d , we can rewrite the previous equation as

f̃

(
2πm

d

)
=

1

2π

∫ ∞
−∞

dξ

∫ ∞
0

ds
1

s
e−[(z−z′)2+(x−x′−ξ)2]s2+ k2

4s2 e−jkxmξ (1.49)

Now, we try to find the following relation

∫ +∞

−∞
e−aξ

2+bξdξ =

√
π

a
e
b2

4a (1.50)

For this purpose, we define I as the integral part of (1.49) which depends on ξ and

we proceed as follows

I =

∫ +∞

−∞
e−[(z−z′)2+(x−x′−ξ)2]s2+ k2

4s2 e−jkxmξ dξ

=

∫ +∞

−∞
e−[(z−z′)2+(x−x′−ξ)2]s2+ k2

4s2
−jkxmξ dξ

=

∫ +∞

−∞
e−(z−z′)2s2−(x−x′)2s2+2(x−x′)ξs2−ξ2s2+ k2

4s2
−jkxmξ dξ

=

∫ +∞

−∞
e−(z−z′)2s2−(x−x′)2s2+ k2

4s2 e−ξ
2s2+ξ(2s2(x−x′)−jkxm) dξ

(1.51)

Now, we apply the relation given in (1.50) by identifying a = s2 and

b = 2(x− x′)s2 − jkxm, where b2

4a is

b2

4a
=

(2s2(x− x′)− jkxm)2

4s2

=
4s4(x− x′)2 − 4s2(x− x′)jkxm − k2

xm

4s2

= s2(x− x′)2 − (x− x′)jkxm −
k2
xm

4s2

(1.52)
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Consequently,∫ +∞

−∞
e−ξ

2s2+ξ(2s2(x−x′)−jkxm) dξ =

√
π

s2
es

2(x−x′)2−(x−x′)jkxm−
k2
xm
4s2 (1.53)

The equation (1.53) leads to the following transformation in (1.49)

f̃

(
2πm

d

)
=

1

2π

∫ ∞
0

ds
1

s
e−(z−z′)2s2−(x−x′)2s2+ k2

4s2

√
π

a
es

2(x−x′)2−(x−x′)jkxm−
k2
xm
4s2

=
1

2
√
π
e−(x−x′)jkxm

∫ ∞
0

ds
1

s2
e−(z−z′)2s2−(x−x′)2s2+(x−x′)2s2+ k2

4s2
− k

2
xm
4s2

=
1

2
√
π
e−(x−x′)jkxm

∫ ∞
0

ds
e−(z−z′)2s2e−

k2
xm−k

2

4s2

s2

(1.54)

In the knowledge that the previous integral can be solved using [15] as

∫ ∞
0

e−as
2
e−

b
s2

s2
ds =

√
π

2
√
b
e−2
√
a
√
b (1.55)

where in this case a = (z − z′)2 and b = k2
xm−k2

4 , (1.54) remains

f̃

(
2πm

d

)
=

1

��
�2
√
π
e−jkxm(x−x′)��

�2
√
π e−
√
k2
xm−k2|z−z′|

2
√
k2
xm − k2

(1.56)

If we define γm as γm =
√
k2
xm − k2, G̃(r̄, r̄′) is given by

G̃(r̄, r̄′) =
1

2d

+∞∑
m=−∞

e−γm|z−z
′|

γm
e−jkxm(x−x′) (1.57)

As can be seen, the obtained spectral representation is the same as the one presented

in [11] by the other procedure and previously reported in (1.3).

Once we have addressed this spectral proof, we can apply Kummer’s transformation

by the extraction of two terms in the spectral Green’s function. The first term can be

obtained by using the previous first order approximation but when we are interested

in extracting more than one term, we have to analyse what happens in higher orders

when m→∞ in the spectral series and in the Ewald’s method components. For this
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aim, the strategy here is to obtain the retained terms by using the Taylor expansion

in these proofs.

The starting point of the development done previously is

G(r̄, r̄′) =
1

2π

+∞∑
m=−∞

e−jkx0md

∫ ∞
0

e−R
2
ms

2+ k2

4s2

s
ds (1.58)

and the starting point of the proofs done in [11] of the Ewald’s components is

Gspectral(r̄, r̄
′) =

1

2π

+∞∑
m=−∞

e−jkx0md

∫ ε

0

e−R
2
ms

2+ k2

4s2

s
ds (1.59)

Gspatial(r̄, r̄
′) =

1

2π

+∞∑
m=−∞

e−jkx0md

∫ ∞
ε

e−R
2
ms

2+ k2

4s2

s
ds (1.60)

All of these components start in the spatial domain, where m→∞ is k → 0. So we

have to calculate the limit of these integrals when k → 0. Using the following Taylor

expansion when u→ 0

eu =
+∞∑
n=0

un

n!
(1.61)

we can rewrite the exponential of k in the previous proofs as

e
k2

4s2 =
+∞∑
n=0

(
k2

4s2

)n
n!

= 1 +
k2

4s2
+ ... (1.62)

It can be noted that the first term of the expansion corresponds to the development

done when we extract only the first term because it corresponds to the first order

approximation of these components. The idea is to use the second order Taylor

expansion of e
k2

4s2 in the equations (1.58), (1.59) and (1.60). This will allow us to

use the two order expansion of Ewald’s method components to sum the two order

expansion of the spectral series.
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Using this expansion in the equation (1.54) of the spectral development, f̃
(

2πm
d

)
remains

f̃

(
2πm

d

)
=

1

2
√
π
e−(x−x′)jkxm

∫ ∞
0

e−(z−z′)2s2e−
k2
xm
4s2

s2

(
1 +

k2

4s2

)
ds

=
1

2
√
π
e−(x−x′)jkxm

∫ ∞
0

e−(z−z′)2s2e−
k2
xm
4s2

s2︸ ︷︷ ︸
S1

+
1

2
√
π
e−(x−x′)jkxm

∫ ∞
0

e−(z−z′)2s2e−
k2
xm
4s2

s2

k2

4s2
ds︸ ︷︷ ︸

S2

(1.63)

In the knowledge that the previous integrals can be solved using [15] as

∫ ∞
0

e−as
2− b

s2

s2
ds =

√
π

2
√
b
e−2
√
a
√
b (1.64a)

∫ ∞
0

e−as
2− b

s2

s4
ds =

√
π(1 + 2

√
a
√
b)

4b3/2
e−2
√
a
√
b (1.64b)

where in this case a = (z − z′)2 and b = k2
xm
4 , the series S1 remains

S1 =
1

2
√
π
e−jkxm(x−x′)

∫ ∞
0

e−(z−z′)2s2e−
k2
xm
4s2

s2

1

��
�2
√
π
e−jkxm(x−x′)

��
�2
√
π e−
√
|kxm|2|z−z′|

2
√
|kxm|2

=
1

2

e−|kxm||z−z
′|

|kxm|
e−jkxm(x−x′)

(1.65)

and series S2 remains

S2 =
1

2
√
π

k2

4
e−jkxm(x−x′)

∫ ∞
0

e−(z−z′)2s2e−
k2
xm
4s2

s4

=
1

2�
�
√
π
e−jkxm(x−x′) �

�
√
π k2 23 (1 + |z − z′||kxm|)

42|kxm|3
e−
√
|kxm|2|z−z′|

=
1

2
e−jkxm(x−x′)

(
k2

2|kxm|3
+
k2|z − z′|
2|kxm|2

)
e−|kxm||z−z

′|

(1.66)

Using this, we can write the asymptotic spectral series with the expansion of two

terms as
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G̃e′(r̄, r̄
′) =

1

2d

+∞∑
m=−∞

(
1

|kxm|
+

k2

2|kxm|3
+
k2|z − z′|
2|kxm|2

)
e−|kxm||z−z

′|e−jkxm(x−x′)

(1.67)

Now, we can apply Kummer’s transformation to the spectral Green’s function as

follows

G̃k(r̄, r̄
′) =

1

2d

+∞∑
m=−∞
m 6=0

[
e−γm|z−z

′|

γm
−
(

1

|kxm|
+

k2

2|kxm|3
+
k2|z − z′|
2|kxm|2

)

e−|kxm||z−z
′|

]
e−jkxm(x−x′) + G̃0 + G̃e(r̄, r̄

′)

(1.68)

where G̃0 is the spectral series in m = 0 and G̃e(r̄, r̄
′) is the asymptotic retained

part. In this case, the remaining series is

G̃e(r̄, r̄
′) =

1

2d

+∞∑
m=−∞
m 6=0

(
1

|kxm|
+

k2

2|kxm|3
+
k2|z − z′|
2|kxm|2

)
e−|kxm||z−z

′|e−jkxm(x−x′)

=
1

2d

+∞∑
m=−∞

(
1

|kxm|
+

k2

2|kxm|3
+
k2|z − z′|
2|kxm|2

)
e−|kxm||z−z

′|e−jkxm(x−x′)

︸ ︷︷ ︸
G̃e′ (r̄,r̄

′)

− 1

2d

(
1

|kx0|
+

k2

2|kx0|3
+
k2|z − z′|

2|kx0|2

)
e−|kx0||z−z′|e−jkx0(x−x′)

(1.69)

where G̃e′(r̄, r̄
′) is the same as the series obtained in (1.67) when we calculate the

asymptotic expansion in the spectral series. Accordingly,

G̃e(r̄, r̄
′) = G̃e′(r̄, r̄

′)− 1

2d

(
1

|kx0|
+

k2

2|kx0|3
+
k2|z − z′|

2|kx0|2

)
e−|kx0||z−z′|e−jkx0(x−x′)

(1.70)

As mentioned before, G̃e′(r̄, r̄
′) is the approximation of the spectral series when

m → +∞. The idea is to sum this series using Ewald’s method. Through this

proposed Kummer-Ewald transformation, the asymptotic retained part G̃e′(r̄, r̄
′)

can be efficiently calculated by using the rapidly convergent components of Ewald’s
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method as follows

G̃e′(r̄, r̄
′) = G̃(r̄, r̄′)

∣∣
m→+∞ = GEwald(r̄, r̄

′)
∣∣
m→+∞

=
[
Gspectral(r̄, r̄

′) +Gspatial(r̄, r̄
′)
] ∣∣
m→+∞

(1.71)

The proof of spectral component of Ewald’s method has been reported in [5, 11].

In this development we have to use the expansion of the exponential that depends

on k when k → 0, as we have done in the spectral asymptotic expansion. For this

purpose, we start from

f̃

(
2πm

d

)
=

1

2
√
π
e−(x−x′)jkxm

∫ ε

0
ds
e−(z−z′)2s2e−

k2
xm−k

2

4s2

s2
(1.72)

and we replace e
k2

4s2 by 1 + k2

4s2

f̃

(
2πm

d

)
=

1

2
√
π
e−jkxm(x−x′)

∫ ε

0
ds
e−(z−z′)2s2e−

k2
xm
4s2

s2

=
1

2
√
π
e−jkxm(x−x′)

∫ ε

0

e−(z−z′)2s2e−
k2
xm
4s2

s2︸ ︷︷ ︸
S1

+
1

2
√
π
e−jkxm(x−x′)

∫ ε

0

e−(z−z′)2s2e−
k2
xm
4s2

s2

k2

4s2
ds︸ ︷︷ ︸

S2

(1.73)

In the knowledge that the previous integrals can be solved by means of [15] as

∫ ε

0

e−as
2− b

s2

s2
ds =

√
π

4
√
b

[
erfc

(√
b

ε
+
√
aε

)
e2
√
a
√
b

+ e−2
√
a
√
b erfc

(√
b

ε
−
√
aε

)]
=
e−2
√
a
√
b√π

4 b3/2
+
e−

(
√
b+
√
aε2)2

ε2

8 ε b3/2[
4
√
b e2

√
a
√
b − ε e

b
ε2

+aε2 √π + 2
√
a
√
b ε
√
π e

b
ε2

+aε2 + ε e
b
ε2

+aε2 e4
√
a
√
b √π

− 2
√
a
√
b ε e

b
ε2

+aε2 e4
√
a
√
b √π − (1 + 2

√
a
√
b) ε e

b
ε2

+aε2 √π erf

(√
b

ε
−
√
aε

)

+ (−1 + 2
√
a
√
b) ε e

b
ε2

+aε2 e4
√
a
√
b √π erf

(√
b

ε
+
√
aε

)]
(1.74)
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where in this case a = (z − z′)2 and b = k2
xm
4 , S1 remains

S1 =
1

4

e−jkxm(x−x′)

|kxm|
×

[
e|kxm||z−z

′| erfc

(
|z − z′|ε+

|kxm|
2ε

)
+ e−|kxm||z−z

′|

erfc

(
−|z − z′|ε+

|kxm|
2ε

)] (1.75)

and series S2 remains

S2 =
1

4
e−jkxp(x−x′)k

2

2

[
2e−|kxm||z−z

′|

|kxm|3
+

2e−
|kxm|2

4ε2
−|z−z′|2ε2

√
π ε |kxm|2

+ e−|kxm||z−z
′|

(−1− erf
(
|kxm|

2ε − |z − z
′|ε
)

|kxm|3
+
|z − z′|

(
1− erf

(
|kxm|

2ε − |z − z
′|ε
))

|kxm|2

)

+ e|kxm||z−z
′|

(
1− erf

(
|kxm|

2ε + |z − z′|ε
)

|kxm|3
+
|z − z′|

(
−1 + erf

(
|kxm|

2ε − |z − z
′|ε
))

|kxm|2

)]
(1.76)

Using this, we can write the asymptotic spectral component using the expansion of

two terms as

Gspectral(r̄, r̄
′)
∣∣
m→+∞ =

1

4d

+∞∑
m=−∞

e−jkxm(x−x′)

{
1

|kxm|

×
[
e|kxm||z−z

′| erfc

(
|z − z′|ε+

|kxm|
2ε

)
+ e−|kxm||z−z

′| erfc

(
−|z − z′|ε+

|kxm|
2ε

)]

+
k2

2

[
2e−|kxm||z−z

′|

|kxm|3
+

2e−
|kxm|2

4ε2
−|z−z′|2ε2

√
π ε |kxm|2

+ e−|kxm||z−z
′|

(−1− erf
(
|kxm|

2ε − |z − z
′|ε
)

|kxm|3
+
|z − z′|

(
1− erf

(
|kxm|

2ε − |z − z
′|ε
))

|kxm|2

)
+ e|kxm||z−z

′|

(
1− erf

(
|kxm|

2ε + |z − z′|ε
)

|kxm|3
+
|z − z′|

(
−1 + erf

(
|kxm|

2ε − |z − z
′|ε
))

|kxm|2

)]}
(1.77)

If we separate the term in m = 0, Gspectral(r̄, r̄
′)
∣∣
m→+∞ is
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Gspectral(r̄, r̄
′)
∣∣
m→+∞ =

1

4d

+∞∑
m=−∞
m 6=0

e−jkxm(x−x′)

{
1

|kxm|

×
[
e|kxm||z−z

′| erfc

(
|z − z′|ε+

|kxm|
2ε

)
+ e−|kxm||z−z

′| erfc

(
−|z − z′|ε+

|kxm|
2ε

)]

+
k2

2

[
2e−|kxm||z−z

′|

|kxm|3
+

2e−
|kxm|2

4ε2
−|z−z′|2ε2

√
π ε |kxm|2

+ e−|kxm||z−z
′|

(−1− erf
(
|kxm|

2ε − |z − z
′|ε
)

|kxm|3
+
|z − z′|

(
1− erf

(
|kxm|

2ε − |z − z
′|ε
))

|kxm|2

)

+ e|kxm||z−z
′|

(
1− erf

(
|kxm|

2ε + |z − z′|ε
)

|kxm|3
+
|z − z′|

(
−1 + erf

(
|kxm|

2ε − |z − z
′|ε
))

|kxm|2

)]}
+Ge0(r̄, r̄′)

(1.78)

where Ge0(r̄, r̄′) contains the value of this component when m = 0. On the other

hand, the spatial Ewald’s method component Gspatial(r̄, r̄
′) is [5, 11]

Gspatial(r̄, r̄
′) =

1

4π

+∞∑
m=−∞

e−jkx0md
+∞∑
q=0

(
k

2ε

)2q 1

q!
Eq+1(Rm

2ε2) (1.79)

where the summation in q corresponds to the expansion of e
k2

4s2 previously done in

the proof of the spectral series and in the proof of the spectral Ewald’s component.

This expansion is originally carried out in the development of the spatial Ewald’s

component. For more detail see [5,11]. Knowing that, the second order expansion of

Gspatial(r̄, r̄
′) when k → 0 corresponds to the use of two terms in the q-summation

lim
k→0

Gspatial(r̄, r̄
′) = lim

k→0

{
1

4π

+∞∑
m=−∞

e−jkx0md
+∞∑
q=0

(
k

2ε

)2q 1

q!
Eq+1(Rm

2ε2)

}

=
1

4π

+∞∑
m=−∞

e−jkx0md

[
E1(R2

mε
2) +

(
k

2ε

)2

E2(R2
mε

2)

]
(1.80)
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Once we have the second order expansion of the Ewald’s method components, we

can summarize how to sum the asymptotic retained part through Ewald’s method.

G̃e(r̄, r̄
′) = G̃e′(r̄, r̄

′)− 1

2d

(
1

|kx0|
+

k2

2|kx0|3
+
k2|z − z′|

2|kx0|2

)
e−|kx0||z−z′|e−jkx0(x−x′)

(1.81)

The series G̃e′(r̄, r̄
′) has been efficiently summed as

G̃e′(r̄, r̄
′) =

[
Gspectral(r̄, r̄

′) +Gspatial(r̄, r̄
′)
] ∣∣
m→+∞

=
1

4d

+∞∑
m=−∞
m 6=0

e−jkxm(x−x′)

{
1

|kxm|

×
[
e|kxm||z−z

′| erfc

(
|z − z′|ε+

|kxm|
2ε

)
+ e−|kxm||z−z

′| erfc

(
−|z − z′|ε+

|kxm|
2ε

)]

+
k2

2

[
2e−|kxm||z−z

′|

|kxm|3
+

2e−
|kxm|2

4ε2
−|z−z′|2ε2

√
π ε |kxm|2

+ e−|kxm||z−z
′|

(−1− erf
(
|kxm|

2ε − |z − z
′|ε
)

|kxm|3
+
|z − z′|

(
1− erf

(
|kxm|

2ε − |z − z
′|ε
))

|kxm|2

)

+ e|kxm||z−z
′|

(
1− erf

(
|kxm|

2ε + |z − z′|ε
)

|kxm|3
+
|z − z′|

(
−1 + erf

(
|kxm|

2ε − |z − z
′|ε
))

|kxm|2

)]}

+Ge0(r̄, r̄′) +
1

4π

+∞∑
m=−∞

e−jkx0md

[
E1(R2

mε
2) +

(
k

2ε

)2

E2(R2
mε

2)

]
(1.82)
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If we insert (1.82) in (1.81), the asymptotic part G̃e(r̄, r̄
′) remains

G̃e(r̄, r̄
′) =

1

4d

+∞∑
m=−∞
m6=0

e−jkxm(x−x′)

{
1

|kxm|
×

[
e|kxm||z−z

′| erfc

(
|z − z′|ε+

|kxm|
2ε

)

+ e−|kxm||z−z
′| erfc

(
−|z − z′|ε+

|kxm|
2ε

)]
+
k2

2

[
2e−|kxm||z−z

′|

|kxm|3
+

2e−
|kxm|2

4ε2
−|z−z′|2ε2

√
π ε |kxm|2

+ e−|kxm||z−z
′|

(−1− erf
(
|kxm|

2ε − |z − z
′|ε
)

|kxm|3
+
|z − z′|

(
1− erf

(
|kxm|

2ε − |z − z
′|ε
))

|kxm|2

)

+ e|kxm||z−z
′|

(
1− erf

(
|kxp|

2ε + |z − z′|ε
)

|kxm|3
+
|z − z′|

(
−1 + erf

(
|kxm|

2ε − |z − z
′|ε
))

|kxm|2

)]}

+Ge0(r̄, r̄′) +
1

4π

+∞∑
m=−∞

e−jkx0md

[
E1(R2

mε
2) +

(
k

2ε

)2

E2(R2
mε

2)

]

− 1

2d

(
1

|kx0|
+

k2

2|kx0|3
+
k2|z − z′|

2|kx0|2

)
e−|kx0||z−z′|e−jkx0(x−x′)

(1.83)

Regrouping terms, G̃e(r̄, r̄
′) remains

G̃e(r̄, r̄
′) =

1

4d

+∞∑
m=−∞
m6=0

e−jkxm(x−x′)

{
1

|kxm|
×

[
e|kxm||z−z

′| erfc

(
|z − z′|ε+

|kxm|
2ε

)

+ e−|kxm||z−z
′| erfc

(
−|z − z′|ε+

|kxm|
2ε

)]
+
k2

2

[
2e−|kxm||z−z

′|

|kxm|3
+

2e−
|kxm|2

4ε2
−|z−z′|2ε2

√
π ε |kxm|2

+ e−|kxm||z−z
′|

(−1− erf
(
|kxm|

2ε − |z − z
′|ε
)

|kxm|3
+
|z − z′|

(
1− erf

(
|kxm|

2ε − |z − z
′|ε
))

|kxm|2

)

+ e|kxm||z−z
′|

(
1− erf

(
|kxp|

2ε + |z − z′|ε
)

|kxm|3
+
|z − z′|

(
−1 + erf

(
|kxm|

2ε − |z − z
′|ε
))

|kxm|2

)]}

+
1

4π

+∞∑
m=−∞

e−jkx0md

[
E1(R2

mε
2) +

(
k

2ε

)2

E2(R2
mε

2)

]

+Ge0(r̄, r̄′)− 1

2d

(
1

|kx0|
+

k2

2|kx0|3
+
k2|z − z′|

2|kx0|2

)
e−|kx0||z−z′|e−jkx0(x−x′)︸ ︷︷ ︸

T

(1.84)
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where the last term T contains the residual value when m = 0. Despite there is no

problem with T when kx0 6= 0, we have to use its limit when kx0 = 0.

T =
1

4d
e−jkx0(x−x′)

{
1

|kx0|
×
[
e|kx0||z−z′| erfc

(
|z − z′|ε+

|kx0|
2ε

)

+ e−|kx0||z−z′| erfc

(
−|z − z′|ε+

|kx0|
2ε

)]
+
k2

2

[
2e−|kx0||z−z′|

|kx0|3
+

2e−
|kx0|

2

4ε2
−|z−z′|2ε2

√
π ε |kx0|2

+ e−|kx0||z−z′|

(−1− erf
(
|kx0|
2ε − |z − z

′|ε
)

|kx0|3
+
|z − z′|

(
1− erf

(
|kx0|
2ε − |z − z

′|ε
))

|kx0|2

)

+ e|kx0||z−z′|

(
1− erf

(
|kx0|
2ε + |z − z′|ε

)
|kx0|3

+
|z − z′|

(
−1 + erf

(
|kx0|
2ε − |z − z

′|ε
))

|kx0|2

)]}

− 1

2d

(
1

|kx0|
+

k2

2|kx0|3
+
k2|z − z′|

2|kx0|2

)
e−|kx0||z−z′|e−jkx0(x−x′)

(1.85)

Resolving this limit by the same procedure as the followed in the previous part, the

term T that we have to use when kx0 = 0 is

T =
|z − z′|

2d
− e−|z−z

′|2ε2

2εd
√
π
− |z − z

′| erf(|z − z′|ε)
2d

− |z − z
′|3k2

12d
+
k2

8d

[
− |z − z

′|3

3

− e−|z−z
′|2ε2

2ε3
√
π

+
|z − z′|2e−|z−z′|2ε2

ε
√
π

− (−1 + 2|z − z′|2ε2)e−|z−z
′|2ε2

6ε3
√
π

+
|z − z′|3

6
(1− erf(|z − z′|ε)) +

|z − z′|3

3
(−1 + erf(|z − z′|ε))

+
|z − z′|3

2
(1 + erf(|z − z′|ε))

]
(1.86)

In order to summarize, in this subsection we have accelerated the 1-D periodic spectral

Green’s function by using Kummer’s transformation and summing efficiently the asymp-

totic retained part through Ewald’s method.

We have outlined the connection between the first and the second asymptotic term

in the spectral series and the summation of these with Ewald’s method. This approach

has not been generalized to Q terms due to the difficulty that arises from the Ewald’s

integrals when we extract more than two terms. Nevertheless, the development done in
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this approach implies a significant improvement over the slow convergence of the original

series, as will be shown in Chapter 3.

1.1.2 Option A.2. Approach of kxm: Lerch Transcendent.

The strategy of this second alternative in the kxm - approach is to develop the formulation

without applying any transformation on it. It can be seen as the analogous technique of

the polylogarithmic formulation for the case of
(

2πm
d

)
- approach. The final expression of

this procedure will be expressed in a semi-closed form using the Lerch transcendent.

For this aim, we first remove the absolute value in (1.9) taking into account that for

positive m

|kxm| =
∣∣∣∣2πmd + kx0

∣∣∣∣ =

(
2πm

d
+ kx0

)
(1.87)

and for negative m

|kxm| =
∣∣∣∣−2πm

d
+ kx0

∣∣∣∣ =

(
2πm

d
− kx0

)
(1.88)

Using this, we can write (1.9) as

G̃e(r̄, r̄
′) =

e−jkx0(x−x′)

2d

[
+∞∑
m=1

 Q∑
q=0

fq k
2q(

2πm
d + kx0

)2q+1

 e−( 2πm
d

+kx0)|z−z′| e−j
2πm
d

(x−x′)

+

+∞∑
m=1

 Q∑
q=0

fq k
2q(

2πm
d − kx0

)2q+1

 e−( 2πm
d
−kx0)|z−z′| ej

2πm
d

(x−x′)

]

=
e−jkx0(x−x′)

2d

[
e−kx0|z−z′|

+∞∑
m=1

 Q∑
q=0

fq k
2q(

2πm
d + kx0

)2q+1

 e−
2πm
d
|z−z′| e−j

2πm
d

(x−x′)

︸ ︷︷ ︸
S1

+ ekx0|z−z′|
+∞∑
m=1

 Q∑
q=0

fq k
2q(

2πm
d − kx0

)2q+1

 e−
2πm
d
|z−z′| ej

2πm
d

(x−x′)

︸ ︷︷ ︸
S2

]

(1.89)

Using this notation, G̃e(r̄, r̄
′) can be expressed as the following summation
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G̃e(r̄, r̄
′) =

e−jkx0(x−x′)

2d

[
e−kx0|z−z′|S1 + ekx0|z−z′|S2

]
(1.90)

We have to sum the series S1 and S2 which have the same general form S

S =
+∞∑
m=1

 Q∑
q=0

fq k
2q(

2πm
d ± kx0

)2q+1

 e−
2πm
d

[|z−z′|±j(x−x′)]

=

Q∑
q=0

fq k
2q

+∞∑
m=1

1(
2πm
d ± kx0

)2q+1

e− 2π
d

[|z−z′|±j(x−x′)]︸ ︷︷ ︸
z±

m

=

Q∑
q=0

fq k
2q

+∞∑
m=1

zm±(
2π
d

)2q+1
(
m± kx0d

2π

)2q+1

=

Q∑
q=0

fq k
2q(

2π
d

)2q+1

+∞∑
m=1

zm±m+

(
±kx0d

2π

)
︸ ︷︷ ︸

a


2q + 1︸ ︷︷ ︸

s

(1.91)

Knowing that the Lerch transcendent is defined as

Φ(z, s, a) =
+∞∑
k=0

zk

(a+ k)s
(1.92)

Therefore, the summation that we are interested in can be written as

+∞∑
k=1

zk

(a+ k)s
=

+∞∑
k=0

zk

(a+ k)s
− 1

as
= Φ(z, s, a)− 1

as
(1.93)

We can use this notation to express the general summation S as

S =

Q∑
q=0

fq k
2q(

2π
d

)2q+1

Φ

(
z±, 2q + 1,±kx0d

2π

)
− 1(
±kx0d

2π

)2q+1

 (1.94)

and consequently, S1 and S2 can be written as follows
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S1 =

Q∑
q=0

fq k
2q(

2π
d

)2q+1

Φ

(
e−

2π
d

[|z−z′|+j(x−x′)], 2q + 1,
kx0d

2π

)
− 1(

kx0d
2π

)2q+1

 (1.95)

S2 =

Q∑
q=0

fq k
2q(

2π
d

)2q+1

Φ

(
e−

2π
d

[|z−z′|−j(x−x′)], 2q + 1,−kx0d

2π

)
− 1(
−kx0d

2π

)2q+1

 (1.96)

So, we have accelerated the spectral Green’s function by retaining Q terms in Kummer’s

transformation. These Q asymptotic retained terms can be summed using this method as

a semi-closed form with Lerch transcendent formulation.

1.1.3 Option A.3. Approach of kxm: Summation by Parts.

In this subsection, we study an alternative to sum the remaining part using the summation

by parts technique [9]. In this case, the series G̃e(r̄, r̄
′) can be written as the sum of two

parts, one analytical and the other numerical but finite.

For this technique, we start from (1.89)

G̃e(r̄, r̄
′) =

e−jkx0(x−x′)

2d

[
e−kx0|z−z′|

+∞∑
m=1

 Q∑
q=0

fq k
2q(

2πm
d + kx0

)2q+1

 e−
2πm
d
|z−z′| e−j

2πm
d

(x−x′)

︸ ︷︷ ︸
S1

+ ekx0|z−z′|
+∞∑
m=1

 Q∑
q=0

fq k
2q(

2πm
d − kx0

)2q+1

 e−
2πm
d
|z−z′| ej

2πm
d

(x−x′)

︸ ︷︷ ︸
S2

]

(1.97)

As stated above, G̃e(r̄, r̄
′) can be expressed as the sum of two series with the same

general form

G̃e(r̄, r̄
′) =

e−jkx0(x−x′)

2d

[
e−kx0|z−z′|S1 + ekx0|z−z′|S2

]
(1.98)
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Applying the theory of the summation by parts technique (see Appendix A.1) reported

in [9], the general series S can be split into

S =

+∞∑
m=1

 Q∑
q=0

fq k
2q(

2πm
d ± kx0

)2q+1

 e−
2πm
d

[|z−z′|±j(x−x′)]

=

M−1∑
m=1

 Q∑
q=0

fq k
2q(

2πm
d ± kx0

)2q+1

 e−
2πm
d

[|z−z′|±j(x−x′)]

︸ ︷︷ ︸
SM−1

+

+∞∑
m=M

 Q∑
q=0

fq k
2q(

2πm
d ± kx0

)2q+1

 e−
2πm
d

[|z−z′|±j(x−x′)]

︸ ︷︷ ︸
RM

(1.99)

Now, we modify RM in order to sum it analytically

RM =
+∞∑
m=M

 Q∑
q=0

fq k
2q(

2πm
d ± kx0

)2q+1

 e−
2πm
d
|z−z′|

︸ ︷︷ ︸
G̃

(−1)
m

e∓j
2πm
d

(x−x′)︸ ︷︷ ︸
f

(+1)
m

(1.100)

Using the first order approximation of RM

RM = G̃
(−1)
M f

(+2)
M−1 (1.101)

where

G̃
(−1)
M = G̃(−1)

m

∣∣∣
m=M

=

 Q∑
q=0

fq k
2q(

2πm
d ± kx0

)2q+1

 e−
2πm
d
|z−z′|

∣∣∣∣∣
m=M

=

 Q∑
q=0

fq k
2q(

2πM
d ± kx0

)2q+1

 e−
2πM
d
|z−z′|

(1.102)

and
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f
(+2)
M−1 =

+∞∑
k=m+1

f
(+1)
k

∣∣∣∣
m=M−1

=
+∞∑

k=m+1

e∓j
2πk
d

(x−x′)
∣∣∣∣
m=M−1

=
e∓j

2π(m+1)
d

(x−x′)

1− e∓j
2π
d

(x−x′)

∣∣∣∣∣
m=M−1

=
e∓j

2πM
d

(x−x′)

1− e∓j
2π
d

(x−x′)

(1.103)

RM can be analytically summed as

RM =

 Q∑
q=0

fq k
2q(

2πM
d ± kx0

)2q+1

 e−
2πM
d
|z−z′| e

∓j 2πM
d

(x−x′)

1− e∓j
2π
d

(x−x′)
(1.104)

and therefore, S is given by the summation of the initial numerical part and the obtained

analytical part

S =
M−1∑
m=1

 Q∑
q=0

fq k
2q(

2πm
d ± kx0

)2q+1

 e−
2πm
d

[|z−z′|±j(x−x′)]

+

 Q∑
q=0

fq k
2q(

2πM
d ± kx0

)2q+1

 e−
2πM
d
|z−z′| e

∓j 2πM
d

(x−x′)

1− e∓j
2π
d

(x−x′)

(1.105)

where M has to be adjusted to sum each part in their optimum region. Using this

general expression of S, the series S1 and S2 that we are interested in are

S1 =

M−1∑
m=1

 Q∑
q=0

fq k
2q(

2πm
d + kx0

)2q+1

 e−
2πm
d

[|z−z′|+j(x−x′)]

+

 Q∑
q=0

fq k
2q(

2πM
d + kx0

)2q+1

 e−
2πM
d
|z−z′| e

−j 2πM
d

(x−x′)

1− e−j
2π
d

(x−x′)

(1.106)

S2 =
M−1∑
m=1

 Q∑
q=0

fq k
2q(

2πm
d − kx0

)2q+1

 e−
2πm
d

[|z−z′|−j(x−x′)]

+

 Q∑
q=0

fq k
2q(

2πM
d − kx0

)2q+1

 e−
2πM
d
|z−z′| e

j 2πM
d

(x−x′)

1− ej
2π
d

(x−x′)

(1.107)
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So, we have accelerated the spectral Green’s function by retaining Q terms in Kummer’s

transformation. Thus, the Q asymptotic retained terms can be added using the summation

by parts technique as a sum of an analytical part and a numerical but finite part.

A comparison between the different techniques reported in this section to sum the asymp-

totic series using this first approach of applying Kummer’s transformation will be reported

in Chapter 3.

1.1.4 Option B.1. Approach of
(

2πm
d

)
: Sum by Ewald’s Method.

The first alternative to sum the asymptotic retained terms obtained by the application

of this second approach of Kummer’s transformation is using the corresponding terms in

Ewald’s method. This can be considered a combination of both techniques. The strategy

is similar to the followed in the subsection 1.1.1 but with the other approach to extract

the asymptotic terms.

In this subsection we report the connection between the first asymptotic term in the

spectral domain and the first asymptotic term in Ewald’s method.

• Extraction of one term.

Here we suggest summing the static first term with Ewald’s method. In this case,

the series G̃e(r̄, r̄
′) that we have to efficiently sum is

G̃e(r̄, r̄
′) =

1

2d

+∞∑
m=−∞
m6=0

∣∣∣∣∣ d

2πm

∣∣∣∣∣ e−| 2πmd ||z−z′| e−jkxm(x−x′)
(1.108)

Therefore, the static series G̃e′(r̄, r̄
′) is

G̃e(r̄, r̄
′) = e−jkx0(x−x′)

(
1

2d

+∞∑
m=−∞
m 6=0

∣∣∣∣∣ d

2πm

∣∣∣∣∣ e−| 2πmd ||z−z′| e−j 2πm
d

(x−x′)

)
︸ ︷︷ ︸

G̃e′ (r̄,r̄
′)

(1.109)

The idea, like in the subsection 1.1.1, is to identify this series with an approximation

of the spectral one and then use Ewald’s transformation to sum the asymptotic term.

For this purpose, we have to remember that the spectral Green’s function is
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G̃(r̄, r̄′) =
1

2d

∞∑
m=−∞

e−γm|z−z
′|

γm
e−jkxm(x−x′)

=
1

2d

+∞∑
m=−∞
m6=0

e−γm|z−z
′|

γm
e−jkxm(x−x′) +

1

2d

e−γ0|z−z′|

γ0
e−jkx0(x−x′)

(1.110)

where kxm = kx0 + 2πm
d and γm =

√
k2
xm − k2. We want to obtain the approximation

of the previous series when m → ∞ using this second approach. It is important to

note that we are assuming that γm is approximated by
∣∣2πm

d

∣∣, that is

γm
∣∣
m→∞ =

√
k2
xm − k2

∣∣∣
m→∞

=

√(
kx0 +

2πm

d

)2

− k2

∣∣∣∣∣
m→∞

=

√(
�
�kx0 +

2πm

d

)2

−��k2 =

∣∣∣∣2πmd
∣∣∣∣

(1.111)

For this reason, in m = 0 where we only have kx0, we will use the static limit of

this term when kx0 → 0. That is, we are assuming not only is
(
kx0 + 2πm

d

)
more

important than k (like the other option) but also
∣∣2πm

d

∣∣ is more important than kx0.

This leads to believe that both k and kx0 tend to 0.

G̃(r̄, r̄′)
∣∣
m→∞ =

1

2d

+∞∑
m=−∞
m 6=0

1

γm
e−γm|z−z

′|−jkxm(x−x′)

∣∣∣∣∣
m→∞

+ lim
kx0→0

(
1

2d

e−γ0|z−z′|

γ0
e−jkx0(x−x′)

)

=
1

2d

+∞∑
m=−∞
m6=0

∣∣∣∣∣ d

2πm

∣∣∣∣∣e−| 2πmd ||z−z′| e−j 2πm
d

(x−x′)

︸ ︷︷ ︸
G̃e′ (r̄,r̄

′)

+ lim
kx0→0

(
1

2d

1

γ0
e−γ0|z−z′|−jkx0(x−x′)

)

(1.112)

As seen, we can identify the series G̃e′(r̄, r̄
′) as a part of this approximation and

therefore we can write G̃e′(r̄, r̄
′) as a function of the approximation of the spectral

Green’s function when m→∞.

G̃e′(r̄, r̄
′) = G̃(r̄, r̄′)

∣∣
m→∞ − lim

kx0→0

(
1

2d

1

γ0
e−γ0|z−z′|−jkx0(x−x′)

)
(1.113)
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The idea is to sum G̃e′(r̄, r̄
′) rapidly by using the approximation of the Ewald’s

method components when m → ∞. Thus, the approximation of G̃(r̄, r̄′) can be

summed as [Gspectral(r̄, r̄
′) +Gspatial(r̄, r̄

′)]
∣∣
m→∞.

Remembering that the spectral Ewald’s method component Gspectral(r̄, r̄
′) is [5, 11]

Gspectral(r̄, r̄
′) =

1

4d

+∞∑
m=−∞

e−jkxm(x−x′)

jkzm

×
[
ejkzm|z−z

′| erfc

(
|z − z′|ε+

jkzm
2ε

)
+ e−jkzm|z−z

′| erfc

(
−|z − z′|ε+

jkzm
2ε

)]
(1.114)

where kxm = kx0 + 2πm
d and kzm =

√
k2 − k2

xm. We sum separately the term m = 0

Gspectral(r̄, r̄
′) =

1

4d

+∞∑
m=−∞
m 6=0

e−jkxm(x−x′)

jkzm
×

[
ejkzm|z−z

′| erfc

(
|z − z′|ε+

jkzm
2ε

)

+ e−jkzm|z−z
′| erfc

(
−|z − z′|ε+

jkzm
2ε

)]
+

1

4d

e−jkx0(x−x′)

jkz0

×

[
ejkz0|z−z

′| erfc

(
|z − z′|ε+

jkz0
2ε

)
+ e−jkz0|z−z

′| erfc

(
−|z − z′|ε+

jkz0
2ε

)]
(1.115)

The expansion of Gspectral(r̄, r̄
′) is given by

Gspectral(r̄, r̄
′)
∣∣
m→∞ =

{
1

4d

+∞∑
m=−∞
m6=0

e−jkxm(x−x′)

jkzm

×

[
ejkzm|z−z

′| erfc

(
|z − z′|ε+

jkzm
2ε

)
+ e−jkzm|z−z

′| erfc

(
−|z − z′|ε+

jkzm
2ε

)]

+
1

4d

e−jkx0(x−x′)

jkz0
×
[
ejkz0|z−z

′| erfc

(
|z − z′|ε+

jkz0
2ε

)
+ e−jkz0|z−z

′| erfc

(
−|z − z′|ε+

jkz0
2ε

)]}∣∣∣∣∣
m→∞

(1.116)

Using the following approximation of kzm and kxm

kxm
∣∣
m→∞ =

(
kx0 +

2πm

d

) ∣∣∣∣∣
m→∞

=
2πm

d
(1.117a)
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kzm
∣∣
m→∞ = −

√
k2 − k2

xm

∣∣∣
m→∞

= −j
∣∣∣∣2πmd

∣∣∣∣ (1.117b)

the approximation of jkzm, which is the term that we are interested in, can be

obtained as

jkzm
∣∣
m→∞ =

∣∣∣∣2πmd
∣∣∣∣ (1.118)

According to this, the expansion of Gspectral(r̄, r̄
′) can be expressed as

Gspectral(r̄, r̄
′)
∣∣
m→∞ =

1

4d

+∞∑
m=−∞
m6=0

e−j
2πm
d

(x−x′)∣∣2πm
d

∣∣ ×

[
e|

2πm
d ||z−z′| erfc

(
|z − z′|ε+

∣∣2πm
d

∣∣
2ε

)

+ e−|
2πm
d ||z−z′| erfc

(
−|z − z′|ε+

∣∣2πm
d

∣∣
2ε

)]
+ lim
kx0→0

(
1

4d

e−jkx0(x−x′)

jkz0

×
[
ejkz0|z−z

′| erfc

(
|z − z′|ε+

jkz0
2ε

)
+ e−jkz0|z−z

′| erfc

(
−|z − z′|ε+

jkz0
2ε

)])
(1.119)

As mentioned before, in m = 0 we have to calculate the limit of kx0 because we are

using the approximation jkzm =
∣∣2πm

d

∣∣ neglecting not only k but also kx0.

On the other hand, recalling that the spatial Ewald’s method componentGspatial(r̄, r̄
′)

is [5, 11]

Gspatial(r̄, r̄
′) =

1

4π

+∞∑
m=−∞

e−jkx0md
+∞∑
q=0

(
k

2ε

)2q 1

q!
Eq+1(Rm

2ε2) (1.120)

the approximation when m → ∞ in the spectral domain corresponds to k → 0 in

the spatial domain. Therefore, the limit of Gspatial(r̄, r̄
′) when k → 0 is given by

lim
k→0
kx0→0

Gspatial(r̄, r̄
′) = lim

k→0
kx0→0

{
1

4π

+∞∑
m=−∞

e−jkx0md
+∞∑
q=0

(
k

2ε

)2q 1

q!
Eq+1(Rm

2ε2)

}

=
1

4π

+∞∑
m=−∞

E1(Rm
2ε2)

(1.121)

The found approximations of Ewald’s method components can be used to sum the

series G̃e(r̄, r̄
′)
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G̃e(r̄, r̄
′) = e−jkx0(x−x′)

{
G̃(r̄, r̄′)

∣∣
m→∞ − lim

kx0→0

(
1

2d

1

γ0
e−γ0|z−z′|−jkx0(x−x′)

)}

= e−jkx0(x−x′)

{
[Gspectral(r̄, r̄

′) +Gspatial(r̄, r̄
′)]
∣∣
m→∞

− lim
kx0→0

(
1

2d

1

γ0
e−γ0|z−z′|−jkx0(x−x′)

)}

= e−jkx0(x−x′)

{
1

4π

+∞∑
m=−∞

E1(Rm
2ε2) +

1

4d

+∞∑
m=−∞
m6=0

e−j
2πm
d

(x−x′)∣∣2πm
d

∣∣
×

[
e|

2πm
d ||z−z′| erfc

(
|z − z′|ε+

∣∣2πm
d

∣∣
2ε

)
+ e−|

2πm
d ||z−z′| erfc

(
−|z − z′|ε+

∣∣2πm
d

∣∣
2ε

)]

+ lim
kx0→0

(
1

4d

e−jkx0(x−x′)

jkz0
×
[
ejkz0|z−z

′| erfc

(
|z − z′|ε+

jkz0
2ε

)

+ e−jkz0|z−z
′| erfc

(
−|z − z′|ε+

jkz0
2ε

)]
− 1

2d

1

γ0
e−γ0|z−z′|−jkx0(x−x′)

)}
(1.122)

where the last term T contains the residual value when m = 0. As discussed before,

in this approach we have to calculate and use the limit of T when kx0 → 0 in all

cases.

T = lim
kx0→0

{
1

4d

e−jkx0(x−x′)

|kx0|
×
[
e|kx0||z−z′| erfc

(
|z − z′|ε+

|kx0|
2ε

)
+ e−|kx0||z−z′|

erfc

(
−|z − z′|ε+

|kx0|
2ε

)]
− 1

2d

1

γ0
e−γ0|z−z′|−jkx0(x−x′)

}

=
1

2d
lim
kx0→0

{
e−jkx0(x−x′)

|kx0|

[
1

2

(
e|kx0||z−z′| erfc

(
|z − z′|ε+

|kx0|
2ε

)

+ e−|kx0||z−z′| erfc

(
−|z − z′|ε+

|kx0|
2ε

))
− e−|kx0||z−z′|

]}

=
|z − z′|

2d
− e−|z−z

′|2ε2

2εd
√
π
− |z − z

′| erf(|z − z′|ε)
2d

(1.123)
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Introducing (1.123) in (1.122), G̃e(r̄, r̄
′) remains

G̃e(r̄, r̄
′) = e−jkx0(x−x′)

{
1

4π

+∞∑
m=−∞

E1(Rm
2ε2) +

1

4d

+∞∑
m=−∞
m6=0

e−j
2πm
d

(x−x′)∣∣2πm
d

∣∣
×

[
e|

2πm
d ||z−z′| erfc

(
|z − z′|ε+

∣∣2πm
d

∣∣
2ε

)
+ e−|

2πm
d ||z−z′| erfc

(
−|z − z′|ε+

∣∣2πm
d

∣∣
2ε

)]

+
|z − z′|

2d
− e−|z−z

′|2ε2

2εd
√
π
− |z − z

′| erf(|z − z′|ε)
2d

}
(1.124)

The extension of this formulation to one more term could be carried out by using

the Taylor expansion not only for e
k2

4s2 but also for e−jkx0md. These expansions have

to be done in the spectral development (1.58) and in the developments of Ewald’s

method components (1.59) and (1.60).

G(r̄, r̄′) =
1

2π

+∞∑
m=−∞

e−jkx0md︸ ︷︷ ︸
Taylor expansion

∫ ∞
0

e−R
2
ms

2

s
e
k2

4s2︸︷︷︸
Taylor expansion

ds (1.125)

Gspectral(r̄, r̄′) =
1

2π

+∞∑
m=−∞

e−jkx0md︸ ︷︷ ︸
Taylor expansion

∫ ε

0

e−R
2
ms

2

s
e
k2

4s2︸︷︷︸
Taylor expansion

ds (1.126)

Gspatial(r̄, r̄′) =
1

2π

+∞∑
m=−∞

e−jkx0md︸ ︷︷ ︸
Taylor expansion

∫ ∞
ε

e−R
2
ms

2

s
e
k2

4s2︸︷︷︸
Taylor expansion

ds (1.127)

The extraction of two terms and the generalization to Q terms is not carried out due

to the difficulty that arises from the Ewald’s integrals when we extract more than

one term with this approach. This is because we have the product of two Taylor

expansions and the integral resulted by this product become complicated.

But even so, in this subsection we have accelerated the spectral Green’s function by us-

ing Kummer’s transformation and summing efficiently the first asymptotic retained term

through Ewald’s method.

1.1.5 Option B.2. Approach of
(

2πm
d

)
: Polylogarithmic Functions.

This option consists of using polylogarithmic functions to write the asymptotic part when

we use the
(

2πm
d

)
- approach. This alternative was studied in detail in [11].
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The idea is that theQ retained terms are written in a semi-closed form as polylogarithmic

funtions. The polylogarithm (also known as Jonquière’s function) [16] is a special function

Lis(z) defined by the following series

Lis(z) =
∞∑
k=1

zk

ks
(1.128)

where s is the order and z is the argument. Using the notation, when more and more

terms are retained, more series with a higher order appear and more polylogarithms with

a higher order have to be summed. The formulation start from

G̃e(r̄, r̄
′) =

1

2d

+∞∑
m=−∞
m 6=0

∣∣∣∣∣ d

2πm
− kx0d

2

(2πm)2
+

(k2 − k2
x0)d3

2(2πm)3
+ ...

