Francisco Ortizetal. 1

Modelling a Software Architecture for Robots Control
using UML and COMET Architectural Design Method

Francisco J. Ortiz, Alejandro Martinez, Barbara Alvarez, Andrés Iborra, José M.
Fernandez-Meroiio

Universidad Politécnica de Cartagena, Division de Sistemas e Ingenieria Electronica,
Campus Muralla del Mar, s/n. Cartagena E-30202, Spain
{Bar bara. Al varez, Francisco.Otiz, Al ejandroS. Martinez, An-
dres. | borra, JoseM Fer nandez} @pct . es
http://ww. dte. upct.es

Abstract. In this paper, a control system in the domain of teleoperated service
robots is presented. A reference architecture - ACROSET - has been analyzed
and designed following a concurrent object modeling and architectural design
methodology (COMET) that uses UML as describing language. The architec-
ture of the whole system has been implemented in a ship’s hull blasting robot -
GOYA -using Ada 95 and GLADE. Our previous experience in developing
teleoperated servi ce robots using Ada is al so presented.

1 Introduction

The objective of this paper is to present the devel opnent
process followed to obtain a control system architecture
for teleoperated robots, using the Unified Mdeling Lan-
guage- UML [6], and to describe the software inplenenta-
tion of such architecture on an industrial PC with Linux
using Ada 95 [1].

We have experience in the devel opnent of control sys-

tems with Ada[4]. In par-ticular, several teleoperation
systens for nmintenance activities in nuclear power
pl ants have been inplemented using Ada [3]. In figure 1,

a scheme of a teleoperation systemis shown. In general,
this type of control systems consists of two wunits:
tel eoperation platformand control unit.

The operator is in charge of nmonitoring and operating
the robot according to the in-formation provided by the
tel eoperation system This system receives conmmands from
the operator and perforns the corresponding actions for
executing them For this pur-pose, it comunicates wth
the robot control unit, which physically actuates on the
robot to nove it. The robot control unit nekes some sens-
ing fromthe robot in order to

Francisco Ortizetal. 2

evaluate its global state and send this information to
the teleoperation system which uses it to represent
graphically to the operator the state of the robot and
ensure the correctness of its behaviour. Different tools
are attached to the robot for perform ng the nmaintenance
operations. The tools are operated in a simlar way to
the robot [12].

1. 1Previ ous experiences

Sone tel eoperation systens that we have inplenented using
Ada are: ROSA (Re-notely Operated Service Arn) [2], IRV
(I'nspection Retrieving Vehicle) system [13] and TRON
(Tel eoperated and Robotized System for Mintenance Opera-
tion in Nu-clear Power Plants Vessels) system [10]. The
experience of using the Ada program ng | anguage has been
excellent in all the cases. A reference software archi-
tecture was obtained for the teleoperation platform [2]
and the first inplenentation was carried out with Ada 83
for ROSA system which is used for inspection and repair-
ing of the tubes inside the steam generators. The |an-
guage already provided excellent support for creating
portabl e applications and the use of generic packages al -
lowed us to reuse the ROSA code for working with differ-
ent robot tools. The same code that was devel oped for
ROSA system was reused later for inplenenting the other
systens on different hardware platforms and wth differ-
ent operating systens.

It is very inmportant to notice that the design and de-
vel opnent process of the me-chanical system in tel eoper-
ated service robots it nust lead us to the best solution
that satisfy the functional requirenments. In this process
is necessary to choose the appro-priate actuator and sen-
sors for each degree of freedom of the robot. The actua-
tor and sensors system for a robot freedom degree could
be really different (e.g pneumatic actuators, hydraulic
actuators, electrical engines as asynchronous or synchro-
nous notors, etc). Because of that, the control strate-
gies could be very different as well.

1. 2Ref erence Architectures

Qur experience denonstrates that commercial choice of
axis controllers cards, despite being a reliable and ro-
bust solution, supposes a restriction when choosing the
proper actuator system because of the necessity of use
el ectrical engines as actuators.

