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Abstract. In this paper, a control system in the domain of teleoperated service 
robots is presented. A reference architecture - ACROSET - has been analyzed 
and designed following a concurrent object modeling and architectural design 
methodology (COMET) that uses UML as describing language. The architec-
ture of the whole system has been implemented in a ship’s hull blasting robot - 
GOYA –using Ada 95 and GLADE. Our previous experience in developing 
teleoperated service robots using Ada is also presented. 

1 Introduction 

The objective of this paper is to present the development 
process followed to obtain a control system architecture 
for teleoperated robots, using the Unified Modeling Lan-
guage-- UML [6], and to describe the software implementa-
tion of such architecture on an industrial PC with Linux 
using Ada 95 [1]. 
We have experience in the development of control sys-

tems with Ada[4]. In par-ticular, several teleoperation 
systems for maintenance activities in nuclear power 
plants have been implemented using Ada [3]. In figure 1, 
a scheme of a teleoperation system is shown. In general, 
this type of control systems consists of two units: 
teleoperation platform and control unit. 
The operator is in charge of monitoring and operating 

the robot according to the in-formation provided by the 
teleoperation system. This system receives commands from 
the operator and performs the corresponding actions for 
executing them. For this pur-pose, it communicates with 
the robot control unit, which physically actuates on the 
robot to move it. The robot control unit makes some sens-
ing from the robot in order to 
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evaluate its global state and send this information to 
the teleoperation system, which uses it to represent 
graphically to the operator the state of the robot and 
ensure the correctness of its behaviour. Different tools 
are attached to the robot for performing the maintenance 
operations. The tools are operated in a similar way to 
the robot [12]. 
 
1.1Previous experiences 
 

Some teleoperation systems that we have implemented using 
Ada are: ROSA (Re-motely Operated Service Arm) [2], IRV 
(Inspection Retrieving Vehicle) system [13] and TRON 
(Teleoperated and Robotized System for Maintenance Opera-
tion in Nu-clear Power Plants Vessels) system [10]. The 
experience of using the Ada programing language has been 
excellent in all the cases. A reference software archi-
tecture was obtained for the teleoperation platform [2] 
and the first implementation was carried out with Ada 83 
for ROSA system, which is used for inspection and repair-
ing of the tubes inside the steam generators. The lan-
guage already provided excellent support for creating 
portable applications and the use of generic packages al-
lowed us to reuse the ROSA code for working with differ-
ent robot tools. The same code that was developed for 
ROSA system was reused later for implementing the other 
systems on different hardware platforms and with differ-
ent operating systems. 
It is very important to notice that the design and de-

velopment process of the me-chanical system in teleoper-
ated service robots it must lead us to the best solution 
that satisfy the functional requirements. In this process 
is necessary to choose the appro-priate actuator and sen-
sors for each degree of freedom of the robot. The actua-
tor and sensors system for a robot freedom degree could 
be really different (e.g pneumatic actuators, hydraulic 
actuators, electrical engines as asynchronous or synchro-
nous motors, etc). Because of that, the control strate-
gies could be very different as well. 
 
1.2Reference Architectures 
 

Our experience demonstrates that commercial choice of 
axis controllers cards, despite being a reliable and ro-
bust solution, supposes a restriction when choosing the 
proper actuator system because of the necessity of use 
electrical engines as actuators. 
Because of this, a very important goal in our work is 

to show a reference architec-ture for control systems in 
the domain of teleoperated service robots. This architec-
ture is not conditioned by the specific control strategy 
of the actuator system, the number of freedom degrees and 
the variety of tools that the robot manages. 
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A reusable reference architecture can be implemented in 
different hardware platforms and can be executed on many 
operating system. In many systems, secure and robust lo-
cal control units were employed. These units were based 
on the use of elec-tromechanical elements for controlling 
the different robots. The local control unit communicates 
with the remote teleoperation unit, which offers a more 
complex functionality to the operator. However, the func-
tionality of the control unit can increase if more flexi-
ble platforms are used. For example, ROSA control unit 
[3] was based on Vx-work and VME platform. The use of a 
special real-time operating system, which provides fea-
tures such as kernel reliability, timers with enough pre-
cision, bounded kernel preemption and other characteris-
tics, allows guarantee time requirements. However, the 
greatest disadvantage when using this type of solutions 
was that they were more expensive than other operating 
systems more widely used. They also presented distinct 
interfaces and development tools. 
On the other hand, based on our experience, we can as-

