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Abstract

New clues for the best understanding of the nature of the symmetry-breaking
mechanism are revealed in this paper. A revision of the standard gauge transfor-
mation properties of Yang-Mills fields, according to a group approach to quanti-
zation scheme, enables the gauge group coordinates to acquire dynamical content
outside the null mass shell. The corresponding extra (internal) field degrees of
freedom are transferred to the vector potentials to conform massive vector bosons.
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1 Introduction

Despite the undoubted success of the Standard Model in describing strong and electro-
weak interactions, a real (versus artificial) mechanism of mass-generation is still lacking.
Needless to say that the discovery of a Higgs boson —a quantum vibration of an abnor-

mal (Higgs) vacuum— would be of enormous importance; nevertheless, at present, no
dynamical basis for the Higgs mechanism exists, and it is purely phenomenological. It is
true that there is actually nothing inherently unreasonable in the idea that the state of
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minimum energy |0̃〉 (the vacuum) may be one in which some field quantity ϕ̂(x) has a
non-zero expectation value 〈0̃|ϕ̂(x)|0̃〉 = ϕ0; in fact, many examples in condensed-matter
physics display this feature. Nevertheless, it remains conjectural whether something sim-
ilar actually happens in the weak interaction case.

Also, the ad hoc introduction of extra (Higgs) scalar fields in the theory to provide mass
to the vector bosons could be seen as our modern equivalent of those earlier mechanical
contrivances populating the plenum (the ether), albeit very subtly. As in those days, new
perspectives are necessary to explain why it is really not indispensable to look at things
this way at all.

This paper provides a new approach to quantum Yang-Mills theories, from a group-
theoretic perspective, in which mass enters the theory in a natural way; more precisely,
the presence of mass will manifest through non-trivial transformations of the phase ζ =
eiα of the wave functional Ψ(A) under the action of gauge transformations. This non-
trivial response of the phase under gauge transformations causes a deformation of the
corresponding Lie-algebra commutators and leads to the appearance of central terms
proportional to mass parameters and, consequently, to a quantum generation of extra
(internal) field degrees of freedom according to a self-interacting theory of massless and
massive vector bosons (without Higgs fields).

This cohomological mechanism of mass-generation makes perfect sense from a Group
Approach to Quantization (GAQ [1]) framework, and we shall use its concepts and tools
to work out the quantization of Yang-Mills theories. Given that this is not a common
approach to quantization, we shall give useful references and try to be as self-contained
as possible (the reader is advised to have a look at the Ref. [2], which contains a general
presentation of GAQ for linear fields). Quantizing on a group, however, will require the
revision of some standard concepts, such as gauge transformations, in order to deal with
them properly. The meaning of gauge transformations in Quantum Mechanics is not well
understood at present (see, for example, [3]); thus, a re-examination of it is timely.

Gauge symmetry is always a guarantee for the renormalizability of a field theory. The
introduction of mass usually spoils gauge invariance, but the Higgs mechanism manages
to preserve renormalizability by keeping gauge invariance in a hidden way, and this is the
main novelty in comparison with other attempts to supply mass. However, we must say
that the breakdown of a gauge symmetry and the appearance of anomalous (unexpected)
situations are sometimes subtle questions which generally go with the standard approach
of quantizing classical systems. From a group-theoretic framework, any consistent (non-
perturbative) quantization is just a unitary irreducible representation of a suitable (Lie,
Poisson) algebra. This approach does not assume the existence of a previous classical
underlying system and overcomes some of the standard failures in quantization (anoma-
lies) attached to canonical quantization, reinterpreting them as normal (even essential)
situations.

A unified quantization of massless and massive non-Abelian vector bosons will be
presented in Sections 3 and 4, respectively; the Abelian case (Electromagnetic and Proca
fields) is briefly discussed in Sec. 2. The Hilbert space of the theory is related to the carrier
space of the unitary irreducible representations of an infinite-dimensional quantizing group
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G̃, the mass eventually being a parameter characterizing the representation. Section 5 is
devoted to the incorporation of fermionic matter into the theory. Finally, we conclude in
Section 6 and incorporate an Appendix with a simple, but illustrative, finite-dimensional
analogy.

2 The Abelian case

In a previous article [4], a revision of the traditional concept of gauge transformation for
the electromagnetic vector potential,

ϕ(x)→ ϕ′(x) + ϕ(x), Aµ(x)→ Aµ(x)− ∂µϕ′(x) , (1)

was necessary to arrange this transformation inside a group law that is, to adapt this
operation to an action of a group on itself: the group law of the (infinite-dimensional)
electromagnetic quantizing group G̃. The proposed Lie group G̃ had a principal bundle
structure G̃→ G̃/T̃ and was parameterized, roughly speaking, by the coordinates Aµ(~x, t)
of the Abelian subgroup GA of Lie algebra valued vector potentials, the coordinates v =
(yµ,Λµν) (space-time translations and Lorentz transformations) of the Poincaré group
P and the coordinates ϕ(~x, t) of the local group T ≡ U(1)(~x, t), which took part of
the structure group T̃ ∼ T × U(1) and generalized the standard U(1)-phase invariance,
Ψ ∼ eiαΨ, in Quantum Mechanics. In this way, the extra T̃ -equivariance conditions on
wave functions [complex valued functions Ψ(g̃) on G̃], i.e. Ψ(g̃t ∗ g̃) ∼ Ψ(g̃), g̃t ∈ T̃ ,
provided the traditional constraints of the theory.

The abovementioned revision was motivated by the fact that the transformation (1)
is not compatible with a group law. Indeed, the general property g ∗ e = e ∗ g = g for a
composition law g′′ = g′ ∗ g of a group G (e denotes the identity element), precludes the
existence of linear terms, in the group law g′′j = g′′j(g′k, gl) of a given parameter gj of G,
other than g′j and gj; that is, near the identity we have g′′j = g′j + gj +O(2). Therefore,
the group law for the field parameter Aµ cannot have linear terms in ϕ. The natural way
to address this situation is to leave the vector potential unchanged, and change the phase
ζ = eiα of the quantum-mechanical wave functional Ψ(A) as follows:

ϕ(x)→ ϕ(x) + ϕ′(x), Aµ(x)→ Aµ(x),

ζ → ζ exp
{
− i

2ch̄2

∫

Σ
dσµ(x)η

ρσ∂ρϕ
′(x)
←−
∂
−→µAσ(x)

}
, (2)

where ηρσ denotes the Minkowski metric, Σ denotes a spatial hypersurface and h̄ is the
Planck constant, which is required to kill the dimensions of ∂ρϕ