Because of this, a very inportant goal in our work is
to show a reference architec-ture for control systens in
the domain of tel eoperated service robots. This architec-
ture is not conditioned by the specific control strategy
of the actuator system the number of freedom degrees and
the variety of tools that the robot manages.

Francisco Ortizetal. 3

A reusabl e reference architecture can be inplemented in
different hardware platforns and can be executed on nany
operating system In nany systens, secure and robust |o-
cal control units were enployed. These units were based
on the use of elec-tromechanical elenents for controlling
the different robots. The local control unit communicates
with the renpte teleoperation unit, which offers a nore
conplex functionality to the operator. However, the func-
tionality of the control unit can increase if nore flexi-
ble platforns are used. For exanple, ROSA control wunit
[3] was based on Vx-work and VME platform The use of a
special real-tinme operating system which provides fea-
tures such as kernel reliability, tiners with enough pre-
ci sion, bounded kernel preenption and other characteris-
tics, allows guarantee tine requirenents. However, the
greatest disadvantage when using this type of solutions
was that they were nore expensive than other operating
systems nore widely used. They also presented distinct
i nterfaces and devel opnent tools.

On the other hand, based on our experience, we can as-
sure that there are control systens that have not such
stringent safety and time requirenents that justify the
use of real-tine operating systens. A failure in the sys-
tem execution or sporadically mssed tinme requirenent
does not inply an inmediate threat. This is the case of a
number of control applications which are supervised or
tel eoperated by human, such as robots for certain mainte-
nance operations in nuclear power plants or robots for
shi p

hul I bl asti ng.

Nowadays, we can present our experience using Ada 95
for developing a new teleoperated robot: GOYA system
(figure 2). In this work, sonme features of Ada 95 for ob-
ject-oriented programm ng have been enployed: tagged
types, related concepts such as class w de and abstract
types that did not exist in Ada 83. W have al so used re-
note procedure call (RPC) through the distributed system
annex. The obtained ar-chitecture for the teleoperation
pl atform has been reused again in this system and a new
reference architecture for the control unit has been de-

Teleoperation

7 platform

Service Robot
NetLi-n{k
veloped in order to be re-used on different platforns

[4].

Francisco Ortizetal. 4

Fi g. 1. Teleoperated service robot system scheme.

In the next section, GOYA systemis briefly described.
The design process using UML [9] is presented in section
3. Section 4 describes the actual inplenmentation of GOYA
system focussing on the control unit using Ada 95.

2 System Description

GOYA is a teleoperated system for blasting applied to
hull cleaning in ship minte-nance [12]. The main objec-
tive of this project was to develop a reliable and cost
ef fective technology regarding hull grit blasting, capa-
ble to obtain a high quality surface preparation together
with a dramatic reduction of waste and zero emissions to
envi ronment .

This technology was integrated in a full-automated and
| ow-cost blasting system Figure 2 shows the nechanical
subsystem that consists of the follow ng functional nod-
ul est:

—El evation platform (z-axis): This mechanical part con-
sists of a hydraulic elevation

systemthat is ascended or descended by a hydraulic ac-
tuator. The m ni num hei ght,

reached on the z-axis, is 800 nm and has a career of
el evation of 2500 mm There-fore, it is able to clean the
fringe of the ship between 800 nm and 3300 mm hi gh.

—Positioning arm (y-axis): It is intended to nove away
or approach the tilting head to the surface of the ship,
on the y axis. It is built starting from tw nobile
gui ded rails, each one supported for a pair of skates. In
their other end, the rails support a pneumatic cylinder
without rod that carries the blasting tool. The useful
career of the arm on the y axis, is of 4000 mm from the
end of the elevator table. The positioning arm is noved
by an asynchronous notor engine, witch is comanded by a
frequency variator. Once the titling head is touching the
hull surface, the torque nade by the arm increases up to
a predefined value. Wile the torque is raising, the
tilting head is mechanically auto-orientated in order to
place the tool on the right position (perpendicular to
the ship hull). The frecuency variator stops the notor
when the limt torque is reached.