sure that there are control systems that have not such 
stringent safety and time requirements that justify the 
use of real-time operating systems. A failure in the sys-
tem execution or sporadically missed time requirement 
does not imply an immediate threat. This is the case of a 
number of control applications which are supervised or 
teleoperated by human, such as robots for certain mainte-
nance operations in nuclear power plants or robots for 
ship 
hull blasting. 
Nowadays, we can present our experience using Ada 95 

for developing a new teleoperated robot: GOYA system 
(figure 2). In this work, some features of Ada 95 for ob-
ject-oriented programming have been employed: tagged 
types, related concepts such as class wide and abstract 
types that did not exist in Ada 83. We have also used re-
mote procedure call (RPC) through the distributed system 
annex. The obtained ar-chitecture for the teleoperation 
platform has been reused again in this system and a new 
reference architecture for the control unit has been de-

veloped in order to be re-used on different platforms 
[4]. 
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Fig. 1. Teleoperated service robot system scheme. 

In the next section, GOYA system is briefly described. 
The design process using UML [9] is presented in section 
3. Section 4 describes the actual implementation of GOYA 
system, focussing on the control unit using Ada 95. 

2   System Description 

GOYA is a teleoperated system for blasting applied to 
hull cleaning in ship mainte-nance [12]. The main objec-
tive of this project was to develop a reliable and cost 
effective technology regarding hull grit blasting, capa-
ble to obtain a high quality surface preparation together 
with a dramatic reduction of waste and zero emissions to 
environment. 
This technology was integrated in a full-automated and 

low-cost blasting system. Figure 2 shows the mechanical 
subsystem that consists of the following functional mod-
ules1: 

−Elevation platform (z-axis): This mechanical part con-
sists of a hydraulic elevation 
system that is ascended or descended by a hydraulic ac-

tuator. The minimum height, 
reached on the z-axis, is 800 mm and has a career of 

elevation of 2500 mm. There-fore, it is able to clean the 
fringe of the ship between 800 mm and 3300 mm high. 

−Positioning arm (y-axis): It is intended to move away 
or approach the tilting head to the surface of the ship, 
on the y axis. It is built starting from two mobile 
guided rails, each one supported for a pair of skates. In 
their other end, the rails support a pneumatic cylinder 
without rod that carries the blasting tool. The useful 
career of the arm, on the y axis, is of 4000 mm from the 
end of the elevator table. The positioning arm is moved 
by an asynchronous motor engine, witch is commanded by a 
frequency variator. Once the titling head is touching the 
hull surface, the torque made by the arm increases up to 
a predefined value. While the torque is raising, the 
tilting head is mechanically auto-orientated in order to 
place the tool on the right position (perpendicular to 
the ship hull). The frecuency variator stops the motor 
when the limit torque is reached. 

−Tool positioning cart (x-axis). The tool is mounted on 
a sliding cart that is moved 
by a pneumatic cylinder without rod. This covers the x 

movement of the tool. 

                                                           
1 A more detailed description of the mechanical system is shown in [11] 
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−Tool. The abrasive material is shut against the ship hull through a hose. Its open-
ing and closing is controlled by a pneumatic system. 

 

Fig. 2. GOYA system. On the right, the robot with xyz positioning possibilities. On the 
left, one of the initial tests on shipyards. The titling head is adapted to the surface. 

The control unit incorporates the possibility of work-
ing in two different ways: teleoperated and local modes. 
In the teleoperated mode, the operator monitors and oper-
ates the robot according to the information provided by 
the teleoperation system. This teleoperated mode will be 
the normal manner of operation. For security purposes, the 
control unit can control the robot without communication with the teleoperation 
system through a local and electromechanical interface 
based on buttons, switches, indicators and displays. 