∣∣∣∣∣ e−| 2πmd +kx0||z−z′| e−jkxm(x−x′)

=
1

2d

+∞∑
m=−∞
m 6=0

∣∣∣∣∣
Q∑
q=0

dq+1

(πm)q+1

x∑
a=0

k
(q−2a)
x0 (k2

x0 − k2)a

22a+1

(
q − a
a

)
fq−a

∣∣∣∣∣e−| 2πmd +kx0||z−z′|e−jkxm(x−x′)

(1.129)

We can remove the absolute value as follows

G̃e(r̄, r̄
′) =

e−jkx0(x−x′)

2d

[
+∞∑
m=1

(
Q∑
q=0

dq+1

(πm)q+1

x∑
a=0

k
(q−2a)
x0 (k2

x0 − k2)a

22a+1

(
q − a
a

)
fq−a

)

e−( 2πm
d

+kx0)|z−z′|e−j
2πm
d

(x−x′) −
+∞∑
m=1

(
Q∑
q=0

(−1)q+1dq+1

(πm)q+1

x∑
a=0

k
(q−2a)
x0 (k2

x0 − k2)a

22a+1

(
q − a
a

)
fq−a

)

e−( 2πm
d
−kx0)|z−z′|ej

2πm
d

(x−x′)

]
(1.130)

Using the definition of polylogarithm given by (1.128), G̃e(r̄, r̄
′) can be written as

G̃e(r̄, r̄
′) =

e−jkx0(x−x′)

2d

[
e−kx0|z−z′|

Q∑
q=0

dq+1

πq+1

x∑
a=0

k
(q−2a)
x0 (k2

x0 − k2)a

22a+1

(
q − a
a

)
fq−a

Liq+1(z1)− ekx0|z−z′|
Q∑
q=0

(−1)q+1dq+1

πq+1

x∑
a=0

k
(q−2a)
x0 (k2

x0 − k2)a

22a+1

(
q − a
a

)
fq−a Liq+1(z2)

]
(1.131)
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where

z1 = e−
2π
d

[|z−z′|+j(x−x′)] (1.132a)

z2 = e−
2π
d

[|z−z′|−j(x−x′)] (1.132b)

So, we have accelerated the spectral Green’s function by retaining Q terms in Kummer’s

transformation. These Q asymptotic retained terms can be summed using this method as

a semi-closed form with polylogarithmic formulation. For more detail about the general

formulation see [11]. It is important to note that this development has been outlined in a

Q generic form for both approaches using the Lerch transcendent formulation for the first

one and the polylogarithmic functions as analogue for the second approach.

In addition to this expansion, we can consider an alternative approximation described

in [17,18]. This alternative is reported for second order terms but is not generalized.

The idea starts from the expansion of γm. We have that γm is

γm =
√
k2
xm − k2 =

√(
kx0 +

2πm

d

)2

− k2 =

√
k2
x0 +

2πmkx0

d
+

(
2πm

d

)2

− k2

=

(
2πm

d

)√√√√√√1 +
kx0d

πm
+
k2
x0 − k2(
2πm
d

)2︸ ︷︷ ︸
u

(1.133)

The expansion of γm when u→ 0 is

γm ≈
(

2πm

d

)(
1 +

kx0d

2πm
− k2

2
(

2πm
d

)2 +
k2
x0

2
(

2πm
d

)2 + ...

)

=

∣∣∣∣2πmd + kx0 −
k2d

4πm
+
k2
x0d

4πm
+ ...

∣∣∣∣
(1.134)

and thus the expansion of the exponential in the asymptotic term is given by

e−γm|z−z
′| ≈ e

−
∣∣∣∣ 2πmd +kx0− k2d

4πm
+
k2
x0d

4πm

∣∣∣∣|z−z′| (1.135)

We used the first two terms in our approximation [11] due to the third term, e−x/m, when

m→ +∞ does not improve the convergence. In [17,18] the first two terms of exponential

are also use and the third one results in additional terms by Taylor expansion of the

exponential. According to this, the final expansion of the exponential in the asymptotic
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terms is given by

e−γm|z−z
′| ≈ e−|

2πm
d

+kx0||z−z′| (1.136)

and the exponential, resulted by the third term in the expansion of γm, is used as follows

e
k2d|z−z′|

4π|m| = 1 +
k2d|z − z′|

4π|m|
+

1

2!

(
k2d|z − z′|

4π|m|

)2

+
1

3!

(
k2d|z − z′|

4π|m|

)3

+ ...

= 1 +
+∞∑
n=0

1

n!

(
k2d|z − z′|

4π|m|

)n (1.137)

Thus, the asymptotic term can be generally written as

1

γm
e−γm|z−z

′| ≈ 1

γm

(
1 +

+∞∑
n=0

1

n!

(
k2d|z − z′|

4π|m|

)n)
e−|

2πm
d

+kx0||z−z′|

=

 1

γm
+

1

γm

+∞∑
n=0

1

n!

(
k2d|z − z′|

4π|m|

)n
︸ ︷︷ ︸

the new terms

 e−|
2πm
d

+kx0||z−z′|
(1.138)

It can be noted that if we consider the first term of this new expansion, which is 1, the

expansion of 1
γm

is the same we have taken into account in [11].

The improvement that these terms incorporate is the next terms of the exponential

expansion. In addition, the following terms that are obtained in the expansion of γm will

result in more exponential expansions like the reported one.

This alternative improves the convergence of Green’s function when the observation

point is far from the source because near the source this new terms are negligible due to

the fact that contains |z − z′| and near the source |z − z′| → 0.

The formulation with this consideration can become complicated due to the number of

terms to take into account. In addition, it should be pointed out that far from the source

the spectral Green’s function without any transformation is rapidly convergent and for

this reason, the improvement in the case that we are interested in (near the source) is

negligible.

Because of that, we are going to detail the process following in [17, 18] and show the

change in our notation produced by this additional expansion. However, we are going to

continue our formulation without taking into account these terms.



1.1. Revisited of the Spectral Kummer’s Transformation 40

According to this development, the second order approximation of Kummer’s transfor-

mation can be obtained as

1

γm
e−γm|z−z

′| ≈
∣∣∣∣ d

2πm
− kx0d

2

(2πm)2

∣∣∣∣ (1 +
(k2 − k2

x0)d|z − z′|
4π|m|

)
e−|

2πm
d

+kx0||z−z′| (1.139)

where for positive m is

∣∣∣∣ d

2πm
− kx0d

2

(2πm)2

∣∣∣∣ =
d

2πm
− kx0d

2

(2πm)2
=

d

2πm
− sgn(m)kx0d

2

(2πm)2
(1.140)

and for negative m is

∣∣∣∣− d

2πm
− kx0d

2

(2πm)2

∣∣∣∣ =
d

2πm
+

kx0d
2

(2πm)2
=

d

2π|m|
− sgn(m)kx0d

2

(2πm)2
(1.141)

and in general for positive and negative m is

∣∣∣∣ d

2πm
− kx0d

2

(2πm)2

∣∣∣∣ =
d

2π|m|
− sgn(m)kx0d

2

(2πm)2
(1.142)

Using this, 1
γm
e−γm|z−z

′| can be expressed as its second order expansion but now we use

the previous obtained terms in the expansion of third exponential.

1

γm
e−γm|z−z

′| ≈
(

d

2π|m|
− sgn(m) kx0 d

2

(2πm)2

)(
1 +

(k2 − k2
x0) d |z − z′|
4π|m|

)
e−|

2πm
d

+kx0||z−z′|

=

(
d

2π|m|
− sgn(m) kx0 d

2

(2πm)2
+

(k2 − k2
x0) d2 |z − z′|

2(2π|m|)2
+

sgn(m) (k2 − k2
x0) kx0 d

3 |z − z′|
2(2πm)3

)
e−|

2πm
d

+kx0||z−z′|

(1.143)

where we have in [11] that the second order expansion of the Kummer’s transformation

is
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G̃e =
e−jkx0(x−x′)

2d

{
ekz0|z−z

′|

[
d

2π
Li1(z1) +

kx0 d
2

(2π)2
Li2(z1)

]

+ e−kz0|z−z
′|

[
d

2π
Li1(z2)− kx0 d

2

(2π)2
Li2(z2)

]} (1.144)

where z1 = e
2π
d

[|z−z′|−j(x−x′)] and z2 = e
2π
d

[|z−z′|+j(x−x′)]. Now, with this alternative

approximation, the second order expansion of the Kummer’s transformation is

G̃e =
e−jkx0(x−x′)

2d

{
ekz0|z−z

′|

[
d

2π
Li1(z1) +

(
(k2 − k2

x0) d2 |z − z′|
2(2π)2

+
kx0 d

2

(2π)2

)
Li2(z1)

]

+ e−kz0|z−z
′|

[
d

2π
Li1(z2) +

(
(k2 − k2

x0) d2 |z − z′|
2(2π)2

− kx0 d
2

(2π)2

)
Li2(z2)

]}
(1.145)

As has been noticed, this procedure can be generalized for all terms presented in the

exponential expansion, nonetheless all these terms would be proportional to the distance

between the observation point and the source point |z− z′|. In our case, we are interested

in accelerating the convergence of Green’s functions when the observation point is close

to the source and for this case, these additional terms would be negligible.

1.1.6 Option B.3. Approach of
(

2πm
d

)
: Summation by Parts.

In this subsection, we study an alternative to sum the remaining part using the summation

by parts technique [9]. In this case, the series G̃e(r̄, r̄
′) can be written as the sum of two

parts, one analytical and the other numerical but finite.

For this purpose, we start from (1.16)

G̃e(r̄, r̄
′) =

1

2d

+∞∑
m=−∞
m6=0

∣∣∣∣∣ d

2πm
− kx0d

2

(2πm)2
+

(k2 − k2
x0)d3

2(2πm)3
+ ...

∣∣∣∣∣
e−|

2πm
d

+kx0||z−z′| e−jkxm(x−x′)

=
1

2d

+∞∑
m=−∞
m6=0

∣∣∣∣∣
Q∑
q=0

q∑
a=0

(
q

a

)
k

(q−a)
x0 (k2

x0 − k2)a

22a+1

(
d

πm

)q+a+1

fq

∣∣∣∣∣
e−|

2πm
d

+kx0||z−z′|e−jkxm(x−x′)

(1.146)
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According to this, the asymptotic series that has to be accelerated is

G̃e(r̄, r̄
′) =

e−jkx0(x−x′)

2d

[
e−kx0|z−z′|

+∞∑
m=1

Q∑
q=0

q∑
a=0

(
q

a

)
k

(q−a)
x0 (k2

x0 − k2)a

22a+1

(
d

πm

)q+a+1

fqe
− 2πm

d
[|z−z′|+j(x−x′)]

︸ ︷︷ ︸
S1

− ekx0|z−z′|

+∞∑
m=1

Q∑
q=0

(−1)q
q∑

a=0

(−1)a+1

(
q

a

)
k

(q−a)
x0 (k2

x0 − k2)a

22a+1

(
d

πm

)q+a+1

fqe
− 2πm

d
[|z−z′|−j(x−x′)]

︸ ︷︷ ︸
S2

]

(1.147)

As stated above, G̃e(r̄, r̄
′) can be expressed as the sum of two series with the following

general form

G̃e(r̄, r̄
′) =

e−jkx0(x−x′)

2d

[
e−kx0|z−z′|S1 − ekx0|z−z′|S2

]
(1.148)

We name the factors, which are multiplying, F+ and F−, respectively.

F+ =

(
q

a

)
k

(q−a)
x0 (k2

x0 − k2)a

22a+1

(
d

π

)q+a+1

fq (1.149)

F− = (−1)q
(
q

a

)
(−1)a+1 k

(q−a)
x0 (k2

x0 − k2)a

22a+1

(
d

π

)q+a+1

fq (1.150)

Applying the theory of the summation by parts technique (see Appendix A.1) reported

in [9], the general series S can be split into

S =
+∞∑
m=1

Q∑
q=0

q∑
a=0

F±
e−

2πm
d
|z−z′|

mq+a+1
e∓j

2πm
d

(x−x′) =

M−1∑
m=1

Q∑
q=0

q∑
a=0

F±
e−

2πm
d
|z−z′|

mq+a+1
e∓j

2πm
d

(x−x′)

︸ ︷︷ ︸
SM−1

+
+∞∑
m=M

Q∑
q=0

q∑
a=0

F±
e−

2πm
d
|z−z′|

mq+a+1
e∓j

2πm
d

(x−x′)

︸ ︷︷ ︸
RM

(1.151)
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Now, we modify RM in order to sum it analytically

RM =
+∞∑
m=M

Q∑
q=0

q∑
a=0

F±
e−

2πm
d
|z−z′|

mq+a+1︸ ︷︷ ︸
G̃

(−1)
m

e∓j
2πm
d

(x−x′)︸ ︷︷ ︸
f

(+1)
m

(1.152)

Using the first order approximation of RM = G̃
(−1)
M f

(+2)
M−1 where

G̃
(−1)
M = G̃(−1)

m

∣∣∣
m=M

=

Q∑
q=0

q∑
a=0

F±
e−

2πm
d
|z−z′|

mq+a+1

∣∣∣∣∣
m=M

=

Q∑
q=0

q∑
a=0

F±
e−

2πM
d
|z−z′|

M q+a+1
(1.153)

and

f
(+2)
M−1 =

+∞∑
k=m+1

f
(+1)
k

∣∣∣∣
m=M−1

=

+∞∑
k=m+1

e∓j
2πk
d

(x−x′)
∣∣∣∣
m=M−1

=
e∓j

2π(m+1)
d

(x−x′)

1− e∓j
2π
d

(x−x′)

∣∣∣∣
m=M−1

=
e∓j

2πM
d

(x−x′)

1− e∓j
2π
d

(x−x′)

(1.154)

RM can be summed as

RM =

Q∑
q=0

q∑
a=0

F±
e−

2πM
d
|z−z′|

M q+a+1

e∓j
2πM
d

(x−x′)

1− e∓j
2π
d

(x−x′)
(1.155)

and therefore, S is given by the summation of the initial numerical part and the obtained

analytical part.

S =

M−1∑
m=1

Q∑
q=0

q∑
a=0

F±
e−

2πm
d
|z−z′|

mq+a+1
e∓j

2πm
d

(x−x′) +

Q∑
q=0

q∑
a=0

F±
e−

2πM
d
|z−z′|

M q+a+1

e∓j
2πM
d

(x−x′)

1− e∓j
2π
d

(x−x′)

(1.156)

Using this general expression of S, the series that we are interesting in S1 and S2 are
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S1 =

M−1∑
m=1

Q∑
q=0

q∑
a=0

F+
e−

2πm
d
|z−z′|

mq+a+1
e−j

2πm
d

(x−x′) +

Q∑
q=0

q∑
a=0

F+
e−

2πM
d
|z−z′|

M q+a+1

e−j
2πM
d

(x−x′)

1− e−j
2π
d

(x−x′)

(1.157)

S2 =
M−1∑
m=1

Q∑
q=0

q∑
a=0

F−
e−

2πm
d
|z−z′|

mq+a+1
e+j 2πm

d
(x−x′) +

Q∑
q=0

q∑
a=0

F−
e−

2πM
d
|z−z′|

M q+a+1

ej
2πM
d

(x−x′)

1− ej
2π
d

(x−x′)

(1.158)

So, we have accelerated the spectral Green’s function by retaining Q terms in Kummer’s

transformation. These Q asymptotic retained terms can be summed using the summation

by parts technique as a sum of an analytical part and a numerical but finite part. It

should be pointed out that this development has been obtained in generic form using

either approaches.

A comparison between the different techniques reported in this section to sum the asymp-

totic series in this second form of applying Kummer’s transformation will be reported in

Chapter 3.

Additionally, in Chapter 3 we compare the improvement that implies the use of each

approach in the application of the spectral Kummer’s transformation and we analyse

the advantages of using one or the other strategy. In advance, we could suppose that,

depending on the case that we are interested in, it would be better using one or the other

approach.

As a general conclusion of this section, we have proposed for each approach three meth-

ods of summing the remaining part.

1. The first one is using Ewald’s method.

This alternative allows us to use the acceleration resulted by applying Kummer’s

transformation and sum efficiently the retained terms through Ewald’s method. It

provides that the Green’s function can be written as the summation of two rapidly

convergent components.

The relatively minor disadvantage of the original Ewald’s method could be that

its components require the evaluation of special functions like complementary error

function with complex argument and the exponential integral.
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Thanks to the proposed Kummer-Ewald technique, we can take advantage of the

rapidly convergence of Ewald’s components without the need to calculate all of

these special functions. This is because in this case the error functions have a real

argument and we only have to calculate one or two exponential integrals, not all

of them. These two advantages could result in a significant improvement of the

required computational time respect to the original Ewald’s method. Obviously,

these advantages arise from the combination of both Kummer’s transformation and

Ewald’s method.

2. The second one is using the Lerch transcendent and the polylogarithm.

These functions allow us to express the remaining part as a semi-closed form. As can

be noted, the Lerch transcendent and the polylogarithm are defined as an infinite

summation. In addition, these two functions are analogous, one for the first approach

and the other one for the second approach in the extraction of terms in Kummer’s

transformation. The difference between them lies in the factor kx0 that appears in

the denominator of the infinite sum.

When this factor is null, the definition of these functions become the same. We

should take into account that the difference between both approaches is that in the

first one we consider kx0 in the approximation of γm whereas in the second one we

disregard kx0.

On this basis, the two approaches become the same when kx0 = 0. As we have

mentioned before, when the factor that differentiates the Lerch transcendent and

the poylogarithm is null, the functions are the same. As might be expected, this

occurs when kx0 = 0.

Thus, the approaches become the same when kx0 = 0 as well as the Lerch transcen-

dent and the polylogarithm become the same. This is because they are the same

way to express in a semi-closed form the retained part of each approach.

3. The last one is using the summation by parts technique.

This transformation consists of accelerating the series on the basis of their oscillation

behaviours. It allows us to express the remaining series as a sum of an analytical

part plus a numerical but finite part. It is important to note that this technique has

been outlined for the extraction of Q terms in both approaches.

The above conclusions will be proved through programming these techniques. Numerical

results will be shown in Chapter 3.
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1.2 Green’s Functions of Parallel-Plate Waveguides

In parallel-plate waveguide, the spatial Green’s functions can be formulated using the

classical theory of images with respect to two perfect electric conductors. This theory

implies that the actual system can be replaced by the equivalent system formed by the

combination of the real and the introduced virtual sources (images) [1].

In this section, we first obtain the different components of the outstanding Green’s func-

tions involved in this problem from the general 2-D Green’s function with 1-D periodicity.

Once these components are formulated, we apply Kummer’s transformation technique

(Subsection 1.2.1) in order to accelerate their convergences.

To obtain the outstanding components of Green’s functions it is advisable representing

the possible scenarios in this problem. The Fig. 1.2(a) represents the combination of the

actual source and its images when a magnetic charge is placed near the electric conductors.

Being a magnetic charge, the images have the same sign as the actual source. This

distribution is employed to evaluate the Green’s function of the magnetic scalar potential

GW .

On the other hand, Fig. 1.2(b) represents the combination of the actual source and its

images when an electric charge is placed near the electric conductors. Being an electric

charge, the images alternate the positive and negative signs. This distribution is employed

to evaluate the Green’s function of the electric scalar potential GV .

The Fig. 1.3 represents the combination of the actual source and its images when a

magnetic current dipole ~ms is placed near the electric conductors in the x-direction (Fig.

1.3(a)), in the y-direction (Fig. 1.3(b)) and in the z-direction (Fig. 1.3(c)). Being a

magnetic current dipole, the images change the sign or orientation when the actual source

is in the x-direction. On the contrary, the images have the same sign as the actual source

when the magnetic current dipole is in the y-direction and in the z-direction. These

distributions are employed to calculate the dyadic components of the Green’s function of

the electric vector potential GxxF , GyyF and GzzF , respectively.

Finally, the Fig. 1.4 represents the combination of the actual source and its images when

an electric current dipole ~js is placed near the electric conductors in the x-direction (Fig.

1.4(a)), in the y-direction (Fig. 1.4(b)) and in the z-direction (Fig. 1.4(c)). Being an

electric current dipole, the images change the sign or orientation when the actual source

is in the y-direction and in the z-direction. On the contrary, the images have the same

sign as the actual source when the electric current dipole is in the x-direction. These

distributions are employed to calculate the dyadic components of the Green’s function of

the magnetic vector potential GxxA , GyyA and GzzA , respectively.
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(a) Distribution of the actual magnetic charge qs and its images qi for a parellel-
plate waveguide.

(b) Distribution of the actual electric charge qs and its images qi for a parellel-
plate waveguide.

Figure 1.2: Distribution of the actual and virtual sources. The width of the parallel-plate
waveguide in the x-direction is a and the images are distributed in pairs separated by a
distance of 2a. It is satisfied that qs = qi.
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(a) Actual and virtual sources produced by a mag-
netic current dipole oriented in x-direction.

(b) Actual and virtual sources produced by a mag-
netic current dipole oriented in y-direction.

(c) Actual and virtual sources produced by a mag-
netic current dipole oriented in z-direction.

Figure 1.3: Distribution of the actual magnetic current dipole ~ms and its images ~mi for a
parellel-plate waveguide. It is satisfied that ms = mi. The width of the waveguide in the
x-direction is a and the images are distributed in pairs separated by a distance of 2a.
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(a) Actual and virtual sources produced by an
electric current dipole oriented in x-direction.

(b) Actual and virtual sources produced by an elec-
tric current dipole oriented in y-direction.

(c) Actual and virtual sources produced by an elec-
tric current dipole oriented in z-direction.

Figure 1.4: Distribution of the actual electric current dipole ~js and its images ~ji for a
parellel-plate waveguide. It is satisfied that js = ji. The width of the waveguide in the
x-direction is a and the images are distributed in pairs separated by a distance of 2a.
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If we define the series G̃+(r̄, r̄′) and G̃−(r̄, r̄′) as the basis of the Green’s functions

involved in parallel-plate waveguide problems, the most relevant components are expressed

by the following spectral and spatial series

• Green’s function of the magnetic scalar potential

GW =
1

µ0
G+(r̄, r̄′) =

1

µ0
G̃+(r̄, r̄′) (1.159)

• Green’s function of the electric scalar potential

GV =
1

ε0
G−(r̄, r̄′) =

1

ε0
G̃−(r̄, r̄′) (1.160)

• Dyadic components of Green’s function of the electric vector potential

– x-Dyadic component of Green’s function of the electric vector potential

GxxF = ε0G−(r̄, r̄′) = ε0G̃−(r̄, r̄′) (1.161)

– y-Dyadic component of Green’s function of the electric vector potential

GyyF = ε0G+(r̄, r̄′) = ε0G̃+(r̄, r̄′) (1.162)

– z-Dyadic component of Green’s function of the electric vector potential

GzzF = ε0G+(r̄, r̄′) = ε0G̃+(r̄, r̄′) (1.163)

• Dyadic components of Green’s function of the magnetic vector potential

– x-Dyadic component of Green’s function of the magnetic vector potential

GxxA = µ0G+(r̄, r̄′) = µ0G̃+(r̄, r̄′) (1.164)

– y-Dyadic component of Green’s function of the magnetic vector potential

GyyA = µ0G−(r̄, r̄′) = µ0G̃−(r̄, r̄′) (1.165)

– z-Dyadic component of Green’s function of the magnetic vector potential

GzzA = µ0G−(r̄, r̄′) = µ0G̃−(r̄, r̄′) (1.166)
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where the series G̃+(r̄, r̄′) and G̃−(r̄, r̄′) are going to be formulated using the general spa-

tial and spectral 2-D Green’s functions with 1-D periodicity. The spatial general Green’s

function G(r̄, r̄′) is given by

G(r̄, r̄′) =
1

4j

+∞∑
m=−∞

H
(2)
0 (kRm)e−jkx0md (1.167)

where Rm =
√

(x− x′ −md)2 + (z − z′)2.

On the other hand, the spectral general Green’s function G̃(r̄, r̄′) is given by

G̃(r̄, r̄′) =
1

2d

+∞∑
m=−∞

e−γm|z−z
′|

γm
e−jkxm(x−x′) (1.168)

where kxm = kx0 + 2πm
d = k sin(θ) + 2πm

d and γm =
√
k2
xm − k2.

The series G̃+(r̄, r̄′) and G̃−(r̄, r̄′) are composed by the combination of two general 1-D

periodic Green’s functions with different sources. In the first one the source is (x′, z′) and

in the second one is (−x′, z′). In both cases, the period is d = 2a and θ = 0◦ due to the

direction of the incident wave on the array. We use the following notation for these two

sources

Rm+ =
√

(x− x′ − 2am)2 + (z − z′)2 (1.169)

Rm− =
√

(x+ x′ − 2am)2 + (z − z′)2 (1.170)

In the case of the function composed by the addition of the images, the spatial Green’s

function G+(r̄, r̄′) can be expressed as the sum of two general periodic Green’s functions

as

G+(r̄, r̄′) =
1

4j

+∞∑
m=−∞

H
(2)
0 (kRm+)���

��
e−jkx02am +

1

4j

∞∑
m=−∞

H
(2)
0 (kRm−)���

��
e−jkx02am

=

+∞∑
m=−∞

[
1

4j
H

(2)
0 (k

√
(x− x′ − 2am)2 + (z − z′)2)

+
1

4j
H

(2)
0 (k

√
(x+ x′ − 2am)2 + (z − z′)2)

] (1.171)

Using Poisson’s formula, its alternative spectral G̃+(r̄, r̄′) series is obtained
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G̃+(r̄, r̄′) =
1

4a

+∞∑
m=−∞

[
e−γm|z−z

′|

γm
e−jkx(x−x′) +

e−γm|z−z
′|

γm
e−jkx(x+x′)

]

=
1

4a

+∞∑
m=−∞

e−γm|z−z
′|

γm

[
e−jkx(x−x′) + e−jkx(x+x′)

] (1.172)

where kx = kx0 + 2πm
d = πm

a and therefore γm =
√
k2
x − k2 =

√(
πm
a

)2 − k2. This series

can be rewritten by grouping terms as

G̃+(r̄, r̄′) =
1

4a

+∞∑
m=−∞

e−γm|z−z
′|

γm

[
e−jkxxejkxx

′
+ e−jkxxe−jkxx

′
]

=
1

4a

+∞∑
m=−∞

e−γm|z−z
′|

γm
e−jkxx

2
[
ejkxx

′
+ e−jkxx

′
]

2

=
1

4a

+∞∑
m=−∞

2
e−γm|z−z

′|

γm
e−jkxx cos(kxx

′)

(1.173)

Due to the fact that this is an even function with respect to kx, the exponential e−jkxx

evaluated in m between (−∞,+∞) can be written as 2εm cos(kxx) evaluated in m between

(0,+∞). For more details see Appendix A.2.

According to this, G̃+(r̄, r̄′) is given by

G̃+(r̄, r̄′) =
εm
4a

+∞∑
m=0

2 · 2e
−γm|z−z′|

γm
cos(kxx) cos(kxx

′)

=
εm
a

+∞∑
m=0

e−γm|z−z
′|

γm
cos(kxx) cos(kxx

′)

(1.174)

where εm = 1/2 if m = 0 or εm = 1 if m 6= 0 (see Appendix A.2).

On the other hand, in the case of the functions composed by the subtraction of the

images, we have the sum of two periodic Green’s functions with different sources and

additionally, one of them is inverted. Thus, the spatial series G−(r̄, r̄′) in this case is
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G−(r̄, r̄′) =
1

4j

+∞∑
m=−∞

H
(2)
0 (kRm+)���

��
e−jkx02am − 1

4j

∞∑
m=−∞

H
(2)
0 (kRm−)���

��
e−jkx02am

=
+∞∑

m=−∞

[
1

4j
H

(2)
0 (k

√
(x− x′ − 2am)2 + (z − z′)2)

− 1

4j
H

(2)
0 (k

√
(x+ x′ − 2am)2 + (z − z′)2)

] (1.175)

The alternative spectral series G̃−(r̄, r̄′) given by the application of Poisson’s formula is

G̃−(r̄, r̄′) =
1

4a

+∞∑
m=−∞

[
e−γm|z−z

′|

γm
e−jkx(x−x′) − e−γm|z−z

′|

γm
e−jkx(x+x′)

]

=
1

4a

+∞∑
m=−∞

e−γm|z−z
′|

γm

[
e−jkx(x−x′) − e−jkx(x+x′)

] (1.176)

This series can be rewritten by grouping terms as

G̃−(r̄, r̄′) =
1

4a

+∞∑
m=−∞

e−γm|z−z
′|

γm

[
e−jkxxejkxx

′ − e−jkxxe−jkxx′
]

=
1

4a

+∞∑
m=−∞

e−γm|z−z
′|

γm
e−jkxx

2j
[
ejkxx

′ − e−jkxx′
]

2j

=
1

4a

+∞∑
m=−∞

2j
e−γm|z−z

′|

γm
e−jkxx sin(kxx

′)

(1.177)

Due to the fact that this is an odd function with respect to kx, the exponential e−jkxx

evaluated in m between (−∞,+∞) can be written as −2j sin(kxx) evaluated in m between

(0,+∞). For more details see Appendix A.2. According to this, G̃+(r̄, r̄′) is given by

G̃−(r̄, r̄′) =
1

4a

+∞∑
m=1

2j · (−2j)
e−γm|z−z

′|

γm
sin(kxx) sin(kxx

′)

=
1

a

+∞∑
m=1

e−γm|z−z
′|

γm
sin(kxx) sin(kxx

′)

(1.178)

where γm =
√
k2
x − k2 =

√(
πm
a

)2 − k2. As the series G̃+(r̄, r̄′) and G̃−(r̄, r̄′) are slowly

convergent, it is important to apply some acceleration technique to improve their conver-

gences. For this reason, they are our starting point in the following developments.
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1.2.1 Application of Kummer’s Transformation

Once we have obtained the functions involved in parallel-plate waveguide problems, the

transformations applied in general Green’s functions will be also applied in this case. As

in the general case of 2-D Green’s functions with 1-D periodicity, when evaluating Green’s

functions of the magnetic and electric scalar and vector potentials, it is also necessary

to accelerate these functions [21]. The same techniques can be used in these problems

and, for instance, Ewald’s method was proposed in [22]. In [20], Green’s functions for

parallel-plate waveguide have been accelerated using Kummer’s transformation.

The difference in this case with respect to the general Green’s function is that kx0 = 0

due to θ = 0◦. As we have mentioned before, if kx0 = 0, the two different approaches

considered in Kummer’s transformation become the same and therefore we can take the

advantages of each approach. All the proposed methods in the previous section can be

also particularized for kx0 = 0 to sum the remaining part.

In particular, in this section we continue applying the spectral Kummer’s transforma-

tion through the extraction of one, two, three and Q terms to the spectral parallel-plate

Green’s functions. Specifically, we focus on summing the asymptotic terms through poly-

logarithmic functions. Numerical results will be shown in Chapter 3.

• Extraction of one term.

The procedure to be followed is the same as in the previous section. First, we start

with the series G̃+(r̄, r̄′).

G̃+(r̄, r̄′) =
1

a

+∞∑
m=0

e−γm|z−z
′|

γm
cos(kxx) cos(kxx

′)

= G̃+0(r̄, r̄′) +
1

a

+∞∑
m=1

cos(kxx) cos(kxx
′)
e−γm|z−z

′|

γm

= G̃+0(r̄, r̄′) +
1

a

+∞∑
m=1

cos(kxx) cos(kxx
′)

(
e−γm|z−z

′|

γm
− e−

πm
a
|z−z′|

πm
a

)

+
1

a

+∞∑
m=1

cos(kxx) cos(kxx
′)
e−

πm
a
|z−z′|

πm
a︸ ︷︷ ︸

G̃e+

(1.179)

G̃+0(r̄, r̄′) is the series in m = 0 where we do not apply the extraction. Thus, the

series G̃e+ has to be efficiently summed
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G̃e+ =
1

a

+∞∑
m=1

cos(kxx) cos(kxx
′)
e−

πm
a
|z−z′|

πm
a

(1.180)

Applying the following trigonometric identity

cos(A) cos(B) =
cos(A−B) + cos(A+B)

2
(1.181)

G̃e+ can be expressed as follows

G̃e+ =
1

2π

+∞∑
m=1

[
cos(kx(x− x′)) + cos(kx(x+ x′))

]e−πma |z−z′|
m

=
1

2π

+∞∑
m=1

cos(kx(x− x′))e
−πm

a
|z−z′|

m
+

1

2π

+∞∑
m=1

cos(kx(x+ x′))
e−

πm
a
|z−z′|

m

(1.182)

Since kx is defined as kx = πm
a , G̃e+ is

G̃e+ =
1

2π

+∞∑
m=1

cos
(πm
a

(x− x′)
) e−πma |z−z′|

m
+

1

2π

+∞∑
m=1

cos
(πm
a

(x+ x′)
) e−πma |z−z′|

m

(1.183)

In the knowledge that the summations in (1.183) can be analytically expressed (see

Appendix A.3) as follows

+∞∑
m=1

cos(nx)

n
e−nz = −Re

{
ln
[
1− e(−z+jx)

]}
(1.184)

G̃e+ can be written as

G̃e+ =
1

2π

[
− Re

{
ln
[
1− e−

π
a

[|z−z′|−j(x−x′)]
]}
− Re

{
ln
[
1− e−

π
a

[|z−z′|−j(x+x′)]
]}]

=
−1

2π

[
Re

{
ln

[(
1− e−

π
a

[|z−z′|−j(x−x′)]
)(

1− e−
π
a

[|z−z′|−j(x+x′)]
)]}]

(1.185)
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Now, we continue with series G̃−(r̄, r̄′).

G̃−(r̄, r̄′) =
1

a

+∞∑
m=1

e−γm|z−z
′|

γm
sin(kxx) sin(kxx

′) (1.186)

Applying Kummer’s transformation

G̃−(r̄, r̄′) =
1

a

+∞∑
m=1

e−γm|z−z
′|

γm
sin(kxx) sin(kxx

′)

=
1

a

+∞∑
m=1

sin(kxx) sin(kxx
′)

(
e−γm|z−z

′|

γm
− e−

πm
a
|z−z′|

πm
a

)

+
1

a

+∞∑
m=1

sin(kxx) sin(kxx
′)
e−

πm
a
|z−z′|

πm
a︸ ︷︷ ︸

G̃e−

(1.187)

Where we have to sum G̃e− efficiently

G̃e− =
1

a

+∞∑
m=1

sin(kxx) sin(kxx)
e−

πm
a
|z−z′|

πm
a

(1.188)

Using the following trigonometric identity

sin(A) sin(B) =
cos(A−B)− cos(A+B)

2
(1.189)

G̃e− can be expressed as follows

G̃e− =
1

2π

+∞∑
m=1

[
cos(kx(x− x′))− cos(kx(x+ x′))

]e−πma |z−z′|
m

=
1

2π

+∞∑
m=1

cos(kx(x− x′))e
−πm

a
|z−z′|

m
− 1

2π

+∞∑
m=1

cos(kx(x+ x′))
e−

πm
a
|z−z′|

m

(1.190)

where kx = πm
a and therefore

G̃e− =
1

2π

+∞∑
m=1

cos
(πm
a

(x− x′)
) e−πma |z−z′|

m
− 1

2π

+∞∑
m=1

cos
(πm
a

(x+ x′)
) e−πma |z−z′|

m

(1.191)



1.2. Green’s Functions of Parallel-Plate Waveguides 57

Using the relation proved in Appendix A.3 and given in (1.184), G̃e− can be written

as

G̃e− =
1

2π

[
− Re

{
ln
[
1− e−

π
a

[|z−z′|−j(x−x′)]
]}

+ Re

{
ln
[
1− e−

π
a

[|z−z′|−j(x+x′)]
]}]

=
1

2π

[
Re

{
ln

(
1− e−

π
a

[|z−z′|−j(x+x′)]

1− e−
π
a

[|z−z′|−j(x−x′)]

)}]
(1.192)

Through Kummer’s transformation we have been able to accelerate the convergence

of the spectral series involved in parallel-plate problems by the extraction of one

term and the analytical sum of this one.

• Extraction of two terms.

In this part we are interested in the extraction of one more term in order to accel-

erate even more the convergence of these functions. The disadvantage is that the

following retained term is not analytical. Nevertheless, it is rapidly convergent and

its convergence is independent of the frequency (semi-static).

We are looking for the asymptotic terms of the part which is involved in the conver-

gence of the series
e−γm|z−z

′|

γm
(1.193)

Using Kummer’s transformation proof in [11] the asymptotic expansion when we

extract two terms is

G̃m =

∣∣∣∣ d

2πm
− kx0d

2

(2πm)2

∣∣∣∣ e−| 2πmd +kx0||z−z′| (1.194)

Particularizing for the case of parallel-plate waveguides, d = 2a and θ = 0◦ → kx0 =

k sin(θ) = 0, G̃m is

G̃m =
e−

πm
a
|z−z′|

πm
a

(1.195)

As can be seen, it is the same as the term retained in (1.179) and therefore we

do not improve the convergence. According to the analysis done in [11] about the

particular case of θ = 0◦, the retained terms that contain the factor kx0 are cancelled

and therefore there is no improvement when we extract these terms.
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Thus, in this case there is no improvement with the extraction of the second term

in the general Kummer’s transformation due to the cancellation of the new term

because of θ = 0.

Even so, we can apply here the extraction of the terms explained in [17, 18] and

reviewed in the subsection 1.1.5. Following this procedure, the asymptotic expansion

when we extract two terms in general case is

G̃m =

∣∣∣∣ d

2πm
+
k2 d2 |z − z′|

2(2πm)2
− kx0d

2

(2πm)2

∣∣∣∣ e−| 2πmd +kx0||z−z′| (1.196)

In the case of parallel-plate waveguide, d = 2a and kx0 = k sin(θ) = 0 because θ = 0

so G̃m is given by this second order approximation

G̃m =

∣∣∣∣ aπm +
k2 a2 |z − z′|

2(πm)2

∣∣∣∣ e−π|m|a |z−z′| (1.197)

Based on this, the spectral Kummer’s transformation in Green’s functions of parallel-

plates waveguide can be applied.

First, we start with the series G̃+(r̄, r̄′).

G̃+(r̄, r̄′) =
1

a

+∞∑
m=0

e−γm|z−z
′|

γm
cos(kxx) cos(kxx

′)

= G̃+0(r̄, r̄′) +
1

a

+∞∑
m=1

cos(kxx) cos(kxx
′)
e−γm|z−z

′|

γm

= G̃+0(r̄, r̄′) +
1

a

+∞∑
m=1

cos(kxx) cos(kxx
′)

[
e−γm|z−z

′|

γm
−
(

a

πm
+
k2 a2 |z − z′|

2(πm)2

)

e−
πm
a
|z−z′|

]
+

1

a

+∞∑
m=1

cos(kxx) cos(kxx
′)

(
a

πm
+
k2 a2 |z − z′|

2(πm)2

)
e−

πm
a
|z−z′|

︸ ︷︷ ︸
G̃e+

(1.198)
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The series G̃e+ has to be efficiently summed

G̃e+ =
1

a

+∞∑
m=1

cos(kxx) cos(kxx
′)

(
a

πm
+
k2 a2 |z − z′|

2(πm)2

)
e−

πm
a
|z−z′|

=
1

a

+∞∑
m=1

cos(kxx) cos(kxx
′)
( a

πm

)
e−

πm
a
|z−z′|

+
1

a

+∞∑
m=1

cos(kxx) cos(kxx
′)

(
k2 a2 |z − z′|

2(πm)2

)
e−

πm
a
|z−z′|

(1.199)

The first series G̃e1+ is summed in the previous part (One term: 1.185)

G̃e1+ =
−1

2π

[
Re

{
ln

[(
1− e−

π
a

[|z−z′|−j(x−x′)]
)(

1− e−
π
a

[|z−z′|−j(x+x′)]
)]}]

(1.200)

The second series G̃e2+ is the subject of study in this part. Using the trigonometric

identity written in (1.181), G̃e2+ can be summed as follows

G̃e2+ =
1

a

+∞∑
m=1

(
k2 a2 |z − z′|

2(πm)2

)
1

2

[
cos(kx(x− x′)) + cos(kx(x+ x′))

]
e−

πm
a
|z−z′|

=
k2 a |z − z′|

(2π)2

+∞∑
m=1

e−
πm
a
|z−z′|

m2

[
cos(kx(x− x′)) + cos(kx(x+ x′))

]
=
k2 a |z − z′|

(2π)2

+∞∑
m=1

cos(kx(x− x′))e
−πm

a
|z−z′|

m2

+
k2 a |z − z′|

(2π)2

+∞∑
m=1

cos(kx(x+ x′))
e−

πm
a
|z−z′|

m2

(1.201)

where kx = πm
a and therefore

G̃e2+ =
k2 a |z − z′|

(2π)2

+∞∑
m=1

cos
(πm
a

(x− x′)
) e−πma |z−z′|

m2

+
k2 a |z − z′|

(2π)2

+∞∑
m=1

cos
(πm
a

(x+ x′)
) e−πma |z−z′|

m2

(1.202)
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In the knowledge that the summations in (1.202) can be expressed in a semi-closed

form (see Appendix A.3) as follows

+∞∑
m=1

e−nz

n2
cos(nx) = Re

{
Li2

[
e(−z+jx)

]}
(1.203)

where Li2(z) is the second order polylogarithm of the argument z, G̃e2+ can be

written as

G̃e2+ =
k2 a |z − z′|

(2π)2

[
Re

{
Li2

[
e−

π
a

[|z−z′|−j(x−x′)]
]}

+ Re

{
Li2

[
e−

π
a

[|z−z′|−j(x+x′)]
]}]

(1.204)

Next, we continue applying the same procedure with the series G̃−(r̄, r̄′).

G̃−(r̄, r̄′) =
1

a

+∞∑
m=1

sin(kxx) sin(kxx
′)
e−γm|z−z

′|

γm

=
1

a

+∞∑
m=1

sin(kxx) sin(kxx
′)

(
e−γm|z−z

′|

γm
−
(

a

πm
+
k2 a2 |z − z′|

2(πm)2

)
e−

πm
a
|z−z′|

)

+
1

a

+∞∑
m=1

sin(kxx) sin(kxx
′)

(
a

πm
+
k2 a2 |z − z′|

2(πm)2

)
e−

πm
a
|z−z′|

︸ ︷︷ ︸
G̃e−

(1.205)

The asymptotic part that has to be summed is

G̃e− =
1

a

+∞∑
m=1

sin(kxx) sin(kxx
′)

(
a

πm
+
k2 a2 |z − z′|

2(πm)2

)
e−

πm
a
|z−z′|

=
1

a

+∞∑
m=1

sin(kxx) sin(kxx
′)
( a

πm

)
e−

πm
a
|z−z′|

+
1

a

+∞∑
m=1

sin(kxx) sin(kxx
′)

(
k2 a2 |z − z′|

2(πm)2

)
e−

πm
a
|z−z′|

(1.206)

The first series G̃e1− is summed in the previous part (One term: 1.192)

G̃e1− =
1

2π

[
Re

{
ln

(
1− e−

π
a

[|z−z′|−j(x+x′)]

1− e−
π
a

[|z−z′|−j(x−x′)]

)}]
(1.207)
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The second series G̃e2− is the subject of study in this part. Using the trigonometric

identity defined in (1.189), G̃e2− can be expressed as follows

G̃e2− =
1

a

+∞∑
m=1

(
k2 a2 |z − z′|

2(πm)2

)
1

2

[
cos(kx(x− x′))− cos(kx(x+ x′))

]
e−

πm
a
|z−z′|

=
k2 a |z − z′|

(2π)2

+∞∑
m=1

e−
πm
a
|z−z′|

m2

[
cos(kx(x− x′))− cos(kx(x+ x′))

]
=
k2 a |z − z′|

(2π)2

+∞∑
m=1

cos(kx(x− x′))e
−πm

a
|z−z′|

m2

− k2 a |z − z′|
(2π)2

+∞∑
m=1

cos(kx(x+ x′))
e−

πm
a
|z−z′|

m2

(1.208)

where kx = πm
a and therefore

G̃e2− =
k2 a |z − z′|

(2π)2

+∞∑
m=1

cos
(πm
a

(x− x′)
) e−πma |z−z′|

m2

− k2 a |z − z′|
(2π)2

+∞∑
m=1

cos
(πm
a

(x+ x′)
) e−πma |z−z′|

m2

(1.209)

Assuming that the summations in (1.209) can be expressed in a semi-closed form

(see Appendix A.3) by using (1.203), G̃e2− can be written as

G̃e2− =
k2 a |z − z′|

(2π)2

[
Re

{
Li2

[
e−

π
a

[|z−z′|−j(x−x′)]
]}
− Re

{
Li2

[
e−

π
a

[|z−z′|−j(x+x′)]
]}]

(1.210)

This can be an alternative to improve the convergence of Green’s functions involved

in parallel-plate waveguide problems using only the second order approximation in

Kummer’s transformation. Nevertheless, these new terms will be not very significant

when the observation point is near the source. The acceleration of the Green’s

functions in this particular case is the most interesting problem for us due to the

fact that they are slowly convergent. For this reason, the new terms that appear not

only here but also in this alternative extraction are negligible, as discussed in 1.1.5.

• Extraction of three terms.

To improve the convergence with respect to one retained term, we have to follow

the development done in [11] when we extract three terms. The asymptotic term in

general spectral Green’s function is given by
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– the option A: kxm - approach

G̃m =

(
1

|kxm|
+

k2

2|kxm|3

)
e−|kxm||z−z

′| (1.211)

– the option B:
(

2πm
d

)
- approach

G̃m =

∣∣∣∣ d

2πm
− kx0d

2

(2πm)2
+

(k2 − k2
x0)d3

2(2πm)3

∣∣∣∣ e−| 2πmd +kx0||z−z′| (1.212)

Particularizing for the case of parallel-plate waveguide, d = 2a and θ = 0◦ → kx0 =

k sin(θ) = 0, the two previous alternatives become the same and G̃m is

G̃m =

∣∣∣∣ aπm +
k2a3

2(πm)3

∣∣∣∣ e−π|m|a |z−z′| (1.213)

Therefore, we can apply Kummer’s transformation to the spectral parallel-plate

Green’s functions. First, we start with the series G̃+(r̄, r̄′).