′←−∂−→µAρ ≡ ∂ρϕ
′∂µA

ρ −
Aρ∂µ∂ρϕ

′ and gives a quantum character to the transformation (2) versus the classical

character of (1) [hereafter, we shall use natural unities h̄ = 1 = c]. The piece ∂ρϕ
′←−∂−→µAρ

takes part of a symplectic current

Jµ(g′|g)(x) ≡ 1

2
ηρσ[(vA′)ρ(x)− ∂ρ(vϕ′)(x)]

←−
∂
−→µ[Aσ(x)− ∂σϕ(x)] , (3)
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[we are denoting g ≡ (A,ϕ, v) and (vA′)ρ(x) ≡ ∂vα(x)
∂xρ A′

α(v(x)), (vϕ′)(x) ≡ ϕ′(v(x)), with
vα(x) = Λα

βx
β + yα the general action of the restricted Poincaré group P on Minkowski

space-time] which is conserved, ∂µJ
µ = 0, if Aν and ϕ satisfy the field equations (∂µ∂

µ +
m2)Aν = 0 and (∂µ∂

µ +m2)ϕ = 0 (m is a parameter with mass dimension), so that the
integral in (2) does not depend on the chosen space-like hypersurface Σ. The integral
ξ(g′|g) ≡ ∫Σ dσµ(x)Jµ(g′|g)(x) is a two-cocycle ξ : G×G→ ℜ [G denotes the semi-direct
product (GA × T )×v P ], which fulfis the well-known properties:

ξ(g′|g) + ξ(g′ ∗ g|g′′) = ξ(g′|g ∗ g′′) + ξ(g|g′′) , ∀g, g′, g′′ ∈ G ,
ξ(g|e) = 0 = ξ(e|g) , ∀g ∈ G , (4)

and is the basic ingredient to construct the centrally extended group law g̃′′ = g̃′ ∗ g̃, more
explicitly

g̃′′ ≡ (g′′; ζ ′′) = (g′ ∗ g; ζ ′ζeiξ(g′|g)) , g, g′, g′′ ∈ G; ζ, ζ ′, ζ ′′ ∈ U(1) , (5)

of the electromagnetic quantizing group G̃ (see below and Ref. [4] for more details).
It bears mentioning that the required revision of the concepts of gauge transformations

and constraint conditions to construct the quantizing group G̃ has led, as a byproduct, to
a unified quantization of both the electromagnetic and Proca fields [4], within the same
general scheme of quantization based on a group (GAQ) [1]. The different structure of
the central extension (5) for the massive case, with regard the massless case, manifests
itself through a true (non-trivial) central-extension T̃ of the constraint subgroup T by
U(1) given by the peace

ξm(g′|g) =
1

2

∫

Σ
dσµη

ρσ∂ρ(vϕ
′)
←−
∂
−→µ∂σϕ =

m2

2

∫

Σ
dσµ(vϕ

′)
←−
∂
−→µϕ , (6)

of the cocycle ξ(g′|g) ≡ ∫Σ dσµJµ(g′|g). The piece ξm, which is one (ξ3) of the three typical
and distinguishable pieces (ξj, j = 1, 2, 3) in which ξ splits up (see [4, 5] and bellow), gives
dynamics to the local group T (creates new couples of conjugated variables), and makes
the constraints of second-class nature. This results in an increased number of field degrees
of freedom with regard the massless case, leading to a Proca quantum field (see [4] for
more details).

Furthermore, the standard (classical) transformation (1) is regained as the trajecto-
ries associated with generalized equations of motion generated by vector fields with null
Noether invariants (gauge subalgebra, see Refs. [4, 2] and [5] for a formal exposition,
including tensor fields).

A unified scheme of quantization for non-Abelian massless and massive vector bosons
is also possible in this scheme and suitable as an alternative to the standard Spontaneous
Symmetry Breaking mechanism, which is intended to supply mass while preserving renor-
malizability. However, for this case, the situation seems to be a bit more subtle and far
richer.
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3 Group-quantization of Yang-Mills Fields

According to the headings in the foregoing section, our main purpose now is to offer
a reasonable attempt to find a (non-perturbative) unified quantization of non-Abelian
massless and massive vector bosons without Higgs fields. As in the Abelian case, the key
to achieve this goal consists in a revision of the traditional concept of gauge transformation
for vector potentials,

U(x)→ U ′(x)U(x) , Aν(x)→ U ′(x)Aν(x)U
′(x)−1 + U ′(x)∂νU

′(x)−1, (7)

in order to make it compatible with a group law: the group law of the (infinite-dimensional)
Yang-Mills quantizing group G̃, which will be the primary object to define the quantum
theory. This group has a fibre-bundle structure G̃ → G̃/T̃ and is parametrized, roughly
speaking, by the coordinates Aµ(x) = rbaA

µ
b (x)T

a of an Abelian subgroup GA of Lie alge-
bra valued vector potentials [rba is a coupling-constant matrix and T a are the Lie-algebra
generators of the rigid subgroup T, of a gauge group T , satisfying the commutation re-
lations [T a, T b] = Cab

c T
c and defining the structure constants Cab

c ] and the coordinates
U(x) = eϕa(x)Ta ≡ eϕ(x) of the local group T , which takes part of the structure subgroup
T̃ ∼ T ×U(1) and generalizes the standard U(1)-phase invariance Ψ ∼ eiαΨ in Quantum
Mechanics as a particular case of T̃ -equivariance condition [6]

Ψ(g̃t ∗ g̃) = D
(ǫ)

T̃
(g̃t)Ψ(g̃) , ∀g̃t ∈ T̃ , ∀g̃ ∈ G̃ , (8)

on complex wave functionals Ψ : G̃ → C defined on G̃, where D
(ǫ)

T̃
symbolizes a specific

representation D of T̃ with ǫ-index (in particular, the ǫ = ϑ-angle [7] of non-Abelian gauge
theories; see below). As already commented, the T̃ -equivariance conditions (8) provide
the traditional constraints of the theory, which will be first- or second-class depending on
whether the fribration of the structure subgroup T̃ → T̃ /U(1) by U(1) is trivial or not
(m = 0 or m 6= 0, respectively; see below).