—Tool positioning cart (x-axis). The tool is nounted on
a sliding cart that is noved

by a pneumatic cylinder without rod. This covers the x
nmovenent of the tool.

' A more detailed description of the mechanical system is shown in [11]

Francisco Ortizetal. 5

—Tool. The abrasive material is shut against the ship hull through a hose. Its open-
ing and closing is controlled by a pneumatic system.
i3 wna &

Fig. 2. GOYA system. On the right, the robot with Xyz positioning possibilities. On the
left, one of the initial tests on shipyards. The titling head is adapted to the surface.

The control wunit incorporates the possibility of work-
ing in two different ways: teleoperated and |ocal nodes.
In the tel eoperated node, the operator nonitors and oper-
ates the robot according to the information provided by
the tel eoperation system This teleoperated node will be
the normal manner of operation. For security purposes, the
control unit can control the robot without communication with the teleoper at i on
system through a local and electronechanical interface
based on buttons, sw tches, indicators and displ ays.

3 Design Process

One of the nost inportant issues around software archi-
tecture is the description of the system structures under
consideration. It is the basis for all design activities
i ncl udi ng conprehendi ng, comuni cating, analysing, trad-
ing-off, as well as for nodification, naintenance, and
reuse. Simlar to other npbdels, the description can be
based on mathematical, textual, or graphical notations,
but in order to nanage the conplexity of a system a com
plete architecture description should be divided into
multiple views. Often, each architectural view includes a
set of nodels that describes one aspect of a system One
wel | -known and widely used approach to nulti-viewed ar-
chitectural description is the 4+1 View Mdel of Archi-
tecture proposed by Kruchten [11]. This nodel has also
been adopted in the devel opment of Unified Mdeling Lan-
guage (UML) [7].

UML has energed as a standard notation for conceptual
nodel i ng using the object-oriented paradigm Taking into

Francisco Ortizetal. 6

account the benefits of blending object-oriented concepts
with concurrency aspects, the use of UM notation is
quite hel pful when designing distributed and real-tinme
applications. The UM. notation provides several diagrans
[6] that allow us to represent static and dynam c proper-
ties of real systenms and integrate them following the
previous 4+1 architecture as we show in this section.

3.1 Concurrent Object Modeling and Architectural Design Method with UML

In order to obtain a reference architecture we have
foll owed the COVET nethodol ogy (Concurrent Object Model -
ing and Architectural Design Method with UML) proposed by
CGomaa in [9]. It is a design nethod for concurrent appli-
cations based on the USDP (Unified Software Devel opnent
Process) and the spiral nodel of Boehm

eleoperation
System

RP

Smart
Manipulator

Robot

ROC - Remote
Operated Controller

Manipulator igital lnpat— arutp Tool

Fig. 3. Deployment diagram of the GOYA system. Smart manipulator is a PDA.

Starting from the system Use Cases, a static and dy-
nam c design of the classes in the architecture can be
derived until reaching the final inplenentation. Qur goal
is to reach a reference architecture for the design of
control units in teleoperated service robot: ACRCSET. In
this paper, the process to obtain the reference architec-
ture is presented, the architecture nust be as conplete
as possible to be reused in other robots, perhaps nore
conpl ex that the system presented here.

In figure 3, a possible deploynent diagram of the whol e
systemis presented, where different nodes are included.