G̃+(r̄, r̄′) =
1

a

+∞∑
m=0

e−γm|z−z
′|

γm
cos(kxx) cos(kxx

′)

= G̃+0(r̄, r̄′) +
1

a

+∞∑
m=1

cos(kxx) cos(kxx
′)
e−γm|z−z

′|

γm

= G̃+0(r̄, r̄′) +
1

a

+∞∑
m=1

cos(kxx) cos(kxx
′)

(
e−γm|z−z

′|

γm
−
(

a

πm
+

k2a3

2(πm)3

)
e−

πm
a
|z−z′|

)

+
1

a

+∞∑
m=1

cos(kxx) cos(kxx
′)

(
a

πm
+

k2a3

2(πm)3

)
e−

πm
a
|z−z′|

︸ ︷︷ ︸
G̃e+

(1.214)

The asymptotic part that has to be summed is

G̃e+ =
1

a

+∞∑
m=1

cos(kxx) cos(kxx
′)

(
a

πm
+

k2a3

2(πm)3

)
e−

πm
a
|z−z′|

=
1

a

+∞∑
m=1

cos(kxx) cos(kxx
′)
( a

πm

)
e−

πm
a
|z−z′|

+
1

a

+∞∑
m=1

cos(kxx) cos(kxx
′)

(
k2a3

2(πm)3

)
e−

πm
a
|z−z′|

(1.215)
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The first series G̃e1+ is summed in the previous part (One term: 1.185)

G̃e1+ =
−1

2π

[
Re

{
ln

[(
1− e−

π
a

[|z−z′|−j(x−x′)]
)(

1− e−
π
a

[|z−z′|−j(x+x′)]
)]}]

(1.216)

The second series G̃e2+ is the subject of study in this part. Using the trigonometric

identity written in (1.181), G̃e2+ can be summed as follows

G̃e2+ =
1

a

+∞∑
m=1

(
k2a3

2(πm)3

)
1

2

[
cos(kx(x− x′)) + cos(kx(x+ x′))

]
e−

πm
a
|z−z′|

=
k2a2

4π3

+∞∑
m=1

e−
πm
a
|z−z′|

m3

[
cos(kx(x− x′)) + cos(kx(x+ x′))

]
=
k2a2

4π3

+∞∑
m=1

cos(kx(x− x′))e
−πm

a
|z−z′|

m3

+
k2a2

4π3

+∞∑
m=1

cos(kx(x+ x′))
e−

πm
a
|z−z′|

m3

(1.217)

where kx = πm
a and therefore

G̃e2+ =
k2a2

4π3

+∞∑
m=1

cos
(πm
a

(x− x′)
) e−πma |z−z′|

m3

+
k2a2

4π3

+∞∑
m=1

cos
(πm
a

(x+ x′)
) e−πma |z−z′|

m3

(1.218)

In the knowledge that the summations in (1.218) can be expressed in a semi-closed

form (see Appendix A.3) as follows

+∞∑
m=1

e−nz

n3
cos(nx) = Re

{
Li3

[
e(−z+jx)

]}
(1.219)

where Li3(z) is the third order polylogarithm of the argument z, G̃e2+ can be written

as

G̃e2+ =
k2a2

4π3

[
Re

{
Li3

[
e−

π
a

[|z−z′|−j(x−x′)]
]}

+ Re

{
Li3

[
e−

π
a

[|z−z′|−j(x+x′)]
]}]
(1.220)
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Next, we continue applying the same procedure with the series G̃−(r̄, r̄′).

G̃−(r̄, r̄′) =
1

a

+∞∑
m=1

sin(kxx) sin(kxx
′)
e−γm|z−z

′|

γm

=
1

a

+∞∑
m=1

sin(kxx) sin(kxx
′)

(
e−γm|z−z

′|

γm
−
(

a

πm
+

k2a3

2(πm)3

)
e−

πm
a
|z−z′|

)

+
1

a

+∞∑
m=1

sin(kxx) sin(kxx
′)

(
a

πm
+

k2a3

2(πm)3

)
e−

πm
a
|z−z′|

︸ ︷︷ ︸
G̃e−

(1.221)

The asymptotic part that has to be summed is

G̃e− =
1

a

+∞∑
m=1

sin(kxx) sin(kxx
′)

(
a

πm
+

k2a3

2(πm)3

)
e−

πm
a
|z−z′|

=
1

a

+∞∑
m=1

sin(kxx) sin(kxx
′)
( a

πm

)
e−

πm
a
|z−z′|

+
1

a

+∞∑
m=1

sin(kxx) sin(kxx
′)

(
k2a3

2(πm)3

)
e−

πm
a
|z−z′|

(1.222)

The first series G̃e1− is summed in the previous part (One term: 1.192)

G̃e1− =
1

2π

[
Re

{
ln

(
1− e−

π
a

[|z−z′|−j(x+x′)]

1− e−
π
a

[|z−z′|−j(x−x′)]

)}]
(1.223)

The second series G̃e2− is the subject of study in this part. Using the trigonometric

identity defined in (1.189), G̃e2− can be expressed as follows

G̃e2− =
1

a

+∞∑
m=1

(
k2a3

2(πm)3

)
1

2

[
cos(kx(x− x′))− cos(kx(x+ x′))

]
e−

πm
a
|z−z′|

=
k2a2

4π3

+∞∑
m=1

e−
πm
a
|z−z′|

m3

[
cos(kx(x− x′))− cos(kx(x+ x′))

]
=
k2a2

4π3

+∞∑
m=1

cos(kx(x− x′))e
−πm

a
|z−z′|

m3

− k2a2

4π3

+∞∑
m=1

cos(kx(x+ x′))
e−

πm
a
|z−z′|

m3

(1.224)
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where kx = πm
a and therefore

G̃e2− =
k2a2

4π3

+∞∑
m=1

cos
(πm
a

(x− x′)
) e−πma |z−z′|

m3

− k2a2

4π3

+∞∑
m=1

cos
(πm
a

(x+ x′)
) e−πma |z−z′|

m3

(1.225)

Assuming that the summations in (1.225) can be expressed in a semi-closed form

(see Appendix A.3) by using (1.219), G̃e2− can be written as

G̃e2− =
k2a2

4π3

[
Re

{
Li3

[
e−

π
a

[|z−z′|−j(x−x′)]
]}
− Re

{
Li3

[
e−

π
a

[|z−z′|−j(x+x′)]
]}]
(1.226)

• Extraction of Q terms.

The idea in this subsection is to generalize this acceleration technique to the extrac-

tion of Q terms. The procedure is the same as the followed previously.

For this purpose, we start from the equation (1.8) where we have obtained the Q

retained terms for the general 2-D Green’s function with 1-D periodicity.

G̃m =

Q∑
q=0

∏q−1
n=0(2n+ 1)

2q q!
· k2q

|kxm|2q+1 e
−|kxm||z−z′| (1.227)

Now, we particularize this expression of the retained terms to the case of parallel-

plate waveguide, that is, θ = 0◦ → kx0 = 0 and therefore kxm = πm
a .

G̃m =

Q∑
q=0

∏q−1
n=0(2n+ 1)

2q q!
· k2q(

πm
a

)2q+1 e
−(πma )|z−z′| (1.228)

Using this expression of the asymptotic retained part, we can apply Kummer’s trans-

formation to the spectral parallel-plate Green’s functions. First, we start with the
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series G̃+(r̄, r̄′).

G̃+(r̄, r̄′) =
1

a

+∞∑
m=0

e−γm|z−z
′|

γm
cos(kxx) cos(kxx

′)

= G̃+0(r̄, r̄′) +
1

a

+∞∑
m=1

cos(kxx) cos(kxx
′)
e−γm|z−z

′|

γm

= G̃+0(r̄, r̄′) +
1

a

+∞∑
m=1

cos(kxx) cos(kxx
′)

[
e−γm|z−z

′|

γm
−

 Q∑
q=0

∏q−1
n=0(2n+ 1) k2q

2q q!
(
πm
a

)2q+1


e−

πm
a
|z−z′|

]

+
1

a

+∞∑
m=1

cos(kxx) cos(kxx
′)

 Q∑
q=0

∏q−1
n=0(2n+ 1)

2q q!
· k2q(

πm
a

)2q+1

 e−
πm
a
|z−z′|

︸ ︷︷ ︸
G̃e+

(1.229)

The asymptotic part that has to be summed is

G̃e+ =
1

a

+∞∑
m=1

cos(kxx) cos(kxx
′)

 Q∑
q=0

∏q−1
n=0(2n+ 1)

2q q!
· k2q(

πm
a

)2q+1

 e−
πm
a
|z−z′|

=
1

a

Q∑
q=0

∏q−1
n=0(2n+ 1)

2q q!
· k2q(

π
a

)2q+1

+∞∑
m=1

cos(kxx) cos(kxx
′)

m2q+1
e−

πm
a
|z−z′|

(1.230)

Using the trigonometric identity written in (1.181), G̃e+ can be summed as follows

G̃e+ =

Q∑
q=0

∏q−1
n=0(2n+ 1) k2q a2q

2q q! π2q+1

+∞∑
m=1

[
cos(kx(x− x′)) + cos(kx(x+ x′))

]
2m2q+1

e−
πm
a
|z−z′|

=

Q∑
q=0

∏q−1
n=0(2n+ 1)

2q+1 q!
· k

2q a2q

π2q+1

+∞∑
m=1

[
cos(kx(x− x′)) + cos(kx(x+ x′))

]
m2q+1

e−
πm
a
|z−z′|

(1.231)

In the knowledge that the summations in (1.231) can be expressed in a semi-closed

form (see Appendix A.3) as follows
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+∞∑
m=1

e−nz

n2q+1
cos(nx) = Re

{
Li2q+1

[
e(−z+jx)

]}
(1.232)

where Li2q+1(z) is the (2q + 1)-th order polylogarithm of the argument z, G̃e+ can

be written as

G̃e+ =

Q∑
q=0

∏q−1
n=0(2n+ 1)

2q+1 q!
· k

2q a2q

π2q+1

[
Re

{
Li2q+1

[
e−

π
a

[|z−z′|−j(x−x′)]
]}

+ Re

{
Li2q+1

[
e−

π
a

[|z−z′|−j(x+x′)]
]}] (1.233)

Once we have summed efficiently the asymptotic part of G̃+, we apply the same

procedure to the series G̃−(r̄, r̄′).

G̃−(r̄, r̄′) =
1

a

+∞∑
m=1

e−γm|z−z
′|

γm
sin(kxx) sin(kxx

′)

=
1

a

+∞∑
m=1

sin(kxx) sin(kxx
′)

[
e−γm|z−z

′|

γm
−

 Q∑
q=0

∏q−1
n=0(2n+ 1) k2q

2q q!
(
πm
a

)2q+1


e−

πm
a
|z−z′|

]

+
1

a

+∞∑
m=1

sin(kxx) sin(kxx
′)

 Q∑
q=0

∏q−1
n=0(2n+ 1)

2q q!
· k2q(

πm
a

)2q+1

 e−
πm
a
|z−z′|

︸ ︷︷ ︸
G̃e−

(1.234)

The asymptotic part that has to be summed is

G̃e− =
1

a

+∞∑
m=1

sin(kxx) sin(kxx
′)

 Q∑
q=0

∏q−1
n=0(2n+ 1)

2q q!
· k2q(

πm
a

)2q+1

 e−
πm
a
|z−z′|

=
1

a

Q∑
q=0

∏q−1
n=0(2n+ 1)

2q q!
· k2q(

π
a

)2q+1

+∞∑
m=1

sin(kxx) sin(kxx
′)

m2q+1
e−

πm
a
|z−z′|

(1.235)

Using the trigonometric identity written in (1.189), G̃e− can be summed as follows
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G̃e− =

Q∑
q=0

∏q−1
n=0(2n+ 1) k2q a2q

2q q! π2q+1

+∞∑
m=1

[
cos(kx(x− x′))− cos(kx(x+ x′))

]
2m2q+1

e−
πm
a
|z−z′|

=

Q∑
q=0

∏q−1
n=0(2n+ 1)

2q+1 q!
· k

2q a2q

π2q+1

+∞∑
m=1

[
cos(kx(x− x′))− cos(kx(x+ x′))

]
m2q+1

e−
πm
a
|z−z′|

(1.236)

Assuming that the summations in (1.236) can be expressed in a semi-closed form

(see Appendix A.3) using the relation given in (1.232), G̃e− can be written as

G̃e− =

Q∑
q=0

∏q−1
n=0(2n+ 1)

2q+1 q!
· k

2q a2q

π2q+1

[
Re

{
Li2q+1

[
e−

π
a

[|z−z′|−j(x−x′)]
]}

− Re

{
Li2q+1

[
e−

π
a

[|z−z′|−j(x+x′)]
]}] (1.237)

In order to summarize, in this section we have accelerated the functions involved in the

evaluation of Green’s functions in parallel-plate problems. The acceleration technique that

has been used for this purpose is the spectral Kummer’s transformation. It is important

to note that this technique has been reported to the general extraction of Q terms.

Thus, the Q asymptotic retained terms have been expressed in a general form as the

summation of polylogarithmic functions which need to be numerically evaluated but are

rapidly convergent. This implies a significant improvement thanks to the possibility of

particularizing this general technique to the number of terms that we need in each case,

as will be shown in Chapter 3.

In addition, it is important to highlight that the polylogarithms that appear in these

terms are independent from the frequency, so that, in problems that require a frequency

sweep, they do not have to be evaluated at each frequency point. This implies a significant

reduction on the computation time in these common problems.

As a general conclusion of this chapter, we have attempted to improve the convergence

of the 2-D Green’s function with 1-D periodicity as a continuation of our work developed

in [11] and apply the acquired knowledge to accelerate the series involved in the practical

case of parallel-plate problems.



Chapter 2

The 2-D Green’s Functions With

2-D Periodicity

The solution of electromagnetic problems in periodic structures, as has been mentioned

previously, requires the efficient computation of the periodic Green’s functions. In this

chapter, we continue dealing with the 2-D Green’s functions but with 2-D periodicity.

The 2-D homogeneous Green’s functions with 2-D periodicity are the basis of the func-

tions involved in rectangular waveguides and 2-D cavities problems. These functions can

also be used to express in closed form the nonperiodic Green’s functions of multilayered

media as a linear combination of spherical and cylindrical waves in homogeneous media [2].

Because of this, the problem of accelerating the evaluation of the periodic Green’s function

is addressed here for 2-D configurations.

This chapter is organized as follows. Section 2.1 shows all the theoretical development

required to formulate the spatial and the spectral 2-D Green’s functions with 2-D period-

icity. This formulation has been obtained for both general scenario and particular scenario

of phase-shifted array. We also obtain the gradient of the 2-D periodic Green’s functions

with 2-D periodicity that will be useful in future studies when the integral equation tech-

nique will be used for the analysis of microwave devices including dielectric components.

The series involved in the computation of this particular Green’s functions can be written

either as spatial infinite series or as spectral infinite series and can exhibit a very slow

convergence. For this reason, once we have formulated these functions both in spectral

and spatial domain and their gradient, we apply different acceleration techniques for the

efficient computation of these periodic Green’s functions. Due to their versatility and good

compromise between accuracy and efficiency, the increasingly used acceleration techniques

are Ewald’s method and Kummer’s transformation.

69
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Thus, in Section 2.2 we detail the formulation needed to apply Ewald’s method to the

2-D Green’s function with 2-D periodicity according to [2]. This technique is also applied

to the components of its gradient. In addition, we review the detail about the estimation

of the splitting parameter for this case.

To compare different techniques of acceleration, in Section 2.3 we show the mathematical

formulation involved in the application of Kummer’s transformation. Here, we suggest two

different strategies to extract the asymptotic terms in this technique. According to this,

we outline a study about different procedures to calculate the retained part.

Finally, in Section 2.4 we apply the acquired knowledge about this general Green’s

function to rectangular waveguide and 2-D cavity problems. In this regard, we carry out

the mathematical development to obtain the Green’s function of the magnetic and electric

scalar and vector potentials involved in cavities and waveguides problems. To accelerate

the convergence of these series, we apply Kummer’s transformation.

Numerical results from the formulation and the techniques proposed in this document

are shown in Chapter 3 and the conclusions are summarized in Chapter 5.

2.1 Green’s Functions and the Gradient of Green’s Func-

tions

In this section, we formulate the spatial and the spectral 2-D Green’s functions with

2-D periodicity. This formulation is obtained for both general scenario and particular

scenario of phase-shifted array. The case of general scenario can be useful because it can

be particularized according to the required topology of particular problems. On the other

hand, the case of phase-shifted array can be widely used in rectangular waveguide and

cavity problems, which is our intention.

In both cases, the 2-D periodic Green’s function will be expressed either as spatial

infinite series or as spectral infinite series. It should be noted that these series exhibit a

very slow convergence.

Moreover, in this section we also obtain the gradient of the 2-D periodic Green’s functions

that will be useful in future studies when the integral equation technique will be applied.

2.1.1 Formulation of Green’s Functions

Let us consider a two-dimensional spatial array of line sources with 2-D periodicity on x

and y-directions which is parallel to the z-direction (see Fig. 2.1). This array is located
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Figure 2.1: Physical configuration of a 2-D infinite distribution with 2-D periodicity on x
and y-directions of line sources which are infinite on z-direction.

Figure 2.2: Physical configuration of a 2-D infinite distribution with 2-D periodicity on x
and y-directions of phase-shifted line sources which are infinite on z-direction.

in an homogeneous media. Consider also, the case of a two-dimensional infinite array

of phase-shifted line sources located at (x′, y′) (see Fig. 2.2). With these scenarios as

a starting point, we would like to determine the radiation at an observation point (x, y)

from these periodic geometries.

The notation that we are going to use is:

• Position vector for observation point: ρ̄ = xx̂+ yŷ

• Distance between the observation point and the source: |ρ̄ − ρ̄′| = |4xx̂ +4yŷ| =

|(x− x′)x̂+ (y − y′)ŷ|

• Basis of periodicity: ā1 = a1xx̂+ a1yŷ and ā2 = a2xx̂+ a2yŷ
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• Spatial shift of sources: ρ̄mn = mā1 + nā2

• Position vector for line sources: ρ̄′+ ρ̄mn = (x′+ma1x+na2x)x̂+(y′+ma1y+na2y)ŷ

Formulation of the Spatial Green’s Function

Now, the formulation developed in [11] for the 2-D Green’s function with 1-D peri-

odicity is extended to the computation of the double series involved in problems with

2-D periodicity. First, the formulation of the spatial Green’s functions is obtained.

In [11] it is reported that the 2-D Green’s function in the spatial domain for just one

line source located at (x′, y′) is

G(ρ̄, ρ̄′) =
1

4j
H

(2)
0 (kR) (2.1)

where R = |(x − x′)x̂ + (y − y′)ŷ| is the spatial distance between the observation

point and the source. By superposition theorem, the Green’s function produced by

a two-dimensional infinite array of line sources can be expressed as

G(ρ̄, ρ̄′) =
1

4j

+∞∑
m=−∞

+∞∑
n=−∞

H
(2)
0 (kSmn)e−jk̄w0·ρ̄mn (2.2)

where Smn = |ρ̄− ρ̄′− ρ̄mn| is the spatial distance between the observation point and

the infinite line sources. Using the previous presented notation, Smn is

Smn = |4xx̂+4yŷ − (mā1 + nā2)| = |(x− x′)x̂+ (y − y′)ŷ − (mā1 + nā2)|

= |[x− x′ − (ma1x + na2x)]x̂+ [y − y′ − (ma1y + na2y)]ŷ|
(2.3)

and k̄w0 is the projection on the x − y plane of the wavenumber vector of a wave

incident on the array.

k̄w0 = k sin θ (cosφ x̂+ sinφ ŷ) = k sin θ cosφ x̂+ k sin θ sinφ ŷ (2.4)

Therefore, k̄w0 · ρ̄mn is

k̄w0 · ρ̄mn = (k sin θ cosφ x̂+ k sin θ sinφ ŷ) · (mā1 + nā2)

= kx0(ma1x + na2x) + ky0(ma1y + na2y)
(2.5)

The series obtained in (2.2) is the spatial representation of the 2-D Green’s function

with 2-D periodicity for a generic case. If we are interested in the special case of
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two-dimensional infinite array of phase-shifted line sources, the vectors ā1 and ā2

have to be particularized as ā1 = d1x̂ and ā2 = d2ŷ. According to this, the spatial

Green’s function is (2.2) where

Smn = |(x− x′)x̂+ (y − y′)ŷ − (md1x̂+ nd2ŷ)| = |(x− x′ −md1)x̂+ (y − y′ − nd2)ŷ|

=

√
(x− x′ −md1)2 + (y − y′ − nd2)2

(2.6)

and

k̄w0 · ρ̄mn = (k sin θ cosφx̂+ k sin θ sinφŷ) · (md1x̂+ nd2ŷ)

= k sin θ cosφmd1 + k sin θ sinφnd2 = kx0md1 + ky0nd2

(2.7)

The spatial formulation is extremely slowly convergent, as will be shown in Chapter

3, and therefore its spectral representation will be obtained.

Formulation of the Spectral Green’s Function

From the spatial representation of the 2-D Green’s function with 2-D periodicity

obtained previously, we obtain the spectral representation by applying Poisson’s

formula.

The Sommerfeld identity for 2-D cylindrical radiated fields is given by

1

4j
H

(2)
0 (kR) =

1

2π

∫ ∞
0

e−R
2s2+ k2

4s2

s
ds (2.8)

Using the spatial definition given in (2.2) and the Sommerfel identity

G(ρ̄, ρ̄′) =
1

4j

+∞∑
m=−∞

+∞∑
n=−∞

H
(2)
0 (kSmn)e−jk̄w0·ρ̄mn (2.9)

we can write the spatial series as

G(ρ̄, ρ̄′) =
1

2π

+∞∑
m=−∞

+∞∑
n=−∞

e−jk̄w0·ρ̄mn
∫ ∞

0

e−S
2
mns

2+ k2

4s2

s
ds (2.10)

Now, Poisson’s formula provides an alternative series for the computation of (2.2) in

the spectral domain. Poisson’s formula for the case of 2-D non-orthogonal mapping

in the Fourier transform is detailed in Appendix A.4. It could suggest that the

generic 2-D Poisson’s formula is
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+∞∑
m=−∞

+∞∑
n=−∞

f(mā1 + nā2) =
1

|ā1 × ā2|

+∞∑
m=−∞

+∞∑
n=−∞

f̃

(
2π

A
m(ā2 × ẑ) +

2π

A
n(ẑ × ā1)

)
(2.11)

Or in x− y subspace

+∞∑
m=−∞

+∞∑
n=−∞

f(ma1x + na2x,ma1y + na2y)

=
1

A

+∞∑
m=−∞

+∞∑
n=−∞

f̃

(
2π

A
(ma2y − na1y),

2π

A
(−ma2x + na1x)

) (2.12)

where f̃(kx, ky) is the Fourier transform of the function f(ξ1, ξ2), that is

f̃(kx, ky) =

∫ +∞

−∞

∫ +∞

−∞
f(ξ1, ξ2)e−jkxξ1e−jkyξ2 dξ1dξ2 (2.13)

From the equation (2.10), we identify terms so we can write

f(ma1x + na2x,ma1y + na2y) =
1

2π

+∞∑
m=−∞

+∞∑
n=−∞

e−jkx0(ma1x+na2x)e−jky0(ma1y+na2y)

×
∫ ∞

0

e−[(x−x′−(ma1x+na2x))2+(y−y′−(ma1y+na2y))2]s2+ k2

4s2

s
ds

(2.14)

And therefore f̃(kx, ky) can be written as follows

f̃(kx, ky) =
1

2π

∫ ∞
−∞

∫ ∞
−∞

dξ1dξ2 ×
∫ ∞

0

e−[(x−x′−ξ1)2+(y−y′−ξ2)2]s2+ k2

4s2

s
e−jkx0ξ1e−jky0ξ2

· e−jkxξ1e−jkyξ2 ds
(2.15)

where we have to replace kx = 2π
A (ma2y − na1y) and ky = 2π

A (−ma2x + na1x).

According to this, we can define kxmn and kymn as

kxmn = kx0 + kx = kx0 +
2π

A
(ma2y − na1y) (2.16a)

kymn = ky0 + ky = ky0 +
2π

A
(−ma2x + na1x) (2.16b)
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and then f̃(kx, ky) is

f̃(kx, ky) =
1

2π

∫ ∞
−∞

∫ ∞
−∞

dξ1dξ2×
∫ ∞

0
ds

1

s
e
k2

4s2 e−(x−x′−ξ1)2s2−jkxmnξ1

e−(y−y′−ξ2)2s2−jkymnξ2
(2.17)

Now, we try to find the evaluation of the ξ-integrals in a closed form using the

following formula

∫ +∞

−∞
e−aξ

2+bξdξ =

√
π

a
e
b2

4a (2.18)

For this purpose, we define I1 and I2 as the integrals of (2.17) that depend on ξ1

and ξ2, respectively

I1 =

∫ +∞

−∞
e−(x−x′−ξ1)2s2−jkxmnξ1 dξ1 (2.19a)

I2 =

∫ +∞

−∞
e−(y−y′−ξ2)2s2−jkymnξ2 dξ2 (2.19b)

If we proceed, the relation (2.18) leads to

I1 =

∫ +∞

−∞
e−(x−x′)2s2+2(x−x′)ξ1s2−ξ12s2−jkxmnξ1 dξ1

= e−(x−x′)2s2
∫ +∞

−∞
e

− s2︸︷︷︸
a

ξ1
2+(2(x− x′)s2 − jkxmn)︸ ︷︷ ︸

b

ξ1

dξ1

= e−(x−x′)2s2
√
π

s2
e

(2(x−x′)s2−jkxmn)
2

4s2 =���
���

e−(x−x′)2s2
√
π

s2
���

��
e(x−x′)s2e−jkxmn(x−x′)e

−kxmn2

4s2

=

√
π

s2
e−jkxm(x−x′)e−

kxmn
2

4s2

(2.20)

where a = s2 and b = 2(x− x′)s2 − jkxmn have been identified. Equivalently, the

integral I2 is

I2 =

√
π

s2
e−jkymn(y−y′)e−

kymn
2

4s2 (2.21)

So, interchanging the order of integration and replacing I1 and I2 by the previous

results, f̃(kx, ky) remains
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f̃(kx, ky) =
1

2π

∫ ∞
0

√
π

s2
e−jkxmn(x−x′)e−

kxmn
2

4s2

√
π

s2
e−jkymn(y−y′)e−

kymn
2

4s2 e
k2

4s2
1

s
ds

(2.22)

If we define k̄mn as

k̄mn = k̄w0 +
2π

A
[m(ā2 × ẑ) + n(ẑ × ā1)]

= (kx0x̂+ ky0ŷ) +
2π

A
(ma2y − na1y)x̂+

2π

A
(−ma2x + na1x)ŷ

=

(
kx0 +

2π

A
(ma2y − na1y)

)
x̂+

(
ky0 +

2π

A
(−ma2x + na1x)

)
ŷ = kxmnx̂+ kymnŷ

(2.23)

the exponentials can be merged into

e−jkxmn(x−x′)e−jkymn(y−y′) = e−j[kxmn(x−x′)+kymn(y−y′)] = e−jk̄mn·(ρ̄−ρ̄
′) (2.24a)

e−
kxmn

2

4s2 e−
kymn

2

4s2 = e−
(kxmn

2+kymn
2)

4s2 = e−
|k̄mn|2

4s2 (2.24b)

and f̃(kx, ky) can be rewritten as

f̃(kx, ky) =
1

2
e−jk̄mn·(ρ̄−ρ̄

′)

∫ ∞
0

1

s3
e−
|k̄mn|2−k2

4s2 ds (2.25)

Now, if we apply this change of variable s′ = 1/s, the limits change s = 0→ s′ =∞,

s =∞→ s′ = 0 and the differential remains ds = −s2ds′.

f̃(kx, ky) =
1

2
e−jk̄mn·(ρ̄−ρ̄

′)

∫ 0

∞

−s′3

s′2
e−

(|k̄mn|2−k2)s′2

4 ds′ (2.26)

Next, we proceed as follows

f̃(kx, ky) =
1

2
e−jk̄mn·(ρ̄−ρ̄

′)

∫ 0

∞
(−s′) · −2(|k̄mn|

2 − k2)

4
· e−

(|k̄mn|2−k2)s′2

4

· −4

2(|k̄mn|
2 − k2)

ds′ = e−jk̄mn·(ρ̄−ρ̄
′) e
− (|k̄mn|2−k2)s′2|0∞

4

|k̄mn|
2 − k2

=
e−jk̄mn·(ρ̄−ρ̄

′)

|k̄mn|
2 − k2

(2.27)
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Once f̃(kx, ky) has been obtained, the spectral representation of 2-D Green’s function

with 2-D periodicity can be written as a function of f̃(kx, ky)

G̃(ρ̄, ρ̄′) =
1

|ā1 × ā2|

+∞∑
m=−∞

+∞∑
n=−∞

f̃(kx, ky) =
1

A

+∞∑
m=−∞

+∞∑
n=−∞

e−jk̄mn·(ρ̄−ρ̄
′)

|k̄mn|
2 − k2

(2.28)

where k̄mn is defined as

k̄mn = k̄w0 +
2π

A
[m(ā2 × ẑ) + n(ẑ × ā1)] (2.29)

and A is the area of the unit cell of the 2-D lattice

A = (ā1 × ā2) · ẑ = |ā1 × ā2| = a1xa2y − a2xa1y (2.30)

The series obtained in (2.28) is the spectral representation of the 2-D Green’s func-

tion with 2-D periodicity for a generic case. If we are interested in the special case

of two-dimensional infinite array of phase-shifted line sources, the vectors ā1 and

ā2 have to be particularized as ā1 = d1x̂ and ā2 = d2ŷ. In other words, a1x = d1,

a1y = 0, a2x = 0, a2y = d2 (see Fig. 2.2).

According to this, the spectral Green’s function is (2.28) where

A = |ā1 × ā2| = d1 · d2 (2.31)

and

k̄mn = k̄w0 +
2π

A
[md2x̂+ nd1ŷ] = k sin θ cosφx̂+ k sin θ sinφ ŷ +

2π

A
[md2x̂+ nd1ŷ]

=

(
k sin θ cosφ+

2π

A
md2

)
x̂+

(
k sin θ sinφ+

2π

A
nd1

)
ŷ

=

(
k sin θ cosφ+

2πm

d1

)
x̂+

(
k sin θ sinφ+

2πn

d2

)
ŷ

=

(
kx0 +

2πm

d1

)
x̂+

(
ky0 +

2πn

d2

)
ŷ

(2.32)

This spectral formulation exhibits a better convergence than the spatial one, as

will be shown in Chapter 3. Nevertheless, it could be possible to obtain faster

convergences through applying mathematical methods of series acceleration.
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2.1.2 Formulation of the Gradient of Green’s Functions

Once the spatial and spectral Green’s functions have been obtained, we are interested in

the gradient of these functions. It will be necessary to formulate the integral equations

where electric and magnetic currents appear in the same problem coupled by differential

operators. In this application, not only the potential but also the gradient of the periodic

Green’s function is required.

The gradient of spectral and spatial Green’s functions is obtained by applying the gra-

dient operator to the functions (2.2) and (2.28).

Formulation of the Spatial Gradient of Green’s Function

To obtain the spatial representation of the gradient of 2-D periodic Green’s function

we start from the spatial series (2.2)

G(ρ̄, ρ̄′) =
1

4j

+∞∑
m=−∞

+∞∑
n=−∞

H
(2)
0 (kSmn)e−jk̄w0·ρ̄mn (2.33)

and we use the 2-D gradient operator

∇G(ρ̄, ρ̄′) =
∂G(ρ̄, ρ̄′)

∂x
· x̂+

∂G(ρ̄, ρ̄′)

∂y
· ŷ (2.34)

As can be noted, we need the partial derivatives of the function of several variables

with respect to each of those variables. Due to the present symmetry in Green’s

function, we only demonstrate the partial derivative of this function with respect to

x. So, we obtain the partial derivative with respect to y by analogy.

∂G(ρ̄, ρ̄′)

∂x
=

∂

∂x

(
1

4j

+∞∑
m=−∞

+∞∑
n=−∞

H
(2)
0 (kSmn)e−jk̄w0·ρ̄mn

)
(2.35)

Making use of the following relation

∂H
(2)
0 (z)

∂z
= −H

(2)
1 (z) (2.36)

and remembering that Smn is

Smn = |[x− x′ − (ma1x + na2x)]x̂+ [y − y′ − (ma1y + na2y)]ŷ|

=
√

[x− x′ − (ma1x + na2x)]2 + [y − y′ − (ma1y + na2y)]2
(2.37)
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∂G(ρ̄,ρ̄′)
∂x is calculated using the chain rule as

∂G(ρ̄, ρ̄′)

∂x
=

1

4j

+∞∑
m=−∞

+∞∑
n=−∞

H
(2)
1 (kSmn)e−jk̄w0·ρ̄mn

· −k �2 [x− x′ − (ma1x + na2x)]

�2
√

[x− x′ − (ma1x + na2x)]2 + [y − y′ − (ma1y + na2y)]2

=
1

4j

+∞∑
m=−∞

+∞∑
n=−∞

−k [x− x′ − (ma1x + na2x)]

Smn
H

(2)
1 (kSmn)e−jk̄w0·ρ̄mn

(2.38)

Proceeding in a similar way for the other component, ∂G(ρ̄,ρ̄′)
∂y is

∂G(ρ̄, ρ̄′)

∂y
=

1

4j

+∞∑
m=−∞

+∞∑
n=−∞

−k [y − y′ − (ma1y + na2y)]

Smn
H

(2)
1 (kSmn)e−jk̄w0·ρ̄mn

(2.39)

The gradient of the spatial 2-D Green’s function with 2-D periodicity can be written

as

∇G(ρ̄, ρ̄′) =
1

4j

+∞∑
m=−∞

+∞∑
n=−∞

−k
Smn

H
(2)
1 (kSmn)e−jk̄w0·ρ̄mn

×
{

[x− x′ − (ma1x + na2x)] · x̂+ [y − y′ − (ma1y + na2y)] · ŷ
} (2.40)

Formulation of the Spectral Gradient of Green’s Function

To obtain the spectral representation of the gradient of 2-D periodic Green’s function,

we start from the spectral series (2.28)

G̃(ρ̄, ρ̄′) =
1

A

+∞∑
m=−∞

+∞∑
n=−∞

e−jk̄mn·(ρ̄−ρ̄
′)

|k̄mn|
2 − k2

(2.41)

and we use the 2-D gradient operator given by (2.34). We need the partial derivatives

of the function with respect to each of those variables. As said before, due to the

present symmetry in Green’s function, we only demonstrate the partial derivative of

this function with respect to x. So, we obtain the partial derivative with respect to

y by analogy.

∂G̃(ρ̄, ρ̄′)

∂x
=

∂

∂x

(
1

A

+∞∑
m=−∞

+∞∑
n=−∞

e−jk̄mn·(ρ̄−ρ̄
′)

|k̄mn|
2 − k2

)
(2.42)

where
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k̄mn ·(ρ̄− ρ̄′) = (kxmnx̂+kymnŷ) · [(x−x′)x̂+(y−y′)ŷ] = kxmn (x−x′)+kymn (y−y′)
(2.43)

and then, ∂G̃(ρ̄,ρ̄′)
∂x remains

∂G̃(ρ̄, ρ̄′)

∂x
=

∂

∂x

(
1

A

+∞∑
m=−∞

+∞∑
n=−∞

e−jkxmn(x−x′) e−jkymn(y−y′)

|kmn|2 − k2

)

=
1

A

+∞∑
m=−∞

+∞∑
n=−∞

−jkxmn
e−jk̄mn·(ρ̄−ρ̄

′)

|k̄mn|
2 − k2

(2.44)

Proceeding in a similar way for the other component, ∂G̃(ρ̄,ρ̄′)
∂y is

∂G̃(ρ̄, ρ̄′)

∂y
=

1

A

+∞∑
m=−∞

+∞∑
n=−∞

−jkymn
e−jk̄mn·(ρ̄−ρ̄

′)

|k̄mn|
2 − k2

(2.45)

Finally, the gradient of the 2-D Green’s function with 2-D periodicity in the spectral

domain can be written as

∇G̃(ρ̄, ρ̄′) =
1

A

+∞∑
m=−∞

+∞∑
n=−∞

e−jk̄mn·(ρ̄−ρ̄
′)

|k̄mn|
2 − k2

[−jkxmn · x̂− jkymn · ŷ] (2.46)

In order to summarize, in this section we have demonstrated the obtaining of the spatial

and spectral 2-D periodic free-space Green’s functions with 2-D periodicity and their

gradients. These functions will be our starting point in the following sections. This is

because the convergence of these series is slow and we will try to improve it through

applying widely used techniques of series acceleration.

2.2 Ewald’s Method

The spectral and spatial Green’s functions formulated in the previous section exhibit

extremely slow convergence. A way to avoid this slow convergence is to introduce new

transformations that allow the evaluation of these functions with less number of terms,

that is, improving their convergences.

According to this, the first acceleration technique that we will apply to 2-D Green’s

function is Ewald’s method [4]. This method consists of splitting the series into two

parts, one spectral and the other spatial. Then, each component has to be transformed

in its corresponding domain in order to be evaluated as efficiently as possible. The final
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expressions of these components are very rapidly convergent. Thus, the advantage of this

method is its rapid convergence in comparison to the computation of the direct series.

Consequently, its advantages are high accuracy and efficiency. For these reasons, this

method has been applied to the 2-D Green’s function with 1-D periodicity in [5, 22] and

2-D periodicity in [2].

The idea in this section is to review the formulation needed to obtain the components

resulted by the application of Ewald’s method. This is because they will be used to

compare with future techniques proposed in this project. First, we focus on applying this

technique in the Green’s function under study. We obtain the components Gspectral and

Gspatial, whose sum leads to the total Green’s function. It is important to note that the

split of these components is addressed by the splitting parameter. This parameter has to

be optimally adjusted to calculate each component in their optimal region of convergence.

Unlike [11], in this case there is not an equivalent development for the switching method

because the observation point does not distance from the source in z-direction. The

observation point is always in the x − y plane and therefore near the source. So, the

convergence does not depend on the z-direction distance.

Finally, the same procedure will be followed in the gradient components of Green’s

function.

2.2.1 Green’s Function Using Ewald’s Method

From the spatial representation of the 2-D Green’s function with 2-D periodicity obtained

in the previous section, we apply Ewald’s method. For this purpose, we start from the

Sommerfeld identity for 2-D cylindrical radiated fields, which is given by

1

4j
H

(2)
0 (kR) =

1

2π

∫ ∞
0

e−R
2s2+ k2

4s2

s
ds (2.47)

Using the spatial definition given by (2.2) and the Sommerfel identity

G(ρ̄, ρ̄′) =
1

4j

+∞∑
m=−∞

+∞∑
n=−∞

H
(2)
0 (kSmn)e−jk̄w0·ρ̄mn (2.48)

we can write the spatial series as

G(ρ̄, ρ̄′) =
1

2π

+∞∑
m=−∞

+∞∑
n=−∞

e−jk̄w0·ρ̄mn
∫ ∞

0

e−S
2
mns

2+ k2

4s2

s
ds (2.49)
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Ewald’s method is applied by splitting the previous integral into two parts G(ρ̄, ρ̄′) =

Gspectral(ρ̄, ρ̄
′)+Gspatial(ρ̄, ρ̄

′), where ε is the splitting parameter and determine where the

integral is divided.

Using this parameter, we can consider the total Green’s function as the summation of

two contributions

Gspectral(ρ̄, ρ̄
′) =

1

2π

+∞∑
m=−∞

+∞∑
n=−∞

e−jk̄w0·ρ̄mn
∫ ε

0

e−S
2
mns

2+ k2

4s2

s
ds (2.50a)

Gspatial(ρ̄, ρ̄
′) =

1

2π

+∞∑
m=−∞

+∞∑
n=−∞

e−jk̄w0·ρ̄mn
∫ ∞
ε

e−S
2
mns

2+ k2

4s2

s
ds (2.50b)

The subscripts indicate the domain in which each component will be formulated. Accord-

ing to this, the next step will be transforming each component to obtain the final Ewald’s

contributions.

Spectral Component of Ewald’s Method Gspectral

As the series Gspectral do not exhibit an exponential decay, we transform it into a

spectral domain series using the 2-D generic Poisson’s formula (see Appendix A.4)

+∞∑
m=−∞

+∞∑
n=−∞

f(mā1 + nā2) =
1

|ā1 × ā2|

+∞∑
m=−∞

+∞∑
n=−∞

f̃

(
2π

A
m(ā2 × ẑ) +

2π

A
n(ẑ × ā1)

)
(2.51)

Or in x− y subspace

+∞∑
m=−∞

+∞∑
n=−∞

f(ma1x + na2x,ma1y + na2y)

=
1

A

+∞∑
m=−∞

+∞∑
n=−∞

f̃

(
2π

A
(ma2y − na1y),

2π

A
(−ma2x + na1x)

) (2.52)

where f̃(kx, ky) is the Fourier transform of the function f(ξ1, ξ2), that is

f̃(kx, ky) =

∫ +∞

−∞

∫ +∞

−∞
f(ξ1, ξ2)e−jkxξ1e−jkyξ2 dξ1dξ2 (2.53)

From the equation (2.50a), we identify terms so we can write
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f(ma1x + na2x,ma1y + na2y) =
1

2π

+∞∑
m=−∞

+∞∑
n=−∞

e−jkx0(ma1x+na2x)e−jky0n(ma1y+na2y)

×
∫ ε

0

e−[(x−x′−(ma1x+na2x))2+(y−y′−(ma1y+na2y))2]s2+ k2

4s2

s
ds

(2.54)

and therefore f̃(kx, ky) can be written as follows

f̃(kx, ky) =
1

2π

∫ ∞
−∞

∫ ∞
−∞

dξ1dξ2 ×
∫ ε

0

e−[(x−x′−ξ1)2+(y−y′−ξ2)2]s2+ k2

4s2

s
e−jkx0ξ1e−jky0ξ2

· e−jkxξ1e−jkyξ2 ds
(2.55)

where we have to replace kx = 2π
A (ma2y − na1y) and ky = 2π

A (−ma2x + na1x).

According to this and using the definition of kxmn and kymn written in (2.16b),

f̃(kx, ky) is

f̃(kx, ky) =
1

2π

∫ ∞
−∞

∫ ∞
−∞

dξ1dξ2 ×
∫ ε

0
ds

1

s
e
k2

4s2 e−(x−x′−ξ1)2s2−jkxmnξ1

e−(y−y′−ξ2)2s2−jkymnξ2
(2.56)

Now, we try to find the evaluation of the ξ-integrals in a closed form using the

following formula

∫ +∞

−∞
e−aξ

2+bξdξ =

√
π

a
e
b2

4a (2.57)

For this purpose, we define I1 and I2 as the integrals of (2.56) that depend on ξ1

and ξ2, respectively

I1 =

∫ +∞

−∞
e−(x−x′−ξ1)2s2−jkxmnξ1 dξ1 (2.58a)

I2 =

∫ +∞

−∞
e−(y−y′−ξ2)2s2−jkymnξ2 dξ2 (2.58b)
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and we use the results obtained in (2.20) and (2.21)

I1 =

√
π

s2
e−jkxmn(x−x′)e−

kxmn
2

4s2 (2.59a)

I2 =

√
π

s2
e−jkymn(y−y′)e−

kymn
2

4s2 (2.59b)

So, interchanging the order of integration and replacing I1 and I2 by the previous

results, f̃(kx, ky) remains

f̃(kx, ky) =
1

2π

∫ ε

0

√
π

s2
e−jkxmn(x−x′)e−

kxmn
2

4s2

√
π

s2
e−jkymn(y−y′)e−

kymn
2

4s2 e
k2

4s2
1

s
ds

(2.60)

where we have defined k̄mn as

k̄mn = k̄w0 +
2π

A
[m(ā2 × ẑ) + n(ẑ × ā1)] = kxmnx̂+ kymnŷ

=

(
kx0 +

2π

A
(ma2y − na1y)

)
x̂+

(
ky0 +

2π

A
(−ma2x + na1x)

)
ŷ

(2.61)

As has been done in the spectral development, the exponentials can be merged into

e−jkxmn(x−x′)e−jkymn(y−y′) = e−j[kxmn(x−x′)+kymn(y−y′)] = e−jk̄mn·(ρ̄−ρ̄
′) (2.62a)

e−
kxmn

2

4s2 e−
kymn

2

4s2 = e−
(kxmn

2+kymn
2)

4s2 = e−
|k̄mn|2

4s2 (2.62b)

and f̃(kx, ky) can be rewritten as

f̃(kx, ky) =
1

2
e−jk̄mn·(ρ̄−ρ̄

′)

∫ ε

0

1

s3
e−
|k̄mn|2−k2

4s2 ds (2.63)

Now, if we apply this change of variable s′ = 1/s, the limits change s = 0→ s′ =∞,

s = ε→ s′ = 1/ε and the differential remains ds = −s2ds′.

f̃(kx, ky) =
1

2
e−jk̄mn·(ρ̄−ρ̄

′)

∫ 1/ε

∞

−s′3

s′2
e−

(|k̄mn|2−k2)s′2

4 ds′ (2.64)
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Next, we proceed as follows

f̃(kx, ky) =
1

2
e−jk̄mn·(ρ̄−ρ̄

′)

∫ 1/ε

∞
(−s′) · −2(|k̄mn|

2 − k2)

4
· e−

(|k̄mn|2−k2)s′2

4

· −4

2(|k̄mn|
2 − k2)

ds′ = e−jk̄mn·(ρ̄−ρ̄
′) e
− (|k̄mn|2−k2)s′2|1/ε∞

4

|k̄mn|
2 − k2

=
e−jk̄mn·(ρ̄−ρ̄

′)

|k̄mn|
2 − k2

e−
|k̄mn|2−k2

4ε2

(2.65)

Once f̃(kx, ky) has been obtained, the spectral contribution of Ewald’s method ap-

plied on 2-D Green’s function with 2-D periodicity can be written as a function of

f̃(kx, ky)

Gspectral(ρ̄, ρ̄
′) =

1

|ā1 × ā2|

+∞∑
m=−∞

+∞∑
n=−∞

f̃(kx, ky)

=
1

A

+∞∑
m=−∞

+∞∑
n=−∞

e−jk̄mn·(ρ̄−ρ̄
′)

|k̄mn|
2 − k2

e−
|k̄mn|2−k2

4ε2

(2.66)

where the definition of A and k̄mn in the generic case and in the case of phase-shifted

line sources have been reported in the section 2.1.1.

This spectral formulation of the first contribution resulted by the application of

Ewald’s method is rapidly convergent, as will be shown in Chapter 3.

Spatial Component of Ewald’s Method Gspatial

On the other hand, the second contribution of Ewald’s method Gspatial(ρ̄, ρ̄
′) is

transformed in the spatial domain as follows

Gspatial(ρ̄, ρ̄
′) =

1

2π

+∞∑
m=−∞

+∞∑
n=−∞

e−jkx0(ma1x+na2x)e−jky0(ma1y+na2y)

∫ ∞
ε

e−S
2
mns

2+ k2

4s2

s
ds

(2.67)

where the exponentials in (2.67) can be merged and therefore Gspatial(ρ̄, ρ̄
′) remains

Gspatial(ρ̄, ρ̄
′) =

1

2π

+∞∑
m=−∞

+∞∑
n=−∞

e−jk̄w0·ρ̄mn
∫ ∞
ε

e−S
2
mns

2+ k2

4s2

s
ds (2.68)

If we define I like the integral part of Gspatial(ρ̄, ρ̄
′)
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I =

∫ ∞
ε

e−S
2
mns

2+ k2

4s2

s
ds (2.69)

and we carry out the following change of variable u = s2, the limits of integration

change as s = ∞ → u = ∞ and s = ε → u = ε2, and the differential remains

ds = 1
2
√
u
du.

I =

∫ ∞
ε2

1

2

e−S
2
mnu e

k2

4u

u
du (2.70)

Using the Taylor expansion of an exponential function given by

eu =
+∞∑
q=0

uq

q!
(2.71)

the integral I can be expressed as

I =

∫ ∞
ε2

1

2

e−S
2
mnu

u

+∞∑
q=0

(k2 )
2q

q!uq
du (2.72)

Next, we perform another change of variable t = u/ε2, where the limits change

u = ε2 → t = 1 and u = ∞ → t = ∞ and the differential remains du = ε2dt. This

leads to

I =
1

2

+∞∑
q=0

∫ ∞
1

e−S
2
mnε

2t

ε2t

(
k
2

)2q
q! ε2qtq

ε2dt =
1

2

+∞∑
q=0

(
k

2ε

)2q 1

q!