As mentioned above in the Abelian case, the transformation (7) is not compatible with
a group law. The natural way to adapt the operation (7) to an action of a group on itself
is to consider that Aν transforms homogeneously under the adjoint action of T , whereas
the non-tensorial part U(x)∂νU

′(x)−1 modifies the phase ζ = eiα of the wave functional
Ψ(A) according to:

U(x)→ U ′(x)U(x) , Aν(x)→ U ′(x)Aν(x)U
′(x)−1 ,

ζ → ζ exp
{
i

r2

∫

Σ
dσµ(x) tr

[
U ′(x)−1∂νU

′(x)
←−
∂
−→µAν(x)

]}
. (9)

We are restricting ourselves, for the sake of simplicity, to gauge groups T associated with
rigid special unitary groups T for which the structure constants Cab

c are totally anti-
symmetric, and the anti-hermitian generators T a can be chosen such that the Killing-
Cartan metric is just tr(T aT b) = −1

2
δab. For simple groups, the coupling-constant matrix

rba reduces to a multiple of the identity rba = rδba, and we have Aµa = −2
r
tr(T aAµ). The
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argument of the exponential in (9) can be considered to be a piece of a two-cocycle
ξ : G × G → ℜ (G is the semi-direct product G = GA ×U T of T and the Abelian
group GA of Lie-algebra valued potentials) constructed through a conserved current,
ξ(g′|g) =

∫
Σ dσµ(x)J

µ(g′|g)(x), g′, g ∈ G, so that it does not depend on the chosen space-
like hypersurface Σ (see [2, 5]). On this basis, let us construct a central extension G̃ of G
by making use of a two-cocycle defined on the particular t = constant Σ-hypersurface. We
shall also make partial use of the gauge freedom to set the temporal component A0 = 0,
so that the electric field is simply ~Ea = −∂0

~Aa [from now on, and for the sake of sim-

plicity, we shall put any three-vector ~A as A, and understand AE =
∑3
j=1A

jEj , in the
hope that no confusion will arise]. In this case, there is still a residual gauge invariance
T = Map(ℜ3,T) (see [8]).

The explicit group law g̃′′ = g̃′ ∗ g̃ [with g̃ = (g; ζ) = (A,E, U ; ζ)] for the proposed
infinite-dimensional Yang-Mills quantizing group G̃ is:

U ′′(x) = U ′(x)U(x) ,

A′′(x) = A′(x) + U ′(x)A(x)U ′(x)−1 ,

E ′′(x) = E ′(x) + U ′(x)E(x)U ′(x)−1 ,

ζ ′′ = ζ ′ζ exp



−

i

r2

3∑

j=1

ξj(A
′, E ′, U ′|A,E, U)



 ; (10)

ξ1(g
′|g) ≡

∫
d3x tr

[ (
A′ E ′

)
S

(
U ′AU ′−1

U ′EU ′−1

)]
,

ξ2(g
′|g) ≡

∫
d3x tr

[ (
∇U ′U ′−1 E ′

)
S

(
U ′∇UU−1U ′−1

U ′EU ′−1

)]
,

ξ3(g
′|g) ≡ −2

∫
d3x tr [λ (log(U ′U)− logU ′ − logU)] ,

where S =

(
0 1
−1 0

)
is a symplectic matrix and λ ≡ λaT

a is a linear function (a matrix)

on the Cartan subalgebra of the rigid subgroup T of T .
We have split up the two-cocycle ξ into three significantly distinguishable two-cocycles

ξj, j = 1, 2, 3 (as in [4, 5]) for a much better understanding. The first two-cocycle ξ1 is
meant to provide dynamics to the vector potential, so that the couple (A,E) corresponds
to a canonically-conjugate pair of coordinates. The second two-cocycle ξ2, the mixed

two-cocycle, provides a non-trivial (non-diagonal) action of the structure subgroup T on
vector potentials and determines the number of degrees of freedom of the constrained
theory; it is the non-covariant analogue of the argument of the exponential in (9). Both
cocycles correspond to the analogous ones of the Abelian case. Concerning the third one,
ξ3 ≡ ξλ, its origin and nature departs essentially from the Abelian “analogue” (6). Unlike
the Abelian case T = U(1)(x), the semi-simple character of T precludes a true central
extension T̃ of T = Map(ℜ3,T) by U(1) (this is not the case in one compact spatial
dimension ℜ3 ↔ S1, where true central extensions are known for Kac-Moody groups).
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However, there exists certain coboundaries, called pseudo-cocycles, which define trivial
extensions as such, but provide new commutation relations in the Lie algebra of G̃ and
provide a non-trivial piece of the connection form of the theory [1],

Θ =
∂

∂gj
ξ(g′|g)

∣∣∣∣∣
g′=g−1

dgj − iζ−1dζ , (11)

thus altering, in particular, the number of degrees of freedom of the theory (see [9] for a
relationship between pseudo-cohomology and coadjoint orbits of semisimple groups). This
is precisely the case of the third cocycle (coboundary, indeed), ξ3(g

′|g) = η(g′ ∗ g) −
η(g′)−η(g), generated by a function η(g) = −2

∫
d3x tr [λ logU ] with non-trivial gradient

δη(g)|g=e = δη(g)
δgj

∣∣∣
g=e

δgj 6= 0 at the identity g = e, which is locally linear in the parameters

of the Cartan subgroup with as many independent coefficients (constants) λa as elements
in the Cartan subalgebra, i.e. the range of the rigid group T. The introduction of such
a pseudo-cocycle is needed to obtain a faithful representation of the rigid subgroup T,
according to our general group representation approach. Pseudo-cocycles similar to ξ3 do
appear in the representation of Kac-Moody groups and in conformally invariant theories in
general, although the pseudo-cocycle parameters are usually hidden in a redefinition of the
generators involved in the pseudo-extension (the argument of the Lie-algebra generating
function). This is the case of the Virasoro algebra in String Theory,

[L̂n, L̂m] = (n−m)L̂n+m + 1/12(cn3 − c′n)δn,−m1̂ , (12)

where the L̂0 generator is redefined so as to produce a non-trivial expectation value in
the vacuum, h ≡ (c− c′)/24 [10].

