
Dear Author,
 
Please, note that changes made to the HTML content will be 
added to the article before publication, but are not reflected 
in this PDF. 
 
Note also that this file should not be used for submitting 
corrections.
 



1

2 Original papers

4 A decision support system for managing irrigation in agriculture5

6

7 H. Navarro-Hellín a, J. Martínez-del-Rincon b, R. Domingo-Miguel c, F. Soto-Valles d, R. Torres-Sánchez e,⇑
8 aWidhoc Smart Solutions S.L. Parque Tecnológico de Fuente Álamo, CEDIT, Carretera del Estrecho-Lobosillo Km 2, 30320 Fuente Álamo. (Murcia), Spain
9 b The Institute of Electronics, Communications and Information Technology (ECIT), Queens University of Belfast, Belfast BT3 9DT, UK

10 cProducción Vegetal Department, Universidad Politécnica de Cartagena, Paseo Alfonso XIII, 48, 30203 Cartagena (Murcia), Spain
11 d Tecnología Electrónica Department, Universidad Politécnica de Cartagena, Campus Muralla del Mar, Doctor Fleming, s/n, 30202 Cartagena (Murcia), Spain
12 e Ingeniería de Sistemas y Automática Department, Universidad Politécnica de Cartagena, Campus Muralla del Mar, Doctor Fleming, s/n, 30202 Cartagena (Murcia), Spain

13
14

1 6
a r t i c l e i n f o

17 Article history:
18 Received 3 December 2015
19 Received in revised form 23 March 2016
20 Accepted 7 April 2016
21 Available online xxxx

22 Keywords:
23 Irrigation
24 Decision support system
25 Water optimisation
26 Machine learning
27

2 8
a b s t r a c t

29In this paper, an automatic Smart Irrigation Decision Support System, SIDSS, is proposed to manage
30irrigation in agriculture. Our system estimates the weekly irrigations needs of a plantation, on the basis
31of both soil measurements and climatic variables gathered by several autonomous nodes deployed in
32field. This enables a closed loop control scheme to adapt the decision support system to local perturba-
33tions and estimation errors. Two machine learning techniques, PLSR and ANFIS, are proposed as reasoning
34engine of our SIDSS. Our approach is validated on three commercial plantations of citrus trees located in
35the South-East of Spain. Performance is tested against decisions taken by a human expert.
36� 2016 Published by Elsevier B.V.
37

38

39

40 1. Introduction

41 The efficient use of water in agriculture is one of the most
42 important agricultural challenges that modern technologies are
43 helping to achieve. In arid and semiarid regions, the differences
44 between precipitation and irrigation water requirements are so
45 big that irrigation management is a priority for sustainable and
46 economically profitable crops (IDAE, 2005).
47 To accomplish this efficient use, expert agronomists rely on
48 information from several sources (soil, plant and atmosphere) to
49 properly manage the irrigation requirements of the crops (Puerto
50 et al., 2013). This information is defined by a set of variables, which
51 can be measured using sensors, that are able to characterise the
52 water status of the plants and the soil in order to obtain their water
53 requirements. While meteorological variables are representative of
54 a large area and can be easily measured by a single sensor for a vast
55 land extension, soil and plant variables have a large spatial vari-
56 ability. Therefore, in order to use these parameters to effectively
57 schedule the irrigation of the plants, multiple sensors are needed
58 (Naor et al., 2001).
59 Weather is one of the key factors being used to estimate the
60 water requirements of the crops (Allen et al., 1998). Moreover, it
61 is very frequent that public agronomic management organisms
62 have weather stations spread around the different regions. These

63weather stations usually provide information of key variables for
64the agriculture like reference evapotranspiration (ET0) or the
65Vapour Pressure Deficit (VPD) that are of great importance to cal-
66culate the water requirements of the crops. Using variables related
67to the climate is the most common approach to create crop water
68requirement models (Jensen et al., 1970; Smith, 2000; Zwart and
69Bastiaanssen, 2004). Using these models, based on solely meteoro-
70logical variables, a decision-making system can determine how a
71given crop will behave (Guariso et al., 1985).
72However, not all the regions have access to an extensive net-
73work of weather stations or they may not be nearby a given crop,
74thus the local micro-climates are not taken into account if only
75these parameters are used. Besides, irrigation models based only
76on climate parameters rely on an open loop structure. This means
77that the model is subject to stochastic events and it may not be
78able to correct the local perturbations that can occur when a unex-
79pected weather phenomenon occurs (for instance irrigate the crop
80when it’s already raining) (Dutta et al., 2014; Giusti and Marsili-
81Libelli, 2015). Finally, monitoring other variables, such as hydrody-
82namic soil factors or water drainage, might increase the chances
83that the irrigation predicted by the models is properly used by
84the plants (Kramer and Boyer, 1995). Therefore, the usage of sen-
85sors that measures the soil water status is a key complement to
86modulate the water requirements of the crops. Soil variables, such
87as soil moisture content or soil matric potential, are considered by
88many authors as crucial part of scheduling tools for managing irri-
89gation (Cardenas-Lailhacar and Dukes, 2010; Soulis et al., 2015).
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90 The information from soil sensors can be used to create better deci-
91 sion models with closed loop structures that adapt to weather and
92 soil perturbations (Cardenas-Lailhacar and Dukes, 2010; Soulis
93 et al., 2015). This practice, however, has not been widely adopted
94 due to the technological limitations of available soil sensors, which
95 required measured information to be registered and stored, tradi-
96 tionally using wired dataloggers, and limiting the installation flex-
97 ibility and the real time interaction. This has changed recently with
98 new generation sensors and sensor networks that are more versa-
99 tile and suited to the agricultural environment (Navarro-Hellín