 

3 Design Process 

One of the most important issues around software archi-
tecture is the description of the system structures under 
consideration. It is the basis for all design activities 
including comprehending, communicating, analysing, trad-
ing-off, as well as for modification, maintenance, and 
reuse. Similar to other models, the description can be 
based on mathematical, textual, or graphical notations, 
but in order to manage the complexity of a system, a com-
plete architecture description should be divided into 
multiple views. Often, each architectural view includes a 
set of models that describes one aspect of a system. One 
well-known and widely used approach to multi-viewed ar-
chitectural description is the 4+1 View Model of Archi-
tecture proposed by Kruchten [11]. This model has also 
been adopted in the development of Unified Modeling Lan-
guage (UML) [7]. 
UML has emerged as a standard notation for conceptual 

modeling using the object-oriented paradigm. Taking into 
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account the benefits of blending object-oriented concepts 
with concurrency aspects, the use of UML notation is 
quite helpful when designing distributed and real-time 
applications. The UML notation provides several diagrams 
[6] that allow us to represent static and dynamic proper-
ties of real systems and integrate them following the 
previous 4+1 architecture as we show in this section. 

3.1 Concurrent Object Modeling and Architectural Design Method with UML 

In order to obtain a reference architecture we have 
followed the COMET methodology (Concurrent Object Model-
ing and Architectural Design Method with UML) proposed by 
Gomaa in [9]. It is a design method for concurrent appli-
cations based on the USDP (Unified Software Development 
Process) and the spiral model of Boehm. 
 

Fig. 3. Deployment diagram of the GOYA system. Smart manipulator is a PDA. 

Starting from the system Use Cases, a static and dy-
namic design of the classes in the architecture can be 
derived until reaching the final implementation. Our goal 
is to reach a reference architecture for the design of 
control units in teleoperated service robot: ACROSET. In 
this paper, the process to obtain the reference architec-
ture is presented, the architecture must be as complete 
as possible to be reused in other robots, perhaps more 
complex that the system presented here. 
In figure 3, a possible deployment diagram of the whole 

system is presented, where different nodes are included. 
 

Teleoperation
System

ROC - Remote
Operated Controller

Robot
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Manipulator

Manipulator Tool

RPC

PtP Ethernet

Digital Input

Control

Digital Output
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Fig. 4. General Use Cases of the system 

Following the development process, once the require-
ments of the system are collected (functional and non-
functional), we create a detailed tabular specification 
of the system functionality. It is divided into catego-
ries where attributes (as time response, fault tolerance, 
etc) are included. From such specification, the use cases 
of the system are extracted. 
A system context class diagram is derived from use case 

diagram by considering the actors and which devices they 
utilize to interface with the system. 

3.2 Discovering Classes 

After the previous step, every Use Case is studied in 
order to obtain the objects that take part in it and the 
exchanging messages between these objects. This is the 
most complicated phase in the development process and it 
needs a big creativity effort from the designer. Several 
collaboration diagrams are a consequence of this study. 
Once the different objects of the system are extracted 
from the collaboration diagrams, the classes of the sys-
tem can be proposed as a generalization of objects. 
One of the main objects composing the control unit is 

the Joint_Controller, which has to implement several 
methods as move_to, stop, etc. Therefore, the control ar-
chitecture is based on the class Joint_Controller, de-
fined as interface or abstract class. Each controller 
could be different, so it will be an implementation of 

Robot Use Cases
<<use case package>>

Tool Use Cases
<<use case package>>

Tool

Move Robot

Configure Controller

Request Robot
St t

Stop Robot

Start Up

Robot Event
P i

Activate Tool

Tool Event
P i

Deactivate Tool

Request Tool State
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O t

Set Operation
P

Shutdown
Calibrate Robot

Robot

Operator (Teleop
S t )

Change Movement
P

ROC Use Cases
<<use case package>>
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Joint_Controller, giving the same interface to the rest 
of the system. It will be as many controllers as joints 
the robot has, one for each joint. Each of them imple-
ments its own control algorithm, which could be only 
software or an interface to a hardware control board. It 
is clear then, that if a coordinated movement is needed, 
there should be a coordinator of controllers, as shown in 

figure 6. This figure represents the class diagram of the 
architecture. The class Joints_Coordinator offers differ-
ent basic methods of coordination between joints. 