The cocycle ξ3, however, for λ 6= 0, again determines the structure of constraints (first-
or second-class) and modifies the dynamical content of the vector potential coordinates A
by transferring degrees of freedom between the A and ϕ coordinates. As in the Abelian
case, this mechanism conforms massive vector bosons so that ξ3 must be considered as
a mass cocycle. In this way, the appearance of mass in the theory has a cohomological

origin. Notice that the parameter λ (λa) bears the dimensions of cubed mass (in natural
unities) and can well be renamed by m3 (m3

a) .
To make more explicit the intrinsic significance of these three quantities ξj , j = 1, 2, 3,

let us calculate the non-trivial Lie-algebra commutators of the right-invariant vector fields
(that is, the generators of the left-action Lg̃′(g̃) = g̃′ ∗ g̃ of G̃ on itself) from the group law
(10). They are explicitly:

[
X̃R
Aj

a(x)
, X̃R

Ek
b
(y)

]
= −δabδjkδ(x− y)Ξ ,

[
X̃R
Ea(x), X̃

R
ϕb(y)

]
= −Cab

c δ(x− y)X̃R
Ec(x) +

1

r
δab∇xδ(x− y)Ξ , (13)

[
X̃R
Aa(x), X̃

R
ϕb(y)

]
= −Cab

c δ(x− y)X̃R
Ac(x)

[
X̃R
ϕa(x), X̃

R
ϕb(y)

]
= −Cab

c δ(x− y)X̃R
ϕc(x) − Cab

c

λc

r2
δ(x− y)Ξ ,
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where we denote by Ξ ≡ iX̃L
ζ = iX̃R

ζ the central generator, in order to distinguish it from
the rest, in view of its crucial role in the quantization procedure; it behaves as i times the
identity operator, ΞΨ(g̃) = iΨ(g̃), when the U(1) part of the T̃ -equivariance conditions

(8), D
(ǫ)

T̃
(ζ) = ζ (always faithful, except in the classical limit U(1) → ℜ [1]), is imposed.

The commutators (13) agree with those of Ref. [8] when λc = 0 and the identification
Êa ≡ iX̃R

Aa
, Âa ≡ iX̃R

Ea
, Ĝa ≡ iX̃R

ϕa
is made [note that X̃R

Aa
∼ δ

δAa
and X̃R

Ea
∼ δ

δEa
near

the identity element g̃ = e of G̃, which motivates this particular identification]. From
the last line of (13) we realize that the pseudo-cocycle ξ3 introduces new central terms
proportional to the mass parameters λc = m3

c , with respect to the massless case, which
provide new “conjugated” coordinates; that is, extra degrees of freedom enter the theory
through this pseudo-extension, which provides dynamics to the local (gauge) coordinates
ϕa of the structure subgroup T̃ , dynamics which is transferred to the vector potentials Aa
to conform massive vector bosons.

To understand fully the last statement concerning the interplay among different cocy-
cles and mainly between the massless and massive cases, we must construct the Hilbert
space of both theories explicitly. Let us proceed with the massless case and leave the
peculiarities of the massive one to the next section.

The representation Lg̃′Ψ(g̃) = Ψ(g̃′ ∗ g̃) of G̃ on T̃ -equivariant wave functions (8)
proves to be reducible. The reduction can be achieved by means of those right conditions
(“polarization conditions” [1]) Rg̃p

Ψ(g̃′) = Ψ(g̃′ ∗ g̃p) ≡ Ψ(g̃′) ∀g̃′ ∈ G̃ compatible with

the T̃ -equivariant conditions (8), in particular with ΞΨ = iΨ. In general, polarization
conditions contain finite right-transformations generated by left-invariant vector fields
X̃L devoid of dynamical content (that is, without a conjugated counterpart), and half
of the left-invariant vector fields related to dynamical coordinates (either “positions” or
“momenta”). The left-invariant vector fields without conjugated counterpart are the
combinations

Gc ≡< X̃L
θa
≡ X̃L

ϕa
− 1

r
∇ · X̃L

Aa
, / Cab

c λ
c = 0 ∀b > . (14)

The characteristic subalgebra Gc can be completed to a full polarization subalgebra Gp in
two different ways:

G(A)
p ≡< X̃L

θa
∈ Gc, X̃L

Ab
∀b >, G(E)

p ≡< X̃L
θa
∈ Gc, X̃L

Eb
∀b >, (15)

each one giving rise to a different representation space: a) the electric field representation
and b) the magnetic field representation, respectively.

a) The electric field representation ΨA.

The solution to the polarization conditions Rg̃p
ΨA(g̃) = ΨA(g̃) , ∀g̃p ∈ G(A)

p , ∀g̃ ∈ G̃
or, in infinitesimal form X̃LΨA = 0, ∀X̃L ∈ G(A)

p , proves to be:

ΨA(A,E, U ; ζ) = ζe−
i

r2

∫
d3x tr[AE−U∇U−1E]ΦA(E) , (16)
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where ΦA is an arbitrary functional of E. The left-action of a general element g̃′ =
(A′, E ′, U ′; ζ ′) of G̃ on wave functions ΨA is:

Lg̃′ΨA(g̃) = ζ ′ζe−2 i

r2

∫
d3x tr[A′U ′EU ′−1+U ′−1∇U ′E+ 1

2
A′E′]

·e− i

r2

∫
d3x tr[AE−U∇U−1E]ΦA(E ′ + U ′EU ′−1

) . (17)

The particular case of g̃′ = g̃t
′ = (0, 0, U ′; 1) ∈ T ⊂ T̃ gives us the expression of the rest

of T̃ -equivariant conditions (8), i.e. the constraint equations:

Lg̃t
′ΨA(g̃) = D

(ǫ)

T̃
(g̃t

′)ΨA(g̃)⇒ ΦA(E) = e−2 i

r2

∫
d3x tr[U ′−1∇U ′E]ΦA(U ′EU ′−1

) , (18)

where we have chosen the trivial representation D
(ǫ)

T̃
= 1 for T (see below for more general

cases).
The polarized, T̃ -equivariant wave functions (16,18) define the constrained Hilbert

space H(G̃) of the theory, and the infinitesimal form X̃R
g̃′Ψ of the finite left-action Lg̃′Ψ(g̃)

of G̃ onH(G̃) provides the action of the operators Âa, Êa, Ĝa on wave functions. Thus, the
group G̃ is irreducibly and unitarily represented with respect to the natural scalar product
〈Ψ|Ψ′〉 =

∫
G̃ µ(g̃)Ψ∗(g̃)Ψ′(g̃), where µ(g̃) denotes the standard left-invariant measure of G̃

[exterior product of the components of the left-invariant 1-form θL].
The infinitesimal form of the finite expressions (17) is:

X̃R
Aa

ΨA = ζe−
i

r2

∫
d3x tr[AE−U∇U−1E]iEaΦA(E)⇒ ÊaΦA(E) = −EaΦA(E)

X̃R
Ea

ΨA = ζe−
i

r2

∫
d3x tr[AE−U∇U−1E] δ

δEa
ΦA(E)⇒ ÂaΦA(E) = i

δ

δEa
ΦA(E)

X̃R
ϕa

ΨA = ζe−
i

r2

∫
d3x tr[AE−U∇U−1E]

(
− i
r
∇ · Ea + Cab

c Eb ·
δ

δEc

)
ΦA(E) (19)

⇒ ĜaΦA(E) =
(
−1

r
∇ · Êa − Cab

c Êb · Âc
)

ΦA(E) ,

which provides the explicit expression for the basic operators of the theory. Several
attempts [11] have been made to simplify the Gauss law constraint (18), which in in-
finitesimal form reads Ĝa(x)ΦA(E) = 0, by means of a unitary transformation Φ′

A(E) =

exp
{
− i
r
Ω(E)

}
ΦA(E) in the electric field representation. The variation ωaj (E) = −∂Ω(E)

∂Ej
a

transforms as a standard Lie-algebra valued connection and modifies the operator Ĝa(x)
so that the new constraint equations Ĝ′

a(x)Φ
′
A(E) = iCab

c Eb · δ
δEc

Φ′
A(E) = 0 reduce to

simple “s-wave” conditions.

b) The magnetic field representation ΨE .