100 et al., 2015).
101 Combining climate and soil variables has therefore potential to
102 properly manage irrigation in a more efficient way than other tra-
103 ditional approaches. However, it also entails a series of challenges
104 related with the increased amount of data flow, its analysis and its
105 use to create effective models, in particular when data provided by
106 different sources may seem contradictory and/or redundant. Tradi-
107 tionally, this analysis and modelling is performed by a human
108 expert who interprets the different variables. The need of a human
109 agronomist expert is required due to the complexity introduced by
110 the soil spatial variability, crop species variability and their irriga-
111 tion requirements over the growth cycle (Maton et al., 2005),
112 which require comparing crops models and local context variables
113 to determine the specific water requirements to achieve a certain
114 goal at a particular location.
115 The complexity of this problem and the different sources of
116 variability makes than even the best model may deviate from the
117 prediction, which favours the use of close loop control systems
118 combining soil and climate sensors over open loop systems as a
119 way to compensate possible deviations in future predictions.
120 Human expertise has been proved effective to assist irrigation
121 management but it is not scalable and available to every field, farm
122 and crop and it is slow in the analysis of the data and real time pro-
123 cessing. Instead, applying machine learning techniques to replace
124 the manual models and to assist expert agronomists allows the via-
125 bility of creating automatic Irrigation Decision Support System.
126 Machine learning techniques have been used previously to esti-
127 mate relevant parameters of the crop (Sreekanth et al., 2015).
128 Giusti and Marsili-Libelli(2015) present a fuzzy decision systems
129 to predict the volumetric water content of the soil based on local
130 climate data. Adeloye et al. (2012), proposed the use of unsuper-
131 vised artificial neural networks (ANN) to estimate the evapotran-
132 spiration also based on weather information solely. King and
133 Shellie (2016) used NN modelling to estimate the lower threshold
134 temperature (Tnws) needed to calculate the crop water stress
135 index for wine grapes. In Campos et al. (2016) the authors pre-
136 sented a new algorithm designed to estimate the total available
137 water in the soil root zone of a vineyard crop, using only SWC sen-
138 sors, which are very dependent of the location. Taking advantage of
139 the soil information, Valdés-Vela et al. (2015) and Abrisqueta et al.
140 (2015) incorporates the volumetric soil water content, manually
141 collected with a neutron probe, to agro-meteorological data. This
142 information is then fed into a fuzzy logic system to estimate the
143 stem water potential. Other approaches in the literature also make
144 use of machine learning techniques – such as principal component
145 analysis, unsupervised clustering, and ANN – to estimate the irriga-
146 tion requirements in crops. However they do not specify the quan-
147 tity of water needed (Dutta et al., 2014), they reduce the prediction
148 to true or false, and/or they are based on open loop structures
149 (Giusti and Marsili-Libelli, 2015; Jensen et al., 1970; Smith, 2000;
150 Zwart and Bastiaanssen, 2004), only considering the weather infor-
151 mation and, therefore, unable to correct deviations from their
152 predictions.
153 This paper proposes an automated decision support system to
154 manage the irrigation on a certain crop field, based on both cli-
155 matic and soil variables provided by weather stations and soil sen-

156sors. As discussed, we postulate that the usage of machine learning
157techniques with the weather and soil variables is of great impor-
158tance and can help to achieve a fully automated close loop system
159able to precisely predict the irrigation needs of a crop. Our pre-
160sented system is evaluated by comparing it against the irrigations
161reports provided by an agronomist specialist during a complete
162season in different fields.

1632. System structure

164An irrigation advice system is based on the concept of predict-
165ing the waters needs of the crops in order to irrigate them properly.
166Traditionally this decision has been taken by an experienced
167farmer or an expert agricultural technician. Fig. 1 shows the flow
168diagram of which the proposed system is based.
169In this schema, an expert agronomist is in charge of analysing
170the information from different sources: Weather stations located
171near the crops that collect meteorological data, Crop and Soil char-
172acteristics (type, age, size, cycle, etc.) and Soil sensors installed in
173the crop fields. The expert analyses the information to provide an
174irrigation report, which indicates the amount of water needed to
175irrigate properly the crops in the upcoming week. To make this
176decision making process manageable, the information needed to
177create the irrigation report on the next week is only the informa-
178tion of the current week.
179Based on this concept, our Smart Irrigation Decision Support
180System (SIDSS) is proposed. In order to evaluate the performance
181and validity of our approach, the decision system will use the same
182information used by the expert agronomist and will output the
183water requirements for the upcoming week. This will ensure a fair
184comparison between the decisions taken by a human expert and
185the SIDSS. To accomplish this, the machine learning system must
186be trained with historical data and irrigations reports of the agro-
187nomist, using the irrigation decisions taken in these reports as the
188groundtruth of the system. The aim of the system is to be as accu-
189rate as possible to this groundtruth. Several machine learning tech-
190niques were applied and evaluated to achieve the best
191performance. Fig. 2 shows a diagram of the SIDSS.
192The Irrigation Decision System is composed of three main com-
193ponents: a collection device that gathers information from the soil
194sensors, weather stations that provide agrometeorological infor-
195mation and the SIDSS that, when trained correctly, is able to pre-
196dict the irrigation requirements of the crops for the incoming
197week. Table 1 shows the set of possible input variables of the
198system.

1992.1. Collection device and soil sensors

200The information from the soil sensors is gathered using our own
201developed device that has been proved to be completely functional
202for irrigation management in different crops and conditions
203(Navarro-Hellín et al., 2015). This device is wireless, equipped with
204a GSM/GPRS modem, and is completely autonomous, so that the
205installation procedures are accessible to any farmer.
206Fig. 3 shows the collection device installed in a lemon crop field
207located in the South-East of Spain.
208The device allows to fully configure the recording rates of all the
209embedded sensors. In our experiments, a sampling rate of 15 min
210was set, since this gives a good balance between providing enough
211information to support a correct agronomic decision and maintain-
212ing the autonomy of the device with the equipped solar panel and
213battery (López Riquelme et al., 2009; Navarro-Hellín et al., 2015).
214The information is received, processed and stored in a relational
215database.
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216 2.1.1. Soil sensors
217 The soil control variables used to provide SIDSS with relevant
218 information are matric potential (Wm) and volumetric soil water
219 content (hv), which are common in irrigation management (Jones,
220 2004). By using these variables, the irrigation can be scheduled
221 for maintaining soil moisture conditions equivalent or close to field
222 capacity in order to satisfy the required crop water requirements.

