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1 Algebraic Quantization

The aim of the Algebraic Quantization is the quantum description of a physical system
by means of the unitary and irreducible representations of its symmetry group. Two
cases have to be considered, corresponding to systems without constraints and to
those with constraints, respectively.

In the simplest case, the group G̃ of quantum symmetries will be a central exten-
sion by U(1) of the group G of classical symmetries. Then the starting point is a Lie
group G̃ which is a principal bundle with fiber U(1) and base G. The group law has
the generic form:

g′′ = g′ ∗ g , ζ ′′ = ζ ′ζ exp[iξ(g′, g)] , (1)

where g′′, g′, g ∈ G, ζ ′′, ζ ′, ζ ∈ U(1), and ξ : G × G → R is a 2-cocycle. The
representation is built by means of the left action of the elements of G̃ on com-
plex functions (wave functions) on the group manifold, ĝΨ(g′) = Ψ(g ∗ g′), verifying
the U(1)-function condition (phase invariance of Quantum Mechanics): Ψ(ζ ∗ g) =
ζΨ(g) , ∀g ∈ G̃ , ∀ζ ∈ U(1).

However, this representation is reducible (all right transformations commute with
it). To reduce it, we have to impose certain restrictions on the wave functions in
order to trivialize this right action. Some new concepts are needed for this purpose.
We call a subgroup A ⊂ G̃ horizontal if A ∩ U(1) = 1

G̃
(which implies that the

restriction of ξ to A is a coboundary, that is, ξ(a1, a2) = η(a1 ∗ a2) − η(a1) − η(a2),
for some funtion η on A). Taking into account that the group commutator is [g′, g] =
g′ ∗ g ∗ g′−1 ∗ g−1, we define the characteristic subgroup GC as the maximal horizontal
subgroup such that the commutator group [GC , G̃ ] is also horizontal. GC contains
those transformations which do not possess dynamical (symplectic) content (such as
time evolution, rotations, gauge symmetries).

The following step is to introduce the concept of polarization subgroup GP , as
a maximal horizontal subgroup which includes the characteristic subgroup, GC ⊂
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GP . To reduce the representation we impose the polarization condition on the wave
funtions:

Ψ(g ∗ GP) = Ψ(g) . (2)

In this way, we obtain a unitary irreducible representation of the group G̃ on
polarized U(1)-function on the group by means of its left action.

The second case is a non-trivial generalization of the formalism consisting in
substituting the structure group U(1) of phase invariance by a bigger group T (to
account for “gauge” invariance, constraints, etc., see []).

With this generalization, the group G̃ becomes a principal fibre bundle with struc-
ture group T . The group T itself will be a (non-trivial, in general) central extension
by U(1), and will be, in general, non-abelian.

Let’s consider a UIR D of T on a complex vector space E. If T is non-abelian, its
representations can have dimension greater than 1. The Hilbert space H(G̃ ) is made
out of those E-valued functions on the group G̃ polarized (as in the case of structure
group U(1)) verifying the T -function condition from the left:

Ψ(gT ∗ g) = D(gT )Ψ(g) . (3)

It must be stressed that the construction of the Hilbert space H(G̃ ) depends on
the particular choice of the UIR Dα of T , where α is an index characterizing the
representation. Therefore, we have non-equivalent quantizations for each choice of
non-equivalent representation Dα of T (in the sense of superselection sectors).

The quantum operators are defined as before. However, in general not all the
quantum operators preserve the Hilbert space Hα(G̃ ), i.e. not all the (left) transfor-
mations of G̃ are compatible with the T -function condition (which is also imposed
from the left). Therefore, we define the subgroup of good operators, GH, as those
preserving the Hilbert space Hα(G̃ ). This subgroup can be characterized by the
condition:

[GH, T ] ⊂ Ker Dα(T ) . (4)

The rest of quantum operators, those not preserving the condition above, are
bad operators. Among them, there may be operators which are not so bad, in the
sense that they can be interpreted as quantization-changing operators, taking the
whole Hilbert space Hα(G̃ ) to another Hα′

(G̃), where α and α′ label non-equivalent
representations.