The choice of the polarization subalgebra G(E)
p results in polarized wave functions of

the form:
ΨE(A,E, U ; ζ) = ζe

i

r2

∫
d3x tr[AE−U∇U−1E]ΦE(A+∇UU−1) , (20)
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where ΦE is an arbitrary functional of A ≡ A + ∇UU−1. The left-action of G̃ on wave
functions ΨE is now:

Lg̃′ΨE(g̃) = ζ ′ζe−2 i

r2

∫
d3x tr[U ′AU ′−1E′+U ′−1E′U ′∇UU−1+ 1

2
A′E′− 1

2
U ′∇U ′−1E′]

·e− i

r2

∫
d3x tr[AE−U∇U−1E]ΦE

(
A′ +∇U ′U ′−1

+ U ′(A +∇UU−1)U ′−1
)
.(21)

The constraint equations (18) in the present magnetic representation are:

Lg̃t
′Ψ(g̃) = D

(ǫ)

T̃
(g̃t

′)Ψ(g̃)⇒ ΦE(A) = ΦE(U ′AU ′−1
+∇U ′U ′−1

) (22)

[note the absence of a phase in comparison with the electric representation case]. The
infinitesimal form of the finite expression (21) is:

X̃R
Aa

ΨE = ζe
i

r2

∫
d3x tr[AE−U∇U−1E] δ

δAa
ΦE(A)⇒ ÊaΦE(A) = i

δ

δAa
ΦE(A)

X̃R
Ea

ΨE = −iζe i

r2

∫
d3x tr[AE−U∇U−1E]AaΦE(A)⇒ ÂaΦE(A) = AaΦE(A) (23)

X̃R
ϕa

ΨE = ζe
i

r2

∫
d3x tr[AE−U∇U−1E]

(
−1

r
∇ · δ

δAa
+ Cab

c Ab ·
δ

δAc

)
ΦE(A) .

Since T̃ -equivariant conditions (8,18,22) are imposed as finite left-restrictions, it is
evident that not all the operators X̃R will preserve the constraints; we shall call G̃good the
subalgebra of (good∼physical) operators which will do so. These must be found inside
the right-enveloping algebra U(G̃R) of polynomials of the basic operators Âa(x), Êb(x),
as forming part of the normalizer of T ; for example, a sufficient condition for G̃good to

preserve the constraints is [G̃good, T̃ ] ⊂ Ker dD
(ǫ)

T̃
. In particular, some good operators are:

G̃good =< tr
[
Êj(x)B̂k(x)

]
, tr

[
Êj(x)Êk(x)

]
, tr

[
B̂j(x)B̂k(x)

]
, Ξ > , (24)

where B̂a ≡ ∇∧ Âa − 1
2
rCab

c Âb ∧ Âc (the magnetic field) can be interpreted as a “correc-

tion” to Âa that, unlike Âa, transforms homogeneously under the adjoint action of T [see
2nd line of (13)]. The components Θ̂µν(x) of the standard canonical energy-momentum
tensor for Yang-Mills theories are linear combinations of operators in (24); for example,

Θ̂00(x) = − tr
[
Ê2(x) + B̂2(x)

]
is the Hamiltonian density. In this way, Poincaré invari-

ance is retrieved in the constrained theory. At this stage, it is worth mentioning that Gc
would have included the entire Poincaré algebra had we incorporated the Poincaré group
into G̃ (see [4, 5] for the Abelian case). However, unlike other standard approaches to
Quantum Mechanics, GAQ still remainss even in the absence of a well-defined (space-
)time evolution, an interesting and desirable property concerning the quantization of
gravity (see, for example, [12]).

Let us mention, for the sake of completeness, that the actual use of good operators is
not restricted to first- and second-order operators. Higher-order operators can constitute
a useful tool in finding the whole constrained Hilbert space Hphys(G̃). In fact, it can

be obtained from a T̃ -equivariant (physical) state Φ(0), i.e. ĜaΦ
(0) = 0, on which the

10



energy-momentum tensor has null expectation value 〈Φ(0)|Θ̂µν |Φ(0)〉 = 0, by taking the
orbit of the rest of good operators passing through this “vacuum”. This has indeed been
a rather standard technique (the Verma module approach) in theories where null vector
states are present in the original Hilbert space [13, 14, 10]. From another point of view,

with regard to confinement, exponentials of the form εΣ2 ≡ tr
[
exp(ǫjkl

∫
Σ2
dσjkÊl)

]
and

βΣ2 ≡ tr
[
exp(ǫjkl

∫
Σ2
dσjkB̂l)

]
, where Σ2 is a two-dimensional surface in three-dimensional

space, are good operators related to Wilson loops.
As a step prior to tackling the massive case, let us show how new physics can enter

the theory by considering non-trivial representations D
(ǫ)

T̃
of T̃ or, in an equivalent way,

by introducing certain extra pseudo-cocycles in the group law (10).

3.1 ϑ-Angle

More general representations for the constraint subgroup T , namely the one-dimensional
representation D

(ǫ)

T̃
(U) = eiǫU , can be considered if we impose additional boundary con-

ditions such as U(x)
x→∞−→ ±I; this means that we compactify the space ℜ3 → S3, so

that the group T falls into disjoint homotopy classes {Ul , ǫUl
= lϑ} labeled by integers

l ∈ Z = π3(T) (the third homotopy group). The index ϑ (the ϑ-angle [7]) parametrizes
non-equivalent quantizations, in the same way that Bloch momentum ǫ does for particles
in periodic potentials, where the wave function acquires a phase ψ(q+2π) = eiǫψ(q) after
a translation of, let us say, 2π. The phenomenon of non-equivalent quantizations can
also be reproduced by keeping the constraint condition D

(ǫ)

T̃
(U) = 1, as in (18,22), at the

expense of introducing a new cocycle (indeed a coboundary) ξϑ which is added to the
previous cocycle ξ in (10). The generating function of ξϑ is ηϑ(g) = ϑ