223Likewise, they can be used to maintain soil water content or soil
224matric potential under certain reference values proper of regulated
225deficit irrigation strategies. Both Wm and hv are used to decide the
226irrigation frequency and to adjust the gross irrigation doses.
227Soil matric potential was measured with MPS-2 sensors (Deca-
228gon devices, Inc., Pullman, WA 99163 – USA), while volumetric soil
229water content was measured with both 10-HS (Decagon devices,
230Inc., Pullman, WA 99163 – USA) and Enviroscan (Sentek Pty. Ltd.,
231Adelaide, Australia) sensors.
232Besides both previous soil sensors, another sensor is used. A
233pluviometer (Rain-o173-matic small, Pronamic Ltd., Ringkøbing,
234Denmark) was used under the dripper to provide accurate estima-
235tion of the amount of water applied and the irrigation run time.
236The information provided by this sensor was used to ensure that
237the farmer is following the instruction of the agronomic reports
238provided by the expert. Table 2 summarises the variables mea-
239sured by the soils sensors.

2402.2. Weather stations

241Experiments took place in the Region of Murcia, Spain. In this
242region, there is a network of 45 agro-meteorological stations
243located in irrigated areas, the Agricultural Information Network
244System of Murcia (SIAM), funded by the EU and installed to help
245estimate the reference evapotranspiration (ET0) and the irrigation
246needs of crops after a severe drought between 1979 and 1985.
247The variables measured by the stations are the following:

Fig. 1. Flow diagram of the proposed system.

Fig. 2. Training inputs and targets of SIDSS.

Table 1
Set of possible input variables of the system.

Name Symbol Category

1 Volumetric Water
Content depth 1

VWC1 Soil Sensors

2 Volumetric Water
Content depth 2

VWC2

3 Volumetric Water
Content depth 3

VWC3

4 Soil Water Potential SWP
5 Soil Temperature ST

6 Rainfall RF Weather Stations
7 Wind Speed WS
8 Temperature T
9 Relative Humidity RH

10 Global Radiation GR
11 Dew Point DP
12 Vapour pressure Deficit VPD

13 Crop Evapotranspiration ETc Crop and Soil Characteristics
+ Weather Stations

H. Navarro-Hellín et al. / Computers and Electronics in Agriculture xxx (2016) xxx–xxx 3

COMPAG 3563 No. of Pages 11, Model 5G

8 April 2016

Please cite this article in press as: Navarro-Hellín, H., et al. A decision support system for managing irrigation in agriculture. Comput. Electron. Agric.
(2016), http://dx.doi.org/10.1016/j.compag.2016.04.003

http://dx.doi.org/10.1016/j.compag.2016.04.003


248 Temperature (T), Relative humidity (RH), Global radiation (GR),
249 Wind speed (WS), Rainfall (RF), Dew point (DP), Vapour Pressure
250 Deficit (VPD).
251 These variables, measured by the different stations, are publicly
252 available and can be downloaded from the SIAM website (SIAM,
253 2015). The weather stations are tested and calibrated periodically
254 according to the manufacturer’s specifications.
255 The amount of water required to compensate the evapotranspi-
256 ration loss from the cropped field is defined as crop water require-
257 ment. Therefore, knowing the reference crop evapotranspiration is
258 of key importance to estimate the crop’s water requirements.
259 Using the FAO Penman–Monteith formulation (Allen et al., 1998),
260 the daily reference crop evapotranspiration (ET0) can be calculated
261 by means of the weather information. The crop evapotranspiration
262 under standard condition (ETc) can be calculated using the single
263 crop coefficient approach shown below:
264

ETc ¼ K � ET0 ð1Þ266266

267 where Kc is the crop coefficient and depends on multiple factors,
268 namely, the crop type, climate, crop evaporation and soil growth
269 stages.

270 2.3. Smart Irrigation Decision Support System

271 The decision support system is the component in charge of
272 taking the final decision on the amount of water to be irrigated,
273 or equivalently, the number of minutes to irrigate considering

274constant water flow. This decision is taken automatically on the
275basis of the information provided by the sensors and the usage of
276machine learning and pattern recognition techniques. The aim of
277this component, therefore, is to mimic a human expert in the deci-
278sion making process of weekly optimising the irrigation, which
279could assist the farmer.
280Applying machine learning techniques such as Principal Com-
281ponent Analysis (PCA) or Linear Discriminant Analysis (LDA) allow
282us to visualise the information to perform an initial exploratory
283analysis. Fig. 4 shows the LDA of the input, array containing the
284sensorial variables, and output, the estimated irrigation time need,
285used in the system. The output was divided in classes (18), each
286one representing the weekly irrigation time by increments of
287150 min, from 0 to 2700 min. From this figure, it can be noticed
288that discrete classification in classes will be hard to accomplish
289due to the high number of classes necessary to precisely quantise
290the irrigation estimation. This is due to the fact that the variable
291to estimate – either the amount of water or the watering time-
292has an intrinsic continuous nature, since the expected output can
293take any real value between 0 and infinity. Therefore, conventional
294classifiers aiming categorical outputs – such as LDA (Fisher, 1938),
295SVM (Belousov et al., 2002), and ANN are not optimal for this appli-
296cation. Instead, methodologies based on regression (Wold et al.,
2971984), and/or fuzzy logic (Zadeh et al., 1996) allow us to estimate
298a more suited continuous variable.
299In this section, we propose two different techniques, each
300belonging to one of the previous families, to estimate the weekly
301required amount of water. As described in the introduction and
302experimental sections, both modelling techniques require a super-
303vised training set in order to learn the irrigation model.