∫ ∞
1

e−S
2
mnε

2t

tq+1
dt (2.73)

We make use of the q-th order exponential integral defined as

Eq(z) =

∫ ∞
1

e−zt

tq
dt (2.74)

and consequently, I remains

I =
1

2

+∞∑
q=0

(
k

2ε

)2q 1

q!
Eq+1(S2

mnε
2) (2.75)

The inclusion of (2.75) into (2.68) leads to the following representation of the mod-

ified spatial component
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Gspatial(ρ̄, ρ̄
′) =

1

4π

+∞∑
m=−∞

+∞∑
n=−∞

e−jk̄w0·ρ̄mn ×
+∞∑
q=0

(
k

2ε

)2q 1

q!
Eq+1(S2

mnε
2) (2.76)

Once we have obtained these two contributions, we can summarize the final formulas

resulted by the application of Ewald’s method to the 2-D Green’s function with 2-D

periodicity as

GEwald(ρ̄, ρ̄
′) = Gspectral(ρ̄, ρ̄

′) +Gspatial(ρ̄, ρ̄
′) (2.77)

where Gspectral(ρ̄, ρ̄
′) is

Gspectral(ρ̄, ρ̄
′) =

1

A

+∞∑
m=−∞

+∞∑
n=−∞

e−jk̄mn·(ρ̄−ρ̄
′)

|k̄mn|
2 − k2

e−
|k̄mn|2−k2

4ε2 (2.78)

Gspatial(ρ̄, ρ̄
′) is

Gspatial(ρ̄, ρ̄
′) =

1

4π

+∞∑
m=−∞

+∞∑
n=−∞

e−jk̄w0·ρ̄mn ×
+∞∑
q=0

(
k

2ε

)2q 1

q!
Eq+1(S2

mnε
2) (2.79)

and, as a result, the Green’s function calculated by Ewald’s method GEwald(ρ̄, ρ̄
′) is

GEwald(ρ̄, ρ̄
′) =

1

A

+∞∑
m=−∞

+∞∑
n=−∞

e−jk̄mn·(ρ̄−ρ̄
′)

|k̄mn|
2 − k2

e−
|k̄mn|2−k2

4ε2 +
1

4π

+∞∑
m=−∞

+∞∑
n=−∞

e−jk̄w0·ρ̄mn

×
+∞∑
q=0

(
k

2ε

)2q 1

q!
Eq+1(S2

mnε
2)

(2.80)

Through this technique, we have managed to go from having an infinite series to having

two contributions with fast convergence. The improvement obtained by this method will

be shown in Chapter 3.

2.2.2 Gradient of Green’s Function Using Ewald’s Method

The gradient of the periodic 2-D Green’s function may be obtained by taking the gradient

of the Ewald’s method components. Thus, once the spatial and spectral contributions
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of Ewald’s method have been obtained, we have to apply the gradient operator to these

contributions (2.78) and (2.79). Hence, the gradient of Green’s function will be expressed

as

∇GEwald(ρ̄, ρ̄′) = ∇Gspectral(ρ̄, ρ̄′) +∇Gspatial(ρ̄, ρ̄′) (2.81)

Spectral Component of Ewald’s Method ∇Gspectral
The gradient of the spectral component of Ewald’s method is

∇Gspectral(ρ̄, ρ̄′) =
∂Gspectral(ρ̄, ρ̄

′)

∂x
· x̂+

∂Gspectral(ρ̄, ρ̄
′)

∂y
· ŷ (2.82)

where we have obtained that Gspectral(ρ̄, ρ̄
′) is

Gspectral(ρ̄, ρ̄
′) =

1

A

+∞∑
m=−∞

+∞∑
n=−∞

e−jk̄mn·(ρ̄−ρ̄
′)

|k̄mn|
2 − k2

e−
|k̄mn|2−k2

4ε2 (2.83)

The partial derivative with respect to x can be calculated as

∂Gspectral(ρ̄, ρ̄
′)

∂x
=

∂

∂x

(
1

A

+∞∑
m=−∞

+∞∑
n=−∞

e−jk̄mn·(ρ̄−ρ̄
′)

|k̄mn|
2 − k2

e−
|k̄mn|2−k2

4ε2

)

=
∂

∂x

(
1

A

+∞∑
m=−∞

+∞∑
n=−∞

e−jkxmn(x−x′) e−jkymn(y−y′)

|k̄mn|
2 − k2

e−
|k̄mn|2−k2

4ε2

)

=
1

A

+∞∑
m=−∞

+∞∑
n=−∞

−jkxmn
e−jk̄mn·(ρ̄−ρ̄

′)

|k̄mn|
2 − k2

e−
|k̄mn|2−k2

4ε2

(2.84)

Similarly, the partial derivative of Gspectral(ρ̄, ρ̄
′) with respect to y can be calculated

as

∂Gspectral(ρ̄, ρ̄
′)

∂y
=

1

A

+∞∑
m=−∞

+∞∑
n=−∞

−jkymn
e−jk̄mn·(ρ̄−ρ̄

′)

|k̄mn|
2 − k2

e−
|k̄mn|2−k2

4ε2 (2.85)

And therefore, ∇Gspectral(ρ̄, ρ̄′) can be written as

∇Gspectral(ρ̄, ρ̄′) =
1

A

+∞∑
m=−∞

+∞∑
n=−∞

e−jk̄mn·(ρ̄−ρ̄
′)

|k̄mn|
2 − k2

e−
|k̄mn|2−k2

4ε2 [−jkxmn · x̂− jkymn · ŷ]

(2.86)
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Spatial Component of Ewald’s Method ∇Gspatial
The gradient of the spatial component of Ewald’s method is

∇Gspatial(ρ̄, ρ̄′) =
∂Gspatial(ρ̄, ρ̄

′)

∂x
· x̂+

∂Gspatial(ρ̄, ρ̄
′)

∂y
· ŷ (2.87)

where we have obtained that Gspatial(ρ̄, ρ̄
′) is

Gspatial(ρ̄, ρ̄
′) =

1

4π

+∞∑
m=−∞

+∞∑
n=−∞

e−jk̄w0·ρ̄mn ×
+∞∑
q=0

(
k

2ε

)2q 1

q!
Eq+1(S2

mnε
2) (2.88)

The partial derivative with respect to x can be calculated as

∂Gspatial(ρ̄, ρ̄
′)

∂x
=

∂

∂x

(
1

4π

+∞∑
m=−∞

+∞∑
n=−∞

e−jk̄w0·ρ̄mn ×
+∞∑
q=0

(
k

2ε

)2q 1

q!
Eq+1(S2

mnε
2)

)
(2.89)

applying the derivative of the q-th order exponential integral

∂ Eq+1(z)

∂z
= −Eq(z) (2.90)

and remembering that Smn is

S2
mn = |[x− x′ − (ma1x + na2x)]x̂+ [y − y′ − (ma1y + na2y)]ŷ|2

= [x− x′ − (ma1x + na2x)]2 + [y − y′ − (ma1y + na2y)]
2

(2.91)

∂Gspatial(ρ̄,ρ̄
′)

∂x remains

∂Gspatial(ρ̄, ρ̄
′)

∂x
=

1

4π

+∞∑
m=−∞

+∞∑
n=−∞

e−jk̄w0·ρ̄mn ×
+∞∑
q=0

(
k

2ε

)2q 1

q!
(−Eq(S

2
mnε

2))

· 2ε2[x− x′ − (ma1x + na2x)]

=
−ε2

2π

+∞∑
m=−∞

+∞∑
n=−∞

[x− x′ − (ma1x + na2x)]e−jk̄w0·ρ̄mn ×
+∞∑
q=0

(
k

2ε

)2q 1

q!
Eq(S

2
mnε

2)

(2.92)
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Similarly, the partial derivative of Gspatial(ρ̄, ρ̄
′) with respect to y can be calculated

as

∂Gspatial(ρ̄, ρ̄
′)

∂y
=
−ε2

2π

+∞∑
m=−∞

+∞∑
n=−∞

[y − y′ − (ma1y + na2y)]e
−jk̄w0·ρ̄mn

×
+∞∑
q=0

(
k

2ε

)2q 1

q!
Eq(S

2
mnε

2)

(2.93)

And therefore, ∇Gspatial(ρ̄, ρ̄′) can be written as

∇Gspatial(ρ̄, ρ̄′) =
−ε2

2π

+∞∑
m=−∞

+∞∑
n=−∞

e−jk̄w0·ρ̄mn ×
+∞∑
q=0

(
k

2ε

)2q 1

q!
Eq(S

2
mnε

2)

×
{

[x− x′ − (ma1x + na2x)] · x̂+ [y − y′ − (ma1y + na2y)] · ŷ
}

(2.94)

Once we have obtained these two contributions, we can summarize the final gradient

of the 2-D Green’s function with 2-D periodicity using Ewald’s method

∇GEwald(ρ̄, ρ̄′) = ∇Gspectral(ρ̄, ρ̄′) +∇Gspatial(ρ̄, ρ̄′)

=
1

A

+∞∑
m=−∞

+∞∑
n=−∞

e−jk̄mn·(ρ̄−ρ̄
′)

|k̄mn|
2 − k2

e−
|k̄mn|2−k2

4ε2 [−jkxmn · x̂− jkymn · ŷ]

− ε2

2π

+∞∑
m=−∞

+∞∑
n=−∞

e−jk̄w0·ρ̄mn ×
+∞∑
q=0

(
k

2ε

)2q 1

q!
Eq(S

2
mnε

2)

×
{

[x− x′ − (ma1x + na2x)] · x̂+ [y − y′ − (ma1y + na2y)] · ŷ
}
(2.95)

In order to summarize, in this section we have transformed the original series which are

extremely slowly convergent into the sum of two contributions which exhibit a fast con-

vergence. This has been achieved through the application of Ewald’s method. In addition,

the relation proved in this section G̃(ρ̄, ρ̄′) = GEwald(ρ̄, ρ̄
′) = Gspectral(ρ̄, ρ̄

′)+Gspatial(ρ̄, ρ̄
′)

will be decisive in following procedures when we use the components of Ewald’s method

to sum the spectral Green’s function.

The improvement obtained by this technique in the computation of both Green’s func-

tion and its gradient will be shown in Chapter 3.
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2.2.3 On the Splitting Parameter in Ewald’s Method

The parameter ε controls the convergence rate of the two series involved in Ewald’s method.

A larger ε makes the spatial series Gspatial converge faster while a smaller ε makes the

spectral series Gspectral converge faster. Initially, the splitting parameter is an arbitrary

number but the optimum splitting parameter is used to balance the asymptotic convergence

rate between these two series.

The behaviour of the spectral Ewald’s method component for a large number of terms

is

Gspectral ∼ e−
|k̄mn|2

4ε2 (2.96)

σ2
spectral =

( π
Aε

)2 [
(Pa2y −Qa1y)

2 + (−Pa2x +Qa1x)
]

(2.97)

where P and Q are the numbers of terms needed to achieve the convergence factor

σ2
spectral. P is the number of terms in the outer series and Q is the number of terms in the

inner series.

On the other hand, the behaviour of the spatial Ewald’s method component for a large

number of terms is

Gspatial ∼
eS

2
mnε

2

S2
mnε

2
(2.98)

σ2
spatial = ε2

[
(Ma1x +Na2x)2 + (Ma1y +Na2y)

2
]

(2.99)

where M and N are the numbers of terms needed to achieve this convergence factor

σ2
spatial. M is the number of terms in the outer series and N is the number of terms in the

inner series.

We are interested in balancing the asymptotic convergences of these series. Because of

this, we make equal the convergence factor σ2
spatial = σ2

spectral

ε2
[
(Ma1x +Na2x)2 + (Ma1y +Na2y)

2
]

=
( π
Aε

)2 [
(Pa2y −Qa1y)

2 + (−Pa2x +Qa1x)
]

ε2M2

[
(a1x +

N

M
a2x)2 + (a1y +

N

M
a2y)

2

]
=

(
πP

Aε

)2 [
(a2y −

Q

P
a1y)

2 + (−a2x +
Q

P
a1x)

]
(2.100)

Assuming that the components in Ewald’s method are calculated using the same number

of terms in the outer series M = P and in the inner series N = Q and defining F as

F = N/M = Q/P , the equation (2.100) remains
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ε4 =
π2

A2

��P 2
[
(a2y − Fa1y)

2 + (−a2x + Fa1x)
]

��M2 [(a1x + Fa2x)2 + (a1y + Fa2y)2]
(2.101)

ε =

√
π

A
4

√
[(a2y − Fa1y)2 + (−a2x + Fa1x)]

[(a1x + Fa2x)2 + (a1y + Fa2y)2]
(2.102)

This general splitting parameter can be particularized depending on the case that we are

interested in. This is because the parameter F controls the relation between the number

of terms used in the outer and in the inner series. For instance, if the array is not square,

that is, d1 6= d2, it could be worth adjusting the factor F according to the relation between

d1 and d2.

On the other hand, if we assume that the number of terms used in the outer and in the

inner series is the same, the factor F is F = 1. Being in this case, we can use the following

relations

|ā2 − ā1| =
√

(a2y − a1y)2 + (a2x − a1x)2

|ā1 + ā2| =
√

(a1x + a2x)2 + (a1y + a2y)2

A = |ā1 × ā2|

(2.103)

to express the splitting parameter as

ε =

√
π |ā2 − ā1|

|ā1 + ā2| |ā1 × ā2|
(2.104)

This splitting parameter has already been reported in [2]. In addition, in [2] they suggest

to choose the splitting parameter as

ε = max

{√
π |ā2 − ā1|

|ā1 + ā2| |ā1 × ā2|
,
|
√
k2 − |k̄00|2|

2H

}
(2.105)

This allows to avoid cancellation errors arising from the addition of very large nearly-

equal numbers of opposite sign.
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Another way to obtain the splitting parameter is following a procedure similar to those

reported in [2, 5]. We assume that we first order the pairs (m,n) and (p, q) according to

their importance in the convergence of the series. This can result in two vectors of pairs of

terms, whose lengths are M and P . This allows us to sum in first place the most relevant

terms. In this sense, the total number of terms is N tot = M + P .

σ =

(
πP

Aε

)√
(a2y − a1y)2 + (a2x − a1x) (2.106)

σ = εM
√

(a1x + a2x)2 + (a1y + a2y)2 (2.107)

N tot = M + P = εM
√

(a1x + a2x)2 + (a1y + a2y)2︸ ︷︷ ︸
σ

· 1

ε
√

(a1x + a2x)2 + (a1y + a2y)2

+

(
πP

Aε

)√
(a2y − a1y)2 + (a2x − a1x)︸ ︷︷ ︸

σ

· Aε

π
√

(a2y − a1y)2 + (a2x − a1x)

= σ

(
1

ε|ā1 + ā2|
+
|ā1 × ā2|ε
π|ā2 − ā1|

)
(2.108)

As we are interested in minimizing the total number of term, we have to calculate the

derivative of N tot respect to ε and make it equal to zero.

∂N tot

∂ε
= 0

∂

∂ε

{
σ

(
1

ε|ā1 + ā2|
+
|ā1 × ā2|ε
π|ā2 − ā1|

)}
= 0

σ

(
−1

ε2|ā1 + ā2|
+
|ā1 × ā2|
π|ā2 − ā1|

)
= 0

|ā1 × ā2|
π|ā2 − ā1|

=
1

ε2|ā1 + ā2|

(2.109)

Finally,

ε =

√
π|ā2 − ā1|

|ā1 × ā2| |ā1 + ā2|
(2.110)

As can be seen, this value of ε is equal to the obtained in (2.104) where the same conditions

have to be assumed.

The values of the splitting parameter reported in this subsection will be used in the

implementation of Ewald’s method in Chapter 3.
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2.3 Spectral Kummer’s Transformation

As can be appreciated from the previous sections, the spatial and the spectral represen-

tations of the 2-D Green’s function with 2-D periodicity are slowly convergent. In the

particular case of 2-D periodicity, the spatial representation exhibits an extremely slow

convergence in all possible scenarios. For this reason, some acceleration technique has to

be applied. In addition to Ewald’s method, another analytical technique that has been

widely used is the spectral Kummer’s transformation.

This method consists of extracting the asymptotic part of the series to accelerate the

dynamic part and trying to sum it analytically, whenever possible. This technique has

been efficiently employed to accelerate the convergence of the 2-D Green’s functions with

1-D periodicity in [5, 11] and has been reviewed in Section 1.1.

In relation to the 2-D Green’s functions with 2-D periodicity, different methods based

on the spectral Kummer’s technique have been reported before [2, 3] to accelerate the

evaluation of the double series involved in these functions.

In this chapter, we apply Kummer’s transformation to the spectral 2-D Green’s function

with 2-D periodicity to accelerate its slow convergence. Our intention is to carry out an

in-depth study about the two possible approaches in the extraction of the asymptotic

part, as has been done in Chapter 1. It is important to note that, while in the previous

sections of this chapter we have worked with both the general and the phase-shifted array

2-D Green’s function, from here we are going to deal only with the phase-shifted array

2-D Green’s functions. This is because it is the most interesting case for us due to its

applicability to the problems which involves rectangular waveguides and 2-D cavities.

For this purpose, we begin with the spectral 2-D Green’s function obtained in (2.28)

G̃(ρ̄, ρ̄′) =
1

A

+∞∑
m=−∞

+∞∑
n=−∞

e−jk̄mn·(ρ̄−ρ̄
′)

|k̄mn|
2 − k2

(2.111)

and we apply Kummer’s transformation through the extraction of the asymptotic term

G̃mn

G̃k(ρ̄, ρ̄
′) =

1

A

+∞∑
m=−∞
∀m,n−

+∞∑
n=−∞
{m=n=0}

(
1

|k̄mn|
2 − k2

− G̃mn

)
e−jk̄mn·(ρ̄−ρ̄

′) + G̃00

+
1

A

+∞∑
m=−∞
∀m,n−

+∞∑
n=−∞
{m=n=0}

G̃mn e
−jk̄mn·(ρ̄−ρ̄′)

(2.112)
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G̃00 is the contribution of the term m = n = 0 in which we do not apply the extraction.

The asymptotic retained series G̃e(ρ̄, ρ̄
′) has to be efficiently added.

G̃e(ρ̄, ρ̄
′) =

1

A

+∞∑
m=−∞
∀m,n−

+∞∑
n=−∞
{m=n=0}

G̃mn e
−jk̄mn·(ρ̄−ρ̄′) (2.113)

As in Chapter 1 for the 2-D Green’s function with 1-D periodicity, here we also consider

that G̃mn can be obtained by two different ways resulting in two different approaches of

formulating the dynamic part. Consequently, two different ways of adding the retained

part can be used. The advantages of each approach will be studied in Chapter 3, where

we will see that the improvement achieved by each approach is different.

For the first option, we proceed as follows

1

|k̄mn|
2 − k2

=
1

|k̄mn|
2

1−
(

k

|k̄mn|

)2

︸ ︷︷ ︸
u


(2.114)

and if we use the Taylor expansion when u = 0,

1

1− u
=

+∞∑
t=0

ut = 1 + u+ u2 + u3... =
+∞∑
t=0

ut (2.115)

G̃mn can be written as

G̃mn =
1

|k̄mn|2

(
1 +

(
k

|k̄mn|

)2

+

(
k

|k̄mn|

)4

+

(
k

|k̄mn|

)6

+ ...

)

=
1

|k̄mn|
2 +

k2

|k̄mn|
4 +

k4

|k̄mn|
6 +

k6

|k̄mn|
8 + ... =

Q∑
q=0

k2q

|k̄mn|
2(q+1)

(2.116)

where Q is the number of terms that are used in the expansion of the asymptotic series

G̃mn. Thus, through the parameter Q we can choose the order of the approximation, that

is, the number of terms that we extract in the application of Kummer’s transformation.

It is important to note that 1

|k̄mn|2−k2
is positive, so in this case the absolute value has

been omitted because all these terms are positive due to its own absolute values. Using



2.3. Spectral Kummer’s Transformation 96

this G̃mn approach, the series G̃e(ρ̄, ρ̄
′) that has to be efficiently summed is

G̃e(ρ̄, ρ̄
′) =

1

A

+∞∑
m=−∞
∀m,n−

+∞∑
n=−∞
{m=n=0}

(
1

|k̄mn|
2 +

k2

|k̄mn|
4 +

k4

|k̄mn|
6 +

k6

|k̄mn|
8 + ...

)
e−jk̄mn·(ρ̄−ρ̄

′)

=
1

A

+∞∑
m=−∞
∀m,n−

+∞∑
n=−∞
{m=n=0}

 Q∑
q=0

k2q

|k̄mn|
2(q+1)

 e−jk̄mn·(ρ̄−ρ̄
′)

(2.117)

As mentioned in Chapter 1, we can realize that this approach will result in a better

approximation of the spectral series. For this reason, this approach provides a faster

convergence rate in comparison to the other one. The option that we propose to sum

efficiently this series is:

• Option A.1: Sum by Ewald’s method.

The formulation of this option will be outlined in the subsection 2.3.1.

The other approach to extract the asymptotic terms is based on the following procedure

1

|k̄mn|
2 − k2

=
1∣∣∣(kx0 + 2πm

d1

)
x̂+

(
ky0 + 2πn

d2

)
ŷ
∣∣∣2 − k2

=
1(

kx0 + 2πm
d1

)2
+
(
ky0 + 2πn

d2

)2
− k2

=
1(

k2
x0 + 22πm

d1
kx0 +

(
2πm
d1

)2
)

+

(
k2
y0 + 22πn

d2
ky0 +

(
2πn
d2

)2
)
− k2

(2.118)

where we can extract common factor of the terms that we are interested in as

1

|k̄mn|
2 − k2

=
1

(
2πm
d1

)2

1 +
kx0d1

πm
+
k2
x0 − k2/2(

2πm
d1

)2

︸ ︷︷ ︸
u

+
(

2πn
d2

)2

1 +
ky0d2

πn
+
k2
y0 − k2/2(

2πn
d2

)2

︸ ︷︷ ︸
v


(2.119)
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Naming the factors zu and zv as

zu =

(
2πm

d1

)2

· u =

(
2πm

d1

)2

·

kx0d1

πm
+
k2
x0 − k2/2(

2πm
d1

)2

 = k2
x0 − k2/2 +

4πmkx0

d1

(2.120a)

zv =

(
2πn

d2

)2

· v =

(
2πn

d2

)2

·

ky0d2

πn
+
k2
y0 − k2/2(

2πn
d2

)2

 = k2
y0 − k2/2 +

4πnky0

d2
(2.120b)

and carrying out the Taylor expansion using [15] when m→∞ and n→∞ or, what is

the same, u→ 0 and v → 0, we have the following approximation G̃mn

G̃mn =
1(

2πm
d1

)2
+
(

2πn
d2

)2 −
zu + zv((

2πm
d1

)2
+
(

2πn
d2

)2
)2 +

(zu + zv)
2((

2πm
d1

)2
+
(

2πn
d2

)2
)3 + ...

=

Q∑
q=0

(−1)q(zu + zv)
q((

2πm
d1

)2
+
(

2πn
d2

)2
)q+1

(2.121)

Using this G̃mn approach, the series G̃e(ρ̄, ρ̄
′) that has to be efficiently summed is

G̃e(ρ̄, ρ̄
′) =

1

A

+∞∑
m=−∞
∀m,n−

+∞∑
n=−∞
{m=n=0}

(
1(

2πm
d1

)2
+
(

2πn
d2

)2 −
zu + zv((

2πm
d1

)2
+
(

2πn
d2

)2
)2

+
(zu + zv)

2((
2πm
d1

)2
+
(

2πn
d2

)2
)3 + ...

)
e−jk̄mn·(ρ̄−ρ̄

′)

=
1

A

+∞∑
m=−∞
∀m,n−

+∞∑
n=−∞
{m=n=0}

(
Q∑
q=0

(−1)q(zu + zv)
q((

2πm
d1

)2
+
(

2πn
d2

)2
)q+1

)
e−jk̄mn·(ρ̄−ρ̄

′)

(2.122)

In advance, we can realize that this approach will result in a worse approximation of

the spectral series and for this reason in a slower convergence rate in comparison to the

previous one. However, the advantage here is that the remaining series is quasi-static so
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it would be better in the case of problems that require a frequency sweep. The options

that we propose to sum efficiently this series are:

• Option B.1: Sum by Ewald’s method.

• Option B.2: Lerch transcendent.

• Option B.3: Summation by parts technique.

• Option B.4: Analytical sum in one index.

The formulation of each option will be detailed in the subsections 2.3.2, 2.3.3, 2.3.4 and

2.3.5, respectively.

To summarize, in the option A we are assuming that
(
kx0 + 2πm

d1

)
and

(
ky0 + 2πn

d2

)
are

more significant than k, in the approximation of 1

|k̄mn|2−k2
but in the option B we are

assuming that not only are
(

2πm
d1

)
and

(
2πn
d2

)
more important than k but also than kx0

and ky0. For this reason, the approximation A is more complete than B and therefore

the improvement resulted through the option A would be better. On the contrary, it has

the disadvantage of containing the frequency in the terms kx0 and ky0. Depending on the

problem to be solved, we can choose which to use.

In the following sections, we explain how to add efficiently the remaining part of the

Kummer’s series G̃e(ρ̄, ρ̄
′) using both approaches. It is important to note that, whenever

possible, we will try to explain the methods in a general way for the extraction of Q

asymptotic terms.

2.3.1 Option A.1. Approach of k̄mn: Sum by Ewald’s Method.

The first alternative to sum the asymptotic retained terms obtained by the application

of this first approach of Kummer’s transformation is using the corresponding terms in

Ewald’s method. This can be considered a combination of both techniques. By using this

proposed Kummer-Ewald transformation we are able to choose the effort that we want to

invest in each technique.

We start with the connection between the first asymptotic term in the spectral domain

and the first asymptotic term in Ewald’s method. Then, we extract the second term and

we extend this formulation to the extraction of Q terms.

• Extraction of one term.

In this case, the series G̃e(ρ̄, ρ̄
′) that we have to efficiently sum is
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G̃e(ρ̄, ρ̄
′) =

1

A

+∞∑
m=−∞
∀m,n−

+∞∑
n=−∞
{m=n=0}

1

|k̄mn|
2 e
−jk̄mn·(ρ̄−ρ̄′) (2.123)

The idea is to identify this series with an approximation of the spectral one and then

use Ewald’s transformation to sum the asymptotic series

G̃e(ρ̄, ρ̄
′) =

1

A

+∞∑
m=−∞
∀m,n−

+∞∑
n=−∞
{m=n=0}

1

|k̄mn|
2 e
−jk̄mn·(ρ̄−ρ̄′)

=
1

A

+∞∑
m=−∞

+∞∑
n=−∞

1

|k̄mn|
2 e
−jk̄mn·(ρ̄−ρ̄′)

︸ ︷︷ ︸
S

− 1

A

1

|k̄00|
2 e
−jk̄00·(ρ̄−ρ̄′)

(2.124)

Taking into account that the spectral Green’s function is

G̃(ρ̄, ρ̄′) =
1

A

+∞∑
m=−∞

+∞∑
n=−∞

e−jk̄mn·(ρ̄−ρ̄
′)

|k̄mn|
2 − k2

(2.125)

we would like to obtain the approximation of the previous series when m→∞ and

n→∞

G̃(ρ̄, ρ̄′)
∣∣∣m→+∞
n→+∞

=
1

A

+∞∑
m=−∞

+∞∑
n=−∞

e−jk̄mn·(ρ̄−ρ̄
′)

|k̄mn|
2 − k2

∣∣∣∣∣m→+∞
n→+∞

=
1

A

+∞∑
m=−∞

+∞∑
n=−∞

e−jk̄mn·(ρ̄−ρ̄
′)

|k̄mn|
2

(2.126)

Now, the series S obtained in the retained first term (2.124) can be identified with

the previous approximation of the spectral formulation and thus

G̃e(ρ̄, ρ̄
′) = G̃(ρ̄, ρ̄′)

∣∣∣m→+∞
n→+∞

− 1

A

1

|k̄00|
2 e
−jk̄00·(ρ̄−ρ̄′) (2.127)

Since

G̃(ρ̄, ρ̄′)
∣∣∣m→+∞
n→+∞

= GEwald(ρ̄, ρ̄
′)
∣∣∣m→+∞
n→+∞

=
[
Gspectral(ρ̄, ρ̄

′) +Gspatial(ρ̄, ρ̄
′)
] ∣∣∣m→+∞

n→+∞
(2.128)
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we can sum S using Ewald’s transformation by the use of the approximation of the

Ewald’s method components when m→∞ and n→∞.

Remembering that the spectral Ewald’s method component Gspectral(ρ̄, ρ̄
′) is ob-

tained in (2.66) as

Gspectral(ρ̄, ρ̄
′) =

1

A

+∞∑
m=−∞

+∞∑
n=−∞

e−jk̄mn·(ρ̄−ρ̄
′)

|k̄mn|
2 − k2

e−
|k̄mn|2−k2

4ε2 (2.129)

The approximation of Gspectral(ρ̄, ρ̄
′) is given by

Gspectral(ρ̄, ρ̄
′)
∣∣∣m→+∞
n→+∞

=

(
1

A

+∞∑
m=−∞

+∞∑
n=−∞

e−jk̄mn·(ρ̄−ρ̄
′)

|k̄mn|
2 − k2

e−
|k̄mn|2−k2

4ε2

)∣∣∣∣∣m→+∞
n→+∞

=
1

A

+∞∑
m=−∞

+∞∑
n=−∞

e−jk̄mn·(ρ̄−ρ̄
′)

|k̄mn|
2 e−

|k̄mn|2

4ε2

(2.130)

We are not interested in summing the term m = n = 0 directly, so we separate it

1

A

+∞∑
m=−∞

+∞∑
n=−∞

e−jk̄mn·(ρ̄−ρ̄
′)

|k̄mn|
2 e−

|k̄mn|2

4ε2 =
1

A

+∞∑
m=−∞
∀m,n−

+∞∑
n=−∞
{m=n=0}

e−jk̄mn·(ρ̄−ρ̄
′)

|k̄mn|
2 e−

|k̄mn|2

4ε2

+
1

A

e−jk̄00·(ρ̄−ρ̄′)

|k̄00|
2 e−

|k̄00|
2

4ε2

(2.131)

On the other hand, recalling that the spatial Ewald’s method componentGspatial(ρ̄, ρ̄
′)

is obtained in (2.79) as

Gspatial(ρ̄, ρ̄
′) =

1

4π

+∞∑
m=−∞

+∞∑
n=−∞

e−jk̄w0·ρ̄mn
+∞∑
q=0

(
k

2ε

)2q 1

q!
Eq+1(S2

mnε
2) (2.132)

The approximation when m → ∞ and n → ∞ in the spectral domain corresponds

to the limit when k → 0 in the spatial domain. Therefore, the limit of Gspatial(ρ̄, ρ̄
′)

when k → 0 is given by
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lim
k→0

Gspatial(ρ̄, ρ̄
′) = lim

k→0

(
1

4π

+∞∑
m=−∞

+∞∑
n=−∞

e−jk̄w0·ρ̄mn
+∞∑
q=0

(
k

2ε

)2q 1

q!
Eq+1(S2

mnε
2)

)

=
1

4π

+∞∑
m=−∞

+∞∑
n=−∞

e−jk̄w0·ρ̄mn E1(S2
mnε

2)

(2.133)

The found limits of Ewald’s method components can be used to sum the series S

S =
1

A

+∞∑
m=−∞

+∞∑
n=−∞

e−jk̄mn·(ρ̄−ρ̄
′)

|k̄mn|
2 =

1

A

+∞∑
m=−∞
∀m,n−

+∞∑
n=−∞
{m=n=0}

e−jk̄mn·(ρ̄−ρ̄
′)

|k̄mn|
2 e−

|k̄mn|2

4ε2

+
1

A

e−jk̄00(ρ−ρ′)

|k̄00|
2 e−

|k̄00|
2

4ε2 +
1

4π

+∞∑
m=−∞

+∞∑
n=−∞

e−jk̄w0·ρ̄mn E1(S2
mnε

2)

(2.134)

and using this transformation of S, we can rewrite G̃e(ρ̄, ρ̄
′) as follows

G̃e(ρ̄, ρ̄
′) = S − 1

A

1

|k̄00|
2 e
−jk̄00·(ρ̄−ρ̄′)

=
1

A

+∞∑
m=−∞
∀m,n−

+∞∑
n=−∞
{m=n=0}

e−jk̄mn·(ρ̄−ρ̄
′)

|k̄mn|
2 e−

|k̄mn|2

4ε2 +
1

A

e−jk̄00·(ρ̄−ρ̄′)

|k̄00|
2 e−

|k̄00|
2

4ε2

+
1

4π

+∞∑
m=−∞

+∞∑
n=−∞

e−jk̄w0·ρ̄mn E1(S2
mnε

2)− 1

A

1

|k̄00|
2 e
−jk̄00·(ρ̄−ρ̄′)

(2.135)

Regrouping terms and summing together the residual terms in m = n = 0, the first

asymptotic series G̃e(ρ̄, ρ̄
′) can be expressed as
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G̃e(ρ̄, ρ̄
′) =

1

A

+∞∑
m=−∞
∀m,n−

+∞∑
n=−∞
{m=n=0}

e−jk̄mn·(ρ̄−ρ̄
′)

|k̄mn|
2 e−

|k̄mn|2

4ε2 +
1

4π

+∞∑
m=−∞

+∞∑
n=−∞

e−jk̄w0·ρ̄mn

· E1(S2
mnε

2) +
1

A

e−jk̄00·(ρ̄−ρ̄′)

|k̄00|
2 e−

|k̄00|
2

4ε2 − 1

A

1

|k̄00|
2 e
−jk̄00·(ρ̄−ρ̄′)

=
1

A

+∞∑
m=−∞
∀m,n−

+∞∑
n=−∞
{m=n=0}

e−jk̄mn·(ρ̄−ρ̄
′)

|k̄mn|
2 e−

|k̄mn|2

4ε2 +
1

4π

+∞∑
m=−∞

+∞∑
n=−∞

e−jk̄w0·ρ̄mn

· E1(S2
mnε

2) +
1

A

e−jk̄00·(ρ̄−ρ̄′)

|k̄00|
2

(
e−
|k̄00|

2

4ε2 − 1

)
︸ ︷︷ ︸

T

(2.136)

where the last term T contains the residual value when m = n = 0.

T =
1

A

e−jk̄00·(ρ̄−ρ̄′)

|k̄00|
2

(
e−
|k̄00|

2

4ε2 − 1

)
(2.137)

Despite there is no problem with T when |k̄w0| 6= 0, we have to use its limit when

|k̄w0| = 0.

lim
|k̄00|→0

T = lim
|k̄00|→0

{
1

A

e−jk̄00·(ρ̄−ρ̄′)

|k̄00|
2

(
e−
|k̄00|

2

4ε2 − 1

)}
=

1

A

1

|k̄00|
2

(
1− |k̄00|

2

4ε2
− 1

)

=
1

A

1

|k̄00|
2

(
−|k̄00|

2

4ε2

)
=
−1

4Aε2

(2.138)

• Extraction of two terms.

In this part, we extend this procedure for the extraction of one more term in order

to accelerate even more the convergence of the spectral 2-D Green’s function with

2-D periodicity. In this case, the series G̃e(ρ̄, ρ̄
′) that we have to efficiently sum is

G̃e(ρ̄, ρ̄
′) =

1

A

+∞∑
m=−∞
∀m,n−

+∞∑
n=−∞
{m=n=0}

(
1

|k̄mn|
2 +

k2

|k̄mn|
4

)
e−jk̄mn·(ρ̄−ρ̄

′) (2.139)
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The first term can be obtained by using the approximation as in the previous section

but when we are interested in extracting more than one term, we have to analyse

what happens when m → ∞ and n → ∞ in the spectral series and in the Ewald’s

components for higher orders. For this aim, the strategy here is to obtain the retained

terms by using the Taylor expansion in these proofs. Thus, the starting point of the

spectral development done previously in Subsection 2.1.1 is

G(ρ̄, ρ̄′) =
1

2π

+∞∑
m=−∞

+∞∑
n=−∞

e−jkx0mā1e−jky0nā2

∫ ∞
0

e−S
2
mns

2+ k2

4s2

s
ds (2.140)

and the starting points of the proofs done in Subsection 2.2.1 of the Ewald’s method

components are

Gspectral(ρ̄, ρ̄
′) =

1

2π

+∞∑
m=−∞

+∞∑
n=−∞

e−jkx0mā1e−jky0nā2

∫ ε

0

e−S
2
mns

2+ k2

4s2

s
ds (2.141a)

Gspatial(ρ̄, ρ̄
′) =

1

2π

+∞∑
m=−∞

+∞∑
n=−∞

e−jkx0mā1e−jky0nā2

∫ ∞
ε

e−S
2
mns

2+ k2

4s2

s
ds (2.141b)

All of these components start in the spatial domain, where m → ∞ and n → ∞
corresponds to k → 0. So we have to calculate the limit of these integrals when

k → 0. Using the following Taylor expansion when u→ 0

eu =

+∞∑
t=0

ut

t!
(2.142)

we can rewrite the exponential of k in the previous proofs as

e
k2

4s2 =
+∞∑
n=0

(
k2

4s2

)n
n!

= 1 +
k2

4s2
+ ... (2.143)

It can be noted that the first term of the expansion corresponds to the development

done when we extract only the first term because it corresponds to the first order

approximation of these components. The idea is to use the second order Taylor

expansion of e
k2

4s2 in the equations (2.140), (2.141a) and (2.141b). This will allow us

to use the second order expansion of Ewald’s method components to sum the second

order expansion of the spectral series.

Using this expansion in the equation (2.25) of the spectral development, f̃(kx, ky)

remains
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f̃(kx, ky) ≈
1

2
e−jk̄mn·(ρ̄−ρ̄

′)

∫ ∞
0

1

s3
e−
|k̄mn|2

4s2

(
1 +

k2

4s2

)
ds

=
1

2
e−jk̄mn·(ρ̄−ρ̄

′)

∫ ∞
0

1

s3
e−
|k̄mn|2

4s2 ds+
1

2
e−jk̄mn·(ρ̄−ρ̄

′)

∫ ∞
0

1

s3
e−
|k̄mn|2

4s2
k2

4s2
ds

=
1

2
e−jk̄mn·(ρ̄−ρ̄

′)

∫ ∞
0

1

s3
e−
|k̄mn|2

4s2 ds︸ ︷︷ ︸
S1

+
k2

2
e−jk̄mn·(ρ̄−ρ̄

′)

∫ ∞
0

1

4s5
e−
|k̄mn|2

4s2 ds︸ ︷︷ ︸
S2

(2.144)

In the knowledge that the previous integrals can be solved using [15] as

∫ ∞
0

e−
a
s2

s3
ds =

1

2a
(2.145a)

∫ ∞
0

e−
a
s2

s5
ds =

1

2a2
(2.145b)

where in this case a = |k̄mn|2
4 , the equation (2.144) remains as

f̃(kx, ky) ≈
1

2
e−jk̄mn·(ρ̄−ρ̄

′)

(
4

2|k̄mn|
2 +

16k2

8|k̄mn|
4

)
= e−jk̄mn·(ρ̄−ρ̄

′)

(
1

|k̄mn|
2 +

k2

|k̄mn|
4

)
(2.146)

Thus, the second order approximation of the spectral series G̃(ρ̄, ρ̄′) when m → ∞
and n→∞ is

G̃(ρ̄, ρ̄′)
∣∣m→+∞
n→+∞

=
1

A

+∞∑
m=−∞

+∞∑
n=−∞

(
1

|k̄mn|
2 +

k2

|k̄mn|
4

)
e−jk̄mn·(ρ̄−ρ̄

′) (2.147)

Using this, we can write the asymptotic spectral series G̃e(ρ̄, ρ̄
′) used in Kummer’s

transformation with the expansion of two terms as
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G̃e(ρ̄, ρ̄
′) =

1

A

+∞∑
m=−∞
∀m,n−

+∞∑
n=−∞
{m=n=0}

(
1

|k̄mn|
2 +

k2

|k̄mn|
4

)
e−jk̄mn·(ρ̄−ρ̄

′)

=
1

A

+∞∑
m=−∞

+∞∑
n=−∞

(
1

|k̄mn|
2 +

k2

|k̄mn|
4

)
e−jk̄mn·(ρ̄−ρ̄

′)

︸ ︷︷ ︸
S

− 1

A

(
1

|k̄00|
2 +

k2

|k̄00|
4

)

· e−jk̄00·(ρ̄−ρ̄′)

(2.148)

where S has been identified with the approximation of the spectral series when

m → +∞ and n → +∞. The idea is to sum this series using Ewald’s method

as equation (2.128). Through this proposed Kummer-Ewald transformation, the

asymptotic retained series G̃e(ρ̄, ρ̄
′) can be efficiently calculated by using the rapidly

convergent components of Ewald’s method.

The proof of spectral component of Ewald’s method has been reported in Subsection

2.2.1. In this development we have to use the expansion of the exponential that

depends on k when k → 0, as we have done in the spectral asymptotic expansion.

For this purpose, we start from (2.63) and we replace e
k2

4s2 by 1 + k2

4s2

f̃(kx, ky) ≈
1

2
e−jk̄mn·(ρ̄−ρ̄

′)

∫ ε

0

1

s3
e−
|k̄mn|2

4s2

(
1 +

k2

4s2

)
ds

=
1

2
e−jk̄mn·(ρ̄−ρ̄

′)

∫ ε

0

1

s3
e−
|k̄mn|2

4s2 ds+
1

2
e−jk̄mn·(ρ̄−ρ̄

′)

∫ ε

0

1

s3
e−
|k̄mn|2

4s2
k2

4s2
ds

=
1

2
e−jk̄mn·(ρ̄−ρ̄

′)

∫ ε

0

1

s3
e−
|k̄mn|2

4s2 ds+
k2

2
e−jk̄mn·(ρ̄−ρ̄

′)

∫ ε

0

1

4s5
e−
|k̄mn|2

4s2 ds

(2.149)

In the knowledge that the previous integrals can be solved using [15] as

∫ ε

0

e−
a
s2

s3
ds =

1

2a
e−

a
ε2 (2.150a)

∫ ε

0

e−
a
s2

s5
ds =

a+ ε2

2a2ε2
e−

a
ε2 (2.150b)

where in this case a = |k̄mn|2
4 , the equation (2.149) remains
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f̃(kx, ky) ≈
1

2
e−jk̄mn·(ρ̄−ρ̄

′)e−
|k̄mn|2

4ε2

[
4

2|k̄mn|
2 +

16k2

8|k̄mn|
4
ε2

(
|k̄mn|

2

4
+ ε2

)]

= e−jk̄mn·(ρ̄−ρ̄
′)e−

|k̄mn|2

4ε2


(

1 + k2

4ε2

)
|k̄mn|

2 +
k2

|k̄mn|
4

 (2.151)

Using this, we can write the asymptotic spectral component using the expansion of

two terms as

Gspectral(ρ̄, ρ̄
′)
∣∣m→+∞
n→+∞

=
1

A

+∞∑
m=−∞

+∞∑
n=−∞


(

1 + k2

4ε2

)
|k̄mn|

2 +
k2

|k̄mn|
4

 e−
|k̄mn|2

4ε2 e−jk̄mn·(ρ̄−ρ̄
′)

(2.152)

If we separate the term in m = n = 0, the expansion of Gspectral(ρ̄, ρ̄
′) is

Gspectral(ρ̄, ρ̄
′)
∣∣m→+∞
n→+∞

=
1

A

+∞∑
m=−∞

+∞∑
n=−∞


(

1 + k2

4ε2

)
|k̄mn|

2 +
k2

|k̄mn|
4

 e−
|k̄mn|2

4ε2 e−jk̄mn·(ρ̄−ρ̄
′)

=
1

A

+∞∑
m=−∞
∀m,n−

+∞∑
n=−∞
{m=n=0}


(

1 + k2

4ε2

)
|k̄mn|

2 +
k2

|k̄mn|
4

 e−
|k̄mn|2

4ε2 e−jk̄mn·(ρ̄−ρ̄
′)

+
1

A


(

1 + k2

4ε2

)
|k̄00|

2 +
k2

|k̄00|
4

 e−
|k̄00|

2

4ε2 e−jk̄00·(ρ̄−ρ̄′)

(2.153)

On the other hand, the spatial Ewald’s method component Gspatial(ρ̄, ρ̄
′) is obtained

in Subsection 2.2.1. In this component, the summation in q corresponds to the

expansion of e
k2

4s2 previously done in the proof of the spectral series and in the proof

of the spectral Ewald’s component. This expansion is originally carried out in the

development of the spatial Ewald’s method component so the second order expansion

of Gspatial(ρ̄, ρ̄
′) when k → 0 corresponds to the use of two terms in the q-summation.
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lim
k→0

Gspatial(ρ̄, ρ̄
′) = lim

k→0

 1

4π

∞∑
m=−∞

∞∑
n=−∞

e−jk̄w0·ρ̄mn
+∞∑
q=0

(
k

2ε

)2q 1

q!
Eq+1(S2

mnε
2)


=

1

4π

∞∑
m=−∞

∞∑
n=−∞

e−jk̄w0·ρ̄mn
[
E1(S2

mnε
2) +

(
k2

4ε2

)
E2(S2

mnε
2)

]
(2.154)

Once we have the second order expansion of the Ewald’s method components, we

can summarize how to sum the asymptotic retained part through Ewald’s method.

G̃e(ρ̄, ρ̄
′) = G̃(ρ̄, ρ̄′)

∣∣m→+∞
n→+∞

− 1

A

(
1

|k̄00|
2 +

k2

|k̄00|
4

)
e−jk̄00·(ρ̄−ρ̄′)

=
1

A

+∞∑
m=−∞
∀m,n−

+∞∑
n=−∞
{m=n=0}


(

1 + k2

4ε2

)
|k̄mn|

2 +
k2

|k̄mn|
4

 e−
|k̄mn|2

4ε2 e−jk̄mn·(ρ̄−ρ̄
′)

+
1

A


(

1 + k2

4ε2

)
|k̄00|

2 +
k2

|k̄00|
4

 e−
|k̄00|

2

4ε2 e−jk̄00·(ρ̄−ρ̄′) +
1

4π

+∞∑
m=−∞

+∞∑
n=−∞

e−jk̄w0·ρ̄mn

·
[
E1(S2

mnε
2) +

(
k2

4ε2

)
E2(S2

mnε
2)

]
− 1

A

(
1

|k̄00|
2 +

k2

|k̄00|
4

)
e−jk̄00·(ρ̄−ρ̄′)

(2.155)

Regrouping terms, G̃e(ρ̄, ρ̄
′) remains

G̃e(ρ̄, ρ̄
′) =

1

A

+∞∑
m=−∞
∀m,n−

+∞∑
n=−∞
{m=n=0}


(

1 + k2

4ε2

)
|k̄mn|

2 +
k2

|k̄mn|
4

 e−
|k̄mn|2

4ε2 e−jk̄mn·(ρ̄−ρ̄
′)

+
1

4π

+∞∑
m=−∞

+∞∑
n=−∞

e−jk̄w0·ρ̄mn
[
E1(S2

mnε
2) +

(
k2

4ε2

)
E2(S2

mnε
2)

]

+
1

A
e−jk̄00·(ρ̄−ρ̄′)


(

1 + k2

4ε2

)
|k̄00|

2 +
k2

|k̄00|
4

 e−
|k̄00|

2

4ε2 −

(
1

|k̄00|
2 +

k2

|k̄00|
4

) 
︸ ︷︷ ︸

T

(2.156)

where the last term T contains the residual value when m = n = 0.
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T =
1

A
e−jk̄00·(ρ̄−ρ̄′)


(

1 + k2

4ε2

)
|k̄00|

2 +
k2

|k̄00|
4

 e−
|k̄00|

2

4ε2 −

(
1

|k̄00|
2 +

k2

|k̄00|
4

) 
(2.157)

As said before, despite there is no problem with T when |k̄w0| 6= 0, we have to use

its limit when |k̄w0| = 0.

lim
|k̄00|→0

T = lim
|k̄00|→0

{
1

A
e−jk̄00·(ρ̄−ρ̄′)

[
(

1 + k2

4ε2

)
|k̄00|

2 +
k2

|k̄00|
4

 e−
|k̄00|

2

4ε2

−

(
1

|k̄00|
2 +

k2

|k̄00|
4

) ]}
= −8ε2 + k2

32Aε4
= − 1

4Aε2
− k2

32Aε4

(2.158)

• Extraction of Q terms.

The intention in this subsection is to generalize this acceleration technique to the

extraction of Q terms. The procedure is the same as the one followed previously.