Fig. 5. Joint_Controller implementation diagram 

The class Tool_Controller is similar to 
Joint_Controller, excepting the object to control. In the 
last case it is dedicated to the tool, implementing a 
different controller for each possible tool that could be 
managed by the robot. The same remark could be done for 
Tools_Coordinator. 
The process coordinator establishes the highest level 

in this architecture. Although the domain of the applica-
tion is teleoperated service robots, there are several 
processes that can be performed in an autonomous manner. 
ProcN_Coordinator implements one of these processes. For 
each one of the possible autonomous processes,  there 
should be a different Process Coordinator, changing in 
run time depending on the process. 

3.3 Concurrent Tasks Structuring 

During the task-structuring phase, the concurrent task 
architecture is developed. As a consequence, the system 
is structured into concurrent tasks and the task inter-
faces and interconnections are defined. To help to deter-
mine the concurrent tasks, task-structuring criteria is 
provided by COMET to assist in mapping an object-oriented 
analysis model of the system to a concurrent tasking ar-
chitecture. 

Joint_Control ler
Joint_State : T_State

Get_State()
Stop()
Move_Forward()
Move_Backward()
Move_To()
Vary_Velocity()

<<Interface>>

J1_Control ler J2_Control ler Jn_Control ler
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For instance, depending on the characteristics of the 
I/O devices (asynchronous, passive, etc), one or more 
tasks will be chosen to read them. That is to say, if the 
sam-pling rate of two passive devices differs we should 
choose two different tasks, but if it is similar, it 
could be simplified in one task depending on the computa-
tional necessi-ties of the system. See section 4.2 to 
complete these concepts. 

3.4 Implementing the Design: Code Generation 

Once the static and dynamic behavior of the system has 
been designed, it is time to implement it depending on 
the better deployment in each case. 
As described above, all the analysis and design of the 

Software can be accomplished by means of a description 
language as UML is. We have got every diagram to explain 
the behavior of the Software we are designing. Part of 
the source code of the application can be obtained from 
the diagrams thanks to the Code Generation AddIn that UML 
tools have. We use Rational Rose 2000 and in this sec-

tion, some tips of the Code Generation tool will be ex-
plained. 

Fig. 6. Proposed architecture class diagram 

The Ada Code Generator AddIn that can be found in Ra-
tional Rose: 

Jn_Controller

Write_Actuators

Write()

(from Global)

<<output device interface>>
Read_Sensors

Read()

(from Global)

<<input device interface>>

Tn_Controller

Joints_Coordinator
Joints_State : T_State

Get_State()
Coordinate_Joints()

1..n

1

1..n

1

Tools_Coordinator
Tools_State : T_State

Get_State()
Coordinate_Tools()

1..n

1

1..n

1

ProcN_Coordinator
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−Substantially reduces the elapsed time between design 
and execution. 

−Produces uniformly structured source code files, pro-
moting consistent coding and 
commenting styles with minimal typing. 
The code generated for each selected model component is 

a function of that com-ponent specification and code gen-
eration properties, and the model properties. 
These properties provide the language specific informa-

tion required to map the model onto Ada. 
Usually we have a component view of the system where 

packages of the software to produce are displayed (see 
Fig. 7). The first step in code generation consists of 
assigning classes in the UML model to every module. If a 
class specification assigns it to a module, the Ada gen-
erator uses this information to determine where to gener-
ate the declaration and definition for the class. 

 

Fig. 7. Components view. Classes can be associated to this packages specifications and 
bodies 

The declaration of the type representing that class is 
placed in the corresponding package specification, along 
with the other types assigned to the same package. The 
declarations of the subprograms associated with that 
class also go in the same package specification. The bod-
ies of these subprograms are placed in the corresponding 
package body. Each class specification must contain the 
desired attributes, relationships and operations. The Ada 
generator uses this information to generate record compo-
nents and subprograms. 
The Ada generator uses the specifications and code gen-

eration properties of com-ponents in the current model to 
produce Ada source code. For each class in a Rose model, 
this generator produces a corresponding Ada type. Asso-
ciations, relationships, and attributes are translated to 
components of that type. 
The implementation files are generated simply in one 