3042.3.1. Partial least square regression
305Partial Least Square Regression (PLSR) (Wold et al., 2001) is a
306statistical method that seeks the fundamental relations between
307predictor and response variables. Predictor variables, X, are defined
308as the observable variables that can be measured and input into
309the decision system. Response variable Y are the outputs or esti-
310mates that must be deducted from the input.
311The relationship between both variable sets, and linear multi-
312variate regression model, is found by projecting both predicted
313and observable variables into a new space, where latent variables
314are estimated to model the covariance structure between the pre-
315dictor space and the observation space.
316This PLSR model is developed from a training set D = {X, Y} of S
317samples, which is composed of the predictor matrix X = [x1, . . . ,
318xi, . . . , xS]T and the response matrix Y = [y1, . . . , yi, . . . , yS]T. xi is a
319column vector of K elements, that can contain all the sensor and
320weather variables measured at a given week i:
321

xi ¼ ½VWC1;VWC2;VWC3;MP; ST;ETc;RF;WS;T;RH;GR;DP;VPD�T
ð2Þ 323323

324and yi is another column vector of M elements, containing the cor-
325responding variables to be estimated at that week i. Since in our
326application this is only the irrigation time recommended at that
327week, yi is reduced to a scalar and M = 1:
328

Fig. 3. Device installed in a lemon crop field.

Table 2
Soil sensors technical information.

Sensor Measured data Variable name Range Resolution Supply voltage range Output URL

10HS Soil moisture VWC1, VWC2, VWC3 0–57% VWC 0.08%VWC 3–15 VDC 0.3–1.25 V http://www.decagon.com/
MPS-2 Soil matric potential

and temperature
SWP �10 to �500 kPa 0.1 kPa 6–15 VDC SDI-12 http://www.decagon.com/
ST �40� to +50 �C 0.1 �C

Enviroscan Soil moisture VWC1, VWC2, VWC3 0–65% VWC 0.003%VWC 8–32 VDC 4–20 mA http://www.sentek.com.au/
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yi ¼ minutes of irrigation330330

331 PLSR constructs new predictor latent variables, known as com-
332 ponents, which are linear combinations of the original predictor
333 observable variables. These components are created to explain
334 the observed variability in the original predictor variables, while
335 simultaneously considering the response variable. That is, the
336 estimated latent variables are linear combinations of predictor
337 variables that have higher covariance with Y. Using the latent vari-
338 ables leads to a regression models able to fit the response variable
339 with fewer components.
340 The PLSR learning model can be expressed as:
341

X ¼ T � PT þ E ð3Þ343343

344

Y ¼ U � QT þ G ð4Þ346346

347 where T and U are the projections – aka scores – of X and Y into a
348 smaller L-dimensional latent space respectively, P and Q are the
349 orthogonal projection matrices – aka loading matrices – and E
350 and G the error residuals. P and Q can be obtained by eigendecom-
351 position of the original matrices.
352 Since the X-scores T are meant to be good predictors of Y, it can
353 be approximated that:
354

Y ¼ T � QT þ F ð5Þ356356

357 Being F a new residual. This reduces the problem to find a set of
358 weights W such that T = X ⁄W predicts X and Y reasonably well. As
359 mentioned, these orthogonal coefficients should maximise the cor-
360 relation between X and Y while explaining the variance of X:
361

max
w

Corr2ðY ;XÞ � VarðXÞ ð6Þ363363

364 P and Q can be solved by applying a Least Square Estimator
365 (LSE) so:
366

QT ¼ ðTT � TÞ�1 � TT � Y ð7Þ368368

369

PT ¼ ðTT � TÞ�1 � TT � X ð8Þ371371

372 Finally, by rewriting the previous equation, it can be derived
373 that:

374

Y ¼ T � QT þ F ¼ X �W � QT þ F ¼ X � Bþ F ð9Þ 376376

377Being B the PLSR regression coefficients. Once these coefficients
378have been learned, responses y⁄ for new observation x⁄ can be esti-
379mated by applying the learning model:
380

y� ¼ x� � Bþ f ð10Þ 382382

383assuming an estimation error f.
384We favour the use of PLSR among other regression techniques
385due to its suitability when the number of predictors is bigger than
386the number of response variables, the responses are noisy and
387there is a high probability of having multicollinearity among the
388predictor variables. The multicollinear phenomenon happens
389when those variable are highly correlated, due to redundancy
390between sensors and or between meteorological factors. As it can
391be noticed, all these factors appear in our irrigation problem.

3922.3.2. Adaptive neuro fuzzy inference systems
393Adaptive Neuro Fuzzy Inference Systems (ANFIS) (Jang, 1993) is
394a fuzzy inference system for systematically generating fuzzy rules
395from a given input/output D dataset. This machine learning tech-
396nique combines advantages from fuzzy logic and artificial neural
397networks. On the one hand, it allows us to represent an element
398not only into categories but also into a certain degree of member-
399ship functions, which allows mimicking the characteristics of
400human reasoning and decision making. On the one hand, it can
401be trained and so can self-improve in order to adjust the member-
402ship functions parameters directly from data (Wang et al., 2006).
403The ANFIS architecture consists in a five-layer feedforward neu-
404ral network (Fig. 5) whose parameters are updated using a combi-
405nation of gradient descent and LSE in a two-pass learning
406algorithm.
407In a first forward pass step, neuron outputs are calculated layer
408by layer and some internal consequent parameters are identified
409by the least squares estimator (LSE) to obtain the final single out-
410put. The forward pass operation at layer 1 defines the fuzzy mem-
411bership for each input variable X. Assuming a Gaussian distribution
412function Nðcn;rnÞ, the output of this layer is given by:
413

O1;n ¼ lAnðxÞ ¼ e
�ðx�cn Þ2

2r2n ð11Þ 415415

Fig. 4. Linear discriminant analysis for 18 irrigation time intervals.