In this general case, the series G̃e(ρ̄, ρ̄
′) that has to be efficiently summed is

G̃e(ρ̄, ρ̄
′) =

1

A

+∞∑
m=−∞
∀m,n−

+∞∑
n=−∞
{m=n=0}

(
Q∑
q=0

k2q

|k̄mn|
2(q+1)

)
e−jk̄mn·(ρ̄−ρ̄

′) (2.159)

As discussed earlier in this section, the idea is to identify this series with an ap-

proximation of the spectral one and then use Ewald’s transformation to sum the

asymptotic terms.

G̃e(ρ̄, ρ̄
′) =

1

A

+∞∑
m=−∞

+∞∑
n=−∞

(
Q∑
q=0

k2q

|k̄mn|
2(q+1)

)
e−jk̄mn·(ρ̄−ρ̄

′)

︸ ︷︷ ︸
SQ

− 1

A

(
Q∑
q=0

k2q

|k̄00|
2(q+1)

)
e−jk̄00·(ρ̄−ρ̄′)

(2.160)

For this purpose, we replace in (2.25) the exponential e
k2

4s2 by its Taylor expansion

reported in (2.143)
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f̃(kx, ky) =
1

2
e−jk̄mn·(ρ̄−ρ̄

′)

∫ ∞
0

1

s3
e−
|k̄mn|2

4s2

+∞∑
q=0

(
k

2s

)2q 1

q!

 ds

≈

(
Q∑
q=0

k2q

|k̄mn|
2(q+1)

)
e−jk̄mn·(ρ̄−ρ̄

′)

(2.161)

Using this, we can write the asymptotic spectral series with the expansion of Q terms

as

G̃(ρ̄, ρ̄′)
∣∣m→+∞
n→+∞

=
1

A

+∞∑
m=−∞

+∞∑
n=−∞

(
Q∑
q=0

k2q

|k̄mn|
2(q+1)

)
e−jk̄mn·(ρ̄−ρ̄

′) (2.162)

We can identify the series SQ in the equation (2.160) with the previous approximation

of the spectral series when k → 0. Thus, we can sum this series SQ using Ewald’s

method by carrying out the same expansion (k → 0) in the proofs of its components.

Through this proposed Kummer-Ewald transformation, the asymptotic retained part

can be efficiently calculated by using the rapidly convergent components of Ewald’s

method.

Replacing in the spectral Ewald’s method component the exponential e
k2

4s2 by its

Taylor expansion reported in (2.143), (2.63) remains

f̃(kx, ky) =
1

2
e−jk̄mn·(ρ̄−ρ̄

′)

∫ ε

0

1

s3
e−
|k̄mn|2

4s2

+∞∑
q=0

(
k

2s

)2q 1

q!

 ds

≈

(
Q∑
q=0

k2q
∑Q−q

t=0

(
k
2ε

)2t 1
t!

|k̄mn|
2(q+1)

)
e−jk̄mn·(ρ̄−ρ̄

′)e−
|k̄mn|2

4ε2

(2.163)

Using this, we can write the asymptotic spectral component using the expansion of

Q terms as

Gspectral(ρ̄, ρ̄
′)
∣∣m→+∞
n→+∞

=
1

A

+∞∑
m=−∞

+∞∑
n=−∞

(
Q∑
q=0

k2q
∑Q−q

t=0

(
k
2ε

)2t 1
t!

|k̄mn|
2(q+1)

)
e−jk̄mn·(ρ̄−ρ̄

′)e−
|k̄mn|2

4ε2

(2.164)
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If we separate the term m = n = 0, the expansion of Gspectral(ρ̄, ρ̄
′) is

Gspectral(ρ̄, ρ̄
′) =

1

A

+∞∑
m=−∞

+∞∑
n=−∞

(
Q∑
q=0

k2q
∑Q−q

t=0

(
k
2ε

)2t 1
t!

|k̄mn|
2(q+1)

)
e−jk̄mn·(ρ̄−ρ̄

′)e−
|k̄mn|2

4ε2

=
1

A

+∞∑
m=−∞
∀m,n−

+∞∑
n=−∞
{m=n=0}

(
Q∑
q=0

k2q
∑Q−q

t=0

(
k
2ε

)2t 1
t!

|k̄mn|
2(q+1)

)
e−jk̄mn·(ρ̄−ρ̄

′)e−
|k̄mn|2

4ε2

+
1

A

(
Q∑
q=0

k2q
∑Q−q

t=0

(
k
2ε

)2t 1
t!

|k̄00|
2(q+1)

)
e−jk̄00·(ρ̄−ρ̄′)e−

|k̄00|
2

4ε2

(2.165)

On the other hand, the spatial Ewald’s method component Gspatial(ρ̄, ρ̄
′) is obtained

in Subsection 2.2.1. As was pointed out, the summation in q corresponds to the

expansion of e
k2

4s2 . So, the q-th order expansion of Gspatial(ρ̄, ρ̄
′) when k → 0 corre-

sponds directly to the use of Q terms in the q-summation.

lim
k→0

Gspatial(ρ̄, ρ̄
′) =

1

4π

+∞∑
m=−∞

+∞∑
n=−∞

e−jk̄w0·ρ̄mn
Q∑
q=0

(
k

2ε

)2q 1

q!
Eq+1(S2

mnε
2) (2.166)

Once we have the q-th order expansion of the Ewald’s method components, we can

summarize how to sum the asymptotic retained part through Ewald’s method as

follows

G̃e(ρ̄, ρ̄
′) =

1

A

+∞∑
m=−∞
∀m,n−

+∞∑
n=−∞
{m=n=0}

(
Q∑
q=0

k2q
∑Q−q

t=0

(
k
2ε

)2t 1
t!

|k̄mn|
2(q+1)

)
e−jk̄mn·(ρ̄−ρ̄

′)e−
|k̄mn|2

4ε2

+
1

4π

+∞∑
m=−∞

+∞∑
n=−∞

e−jk̄w0·ρ̄mn
Q∑
q=0

(
k

2ε

)2q 1

q!
Eq+1(S2

mnε
2)

+
1

A

(
Q∑
q=0

k2q
∑Q−q

t=0

(
k
2ε

)2t 1
t!

|k̄00|
2(q+1)

)
e−jk̄00·(ρ̄−ρ̄′)e−

|k̄00|
2

4ε2 − 1

A

(
Q∑
q=0

k2q

|k̄00|
2(q+1)

)
e−jk̄00·(ρ̄−ρ̄′)

︸ ︷︷ ︸
TQ

(2.167)

where the last term TQ contains the residual value when m = n = 0.
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TQ =
1

A

(
Q∑
q=0

k2q
∑Q−q

t=0

(
k
2ε

)2t 1
t!

|k̄00|
2(q+1)

)
e−jk̄00·(ρ̄−ρ̄′)e−

|k̄00|
2

4ε2 − 1

A

(
Q∑
q=0

k2q

|k̄00|
2(q+1)

)

e−jk̄00·(ρ̄−ρ̄′) =
1

A
e−jk̄00·(ρ̄−ρ̄′)

[
Q∑
q=0

k2q

|k̄00|
2(q+1)

(
e−
|k̄00|

2

4ε2

Q−q∑
t=0

(
k

2ε

)2t 1

t!
− 1

)]
(2.168)

Despite there is no problem with TQ when |k̄w0| 6= 0, we have to use its limit when

|k̄w0| = 0.

lim
|k̄00|→0

TQ = lim
|k̄00|→0

{
1

A

(
Q∑
q=0

k2q

|k̄00|
2(q+1)

)
e−jk̄00·(ρ̄−ρ̄′)

[
e−
|k̄00|

2

4ε2

Q−q∑
t=0

(
k

2ε

)2t 1

t!
− 1

]}

=
−1

A

Q∑
q=0

k2q

(q + 1)! (2ε)2(q+1)

(2.169)

To summarize, in this section we have accelerated the spectral 2-D Green’s function with

2-D periodicity by using Kummer’s transformation and summing efficiently the asymptotic

retained part through Ewald’s method.

We have obtained the connection between the first, the second and the q-th order asymp-

totic terms in the spectral series and the summation of these with Ewald’s method. This

approach has been generalized to Q terms. These Q asymptotic retained terms can be

summed using the rapidly convergent components of Ewald’s method. By using this pro-

posed Kummer-Ewald transformation, we are able to choose the effort that we want to

invest in each technique through the parameter Q.

In this regard, the more Q terms we extract, the higher improvement we obtain through

Kummer’s transformation but more and more terms we have to sum by Ewald’s method.

Theoretically, there is not any problem with the use of more terms in Ewald’s method

because its components are rapidly convergent. The extreme case would be extract an

infinite number of terms, where we subtract the total spectral series to the spectral series

(null) and we sum the total Ewald’s component, that is, we would be evaluating the

Green’s function by Ewald’s method. On the contrary, if we do not extract any term, we

would be evaluating the Green’s function through its spectral form.
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The development done in this approach implies a significant improvement over the slow

convergence of the original series, as will be shown in Chapter 3.

2.3.2 Option B.1. Approach of
(

2πm
d1

, 2πn
d2

)
: Sum by Ewald’s Method.

The first alternative to sum the asymptotic retained terms obtained by the application

of this second approach of Kummer’s transformation is using the corresponding terms in

Ewald’s method. The strategy is similar to the one followed in the previous subsection

2.3.1 but using the other approach in the extraction of the asymptotic terms.

In this subsection, we report the connection between the first asymptotic term in the

spectral domain and the first asymptotic term in Ewald’s method. Then, we extract the

second term and we show how to sum it using Ewald’s method.

• Extraction of one term.

Here we suggest summing the static first term through Ewald’s method. In this case,

the series G̃e(ρ̄, ρ̄
′) that we have to efficiently sum is

G̃e(ρ̄, ρ̄
′) =

1

A

+∞∑
m=−∞
∀m,n−

+∞∑
n=−∞
{m=n=0}

 1(
2πm
d1

)2
+
(

2πn
d2

)2

 e−jk̄mn·(ρ̄−ρ̄
′)

(2.170)

The idea is to identify this series with an approximation of the spectral one and then

use Ewald’s transformation to sum the asymptotic term. For this purpose, we have

to remember that the spectral Green’s function is

G̃(ρ̄, ρ̄′) =
1

A

+∞∑
m=−∞

+∞∑
n=−∞

e−jk̄mn·(ρ̄−ρ̄
′)

|k̄mn|
2 − k2

(2.171)

where we name

k̄xy =
2πm

d1
x̂+

2πn

d2
ŷ (2.172)

and then

|k̄mn|2 = |k̄w0 + k̄xy|2 =

(
kx0 +

2πm

d1

)2

+

(
ky0 +

2πn

d2

)2

(2.173)
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We want to obtain the approximation of the previous series whenm→∞ and n→∞
using this second approach. It is important to note that in this second approach we

are assuming that 1

|k̄mn|2−k2
is approximated through

(
2πm
d1

)2
+
(

2πn
d2

)2
, that is

1

|k̄mn|
2 − k2

∣∣∣∣∣m→+∞
n→+∞

=
1(

�
�kx0 + 2πm

d1

)2
+
(
�
�ky0 + 2πn

d2

)2
−��k2

=
1(

2πm
d1

)2
+
(

2πn
d2

)2

(2.174)

Therefore, we are assuming not only is
(
kx0 + 2πm

d1

)2
+
(
ky0 + 2πn

d2

)2
more important

than k (like the other option) but also
(

2πm
d1

)2
+
(

2πn
d2

)2
is more important than kx0

and ky0. This leads to believe that both k, kx0 and ky0 tend to 0. For this reason, in

m = n = 0, where we only have |k̄w0|, we will use the static limit of this term when

|k̄w0| → 0. Thus, G̃e(ρ̄, ρ̄
′) can be written as

G̃e(ρ̄, ρ̄
′) =

e−jk̄w0·(ρ̄−ρ̄′)

A

+∞∑
m=−∞
∀m,n−

+∞∑
n=−∞
{m=n=0}

 1(
2πm
d1

)2
+
(

2πn
d2

)2

 e−jk̄xy ·(ρ̄−ρ̄
′)

= e−jk̄w0·(ρ̄−ρ̄′)

[
1

A

+∞∑
m=−∞

+∞∑
n=−∞

 1(
2πm
d1

)2
+
(

2πn
d2

)2

 e−jk̄mn·(ρ̄−ρ̄
′)

︸ ︷︷ ︸
S

− 1

A
lim
|k̄00|→0

(
1

|k̄00|
2 e
−jk̄00·(ρ̄−ρ̄′)

)]
(2.175)

and the approximation of the spectral Green’s function is

G̃(ρ̄, ρ̄′)
∣∣∣m→+∞
n→+∞

=
1

A

+∞∑
m=−∞

+∞∑
n=−∞

e−jk̄mn·(ρ̄−ρ̄
′)

|k̄mn|
2 − k2

∣∣∣∣∣m→+∞
n→+∞

=
1

A

+∞∑
m=−∞

+∞∑
n=−∞

e−jk̄xy ·(ρ̄−ρ̄
′)(

2πm
d1

)2
+
(

2πn
d2

)2

︸ ︷︷ ︸
S

(2.176)
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As seen, we can identify the series S as this approximation and therefore we can

write G̃e(ρ̄, ρ̄
′) as a function of the approximation of the spectral Green’s function

when m→∞ and n→∞ .

G̃e(ρ̄, ρ̄
′) = e−jk̄w0(ρ̄−ρ̄′)

[
S − 1

A
lim
|k̄00|→0

(
1

|k̄00|
2 e
−jk̄00·(ρ̄−ρ̄′)

)]
(2.177)

where the idea is to sum S rapidly by using the approximation of the Ewald’s method

components when m→∞ and n→∞.

S = G̃(ρ̄, ρ̄′)
∣∣∣m→+∞
n→+∞

= Gspectral(ρ̄, ρ̄
′)
∣∣∣m→+∞
n→+∞

+Gspatial(ρ̄, ρ̄
′)
∣∣∣m→+∞
n→+∞

(2.178)

Remembering that the spectral Ewald’s method component Gspectral(ρ̄, ρ̄
′) is ob-

tained in (2.66) as

Gspectral(ρ̄, ρ̄
′) =

1

A

+∞∑
m=−∞

+∞∑
n=−∞

e−jk̄mn·(ρ̄−ρ̄
′)

|k̄mn|
2 − k2

e−
|k̄mn|2−k2

4ε2 (2.179)

the approximation of Gspectral(ρ̄, ρ̄
′) is given by

Gspectral(ρ̄, ρ̄
′)
∣∣∣m→+∞
n→+∞

=

(
1

A

+∞∑
m=−∞

+∞∑
n=−∞

e−jk̄mn·(ρ̄−ρ̄
′)

|k̄mn|
2 − k2

e−
|k̄mn|2−k2

4ε2

)∣∣∣∣∣m→+∞
n→+∞

=
1

A

+∞∑
m=−∞

+∞∑
n=−∞

e−jk̄xy ·(ρ̄−ρ̄
′)

 1(
2πm
d1

)2
+
(

2πn
d2

)2

 e−
|k̄xy |2

4ε2

(2.180)

where we sum separately the term m = n = 0 because we are not interested in

summing it directly
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1

A

+∞∑
m=−∞

+∞∑
n=−∞

e−jk̄xy ·(ρ̄−ρ̄
′) e−

|k̄xy |2

4ε2(
2πm
d1

)2
+
(

2πn
d2

)2 =
1

A

+∞∑
m=−∞
∀m,n−

+∞∑
n=−∞
{m=n=0}

e−jk̄xy ·(ρ̄−ρ̄
′) e−

|k̄xy |2

4ε2(
2πm
d1

)2
+
(

2πn
d2

)2

+
1

A
lim
|k̄00|→0

(
e−jk̄00·(ρ̄−ρ̄′)

|k̄00|
2 e−

|k̄00|
2

4ε2

)
(2.181)

As said before, in m = n = 0 we have to calculate the limit of |k̄w0| because we are

using the approximation |k̄mn|2 ≈
(

2πm
d1

)2
+
(

2πn
d2

)2
ignoring not only k but also kx0

and ky0.

On the other hand, recalling that the spatial Ewald’s method componentGspatial(ρ̄, ρ̄
′)

is given in (2.79) as

Gspatial(ρ̄, ρ̄
′) =

1

4π

+∞∑
m=−∞

+∞∑
n=−∞

e−jk̄w0·ρ̄mn
+∞∑
q=0

(
k

2ε

)2q 1

q!
Eq+1(S2

mnε
2) (2.182)

the approximation when m → ∞ and n → ∞ in the spectral domain corresponds

to k → 0 in the spatial domain. Therefore, the limit of Gspatial(ρ̄, ρ̄
′) when k → 0 is

given by

lim
k→0
k̄w0→0

Gspatial(ρ̄, ρ̄
′) = lim

k→0
k̄w0→0

(
1

4π

+∞∑
m=−∞

+∞∑
n=−∞

e−jk̄w0·ρ̄mn
+∞∑
q=0

(
k

2ε

)2q 1

q!
Eq+1(S2

mnε
2)

)

=
1

4π

+∞∑
m=−∞

+∞∑
n=−∞

E1(S2
mnε

2)

(2.183)

The found limits of Ewald’s method components can be used to sum the series S as
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S =
1

A

+∞∑
m=−∞

+∞∑
n=−∞

e−jk̄xy ·(ρ̄−ρ̄
′)(

2πm
d1

)2
+
(

2πn
d2

)2 =
1

A

+∞∑
m=−∞
∀m,n−

+∞∑
n=−∞
{m=n=0}

e−jk̄xy ·(ρ̄−ρ̄
′)

e−
|k̄xy |2

4ε2(
2πm
d1

)2
+
(

2πn
d2

)2 +
1

A
lim
|k̄00|→0

(
e−jk̄00·(ρ̄−ρ̄′)

|k̄00|
2 e−

|k̄00|
2

4ε2

)
+

1

4π

+∞∑
m=−∞

+∞∑
n=−∞

E1(S2
mnε

2)

(2.184)

Using this transformation, we can rewrite G̃e(ρ̄, ρ̄
′) as follows

G̃e(ρ̄, ρ̄
′) = e−jk̄w0·(ρ̄−ρ̄′)

[
S − lim

|k̄00|→0

(
1

A

1

|k̄00|
2 e
−jk̄00·(ρ̄−ρ̄′)

)]

= e−jk̄w0·(ρ̄−ρ̄′)

[
1

A

+∞∑
m=−∞
∀m,n−

+∞∑
n=−∞
{m=n=0}

e−jk̄xy ·(ρ̄−ρ̄
′) e−

|k̄xy |2

4ε2(
2πm
d1

)2
+
(

2πn
d2

)2

+
1

A
lim
|k̄00|→0

(
e−jk̄00·(ρ̄−ρ̄′)

|k̄00|
2 e−

|k̄00|
2

4ε2

)
+

1

4π

+∞∑
m=−∞

+∞∑
n=−∞

E1(S2
mnε

2)

− 1

A
lim
|k̄00|→0

(
1

|k̄00|
2 e
−jk̄00·(ρ̄−ρ̄′)

)]
(2.185)

If we regroup terms and sum together the values of the series in m = n = 0, G̃e(ρ̄, ρ̄
′)

remains

G̃e(ρ̄, ρ̄
′) = e−jk̄w0·(ρ̄−ρ̄′)

[
1

A

+∞∑
m=−∞
∀m,n−

+∞∑
n=−∞
{m=n=0}

e−jk̄xy ·(ρ̄−ρ̄
′) e−

|k̄xy |2

4ε2(
2πm
d1

)2
+
(

2πn
d2

)2

+
1

4π

+∞∑
m=−∞

+∞∑
n=−∞

E1(S2
mnε

2) +
1

A
lim
|k̄00|→0

(
e−jk̄00·(ρ̄−ρ̄′)

|k̄00|
2

(
e−
|k̄00|

2

4ε2 − 1

))
︸ ︷︷ ︸

T

] (2.186)

where the last term T contains the residual value when m = n = 0. As discussed

before, in this approach we have to calculate and use the limit when |k̄w0| → 0 in all

cases.
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T =
1

A
lim
|k̄00|→0

(
e−jk̄00·(ρ̄−ρ̄′)

|k̄00|
2

(
e−
|k̄00|

2

4ε2 − 1

))
=

1

A

1

|k̄00|
2

(
1− |k̄00|

2

4ε2
− 1

)

=
1

A

1

|k̄00|
2

(
−|k̄00|

2

4ε2

)
=
−1

4Aε2

(2.187)

Introducing (2.187) in (2.186), G̃e(ρ̄, ρ̄
′) can be finally written as

G̃e(ρ̄, ρ̄
′) = e−jk̄w0·(ρ̄−ρ̄′)

[
1

A

+∞∑
m=−∞
∀m,n−

+∞∑
n=−∞
{m=n=0}

e−jk̄xy ·(ρ̄−ρ̄
′) e−

|k̄xy |2

4ε2(
2πm
d1

)2
+
(

2πn
d2

)2

+
1

4π

+∞∑
m=−∞

+∞∑
n=−∞

E1(S2
mnε

2)− 1

4Aε2

] (2.188)

• Extraction of two terms.

The first term can be obtained by using the previous first order approximation but

when we are interested in extracting more than one term, we have to analyse what

happens in higher orders when m→∞ and n→∞ in the spectral series and in the

Ewald’s components. For this aim, the strategy here is to obtain the retained terms

by using the Taylor expansion not only for e
k2

4s2 but also for e−jkx0md1 and e−jky0nd2 .

The starting point of the spectral development done previously in Subsection 2.1.1

is

G(ρ̄, ρ̄′) =
1

2π

+∞∑
m=−∞

+∞∑
n=−∞

e−jk̄w0·ρ̄mn
∫ ∞

0

e−S
2
mns

2+ k2

4s2

s
ds (2.189)

and the starting points of the proofs done in Subsection 2.2.1 of the Ewald’s com-

ponents are

Gspectral(ρ̄, ρ̄
′) =

1

2π

+∞∑
m=−∞

+∞∑
n=−∞

e−jk̄w0·ρ̄mn
∫ ε

0

e−S
2
mns

2+ k2

4s2

s
ds (2.190a)

Gspatial(ρ̄, ρ̄
′) =

1

2π

+∞∑
m=−∞

+∞∑
n=−∞

e−jk̄w0·ρ̄mn
∫ ∞
ε

e−S
2
mns

2+ k2

4s2

s
ds (2.190b)
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All of these components start in the spatial domain, where m → ∞ and n → ∞ is

k → 0. In addition, in this second approach we have to force k̄w0 to be zero. Thus,

we have to calculate the limit of these integrals when k → 0 and k̄w0 → 0. Using the

Taylor expansion when u → 0 we can rewrite the exponential of k in the previous

proofs as in the equation (2.143) and the exponential of k̄w0 as

e−jk̄w0·ρ̄mn =
+∞∑
n=0

(
−jk̄w0 · ρ̄mn

)n
n!

= 1− jk̄w0 · ρ̄mn +
(−jk̄w0 · ρ̄mn)2

2
+ ...

= 1− jkx0md1 − jky0nd2 −
(kx0md1)2

2
− (ky0nd2)2

2
+ ...

(2.191)

It can be noted that the first term of these expansions corresponds to the devel-

opment done previously when we extract only the first term. The idea is to use

the second order Taylor expansions of e
k2

4s2 and e−jk̄w0·ρ̄mn in the equations (2.189),

(2.190a) and (2.190b). This will allow us to use the second order expansion of Ewald’s

method components to sum the second order expansion of the spectral series.

As introduction to this procedure, we have the product of three Taylor expansions.

To extract what we have called the second term, we use the following combination

of terms summing together: The second order expansion of the k-integral with the

first order expansion of the k̄w0-integral and the second order expansion of the k̄w0-

integral with the first order expansion of the k-integral.

Firstly, we start with the second order expansion of the k-integral with the first order

expansion of the k̄w0-integral. For this purpose, we assume the first order expansion

in the k̄w0-integral and we use the expansion given in (2.143) in the equation (2.15)

of the spectral development.

Thus, we start from the equation (2.15) and we assume e−jkx0ξ1 ≈ 1 and e−jky0ξ2 ≈ 1

f̃(kx, ky) ≈
1

2π

∫ ∞
−∞

∫ ∞
−∞

dξ1dξ2 ×
∫ ∞

0

e−[(x−x′−ξ1)2+(y−y′−nξ2)2]s2+ k2

4s2

s
(((

((((
(

e−jkx0ξ1e−jky0ξ2

· e−jkxξ1e−jkyξ2 ds
(2.192)

Now, we have to replace kx = 2π
A (ma2y − na1y) and ky = 2π

A (−ma2x + na1x). Fol-

lowing the same procedure as Subsection 2.1.1, if we resolve the ξ-integrals and if

we interchange the order of integration, f̃(kx, ky) remains
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f̃(kx, ky) ≈
1

2π

∫ ∞
0

√
π

s2
e−jkx(x−x′)e−

kx
2

4s2

√
π

s2
e−jky(y−y′)e−

ky
2

4s2 e
k2

4s2
1

s
ds (2.193)

Using the definition of k̄xy

k̄xy =
2π

A
[m(ā2 × ẑ) + n(ẑ × ā1)] =

2π

A
(ma2y − na1y)x̂+

2π

A
(−ma2x + na1x)ŷ

= kxx̂+ kyŷ

(2.194)

the exponentials can be merged into

e−jkx(x−x′)e−jky(y−y′) = e−j[kx(x−x′)+ky(y−y′)] = e−jk̄xy ·(ρ̄−ρ̄
′) (2.195a)

e−
kx

2

4s2 e−
ky

2

4s2 = e−
(kx

2+ky
2)

4s2 = e−
|k̄xy |2

4s2 (2.195b)

and f̃(kx, ky) can be rewritten using the Taylor expansion of the k-exponential as

f̃(kx, ky) ≈
1

2
e−jk̄xy ·(ρ̄−ρ̄

′)

∫ ∞
0

1

s3

(
1 +

k2

4s2

)
e−
|k̄xy |2

4s2 ds (2.196)

In the knowledge that the previous integrals can be solved using the relations given

in (2.145a) and (2.145b) where in this case a =
|k̄xy |2

4 , the equation (2.196) remains

f̃(kx, ky) ≈
1

2
e−jk̄xy ·(ρ̄−ρ̄

′)

(
4

2|k̄xy|
2 +

16k2

8|k̄xy|
4

)
= e−jk̄xy ·(ρ̄−ρ̄

′)

(
1

|k̄xy|
2 +

k2

|k̄xy|
4

)
(2.197)

Now, we continue with the second order expansion of the k̄w0-integral with the first

order expansion of the k-integral. For this purpose, we start from (2.15) and we

assume the first order expansion in the k-integral and we use the expansion given

in (2.191) in the equation (2.15) of the spectral development. That is, we write

e
k2

4s2 ≈ 1, e−jkx0ξ1 ≈ 1 − jkx0ξ1 − (kx0ξ1)2/2 and e−jky0ξ2 ≈ 1 in the following

equation
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f̃(kx, ky) ≈
1

2π

∫ ∞
−∞

∫ ∞
−∞

dξ1dξ2 ×
∫ ∞

0

e−[(x−x′−ξ1)2+(y−y′−nξ2)2]s2�
��

e
k2

4s2

s

×
[
1− jkx0ξ1 − (kx0ξ1)2/2

]
���

�
e−jky0ξ2e−jkxξ1e−jkyξ2 ds

(2.198)

where we have to replace kx = 2π
A (ma2y − na1y) and ky = 2π

A (−ma2x + na1x).

f̃(kx, ky) ≈
1

2π

∫ ∞
−∞

∫ ∞
−∞

dξ1dξ2 ×
∫ ∞

0
ds

1

s
e−(x−x′−ξ1)2s2−jkxξ1e−(y−y′−ξ2)2s2−jkyξ2

×
[
1− jkx0ξ1 − (kx0ξ1)2/2

]
=

1

2π

∫ ∞
0

ds
1

s

∫ ∞
−∞

e−(x−x′−ξ1)2s2−jkxξ1

×
[
1− jkx0ξ1 −

(kx0ξ1)2

2

]
dξ1 ×

∫ ∞
−∞

e−(y−y′−ξ2)2s2−jkyξ2dξ2

(2.199)

As before, we try to find the evaluation in a closed form of the ξ-integrals. For this

purpose, we define I1 and I2 as the integrals of (2.17) that depend on ξ1 and ξ2,

respectively.

The integral I2 can be solved as previously

I2 =

∫ ∞
−∞

e−(y−y′−ξ2)2s2−jkyξ2dξ2 =

√
π

s2
e−jky(y−y′)e−

ky
2

4s2 (2.200)

On the other hand, the integral I1 can be divided into three integrals

I1 =

∫ +∞

−∞

[
1− jkx0ξ1 − (kx0ξ1)2/2

]
e−(x−x′)2s2+2(x−x′)ξ1s2−ξ12s2−jkxξ1 dξ1

=

∫ +∞

−∞
e−(x−x′)2s2+2(x−x′)ξ1s2−ξ12s2−jkxξ1 dξ1

+

∫ +∞

−∞
(−jkx0ξ1)e−(x−x′)2s2+2(x−x′)ξ1s2−ξ12s2−jkxξ1 dξ1

+

∫ +∞

−∞

[
−(kx0ξ1)2

2

]
e−(x−x′)2s2+2(x−x′)ξ1s2−ξ12s2−jkxξ1 dξ1

(2.201)

The first has already been computed previously so we only have to take into account

the second and the third one. In the knowledge that the previous integral can be

solved using [15] as
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∫ +∞

−∞
ξ e−aξ

2+bξdξ =
b
√
π

2a3/2
e
b2

4a (2.202)

∫ +∞

−∞
ξ2 e−aξ

2+bξdξ =
(2a+ b2)

√
π

4a5/2
e
b2

4a (2.203)

where a = s2 and b = 2(x− x′)s2 − jkx have been identified, the integral I1 can be

written as

I1 =

∫ +∞

−∞

[
��−1− jkx0ξ1 − (kx0ξ1)2

]
e−(x−x′)2s2+2(x−x′)ξ1s2−ξ12s2−jkxξ1 dξ1

= −jkx0

[
(x− x′)

√
π

s
− jkx

√
π

2s3

]
e−

k2
x

4s2 e−jkx(x−x′)

− k2
x0

2

[√
π

2s3
+

(x− x′)2√π
s

− jkx(x− x′)
√
π

s3
− k2

x

√
π

4s5

]
e−

k2
x

4s2 e−jkx(x−x′)

(2.204)

The expression of I1 and I2 given in (2.204) and (2.200) respectivly lead to

f̃(kx, ky) ≈
−jkx0 e

−jk̄xy ·(ρ̄−ρ̄′)

2�π

∫ ∞
0

ds
1

s�
�
√
π

[
(x− x′)

s
− jkx

2s3

]
�
�
√
π

s
e−
|k̄xy |2

4s2

+
−k2

x0
2 e−jk̄xy ·(ρ̄−ρ̄

′)

2�π

∫ ∞
0

ds
1

s�
�
√
π

[
1

2s3
+

(x− x′)2

s
− jkx(x− x′)

s3
− k2

x

4s5

]
�
�
√
π

s
e−
|k̄xy |2

4s2

(2.205)

Solving these integrals using the relations given in (2.145a) and (2.145b), f̃(kx, ky)

remains

f̃(kx, ky) ≈ e−jk̄xy ·(ρ̄−ρ̄
′)

[
−jkx0(x− x′)
|k̄xy|2

− 2kx0kx
|k̄xy|4

+
−k2

x0

|k̄xy|4
− (x− x′)2k2

x0/2

|k̄xy|2

+
2jk2

x0kx(x− x′)
|k̄xy|4

+
4k2

x0k
2
x

|k̄xy|6

]
(2.206)

where kx = 2π
A (ma2y − na1y) and ky = 2π

A (−ma2x + na1x).

The last group of terms that we have to obtain results from doing e
k2

4s2 ≈ 1,

e−jkx0ξ1 ≈ 1 and e−jky0ξ2 ≈ 1− jky0ξ2 − (ky0ξ2)2/2 in the following equation
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f̃(kx, ky) ≈
1

2π

∫ ∞
−∞

∫ ∞
−∞

dξ1dξ2 ×
∫ ∞

0

e−[(x−x′−ξ1)2+(y−y′−nξ2)2]s2�
��

e
k2

4s2

s

×
[
1− jky0ξ2 − (ky0ξ2)2/2

]
���

�
e−jkx0ξ1e−jkxξ1e−jkyξ2 ds

(2.207)

This can be solved in a similar way to the previous development. Thus, we can

conclude that in this case f̃(kx, ky) is

f̃(kx, ky) ≈ e−jk̄xy ·(ρ̄−ρ̄
′)

[
−jky0(y − y′)
|k̄xy|2

− 2ky0ky

|k̄xy|4
+
−k2

y0

|k̄xy|4
−

(y − y′)2k2
y0/2

|k̄xy|2

+
2jk2

y0ky(y − y′)
|k̄xy|4

+
4k2

y0k
2
y

|k̄xy|6

]
(2.208)

Now, we can use together the three groups of terms and write the asymptotic term

G̃mn as

G̃mn =
1− jkx0(x− x′)− jky0(y − y′)− (x− x′)2k2

x0/2− (y − y′)2k2
y0/2

|k̄xy|2

+
k2 − 2kx0kx − 2ky0ky − k2

x0 − k2
y0 + 2jk2

x0kx(x− x′) + 2jk2
y0ky(y − y′)

|k̄xy|4

+
4k2

x0k
2
x + 4k2

y0k
2
y

|k̄xy|6

(2.209)

It should be pointed out that the complex terms correspond to the expansion of

the complex exponential that originally is e−jk̄w0·(ρ̄−ρ̄′). Thus, the application of

Kummer’s transformation in this case is

G̃k(ρ̄, ρ̄
′) =

1

A

+∞∑
m=−∞
∀m,n−

+∞∑
n=−∞
{m=n=0}

(
e−jk̄w0·(ρ̄−ρ̄′)

|k̄mn|
2 − k2

− G̃mn

)
e−jk̄xy ·(ρ̄−ρ̄

′) + G̃00

+
1

A

+∞∑
m=−∞
∀m,n−

+∞∑
n=−∞
{m=n=0}

G̃mn e
−jk̄xy ·(ρ̄−ρ̄′)

(2.210)
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where G̃00 is the term in m = n = 0 and G̃e(ρ̄, ρ̄
′) is the remaining part that has to

be efficiently summed.

G̃e(ρ̄, ρ̄
′) =

1

A

+∞∑
m=−∞
∀m,n−

+∞∑
n=−∞
{m=n=0}

G̃mn e
−jk̄xy(ρ̄−ρ̄′) =

1

A

+∞∑
m=−∞

+∞∑
n=−∞

G̃mn e
−jk̄xy ·(ρ̄−ρ̄′) − G̃e0

= G̃(ρ̄, ρ̄′)
∣∣∣m→+∞
n→+∞

− G̃e0

(2.211)

G̃e0 is the asymptotic part in m = n = 0 and the other part can be seen as the

approximation of the spectral series obtained before. The idea is to sum this series

using Ewald’s method. Through this proposed Kummer-Ewald transformation, the

asymptotic retained part G̃e(ρ̄, ρ̄
′) can be efficiently calculated using the rapidly

convergent components of Ewald’s method.

Firstly, we start with the spectral Ewald’s component. The proof of spectral compo-

nent of Ewald’s method has been reported in Subsection 2.2.1. In this development

we have to use the same expansions done in the previous one for the spectral series.

We first carry out the second order expansion of the k-integral with the first order

expansion of the k̄w0-integral. For this purpose, we assume the first order expansion

in the k̄w0-integral and we use the expansion given in (2.143) in the equation (2.60)

of the spectral development.

Thus, we start from the equation (2.60) and we assume e−jkx0ξ1 ≈ 1 and e−jky0ξ2 ≈ 1

f̃(kx, ky) =
1

2π

∫ ε

0

√
π

s2
e−jkx(x−x′)e−

kx
2

4s2

√
π

s2
e−jky(y−y′)e−

ky
2

4s2 e
k2

4s2
1

s
ds (2.212)

where using the definition of k̄xy and the second order expansion of the k-exponential,

f̃(kx, ky) remains

f̃(kx, ky) ≈
1

2
e−jk̄xy ·(ρ̄−ρ̄

′)

∫ ε

0

1

s3

(
1 +

k2

4s2

)
e−
|k̄xy |2

4s2 ds (2.213)

In the knowledge that the previous integrals can be solved using [15] using the

relations given in (2.150a) and (2.150b) where in this case a =
|k̄xy |2

4 , the equation

(2.213) remains
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f̃(kx, ky) ≈ e−jk̄xy ·(ρ̄−ρ̄
′)e−

|k̄xy |2

4ε2

[
1

|k̄xy|
2 +

k2

|k̄xy|4
+

k2

4ε2|k̄xy|2

]
(2.214)

Now, we continue with the second order expansion of the k̄w0-integral with the first

order expansion of the k-integral. For this purpose, we start from (2.55) and we

assume the first order expansion in the k-integral and we use the expansion given

in (2.191) in the equation (2.55) of the spectral Ewald’s development. That is, we

assume e
k2

4s2 ≈ 1, e−jkx0ξ1 ≈ 1− jkx0ξ1− (kx0ξ1)2/2 and e−jky0ξ2 ≈ 1 in the following

equation

f̃(kx, ky) ≈
1

2π

∫ ∞
−∞

∫ ∞
−∞

dξ1dξ2 ×
∫ ε

0

e−[(x−x′−ξ1)2+(y−y′−nξ2)2]s2�
��

e
k2

4s2

s

×
[
1− jkx0ξ1 − (kx0ξ1)2/2

]
���

�
e−jky0ξ2e−jkxξ1e−jkyξ2 ds

(2.215)

f̃(kx, ky) =
1

2π

∫ ∞
−∞

∫ ∞
−∞

dξ1dξ2 ×
∫ ε

0
ds

1

s
e−(x−x′−ξ1)2s2−jkxξ1e−(y−y′−ξ2)2s2−jkyξ2

×
[
1− jkx0ξ1 − (kx0ξ1)2/2

]
=

1

2π

∫ ε

0
ds

1

s

∫ ∞
−∞

e−(x−x′−ξ1)2s2−jkxξ1
[
1− jkx0ξ1 −

(kx0ξ1)2

2

]
dξ1

×
∫ ∞
−∞

e−(y−y′−ξ2)2s2−jkyξ2dξ2

(2.216)

Proceeding as previously, we can solve the ε-integrals as (2.204) and (2.200). This

leads to

f̃(kx, ky) ≈
−jk̄x0 e

−jk̄xy ·(ρ̄−ρ̄′)

2�π

∫ ε

0
ds

1

s�
�
√
π

[
(x− x′)

s
− jkx

2s3

]
�
�
√
π

s
e−
|k̄xy |2

4s2

+
− k̄2

x0
2 e−jkxy ·(ρ̄−ρ̄

′)

2�π

∫ ε

0
ds

1

s�
�
√
π

[
1

2s3
+

(x− x′)2

s
− jkx(x− x′)

s3
− k2

x

4s5

]
�
�
√
π

s
e−
|k̄xy |2

4s2

(2.217)

Solving these integral by using the relation given in (2.150a) and (2.150b), f̃(kx, ky)

remains
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f̃(kx, ky) ≈ e−jk̄xy ·(ρ̄−ρ̄
′)e−

|k̄xy |2

4ε2

[
−jkx0(x− x′)
|k̄xy|2

− 2kx0kx
|k̄xy|4

− 2kx0kx
4ε2|k̄xy|2

− k2
x0

|k̄xy|4

− k2
x0

4ε2|k̄xy|2
− (x− x′)2k2

x0/2

|k̄xy|2
+

2jk2
x0kx(x− x′)
|k̄xy|4

+
2jk2

x0kx(x− x′)
4ε2|k̄xy|2

+
4k2

x0k
2
x

|k̄xy|6
+

4k2
x0k

2
x

4ε2|k̄xy|4
+

4k2
x0k

2
x

32ε4|k̄xy|2

]
(2.218)

where kx = 2π
A (ma2y − na1y) and ky = 2π

A (−ma2x + na1x).

The last group of terms that we have to obtain results from doing e
k2

4s2 ≈ 1,

e−jkx0ξ1 ≈ 1 and e−jky0ξ2 ≈ 1− jky0ξ2 − (ky0ξ2)2/2 in the following equation

f̃(kx, ky) ≈
1

2π

∫ ∞
−∞

∫ ∞
−∞

dξ1dξ2 ×
∫ ε

0

e−[(x−x′−ξ1)2+(y−y′−nξ2)2]s2�
��

e
k2

4s2

s

×
[
1− jky0ξ2 − (ky0ξ2)2/2

]
���

�
e−jkx0ξ1e−jkxξ1e−jkyξ2 ds

(2.219)

This can be solved in a similar way to the previous development. Thus, we can

conclude that in this case f̃(kx, ky) is

f̃(kx, ky) ≈ e−jk̄xy ·(ρ̄−ρ̄
′)e−

|k̄xy |2

4ε2

[
−jky0(y − y′)
|k̄xy|2

− 2ky0ky

|k̄xy|4
− 2ky0ky

4ε2|k̄xy|2
−

k2
y0

|k̄xy|4

−
k2
y0

4ε2|k̄xy|2
−

(y − y′)2k2
y0/2

|k̄xy|2
+

2jk2
y0ky(y − y′)
|k̄xy|4

+
2jk2

y0ky(y − y′)
4ε2|k̄xy|2

+
4k2

y0k
2
y

|k̄xy|6
+

4k2
y0k

2
y

4ε2|k̄xy|4
+

4k2
y0k

2
y

32ε4|k̄xy|2

]
(2.220)
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Now, we can use together the three groups of terms and write the asymptotic spectral

Ewald’s method component Gspectral as

Gspectral
∣∣m→+∞
n→+∞

=
1

A

+∞∑
m=−∞

+∞∑
n=−∞

e−jk̄xy ·(ρ̄−ρ̄
′)e−

|k̄xy |2

4ε2

×

[
1− jkx0(x− x′)− jky0(y − y′)− (x− x′)2k2

x0/2− (y − y′)2k2
y0/2

|k̄xy|2

+
k2 − 2kx0kx − 2ky0ky − k2

x0 − k2
y0 + 2jk2

x0kx(x− x′) + 2jk2
y0ky(y − y′)

|k̄xy|4

+
k2 − 2kx0kx − 2ky0ky − k2

x0 − k2
y0 + 2jk2

x0kx(x− x′) + 2jk2
y0ky(y − y′)

4ε2|k̄xy|2

+
4k2

x0k
2
x + 4k2

y0k
2
y

|k̄xy|6
+

4k2
x0k

2
x + 4k2

y0k
2
y

4ε2|k̄xy|4
+

4k2
x0k

2
x + 4k2

y0k
2
y

32ε4|k̄xy|2

]

(2.221)

If we sum apart the term Gspectral−0, which correspond to the value in m = n = 0,

Gspectral remains

Gspectral
∣∣m→+∞
n→+∞

=
1

A

+∞∑
m=−∞
∀m,n−

+∞∑
n=−∞
{m=n=0}

e−jk̄xy ·(ρ̄−ρ̄
′)e−

|k̄xy |2

4ε2

×

[
1− jkx0(x− x′)− jky0(y − y′)− (x− x′)2k2

x0/2− (y − y′)2k2
y0/2

|k̄xy|2

+
k2 − 2kx0kx − 2ky0ky − k2

x0 − k2
y0 + 2jk2

x0kx(x− x′) + 2jk2
y0ky(y − y′)

|k̄xy|4

+
k2 − 2kx0kx − 2ky0ky − k2

x0 − k2
y0 + 2jk2

x0kx(x− x′) + 2jk2
y0ky(y − y′)

4ε2|k̄xy|2

+
4k2

x0k
2
x + 4k2

y0k
2
y

|k̄xy|6
+

4k2
x0k

2
x + 4k2

y0k
2
y

4ε2|k̄xy|4
+

4k2
x0k

2
x + 4k2

y0k
2
y

32ε4|k̄xy|2

]
+Gspectral−0

(2.222)

On the other hand, we have to proceed in the same way with the spatial Ewald’s

componentGspatial(ρ̄, ρ̄
′) . It might be easier because the summation in q corresponds

to the expansion of the k-exponential so we have to use 2 terms in the q-summation.

The kx0-exponential and ky0-exponential appear as are so, we have to use the second
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order expansion as

lim
k→0
k̄w0→0

Gspatial(ρ̄, ρ̄
′) = lim

k→0
k̄w0→0

 1

4π

+∞∑
m=−∞

+∞∑
n=−∞

e−jk̄w0·ρ̄mn
+∞∑
q=0

(
k

2ε

)2q 1

q!
Eq+1(S2

mnε
2)


=

1

4π

+∞∑
m=−∞

+∞∑
n=−∞

[(
1− jkx0md1 − jky0nd2 −

(kx0md1)2

2
− (ky0nd2)2

2

)

× E1(S2
mnε

2) +

(
k2

4ε2

)
E2(S2

mnε
2)

]
(2.223)

Once we have the second order expansion of the Ewald’s method components ob-

tained in (2.222) and (2.223), we can summarize how to sum the asymptotic retained

part through Ewald’s method.

G̃e(ρ̄, ρ̄
′) = G̃(ρ̄, ρ̄′)

∣∣m→+∞
n→+∞

− G̃e0 =
1

A

+∞∑
m=−∞
∀m,n−

+∞∑
n=−∞
{m=n=0}

e−jk̄xy ·(ρ̄−ρ̄
′)e−

|k̄xy |2

4ε2

×

[
1− jkx0(x− x′)− jky0(y − y′)− (x− x′)2k2

x0/2− (y − y′)2k2
y0/2

|k̄xy|2

+
k2 − 2kx0kx − 2ky0ky − k2

x0 − k2
y0 + 2jk2

x0kx(x− x′) + 2jk2
y0ky(y − y′)

|k̄xy|4

+
k2 − 2kx0kx − 2ky0ky − k2

x0 − k2
y0 + 2jk2

x0kx(x− x′) + 2jk2
y0ky(y − y′)

4ε2|k̄xy|2

+
4k2

x0k
2
x + 4k2

y0k
2
y

|k̄xy|6
+

4k2
x0k

2
x + 4k2

y0k
2
y

4ε2|k̄xy|4
+

4k2
x0k

2
x + 4k2

y0k
2
y

32ε4|k̄xy|2

]

+
1

4π

∞∑
m=−∞

∞∑
n=−∞

[(
1− jkx0md1 − jky0nd2 −

(kx0md1)2

2
− (ky0nd2)2

2

)

× E1(S2
mnε

2) +

(
k2

4ε2

)
E2(S2

mnε
2)

]
+Gspectral−0 − G̃e0︸ ︷︷ ︸

T

(2.224)

where the last term T contains the residual value when m = n = 0. As discussed

before, in this approach we have to calculate and use the limit when |kw0| → 0 in all

cases. Thus, T can be calculated using [15] as

T =
(−1 + jkx0(x− x′) + jky0(y − y′) + (x− x′)2k2

x0/2 + (y − y′)2k2
y0/2)

4Aε2

+
(−k2 + k2

x0 + k2
y0)

32Aε4

(2.225)
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Introducing (2.225) in (2.224), G̃e(ρ̄, ρ̄
′) can be finally written as

G̃e(ρ̄, ρ̄
′) = G̃(ρ̄, ρ̄′)

∣∣∣m→+∞
n→+∞

− G̃e0 =
1

A

+∞∑
m=−∞
∀m,n−

+∞∑
n=−∞
{m=n=0}

e−jk̄xy ·(ρ̄−ρ̄
′)e−

|k̄xy |2

4ε2

×

[
1− jkx0(x− x′)− jky0(y − y′)− (x− x′)2k2

x0/2− (y − y′)2k2
y0/2

|k̄xy|2

+
k2 − 2kx0kx − 2ky0ky − k2

x0 − k2
y0 + 2jk2

x0kx(x− x′) + 2jk2
y0ky(y − y′)

|k̄xy|4

+
k2 − 2kx0kx − 2ky0ky − k2

x0 − k2
y0 + 2jk2

x0kx(x− x′) + 2jk2
y0ky(y − y′)

4ε2|k̄xy|2

+
4k2

x0k
2
x + 4k2

y0k
2
y

|k̄xy|6
+

4k2
x0k

2
x + 4k2

y0k
2
y

4ε2|k̄xy|4
+

4k2
x0k

2
x + 4k2

y0k
2
y

32ε4|k̄xy|2

]

+
1

4π

∞∑
m=−∞

∞∑
n=−∞

[(
1− jkx0(x− x′)− jky0(y − y′)− (kx0md1)2

2
− (ky0nd2)2

2

)

× E1(S2
mnε

2) +

(
k2

4ε2

)
E2(S2

mnε
2)

]
+

(−k2 + k2
x0 + k2

y0)

32Aε4

+
(−1 + jkx0(x− x′) + jky0(y − y′) + (x− x′)2k2

x0/2 + (y − y′)2k2
y0/2)

4Aε2

(2.226)

The generalization to Q terms is not carried out due to the difficulty that arises from

the Ewald’s integrals when we extract more than two terms with this approach. This is

because we have the product of three Taylor expansions and the integrals resulted by this

product become complicated. Nevertheless, the procedures followed in this subsection will

be useful in the acceleration of the 2-D Green’s function with 2-D periodicity, as will be

shown in Chapter 3.