Special care should be taken if the structure group possesses dynamical (symplec-
tic) content, i.e. the 2-cocycle ξ is not a coboundary when restricted to T , and we
cannot impose, in general, the whole group T in the T -function condition (it would
lead to inconsistencies). He have to choose a polarization subgroup Tp in T , and
impose the condition: Ψ(gTB

∗ g) = D(gTB
)Ψ(g), where TB = Tp ∪ U(1) and D is a

representation of TB. Then we proceed in the same way as before, simply changing
T for TB everywhere.



2 Quantization of the Heisenberg-Weyl group on the torus

Now, as a direct application of the formalism introduced in the previous section, let
us consider the problem of the quantization of the torus as a symplectic manifold.
We can perform it considering G̃ as the Heisenberg-Weyl (H-W) group, with group
law:

~x ′′ = ~x ′ + ~x

ζ ′′ = ζ ′ζ exp{
i

h̄
mω[(1 + λ)x′

1x2 + λx1x
′
2]} , (5)

and T a fibre bundle with base Γ~L ≡
{
e~k,

~k ∈ Z × Z
}

and fibre U(1), where e~k

are translations of ~x by an amount of ~L~k ≡ (k1L1, k2L2) (therefore G̃ /T ∼ T 2). λ
parametrizes different (equivalent) 2-cocycles. The fibration of T by U(1) depends
on the values of m, ω, L1 and L2, and is, in general, non-trivial (see [] for a detailed
discussion). Two cases have to be considered:

When mωL1L2

2πh̄
= n ∈ N , the structure group is T = Γ~L × U(1), and the T -

function condition reads Ψ(gT ∗ g) = D(gT )Ψ(g), with D(e~k, ζ) = ζD(e~k). D(e~k)
is a representation of the group Γ~L ≈ Z × Z. We shall restrict ourselves to the
trivial representation D0(e~k) = 1 for the time being, and the non-trivial ones will be
obtained later on.

The T -function condition is written as e
i
h̄

mω[(1+λ)k1L1x2+λk2L2x1]Ψ0(~x + ~L~k, ζ) =
Ψ0(~x, ζ). This restriction on the wave functions has severe consecuences: (a) There
exist only two possible polarizations1 leading to Φ0(x1) and Φ0(x2) respectively, (b)
The wave function is distributional, with support on discrete, equally spaced values,
and (c) The dimension of the representations (and of the Hilbert space) is n.

Explicitly, the allowed values for the coordinates are x2 = k
n
L2 or x1 = k

n
L1, k ∈

Z, depending on the polarization we choose. The wave functions have the form
Φ0(x2) =

∑
k∈Z akδ(x2 −

k
n
L2), with periodicity in the coefficients ak, ak = ak+n, ∀k ∈

Z, that allow to write it on a more compact form: Φ0(x2) =
∑n−1

k=0 akΛ
0
k(x2), where

Λ0
k(x2) ≡

∑

k2∈Z

δ(x
(k)
2 − k2L2) =

1

L2

∑

q∈Z

ei2πqx
(k)
2 /L2 , (6)

with x
(k)
2 ≡ x2 −

k
n
L2.

The subgroup of good operators is: GH =
{
ζ(η̂1)

k1
n (η̂2)

k2
n , k1, k2 ∈ Z, ζ ∈ U(1)

}
,

with η̂1 ≡ e(1,0) and η̂2 ≡ e(0,1).
We can obtain the whole set of non-equivalent quantization acting with the bad

operators (those operators of G̃ that are not in GH, see []): Φ~α(x2) = η̂α1
1 η̂α2

2 Φ0(x2) =∑n−1
k=0 akΛ

~α
k (x2).

1We are considering only real polarizations. There exist also a complex polarization leading to
holomorphic wave functions.



Bad operators, in this simple case, can be interpreted as quantization-changing
operators. The range of inequivalent quantizations is given by α1 ∈ [0, L1

n
) and

α2 ∈ [0, L2

n
).

When2 mωL1L2

2πh̄
= n

r
∈ Q, the structure group T possesses dynamical (symplectic)

content and we have to choose a polarization subgroup Tp. Since T has a characteristic

subgroup GC = {r~L~k,
~k ∈ Z × Z}, Tp = GC ∪ {k~L~kp

, k ∈ Z}, where ~kp = (1, 0) or

(0, 1).
The T -function condition is Ψ(gTB

∗ g) = D(gTB
)Ψ(g), where TB ≡ Tp ∪ U(1).