H. Navarro-Hellín et al. / Computers and Electronics in Agriculture xxx (2016) xxx–xxx 5

COMPAG 3563 No. of Pages 11, Model 5G

8 April 2016

Please cite this article in press as: Navarro-Hellín, H., et al. A decision support system for managing irrigation in agriculture. Comput. Electron. Agric.
(2016), http://dx.doi.org/10.1016/j.compag.2016.04.003

http://dx.doi.org/10.1016/j.compag.2016.04.003


416 Layer 2 is a multiplicative layer, which calculates the firing
417 strength of the rules as a product of the previous membership
418 grades.
419

O2;n ¼ wn ¼
Y

kn

lAknðxÞ ð12Þ
421421

422 Layer 3 is a normalising layer, where:
423

O3;n ¼ �wn ¼ wnP
jwj

ð13Þ
425425

426 Layer 4 applies a node function:
427

O4;n ¼ �wn � f n ¼ �wn � ð
X

k

pn
kxk þ rnÞ ð14Þ

429429

430 where pn and rn are consequent parameters estimated using LSE.
431 Finally, layer 5 is the output layer that provides the overall esti-
432 mation y as a summation of all incoming signals. For the case
433 M = 1, where only one output variable is estimated:
434

O5;1 ¼
X

n

�wn � f n ð15Þ
436436

437 After the forward pass has been completed, an initial estimation
438 is provided by the ANFIS network. Since initial premise parameters
439 cn;rn are initialised randomly, the initial estimation will differ
440 greatly from the desired values Y. This error or difference between
441 the desired output y and the estimated output O5;1 for a given
442 training sample {xi, yi} can be expressed as:
443

Ei ¼ ðyi � O5;1Þ2 ð16Þ445445

446 To correct this deviation, a second learning step, or backward
447 pass, attempts to minimise the estimated error by modifying the
448 value of the premise parameters until the desired and estimated
449 outputs are similar. This process is performed using backpropaga-
450 tion, where the error is propagated back over the layers and
451 decomposed into the different nodes using the chain rule. Gradient
452 descend is used as optimisation technique to update the premise
453 parameters while the consequent parameters are kept fixed until
454 the next iteration.
455 This double step learning process is repeated iteratively for
456 every single sample in the training set until the estimated error
457 is smaller than a given threshold, i.e. convergence is achieved, or
458 a maximum number of iterations – epocs – are reached. The ANFIS
459 implementation used in this work is taken from the Fuzzy logic
460 toolbox (Inc, 2016), by Mathworks where the parameter Radii used
461 to train was a scalar of value 0.75 and the average number of
462 epochs used to train was 1500.

4633. Experimental setup

464The system was evaluated in three commercial plantations of
465lemon trees in the Region of Murcia, located in the semiarid zone
466of the South-East of Spain where the water is very scarce and drip
467irrigation is commonly used. The irrigation criteria followed was to
468maximise the yield.
469Plantation 1. Fino lemon trees (Citrus limon L. Burm. Fil cv. 49)
470on Citrus macrophylla Wester, growing in a soil with a low water
471retention capacity. The soil is characterised by a deep and homoge-
472neous sandy – clay – loam texture. The irrigation water had an
473electrical conductivity (EC) of 2200 lS cm�1. The orchard consist
474of 11 year old lemon trees with an average height of 3.5 m. Tree
475spacing was 7.0 m � 5.5 m, with an average ground coverage of
476about 47%. Two drip irrigation lines (0.8 m apart) were used for
477each tree row. There were 4 emitters (4 L h�1) on both sides of each
478tree. One sensor node was installed in the 5.5 ha orchard, with a
479soil matric potential sensor (MPS-2, Decagon devices, Inc., Pullman,
480WA 99163 – USA) at a depth of 30 cm and three soil moisture sen-
481sors at a depth of 20, 40 and 80 cm (Enviroscan, Sentek Pty. Ltd.,
482Adelaide, Australia) located 20 cm from a representative dripper
483and 2.25 m from the trunk.
484According to the nearest weather station of SIAM, located about
4855 km from the orchard, the climate was typically Mediterranean.
486Thus, over this period (2014), the annual rainfall for the area was
487210 mm and ET0 was 1395 mm. The average wind speed was
4881.66 m/s, generally light wind and sometimes moderate.
489Plantation 2 and 3. 40 and 35 year old lemon trees (C. limon L.
490Burm. Fil) cv. Fino and cv. Verna respectively, grafted on sour
491orange (Citrus aurantium L.), growing in a soil with a mediumwater
492retention capacity. The soil is clay sandy loam texture and the irri-
493gation water had an electrical conductivity (EC) of 1600 lS cm�1

494during all season except in summer which was of 2285 lS cm�1.
495The tree spacing was 7.0 m � 6.75 m and 6.75 m � 6.75 m and
496the average ground coverage about 57% and 50%, respectively.
497One drip irrigation line was used for each tree row. There were 8
498and 6 emitters of 4 L h�1 per tree, respectively. One sensor node
499was installed in the Fino orchard (�15 ha) and another in Verna
500orchard (�23 ha), each with two soil matric potential sensor
501(MPS-2, Decagon devices, Inc., Pullman, WA 99163 – USA) at a
502depth of 25 and 45 cm and three soil moisture sensors at a depth
503of 25, 45 and 70 cm (10HS, Decagon devices, Inc., Pullman, WA
50499163) located 20 cm from a representative dripper and the verti-
505cal canopy projection.
506According to the nearest SIAM’s weather station, located about
5077 km from the orchards, the climate was also typically Mediter-
508ranean. Over this period (2014), the annual rainfall for the area