To summarize, in this subsection we have accelerated the spectral Green’s function by

using the second proposed approach in Kummer’s transformation and summing efficiently

the asymptotic retained part through Ewald’s method.

2.3.3 Option B.2. Approach of
(

2πm
d1

, 2πn
d2

)
: Lerch Transcendent.

The strategy of this second alternative is to develop the formulation without applying any

transformation on it. For this aim, the final expression of this procedure will be expressed

in a semi-closed form using the Lerch transcendent.

In this case, the series G̃e(ρ̄, ρ̄
′) that has to be efficiently summed is
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G̃e(ρ̄, ρ̄
′) =

1

A

+∞∑
m=−∞
∀m,n−

+∞∑
n=−∞
{m=n=0}

1(
2πm
d1

)2
+
(

2πn
d2

)2 e
−jk̄mn·(ρ̄−ρ̄′) (2.227)

To transform this series and use the Lerch transcendent, we proceed as follows

G̃e(ρ̄, ρ̄
′) =

e−jk̄w0·(ρ̄−ρ̄′)

A

+∞∑
m=−∞
∀m,n−

+∞∑
n=−∞
{m=n=0}

1(
2πm
d1

)2
+
(

2πn
d2

)2 e
−j 2πm

d1
(x−x′)

e
−j 2πn

d2
(y−y′)

=
e−jk̄w0(ρ−ρ′)

A

+∞∑
m=−∞

e
−j 2πm

d1
(x−x′)(

2π
d2

)2

+∞∑
n=−∞

e
−j 2πn

d2
(y−y′)(

md2
d1

)2
+ n2

(2.228)

Now, we separate the total series into the sum of two different ones, according to the

positive and negative m

G̃e(ρ̄, ρ̄
′) =

e−jk̄w0·(ρ̄−ρ̄′)

A

(
+∞∑
m=1

e
−j 2πm

d1
(x−x′)(

2π
d2

)2

+∞∑
n=−∞

e
−j 2πn

d2
(y−y′)(

md2
d1

)2
+ n2

+
+∞∑
m=1

e
j 2πm
d1

(x−x′)(
2π
d2

)2

+∞∑
n=−∞

e
−j 2πn

d2
(y−y′)(

md2
d1

)2
+ n2

+
+∞∑

n=−∞
n6=0

e
−j 2πn

d2
(y−y′)(

2πn
d2

)2

) (2.229)

Then, we take out common factor as

G̃e(ρ̄, ρ̄
′) =

e−jk̄w0·(ρ̄−ρ̄′)

A

[
+∞∑
m=1

1(
2π
d2

)2

+∞∑
n=−∞

e
−j 2πn

d2
(y−y′)(

md2
d1

)2
+ n2

(
e
−j 2πm

d1
(x−x′)

+ e
j 2πm
d1

(x−x′)
)

+

+∞∑
n=−∞
n6=0

e
−j 2πn

d2
(y−y′)(

2πn
d2

)2

]

=
e−jk̄w0·(ρ̄−ρ̄′)

A

[
+∞∑
m=1

2 cos
(

2πm
d1

(x− x′)
)

(
2π
d2

)2

+∞∑
n=−∞

e
−j 2πn

d2
(y−y′)(

md2
d1

)2
+ n2︸ ︷︷ ︸

S1

+

+∞∑
n=−∞
n6=0

e
−j 2πn

d2
(y−y′)(

2πn
d2

)2

︸ ︷︷ ︸
S2

]

(2.230)
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The series S1 and S2 have to be optimally summed in order to calculate efficiently the

series G̃e(ρ̄, ρ̄
′) as

G̃e(ρ̄, ρ̄
′) =

e−jk̄w0·(ρ̄−ρ̄′)

A

+∞∑
m=1

2 cos
(

2πm
d1

(x− x′)
)

(
2π
d2

)2 S1 + S2

 (2.231)

For this purpose, we start by transforming the series S1 to use the Lerch transcendent.

It is important to note that this function is defined as

Φ(z, s, a) =
+∞∑
k=0

zk

(a+ k)s
(2.232)

Through the Lerch transcendent, the following identity can be obtained using [15]

S =
+∞∑

n=−∞

exn

a2 + n2
=
−j
2a
e−x
[
Φ
(
e−x, 1, 1− aj

)
− Φ

(
e−x, 1, 1 + aj

)
+ exΦ (ex, 1,−aj)− exΦ (ex, 1, aj)

] (2.233)

Thus, we can rewrite the series S1 as

S1 =

+∞∑
n=−∞

e
−j 2πn

d2
(y−y′)(

md2
d1

)2
+ n2

=
−jd1

2md2
e
j 2π
d2

(y−y′)
[
Φ

(
e
j 2π
d2

(y−y′)
, 1, 1−

(
md2

d1

)
j

)

− Φ

(
e
j 2π
d2

(y−y′)
, 1, 1 +

(
md2

d1

)
j

)
+ e
−j 2π

d2
(y−y′)

Φ

(
e
−j 2π

d2
(y−y′)

, 1,−
(
md2

d1

)
j

)
− ej

−2π
d2

(y−y′)
Φ

(
e
−j 2π

d2
(y−y′)

, 1,

(
md2

d1

)
j

)]
(2.234)

On the other hand, we can transform the series S2 as follows

S2 =

+∞∑
n=−∞
n6=0

e
−j 2πn

d2
(y−y′)(

2πn
d2

)2 =

+∞∑
n=1

e
−j 2πn

d2
(y−y′)(

2πn
d2

)2 +

−1∑
n=−∞

e
−j 2πn

d2
(y−y′)(

2πn
d2

)2

=

+∞∑
n=1

e
−j 2πn

d2
(y−y′)(

2πn
d2

)2 +

+∞∑
n=1

e
j 2πn
d2

(y−y′)(
2πn
d2

)2

(2.235)
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Remembering that the polylogarithm, which is a particular case of the Lerch transcen-

dent, is defined as

Lis(z) =
+∞∑
k=0

zk

ks
(2.236)

we can write the series S2, which is a particular case of the series S1 when m = 0, as

S2 =
1(

2π
d2

)2

[
Li2(e

−j 2π
d2

(y−y′)
) + Li2(e

j 2π
d2

(y−y′)
)
]

(2.237)

An alternative to sum this series S2 is achieved using the summation of a cosine series

S2 =
+∞∑
n=1

1(
2πn
d2

)2

(
e
−j 2πn

d2
(y−y′)

+ e
j 2πn
d2

(y−y′)
)

=
+∞∑
n=1

2 cos
(

2πn
d2

(y − y′)
)

(
2πn
d2

)2 (2.238)

Thus, if the following relation is used,

+∞∑
n=1

cos (nx)

n2
=
x2

4
− πx

2
+
π2

6
(2.239)

the series S2 remains

S2 =
2(

2π
d2

)2

+∞∑
n=1

cos
(

2π(y−y′)
d2

n
)

n2
=

2(
2π
d2

)2


(

2π(y−y′)
d2

)2

4
−
π
(

2π(y−y′)
d2

)
2

+
π2

6


=

(y − y′)2

2
− (y − y′)d2

2
+
d2

2

12

(2.240)

Once we have summed the series S1 and S2, we can conclude that the spectral Green’s

function has been accelerated by retaining the first term in Kummer’s transformation. This

asymptotic retained term can be efficiently summed using this method in a semi-closed

form with the Lerch transcendent formulation combined with either the polylogarithm

or the closed form defined in (2.239). This alternative reduces the dimensionality of the

original series.

2.3.4 Option B.3. Approach of
(

2πm
d1

, 2πn
d2

)
: Summation by Parts.

In this subsection, we study an alternative to sum the remaining part using the summation

by parts technique [9]. By using this technique, the series G̃e(ρ̄, ρ̄
′) can be written as the

sum of two parts, one analytical and the other numerical but finite.
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In this case, the series G̃e(ρ̄, ρ̄
′) that we have to sum efficiently is

G̃e(ρ̄, ρ̄
′) =

1

A

+∞∑
m=−∞
∀m,n−

+∞∑
n=−∞
{m=n=0}

1(
2πm
d1

)2
+
(

2πn
d2

)2 e
−jk̄mn·(ρ̄−ρ̄′) (2.241)

This series can be transformed as in Subsection 2.3.3 and can be written as the equation

(2.229) as

G̃e(ρ̄, ρ̄
′) =

e−jk̄w0·(ρ̄−ρ̄′)

A

(
+∞∑
m=1

e
−j 2πm

d1
(x−x′)(

2π
d2

)2

+∞∑
n=−∞

e
−j 2πn

d2
(y−y′)(

md2
d1

)2
+ n2

+
+∞∑
m=1

e
j 2πm
d1

(x−x′)(
2π
d2

)2

+∞∑
n=−∞

e
−j 2πn

d2
(y−y′)(

md2
d1

)2
+ n2

+
+∞∑

n=−∞
n6=0

e
−j 2πn

d2
(y−y′)(

2πn
d2

)2

) (2.242)

Now, the summations are separated according to positive and negative n

G̃e(ρ̄, ρ̄
′) =

e−jk̄w0·(ρ̄−ρ̄′)

A

[
+∞∑
m=1

e
−j 2πm

d1
(x−x′)(

2π
d2

)2

(
+∞∑
n=1

e
−j 2πn

d2
(y−y′)(

md2
d1

)2
+ n2

+
−1∑

n=−∞

e
−j 2πn

d2
(y−y′)(

md2
d1

)2
+ n2

+
1(

md2
d1

)2

)
+

+∞∑
m=1

e
j 2πm
d1

(x−x′)(
2π
d2

)2

(
+∞∑
n=1

e
−j 2πn

d2
(y−y′)(

md2
d1

)2
+ n2

+
−1∑

n=−∞

e
−j 2πn

d2
(y−y′)(

md2
d1

)2
+ n2

+
1(

md2
d1

)2

)

+
+∞∑

n=−∞
n6=0

e
−j 2πn

d2
(y−y′)(

2πn
d2

)2

]

(2.243)

and we proceed as follows

G̃e(ρ̄, ρ̄
′) =

e−jk̄w0·(ρ̄−ρ̄′)

A

[
+∞∑
m=1

e
−j 2πm

d1
(x−x′)(

2π
d2

)2

(
+∞∑
n=1

e
−j 2πn

d2
(y−y′)(

md2
d1

)2
+ n2

+

+∞∑
n=1

e
j 2πn
d2

(y−y′)(
md2
d1

)2
+ n2

+
1(

md2
d1

)2

)
+

+∞∑
m=1

e
j 2πm
d1

(x−x′)(
2π
d2

)2

(
+∞∑
n=1

e
−j 2πn

d2
(y−y′)(

md2
d1

)2
+ n2

+

+∞∑
n=1

e
j 2πn
d2

(y−y′)(
md2
d1

)2
+ n2

+
1(

md2
d1

)2

)

+

+∞∑
n=−∞
n6=0

e
−j 2πn

d2
(y−y′)(

2πn
d2

)2

]

(2.244)
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Taking out the denominators as common factor, G̃e(ρ̄, ρ̄
′) remains

G̃e(ρ̄, ρ̄
′) =

e−jk̄w0·(ρ̄−ρ̄′)

A

[
+∞∑
m=1

e
−j 2πm

d1
(x−x′)(

2π
d2

)2

+∞∑
n=1

e
−j 2πn

d2
(y−y′)

+ e
j 2πn
d2

(y−y′)(
md2
d1

)2
+ n2

+
+∞∑
m=1

e
j 2πm
d1

(x−x′)(
2π
d2

)2

+∞∑
n=1

e
−j 2πn

d2
(y−y′)

+ e
j 2πn
d2

(y−y′)(
md2
d1

)2
+ n2

+
+∞∑

n=−∞
n6=0

e
−j 2πn

d2
(y−y′)(

2πn
d2

)2

+
+∞∑
m=1

e
−j 2πm

d1
(x−x′)(

2πm
d1

)2 +
+∞∑
m=1

e
j 2πm
d1

(x−x′)(
2πm
d1

)2

]
(2.245)

that is,

G̃e(ρ̄, ρ̄
′) =

e−jkw0(ρ−ρ′)

A

[
+∞∑
m=1

e
−j 2πm

d1
(x−x′)(

2π
d2

)2

+∞∑
n=1

2 cos
(

2πn
d2

(y − y′)
)

(
md2
d1

)2
+ n2

+

+∞∑
m=1

e
j 2πm
d1

(x−x′)(
2π
d2

)2

+∞∑
n=1

2 cos
(

2πn
d2

(y − y′)
)

(
md2
d1

)2
+ n2

+

+∞∑
n=−∞
n6=0

e
−j 2πn

d2
(y−y′)(

2πn
d2

)2 +

+∞∑
m=−∞
m 6=0

e
−j 2πm

d1
(x−x′)(

2πm
d1

)2

]

(2.246)

Now, we can rewrite G̃e(ρ̄, ρ̄
′) as the summation of three series

G̃e(ρ̄, ρ̄
′) =

e−jk̄w0·(ρ̄−ρ̄′)

A

[
4

+∞∑
m=1

+∞∑
n=1

cos
(

2πm
d1

(x− x′)
)

cos
(

2πn
d2

(y − y′)
)

(
2πm
d1

)2
+
(

2πn
d2

)2

︸ ︷︷ ︸
S1

+
+∞∑

n=−∞
n6=0

e
−j 2πn

d2
(y−y′)(

2πn
d2

)2

︸ ︷︷ ︸
S2

+
+∞∑

m=−∞
m6=0

e
−j 2πm

d1
(x−x′)(

2πm
d1

)2

︸ ︷︷ ︸
S3

] (2.247)

G̃e(ρ̄, ρ̄
′) =

e−jk̄w0·(ρ̄−ρ̄′)

A
[4S1 + S2 + S3] (2.248)

It should be pointed out that the series S2 and S3 can be summed analytically as

previously. However, we have to apply the theory of two dimensional summation by parts

technique (see Appendix A.1) reported in [9] to the series S1. This leads to the splitting

of the series into two parts
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S1 =
+∞∑
m=1

+∞∑
n=1

cos
(

2πm
d1

(x− x′)
)

cos
(

2πn
d2

(y − y′)
)

(
2πm
d1

)2
+
(

2πn
d2

)2

=
M−1∑
m=1

N−1∑
n=1

cos
(

2πm
d1

(x− x′)
)

cos
(

2πn
d2

(y − y′)
)

(
2πm
d1

)2
+
(

2πn
d2

)2

︸ ︷︷ ︸
SM−1,N−1

+
+∞∑
m=M

+∞∑
n=N

cos
(

2πm
d1

(x− x′)
)

cos
(

2πn
d2

(y − y′)
)

(
2πm
d1

)2
+
(

2πn
d2

)2

︸ ︷︷ ︸
RM,N

(2.249)

Remembering that the transformation that can be applied in RM,N is

RM,N =
+∞∑
m=M

+∞∑
n=N

G̃(−1,−1)
m,n f (+1)

m h(+1)
n =

+∞∑
i=1

+∞∑
k=1

G̃
(−i,−k)
M,N f

(i+1)
M−1 h

(k+1)
N−1 (2.250)

we can identify terms as follows in order to apply the previous relation.

RM,N =
+∞∑
m=M

+∞∑
n=N

1(
2πm
d1

)2
+
(

2πn
d2

)2

︸ ︷︷ ︸
G̃

(−1,−1)
m,n

cos

(
2πm

d1
(x− x′)

)
︸ ︷︷ ︸

f
(+1)
m

cos

(
2πn

d2
(y − y′)

)
︸ ︷︷ ︸

h
(+1)
n

(2.251)

Using the first order approximation of RM,N ,

RM,N = G̃
(−1,−1)
M,N f

(+2)
M−1 h

(+2)
N−1 (2.252)

where

G̃
(−1,1)
M,N = G̃(−1,1)

m,n

∣∣∣
m=M
n=N

=
1(

2πm
d1

)2
+
(

2πn
d2

)2

∣∣∣∣∣
m=M
n=N

=
1(

2πM
d1

)2
+
(

2πN
d2

)2 (2.253)
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f
(+2)
M−1 =

+∞∑
k=m+1

f
(+1)
k

∣∣∣∣
m=M−1

=

+∞∑
k=m+1

cos

(
2πk

d1
(x− x′)

) ∣∣∣∣
m=M−1

=
cos
[
(m+ 1)

(
2π
d1

(x− x′)
)]
− cos

[
m
(

2π
d1

(x− x′)
)]

2
[
1− cos

(
2π
d1

(x− x′)
)] ∣∣∣∣

m=M−1

=
cos
[
M
(

2π
d1

(x− x′)
)]
− cos

[
(M − 1)

(
2π
d1

(x− x′)
)]

2
[
1− cos

(
2π
d1

(x− x′)
)]

(2.254)

h
(+2)
N−1 =

+∞∑
k=n+1

h
(+1)
k

∣∣∣∣
n=N−1

=
+∞∑

k=n+1

cos

(
2πk

d2
(y − y′)

) ∣∣∣∣
n=N−1

=
cos
[
(n+ 1)

(
2π
d2

(y − y′)
)]
− cos

[
n
(

2π
d2

(y − y′)
)]

2
[
1− cos

(
2π
d2

(y − y′)
)] ∣∣∣∣

n=N−1

=
cos
[
N
(

2π
d2

(y − y′)
)]
− cos

[
(N − 1)

(
2π
d2

(y − y′)
)]

2
[
1− cos

(
2π
d2

(y − y′)
)]

(2.255)

RM,N can be summed as

RM,N = G̃
(−1,−1)
M,N f

(+2)
M−1 h

(+2)
N−1

=

(
cos
(

2π(x−x′)M
d1

)
− cos

(
2π(M−1)(x−x′)

d1

))
·

(
cos
(

2π(y−y′)N
d2

)
− cos

(
2π(N−1)(y−y′)

d2

))

4

[(
2πM
d1

)2
+
(

2πN
d2

)2
] [

1− cos
(

2π(x−x′)
d1

)] [
1− cos

(
2π(y−y′)

d2

)]
(2.256)

and therefore, S1 is given by the summation of the initial numerical part SM−1,N−1 and

the obtained analytical part RM,N .

So, we have accelerated the spectral Green’s function by retaining the first term in Kum-

mer’s transformation. This asymptotic retained term can be summed using the combina-

tion of the analytical summation of cosine series and the summation by parts technique.

Through this technique, we are able to transform the original series into a sum of an an-



2.3. Spectral Kummer’s Transformation 136

alytical part and a numerical but finite part. On the other hand, the parameters M and

N , which split the initial series, have to be optimally adjusted as required.

2.3.5 Option B.4. Approach of
(

2πm
d1

, 2πn
d2

)
: Analytical Sum in One Index.

The last alternative that we propose to add the asymptotic part in Kummer’s transforma-

tion is summing the remaining series in an analytical way at least in one dimension. This

can reduce the dimensionality of the problem thanks to sum analytically the series in one

index. This option is carried out with the extraction of the first and the second term. The

series that appear when we extract more than two terms cannot be summed analytically.

• Extraction of one term.

For this procedure, we start from (2.247). As has been mentioned before, the series S2

and S3 can be written analytically. For this purpose, the series S2 can be transformed

as

S2 =
+∞∑

n=−∞
n 6=0

e
−j 2πn

d2
(y−y′)(

2πn
d2

)2 =
+∞∑
n=1

e
−j 2πn

d2
(y−y′)(

2πn
d2

)2 +
−1∑

n=−∞

e
−j 2πn

d2
(y−y′)(

2πn
d2

)2

=

+∞∑
n=1

e
−j 2πn

d2
(y−y′)(

2πn
d2

)2 +

+∞∑
n=1

e
j 2πn
d2

(y−y′)(
2πn
d2

)2 =

+∞∑
n=1

cos
(

2πn
d2

(y − y′)
)

(
2πn
d2

)2

(2.257)

and using the relation given in (2.239), S2 is expressed analytically as

S2 =
2(

2π
d2

)2

+∞∑
n=1

cos
(

2π(y−y′)
d2

n
)

n2
=

2(
2π
d2

)2


(

2π(y−y′)
d2

)2

4
−
π
(

2π(y−y′)
d2

)
2

+
π2

6


=

(y − y′)2

2
− (y − y′)d2

2
+
d2

2

12
(2.258)

Likewise, the series S3 is rewritten as

S3 =
2(

2π
d1

)2

+∞∑
m=1

cos
(

2π(x−x′)
d1

m
)

m2
=

2(
2π
d1

)2


(

2π(x−x′)
d1

)2

4
−
π
(

2π(x−x′)
d1

)
2

+
π2

6


=

(x− x′)2

2
− (x− x′)d1

2
+
d1

2

12
(2.259)
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On the other hand, the series S1 can be solved analytically

S1 =
+∞∑
n=1

cos
(

2πn
d2

(y − y′)
)

(
md2
d1

)2
+ n2

(2.260)

by using the follow relation

+∞∑
n=1

cos (nx)

a2 + n2
=

π

2a

cosh ((π − x) a)

sinh(πa)
− 1

2a2
(2.261)

as

S1 =
π

2md2
d1

cosh
[(
π −

(
2π
d2

(y − y′)
))

md2
d1

]
sinh(πmd2

d1
)

− 1

2
(
md2
d1

)2

=
πd1

2md2

cosh
[(
π −

(
2π
d2

(y − y′)
))

md2
d1

]
sinh(πmd2

d1
)

− d1
2

2 (md2)2

(2.262)

Finally, we can conclude that G̃e(ρ̄, ρ̄
′) can be expressed as

G̃e(ρ̄, ρ̄
′) =

e−jk̄w0·(ρ̄−ρ̄′)

A

[
+∞∑
m=1

4S1 cos
(

2πm
d1

(x− x′)
)

(
2π
d2

)2 + S2 + S3

]
(2.263)

where the series S1, S2 and S3 have been analytically calculated.

• Extraction of two terms.

In this alternative not only the first term but also the second term have an analyt-

ical expression. For this reason, we are interested in the extraction of the second

asymptotic term and summing it by the same procedure as the previous one.

In this case, the G̃e(ρ̄, ρ̄
′) series that we have to efficiently sum is

G̃e(ρ̄, ρ̄
′) =

1

A

+∞∑
m=−∞
∀m,n−

+∞∑
n=−∞
{m=n=0}

 1(
2πm
d1

)2
+
(

2πn
d2

)2 −
zu + zv((

2πm
d1

)2
+
(

2πn
d2

)2
)2


e−jk̄mn·(ρ̄−ρ̄

′)

(2.264)
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where

zu = k2
x0 − k2/2 +

4πmkx0

d1
(2.265a)

zv = k2
y0 − k2/2 +

4πnky0

d2
(2.265b)

zu + zv = k2
x0 + k2

y0 − k2︸ ︷︷ ︸
kt

+
4πmkx0

d1
+

4πnky0

d2
(2.265c)

Using this, we can rewrite the series G̃e(ρ̄, ρ̄
′) as

G̃e(ρ̄, ρ̄
′) =

e−jk̄w0·(ρ̄−ρ̄′)

A

+∞∑
m=−∞
∀m,n−

+∞∑
n=−∞
{m=n=0}

e
−j 2πm

d1
(x−x′)

e
−j 2πn

d2
(y−y′)(

2πm
d1

)2
+
(

2πn
d2

)2

︸ ︷︷ ︸
Sa

− e−jk̄w0·(ρ̄−ρ̄′)

A

+∞∑
m=−∞
∀m,n−

+∞∑
n=−∞
{m=n=0}

(zu + zv)e
−j 2πm

d1
(x−x′)

e
−j 2πn

d2
(y−y′)((

2πm
d1

)2
+
(

2πn
d2

)2
)2

︸ ︷︷ ︸
Sb

(2.266)

The first series Sa has been summed previously. Therefore, the new series that we

have to sum is

Sb =
e−jk̄w0·(ρ̄−ρ̄′)

A

+∞∑
m=−∞
∀m,n−

+∞∑
n=−∞
{m=n=0}

(zu + zv)e
−j 2πm

d1
(x−x′)

e
−j 2πn

d2
(y−y′)((

2πm
d1

)2
+
(

2πn
d2

)2
)2

︸ ︷︷ ︸
S

(2.267)

Specifically, we focus on summing the series S. This series can be split according to

positive and negative m

S =

+∞∑
m=1

+∞∑
n=−∞

(kt + 4πmkx0
d1

+
4πnky0

d2
)e
−j 2πm

d1
(x−x′)

e
−j 2πn

d2
(y−y′)((

2πm
d1

)2
+
(

2πn
d2

)2
)2

+

+∞∑
m=1

+∞∑
n=−∞

(kt − 4πmkx0
d1

+
4πnky0

d2
)e
j 2πm
d1

(x−x′)
e
−j 2πn

d2
(y−y′)((

2πm
d1

)2
+
(

2πn
d2

)2
)2

+
+∞∑

n=−∞
n 6=0

(kt +
4πnky0

d2
)e
−j 2πn

d2
(y−y′)(

2πn
d2

)4

(2.268)
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and now we split the series according to positive and negative n

S =
+∞∑
m=1

+∞∑
n=1

(kt + 4πmkx0
d1

+
4πnky0

d2
)e
−j 2πm

d1
(x−x′)

e
−j 2πn

d2
(y−y′)((

2πm
d1

)2
+
(

2πn
d2

)2
)2

+
+∞∑
m=1

+∞∑
n=1

(kt + 4πmkx0
d1

− 4πnky0

d2
)e
−j 2πm

d1
(x−x′)

e
j 2πn
d2

(y−y′)((
2πm
d1

)2
+
(

2πn
d2

)2
)2

+

+∞∑
m=1

+∞∑
n=1

(kt − 4πmkx0
d1

+
4πnky0

d2
)e
j 2πm
d1

(x−x′)
e
−j 2πn

d2
(y−y′)((

2πm
d1

)2
+
(

2πn
d2

)2
)2

+
+∞∑
m=1

+∞∑
n=1

(kt − 4πmkx0
d1

− 4πnky0

d2
)e
j 2πm
d1

(x−x′)
e
j 2πn
d2

(y−y′)((
2πm
d1

)2
+
(

2πn
d2

)2
)2

+
+∞∑
m=1

(kt + 4πmkx0
d1

)e
−j 2πm

d1
(x−x′)(

2πm
d1

)4 +
+∞∑
m=1

(kt − 4πmkx0
d1

)e
j 2πm
d1

(x−x′)(
2πm
d1

)4

+
+∞∑
n=1

(kt +
4πnky0

d2
)e
−j 2πn

d2
(y−y′)(

2πn
d2

)4 +
+∞∑
n=1

(kt − 4πnky0

d2
)e
j 2πn
d2

(y−y′)(
2πn
d2

)4

(2.269)

Regrouping terms, the series S can be expressed as follows

S =
+∞∑
m=1

+∞∑
n=1

4kt
cos
(

2πm
d1

(x− x′)
)

cos
(

2πn
d2

(y − y′)
)

((
2πm
d1

)2
+
(

2πn
d2

)2
)2

+
+∞∑
m=1

+∞∑
n=1

−16jπmkx0

d1

sin
(

2πm
d1

(x− x′)
)

cos
(

2πn
d2

(y − y′)
)

((
2πm
d1

)2
+
(

2πn
d2

)2
)2

+

+∞∑
m=1

+∞∑
n=1

−16jπnky0

d2

cos
(

2πm
d1

(x− x′)
)

sin
(

2πn
d2

(y − y′)
)

((
2πm
d1

)2
+
(

2πn
d2

)2
)2

+
+∞∑
m=1

2kt
cos
(

2πm
d1

(x− x′)
)

(
2πm
d1

)4 +
+∞∑
m=1

−8jπmkx0

d1

sin
(

2πm
d1

(x− x′)
)

(
2πm
d1

)4

+
+∞∑
n=1

2kt
cos
(

2πn
d2

(y − y′)
)

(
2πn
d2

)4 +
+∞∑
n=1

−8jπnky0

d2

sin
(

2πn
d2

(y − y′)
)

(
2πn
d2

)4

(2.270)
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Using the following notation, the series S can be obtained as the sum of these series

S = S1 + S2 + S3 + S4 + S5 + S6 + S7 (2.271)

Now, we try to find a way to express analytically these series. For this purpose, we

use the following relation

+∞∑
n=0

cos (nx)

(a2 + n2)2
=

1

2a4
+

π

4a3
cosech(πa) [cosh(a(π − x)) + ax sinh(a(π − y))]

+
π2

4a2
cosech2(πa) cosh(ax)

(2.272)

to obtain the summation of the next series

+∞∑
n=1

cos (nx)

(a2 + n2)2
=

+∞∑
n=0

cos (nx)

(a2 + n2)2
− 1

a4
=

1

2a4
+

π

4a3
cosech(πa)

[
cosh(a(π − x))

+ ax sinh(a(π − y))
]

+
π2

4a2
cosech2(πa) cosh(ax)− 1

a4
=
−1

2a4
+

π

4a3
cosech(πa)

[cosh(a(π − x)) + ax sinh(a(π − y))] +
π2

4a2
cosech2(πa) cosh(ax)

(2.273)

With the previous identity, we can rewrite the series S1 as

S1 =
+∞∑
m=1

4kt
cos
(

2πm
d1

(x− x′)
)

(
2π
d2

)4

+∞∑
n=1

cos

2π(y − y′)
d2︸ ︷︷ ︸
Y

n



md2

d1︸︷︷︸
a


2

+ n2


2 =

+∞∑
m=1

4kt
cos
(

2πm
d1

(x− x′)
)

(
2π
d2

)4

{
−1

2a4
+

π

4a3
cosech(πa) [cosh(a(π − Y )) + aY sinh(a(π − Y ))]

+
π2

4a2
cosech2(πa) cosh(aY )

}
(2.274)
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The second series S2 is transformed as

S2 =
+∞∑
m=1

+∞∑
n=1

−16jπmkx0

d1

sin
(

2πm
d1

(x− x′)
)

cos
(

2πn
d2

(y − y′)
)

((
2πm
d1

)2
+
(

2πn
d2

)2
)2

=
+∞∑
n=1

−16jπkx0

d1

cos
(

2πn
d2

(y − y′)
)

(
2π
d1

)2

+∞∑
m=1

m sin

2π(x− x′)
d1︸ ︷︷ ︸
X

m



nd1

d2︸︷︷︸
b


2

+m2


2

(2.275)

and using the following relation

+∞∑
n=1

n sin (nx)

(a2 + n2)2
= −π

2

4a
sinh(ax) cosech2(πa) +

πx

4a
[cosh(a(π − x)) cosech(πa)]

(2.276)

S2 can be expressed as

S2 =
+∞∑
n=1

−16jπkx0

d1

cos
(

2πn
d2

(y − y′)
)

(
2π
d1

)2

{
− π2

4b
sinh(bX) cosech2(πb)

+
πX

4b
[cosh(b(π −X)) cosech(πb)]

} (2.277)

Similarly, the series S3 remains

S3 =

+∞∑
m=1

−16jπky0

d2

cos
(

2πm
d1

(x− x′)
)

(
2π
d2

)2

{
− π2

4a
sinh(aY ) cosech2(πa)

+
πY

4a
[cosh(a(π − Y )) cosech(πa)]

} (2.278)

Thus, we have reduced the dimensionality of the previous doubles series. The rest

of the series are one-dimensional, and for that reason, they remains as they are

S4 =
+∞∑
m=1

2kt
cos
(

2πm
d1

(x− x′)
)

(
2πm
d1

)4 =
2kt(
2π
d1

)4

+∞∑
m=1

cos
(

2πm
d1

(x− x′)
)

m4 (2.279)
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S5 =
+∞∑
m=1

−8jπmkx0

d1

sin
(

2πm
d1

(x− x′)
)

(
2πm
d1

)4 =
−8jπkx0

d1

(
2π
d1

)4

+∞∑
m=1

sin
(

2πm
d1

(x− x′)
)

m3 (2.280)

S6 =
2kt(
2π
d2

)4

+∞∑
n=1

cos
(

2πn
d2

(y − y′)
)

n4 (2.281)

S7 =
−8jπky0

d2

(
2π
d2

)4

+∞∑
n=1

sin
(

2πn
d2

(y − y′)
)

n3 (2.282)

As stated above, the series involved in the calculation of the remaining part in Kum-

mer’s transformation have been efficiently summed in one index. This results in

a one-dimensional summation of the remaining part. This approach has not been

generalized to Q terms because the following terms that appear in the extraction

of Kummer’s transformation do not have an analytical form. Nevertheless, the de-

velopment done in this approach implies a significant improvement over the slow

convergence of the original series, as will be shown in Chapter 3.

As in the previous chapter, a comparison between the different techniques reported

in this section to sum the asymptotic series in this second form of applying Kummer’s

transformation will be reported in Chapter 3.

In addition, in Chapter 3 we compare the improvement that implies the use of each

approach in the application of the spectral Kummer’s transformation and we analyse

the advantages of using one or the other strategy. In advance, we could suppose that,

depending on the case that we are interested in, it would be better using one or the other

approach.

As a general conclusion, we have proposed for each approach different methods of sum-

ming the remaining part.

1. The first one is using Ewald’s method.

As has been discussed before, this alternative allows us to use the acceleration re-

sulted by applying Kummer’s transformation and sum efficiently the retained terms

through Ewald’s method.

Thanks to the proposed Kummer-Ewald technique, we can take advantage of the

rapidly convergence of Ewald’s components without the need to calculate all the

special functions involved in these series. This is because here we do not have to

calculate all of them, we have to calculate only those needed. Thus, by using this
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proposed Kummer-Ewald method we are able to choose the effort that we want to

invest in each technique. This technique has been outlined for the extraction of Q

terms in the first approach and two terms in the case of the second approach.

2. The second one is using the Lerch transcendent.

This mathematical function gives us the possibility of expressing the remaining part

in a semi-closed form. As can be noted, the Lerch transcendent is defined as an infi-

nite summation. This alternative has been developed only for the second approach

in Kummer’s transformation because of the nature of the retained part. For this rea-

son, although it is evaluated as an infinite sum, the remaining series is independent

from the frequency.

3. The third one is using the summation by parts technique.

As already explained, this transformation consists of accelerating the series basing

on their oscillation behaviours [9]. It allows us to express the remaining part as a

sum of an analytical part plus a numerical but finite part. This technique has been

applied in the second approach for the extraction of the first term in Kummer’s

transformation.

4. The last one is summing analytically in one index.

This alternative allows us to reduce the dimensionality of the series. This is because

we use analytical results to sum the series in one index [23]. As the previous option,

this alternative has been only outlined for the second approach in Kummer’s trans-

formation because of the nature of the remaining part. In addition, it is important

to highlight that we have been able to sum analytically in one index the remaining

series in the extraction of the first and the second term.

The above conclusions will be proved through programming the proposed techniques

and the numerical results will be shown in Chapter 3.

2.4 Green’s Functions of Rectangular Waveguides and 2-D

Cavities

In rectangular waveguides and 2-D cavities, the Green’s functions can be formulated using

the classical theory of images with respect to four perfect electric conductors. This theory

implies that the actual system can be replaced by an equivalent system formed by the

combination of the real and the introduced virtual sources (images) [1].
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In this section, we first obtain the different components of the outstanding Green’s

functions involved in these problems from the general 2-D Green’s functions with 2-D

periodicity. The components in this problem are the same than the ones reported in

Section 1.2 for the case of 1-D periodicity. They are the Green’s functions of the magnetic

and electric scalar and vector potentials. Once these components are described, we apply

Kummer’s transformation to some of them (Subsection 2.4.1) in order to accelerate their

convergences.

To describe the outstanding components of Green’s functions it is advisable representing

the possible scenarios in these problems. It should be pointed out that from now on, we

use the particular case of phase-shifted array. This is because the sources here are aligned

due to the geometry of the problem, as will be shown.

Thus, the Fig. 2.3(a) represents the combination of the actual source and its images

when a magnetic charge is placed near the electric conductors. Being a magnetic charge,

the images have the same sign as the actual source. This distribution is employed to

evaluate the Green’s function of the magnetic scalar potential GW .

On the other hand, Fig. 2.3(b) represents the combination of the actual source and its

images when an electric charge is placed near the electric conductors. Being an electric

charge, the images alternate the positive and negative signs. This distribution is employed

to evaluate the Green’s function of the electric scalar potential GV .

The Fig. 2.4 represents the combination of the actual source and its images when a

magnetic current dipole ~ms is placed near the electric conductors in the x-direction (Fig.

2.4(a)), in the y-direction (Fig. 2.4(b)) and in the z-direction (Fig. 2.4(c)). Being a

magnetic current dipole, the images change the sign or orientation when the actual source

is perpendicular to the electric conductor. On the contrary, the images have the same

sign as the actual source when the magnetic current dipole is parallel to the electric

conductor. These distributions are employed to calculate the dyadic components of the

Green’s function of the electric vector potential GxxF , GyyF and GzzF , respectively.

Finally, the Fig. 2.5 represents the combination of the actual source and its images

when an electric current dipole ~js is placed near the electric conductors in the x-direction

(Fig. 2.5(a)), in the y-direction (Fig. 2.5(b)) and in the z-direction (Fig. 2.5(c)). Being

an electric current dipole, the images change the sign or orientation when the actual

source is parallel to the electric conductor. On the contrary, the images have the same

sign as the actual source when the electric current dipole is perpendicular to the electric

conductor. These distributions are employed to calculate the dyadic components of the

Green’s function of the magnetic vector potential GxxA , GyyA and GzzA , respectively.
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(a) Distribution of the actual magnetic charge qs and its images qi for a rect-
angular cavity.

(b) Distribution of the actual electric charge qs and its images qi for a rectan-
gular cavity.

Figure 2.3: Distribution of the actual and virtual sources. The width of the cavity in the
x-direction is a and and in y-direction is b. Thus, the images are distributed in quadruples
separated by a distance of 2a in x-direction and 2b in y-direction. It is satisfied that
qs = qi.
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(a) Actual and virtual sources produced by a mag-
netic current dipole oriented in x-direction.

(b) Actual and virtual sources produced by a mag-
netic current dipole oriented in y-direction.

(c) Actual and virtual sources produced by a mag-
netic current dipole oriented in z-direction.

Figure 2.4: Distribution of the actual magnetic current dipole ~ms and its images ~mi for
a rectangular waveguide or 2-D cavity. It is satisfied that ms = mi. The width of the
cavity in the x-direction is a and and in y-direction is b. Thus, the images are distributed
in quadruples separated by a distance of 2a in x-direction and 2b in y-direction.
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(a) Actual and virtual sources produced by an
electric current dipole oriented in x-direction.

(b) Actual and virtual sources produced by an elec-
tric current dipole oriented in y-direction.

(c) Actual and virtual sources produced by an elec-
tric current dipole oriented in z-direction.

Figure 2.5: Distribution of the actual electric current dipole ~js and its images ~ji for a
rectangular waveguide or 2-D cavity. It is satisfied that js = ji. The width of the cavity
in the x-direction is a and and in y-direction is b. Thus, the images are distributed in
quadruples separated by a distance of 2a in x-direction and 2b in y-direction.
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As stated above, the shown figures illustrate that we have to employ the formulation

related to the particular case of phase-shifted array due to the geometry of the problem.

Once we have represented the possible scenarios to obtain the most relevant functions

involved in these problems, we are going to define the series G̃+(ρ̄, ρ̄′) and G̃−(ρ̄, ρ̄′) as

the basis of some of these Green’s functions and they are going to be formulated using

the spatial and spectral representations of the 2-D Green’s function with 2-D periodicity.

The spatial series G(ρ̄, ρ̄′) is given by

G(ρ̄, ρ̄′) =
1

4j

+∞∑
m=−∞

+∞∑
n=−∞

H
(2)
0 (kSmn)e−jk̄w0·ρ̄mn (2.283)

where Smn =
√

(x− x′ −md1)2 + (y − y′ − nd2)2.

On the other hand, the spectral series G̃(ρ̄, ρ̄′) is given by

G̃(ρ̄, ρ̄′) =
1

A

+∞∑
m=−∞

+∞∑
n=−∞

e−jk̄mn·(ρ̄−ρ̄
′)

|k̄mn|
2 − k2

(2.284)

where

k̄mn = k̄w0 +
2π

A
[m(ā2 × ẑ) + n(ẑ × ā1)] =

(
kx0 +

2πm

d1

)
x̂+

(
ky0 +

2πn

d2

)
ŷ (2.285)

The series G̃+(ρ̄, ρ̄′) and G̃−(ρ̄, ρ̄′) are composed by the combination of four general 2-D

periodic Green’s functions with different sources. In the first one, the source is (x′, y′), in

the second one is (x′,−y′), in the third one is (−x′, y′) and in the fourth one is (−x′,−y′).
In all cases, the period is d1 = 2a and d2 = 2b and θ = 0◦ due to the direction of the wave

incident on the array. We use the following notation for these four sources

Smn++ =
√

(x− x′ − 2am)2 + (y − y′ − 2bn)2 (2.286a)

Smn+− =
√

(x− x′ − 2am)2 + (y + y′ − 2bn)2 (2.286b)

Smn+− =
√

(x+ x′ − 2am)2 + (y − y′ − 2bn)2 (2.286c)

Smn−− =
√

(x+ x′ − 2am)2 + (y + y′ − 2bn)2 (2.286d)
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According to this, the spatial Green’s function G+(ρ̄, ρ̄′) can be expressed as the sum of

four general periodic Green’s functions as

G+(ρ̄, ρ̄′) =
1

4j

+∞∑
m=−∞

+∞∑
n=−∞

H
(2)
0 (kSmn++) +

1

4j

+∞∑
m=−∞

+∞∑
n=−∞

H
(2)
0 (kSmn+−)

+
1

4j

+∞∑
m=−∞

+∞∑
n=−∞

H
(2)
0 (kSmn−+) +

1

4j

+∞∑
m=−∞

+∞∑
n=−∞

H
(2)
0 (kSmn−−)

=
1

4j

+∞∑
m=−∞

+∞∑
n=−∞

[
H

(2)
0 (k

√
(x− x′ − 2am)2 + (y − y′ − 2bn)2)

+ H
(2)
0 (k

√
(x− x′ − 2am)2 + (y + y′ − 2bn)2)

+ H
(2)
0 (k

√
(x+ x′ − 2am)2 + (y − y′ − 2bn)2)

+ H
(2)
0 (k

√
(x+ x′ − 2am)2 + (y + y′ − 2bn)2)

]

(2.287)

Using Poisson’s formula, its alternative spectral G̃+(ρ̄, ρ̄′) series is obtained. It is im-

portant to note that in this case kx0 = 0 and ky0 = 0 and k̄mn remains

k̄mn =

(
�
�kx0 +

2πm

2a

)
x̂+

(
�
�ky0 +

2πn

2b

)
ŷ =

πm

a
x̂+

πn

b
ŷ (2.288)

Therefore, the spectral formulation can be written as

G̃+(ρ̄, ρ̄′) =
1

4a

+∞∑
m=−∞

+∞∑
n=−∞

1(
2πm
2a

)2
+
(

2πn
2b

)2 − k2

[
e−j

πm(x−x′)
a e−j

πn(y−y′)
b + e−j

πm(x−x′)
a

e−j
πn(y+y′)

b + e−j
πm(x+x′)

a e−j
πn(y−y′)

b + e−j
πm(x+x′)

a e−j
πn(y+y′)

b

]

=
1

4a

+∞∑
m=−∞

+∞∑
n=−∞

1(
πm
a

)2
+
(
πn
b

)2 − k2

[
e−j

πmx
a e+j πmx

′
a e−j

πny
b e+j πny

′
b + e−j

πmx
a e+j πmx

′
a

e−j
πny
b e−j

πny′
b + e−j

πmx
a e−j

πmx′
a e−j

πny
b e+j πny

′
b + e−j

πmx
a e−j

πmx′
a e−j

πny
b e−j

πny′
b

]
(2.289)

This series can be rewritten by grouping terms as
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G̃+(ρ̄, ρ̄′) =
1

4ab

+∞∑
m=−∞

+∞∑
n=−∞

1(
πm
a

)2
+
(
πn
b

)2 − k2

[
e−j

πmx
a e−j

πny
b ej

πny′
b 2

(
e+j πmx

′
a + e−j

πmx′
a

2

)
+ e−j

πmx
a e−j

πny
b e−j

πny′
b 2

(
e+j πmx

′
a + e−j

πmx′
a

2

)]

=
1

4ab

+∞∑
m=−∞

+∞∑
n=−∞

1(
πm
a

)2
+
(
πn
b

)2 − k2

[
e−j

πmx
a e−j

πny
b 2 cos

(
πmx′

a

)
2e+j πny

′
b + e−j

πny′
b

2

]

=
1

ab

+∞∑
m=−∞

+∞∑
n=−∞

1(
πm
a

)2
+
(
πn
b

)2 − k2
e−j

πmx
a e−j

πny
b cos

(
πmx′

a

)
cos

(
πny′

b

)

(2.290)

Due to the fact that this is an even function with respect to kx = πm
a , the exponential

e−jkxx evaluated in m between (−∞,+∞) can be written as 2εm cos(kxx) evaluated in

m between (0,+∞). On the other hand, G̃+(ρ̄, ρ̄′) is an even function with respect to

ky = πn
b , thus the exponential e−jkyy evaluated in n between (−∞,+∞) can be written

as 2εn cos(kyy) between (0,+∞). This procedure is detailed in Appendix A.2.

According to this, G̃+(r̄, r̄′) is given by

G̃+(ρ̄, ρ̄′) =
2εm
ab

+∞∑
m=0

+∞∑
n=−∞

1(
πm
a

)2
+
(
πn
b

)2 − k2
e−j

πny
b cos

(πmx
a

)
cos

(
πmx′

a

)
cos

(
πny′

b

)

=
4εmn
ab

+∞∑
m=0

+∞∑
n=0

cos
(
πmx
a

)
cos
(
πmx′

a

)
cos
(πny

b

)
cos
(
πny′

b

)
(
πm
a

)2
+
(
πn
b

)2 − k2

(2.291)

where εm0 = ε0n = 1/2 and εmn = 1 for m > 0 and n > 0 (see Appendix A.2).