∫
d3x C0(x), where

C0 is the time component of the Chern-Simons secondary characteristic class

Cµ = − 1

16π2
ǫµαβγtr(FαβAγ −

2

3
AαAβAγ) , (25)

which is the vector whose divergence equals the Pontryagin density P = ∂µCµ = − 1
16π2 tr

(∗FµνFµν) (see [8], for instance). Like some total derivatives (namely, the Pontryagin den-
sity), which do not modify the classical equations of motion when added to the Lagrangian
but have a non-trivial effect in the quantum theory, the coboundary ξϑ gives rise to non-
equivalent quantizations parametrized by ϑ when the topology of the space is affected
by the imposition of certain boundary conditions (“compactification of the space”), even
though it is a trivial cocycle of the “unconstrained” theory. The phenomenon of non-
equivalent quantizations can sometimes also be understood as an Aharonov-Bohm-like

effect (an effect experienced by the quantum particle but not by the classical one) and the
gradient dη(g) can also be understood as an induced gauge connection (see e.g. [15, 16],
and [17] for the example of a superconducting ring threaded by a magnetic flux) which
modifies momenta according to the minimal coupling. For our case, the induced gauge con-
nection δηϑ(g) = ϑr2

8π2B
a
j δA

j
a (Ba

j is the magnetic field) modifies the momentum operators

Êa ≡ iX̃R
Aa
→ Êa+ ϑr2

8π2 B̂a and, accordingly, the Schrödinger equation
∫
d3xΘ̂00(x)Φ = EΦ

11



for stationary solutions Φ with energy E . As is well known, the theory also exhibits a band
energy structure of the form α+β cosϑ, the ground-state band functional |ϑ〉 =

∑
l e
ilϑ|0l〉

being a superposition of wave functionals Ψl(A) = 〈A|0l〉 peaked near the classical zero-
energy configurations (pure gauge potentials) A(l) = Ul∇U−1

l .
As already discussed, only coboundaries generated by functions η(g) with non-trivial

gradient δη(g)|g=e 6= 0 at the identity g = e (i.e. pseudo-cocycles), namely ξ3 = ξλ, will
provide a contribution to the connection form of the theory (11) and the structure con-
stants of the original Lie algebra. However, as we have just seen, a coboundary generated
by a global function on the original (infinite-dimensional) group G having trivial gradi-
ent at the identity, namely ξϑ, can contribute the quantization with global (topological)
effects as the new group has a non-equivalent global multiplication law.

In both cases, non-trivial gauge transformation properties, D
(ǫ)

T̃
(U) 6= 1, of the wave

functional Φ(A) can be reproduced, as already mentioned, by keeping the trivial repre-

sentation D
(ǫ)

T̃
(U) = 1 at the expense of introducing new (pseudo-) cocycles, ξϑ or ξλ,

in the centrally extended group law (10). However, whereas ξϑ does not introduce new
degrees of freedom into the theory, pseudo-cocycles such as ξλ provide new couples of
conjugated field operators, thus substantially modifying the theory. Let us examine this
in more detail.

4 The massive case: ‘spontaneous’ symmetry ‘break-

ing’ and alternatives to the Higgs mechanism

The effect of the pseudo-cocycle ξ3 ≡ ξλ for λ 6= 0 is equivalent to inducing internal

(‘spinor-like’) infinite-dimensional non-Abelian representations D
(λ)

T̃
of T̃ . It modifies the

commutation relations (13) and the number of field degrees of freedom of the theory by
restricting the number of vector fields in the characteristic subalgebra Gc with respect to
the massless case, where Gc ∼ T . That is, new couples of generators (X̃R

ϕa
, X̃R

ϕb
), with

Cab
c λ

c 6= 0, become conjugated [see the last commutator of (13)] and, therefore, new basic
operators enter the theory. To count the number of field degrees of freedom for a given
structure subgroup T̃ and a given mass matrix λ = λaT

a, let us denote by τ = dim(T)
and c = dim(Gc) the dimensions of the rigid subgroups of T and Gc; in general, for
an arbitrary mass matrix λ, we have c ≤ τ . Unpolarized, U(1)-equivariant functions
Ψ(Aja, E

j
a, ϕa) depend on n = 2×3τ+τ field coordinates in d = 3 dimensions; polarization

equations introduce p = c+ n−c
2

independent restrictions on wave functions, corresponding
to c non-dynamical coordinates in Gc and half of the dynamical ones; finally, constraints
impose q = c+ τ−c

2
additional restrictions which leave f = n−p−q = 3τ−c field degrees of

freedom (in d = 3). Indeed, for the massive case, constraints are second-class and we can
impose only a polarization subalgebra Tp ⊂ T̃ , which contains a characteristic subalgebra
Tc =< X̃R

ϕa
, with Cab

c λ
c = 0 ∀b >⊂ T̃ (which is isomorphic to Gc) and half of the rest

12



of generators in T̃ (excluding Ξ);§ In total, q = c + τ−c
2
≤ τ independent constraints,

which lead to constrained wave functions having support on fm6=0 = 3τ − c ≥ fm=0

arbitrary fields; these fiels correspond to c massless vector bosons attached to Tc and
τ − c massive vector bosons. In particular, for the massless case, we have Tc = T , i.e.
c = τ , since constraints are first-class (that is, we can impose q = τ restrictions) and
constrained wave functions have support on fm=0 = 3τ − τ = 2τ ≤ fm6=0 arbitrary fields
corresponding to τ massless vector bosons. The subalgebra Tc corresponds to the unbroken
gauge symmetry of the constrained theory and proves to be an ideal of G̃good [remember
the characterization of good operators before Eq. (24); see also Refs. [2, 5] for a definition
and subtle distinctions between constraints and gauge symmetries inside GAQ].