Fig. 5. Example of ANFIS architecture for a input x with K variables and a 1-variable output y.
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509 was 150 mm and ET0 was 1250 mm. The average wind speed was
510 1.4 m/s, i.e. light wind generally.
511 The decision of selecting these three plantations is based on the
512 fact that all of them are mature lemon trees and therefore their
513 water irrigation requirement differences depend mainly of envi-
514 ronmental conditions (soil and atmosphere) rather than the plant.
515 Besides, all the plantations use drip emitters of 4 L h�1 so estimat-
516 ing the irrigation runtime of the week instead of the water volume
517 will be a correct approach.
518 Drip irrigation provides a fixed volume of water per hour; the
519 pressure is maintained using pressure compensating emitters.
520 The Irrigation frequency is calculated taking into account that only
521 a certain amount of water depletion is allowed before the next
522 replenishment is scheduled. Thus, the run time (gross irrigation
523 dose) is determined to be equivalent to the previous amount of
524 water depletion. The experts only need to calculate the irrigation
525 run time (minutes) and the number of watering times per week
526 or day depending on the time of year or crop development stage.
527 The main goal of the system, also reflected by the expert agrono-
528 mist in his reports, is to maximise the yield (maximum production
529 per crop surface) with an optimum water management.
530 Since information from the weather stations, soil sensors and
531 crops characteristics has different sampling periods, the first step
532 is pre-process this information. After analysing several methods
533 and time intervals it was decided that the best option was to cal-
534 culate the week average value for each of the sensors or weather
535 stations variable except for the rainfall where the total amount
536 of rainfall during the week is used instead. The week average fits
537 better than others method like the daily average due to the fact,
538 that the irrigation reports from the expert agronomist are already
539 fixed, limited and done weekly. Besides, adding more input will
540 make the data sparser, making more difficult to find patterns in
541 the feature space, requiring a higher amount of data to train the
542 system accordingly.
543 The input obtained will be a one dimensional vector xi for each
544 week in which the columns are the different variables or inputs of
545 our system.
546 The target vector will be the water requirements of the crops in
547 the following week yi. This information has been extracted from
548 the agronomist expert weekly reports in order to be used as
549 groundtruth for comparison as for supervising the learning
550 process.
551 Three datasets are available, each dataset represent a different
552 plantation. Data was collected from January 2014 until June
553 2015. Each plantation dataset has 74 weeks of data, which makes
554 a total of 224 weeks of data. To accomplish a proper analysis of
555 the system, we have divided the experiment in two different sce-
556 narios. Both scenarios differ from the other on the training and
557 testing split.
558 Two machine learning methods are applied on each scenario, a
559 method based on PLSR and a method based on ANFIS. The perfor-
560 mances of both methods in the different scenarios are analysed.

561 4. Experimental results and discussion

562 4.1. Scenario 1

563 In this scenario, we aim to successfully predict the irrigation
564 needs of one or several plantation, based on the information pro-
565 vided by the collection device and learned knowledge from a his-
566 torical archive of the previous year irrigation reports. This is of
567 obvious usefulness in real life. We will demonstrate this capability
568 by predicting the irrigation needs of year 2015 for the three plan-
569 tations based on the information of the year 2014. The training set
570 is therefore composed by all 2014 weeks of data belonging the

571three plantations, while the test set is composed by all 2015 weeks
572belonging to the three plantations.
573The information given to the system, or input vector, is a critical
574part of the design. On the one hand using unnecessary features
575may make the system perform poorly due to redundant informa-
576tion and noise. On the other hand, using too few features may
577not provide all the required information. Therefore, among all the
578available features explained in Table 1, they will not all be neces-
579sary. Table 3 shows the features subsets selected for each test.
580Among all possible sets of features, only combinations with logical
581sense, according to an expert agronomist were chosen a priori for
582the different experiments. Performance of the different sets is
583shown in Fig. 6.
584The set that accomplish the best performance for both methods
585is F6, with and error of 155.1 and 121.1 min week�1 for PLSR and
586ANFIS respectively. In order to put this error into context, it can
587be noticed that 2.5 extra hours of irrigation represent around
58810% of the total time in summer months – and up to 20% in spring
589and autumn months, being 10% error considered as an acceptable
590error in agriculture (Bos et al., 2004). Therefore, this feature set
591F6 will be the input vector of the system. It can be noticed that
592including the rain as input of the system (F7), increases the error.
593In the Region of Murcia, the rainfall are extremely low (around
594210 mm per year) and usually being concentrated in a few days
595of the year, being the weekly total rain in most cases 0. With this
596information only available for the year 2014, the system didn’t
597have enough information to be trained properly and developed in
598unpredictable results. However we understand that in other
599regions the rainfall could be really useful to increase the perfor-
600mance of the system. Besides, considering the water retention
601capabilities of the soil, part of the rainfalls would be considered
602in the next irrigation report.
603Fig. 7 shows the water irrigation pattern over time predicted by
604the PLSR and ANFIS respectively when using feature set 6.
605The weekly errors for predicting the irrigation needs during the
606year 2015 in the three plantations are 155.1 and 121.1 min week�1

607for PLSR and ANFIS respectively. The standard deviation for PLSR is
608120.7. In the case of ANFIS, the standard deviation is 105.2. The
609total amount of time needed to irrigate the crops in the three plan-
610tations in 2015 is 65,641 min. ANFIS method estimates this value
611in 60,506 min and PLSR estimates 63,240 min. As conclusion,
612ANFIS performance is better than PLSR for each individual week
613water requirement estimation. However, PLSR estimation also fol-
614lows the irrigation pattern accurately and estimates the total
615amount of water required more accurately over time than ANFIS,
616which seems to be more conservative in the water usage. Looking
617at the higher peaks of water requirement in the graphs, PLSR may
618overestimate the water needs while ANFIS is more accurate in gen-
619eral. It is important to note that in agronomy the most important
620point is not only the amount of water plants need but when they

Table 3
Features subset and variables associated.