On the other hand, in the case of the function composed by the subtraction of the

images, we have the sum of four periodic Green’s functions with different sources and

additionally, two of them are inverted. Thus, the spatial series G−(ρ̄, ρ̄′) in this case is the

subtraction of these periodic Green’s functions
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G−(ρ̄, ρ̄′) =
1

4j

+∞∑
m=−∞

+∞∑
n=−∞

H
(2)
0 (kSmn++)− 1

4j

+∞∑
m=−∞

+∞∑
n=−∞

H
(2)
0 (kSmn+−)

− 1

4j

+∞∑
m=−∞

+∞∑
n=−∞

H
(2)
0 (kSmn−+) +

1

4j

+∞∑
m=−∞

+∞∑
n=−∞

H
(2)
0 (kSmn−−)

=
1

4j

+∞∑
m=−∞

+∞∑
n=−∞

[
H

(2)
0 (k

√
(x− x′ − 2am)2 + (y − y′ − 2bn)2)

−H
(2)
0 (k

√
(x− x′ − 2am)2 + (y + y′ − 2bn)2)

−H
(2)
0 (k

√
(x+ x′ − 2am)2 + (y − y′ − 2bn)2)

+ H
(2)
0 (k

√
(x+ x′ − 2am)2 + (y + y′ − 2bn)2)

]

(2.292)

The alternative spectral series G̃−(ρ̄, ρ̄′) given by the application of Poisson’s formula is

G̃−(ρ̄, ρ̄′) =
1

4a

+∞∑
m=−∞

+∞∑
n=−∞

1(
2πm
2a

)2
+
(

2πn
2b

)2 − k2

[
e−j

πm(x−x′)
a e−j

πn(y−y′)
b − e−j

πm(x−x′)
a

e−j
πn(y+y′)

b − e−j
πm(x+x′)

a e−j
πn(y−y′)

b + e−j
πm(x+x′)

a e−j
πn(y+y′)

b

]

=
1

4a

+∞∑
m=−∞

+∞∑
n=−∞

1(
πm
a

)2
+
(
πn
b

)2 − k2

[
e−j

πmx
a e+j πmx

′
a e−j

πny
b e+j πny

′
b − e−j

πmx
a e+j πmx

′
a

e−j
πny
b e−j

πny′
b − e−j

πmx
a e−j

πmx′
a e−j

πny
b e+j πny

′
b + e−j

πmx
a e−j

πmx′
a e−j

πny
b e−j

πny′
b

]
(2.293)

This series can be rewritten by grouping terms as
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G̃−(ρ̄, ρ̄′) =
1

4ab

+∞∑
m=−∞

+∞∑
n=−∞

1(
πm
a

)2
+
(
πn
b

)2 − k2

[
e−j

πmx
a e−j

πny
b ej

πny′
b 2j

(
e+j πmx

′
a − e−j

πmx′
a

2j

)
− e−j

πmx
a e−j

πny
b e−j

πny′
b 2j

(
e+j πmx

′
a − e−j

πmx′
a

2j

)]

=
1

4ab

+∞∑
m=−∞

+∞∑
n=−∞

1(
πm
a

)2
+
(
πn
b

)2 − k2

[
e−j

πmx
a e−j

πny
b 2j sin

(
πmx′

a

)
2je+j πny

′
b − e−j

πny′
b

2j

]

=
−1

ab

+∞∑
m=−∞

+∞∑
n=−∞

1(
πm
a

)2
+
(
πn
b

)2 − k2
e−j

πmx
a e−j

πny
b sin

(
πmx′

a

)
sin

(
πny′

b

)

(2.294)

Due to the fact that this is an odd function with respect to kx = πm
a , the exponential

e−jkxx evaluated in m between (−∞,+∞) can be written as −2j sin(kxx) evaluated in

m between (1,+∞). On the other hand, G̃−(ρ̄, ρ̄′) is an odd function with respect to

ky = πn
b , thus the exponential e−jkyy evaluated in n between (−∞,+∞) can be written

as −2j sin(kyy) between (1,+∞). This procedure is detailed in Appendix A.2.

G̃−(ρ̄, ρ̄′) =
−(−2j)

ab

+∞∑
m=1

+∞∑
n=−∞

1(
πm
a

)2
+
(
πn
b

)2 − k2
e−j

πny
b sin

(πmx
a

)
sin

(
πmx′

a

)

sin

(
πny′

b

)
=
−(−2j)(−2j)

ab

+∞∑
m=1

+∞∑
n=1

sin
(
πmx
a

)
sin
(
πmx′

a

)
sin
(πny

b

)
sin
(
πny′

b

)
(
πm
a

)2
+
(
πn
b

)2 − k2

=
4

ab

+∞∑
m=1

+∞∑
n=1

sin
(
πmx
a

)
sin
(
πmx′

a

)
sin
(πny

b

)
sin
(
πny′

b

)
(
πm
a

)2
+
(
πn
b

)2 − k2

(2.295)

These two series G̃+(ρ̄, ρ̄′) and G̃−(ρ̄, ρ̄′) are the basis of some of the Green’s functions

involved in rectangular waveguide and cavity problems. We are going to take them for

future studies but it is important to note that other combinations of these Green’s functions

are also possible. These series could be formulated in a similar way. Due to the fact that

all of them are slowly convergent, it is important to apply some acceleration techniques

to improve their convergence. For this reason, the series G̃+(ρ̄, ρ̄′) and G̃−(ρ̄, ρ̄′) are our
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starting point in the following developments but the outlined techniques could be easily

extended for the rest of possible combinations.

2.4.1 Application of Kummer’s Transformation

As in the general case of 2-D periodic Green’s functions, it is also necessary to accelerate

the convergence of the series involved in rectangular waveguide and cavity problems. For

this reason, once we have obtained some of the basis functions involved in the evaluation

of the magnetic and electric scalar and vector potentials, the transformations applied to

the general Green’s functions will be also applied in this particular case.

The same techniques can be used in these problems and, for instance, Ewald’s method

was proposed in [19]. The other strategy consists of accelerating the rectangular waveguide

and cavity Green’s functions by using Kummer’s transformation [21].

The difference in this case with respect to the general Green’s function is that kx0 = 0

and ky0 = 0 due to θ = 0◦. As we have mentioned before, if kx0 = 0 and ky0 = 0, the

two different approaches considered in Kummer’s transformation become the same and

therefore we can take the advantages of each approach. Thus, all the proposed methods

in the previous section can be also particularized when kx0 = 0 and ky0 = 0 to sum the

remaining part.

Specifically, in this section we will apply the spectral Kummer’s transformation by means

of extracting one and two terms and we focus on summing the asymptotic terms through

reducing the dimensionality of the series thanks to the analytical summation in one index.

It should be pointed out that the other combinations of these Green’s functions can be

accelerated in a similar way. The procedure would be the same as the presented below.

• Extraction of one term.

The procedure to be followed is the same that in the previous sections. Firstly, we

start with the series G̃+(ρ̄, ρ̄′).

G̃+(ρ̄, ρ̄′) =
4εmn
ab

+∞∑
m=0

+∞∑
n=0

cos
(
πmx
a

)
cos
(
πmx′

a

)
cos
(πny

b

)
cos
(
πny′

b

)
(
πm
a

)2
+
(
πn
b

)2 − k2
(2.296)
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Applying Kummer’s transformation, G̃+(ρ̄, ρ̄′) can be written as

G̃+(ρ̄, ρ̄′) =
4εmn
ab

+∞∑
m=0
∀m,n−

+∞∑
n=0

{m=n=0}

[
1(

πm
a

)2
+
(
πn
b

)2 − k2
− 1(

πm
a

)2
+
(
πn
b

)2
]

cos
(πmx

a

)
cos

(
πmx′

a

)
cos
(πny

b

)
cos

(
πny′

b

)
+ G̃00

+
4εmn
ab

+∞∑
m=0
∀m,n−

+∞∑
n=0

{m=n=0}

cos
(
πmx
a

)
cos
(
πmx′

a

)
cos
(πny

b

)
cos
(
πny′

b

)
(
πm
a

)2
+
(
πn
b

)2
︸ ︷︷ ︸

G̃e+

(2.297)

G̃00 is the value of the series in m = n = 0 where we do not apply the extraction.

The series G̃e+ has to be efficiently summed

G̃e+ =
4εmn
ab

+∞∑
m=0
∀m,n−

+∞∑
n=0

{m=n=0}

cos
(
πmx
a

)
cos
(
πmx′

a

)
cos
(πny

b

)
cos
(
πny′

b

)
(
πm
a

)2
+
(
πn
b

)2
=

4

ab

+∞∑
m=1

+∞∑
n=1

cos
(
πmx
a

)
cos
(
πmx′

a

)
cos
(πny

b

)
cos
(
πny′

b

)
(
πm
a

)2
+
(
πn
b

)2︸ ︷︷ ︸
S1

+
2

ab

+∞∑
m=1

cos
(
πmx
a

)
cos
(
πmx′

a

)
(
πm
a

)2︸ ︷︷ ︸
S2

+
2

ab

+∞∑
n=1

cos
(πny

b

)
cos
(
πny′

b

)
(
πb
b

)2︸ ︷︷ ︸
S3

(2.298)

The strategy followed to sum these series is trying to find an analytical expression

for the summation in one index to reduce the dimensionality of the series. We first

start with the series S1

S1 =
4

ab

+∞∑
m=1

cos
(πmx

a

)
cos

(
πmx′

a

) +∞∑
n=1

cos
(πny

b

)
cos
(
πny′

b

)
(
πm
a

)2
+
(
πn
b

)2 (2.299)

Applying the following trigonometric identity

cos(A) cos(B) =
cos(A−B) + cos(A+B)

2
(2.300)
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S1 can be expressed as follows

S1 =
4

ab

+∞∑
m=1

cos
(πmx

a

)
cos

(
πmx′

a

)
1

2

+∞∑
n=1

cos
(
πn(y−y′)

b

)
+ cos

(
πn(y+y′)

b

)
(
πm
a

)2
+
(
πn
b

)2
=

2

ab

+∞∑
m=1

cos
(πmx

a

)
cos

(
πmx′

a

)[ +∞∑
n=1

cos
(
πn(y−y′)

b

)
(
π
b

)2 [(mb
a

)2
+ n2

] +

+∞∑
n=1

cos
(
πn(y+y′)

b

)
(
π
b

)2 [(mb
a

)2
+ n2

]]
(2.301)

In the knowledge that the summations in n that appear in (2.301) can be analytically

expressed as follows

+∞∑
n=1

cos(xn)

w2 + n2
=

π

2w

cosh[(π − x)w]

sinh(πw)
− 1

2w2
(2.302)

S1 can be written as

S1 =
2

ab

+∞∑
m=1

cos
(πmx

a

)
cos

(
πmx′

a

)(
b

π

)2
[

π

2
(
mb
a

) cosh
[(
π −

(
π(y−y′)

b

))
mb
a

]
sinh(π

(
mb
a

)
)

− 1

2
(
mb
a

)2 +
π

2
(
mb
a

) cosh
[(
π −

(
π(y+y′)

b

))
mb
a

]
sinh(π

(
mb
a

)
)

− 1

2
(
mb
a

)2
]

=
2

ab

+∞∑
m=1

cos
(πmx

a

)
cos

(
πmx′

a

)(
b

π

)2
[
πa

2mb

cosh
[(
π −

(
π(y−y′)

b

))
mb
a

]
sinh(π

(
mb
a

)
)

+
πa

2mb

cosh
[(
π −

(
π(y+y′)

b

))
mb
a

]
sinh(π

(
mb
a

)
)

− a2

(mb)2

]
(2.303)

Now, we continue with series S2.

S2 =
2

ab

+∞∑
m=1

cos
(
πmx
a

)
cos
(
πmx′

a

)
(
πm
a

)2 =
2

ab

+∞∑
m=1

cos
(
πm(x−x′)

a

)
+ cos

(
πm(x+x′)

a

)
2
(
π
a

)2
m2

=
a2

abπ2

+∞∑
m=1

[
cos
(
πm(x−x′)

a

)
m2

+
cos
(
πm(x+x′)

a

)
m2

]
(2.304)
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In the knowledge that the summations in n that appear in (2.304) can be analytically

expressed as follows

+∞∑
n=1

cos(xn)

n2
=
x2

4
− xπ

2
+
π2

6
(2.305)

S2 can be written as

S2 =
a

bπ2

[(π(x−x′)
a

)2

4
−

(
π(x−x′)

a

)
π

2
+
π2

6
+

(
π(x+x′)

a

)2

4
−

(
π(x+x′)

a

)
π

2
+
π2

6

]

=
a

2bπ2

[
1

2

(
π(x− x′)

a

)2

− π2(x− x′)
a

+
2π2

3
+

1

2

(
π(x+ x′)

a

)2

− π2(x+ x′)

a

]
(2.306)

and similarly S3 can be written as

S3 =
b

2aπ2

[
1

2

(
π(y − y′)

b

)2

− π2(y − y′)
b

+
2π2

3
+

1

2

(
π(y + y′)

b

)2

− π2(y + y′)

b

]
(2.307)

Therefore, G̃e+ can be defined as

G̃e+ =
2

ab

+∞∑
m=1

cos
(πmx

a

)
cos

(
πmx′

a

)(
b

π

)2
[
πa

2mb

cosh
[(
π −

(
π(y−y′)

b

))
mb
a

]
sinh(π

(
mb
a

)
)

+
πa

2mb

cosh
[(
π −

(
π(y+y′)

b

))
mb
a

]
sinh(π

(
mb
a

)
)

− a2

(mb)2

]

+
a

2bπ2

[
1

2

(
π(x− x′)

a

)2

− π2(x− x′)
a

+
2π2

3
+

1

2

(
π(x+ x′)

a

)2

− π2(x+ x′)

a

]

+
b

2aπ2

[
1

2

(
π(y − y′)

b

)2

− π2(y − y′)
b

+
2π2

3
+

1

2

(
π(y + y′)

b

)2

− π2(y + y′)

b

]
(2.308)

An alternative option to sum G̃e+ is reported in [23,25], where the following relation

is proposed to sum efficiently the asymptotic part

G̃e+ =
a

3b
+
x2 + x′2

2ab
− x

b
− 1

4π

+∞∑
m=−∞

ln
(

4T+
mT
−
me
−2|Xm|

)
(2.309)
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where

T±m = cosh(Xm)− cos(Y ±) (2.310a)

Xm =
π

b

[
x−

(
m+

1

2

)
a− (−1)m

(
x′ − a

2

)]
(2.310b)

Y ± =
π

b
(y ± y′) (2.310c)

The summation by using this last option is more efficient than the previous one

due to the transformation into a logarithmic series. Now, we continue applying

Kummer’s transformation to the series G̃−(ρ̄, ρ̄′)

G̃−(ρ̄, ρ̄′) =
4

ab

+∞∑
m=1

+∞∑
n=1

[
1(

πm
a

)2
+
(
πn
b

)2 − k2
− 1(

πm
a

)2
+
(
πn
b

)2
]

sin
(πmx

a

)
sin

(
πmx′

a

)
sin
(πny

b

)
sin

(
πny′

b

)

+
4

ab

+∞∑
m=1

+∞∑
n=1

sin
(
πmx
a

)
sin
(
πmx′

a

)
sin
(πny

b

)
sin
(
πny′

b

)
(
πm
a

)2
+
(
πn
b

)2︸ ︷︷ ︸
G̃e−

(2.311)

The series G̃e− has to be efficiently summed

G̃e− =
4

ab

+∞∑
m=1

+∞∑
n=1

sin
(
πmx
a

)
sin
(
πmx′

a

)
sin
(πny

b

)
sin
(
πny′

b

)
(
πm
a

)2
+
(
πn
b

)2 (2.312)

As stated before, the strategy to sum this series is trying to find an analytical

expression for the summation in one index to reduce the dimensionality of the series.

G̃e− =
4

ab

+∞∑
m=1

sin
(πmx

a

)
sin

(
πmx′

a

) +∞∑
n=1

sin
(πny

b

)
sin
(
πny′

b

)
(
πm
a

)2
+
(
πn
b

)2 (2.313)

Applying the following trigonometric identity

sin(A) sin(B) =
cos(A−B)− cos(A+B)

2
(2.314)
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G̃e− remains

G̃e− =
4

ab

+∞∑
m=1

sin
(πmx

a

)
sin

(
πmx′

a

)
1

2

+∞∑
n=1

cos
(
πn(y−y′)

b

)
− cos

(
πn(y+y′)

b

)
(
πm
a

)2
+
(
πn
b

)2
=

2

ab

+∞∑
m=1

sin
(πmx

a

)
sin

(
πmx′

a

)[ +∞∑
n=1

cos
(
πn(y−y′)

b

)
(
π
b

)2 [(mb
a

)2
+ n2

] − +∞∑
n=1

cos
(
πn(y+y′)

b

)
(
π
b

)2 [(mb
a

)2
+ n2

]]
(2.315)

In the knowledge that the summations in n that appear in (2.301) can be analytically

expressed as follows

+∞∑
n=1

cos(xn)

w2 + n2
=

π

2w

cosh[(π − x)w]

sinh(πw)
− 1

2w2
(2.316)

We can sum G̃e− as

G̃e− =
2

ab

+∞∑
m=1

sin
(πmx

a

)
sin

(
πmx′

a

)(
b

π

)2
[

π

2
(
mb
a

) cosh
[(
π −

(
π(y−y′)

b

))
mb
a

]
sinh(π

(
mb
a

)
)

−
�
�
�
��1

2
(
mb
a

)2 − π

2
(
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a

) cosh
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π −

(
π(y+y′)

b

))
mb
a

]
sinh(π

(
mb
a

)
)

+

�
�
�
��1

2
(
mb
a

)2
]

=
2

ab

+∞∑
m=1

sin
(πmx

a

)
sin

(
πmx′

a

)(
b

π

)2 π

2
(
mb
a

)
sinh(π

(
mb
a

)
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[(
π −

(
π(y − y′)

b

))
mb

a

]
− cosh

[(
π −

(
π(y + y′)

b

))
mb

a

]}
(2.317)

Regrouping terms, G̃e− is finally written as

G̃e− =
1

π

+∞∑
m=1

sin
(
πmx
a

)
sin
(
πmx′

a

)
m sinh

(
πmba

){
cosh

[
mb

a

(
π − π(y − y′)

b

)]
− cosh

[
mb

a

(
π − π(y + y′)

b

)]} (2.318)
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An alternative option to sum G̃e− is reported in [23,25], where the following relation

is proposed to sum efficiently the asymptotic part

G̃e− =
1

4π

+∞∑
m=−∞

(−1)m ln
T+
m

T−m
(2.319)

where Tm, Xm and Y are defined in (2.310a), (2.310b) and (2.310c), respectively.

Thus, through Kummer’s transformation we have been able to accelerate the conver-

gence of the spectral series involved in rectangular waveguide and cavity problems

by the extraction of one term and the analytical sum of this in one index.

• Extraction of two terms.

In this part we are interested in the extraction of one more term in order to accelerate

even more the convergence of these functions. The advantage is that the following

retained term can also be summed analytically in one index.

Thus, we can apply Kummer’s transformation through the extraction of the first

two terms by particularizing the expression (2.117) in the Option A and (2.122) in

the Option B for kx0 = ky0 = 0.
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(2.320)
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The first series G̃e1+ has already been summed in the extraction of one term by two

different procedures. The second series G̃e2+ is the subject of study in this part and

can be separate into

G̃e2+ =
4εmnk

2
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where the series S2 and S3 cannot be reduced because they are one dimensional

summations and they cannot be expressed analytically. Thus, we have to sum the

series S1

S1 =
4k2

ab

+∞∑
m=1

+∞∑
n=1

cos
(
πmx
a

)
cos
(
πmx′

a

)
cos
(πny

b

)
cos
(
πny′

b

)
((

πm
a

)2
+
(
πn
b

)2)2

=
4k2

ab

+∞∑
m=1

cos
(
πmx
a

)
cos
(
πmx′

a

)
(
π
b

)4 +∞∑
n=1

cos
(πny

b

)
cos
(
πny′

b

)
((

bm
a

)2
+ n2

)2

(2.322)

Using the trigonometric identity written in (2.300), S1 can be summed as follows

S1 =
4k2
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(2.323)

where S can be expressed as
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+∞∑
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If we name w = bm
a and y1 = π(y−y′)

b and y2 = π(y+y′)
b and we use the following

relation,

+∞∑
n=1

cos (nx)

(a2 + n2)2
=

+∞∑
n=0

cos (nx)

(a2 + n2)2
− 1

a4
=

1

2a4
+

π

4a3
cosech(πa)

[
cosh(a(π − x))

+ ax sinh(a(π − y))
]

+
π2

4a2
cosech2(πa) cosh(ax)− 1

a4
=
−1

2a4
+

π

4a3
cosech(πa)

[cosh(a(π − x)) + ax sinh(a(π − y))] +
π2

4a2
cosech2(πa) cosh(ax)

(2.325)

the series S can be summed as
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That is
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(2.327)
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Next, we continue applying the same procedure to the series G̃−(ρ̄, ρ̄′).

G̃−(ρ̄, ρ̄′) =
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The first series G̃e1− has already been summed in the extraction of one term by two

different procedures. The second series G̃e2− is the subject of study in this part and

can be separate into
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Using the trigonometric identity written in (2.314), G̃e2− can be summed as follows
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where S can be expressed as
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If we employ the previous notation w = bm
a , y1 = π(y−y′)

b and y2 = π(y+y′)
b and we

use the following relation,
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the series S can be summed as
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That is
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This can be an alternative to improve the convergence of Green’s functions involved

in rectangular waveguide and cavity problems using only the second order approxi-

mation of Kummer’s transformation.

To summarize, in this section we have accelerated the functions involved in the eval-

uation of the Green’s functions in rectangular waveguide and 2-D cavity problems. The

acceleration technique that has been used for this purpose is the spectral Kummer’s trans-

formation. It is important to note that this technique has been reported to the extraction

of one and two terms.

Thus, the asymptotic retained terms have been summed efficiently through reducing

the dimensionality of the series by means of summing analytically the remaining series in

one index. This implies a significant improvement as will be shown in Chapter 3. This

formulation can be easily extended to the other possible basis functions in rectangular

waveguide and cavity problems.

As a general conclusion of this chapter, we have attempted to improve the convergence

of the 2-D Green’s functions with 2-D periodicity as an extension of our work developed

in [11] and apply the acquired knowledge to accelerate the series involved in the practical

case of rectangular waveguide and 2-D cavity problems.



Chapter 3

Numerical Results

In this chapter, we show the numerical results that have been obtained through the soft-

ware tool developed to verify the reported methods. Thus, the convergence rate of each

technique could be compared to each other. This allow us to discuss about the efficiency

of the outlined methods and reach important conclusions.

This chapter is organized as follows. Section 3.1 show all the results derived from

applying the transformations done in Chapter 1 for the 2-D Green’s functions with 1-D

periodicity. In this section, we first review both the direct convergence of the spectral and

the spatial formulation of the 2-D Green’s function with 1-D periodicity and the alternative

convergence through the application of Ewald’s method. This results are based on the

formulation developed in [5, 11].

Once we have them as a starting point, we could compare these with the new strategies

outlined in this work about the application of Kummer’s transformation. Thus, we could

compare the improvement that implies the use of each proposed approach and we could

analyse the advantages of using one or the other strategy. In addition, a comparison

between the different techniques reported to sum the asymptotic series when we use both

approaches of applying Kummer’s transformation will be carried out.

Finally, in this section we show the improvement in the computation of the parallel-plate

waveguide Green’s functions thanks to the use of the spectral Kummer’s transformation.

The results obtained from the extraction of one, two, three and Q terms will be compared.

On the other hand, in Section 3.2 we deal with the acceleration of the slowly convergent

series involved in the computation of the 2-D Green’s functions with 2-D periodicity and

their gradients. First, we focus on the convergence obtained directly from the spatial and

spectral formulation. Due to their slowly convergences, we show the results of applying

both Ewald’s method to the 2-D periodic Green’s function and its gradient and Kummer’s

165
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transformation only to the spectral Green’s function. In addition, we study the differences

between the application of each approach in the spectral Kummer’s transformation in order

to deduce in which cases it is advisable to use one or the other. For each approach, we

compare the different techniques presented in Chapter 2 to sum the retained part of the

Kummer’s transformation.

Lastly in this section, we show the improvement in the computation of the rectangular

waveguide and 2-D cavity Green’s functions thanks to the use of the spectral Kummer’s

transformation. The results obtained from the extraction of one and two terms will be

compared.

It is important to note that the results obtained in this chapter verify the theoretical

development carried out previously and represent the basis of the general conclusions

obtained from this project.

3.1 The 2-D Green’s Functions With 1-D Periodicity

In this section, we show the relative error (%) of the 2-D Green’s functions with 1-D

periodicity evaluated by using their direct formulations and the employed methods to

improve their convergences. Furthermore, we show the improvement obtained by applying

Kummer’s transformation to the practical Green’s functions necessary in parallel-plate

waveguide problems.

3.1.1 Revisited of the Spectral Kummer’s Transformation

In this part, we show the results of applying the spectral Kummer’s transformation. It

should be pointed out that the starting point to compare the techniques reported in

Section 1.1 is the direct formulation of the spatial and the spectral Green’s function.

This formulation was developed in our previous work [11]. In [11], we also detailed the

application of Ewald’s method. This formulation will be used to show the improvement

that this technique implies through programming it. Regarding Kummer’s transformation,

we compare the convergence rate provided by each approach and, for each approach, the

different techniques proposed to sum the remaining part.

For the purposes described, in Fig. 3.1 we plot the relative error (%) of the 2-D Green’s

function with 1-D periodicity versus the number of terms used M . Fig. 3.1(a) shows

the convergence rate for an observation point near the source (x, z) = (10−8λ, 10−8λ)

and Fig. 3.1(b) shows the convergence rate for an observation point far from the source

(x, z) = (0.1λ, 0.1λ).
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(a) The observation point is near the source (x, z) =
(10−8λ, 10−8λ).

(b) The observation point is far from the source
(x, z) = (0.1λ, 0.1λ).

Figure 3.1: Relative error (%) of 2-D Green’s function with 1-D periodicity for different
observation points and for θ = 45◦ and d = 0.5λ.

As can be seen, when the observation point is far from the source, the spectral definition

of the Green’s function is rapidly convergent due to the exponential decay according

to the distance between the source and the observation point. On the contrary, when

the observation point is near the source, neither of the two definitions exhibit a rapid

convergence. It can be noted that in this case the spatial definition ensures a smaller

global relative error. Even so, we can conclude that the closer the observation point is to

the source, the slower the convergence of the Green’s functions is. For this reason, the

real purpose is to accelerate the Green’s function at this particular case.

Thus, the relative error (%) of the 2-D Green’s function with 1-D periodicity evaluated

through Ewald’s method is shown in Fig. 3.2(a) for an observation point near the source

(x, z) = (10−8λ, 10−8λ) and in Fig. 3.2(b) for an observation point far from the source

(x, z) = (0.1λ, 0.1λ). In both cases, θ = 45◦ and d = 0.5λ.

As can be noted, using Ewald’s method we are able to compute the Green’s function

both near and far from the source with few terms. Only with the use of two Ewald’s

terms, a relative error (%) in the range of 10−8 can be achieved.

Taking this as a starting point, the other method employed to accelerate the conver-

gence of these Green’s functions is Kummer’s transformation. Some numerical results

about the work previously done are reported in [11]. As a novelty, we study here two

different approaches in the extraction of the asymptotic part. The formulation concerning

these options is described in Section 1.1. To understand the importance of the improve-

ment caused by each approach on the evaluation of the Green’s function, Fig. 3.3 shows

the absolute error (%) of the dynamic part, understood as the original series minus the
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(a) The observation point is near the source (x, z) =
(10−8λ, 10−8λ).

(b) The observation point is far from the source
(x, z) = (0.1λ, 0.1λ).

Figure 3.2: Relative error (%) of 2-D Green’s function with 1-D periodicity evaluated
through Ewald’s method for different observation points and for θ = 45◦ and d = 0.5λ.

(a) The angle of incidence of the exitation plane wave
is θ = 45◦.

(b) The angle of incidence of the exitation plane wave
is θ = 0◦.

Figure 3.3: Absolute error (%) of the dynamic part of the 2-D Green’s function with
1-D periodicity when we apply Kummer’s transformation by the two different appoaches
proposed. The observation point is (x, z) = (0.1λ, 10−5λ) and d = 0.5λ.
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asymptotic series, when we extract several terms with both approaches for an arbitrary

value of θ = 45◦ (see Fig. 3.3(a)) and for θ = 0◦ (see Fig. 3.3(b)).

There are two conclusions that could be derived from these figures. The first one is that

the Option A, that is, the extraction through the approach of kxm, is more accurate than

the other one
(

2πm
d

)
. For this reason, to obtain a certain error we need less terms. This

seems to indicate that when we use the Option A, we are taking a better approximation

of the spectral series and therefore, the extraction of a certain number of terms results

in a better improvement in comparison to the Option B for the same number of retained

terms.

The disadvantage of the Option A is that the retained terms contain the working fre-

quency because they contain the factor kx0. This can be a drawback when we are inter-

ested in carrying out a frequency sweep due to the fact that the asymptotic part has to

be recalculated in all steps.

The second conclusion that could be obtained is that the two different approaches be-

come the same when θ = 0◦. As mentioned before, the only term that distinguish these

two options is kx0. Thus, when θ = 0◦ → kx0 = 0, they become the same. This conclusion

has been obtained previously when we explain the formulation but, thanks to program

these alternative dynamic parts, it has been proved.

Once we have understood the difference of using each approach in the extraction of the

asymptotic terms in Kummer’s transformation, we go into detail about the simulation of

the studied methods proposed in Chapter 1 to sum the remaining part.

If we choose the Option A (kxm) to extract the asymptotic terms, we propose to sum it

by the following options:

• Option A.1: Sum by Ewald’s method.

This first alternative gives us the possibility of extracting one or two terms in Kum-

mer’s transformation and summing these by using Ewald’s method. The formulation

is detailed in Subsection 1.1.1. The results from the application of this technique

are shown in Fig. 3.4 for different observation points.

As can be seen in this figure, through this formulation we are able to extract one or

two terms, depending on the relative error that we need, and sum them efficiently

thanks to the the correspondence established between these terms in the spectral

domain and these terms in Ewald’s method.
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(a) The observation point is near the source (x, z) =
(10−8λ, 10−8λ).

(b) The observation point is far from the source
(x, z) = (0.1λ, 0.1λ).

Figure 3.4: Relative error (%) of 2-D Green’s function with 1-D periodicity evaluated
through Kummer’s transformation for different observation points and for θ = 45◦. The
remaining part is summed by using Ewald’s method.

• Option A.2: Lerch transcendent.

This second alternative gives us the possibility of extracting Q terms in Kummer’s

transformation and summing these by using the Lerch transcendent. The formula-

tion is detailed in Subsection 1.1.2. The results from the application of this technique

are shown in Fig. 3.5 for different observation points.

As can be seen in this figure, through this formulation we are able to extract the

number of terms that we need, depending on the relative error, and sum them in

a semi-closed form thanks to the use of the Lerch transcendent. It is important

to note that the more terms we extract, the smaller value we obtain from them.

Moreover, we should pointed out that the Lerch transcendent is implemented by a

summation. So, the closer the observation point is to the source, the more terms in

this summation are needed.

• Option A.3: Summation by parts technique.

The last alternative gives us the possibility of extracting Q terms in Kummer’s

transformation and summing these by using the summation by parts technique.

The formulation is detailed in Subsection 1.1.3. The results from the application of

this technique are shown in Fig. 3.6 for different observation points.

As can be seen in this figure, through this formulation we are able to extract the

number of terms that we need, depending on the relative error, and sum one part

numerically and the other analytically thanks to the use of the summation by parts

technique. As in the previous case, the more terms we extract, the smaller value
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(a) The observation point is near the source (x, z) =
(0.01λ, 10−5λ).

(b) The observation point is far from the source
(x, z) = (0.1λ, 0.1λ).

Figure 3.5: Relative error (%) of 2-D Green’s function with 1-D periodicity evaluated
through Kummer’s transformation for different observation points and for θ = 45◦. The
remaining part is summed by using the Lerch transcendent.

(a) The observation point is near the source (x, z) =
(0.1λ, 10−5λ).

(b) The observation point is far from the source
(x, z) = (0.1λ, 0.1λ).

Figure 3.6: Relative error (%) of 2-D Green’s function with 1-D periodicity evaluated
through Kummer’s transformation for different observation points and for θ = 45◦. The
remaining part is summed using the summation by parts technique.
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we obtain from them. Moreover, we should point out that if the observation point

is getting closer to the source, the oscillating behaviour decreases. Therefore, the

advantage of this method disappears, that is, more and more terms in the numerical

summation are needed.

To summarize, we have shown the results of implementing the proposed methods to sum

the remaining part when we use the first approach in the application of Kummer’s trans-

formation.

If we choose the Option B (2πm
d ) to extract the asymptotic terms, we propose to sum it

by the following options:

• Option B.1: Sum by Ewald’s method.

This first alternative gives us the possibility of extracting one term in Kummer’s

transformation and summing it by using Ewald’s method. The formulation is de-

tailed in Subsection 1.1.4. The result from the application of this technique is shown

in Fig. 3.7 for different observation points.

As can be seen in this figure, through this formulation we are able to extract the first

asymptotic term and sum it efficiently thanks to the the correspondence established

between this term in the spectral domain and this term in Ewald’s method.

If we compare the Fig. 3.4 and the Fig. 3.7, we could observe the different improve-

ment achieved by each approach that we have mentioned before. When one term is

retained, the relative error obtained when we sum a certain number of terms M is

smaller in the Option A than in the Option B.

• Option B.2: Polylogarithmic function.

This second alternative gives us the possibility of extracting Q terms in Kummer’s

transformation and summing these by using the polylogarithmic function. The for-

mulation is detailed in Subsection 1.1.5. The results from the application of this

technique are shown in Fig. 3.8 for different observation points.

As can be seen in this figure, through this formulation we are able to extract the

number of terms that we need, depending on the relative error, and sum them in a

semi-closed form thanks to the use of the polylogarithmic function. It is important

to note that the more terms we extract, the smaller value we obtain from them.

Moreover, we should pointed out that the polylogarithmic function is implemented

by a summation. So, the closer the observation point is to the source, the more

terms in this summation are needed.
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(a) The observation point is near the source (x, z) =
(10−8λ, 10−8λ).

(b) The observation point is far from the source
(x, z) = (0.1λ, 0.1λ).

Figure 3.7: Relative error (%) of 2-D Green’s function with 1-D periodicity evaluated
through Kummer’s transformation for different observation points and for θ = 45◦. The
remaining part is summed by using Ewald’s method.

(a) The observation point is near the source (x, z) =
(0.01λ, 10−5λ).

(b) The observation point is far from the source
(x, z) = (0.1λ, 0.1λ).

Figure 3.8: Relative error (%) of 2-D Green’s function with 1-D periodicity evaluated
through Kummer’s transformation for different observation points and for θ = 45◦. The
remaining part is summed by using polylogarithms.
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The main advantage of this formulation is that the remaining part is quasi-static, so

that, it is not necessary to recalculate the polylogarithms at each frequency step.

• Option B.3: Summation by parts technique.

The last alternative gives us the possibility of extracting Q terms in Kummer’s

transformation and summing these by using the summation by parts technique.

The formulation is detailed in Subsection 1.1.6. The results from the application of

this technique are shown in Fig. 3.9 for different observation points.

As can be seen in this figure, through this formulation we are able to extract the

number of terms that we need, depending on the relative error, and sum one part

numerically and the other analytically thanks to the use of the summation by parts

technique. As in the previous case, the more terms we extract, the smaller value we

obtain from them. Moreover, we should pointed out that if the observation point

is getting closer to the source, the oscillating behaviour decreases. Therefore, the

advantage of this method disappears, that is, more and more terms in the numerical

summation are needed.

To summarize, we have shown the results of implementing the proposed methods to

sum the remaining part when we use the second approach in the application of Kummer’s

transformation.

As a general conclusion of this section, we have shown the convergence rate of the

2-D Green’s functions with 1-D periodicity and the acceleration of these convergences

achieved through the application of both Ewald’s method and Kummer’s transformation.

We have compared the improvement and understood the differences of each approach and

their advantages and disadvantages. Lastly, we have shown the implementation of the

strategies reported to sum the remaining part to verify the formulations detailed in the

theoretical sections.
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(a) The observation point is near the source (x, z) =
(0.1λ, 10−5λ).

(b) The observation point is far from the source
(x, z) = (0.1λ, 0.1λ).

Figure 3.9: Relative error (%) of 2-D Green’s function with 1-D periodicity evaluated
through Kummer’s transformation for different observation points and for θ = 45◦. The
remaining part is summed using the summation by parts technique.

3.1.2 Green’s Functions of Parallel-Plate Waveguides

In this subsection, we focus on the Green’s functions involved in parallel-plate waveguide

problems. Specifically, we study the convergence of the basis Green’s functions G+ and

G− that we have outlined in Section 1.2.

In this practical case, we need to evaluate special Green’s functions which are also slowly

convergent. For this reason, it is necessary to apply some transformations to accelerate

their computations. Thus, in this part we show the results obtained from the application

of Kummer’s transformation to these Green’s functions. Specifically, we could see the

improvement achieved from the extraction of one, two, three and Q terms.

For this purpose, Fig. 3.10 shows the relative error (%) of the Green’s functions involved

in parallel-plate waveguide problems for an observation point near the source (x, z) =

(a/5 + a10−6, a10−6) and Fig. 3.11 shows the relative error (%) of the Green’s functions

involved in parallel-plate waveguide problems for an observation point far from the source

(x, z) = (4a/5, 4a/5). In these simulations a = 0.125λ and the source is located at

(x′, z′) = (a/5λ, 0λ).

As can be seen, these functions are slowly convergent both in the spatial and in the

spectral domain. As in the general 2-D Green’s function, when the observation point is

far from the source, the spectral definition of the Green’s function ensures a less global

relative error and when the observation point is near the source, the spatial definition
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(a) G+ (b) G−

Figure 3.10: Relative error (%) of Green’s functions in parallel-plate waveguides for an
observation point near the source (x, z) = (a/5 + a10−6, a10−6). The source is located at
(x′, z′) = (a/5λ, 0λ).

(a) G+ (b) G−

Figure 3.11: Relative error (%) of Green’s functions in parallel-plate waveguides for an
observation point far from the source (x, z) = (4a/5, 4a/5). The source is located at
(x′, z′) = (a/5λ, 0λ).
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ensures a smaller global relative error. Even so, we can conclude that neither of the two

definitions exhibit a good convergence for none of these cases.

For this reason and due to the importance of the efficiency in the computation of these

functions in real problems, we need to apply some acceleration techniques to improve this

slow convergence, particularly near the source.

To verify the formulation of Kummer’s transformation applied to these Green’s func-

tions, we show the relative error (%) of G+ and G− in Fig. 3.12 for an observation point

near the source (x, z) = (a/5 + a10−6, a10−6), in Fig. 3.13 for an intermediate distance

between the observation point and the source (x, z) = (2a/5, a10−5) and in Fig. 3.14 for

an observation point far from the source (x, z) = (4a/5, 4a/5).

In these figures, we compare the convergence rate of this technique when different num-

bers of terms are extracted. As can be seen, in Fig. 3.14 the additional term proposed

in [16,17] and used in the extraction of two terms helps when the observation point is far

from the source because it is proportional to |z−z′|. However, in this case the convergence

of the spectral definition without any transformation is fast enough. On the contrary, when

the observation point is near the source, which is the interesting case due to its slow con-

vergence, this additional term do not add any improvement over the extraction of only

one term (see Fig. 3.12).

As can be see in this figure, when we extract three terms, a relative error (%) about

10−6 can be achieved with less than 20 terms in the worst case scenario, that is, near the

source.

As a general conclusion of this section, we have shown the convergence rate of the series

involved in the computation of the Green’s functions needed in parallel-plate waveguide

problems. We have also shown the acceleration of this convergence achieved through

the application of Kummer’s transformation. The convergence rates that provide the

extraction of one, two and three terms have been compared each other. This implies a

considerable improvement on the evaluation of these Green’s functions because a smaller

relative error can be achieved with the summation of few terms in comparison to the

original functions.

This can be used in different software tools which need to compute these Green’s func-

tions many times in the electromagnetic analysis of microwave devices inside parallel-plate

waveguides and periodic structures.
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(a) G+ (b) G−

Figure 3.12: Relative error (%) of Green’s functions in parallel-plate waveguides G+ and
G− for an observation point near the source (x, z) = (a/5 + a10−6, a10−6). The source is
located at (x′, z′) = (a/5λ, 0λ). Comparison between different numbers of extracted terms
in Kummer’s technique.

(a) G+ (b) G−

Figure 3.13: Relative error (%) of Green’s functions in parallel-plate waveguides G+ and
G− for an intermediate distance between the observation point and the source (x, z) =
(2a/5, a10−5). The source is located at (x′, z′) = (a/5λ, 0λ). Comparison between different
numbers of extracted terms in Kummer’s technique.
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(a) G+ (b) G−

Figure 3.14: Relative error (%) of Green’s functions in parallel-plate waveguides G+ and
G− for an observation point far from the source (x, z) = (4a/5, 4a/5). The source is
located at (x′, z′) = (a/5λ, 0λ). Comparison between different numbers of extracted terms
in Kummer’s technique.

3.2 The 2-D Green’s Functions With 2-D Periodicity

In this section, we show the relative error (%) of the 2-D Green’s functions with 2-D

periodicity achieved not only by the direct formulations but also by the applied methods

to improve their convergences. Furthermore, we show the improvement obtained through

applying Kummer’s transformation to the practical Green’s functions needed in the rect-

angular waveguide and 2-D cavity problems.

It is important to note that for the 2-D simulations, we sort the pairs (m,n) (which are

the indexes of the summation) by order of importance in the convergence of the series.

For this reason, the figures shown in this section plot the convergence versus de ‘Number

of terms’ which are the number of the pairs (m,n) by order taken into account.

3.2.1 Green’s Functions and the Gradient of Green’s Functions

Firstly, we focus on the convergence of the 2-D Green’s function with 2-D periodicity and

its gradient in both the spectral and the spatial domain. Thus, without any transformation

we could analyse the convergence problems that these series exhibit. This leads us to apply

any transformation on them in order to obtain a faster convergence rate. The same applies

to the components of the gradient.

Specifically, Fig. 3.15 shows the relative error (%) of 2-D Green’s function with 2-D

periodicity in the spectral and spatial domains for an observation point near the source
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(a) The observation point is near the source (x, y) =
(10−8λ, 10−8λ).

(b) The observation point is far from the source
(x, y) = (0.1λ, 0.1λ).

Figure 3.15: Relative error (%) of spectral and spatial 2-D Green’s functions with 2-D
periodicity evaluated through the direct formulations for θ = 45◦ and φ = 45◦. In both
cases, d1 = d2 = 0.25λ.

(x, y) = (10−8λ, 10−8λ) (see Fig. 3.15(a)) and for an observation point far from the

source (x, y) = (0.1λ, 0.1λ) (see Fig. 3.15(b)). In both cases, θ = 45◦ and φ = 45◦ and

d1 = d2 = 0.25λ.

As can be seen, these functions are slowly convergent in both domains. This slow

convergence is independent of the location of the observation point. This is an important

difference with respect to 2-D Green’s function with 1-D periodicity because neither near

or far from the source the 2-D periodic Green’s function exhibits a good convergence.

Also, it can be seen in the spectral definition, where the exponential decay factor has

disappeared. Thus, we can conclude that neither of the two definitions exhibit a good

convergence for none of these cases. Even so, when the observation point is far from the

source, the spectral definition of the Green’s function ensures a less global relative error.

On the contrary, when the observation point is near the source, the spatial definition

ensures a smaller global relative error.

Once we have seen the convergence rate of the direct formulations, we focus on their

gradients. For this aim, Fig. 3.16 plots the x and y components of the gradient of the 2-D

Green’s functions with 2-D periodicity for an observation point near the source. On the

other hand, Fig. 3.17 plots the x and y components for an observation point far from the

source. The formulation of these components is detailed in Subsection 2.1.2.

These figures show that the components of the gradients are also slowly convergent in

both domains. This convergence problem happens not only near the source but also far

from the source.
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(a) x component (b) y component

Figure 3.16: Relative error (%) of the gradient of spectral and spatial 2-D Green’s functions
with 2-D periodicity for an observation point near the source (x, y) = (10−8λ, 10−8λ), with
θ = 45◦ and φ = 45◦. In both cases, d1 = d2 = 0.25λ.

(a) x component (b) y component

Figure 3.17: Relative error (%) of the gradient of spectral and spatial 2-D Green’s functions
with 2-D periodicity for an observation point far from the source(x, y) = (0.1λ, 0.1λ), with
θ = 45◦ and φ = 45◦. In both cases, d1 = d2 = 0.25λ.
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Thus, as a general conclusion of this section, the extremely slow convergences of the

2-D Green’s functions with 2-D periodicity and their gradients seem to indicate that it is

especially important to apply any of the acceleration methods proposed in the following

section.

3.2.2 Ewald’s Method

As stated above, the 2-D periodic Green’s functions and the components of their gradients

are extremely slowly convergent. For this reason, in Chapter 2 we have explained some

acceleration techniques to apply on them.

One of the employed transformation is Ewald’s method. This technique provides an

alternative series to evaluate the Green’s function with a faster convergence rate. As the

formulation of Ewald’s components is detail in Section 2.2, we now show the convergence

rate of the 2-D periodic Green’s function and its gradient evaluated through this technique.

Thus, Fig. 3.18 shows the relative error (%) of the 2-D periodic Green’s function using

Ewald’s method for an observation point near the source (x, y) = (10−8λ, 10−8λ) (see Fig.

3.18(a)) and for an observation point far from the source (x, y) = (0.1λ, 0.1λ) (see Fig.

3.18(b)).

As we can see in these figure, Ewald’s method provides a rapidly convergence both

near and far from the source. Through the application of this technique, we could obtain

a relative error (%) in the range of 10−8 in less that 30 terms in the one-dimensional

summation. This confirms that Ewald’s method is one of the best in most scenarios

because of its versatility and good compromise between accuracy and efficiency.

Now, we apply this technique to the components of the gradient of the Green’s function.

The results of this procedure, explained in Subsection 2.2.1, are shown in Fig. 3.19(a) for

an observation point near the source (x, y) = (10−8λ, 10−8λ) and in Fig. 3.19(b) for an

observation point far from the source (x, y) = (0.1λ, 0.1λ).

These figures show a great improvement of the convergence rate in the evaluation of the

gradient obtaining a relative error (%) about 10−10 using less than 15 terms. Remember

that if we use the direct definition of the gradient, we need a lot of terms to obtain a

relative error much larger than this.

As a general conclusion of this section, we have verified that, through Ewald’s method,

a small number of terms is needed to obtain the 2-D Green’s function and its gradient

with high accuracy. Although this technique might imply a very good improvement over

the direct formulations, we will show the numerical results obtained from the application
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(a) The observation point is near the source (x, y) =
(10−8λ, 10−8λ).

(b) The observation point is far from the source
(x, y) = (0.1λ, 0.1λ).

Figure 3.18: Relative error (%) of the 2-D Green’s function with 2-D periodicity evaluated
by using Ewald’s method for different observation points with θ = 45◦ and φ = 45◦. In
both cases, d1 = d2 = 0.25λ.

(a) The observation point is near the source (x, y) =
(10−8λ, 10−8λ).

(b) The observation point is far from the source
(x, y) = (0.1λ, 0.1λ).

Figure 3.19: Relative error (%) of the gradient of the 2-D Green’s function with 2-D
periodicity evaluated by using Ewald’s method for different observation points with θ = 45◦

and φ = 45◦. In both cases, d1 = d2 = 0.25λ.
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of other techniques in order to offer the readers the advantages and disadvantages of each

method by comparison.

3.2.3 Spectral Kummer’s Transformation

The other acceleration technique explained in Chapter 2 is Kummer’s transformation.

This technique achieves an improvement of the convergence through the extraction of the

asymptotic term and its efficient summation. This leads to a faster evaluation rate in

comparison to the computation of the 2-D periodic Green’s functions without applying

any transformation. As the formulation of Kummer’s method is detailed in Section 2.3, we

now show the relative error (%) of the 2-D Green’s function with 2-D periodicity evaluated

through this technique. In addition, we compare the convergence rate achieved by each

approach and, for each approach, the different techniques proposed to sum the remaining

part.

Firstly, in Fig. 3.20 we plot the convergence rate of the dynamic part when we apply

Kummer’s transformation by using either approach. Fig. 3.20(a) shows the result when

we use an arbitrary angle of incidence θ = 45◦ and Fig. 3.20(a) shows the result when we

use the particular angle of incidence θ = 0◦.

This figure is important to understand the difference between the two approaches in

the application of Kummer’s technique. As we summarized in Section 3.1.1 for the case

of 2-D Green’s function with 1-D periodicity, there are two conclusions. The first is

that the Option A (k̄mn) is more accurate than the other one so, we are taking a better

approximation of the spectral series. Therefore, the extraction of a certain number of

terms results in a better improvement in comparison to the Option B
(

2πm
d1
, 2πn
d2

)
for the

same number of retained terms.