Let us work out a couple of examples. Cartan (maximal Abelian) subalgebras of T
will be preferred as candidates for the rigid subgroup of the unbroken electromagnetic
gauge symmetry. Thus, let us use the Cartan basis < Hi, E±α > instead of < T a >, and
denote {ϕi, ϕ±α} the coordinates of T attached to this basis (i.e. ϕ±α are complex field
coordinates attached to each root ±α, and ϕi are real field coordinates attached to the
maximal torus of T). For T = SU(2)(x) and λ = λ1H1, the characteristic, polarization
and constraint subalgebras (leading to the electric field representation) are:

Gc =< X̃L
θ1
>, G(A)

p =< X̃L
θ1
, X̃L

θ+1
, X̃L

A >, Tp =< X̃R
ϕ1
, X̃R

ϕ−1
> . (26)

Indeed, the appearance of a central term in the commutator

[
X̃R
ϕ+1(x)

, X̃R
ϕ−1(y)

]
= iδ(x− y)X̃R

ϕ1(x)
+ i

λ1

r2
δ(x− y)Ξ (27)

prevents the vector fields X̃R
θ±1

from being in Gc and precludes the simultaneous imposi-

tion of X̃R
ϕ−1

Ψphys. = 0 and X̃R
ϕ+1

Ψphys. = 0 as constraints (for the trivial representation

D
(ǫ)

T̃
(U) = 1), so that a polarization subalgebra Tp is the only option (Tp has to contain the

‘negative modes’ X̃R
ϕ−1

when the ‘positive’ ones X̃L
θ+1

have been chosen in G(A)
p , or the other

way round). The new couple of basic operators Ĝ±1 ≡ X̃R
ϕ±1

(these are basic because they

can no longer be written in terms of Â and Ê) represent two new field degrees of freedom
which are transferred to the vector potentials Â±1 to conform massive vector bosons; i.e.
Ĝ±1 can be seen as the longitudinal component of Â±1, which is missing (is zero) in the
massless case. Thus, the constrained theory corresponds to a self-interacting field theory
of a massless vector boson A1 with ‘unbroken’ gauge subgroup Tc = U(1)(x) ⊂ SU(2)(x)
and two charged vector bosons A±1 with mass cubed m3

1 = λ1.
For T = SU(3)(x) and λ = λ2H2, we have

Gc =< X̃L
θ1,2
, X̃L

θ±1
>, G(A)

p =< X̃L
θ1,2
, X̃L

θ±1
, X̃L

θ+2,+3
, X̃L

A >,

Tp =< X̃R
ϕ1,2

, X̃R
ϕ±1

, X̃R
ϕ−2,−3

>
. (28)

§A similar situation happens in the bosonic string theory, where we can impose as constraints half of
the Virasoro operators (the positive modes L̂n≥0) only; that is, the appearance of central terms in the Lie
algebra (12) precludes the whole Virasoro algebra to be imposed as constraints, and only a polarization
subalgebra can be consistently imposed.
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Indeed, in this case, the relevant commutators
[
X̃R
ϕ+1(x)

, X̃R
ϕ−1(y)

]
= iδ(x− y)X̃R

ϕ1(x)
,

[
X̃R
ϕ+2(x), X̃

R
ϕ−2(y)

]
=

i√
3
δ(x− y)X̃R

ϕ1(x) + iδ(x− y)X̃R
ϕ2(x) + i

λ2

r2
δ(x− y)Ξ , (29)

[
X̃R
ϕ+3(x), X̃

R
ϕ−3(y)

]
=
−i√

3
δ(x− y)X̃R

ϕ1(x) + iδ(x− y)X̃R
ϕ2(x) + i

λ2

r2
δ(x− y)Ξ ,

reveal that the vector fields X̃R
θ±2

and X̃R
θ±3

have dynamical content and cannot be included

in Gc. Also, its conjugated character precludes the simultaneous imposition of X̃R
ϕ−2,−3

and X̃R
ϕ+2,+3

as constraints, and a polarization subalgebra Tp has to be chosen. On the

contrary, the vector fields X̃R
ϕ±1

are devoid of dynamical content, as can be seen from the
first line of (29), and can be simultaneously imposed as constraints in Tp (this is because of
the particular choice of mass matrix λ, which determines different “symmetry breaking”
patterns). As for T = SU(2)(x), the new couples of basic operators Ĝ±2,±3 ≡ X̃R

ϕ±2,±3

represent four new field degrees of freedom which are transferred to the vector potentials
Â±2,±3 to conform massive vector bosons. Thus, the constrained theory corresponds to
a self-interacting theory of two massless vector bosons A1,2, two massless charged vector
bosons A±1 [the ‘unbroken’ gauge subgroup is now Tc = SU(2) × U(1)(x) ⊂ SU(3)(x)]
and four charged vector bosons A±2,±3 with mass cubed m3

2 = λ2.

Summarizing, new basic operators Ĝ±α ≡ X̃R
ϕ±α

, with Cα−α
i λi 6= 0, and new good

operators Ĉi = {Casimir operators of T̃} (i runs the range of T) enter the theory, in
contrast to the massless case. For example, for T = SU(2)(x), the Casimir operator is

Ĉ(x) = (Ĝ1(x) +
λ1

r2
)2 + 2(Ĝ+1(x)Ĝ−1(x) + Ĝ−1(x)Ĝ+1(x)) . (30)

Also, the Hamiltonian density Θ̂00(x) = − tr [E2(x) +B2(x)] for m = 0 can be affected
in the massive case m 6= 0 by the presence of extra terms proportional to these Casimir
operators as follows:

Θ̂00
m6=0(x) = Θ̂00

m=0(x) +
∑

i

r2

m2
i

Ĉi(x) . (31)

Thus, the Schödinger equation
∫
d3xΘ̂00

m6=0(x)Φ = EΦ is also modified by the presence of
extra terms.

As already mentioned in reference to the Virasoro group, pseudo-cocycle parame-
ters such as λi are usually hidden in a redefinition of the generators involved in the
pseudo-extension Ĝi(x) + λi/r

2 ≡ Ĝ′
i(x). However, whereas the vacuum expectation

value 〈0λ|Ĝi(x)|0λ〉 is zero,¶ the vacuum expectation value 〈0λ|Ĝ′
i(x)|0λ〉 = λi/r

2 of the
redefined operators Ĝ′

i(x) is non-null and proportional to the cubed mass in the ‘direc-
tion’ i of the ‘unbroken’ gauge symmetry Tc, which depends on the particular choice of

¶it can be easily proven taking into account that the vacuum is annihilated by the right version of the
polarization subalgebra dual to Gp [18]; also, Ĝi = X̃R

ϕi
is always in Tp; that is, it is zero on constrained

wave functionals Ψphys., including the physical vacuum.
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the mass matrix λ. Thus, the effect of the pseudo-extension manifests also in a different
choice of a vacuum in which some gauge operators have a non-zero expectation value.
This fact reminds us of the Higgs mechanism in non-Abelian gauge theories, where the
Higgs fields point to the direction of the non-null vacuum expectation values. However,
the spirit of the Higgs mechanism, as an approach to supply mass, and the one discussed
in this paper are radically different, even though they have some common characteristics.
In fact, we are not making use of extra scalar fields in the theory to provide mass to the
vector bosons, but it is the gauge group itself that acquires dynamics for the massive case
and transfers degrees of freedom to the vector potentials.

Before finishing, let us show how to incorporate fermionic matter into the theory
and outline the main changes in the foregoing discussion had we considered it from the
beginning.