mouse click. These files contain one package body, with 

Joints_Coordinator

Joints_Coordinator

Joints_Control ler

Joints_Control ler

Interface_Sensors

Interface_Sensors

Interface_Actuators

Interface_Actuators

packages 
specifications

packages 
bodies
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the appropriate ‘with’ clauses. This package body con-
tains global declarations, skeletal subprogram, tasks and 
protected object bodies, and code regions. The code gen-
erator provides a complete body for some of the subpro-
grams it generates. For other subprograms, including the 
user-defined ones, it only produces a skeletal body. In 
all cases, the generated bodies contain protected code 
regions. By placing each subprogram implementation within 
its code region, this implementation code is preserved 
when code is regenerated from the model. We have to re-
mark that Rational Rose 2000 can only generate ‘skele-
tons’ of the program, the code necessary to perform the 
dynamic behavior of the system has to be ‘handily’ pro-
grammed. In any case, if a new class is introduced, by 
means of reverse engineering, Rose can reflect the change 
in the model. 
All generated files are placed in a hierarchy of direc-

tories that correspond to class categories and/or subsys-
tems in the model. 

4 Implementation Details Using Ada 

The main components of the Goya system are the Teleop-
eration Platform and the Control Unit, linked by 
Ethernet, and finally the mechanical system of Goya ro-
bot.  
1. Teleoperation Platform: the operator commands re-

motely the robot through it. It has been implemented by a 
workstation SGI with Irix 6.5.8. There are three main 
process running on it: 

−Graphical user interface, which has been developed 
with GtkAda and Ada95. 

−Kinematic control module, through GRASP, a commercial 
software intended to design and simulate robots. 

−Teleoperation platform controller, developed with Ada 
95. This controller communicates with the two process, 
described above, with a communication protocol using TCP 
sockets. Using Ada 95 has facilitated the implementation 
of reading and writing tasks in different communication 
channels. Furthermore the marshalling and unmarshalling 
of data types exchanged between different processes de-
veloped in C and Ada 95. To communicate with the robot 
control unit, distributed system annex (GLADE) [14] with 
Ada 95 has been employed. We have proved the benefits of 
using GLADE instead of developing our own protocol based 
on TCP sockets as we did in previous projects. 
2. Control Unit, implemented with Ada 95 on an Anvan-

tech industrial PC. Goya system is a service robot that 
works at low speed. Once we have found out the critical 
tasks, we have estimated that their response time are 
wide enough to allow the use of GLADE and Linux on the 
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industrial PC. It is an operating system that doesn’t 
have real-time characteristics. Because of an economic 
criterion and its well-known features, Linux (Debian dis-
tribution) becomes the ideal operating system for this 
application. The compiler version for Ada 95 and GLADE 
were 3.14a from ACT. We have used digital input/output 
cards and encoder cards mounted on the PC. Each card has 
its own address space mapped into the PC memory. The 
manufacturer provides the card’s control drivers with C 
functions, following the files treatment from Unix (open-
read/write-close). Thanks to the Ada 95 advantages for 
interfacing with other languages, as C, it has been easy 
to export C functions by means of ‘‘pragma export’’. In 
this way, we have Ada functions to manage directly the 
hardware. 

4.1 Control Unit Architectural Description 

The reference architecture explained in section 3.2 has 
been implemented in Goya system. The Goya robot has three 
freedom degrees (xyz) and one tool. Then, four control-
lers are necessary, one for each freedom degree and one 
for the tool. In figure 5, a class diagram is shown with 
Jn_Controller and multiplicity 1..n; the implementation 
in an object diagram for this particular robot leads to: 
J1_Controller for the elevation platform (z-axis), 
J2_Controller for positioning arm (y-axis) and 
J3_Controller for tool positioning cart (x-axis) mounted 
on the titling head. We only have one tool in this robot, 
so the multiplicity of Tn_Controller will be 1: 
T1_Controller for the blasting tool. Over this joints 
controllers there is a coordinator object 
(Joints_Coordinator) that is required to coordinate move-
ments. This abstract class is implemented with the ap-
propiate procedure Coordinate_Joints for this robot. The 
Tools_Coordinator is not necessary in this application 
because we have only one tool, but finally it is imple-
mented to respect the architecture, offering the same in-
terface to the rest of the application in prevention of 
later modifications and improvements of the robot and an-
ticipating possible tool interchanging.  
The top layer is the Process_Coordinator. We have in 

this application an object that has implemented a state 
machine performing the automatic sequence for blasting a 
complete hull panel. The interface offered by Proc-
ess_Coordinator is the same for any layer that accesses 
to the controllers , so every control order, not only co-
ordinated ones, but even control for individual joints 
pass through the Process_Coordinator. The same could be 
said for Joints_Coordinator. We have created layers with 
the same interface to the upper layer.  
Jn_Controller and Tn_Controller are protected objects 

as Read_Sensors, Write_Actuators are. 
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4.2 Control Unit Tasks Model 