The advantage of the Option B compared to the other one is that the retained terms do

not contain the working frequency. This is the perfect situation when we are interested

in carrying out a frequency sweep due to the fact that the asymptotic part is no longer

necessary to be recalculated in all steps. This results in a computational time saving.

The second conclusion that could be obtained is that the two different approaches be-

come the same when θ = 0◦. As mentioned before, the only terms that distinguish these

two options in the case of 2-D Green’s function with 2-D periodicity is k̄w0. Thus, when

θ = 0◦ → k̄w0 = 0, they become the same. This conclusion has been previously obtained

when we explain the formulation but, thanks to program these alternative dynamic parts,

it has been proved.
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(a) The angle of incidence of the exitation plane wave
is θ = 45◦.

(b) The angle of incidence of the exitation plane wave
is θ = 0◦.

Figure 3.20: Absolute error (%) of the dynamic part of the 2-D Green’s function with
2-D periodicity when we apply Kummer’s transformation by the two different appoaches
proposed. The observation point is (x, y) = (0.01λ, 0.001λ). In both cases, d1 = d2 =
0.25λ.

It is important to note that the dynamic part is the component responsible to ensure the

convergence rate, that is, the convergence rate is imposed by the dynamic part. Hence, the

importance of choosing optimally the strategy in the extraction of the asymptotic terms

in Kummer’s technique. Another issue will be how to sum the remaining part.

So, once we have understood the difference of using one or the other approach in the

extraction of the asymptotic terms in Kummer’s transformation, we go into detail about

the simulation of the studied methods proposed in Chapter 2 to sum the remaining part.

If we choose the Option A (k̄mn) to extract the asymptotic terms, we propose to sum it

by the following option:

• Option A.1: Sum by Ewald’s method.

This first alternative gives us the possibility of extracting one, two and Q terms

in Kummer’s transformation and summing these by using Ewald’s method. The

formulation is detailed in Subsection 2.3.1. The results from the application of this

technique are shown in Fig. 3.21 for different observation points.

As can be seen in this figure, through this formulation we are able to extract one,

two, three and four terms, particularising the general formulation according to the

relative error that we need, and sum them efficiently thanks to the the correspon-

dence established between these terms in the spectral domain and these terms in

Ewald’s method.
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(a) The observation point is near the source (x, y) =
(0.0001λ, 0.0001λ).

(b) The observation point is far from the source
(x, y) = (0.1λ, 0.1λ).

Figure 3.21: Relative error (%) of 2-D Green’s function with 2-D periodicity evaluated
through Kummer’s transformation for different observation points. The remaining part is
summed by using Ewald’s method. In both cases, d1 = d2 = 0.25λ, θ = 45◦ and φ = 45◦.

If we choose the Option B
(

2πm
d1
, 2πn
d2

)
to extract the asymptotic terms, we propose to

sum it by the following options:

• Option B.1: Sum by Ewald’s method.

This first alternative gives us the possibility of extracting one or two terms in Kum-

mer’s transformation and summing these by using Ewald’s method. The formulation

is detailed in Subsection 2.3.2. The result from the application of this technique is

shown in Fig. 3.22 for different observation points.

As can be seen in this figure, through this formulation we are able to extract the

first and the second asymptotic terms and sum them efficiently thanks to the the

correspondence established between this term in the spectral domain and this term

in Ewald’s method.

If we compare the Fig. 3.21 and the Fig. 3.22, we could observe the different

improvement achieved by each approach that we have mentioned before. When one

term is retained, the relative error obtained when we sum a certain number of terms

is smaller in the Option A than in the Option B.

• Option B.2: Lerch transcendent.

This second alternative gives us the possibility of extracting the first term in Kum-

mer’s transformation and summing it by using the Lerch transcendent. The for-

mulation is detailed in Subsection 2.3.3. The results from the application of this

technique are shown in Fig. 3.23 for different observation points.
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(a) The observation point is near the source (x, y) =
(0.0001λ, 0.0001λ).

(b) The observation point is far from the source
(x, y) = (0.1λ, 0.1λ).

Figure 3.22: Relative error (%) of 2-D Green’s function with 2-D periodicity evaluated
through Kummer’s transformation for different observation points. The remaining part is
summed by using Ewald’s method. In both cases, d1 = d2 = 0.25λ, θ = 45◦ and φ = 45◦.

(a) The observation point is near the source (x, y) =
(0.1λ, 0.0001λ).

(b) The observation point is far from the source
(x, y) = (0.1λ, 0.1λ).

Figure 3.23: Relative error (%) of 2-D Green’s function with 2-D periodicity evaluated
through Kummer’s transformation for different observation points. The remaining part is
summed by using the Lerch transcendent. In both cases, d1 = d2 = 0.25λ, θ = 45◦ and
φ = 0◦.
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As can be seen in this figure, through this formulation we are able to extract the

first asymptotic term and sum it in a semi-closed form thanks to the use of the Lerch

transcendent.

It is important to note that the closer the observation point is to the source, the

more terms are needed to obtain an accurate sum in the Lerch transcendent, that

is, more and more computational time is invested.

• Option B.3: Summation by parts technique.

The third alternative gives us the possibility of extracting the first term in Kummer’s

transformation and summing it by using the summation by parts technique. The

formulation is detailed in Subsection 2.3.4. The results from the application of this

technique are shown in Fig. 3.24 for different observation points.

As can be seen in this figure, through this formulation we are able to extract the first

asymptotic term and sum one part numerically and the other analytically thanks to

the use of the summation by parts technique. As in the previous case, the closer the

observation point is to the source, the more terms are needed to obtain an accurate

sum in the numerical part, that is, more and more computational time is invested.

• Option B.4: Analytical sum in one index.

The last alternative gives us the possibility of extracting the first and the second

terms in Kummer’s transformation and summing these analytically in one index.

The formulation is detailed in Subsection 2.3.5. The results from the application of

this technique are shown in Fig. 3.25 for different observation points.

As can be seen in Fig. 3.25, through this formulation we are able to extract the

first and the second asymptotic term and sum them analytically in one index, thus

reducing the dimensionality of the series that has to be summed. As mentioned

before, the closer the observation point is to the source, the more terms are needed to

obtain an accurate sum in the remaining index, that is, more and more computational

time is invested.

These proposed methods are interesting from a theoretical point of view but they spend

more time than using Ewald’s method to sum the remaining part when we use Kummer’s

transformation to evaluate the Green’s function. This is because they are numerically

convergent and therefore, it is advisable to use other possible alternatives when we need

to compute the 2-D periodic Green’s function in a practical case.

As a general conclusion of this section, we have shown the convergence rate of the 2-D

Green’s functions with 2-D periodicity and the acceleration of this convergence achieved
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(a) The observation point is near the source (x, y) =
(0.1λ, 0.0001λ).

(b) The observation point is far from the source
(x, y) = (0.1λ, 0.1λ).

Figure 3.24: Relative error (%) of 2-D Green’s function with 2-D periodicity evaluated
through Kummer’s transformation for different observation points. The remaining part is
summed using the summation by parts technique. In both cases, d1 = d2 = 0.25λ, θ = 45◦

and φ = 0◦.

(a) The observation point is near the source (x, y) =
(0.1λ, 0.0001λ).

(b) The observation point is far from the source
(x, y) = (0.1λ, 0.1λ).

Figure 3.25: Relative error (%) of 2-D Green’s function with 2-D periodicity evaluated
through Kummer’s transformation for different observation points. The remaining part is
summed by using the analytical sum in one index. In both cases, d1 = d2 = 0.25λ, θ = 45◦

and φ = 0◦.
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through the application of Kummer’s transformation. We have compared the improvement

and understood the differences of each approach and their advantages and disadvantages.

Lastly, we have shown the implementation of the strategies reported to sum the remaining

part to verify the formulations detailed in the theoretical sections.

3.2.4 Green’s Functions of Rectangular Waveguides and 2-D Cavities

In this subsection, we focus on the 2-D periodic Green’s functions involved in rectangular

waveguide and cavity problems. Specifically, we study the convergence of the basis Green’s

functions G+ and G− that we have outlined in Section 2.4. These are interesting cases

due to their practical use. In real problems, the Green’s functions involved in these cases

are needed and, in most cases, it is necessary to compute these functions many times.

So, we need to evaluate these special Green’s functions which are also slowly convergent

and we need to evaluate them many times. For this reason, it is important to apply some

transformation to accelerate their convergences.

Thus, in this part we show the results obtained from the evaluation of theses Green’s

functions through their spectral formulations and then the application of Kummer’s trans-

formation to improve their convergences. Specifically, we could see the improvement

achieved from the extraction of one and two terms.

For this purpose, Fig. 3.26 shows the relative error (%) of the Green’s functions involved

in rectangular waveguide and cavity problems for an observation point near the source

(x, y) = (a/5 + 10−6a, b/5 + 10−6b) and Fig. 3.27 for an observation point far from the

source (x, y) = (4a/5, 4b/5). In these simulations a = b = 0.125λ and the real source is

located at (x′, y′) = (a/5, b/5).

As we can see, these functions computed by their direct spectral formulations are slowly

convergent. For this reason and due to the importance of the efficiency in the computation

of them in real problems, we have applied Kummer’s technique to improve these extremely

slow convergences. To verify the formulation of Kummer’s transformation applied to these

Green’s functions, we show the relative error obtained by using the first and the second

asymptotic term.

As can be noted, when we extract two terms using the formulation reported in the

theoretical section, a relative error (%) about 10−4 can be achieved with less than 40

terms in the worst case scenario, that is, near the source.

The first term has been summed by using the rapidly logarithmic summation in one

index revised in 2.4.1. However, it is important to highlight that the additional second

term improves the convergence but requires the evaluation of the second series using the
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(a) G+ (b) G−

Figure 3.26: Relative error (%) of the 2-D periodic Green’s functions G+ and G− evaluated
by using the spectral and Kummer’s formulations for an observation point near the source
(x, y) = (a/5 + 10−6a, b/5 + 10−6b) and φ = 0◦. In both cases, a = b = 0.125λ and the
source is located at (x′, y′) = (a/5, b/5).

(a) G+ (b) G−

Figure 3.27: Relative error (%) of the 2-D periodic Green’s functions G+ and G− evaluated
by using the spectral and Kummer’s formulations for an observation point far from the
source (x, y) = (4a/5, 4b/5) and φ = 0◦. In both cases, a = b = 0.125λ and the source is
located at (x′, y′) = (a/5, b/5).
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one index summation. This sum is analytical in one index but the series resulted in the

other index has not been efficiently modified. Thus, it needs more terms and can produce

computational errors due the use of hyperbolic functions. For this reason, the number of

terms used to sum this series has to be careful adjusted.

As a general conclusion of this section, we have shown the convergence rate of the series

involved in the computation of the Green’s functions needed in rectangular waveguide

and cavity problems. We have also shown the acceleration of their convergences achieved

through the application of Kummer’s transformation. We have compared the convergence

rate of this technique when different numbers of terms are extracted. This implies a

considerable improvement on the evaluation of these Green’s functions because a smaller

relative error can be achieved with the summation of few terms in comparison to the

original functions.

Other techniques proposed in Section 2.3 can be particularized to this case and can be

used to sum the remaining part when we apply Kummer’s transformation in rectangular

waveguide and cavity problems. This can be used in software which need to compute these

Green’s functions many times in the electromagnetic analysis of rectangular waveguides,

2-D cavities and periodic structures.



Chapter 4

Using FEST3D to Analyse

Microstrip Structures

In this chapter, we carry out a study about the analysis of microstrip structures using

the software tool FEST3D in collaboration with our external partners at Universidad

Politécnica de Valencia. FEST3D (Fullwave Electromagnetic Simulation Tool) [26] is an

efficient software tool for the accurate analysis and design of complex passive microwave

components based on waveguide technology by means of advanced modal techniques.

Specifically, FEST3D is based on an integral equation technique efficiently solved by the

Method of Moments. In addition, it employs the Boundary Integral-Resonant Mode Ex-

pansion (BI-RME) method, which is a very efficient electromagnetic model of microwave

propagation physics, to extract the modal chart of complex waveguides and cavities with

arbitrary cross-section. The advantage of FEST3D is the possibility of combining these

methods to ensure a high degree of accuracy, as well as reduced computational resources

(in terms of CPU time and memory). The final objective of this software tool is to help the

microwave components designing and manufacturing industries to decrease both the time

to market and the development costs for the next generation of communication systems.

In this context, we will examine how FEST3D responds to the analysis of different

structures based on coaxial to microstrip transitions. First, we study some intermediate

cases using microstrip lines and coaxial excitations and then, we analyse the structure

under study, this is, a coaxial to microstrip transition, for different microstrip thickness and

different dielectric permittivity in the pin transition. In addition, in this chapter we will

determine the dimensions and the parameters which most influence FEST3D convergence

in the analysis of this type of structures.
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To this end, a discussion about the parameters and the computational time needed

to achieve accurate results will be carried out. These simulated performances will be

compared to the ones obtained using the software tool, HFSS. HFSS (High Frequency

Electromagnetic Field Simulation) [27] is another commercial tool for simulating 3-D,

full-wave, electromagnetic fields.

4.1 Introduction to the Original Structure Under Study

The structure under study is the coaxial to microstrip transition shown in Fig. 4.1. This

design consists of two coaxial ports that excite, across two pins, the microstrip line with

an original thickness of 17 micrometers. The physical parameters and dimensions of this

circuit are reported in Table 4.1, 4.1, 4.2, 4.3 and 4.4.

Dimensions of the coaxial cables

rin 0.64 mm

rout 2.03 mm

∆r 10 mm

Lcoax 10 mm

εr 2.1

Table 4.1: Dimensions of the coaxial cables.

Dimensions of the pin waveguide

rin 0.64 mm

h 1.524 mm

a× b 20 mm × 20 mm

εr 3.55

Table 4.2: Dimensions of the pin waveguide.

Dimensions of the metallic microstrip waveguide

t 0.017 mm

w 3.41 mm

Lmicrostrip 12 mm

Table 4.3: Dimensions of the metallic microstrip waveguide.

The two coaxial ports have been implemented in FEST3D using two coaxial waveguides.

On the other hand, the top part of the circuit has been implemented using a short-circuited

rectangular waveguide. Finally, the layers that contain the two pins of excitation and
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Figure 4.1: The original structure under study. A two coaxial ports to microstrip transi-
tion.

Dimensions of the short-circuited waveguide

Lshort−circuit 2 mm

a× b 20 mm × 20 mm

Table 4.4: Dimensions of the short-circuited waveguide.
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the microstrip line have been implemented using two Arbitrary Rectangular Waveguides

(ARW). Due to this, the computation of the electromagnetic fields inside these waveguides

will be based on BI-RME method. It is important to note that the original thickness of

the microstrip line is 17 micrometers.

Once we have defined the design that interests us, the main strategy will be the efficient

analysis of some structures by means of adjusting the following parameters:

• Number of accessible modes. This parameter controls the number of accessible modes

of the waveguide. Only the accessible modes of a waveguide are assumed to transmit

electromagnetic fields (and energy) across the whole waveguide length.

• Number of MoM basis functions. This is the number of modes as basis functions used

in the internal Method of Moments (MoM) to calculate the discontinuities attached

to the waveguide.

• Number of Green’s function terms. This parameter indicates the number of terms

in the frequency-independent (static) part of the Green’s function, which describes

the discontinuities attached to the waveguide.

• Number of reference box modes. This parameter is adjusted when we use ARWs

and controls the number of modes in the reference box used to generate the modes

of the arbitrary cross-section.

In general, we adjust separately the parameters of the general specifications, the coaxial

waveguides, the BI-RME pin waveguide and the BI-RME microstrip line waveguide.

4.2 Intermediate Cases of Study

In this section, we first analyse some intermediate structures before the original in order

to understand how FEST3D works when the different elements involved in the original

structure are used. Then, we will be able to understand its behaviour in the case of the

original circuit.

The first structure that has been analysed by our external partners is shown in Fig.

4.2. This circuit is very similar to the original one but the two pins in the intermediate

BI-RME waveguide does not exist, so that, there is not any electric contact between the

microstrip line and the coaxial excitations.

This one pole resonator with capacitive coaxial excitation has been computed using

FEST3D and has been compared with the simulation result from HFSS in Fig. 4.3.
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Figure 4.2: First intermediate case of study. One pole resonator with capacitive coaxial
excitation.

Figure 4.3: Results of comparing the simulation of the one pole resonator with capacitive
coaxial excitation using FEST3D and HFSS.
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This figure shows that FEST3D has reached convergence and, in this case, the agreement

between FEST3D and HFSS is excellent.

Different parameters have been used in these simulations to reach convergence. Depend-

ing on the manufacturing accuracy and the computational time requested, the designer

can choose the appropriate model. If we choose low modal parameters, the simulated

response could exhibit a higher shift in frequency. On the contrary, if a large number of

modes is used, the computational time increases but the frequency shift would be lower.

In general, it is advisable to achieve a good compromise between accuracy and efficiency.

In the case that we need to obtained very accurate results, the modal parameters would

need to be increased, which results in investing more computational time.

The second intermediate structure is shown in Fig. 4.4. This is an inter-digital two pole

filter where the resonators are connected to ground on one side, and the coaxial input/out-

put are connected directly to the resonators. In this case, the dielectric permittivity of

the two pin BI-RME waveguides is one (vaccum permittivity).

This structure has been analysed by our external partners using BI-RME 2D and BI-

RME 3D. Fig. 4.5 shows that the agreement between the two simulators is generally quite

good.

Based on these results, we can verify the good agreement between the solutions obtained

using FEST3D and HFSS when we analyse a microstrip line with very small thickness im-

plemented using a BI-RME waveguide (see Fig. 4.3). Moreover, excellent results have

been obtained for the case of a microstrip line excited by a coaxial cables using an in-

termediate pin waverguide between the coaxials and the microstrip, as we can see in Fig.

4.5. This intermediate waveguide has been also implemented by a BI-RME waveguide

with dielectric permittivity equal to one (vacuum permittivity).

As a conclusion of this section, we can be sure that if the dielectric permittivity in the

ARWs is one, the thickness of the microstrip line does not affect so much the FEST3D

convergence as well as the transition between the coaxial excitation and the microstrip

line. Even though high parameters might be needed to reach convergence, the results are

valid.

Once we have confirmed this, the following step will be to determine the influence of

both the dielectric permittivity of the pin BI-RME waveguide and the thickness of the

microstrip line on FEST3D accuracy.
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Figure 4.4: Second intermediate case of study. An inter-digital two pole filter.

Figure 4.5: Results of comparing the simulation of the inter-digital two pole filter using
BI-RME 2D and BI-RME 3D in FEST3D.
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4.3 Convergence Study of the Original Structure

For the general aim of this chapter, in this section we carry out a convergence analysis of the

original case under study by following the steps provided in [26]. This convergence study

has been performed for different microstrip thickness and different dielectric permittivity

in order to determine how these parameters influence FEST3D convergence.

In addition, we try to identify the optimum parameters that provide a solution similar

to the one obtained by using HFSS and that require the less computational time. In other

words, we seek to ensure the smaller parameters needed to achieve accurate simulated

output data. For this purpose, we carry out, for all the results reported in this section, a

convergence analysis until we reach convergence.

The fist simulation result of the structure under study shown in Fig. 4.1 has been

obtained with the parameters that appear in Table 4.5 and it is reported and compared

to the one provided by HFSS in Fig. 4.6.

Parameters Generals Coaxials Pin ARW Microstrip ARW

Number of accessible modes 70 70 80 90

Number of MoM basis functions 200 200 200 300

Number of Green function terms 2179 2179 2845 3700

Number of reference box modes 5000 5000

Table 4.5: First parameters used in FEST3D simulations.

As can be seen, these results do not match entirely but they are very similar. To

determine the effect of increasing the parameters adjusted in the microwaves components,

we set higher parameters in BI-RME waveguides. Therefore, we use the modal parameters

in Table 4.6 to simulate the same structure. The S-parameters that have been obtained

are shown and compared to the simulated performance from HFSS in Fig 4.7.

Parameters Generals Coaxials Pin ARW Microstrip ARW

Number of accessible modes 70 70 150 150

Number of MoM basis functions 200 200 500 500

Number of Green function terms 2179 2179 9000 9000

Number of reference box modes 15000 15000

Table 4.6: Second parameters used in FEST3D simulations.

This seems to indicate that if higher parameters are used in BI-RME 2D, more accurate

S-parameters can be achieved. It should be pointed out that if we increase even more

the parameters, more coinciding results cannot be achieved. In fact, some parameters, as
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Figure 4.6: Comparison between the S-parameters obtained using FEST3D and HFSS.
The thickness of the microstrip line is t = 0.017 mm and the dielectric permittivity of the
pin waveguide is εr = 3.55.

Figure 4.7: Comparison between the S-parameters obtained using FEST3D and HFSS.
The thickness of the microstrip line is t = 0.017 mm and the dielectric permittivity of the
pin waveguide is εr = 3.55.
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the number of MoM basis functions in the coaxial ports and in the microstrip ARW, can

produce some numerical errors which can lead to computational errors or incorrect results.

This may be due to the thickness of the components that we have employed since we

are analysing a very thin microstrip line using modal techniques focused on computing

electromagnetic fields in microwave components based on waveguide technology. In addi-

tion, we have to remember that the important difference with the previous intermediate

cases of study is the dielectric permittivity of the pin waveguide. For these reasons, the

next step will be confirmed if the low accuracy of these simulations is produced by the use

of dielectrics in BI-RME or it is due to the thickness of the microstrip line when we use

dielectrics in BI-RME.

To determine if the thickness of the microstrip line has any influence on the achieved

convergence, we carry out the same convergence study for a similar structure but with

the thickness of the microstrip line fixed in 0.17 mm, that is, increased in an order of

magnitude.

Using the parameters reported in Table 4.6, the S-parameters that we obtain are shown

and compared to the result achieved by HFSS in Fig. 4.8. As can be noted, in this case the

response is more coincident between both software tools than the case of 17 micrometers

but they are not completely equals.

If we increase again in an order of magnitude the thickness of the microstrip line, that is,

1.7mm and we use the parameters reported in Table 4.6, the result is shown and compared

to the simulated performance obtained from HFSS in Fig. 4.9.

In this case, the S-parameters are exactly the same, so we can conclude that, in this

original structure, when the thickness is too small, FEST3D cannot achieve a simulated

response as accurate as when the thickness is higher.

In addition, to verify if the dielectric contained in the pin BI-RME waveguide influences

on the accuracy, the original structure with 17 micrometers of thickness and εr = 1 has

been simulated using the parameters of Table 4.6. The performance from FEST3D is

shown and compared to the simulation result from HFSS in Fig. 4.10.

As can be seen, the results in this case are more coincident than in the case of using εr 6=
1. Thus, we can state that if the microstrip line is thin and the dielectric permittivity in

BI-RME is different to one, the simulated performance in FEST3D may not be completely

equal to the obtained with HFSS. On the contrary, if we use vacuum or air inside this type

of waveguides or if we use a higher thickness in the microstrip line, the accuracy achieved

with FEST3D is better.
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Figure 4.8: Comparison between the S-parameters obtained using FEST3D and HFSS.
The thickness of the microstrip line is t = 0.17 mm and the dielectric permittivity of the
pin waveguide is εr = 3.55.

Figure 4.9: Comparison between the S-parameters obtained using FEST3D and HFSS.
The thickness of the microstrip line is t = 1.7 mm and the dielectric permittivity of the
pin waveguide is εr = 3.55.
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Figure 4.10: Comparison between the S-parameters obtained using FEST3D and HFSS.
The thickness of the microstrip line is t = 0.017 mm and the dielectric permittivity of the
pin waveguide is εr = 1.

As a general conclusion of this chapter, we have determined that the thickness of the

microstrip line is important to the convergence in FEST3D especially when the dielectric

permittivity in BI-RME 2D is different from one. In the case of a very thin microstrip

line and εr = 1, the results have been quite good and the agreement between HFSS and

FEST3D is excellent, as can be seen in the intermediate cases and in the original case

under study.

Moreover, we can conclude that, taking into account these constraints and despite the

fact that FEST3D has been optimized for the analysis and design of passive microwave

components based on closed structures as waveguides and cavities, it behaves as expected

and successfully when it is used to analyse this type of microstrip structures.



Chapter 5

General Conclusions and Future

Lines of Research

5.1 General Conclusions of the Project

This master’s thesis has intended to be useful in the analysis and the comparison between

the existing methods to the efficient computation of the periodic 2-D Green’s functions.

Specifically, the evaluation of the 2-D Green’s functions with 1-D periodicity and 2-D peri-

odicity has been addressed in this project with the aim of accelerating their convergences.

As final conclusions, we can highlight the following:

About the 2-D Green’s functions with 1-D periodicity, we have continued the work

developed in [11] by the review of Kummer’s transformation. Another alternative in the

extraction of the asymptotic terms has been reported. Consequently, we have proposed

three different methods to sum the retained part for each approach.

The first one is using Ewald’s method. This alternative give us the acceleration resulted

by applying Kummer’s transformation and sum efficiently the retained terms through

Ewald’s method. Thanks to the proposed Kummer-Ewald technique, we can take advan-

tage of both the rapidly convergence of Ewald’s components without the need to calculate

all the special functions and the acceleration arisen from applying Kummer’s technique.

The second one is using the Lerch transcendent and the polylogarithm. These functions

allow us to express the remaining part in a semi-closed form. These two functions are

analogous, one for the first approach and the other one for the second approach in the

extraction of terms in Kummer’s transformation.
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The last one is using the summation by parts technique, which is based on the oscillating

behaviour of the series to accelerate their convergences. Through this technique, the

remaining series can be summed as a numerical part plus an analytical part.

In [11] we proposed as a future research to apply the obtained results to specific problems

of structures with one-dimensional periodicity and extend the developed formulation to

problems with two-dimensional periodicity.

For this reason, we have applied the acquired knowledge to accelerate the series involved

in the practical case of parallel-plate waveguide problems. Thus, the functions involved

in the evaluation of these Green’s functions have been accelerated by using the spectral

Kummer’s transformation. The Q asymptotic retained terms have been expressed in a

general form as the summation of polylogarithmic functions which have numerical solutions

but are rapidly convergent and independent from the frequency.

About the 2-D Green’s functions with 2-D periodicity, we have extended the acquired

knowledge to the efficient computation of the double series involved in these particular

Green’s functions. The spectral and the spatial definition have been formulated and

Ewald’s method has been applied to accelerate their convergences. For this purpose, we

have also applied the spectral Kummer’s transformation. The two approaches proposed

to compute the 2-D Green’s functions with 1-D periodicity have been also studied for the

two-dimensional periodicity. Consequently, we have reported different methods to sum

the retained part for each approach.

The first one is using Ewald’s method. As has been mentioned, through this alternative

we take advantage of using simultaneously the acceleration resulted by applying Kummer’s

transformation and Ewald’s method. This technique has been reported for the extraction

of Q general terms in the first approach and for the extraction of the first term in the

second approach.

Additionally, we have proposed that the first asymptotic term can be summed using the

Lerch transcendent. This implies the possibility to write the asymptotic series, when we

use the second approach, in a semi-closed form.

The third one is using the summation by parts technique. As in the case of one-

dimensional series, this method has been efficiently employed to accelerate the conver-

gence of two-dimensional sequences. As stated, this technique is based on the oscillating

behaviour of the series and adds the alternative to sum it as the summation of a numerical

and an analytical part.

The last one consists of summing analytically the asymptotic series in one index. This

implies a significant improvement thanks to reduce the dimensionality of the series. This
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strategy has been developed in the case of extracting one and two terms. The following

retained term in the application of Kummer’s transformation do not allow us to sum it

analytically.

As has been done with the 2-D Green’s functions with 1-D periodicity, in the case of 2-

D periodicity we have also applied the theoretical results to real and interesting practical

problems such as the electromagnetic analysis of periodic structures. Specifically, we

have formulated the Green’s functions involved in rectangular waveguide and 2-D cavity

problems. In addition, these slowly convergent functions have been accelerated through

the application of Kummer’s transformation. The retained terms have been efficiently

summed by using the analytical summation in one index.

The theoretical formulations developed for the efficient computation of the 2-D Green’s

functions with 1-D and 2-D periodicities have been simulated and the numerical results

have been shown. All this has given us the possibility of analysing the convergence rate

achieved by each technique. Through comparing these numerical results, conclusions about

the efficiency and the advantages of the reported methods have been drawn.

On the other hand and according to the second line of research dealt in this work, some

microstrip to coaxial transitions have been analysed using the software tool FEST3D in

order to study the compromise between accuracy and efficiency in the electromagnetic

analysis of the studied structures. Simulation results have been shown to evaluate the

capacity of this software to analyse this type of structures and have been compared with

the results obtained by using another software tool HFSS.

Some interesting conclusions about the influence of the dielectric permittivity and the

thickness of the microstrip line on the FEST3D convergence have been reached through

the simulation of these structures with the collaboration of our external partners at Uni-

versidad Politécnica de Valencia.

To conclude, this work has intended to be useful in the investigation of the periodic

Green’s functions and to be a starting point in the analysis of zero-thickness microstrip

structures. At personal level, this master’s thesis can be seen as a continuation of my

academic training in this field of research that started with my Final Degree Project [11]

and could continue with a PhD.

5.2 Future Lines of Research

The results obtained in this project will be useful to implement the Green’s functions in

software tools that required the evaluation of these series.
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As already mentioned in the beginning, once we could evaluate the Green’s functions

efficiently and accurately, we would be able to apply the integral equation technique for

the electromagnetic analysis of periodic structures such as parallel-plate and rectangular

waveguides and cavities. Thus, the application and the study of the integral equation

technique will be one of the future works.

Another important challenge will be the study of other kinds of Green’s functions such

as 3-D Green’s functions with 1-D and 2-D periodicity and the Green’s functions resulted

by an array of point sources.

On the other hand, we will continue with the work focused on the analysis of microstrip

structures through the mathematical development of a zero-thickness formulation based

on Multimode Equivalent Networks (MENs) in collaboration with our external partners

at Universidad Politécnica de Valencia.

Finally, we will design passive microwave components for satellite communication sys-

tems in Ka-band and Ku-band. This will imply the review and implementation of tech-

niques about the synthesis and design of radiofrequency filters and multiplexors for space

applications.



Appendix A

Details of Formulations

A.1 Theory of Summation by Parts Technique

In this appendix we revise the details of the formulation about the summation by parts

technique reported in [9]. The summation by parts technique is used to accelerate the

evaluation of slowly convergent series. The acceleration in this method arises from the

oscillating behaviour of the series.

We first review the theory of this technique for summations in one dimension. Then, we

revise this formulation for the case of two-dimensional series. The procedures presented in

this appendix are used in Chapter 1 and Chapter 2 to sum efficiently the remaining part

when we apply Kummer’s transformation to the 2-D Green’s functions with 1-D and 2-D

periodicities.

A.1.1 Application to One-dimensional Sequences

The summation by parts technique consists of splitting the original infinite series S∞ into

to different series SN−1 and RN .

+∞∑
n=0

=
N−1∑
n=0︸︷︷︸
SN−1

+
+∞∑
n=N︸︷︷︸
RN

(A.1)

Thus,

S∞ =

+∞∑
n=0

G̃n fn =

N−1∑
n=0

G̃n fn︸ ︷︷ ︸
SN−1

+
+∞∑
n=N

G̃n fn︸ ︷︷ ︸
RN

(A.2)
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The series SN−1 is no longer modified. However, we have to transform the series RN in

order to express it analytically. For this aim, we proceed as follows

RN =
+∞∑
n=N

G̃(−1)
n f (+1)

n =
+∞∑
i=1

G̃
(−i)
N f

(i+1)
N−1 (A.3)

where the terms that appear in the previous summation are reported in [9] as

G̃(−i)
n = G̃

(−i+1)
n+1 − G̃(−i+1)

n for i = 2, 3, 4, ... (A.4a)

G̃(−1)
n = G̃n (A.4b)

f (+i)
n =

+∞∑
k=n+1

f
(i−1)
k for i = 2, 3, 4, ... (A.4c)

f (+1)
n = fn (A.4d)

If we decide to use the first order approximation of RN , we conclude that RN could be

written as

RN = G̃
(−1)
N f

(+2)
N−1 (A.5)

where

G̃
(−1)
N = G̃n

∣∣∣
n=N

(A.6a)

f
(+2)
N−1 =

+∞∑
k=n+1

f
(+1)
k

∣∣∣∣
n=N−1

(A.6b)

It should be pointed out that the term N , which divides the two series, has to be

optimally adjusted according to the specific case.

The transformation presented in this subappendix has been used when we apply the

summation by parts technique to accelerate the 2-D Green’s function with 1-D periodicity

in Subsection 1.1.3 and Subsection 1.1.6.

A.1.2 Application to Two-dimensional Sequences

Once we have gone into detail about the application of the summation by parts technique

in one-dimensional series, we can extend it to the case of two-dimensional series. Following

the summation by parts theory reported in [9], we split the original infinite series S∞ into

to different series SM−1,N−1 and RM,N as follows
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+∞∑
m=0

+∞∑
n=0

=
M−1∑
m=0

N−1∑
n=0︸ ︷︷ ︸

SM−1,N−1

+
+∞∑
m=M

+∞∑
n=N︸ ︷︷ ︸

RM,N

(A.7)

Thus,

S∞ =
+∞∑
m=0

+∞∑
n=0

G̃m,n fm hn =
M−1∑
m=0

N−1∑
n=0

G̃m,n fm hn︸ ︷︷ ︸
SM−1,N−1

+
+∞∑
m=M

+∞∑
n=N

G̃m,n fm hn︸ ︷︷ ︸
RM,N

(A.8)

The series SM−1,N−1 is no longer modified. However, we have to transform the series

RM,N in order to express it analytically. For this aim, we proceed as follows

RM,N =

+∞∑
m=M

+∞∑
n=N

G̃(−1,−1)
m,n f (+1)

m h(+1)
n =

+∞∑
i=1

+∞∑
k=1

G̃
(−i,−k)
M,N f

(i+1)
M−1 h

(k+1)
N−1 (A.9)

where the terms that appear in the previous summation are reported in [9] as

G̃(−i,−k)
m,n = G̃

(−i+1,k)
m+1,n − G̃(−i+1,−k)

m,n for i = 1, 2, 3, 4, ... and k = 1, 2, 3, 4, ... i = k 6= 1

(A.10a)

f (+i)
m =

+∞∑
k=m+1

f
(i−1)
k for i = 1, 2, 3, 4, ... and k = 1, 2, 3, 4, ... i = k 6= 1 (A.10b)

h(+i)
n =

+∞∑
k=n+1

h
(i−1)
k for i = 1, 2, 3, 4, ... and k = 1, 2, 3, 4, ... i = k 6= 1 (A.10c)

If we decide to use the first order approximation of RN , we conclude that RN could be

written as

RM,N = G̃
(−1,−1)
M,N f

(+2)
M−1 h

(+2)
N−1 (A.11)

where

G̃(−1,1)
m,n = G̃m,n

∣∣∣
m=M
n=N

(A.12a)

f
(+2)
M−1 =

+∞∑
k=m+1

f
(+1)
k

∣∣∣∣
m=M−1

(A.12b)

h
(+2)
N−1 =

+∞∑
k=n+1

h
(+1)
k

∣∣∣∣
n=N−1

(A.12c)
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It should be pointed out that the terms M and N , which divide the series, have to be

optimally adjusted according to the specific case.

The transformation presented in this subappendix has been used when we apply the

summation by parts technique to accelerate the 2-D Green function with 2-D periodicity

in Subsection 2.3.4.

A.2 Green’s Functions of Parallel-Plate and Rectangular

Waveguides and 2-D Cavities

In this second appendix, we focus on why the summation of the exponential e−jkxx eval-

uated in m between (−∞,+∞) can be written as either 2εm cos(kxx) or −2j sin(kxx)

evaluated in m between (0,+∞) depending on whether the function is even or odd re-

spect to kx.

This is used in Subsection 1.2.1 when we transform the summation of two Green’s

functions into one single summation to obtain the total Green’s function of a parallel-plate

waveguide. We also use this in Subsection 2.4.1 when we carry out the same transformation

for the case of rectangular waveguide and cavity Green’s functions.

To this end, we use the sine and the cosine transforms to express the series that depend

on the exponential e−jkxx. This can be understood by using Euler’s formula e−jkxx =

cos(kxx)−j sin(kxx). Recalling that kx was defined as kx = πm
a , we can write the following

equality

+∞∑
m=−∞

f(kx)e−jkxx =
+∞∑

m=−∞
f(kx) cos(kxx)− j

+∞∑
m=−∞

f(kx) sin(kxx) (A.13)

Firstly, we detail the steps used for an even function. If the function f(kx) is even with

respect to kx, its sine transform will be null. Therefore, the previous series remains

+∞∑
m=−∞

f(kx)e−jkxx =
+∞∑

m=−∞
f(kx) cos(kxx) (A.14)

On the other hand, as the function f(kx) and cos(kxx) are even with respect to kx, the

positive m and the negative m will produce the same result.

According to this, we can write this summation in m between (−∞,+∞) like twice the

summation between (0,+∞), taking into account that then, the term m = 0 is summed

twice. So, if we wish to write the summation between (0,+∞), we have to add a factor
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εm which is 1/2 in m = 0 in order to sum the term m = 0 once.

+∞∑
m=−∞

f(kx)e−jkxx = 2εm

+∞∑
m=0

f(kx) cos(kxx) (A.15)

Where εm is defined as εm = 1 for m 6= 0 and ε0 = 1/2.

Finally, we detail the steps used for an odd function. If the function f(kx) is odd with

respect to kx, its cosine transform will be null

+∞∑
m=−∞

f(kx)e−jkxx = −j
+∞∑

m=−∞
f(kx) sin(kxx) (A.16)

As the function f(kx) and sin(kxx) are odd with respect to kx, f(kx) = −f(−kx) and

sin(kxx) = − sin(−kxx). Therefore, the product of f(kx) sin(kxx) for positive m has the

same value as the product of f(kx) sin(kxx) for negative m.

According to this, we can write this summation in m between (−∞,+∞) like twice the

summation between (0,+∞), taking into account that then, the term m = 0 is null due

to sin(0) = 0. So, if we wish to write the summation between (0,+∞), we can remove it

from the summation as follows

+∞∑
m=−∞

f(kx)e−jkxx = −2j
+∞∑
m=1

f(kx) sin(kxx) (A.17)

The relations proved in (A.15) and (A.17) have been used in the proofs of the parallel-

plate waveguide, rectangular waveguide and 2-D cavity Green’s functions in Chapter 1

and Chapter 2.

A.3 Kummer’s Transformation in Parallel-Plate Waveguide

In this first appendix, we detail how to transform the infinite series that appear in Sub-

section 1.2.1 when we apply Kummer’s technique to the Green’s functions involved in

parallel-plate waveguide problems. This transformation is formulated for both the loga-

rithm and the generic s-th order polylogarithm.

The idea is, starting from the definition of logarithm and polylogarithm, to demonstrate

that the series that appear in parallel-plate waveguide problems can be summed using

these functions.
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• Transformation using the logarithm.

In first place, we begin with the logarithm. The logarithm can be defined as the

following infinite series

+∞∑
m=1

eam

m
= − ln (1− ea) (A.18)

We are interested in finding a relation to write analytically the series

+∞∑
m=1

ebm cos(cm)

m
(A.19)

For this purpose, if we define a as complex number a = b+ jc, then the summation

in (A.18) can be written as

+∞∑
m=1

eam

m
=

+∞∑
m=1

e(b+jc)m

m
=

+∞∑
m=1

ebmejcm

m
=

+∞∑
m=1

ebm [cos(cm) + j sin(cm)]

m

=

+∞∑
m=1

ebm cos(cm)

m
+ j

+∞∑
m=1

ebm sin(cm)

m

(A.20)

Using the relation given in (A.18), we can proceed as follows

+∞∑
m=1

eam

m
= − ln (1− ea) ;

+∞∑
m=1

e(b+jc)m

m
= − ln

(
1− e(b+jc)

)
+∞∑
m=1

ebm cos(cm)

m
+ j

+∞∑
m=1

ebm sin(cm)

m
= − ln

(
1− e(b+jc)

)
+∞∑
m=1

ebm cos(cm)

m︸ ︷︷ ︸
Real part

+j

+∞∑
m=1

ebm sin(cm)

m︸ ︷︷ ︸
Imaginary part

= Re
{
− ln

(
1− e(b+jc)

)}
+ j Im

{
− ln

(
1− e(b+jc)

)}

(A.21)

Consequently, we have proved that the following identity is fulfilled.

+∞∑
m=1

ebm cos(cm)

m
= Re

{
− ln

(
1− e(b+jc)

)}
= Re

{
1

ln
(
1− e(b+jc)

)} (A.22)

As commented before, this relation is useful to write in a closed form the series that

remains when we extract one term to the spectral parallel-plate waveguide Green’s
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functions in the application of Kummer’s transformation. This has been applied in

Subsection 1.2.1 in the extraction of one term.

• Transformation using the s-th order polylogarithm.

Once we have obtained the relation between the previous infinite series and the

logarithm, we proceed in the same way for the polylogarithm. The polylogarithm

can be defined as the following infinite series

+∞∑
m=1

eam

ms
= Lis (ea) (A.23)

where s is the order and ea is the argument of the polylogarithm. If we define a as

complex number a = b + jc, then the summation in the previous equation can be

written as

+∞∑
m=1

e(b+jc)m

ms
=

+∞∑
m=1

ebmejcm

ms
=

+∞∑
m=1

ebm [cos(cm) + j sin(cm)]

ms

=
+∞∑
m=1

ebm cos(cm)

ms
+ j

+∞∑
m=1

ebm sin(cm)

ms

(A.24)

Using the relation given in (A.23), we can proceed as follows

+∞∑
m=1

e(b+jc)m

ms
= Lis

(
e(b+jc)

)
+∞∑
m=1

ebm cos(cm)

ms
+ j

+∞∑
m=1

ebm sin(cm)

ms
= Lis

(
e(b+jc)

)
+∞∑
m=1

ebm cos(cm)

ms︸ ︷︷ ︸
Real part

+j
+∞∑
m=1

ebm sin(cm)

ms︸ ︷︷ ︸
Imaginary part

= Re
{

Lis

(
e(b+jc)

)}
+ j Im

{
Lis

(
e(b+jc)

)}

(A.25)

Consequently, we have proved that the following identity is fulfilled.

+∞∑
m=1

ebm cos(cm)

ms
= Re

{
Lis

(
e(b+jc)

)}
(A.26)

As stated above, this relation is useful to write in a semi-closed form the series that

remain when we extract more than one term to the spectral parallel-plate waveguide



A.4. 2-D Poisson’s Formula and Non-orthogonal Mapping of Fourier Transform 216

Green’s functions in the application of Kummer’s transformation. This has been

applied in Subsection 1.2.1 in the extraction of two, three and Q terms.

A.4 2-D Poisson’s Formula and Non-orthogonal Mapping of

Fourier Transform

In this appendix, 2-D Poisson’s formula is obtained through the theory of non-orthogonal

mapping of the Fourier transform. Despite the fact that some authors have already sug-

gested the 2-D Poisson’s formula [2, 3] before, the obtaining of this through the arbitrary

mapping of the Fourier transform has not been discussed yet.

Hence, we propose here how to obtain this generic Poisson’s formula in the case of

two-dimensional series with 2-D arbitrary periodicity. For this purpose, we base it on

the theory of the non-orthogonal mapping of the Fourier transform. This formulation has

been developed in collaboration with the professor doctor Rafael Verdú Monedero from

Universidad Politécnica de Cartagena.

We start defining the vectors of periodic sampling as

ā1 = (a1x , a1y)

ā2 = (a2x , a2y)
(A.27)

Using these vectors, the periodicity matrix can be written as

¯̄P = (ā1 ā2) =

(
a1x a2x

a1y a2y

)
(A.28)

and the gain factor of the transformation is

G =
1

| ¯̄P |
=

1∣∣∣∣∣a1x a2x

a1y a2y

∣∣∣∣∣
=

1

|ā1 × ā2|
=

1

(ā1 × ā2) · ẑ
=

1

A
(A.29)

On the other hand, we have to calculate the pulse vectors, which are the basis of the

periodicity in the spectral domain. These vectors are

ū1 = (u1x , u1y)

ū2 = (u2x , u2y)
(A.30)



A.4. 2-D Poisson’s Formula and Non-orthogonal Mapping of Fourier Transform 217

Consequently, the pulse matrix is

¯̄U = (ū1 ū2) =

(
u1x u2x

u1y u2y

)
(A.31)

where the values of these coordinates are given by the following transformation

¯̄U × ¯̄P T = 2π · ¯̄I

¯̄U = 2π · ¯̄I ·
(

¯̄P T
)−1 (A.32)

Firstly, we calculate the matrix resulted by
(

¯̄P T
)−1

(
¯̄P T
)−1

=

(
a1x a1y

a2x a2y

)−1

(A.33)

In the knowledge that the inverse of a generic matrix ¯̄Q can be obtained as

(
¯̄Q
)−1

=

(
q1x q2x

q1y q2y

)
=

1

| ¯̄Q|
·Adj(Q) =

1

| ¯̄Q|
·

(
q2y −q2x

−q1y q1x

)
(A.34)

we can rewrite (A.33) as

(
¯̄P T
)−1

=
1

| ¯̄P |

(
a2y −a1y

−a2x a1x

)
(A.35)

Using (A.35) in (A.32), we can express the pulse matrix as

¯̄U =
2π

A
· ¯̄I

(
a2y −a1y

−a2x a1x

)
(A.36)

and therefore the pulse vector are

ū1 = (u1x , u1y) =
2π

A
[a2yx̂− a2xŷ]

ū2 = (u2x , u2y) =
2π

A
[−a1yx̂+ a1xŷ]

(A.37)
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or, in x− y subspace, are

ūx =
2π

A
[a2y − a1y]x̂

ūy =
2π

A
[−a2x + a1x]ŷ

(A.38)

If we include the following spatial shift in the arbitrary vectors of periodicity,

mā1 = ma1xx̂+ma1yŷ

nā2 = na2xx̂+ na2yŷ
(A.39)

it can be translated to the spectral domain as

mū1 = (mu1x , mu1y) =
2π

A
[ma2yx̂−ma2xŷ]

nū2 = (nu2x , nu2y) =
2π

A
[−na1yx̂+ na1xŷ]

(A.40)

Thus, the periodicity in the spatial domain remains

dx = ma1x + na2x

dy = ma1y + na2y

(A.41)

and in the spectral domain, remains

d̃x =
2π

A
[ma2y − na1y]

d̃y =
2π

A
[−ma2x + na1x]

(A.42)

Finally, through this development we can suggest that the 2-D Poisson’s formula for a

non-orthogonal mapping of the Fourier transform is

+∞∑
m=−∞

+∞∑
n=−∞

f(mā1, nā2) =
1

A

+∞∑
m=−∞

+∞∑
n=−∞

f̃(mū1, nū2)

+∞∑
m=−∞

+∞∑
n=−∞

f(ma1xx̂+ma1yŷ, na2xx̂+ na2yŷ)

=
1

A
f̃

(
2π

A
[ma2yx̂−ma2xŷ],

2π

A
[−na1yx̂+ na1xŷ]

)
(A.43)
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Or, in x− y subspace, is

+∞∑
m=−∞

+∞∑
n=−∞

f(dx, dy) =
1

A

+∞∑
m=−∞

+∞∑
n=−∞

f̃
(
d̃x, d̃y

)
+∞∑

m=−∞

+∞∑
n=−∞

f(ma1x + na2x,ma1y + na2y) =
1

A
f̃

(
2π

A
[ma2y − na1y],

2π

A
[−ma2x + na1x]

)
(A.44)

As can be noted, the obtained 2-D Poisson’s formula is the same that the suggested

in [2]. This has been used in Subsection 2.1.1 and Subsection 2.2.1 to go from a double

spatial series with an arbitrary basis of periodicity to a its corresponding double series in

the spectral domain.
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