Let’s consider (for simplicity) the trivial representation D0(gTp
, ζ) = ζ of Tp. The two

possible choices of ~kp lead to non-equivalent representations, of dimension n:

For ~kp = (0, 1) the wave functions Φ0
⊥(x2) are the same as in the integer case. The

difference is in the good operators, G⊥
H =

{
(η̂1)

r
k1
n , (η̂2)

k2
n , k1, k2 = 0, ..., n − 1

}
.

For ~kp = (1, 0) the wave functions have support in the values x2 = k r
n
L2, k ∈ Z,

satisfy Φ0
‖(x2 + rk2L2) = Φ0

‖(x2), and have the form Φ0
‖(x2) =

∑n−1
k=0 akΛ

r,0
k (x2), where

Λr,0
k (x2) ≡

1
rL2

∑
q∈Z ei2πqx

r,(k)
2 /(rL2), with x

r,(k)
2 ≡ x2 −

k
n
rL2. The good operators are:

G
‖
H =

{
(η̂1)

k1
n , (η̂2)

r
k2
n , k1, k2 = 0, ..., n − 1

}
.

The nontrivial representations of TB can be obtained as before, with the action
of the bad operators (see []). It should be stressed that, although mωL1L2

2πh̄
= n

r
,

the dimension of the quantum representation is n, as in the integer case. These
representations can be interpreted in terms of a torus r times bigger in one direction,
i.e. the area of the effective torus is rL1L2, and then mω(rL1L2)

2πh̄
= n. Therefore, the

same results as in the integer case apply, but changing L2 by rL2 if ~kp = (1, 0) or

L1 by rL1 if ~kp = (0, 1). Another possibility is to interprete the wave functions as
multi-valued (r-valued) functions on the original torus, therefore building a vector
representation.

In conclusion, we can say that in the fractional case we have to substitute the
traditional U(1)-bundle over the torus by a vector bundle of rank r and Chern class
n. The operators of TB will act in a diagonal way but those of T that are not in TB

will mix the different component of the vector-valued function, building in this way
a (r-dimensional) representation of the whole group T .

In this particular case, and because the representations of T are of finite dimension
(despite it has dynamical content), we could have considered the whole group T and
its representations, without resorting to its subgroup TB for imposing the constraints.

See [] for applications of this study to the Fractional Quantum Hall Effect.

2The irrational case requires techniques from noncommutative geometry and will not be consid-
ered here.



2.1 Modular invariance

We consider as starting group G̃ the Schrödinger group (or WSp(2, R) group). This
group contains Sp(2, R) ≈ SL(2, R) as a subgroup, representing the (linear) symplec-
tic transformations of the plane as a phase space. We repeat the same procedure as
before, with T the same structure group, and one obtains, essentially, the same wave
functions, although new polarizations are now allowed, related by modular transfor-
mations (see [] for the explicit computations).

The condition for good operators, [GH, T ] ⊂ Ker D~α(T ), gives, besides the ones
obtained before, new good operators coming from the Sp(2, R) subgroup. The result
SL(2, Z) ⊂ GH would be expected (statement of modular invariance of the quantum
theory), but the final result depends on the particular representation D~α(T ) chosen,
and on the value of mωL1L2

2πh̄
= n

r
. For the integer case (r = 1) we obtain the

result: SL(2, Z) ⊂ GH ⇔ ~α = 0 ( i.e. trivial rep.), and n even. If n is odd, only
a subgroup of modular transformations preserves the Hilbert space H0(G̃) (see [] for
details). If a non-trivial representation D~α(T ) is chosen, the result depends on the
rational or irrational character of na1

L1
and na2

L2
. If any of them is irrational then the

whole SL(2, Z) is bad. When they are rationals only a proper subgroup of SL(2, Z)
survives as good operators. Particularly interesting is the case na1

L1
= na2

L2
= 1

2
,

corresponding to antiperiodic boundary conditions, and for which the same results
as in the trivial representation and n odd is obtained, for all values of n. For the
fractional case (r 6= 1), only a proper subgroup of SL(2, Z) remains as good operators.

These results agree with those of Bos and Nair [] (although they consider only the
integer case), but are in disagreement with the results of Iengo and Lechner [], who
obtain no constraint on the values of n and the representation D~α(T ) corresponds to
that of antiperiodic wave functions, i.e. nα1

rL1
= nα2

rL2
= 1

2
.
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