Francisco Ortizetal. 7

\

<<use case package>> <<use case package>>
ROC Use Cases S Robot Use Cases

E——— O OO

Tool Use C Shutdown
ool Use Cases Calibrate Robof

O O :
T Configure Controller ~ Set Operation
Request Tool State —

(7) — Move Robot

PN \\ // —

Tool Event - | / ST %
N >: 7@\// Change Movement

— ==
Tool C }] \,,‘,sw“ﬁ - Robot
Activate Tool Operator (Teleop (7)

—~
- < % T~ Stop Robgy

) 2R -

Deactivate Tool \asuesi Robo

o

Local Operator (7>

Robot Event

Fig. 4. General Use Cases of the system

Foll owi ng the devel opnent process, once the require-
ments of the system are collected (functional and non-
functional), we create a detailed tabular specification
of the system functionality. It is divided into catego-
ries where attributes (as tine response, fault tolerance,
etc) are included. From such specification, the use cases
of the system are extracted.

A system context class diagramis derived from use case
di agram by considering the actors and which devices they
utilize to interface with the system

3.2 Discovering Classes

After the previous step, every Use Case is studied in
order to obtain the objects that take part in it and the
exchangi ng messages between these objects. This is the
nost conplicated phase in the devel opment process and it
needs a big creativity effort from the designer. Several
coll aboration diagrans are a consequence of this study.
Once the different objects of the system are extracted
from the collaboration diagrans, the classes of the sys-
tem can be proposed as a generalization of objects.

One of the main objects conposing the control wunit is
the Joint_Controller, which has to inplenent several
net hods as nove_to, stop, etc. Therefore, the control ar-
chitecture is based on the class Joint_Controller, de-
fined as interface or abstract class. Each controller
could be different, so it will be an inplenentation of

Francisco Ortizetal. 8

Joint_Controller, giving the same interface to the rest
of the system It will be as many controllers as joints
the robot has, one for each joint. Each of them inple-
ments its own control algorithm which could be only
software or an interface to a hardware control board. It
is clear then, that if a coordinated novenent is needed,
there should be a coordinator of controllers, as shown in

<<Interface>>
Joint_Controller
@y Joint_State : T_State

%Get_State()
*Stop()
®Move_Forward()
*)Move_Backward()
*Move_To()
®Vary_Velocity()

g4 L &

/ | \

‘J1700ntmller‘ ‘ J27Co‘mro||er‘ ‘ Jn7C0ntroIIer‘
[1 1 |

figure 6. This figure represents the class diagram of the
architecture. The class Joints_Coordinator offers differ-
ent basic nmethods of coordi nation between joints.

Fi g. 5. Joint Controller implementation diagram

The cl ass Tool _Control |l er is simlar to
Joint_Controller, excepting the object to control. In the
last case it is dedicated to the tool, inplenenting a

different controller for each possible tool that could be
managed by the robot. The sane remark could be done for
Tool s_Coor di nat or.

The process coordinator establishes the highest |evel
in this architecture. Al though the domain of the applica-
tion is teleoperated service robots, there are several
processes that can be perfornmed in an autononous nanner.
ProcN_Coordi nator inplenents one of these processes. For
each one of the possible autononbus processes, t here
should be a different Process Coordinator, changing in
run time depending on the process.

3.3 Concurrent Tasks Structuring

During the task-structuring phase, the concurrent task
architecture is devel oped. As a consequence, the system
is structured into concurrent tasks and the task inter-
faces and interconnections are defined. To help to deter-
m ne the concurrent tasks, task-structuring criteria is
provi ded by COVET to assist in mapping an object-oriented
anal ysis nodel of the systemto a concurrent tasking ar-
chitecture.

Francisco Ortizetal. 9

For instance, depending on the characteristics of the
I/ O devices (asynchronous, passive, etc), one or nore

tasks will be chosen to read them That is to say, if the
sampling rate of two passive devices differs we should
choose two different tasks, but if it is simlar, it

could be sinplified in one task depending on the conputa-
tional necessi-ties of the system See section 4.2 to
conpl ete these concepts.

3.4 Implementing the Design: Code Generation

Once the static and dynam c behavior of the system has
been designed, it is time to inplement it depending on
the better deploynment in each case.