In Fig. 8 the tasks model in this application is pre-
sented. There is a task for Process_Coordinator, a task 
for Joints_Coordinator and two tasks for each controller 
(one for reading sensors state and one for writing actua-
tors). It must be noticed that writing tasks are not pe-
riodic, they are suspended by means of a protected entry 
with a barrier. 

Fig. 8. Tak diagram. Different stereotypes are used. 

All these tasks are needed because we are controlling 
different joints, many times in a simultaneous way or 
even the operator could give orders to any joint while 
other joint is moving. Coordination is needed to perform 
coordinated movements with different strategies of con-
trol. The robot can implement also some autonomous opera-
tions, that is why the system needs also a Proc-
ess_Coordinator These tasks are encapsulated in the ob-
jects shown in figure 6.  
A periodic task that reads sensors and a non-periodic 

task that writes actuators perform the interface with 
hardware devices. Following the task structuring criteria 
from Gomma [9] we have chosen only one task for reading 
sensors because the actualization period in I/O cards is 
the same. The process of writing is similar, the writing 
task is activated when there is an entry for next opera-
tion.   
The Read_Sensors object is implemented as a <<pro-

tected>> object using one important feature in Ada 95. In 
this manner, all the controllers can read at the same 
time by means of function Get_State(). The data of sen-
sors in this protected object is actualized by the 

Read_Sensors
<<input device interface periodic task>>

Write_Actuators
<<output device interface tas...

Jn_Control ler_Read
<<periodic task>>

1

n

1

n

Jn_Controller_Wri te
<<task>>

1

nn

Tool_Control ler_Read
<<periodic task>>

11

Tool_Controller_Write
<<task>>

1

Joints_Coordinator
<<periodic task>>

n

1

n

1

n

1

n

1

Tools_Coordinator
<<periodic task>>

11 11

Process_Coordinator
<<periodic task>>

11 11

1 1
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Read_Sensors task. Being protected we can assure that the 
different hardware does not write at the same time the 
data, avoiding the danger of loosing information. It is 
necessary to remember that in this application the con-
trollers share the I/O hardware (digital cards), in the 
same card we have input from platform, arm  
and head. We assure that every controller accesses prop-
erly to its resorts with the pro-tected object 
Read_Sensors. 
The three tasks Jn_Controller_Read are periodical, they 

are continuously checking the state of the sensors, but 
the writing tasks are active only when there is an order 
of movement for the actuators. There is also another task 
(Write_Actuators) to write the orders to the hardware, 
which is activated only when there is an entry (also pro-
tected entry). 
In the case of sensor data and actuation, communication 

between tasks is performed by means of information hiding 
objects. As it has been mentioned, there are protected 
objects to pass information between the controllers and 
the hardware interface.  
Messages are used for communicating Coordinators tasks 

and Controllers tasks. There is no need to introduce ad-
ditional queue object because the operator orders are 
queued in the Teleoperation Interface system. If neces-
sary, a buffer can be implemented in ProcN_Coordinator 
(fig 6). In any case, writing attempts in any protected 
object would be queued in a FIFO manner. 