Feature set Variables

F1 VWC1, VWC2, VWC3, SWP, ST, ETc, RF
F2 VWC1, ETc, RF
F3 SWP, ST, ETc, RF
F4 SWP, ETc, RF
F5 SWP, ST, ETc
F6 VWC1, SWP, ETc
F7 VWC1, SWP, ETc, RF
F8 VWC1, SWP, ST, ETc
F9 VWC1, VWC2, VWC3, SWP, ETc
F10 VWC1, SWP
F11 VWC1, VWC2, VWC3, SWP
F12 SWP, ETc
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621 need it (Allen et al., 1998). Following this criterion, the perfor-
622 mance of ANFIS is much better than PLSR for this scenario.
623 Another factor that is important to analyse in this research is
624 the use of soil sensors in addition to weather stations to close
625 the loop. We consider that using this kind of sensors to estimate
626 the water requirements of the crops improves the accuracy of
627 the estimation and helps to deal with local disturbances. Since this
628 is one of our main contributions and differences with other pro-
629 posed automatic irrigation systems, a detailed analysis of the con-
630 tribution of these variables is needed to validate our hypotheses
631 and facilitate comparison with previous research systems. There-
632 fore, the input vector was changed, using only weather information
633 to train the system and predict the irrigation time. Table 4 shows
634 the weekly average error for different sets of input vectors.
635 The weather-only input vector that performs best is produced
636 using ET0 exclusively, so this is used in the following analysis as
637 representative of the weather-only prediction systems. Fig. 8
638 shows the results of PLSR and ANFIS methods using the ETc in com-
639 parison to the F6 system.
640 The error in PLSR using only weather information is
641 175.3 min week�1 with a standard deviation of 147.6. In the case
642 of ANFIS, the error is 159.6 min week�1 with a standard deviation
643 of 146.6.
644 Although in general the shape of the graph is quite similar to
645 the one using both soil and weather. The use of soil sensors gives
646 a fine adjustment increasing the accuracy of the estimation for
647 both PLSR and ANFIS reasoning engines.
648 It can be concluded that a much better performance in the
649 weekly irrigation estimation (around a 22% smaller weekly average

650error) is achieved when adding soils sensor information to the
651weather information.
652Next, a cross-validation strategy is applied to the scenario to
653validate how the results will generalise to an independent dataset.
654In cross validation, the complete dataset of the three plantations is
655divided in training and testing sets. The method used to cross-
656validate the information is Leave one out (LoO CV), a particular
657case of the Leave-p-out cross-validation (LpO CV). Kohavi (1995)
658and Picard and Cook (1984) that involves using 1 observation as
659the testing set and the remaining observations as the training
660set. This process is repeated the number of samples times (n)
661changing the test sample each time to validate the system with
662all the samples. Cross validation method was used for both PLSR
663and ANFIS.
664Fig. 9 shows the results of this LoO Cross-Validation method for
665PLSR and ANFIS respectively using the set F6 as input vector.
666The error in PLSR is 277.8 min week�1 with a standard deviation
667of 153.2. In the case of ANFIS, the error is 87.6 min week�1 with a

Fig. 6. Performance of the different sets of variables for linear regression and ANFIS.

Fig. 7. Prediction of the water irrigation pattern using soil and weather information for the different plantations (Plantation 1: Week 1–24, Plantation 2: Week 25–48,
Plantation 3: Week 49–72).

Table 4
Summary of the performance of the different subsets.

System Input vector Weekly error
(min)

PLSR ANFIS

Soil + weather variables (F6) VWC1, SWP, ETc 155.1 121.1
Only weather variables ETc 175.3 159.6

ETc, RF 178.4 163.6
ETc, RF, WS 378.4 379.5
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668 standard deviation of 102.9. The total amount of time needed to
669 irrigate the crops for the 189 weeks in the three plantations is
670 214,020 min. The ANFIS method estimates this value on
671 213,180 min and PLSR estimates 213,960 min. Table 5 summarises
672 the result of the experiments.
673 Similar conclusions are extracted using Cross-Validation. Both
674 PLSR and ANFIS systems are really close to the groundtruth in
675 the total amount of water estimated but it is clear that ANFIS per-
676 forms much better than PLSR if we consider the weekly error. It is
677 also confirmed that using soil sensors in addition to weather infor-
678 mation results in a better performance for both ANFIS and PLSR
679 methods.
680 The improvement on ANFIS performance during cross valida-
681 tion is explained by the larger amount of training data regarding
682 the ‘‘predict 2015” experiment. This behaviour is expected due to
683 the nature of neural networks, which require large amount of data
684 to be trained in comparison with other machine learning tech-
685 niques and we predict than having a historical archive longer for
686 training could results in a further improvement.
687 Although we are validating our systems with the three planta-
688 tions described before as case of study, in principle, our methodol-
689 ogy has been designed to be independent of the crop, terrain and
690 location of the plantation, aiming to propose a general close-loop
691 automatic irrigation estimator. In practical terms, this means that
692 to apply our system to new plantations, training data in the form

693of sensor and weather weekly data as well as irrigation reports
694provided by and expert agronomist for the new plantation will
695be needed. Since these reports can be expensive and compiling a
696substantial amount of weekly reports is time consuming and must
697be planned in advance, it is important to know how big the dataset
698must be and how the performance may improve with the number
699of training weeks.
700Therefore, as final experiment to obtain an estimation of the
701required amount of training data for a new crop/plantation, the
702complete dataset was divided in different percentages of training
703and testing. Fig. 10 shows the weekly error of both PLSR and ANFIS
704methods with respect to the training dataset percentage.
705According to the figure, it is noticeable that ANFIS performance
706is much better than PLSR if there are enough samples to train the
707system. In cases where the percentage of samples for training is

Fig. 8. Prediction of the water irrigation pattern using weather information for the different plantations (Plantation 1: Week 1–24, Plantation 2: Week 25–48, Plantation 3:
Week 49–72).

Fig. 9. Cross-validation LoO prediction for linear regression and ANFIS (Plantation 1: Weeks 1–52 and 157–180, Plantation 2: Weeks 53–104 and 181–204, Plantation 3:
Weeks 105–156 and 205–229).

Table 5
Scenario 1 results summary.

Results Average weekly error (min)

With soil sensors No soil sensors

Scenario 1 Predict 2015 PLSR 155.1 175.3
ANFIS 121.1 159.6

Cross-Validation PLSR 277.8 295.7
ANFIS 87.6 211.9
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708 low (less than 25% of the data, i.e. less than 4 months of data for a
709 given field), PLSR overperforms ANFIS. This case is relevant for new
710 plantations without historical data of previous reports. In such sit-
711 uations, the PLSR predictive model may be used in early stages,
712 before switching to ANFIS once enough samples to train the system
713 properly are collected.