As described above, all the analysis and design of the
Software can be acconplished by neans of a description
| anguage as UML is. W have got every diagramto explain
the behavior of the Software we are designing. Part of
the source code of the application can be obtained from
the diagrans thanks to the Code Generation Addln that UM
tools have. W use Rational Rose 2000 and in this sec-

ProcN_Coordinator

N

Joints_Coordinator Tools_Coordinator
#& Joints_State : T_State & Tools_State : T_State

N

*Get_State() *Get_State()
*Coordinate_Joints() *Coordinate_Tools()

1 1

1.n 1..n

Jn_Controller Tn_Controller

<<input device interface>> <:output device interface>>
Read_Sensors Write_Actuators
(from Global) (from Global)
*Read() *Write()
tion, some tips of the Code Generation tool wll be ex-

pl ai ned.

Fi g. 6. Proposed architecture class diagram

The Ada Code GCenerator Addlin that can be found in Ra-
ti onal Rose:

Francisco Ortizetal. 10

—Substantially reduces the elapsed tinme between design
and executi on.

—Produces uniformy structured source code files, pro-
noti ng consi stent codi ng and

comenting styles with nminiml typing

The code generated for each sel ected nodel conponent is
a function of that com ponent specification and code gen-
eration properties, and the nodel properties.

These properties provide the |anguage specific infornma-
tion required to map the nodel onto Ada.

Usually we have a conponent view of the system where
packages of the software to produce are displayed (see
Fig. 7). The first step in code generation consists of
assigning classes in the UML nodel to every nodule. If a
class specification assigns it to a npdule, the Ada gen-
erator uses this information to determine where to gener-
ate the declaration and definition for the class

Joints_Coordinator Joints_Controller Interface_Sensors Interface_Actuators
packages 1\
‘ ‘ ‘ ‘ ‘ ‘ specifications
[[
/\ /\ AN
Joints_Coordinator Jolnts Controller Interface Sensors Interface_Actuators

packages
bodles

Fig. 7. Components view. Classes can be associated to this packages specifications and
bodies

The declaration of the type representing that class is
placed in the correspondi ng package specification, along
with the other types assigned to the same package. The
declarations of the subprograns associated wth that
class also go in the sanme package specification. The bod-
ies of these subprograns are placed in the corresponding
package body. Each class specification must contain the
desired attributes, relationships and operations. The Ada
generator uses this information to generate record conpo-
nents and subprograns.

The Ada generator uses the specifications and code gen-
eration properties of components in the current nodel to
produce Ada source code. For each class in a Rose nodel
this generator produces a corresponding Ada type. Asso-
ciations, relationships, and attributes are translated to
conponents of that type.

The inmplementation files are generated sinply in one
nouse click. These files contain one package body, wth

Francisco Ortizetal. 11

the appropriate ‘with’ clauses. This package body con-
tai ns gl obal declarations, skeletal subprogram tasks and
protected object bodies, and code regions. The code gen-
erator provides a conplete body for sone of the subpro-
grams it generates. For other subprograns, including the
user-defined ones, it only produces a skeletal body. In
all cases, the generated bodies contain protected code
regions. By placing each subprogram inplenmentation wthin
its code region, this inplenmentation code is preserved
when code is regenerated from the nodel. W have to re-
mark that Rational Rose 2000 can only generate ‘skele-
tons’ of the program the code necessary to perform the
dynani ¢ behavior of the system has to be ‘handily’ pro-
grammed. In any case, if a new class is introduced, by
means of reverse engineering, Rose can reflect the change
in the nodel.

Al'l generated files are placed in a hierarchy of direc-
tories that correspond to class categories and/or subsys-
tens in the nodel.

4 Implementation Details Using Ada

The main conponents of the Goya system are the Tel eop-
eration Platform and the Control Unit, linked by
Et hernet, and finally the nechanical system of Goya ro-
bot .