4.3 Using the Ada 95 Distributed System Annex: GLADE [13] 

A goal in this reference architecture is to give the 
same interface to the local system and the teleoperation 
system. This interface is a set of procedures, to send 
commands, and a function to get the actual robot’s state. 
The only difference is that the local system accesses di-
rectly to this procedures and function, meanwhile the 
teleoperation system accesses remotely. 
We have taken advantage of using GLADE through the re-

mote procedure call. Due to using GLADE to communicate 
the Teleoperation Platform Controller and the Control 
Unit, apparently the teleoperation Platform Controller is 
running on the industrial PC. 
Although in the present implementation we have only one 

processor, the use of GLADE and this interface objects 
allows distributing easily the application in different 
processors. 
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5. Conclusions 

Although the use of Ada in general industry applica-
tions is much less extended than other languages as C or 
C++, it is the language selected for the implementation 
of the system, due to some features that allow us to ob-
tain an extra portability, maintainability and reliabil-
ity. Some of these key issues in Ada are mechanisms for 
encapsulation, separate compilation and library manage-
ment, exception handling or data abstraction. 
Some features of Ada 95 for object-oriented programming 

have been employed: 
Tagged types, related concepts such as class wide and ab-
stract types that did not exist in Ada 83. 
In general, the use of Distributed System Annex of Ada 

is not appropriate for developing hard real-time systems, 
but it is possible to use it to develop systems without 
stringent time and safety requirements as GOYA. 
The use of GLADE and the well-interfaced structure of 

the proposed reference architecture allow distributing 
easily the application in different processors if needed. 
Thanks to RPC, the application works in the same manner 
in distributed systems than if it would be working in the 
same machine. 
UML and Software development methods are indispensable 

to manage the complexity of big software products. The 
COMET methodology, used to obtain a reference architec-
ture, and Rational Rose, with Ada 95 Code Generator, have 
been greatly useful to reach an implementation of a con-
trol unit in GOYA system. 

References 

1. Ada 95 Reference manual: Language and Standard Libraries. International Standard 
ANSI/ISO/IEC-8652:1995. Available from Springer-Verlag, LNCS 
no. 1246. 

2. Alonso, A., Álvarez, B., Pastor, J.A., de la Puente, J.A., Iborra, A. Software Architecture for 
a Robot Teleoperation System. 4th IFAC Workshop on Algorithms and Architectures for 
Real-Time Control, (1997) 

3. Alvarez B, Iborra A, Alonso A, de la Puente, J.A, and Pastor, J.A. Developing multi-
application remote systems. Nuclear Engineering International. 
Vol.45, No. 548, (2000) 

4. Alvarez B, Iborra A, Sanchez P, Ortiz F, and Pastor, J.A. Experiences on the Product Syn-
thesis of Mechatronic Systems using UML in a Software Architecture Framework., ITM’01 
Istambul, Turkey (2001) 

5. Barnes, J. Programming in Ada 95. Addison-Wesley, 2nd Ed, New York (1998) 
6. Booch G., Jacobson I., Rumbaugh J., Rumbaugh J. The Unified Modeling Language User  

Guide, Addison-Wesley Pub Co, New York, (1998). 
7. Burns, A., Wellings, A.: Concurrency in Ada, Cambridge Univ. Press, Cambridge (1998) 



Francisco Ortiz et al.      16 

8. Douglas, B.P.: Real-Time UML. Developing Efficient Objects for Embedded Systems, 
Addison-Wesley Object Technology Series, Reading, Massachu-
setts (2000) 

9. Gomaa, H.: Designing Concurrent, Distributed, and Real-Time Applications with UML, 
Addison-Wesley Object Technology Series, Reading, Massachu-
setts (2000) 

10. Iborra, A., Alvarez, A., Navarro, P.J., Fernández. J.M, and Pastor, J.A. Robotized System 
for Retrieving Fallen Objects within the Reactor Vessel of a Nuclear Power Plant (PWR). 
Proceedings of the 2000 IEEE Internat. Symp. Industrial Electronics. Puebla, Mexico, 
(2000) 

 
11.Kruchten, F. – Architectural Blueprints – The “4+1” View Model of Software Architecture, 

IEEE Software, USA (1995) 
12.Ortiz, F., Iborra, A., Marin, F., Álvarez, B., and Fernandez, J.M. GOYA - A teleoperated 

system for blasting applied to ships maintenance. 3rd International Conference on Climbing 
and Walking Robots, Madrid, Spain (2000) 

13.Pastor, J.A, Alvarez, B., Iborra, A., Fernández, J.M. An underwater teleoperated vehicle for 
inspection and retrieving. First International Symposium on mobile, climbing, and walking 
robots. Brussels, Belgium (1998) 

14.Pautet, L., Tardieu, S. GLADE user´s guide. Technical report version 3.14a. ACT. 