714 4.2. Scenario 2

715 The goal is to predict the irrigation of a plantation based on its
716 weather and soil measured variables but using a SIDSS system
717 trained exclusively with other fields. This will be the hardest sce-
718 nario as it will be necessary to predict the irrigation needs of a field
719 with no previous irrigation reports of that specific plantation. This
720 scenario attempts to show the potential of our methodology to cre-
721 ate a universal irrigation estimator of a given crop – in our case,
722 lemon trees – for any given plantation, independently of the loca-
723 tion and/or terrain. A lower performance can be expected in com-
724 parison to what could be achieved by retraining the system with
725 information of the plantation (scenario 1), which is sacrificed for
726 the benefit of not having to generate manual irrigation report for
727 new plantations. Cross validation, specifically leave-
728 one_plantation-out is applied in validation. Thus, 2014 and 2015
729 data from two of the plantations are used for training, while the
730 remaining plantation data (2014 + 2015) is used for testing. This
731 is repeated 3 times, leaving a different plantation out of the train-
732 ing set each time, and the results averaged.
733 Table 6 shows the error and standard deviation of this scenario
734 for PLSR and ANFIS using different features vector used to compare
735 the performance.
736 The best feature vector F6 used in scenario 1 is used as input. In
737 this case PLSR outperforms ANFIS with an average error of
738 257.0 min in comparison with 323.3 min for ANFIS. However, we

739noticed that, in this scenario, removing the VWC1 sensor results
740in a better performance for both methods as a universal estimator.
741This is explained because the VWC sensor is very dependent on the
742soil where it is installed and, as both algorithms were trained with
743a sensor installed in a different plantation than the one that is pre-
744dicting, the provided information introduces noise and does not
745help the system to estimate properly the water need. This does
746not happen, however, with the SWP sensor, which quantifies the
747tendency of water to move from one area to another in the soil
748and it is less dependent on the soil installed. Removing the VWC
749sensor results in a better performance of the system obtaining an
750average weekly error of 194.4 min with PLSR and 197.4 min with
751ANFIS. This result proves that there is certain potential to develop
752a universal estimator using our system for a given crop, although
753this means an increase of the average error. This error could be
754reduced if more than 2 plantations of the same crop were available
755for training. Both PLSR and ANFIS performs similarly, being PLSR
756slightly better.

7575. Conclusions

758This paper describes the design and development of an auto-
759matic decision support system to manage irrigation in agriculture.
760The main characteristic of system is the use of continuous soil
761measurements to complement climatic parameters to precisely
762predict the irrigation needs the crops, in contrast with previous
763works that are based only on weather variables or doesn’t specify
764the quantity of water required by the crops. The use of real-time
765information from the soil parameters in a closed loop control
766scheme allows adapting the decision support system to local per-
767turbations, avoiding the accumulative effect due to errors in con-
768secutive weekly estimation, and/or detecting if the irrigation
769calculated for the SIDSS has been performed by the farmer. The
770analysis of the performance of the system is accomplished compar-
771ing the decisions taken by a human expert and the decision sup-
772port component. Two machine learning techniques, PLSR and
773ANFIS, have been proposed as the basis of our reasoning engine
774and analysed in order to obtain the best performance.
775The experiments have taken place in three commercial planta-
776tions of citrus trees located in the South-East of Spain. A first exper-
777imental scenario shows a comparison of the system’s performance
778using soil sensors in addition to the weather information for pre-
779dicting year 2015 using 2014 information to train the system.
780The usage of soil sensor in the three plantations accomplished a
78122% less of weekly error in comparison to the performance of using
782only weather information.
783A second scenario shows the potential of our system as univer-
784sal estimator for a given crop, i.e. the use case of installing the sys-
785tem in a new plantation, not having previous information of it. For
786this application, VWC sensors should be removed due to their high
787dependence with the soil type. Although, as expected, the estima-
788tion error increases in this scenario, it does not require historical
789data from agronomical reports to be retrained, which implies a sig-
790nificant advantage, in particular for new plantations in early stages.

Fig. 10. Performance comparison for linear regression and ANFIS with respect to
the % of samples used to train.

Table 6
Scenario 2 results summary.

Method Features vector Test plantation 1 Test plantation 2 Test plantation 3 Total

Weekly error (min) Std Weekly error (min) Std Weekly error (min) Std Average weekly
error (min)

Average Std

PLSR VWC1 + SWP + ETc 364.1 205.6 179.4 141.2 227.5 185.8 257.0 177.5
ANFIS VWC1 + SWP + ETc 373.2 300.7 175.4 129.8 421.4 495.5 323.3 308.6
PLSR SWP + ETc 182.2 133.3 176.2 120.9 224.9 172.38 194.4 142.2
ANFIS SWP + ETc 200.8 140.1 156.5 126.9 234.8 192.6 197.4 153.2
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791 If more training data from a bigger variety of field were available, a
792 better performance in this scenario could be expected. Another
793 possible improvement for this scenario will be the addition of a
794 VWC to get a better performance than using only the matric poten-
795 tial sensors. However, in order to use the VWC sensor in this sce-
796 nario, a precise study of the soil textures of the plantation will be
797 required to extrapolate the VWC sensor information to similar soil
798 textures where the DSS was trained.
799 For future research, we aim to extend and evaluate the system
800 in plantations different than citrus and analyse the performance
801 under several conditions and regions. Thus, adding the weather
802 forecast as input of the SIDSS could help to improve the next week
803 irrigation schedule and consider the predicted rainfall in our esti-
804 mation. Similarly, past rainfall information, that did not prove ben-
805 eficial in our system due to the region of Murcia characteristics,
806 may become a good factor to improve the accuracy of the system
807 in regions with a more regular and predictable raining pattern.
808 We also aim to capture a bigger dataset that will allow us to gen-
809 erate more general models towards a universal irrigation estimator
810 of a given crop. This dataset will also explore the use of multiple
811 sensors per plantation in order to address inhomogeneous ground
812 conditions in the different plantation as well as provide more input
813 information to the system for a better reasoning.
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