1. Teleoperation Platform the operator conmmands re-
notely the robot through it. It has been inplenented by a
workstation SE@ wth Irix 6.5.8. There are three nmmin
process running on it:

—Graphical wuser interface, which has been devel oped
with G kAda and Ada9s.

—Ki nematic control nodule, through GRASP, a commerci al
software intended to design and sinulate robots.

—Tel eoperation platform controller, developed with Ada
95. This controller comunicates with the two process,
descri bed above, with a comunication protocol using TCP
sockets. Using Ada 95 has facilitated the inplenmentation
of reading and witing tasks in different comunication
channels. Furthernmore the marshalling and unmarshalling
of data types exchanged between different processes de-
veloped in C and Ada 95. To communicate with the robot
control wunit, distributed system annex (GLADE) [14] with
Ada 95 has been enployed. W have proved the benefits of
using GLADE instead of devel oping our own protocol based
on TCP sockets as we did in previous projects.

2. Control Unit, inplenented with Ada 95 on an Anvan-
tech industrial PC. CGoya system is a service robot that
works at |ow speed. Once we have found out the critical
tasks, we have estimated that their response time are
wi de enough to allow the use of G.ADE and Linux on the

Francisco Ortizetal. 12

industrial PC. It is an operating system that doesn’t
have real-time characteristics. Because of an economc
criterion and its well-known features, Linux (Debian dis-
tribution) becomes the ideal operating system for this
application. The compiler version for Ada 95 and GLADE
were 3.14a from ACT. We have used digital input/output
cards and encoder cards mounted on the PC. Each card has
its own address space nmapped into the PC nenory. The
manufacturer provides the card' s control drivers with C
functions, following the files treatnent from Uni x (open-
read/ wite-close). Thanks to the Ada 95 advantages for
interfacing with other |anguages, as C, it has been easy
to export C functions by neans of ‘‘pragma export’’ . In
this way, we have Ada functions to manage directly the
har dwar e.

4.1 Control Unit Architectural Description

The reference architecture explained in section 3.2 has
been inplenented in Goya system The Goya robot has three
freedom degrees (xyz) and one tool. Then, four control-
lers are necessary, one for each freedom degree and one
for the tool. In figure 5 a class diagramis shown with
Jn_Controller and multiplicity 1..n; the inplenmentation
in an object diagram for this particular robot |eads to:
J1 Controller for the elevation platform (z-axis),
J2_Controller for posi ti oni ng arm (y-axis) and
J3_Controller for tool positioning cart (x-axis) nounted
on the titling head. W only have one tool in this robot,

so the nultiplicity of Tn_Controller will be 1:
Tl Controller for the blasting tool. Over this joints
controllers there is a coor di nat or obj ect

(Joints_Coordinator) that is required to coordinate nove-
ments. This abstract class is inplenmented with the ap-
propi ate procedure Coordinate_Joints for this robot. The
Tool s_Coordinator is not necessary in this application
because we have only one tool, but finally it is inple-
mented to respect the architecture, offering the same in-
terface to the rest of the application in prevention of
| ater nodifications and inprovenents of the robot and an-
ticipating possible tool interchanging.

The top layer is the Process_Coordinator. W have in
this application an object that has inplenented a state
machi ne performng the automatic sequence for blasting a
conplete hull panel. The interface offered by Proc-
ess_Coordinator is the same for any layer that accesses
to the controllers , so every control order, not only co-
ordi nated ones, but even control for individual joints
pass through the Process_Coordinator. The sane could be
said for Joints_Coordinator. W have created layers with
the same interface to the upper |ayer.

Jn_Controller and Tn_Controller are protected objects
as Read _Sensors, Wite Actuators are.

Francisco Ortizetal. 13

4.2 Control Unit Tasks Model

In Fig. 8 the tasks nodel in this application is pre-
sented. There is a task for Process_Coordinator, a task
for Joints_Coordinator and two tasks for each controller

(one for reading sensors state and one for witing actua-
tors). It nust be noticed that witing tasks are not pe-
riodic, they are suspended by neans of a protected entry

with a barrier.

<<periodic task>>
Process_Coordinator

1

1

<<periodic task>>
Joints_Coordinator

<<periodic task>>
Tools_Coordinator

1 1

n n 1 1
<<task>> <<task>>
Jn_Controller_Write Tool_Controller_Write

<<periodic task>>
Jn_Controller_Read

<<periodic task>>
Tool_Controller_Read

n n

1 1 1 1

<<input device interface periodic task>>
Read_Sensors

<<output device interface tas...
Write_Actuators

Fi g. 8. Tak diagram. Different stereotypes are used.

Al these tasks are needed because we are controlling
different joints, many tines in a simltaneous way or
even the operator could give orders to any joint while
other joint is noving. Coordination is needed to perform

coordi nated novenents with different strategies of con-
trol. The robot can inplenment al so sone autononous opera-
tions, that is why the system needs also a Proc-
ess_Coordi nator These tasks are encapsulated in the ob-
jects shown in figure 6.

A periodic task that reads sensors and a non-periodic
task that wites actuators perform the interface wth
hardwar e devices. Followi ng the task structuring criteria
from Gonrma [9] we have chosen only one task for reading
sensors because the actualization period in I/O cards is
the sane. The process of witing is simlar, the witing
task is activated when there is an entry for next opera-
tion.

The Read_Sensors object is inplenented as a <<pro-
tected>> object using one inportant feature in Ada 95. In
this manner, all the controllers can read at the sane
time by means of function Get_State(). The data of sen-
sors in this protected object is actualized by the

Francisco Ortizetal. 14

Read_Sensors task. Being protected we can assure that the
different hardware does not wite at the sane tinme the
data, avoiding the danger of loosing information. It is
necessary to remenber that in this application the con-
trollers share the 1/0O hardware (digital cards), in the
same card we have input fromplatform arm

and head. W assure that every controller accesses prop-
erly to its resorts wth the ©pro-tected object
Read_Sensors.

The three tasks Jn_Controller_Read are periodical, they
are continuously checking the state of the sensors, but
the witing tasks are active only when there is an order
of movenent for the actuators. There is al so another task
(Wite_Actuators) to wite the orders to the hardware,
which is activated only when there is an entry (also pro-
tected entry).

In the case of sensor data and actuation, conmunication
bet ween tasks is performed by neans of information hiding
objects. As it has been nentioned, there are protected
objects to pass information between the controllers and
the hardware interface.

Messages are used for comuni cating Coordi nators tasks
and Controllers tasks. There is no need to introduce ad-
ditional queue object because the operator orders are
gqueued in the Teleoperation Interface system |If neces-
sary, a buffer can be inplenented in ProcN _Coordinator
(fig 6). In any case, witing attenpts in any protected
obj ect woul d be queued in a FIFO nmanner.

4.3 Using the Ada 95 Distributed System Annex: GLADE [13]

A goal in this reference architecture is to give the
sane interface to the local system and the tel eoperation
system This interface is a set of procedures, to send
commands, and a function to get the actual robot’s state.
The only difference is that the local system accesses di-
rectly to this procedures and function, neanwhile the
tel eoperati on system accesses renotely.

We have taken advantage of using G.ADE through the re-
note procedure call. Due to using GLADE to conmmunicate
the Teleoperation Platform Controller and the Control
Unit, apparently the teleoperation Platform Controller is
runni ng on the industrial PC.

Al 'though in the present inplenentation we have only one
processor, the use of CGLADE and this interface objects
allows distributing easily the application in different
processors.

Francisco Ortizetal. 15

5. Conclusions

Al though the use of Ada in general industry applica-
tions is much |less extended than other |anguages as C or
C++, it is the l|language selected for the inplenmentation
of the system due to sone features that allow us to ob-
tain an extra portability, maintainability and reliabil-
ity. Some of these key issues in Ada are nechanisns for
encapsul ati on, separate conpilation and library manage-
ment, exception handling or data abstracti on.

Sone features of Ada 95 for object-oriented programm ng
have been enpl oyed:

Tagged types, related concepts such as class w de and ab-
stract types that did not exist in Ada 83.

In general, the use of Distributed System Annex of Ada
is not appropriate for developing hard real-ti ne systerns,
but it is possible to use it to develop systens w thout
stringent time and safety requirements as GOYA.

The use of G.LADE and the well-interfaced structure of
the proposed reference architecture allow distributing
easily the application in different processors if needed.
Thanks to RPC, the application works in the sane manner
in distributed systens than if it would be working in the
sanme nachi ne.

UML and Software devel opnent methods are indispensable
to manage the conplexity of big software products. The
COVET net hodol ogy, used to obtain a reference architec-
ture, and Rational Rose, with Ada 95 Code Cenerator, have
been greatly useful to reach an inplenentation of a con-
trol unit in GOYA system

References

1. Ada 95 Reference manual: Language and Standard Libraries. International Standard
ANSI /1I2§é)’l EC-8652:1995. Available from Springer-Verlag, LNCS
no. .

2. Alonso, A., Alvarez, B., Pastor, J.A., de la Puente, J.A., Iborra, A. Software Architecture for
a Robot Teleoperation System. 4th IFAC Workshop on Algorithms and Architectures for
Real-Time Control, (1997)

3. Alvarez B, Iborra A, Alonso A, de la Puente, J.A, and Pastor, J.A. Developing multi-
application renmote systens. Nuclear Engineering |nternational.
Vol . 45, No. 548, (2000)

4. Alvarez B, Iborra A, Sanchez P, Ortiz F, and Pastor, J.A. Experiences on the Product Syn-
thesis of Mechatronic Systems using UML in a Software Architecture Framework., ITM’01
Istambul, Turkey (2001)

5. Barnes, J. Programming in Ada 95. Addison-Wesley, 2nd Ed, New York (1998)

6. Booch G., Jacobson 1., Rumbaugh J., Rumbaugh J. The Unified Modeling Language User
Gui de, Addi son-Wesl ey Pub Co, New York, (1998).

7. Burns, A., Wellings, A.: Concurrency in Ada, Cambridge Univ. Press, Cambridge (1998)

Francisco Ortizetal. 16

8. Douglas, B.P.: Real-Time UML. Developing Efficient Objects for Embedded Systems,
Addi son-Wesl ey Object Technol ogy Series, Reading, Mssachu-
setts (2000)

9. Gomaa, H.: Designing Concurrent, Distributed, and Real-Time Applications with UML,
Addi son-Wesl ey Object Technology Series, Reading, Mssachu-
setts (2000)

10. Iborra, A., Alvarez, A., Navarro, P.J., Fernandez. J.M, and Pastor, J.A. Robotized System
for Retrieving Fallen Objects within the Reactor Vessel of a Nuclear Power Plant (PWR).
Proceedings of the 2000 IEEE Internat. Symp. Industrial Electronics. Puebla, Mexico,
(2000)

11.Kruchten, F. — Architectural Blueprints — The “4+1” View Model of Software Architecture,
IEEE Software, USA (1995)

12.0rtiz, F., Iborra, A., Marin, F., Alvarez, B., and Fernandez, JM. GOYA - A teleoperated
system for blasting applied to ships maintenance. 3rd International Conference on Climbing
and Walking Robots, Madrid, Spain (2000)

13.Pastor, J.A, Alvarez, B., Iborra, A., Ferndndez, J.M. An underwater teleoperated vehicle for
inspection and retrieving. First International Symposium on mobile, climbing, and walking
robots. Brussels, Belgium (1998)

14.Pautet, L., Tardieu, S. GLADE user’s guide. Technical report version 3.14a. ACT.