5 Incorporating fermionic matter

Fermionic matter can enter the theory through extra (Dirac) field coordinates ψl(x), l =
1, . . . , p, which we can assemble into a column vector ψ(x), and an extra cocycle ξmatter

leading to a quantizing supergroup S̃G. The group law that describes this boson-fermion
gauge theory is (10) together with

ψ′′(x) = ψ′(x) + ρ(U(x))ψ(x) ,

ψ̄′′(x) = ψ̄′(x) + ψ̄(x)ρ(U(x)−1) , (32)

ξmatter ≡ i
∫
d3x

(
ψ̄′γ0ρ(U ′)ψ − ψ̄ρ(U ′−1)γ0ψ′

)
,

where ρ(U) is a p-dimensional representation of T acting on the column vectors ψ,
and γ0 is the time component of the standard Dirac matrices γµ. To compute the
left- and right-invariant super-vector fields X̃L,R and the polarized super-wavefunctionals
Ψ(A,E, U, ψ, ψ̄; ζ), we have to take into account the Grassmann character of the Dirac field
coordinates. The unitary irreducible representations of S̃G can easily be constructed by
following the main steps described in this article and by taking care of the subtleties intro-
duced by the anti-commutation of Grassmann variables (see [19] for the finite-dimensional
example of the super-Galilei group S̃G(m)). We should mention that, in the presence of
fermion sources, the infinitesimal version of the constraint (18), i.e. the Gauss law, is
modified to

ĜaΦA,ψ(E, ψ̄) =
(
−1

r
∇ · Êa − Cab

c Êb · Âc −
i

r
ˆ̄ψγ0τaψ̂

)
ΦA,ψ(E, ψ̄) = 0 , (33)

(where τa denote the generators of ρ) in accordance with other standard approaches.
Other interesting questions like chiral anomalies are left to future publications.
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6 Some comments and outlook

One question which is worthwhile to comment upon is the preservation of renormaliz-
ability for a non-trivial mass matrix λ 6= 0. Since our approach to quantization is not
perturbative, we must answer this question using general arguments. In fact, from a
group-theoretical point of view, there is no reason why a given unitary irreducible repre-
sentation of a group G̃ (namely, the massive one) can show bad properties, like ‘inescapable
divergences’, whereas other (namely, the massless one) does not. Even more, when we use
the term ‘unbroken gauge symmetry’, in referring to Tc, we mean simply the subgroup of
T̃ devoid of dynamical content; the gauge group of the constrained theory is, in both the
massless and massive cases, the group T = T̃ /U(1), although, for the massive case, only
a polarization subgroup Tp can be consistently imposed as a constraint. This is also the
case of the Virasoro algebra (12) in String Theory, where the appearance of central terms
does not spoil gauge invariance but forces us to impose half of the Virasoro operators only
(the positive modes L̂n≥0) as constraints.

Thus, the ‘spontaneous breakdown’ of the gauge symmetry group T manifests through
non-trivial transformations of the phase ζ of the wave functional Ψ under the action of
T , leading to the appearance of new ‘internal’ field degrees of freedom which modify the
‘field mass content’ of some vector potentials A, depending on the choice of mass-matrix
elements λi = −2 tr(T iλ). This situation recalls the important physical implications
of geometric phases (namely, Berry’s phase) in quantum mechanics, the case discussed
in the present paper being a particular one. In other words, the presence of mass is
detected by the wave functional Ψ in its ‘gauge excursions’ through the configuration
space, as happens with the presence of monopoles (see Ref. [16, 15] for a discussion on
the emergence of gauge structures —the “H-connection”— and generalized spin when
quantizing on a coset space G/H). Also, the zeroes (critical values) of the mass-matrix
elements λi correspond to different phases of the physical system characterized by the
corresponding unbroken gauge symmetry Tc; thus, the system can undergo ‘spontaneous’
phase-transitions between different phases corresponding to non-equivalent fibrations T̃
of T by U(1) (i.e. different choices of characteristic subgroups Tc of T̃ ).

Open questions remain about what happens when a “true” cocycle ξ3 exists; for exam-
ple, we can find non-trivial central extensions T̃ of T = Map(S1,T) by U(1) (Kac-Moody
groups) in one compact spatial dimension, deformations which correspond to anomalous
situations in the standard (canonical) approach to quantization of gauge theories. This
fact makes the quantization of ‘massive’ Yang-Mills fields (in this scheme) not so triv-
ial, even in one spatial dimension. Also, it would be worth exploring the richness of
the case T = SU(∞) (infinite number of colours), the Lie-algebra of which is related
to the (infinite-dimensional) Lie-algebra of area preserving diffeomorphisms of the sphere
SDiff(S2) (see [20] and references therein). In general, the cohomological richness, i.e.
the number of inequivalent central (pseudo) extensions, of T = Map(M,T) depends on
the topology of M . Also, as usually happens with central charges, a quantization of the
mass parameters mc ∼ (n)1/3, n = 1, 2, 3, . . . could arise from the compact character of
the involved manifolds.
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Another question that deserves further study is, of course, the physical implications
that this new point of view carries along.

A Appendix: a 0 + 1D analogy

This appendix is intended to clarify ideas by providing a simple, but illustrative, quantum
mechanical analogy which contains most of the essential elements exposed in the paper.
Indeed, a SU(2) gauge invariant Yang-Mills theory in 0 + 1D may eventually be related
to a spinning particle with constraints (zero total angular momentum) inside the present
GAQ framework.

Let us denote by A ≡ r

(
A0 A+

A− −A0

)
, A0 ≡ A3, A± ≡ A1 ± iA2, the su(2)-valued

vector potentials, and let us choose the following set of coordinates

eiϕ0 ≡ z1
|z1|

, ϕ+ ≡
z2
z1
, ϕ

−
≡ z∗2
z∗1
, eiϕ0 ∈ S1; ϕ+, ϕ−

∈ S2 , (34)

for the gauge group

SU(2) ≡
{
U =

(
z1 z2
−z∗2 z∗1

)
, zi, z

∗
i ∈ C/ det(U) = |z1|2 + |z2|2 = 1

}
. (35)

Let us also work in an holomorphic picture and define Q ≡ 1√
2r

(A + iE) and Q̄ ≡
1√
2r

(A − iE). The adjoint action of the gauge group on the vector potential A and the
electric field E can be explicitly written as

UQU−1 =
1

1 + ϕ+ϕ−

(
eiϕ0 ϕ+e

iϕ0

−ϕ
−
e−iϕ0 e−iϕ0

)(
Q0 Q+

Q− −Q0

)(
e−iϕ0 −ϕ+e

iϕ0

ϕ
−
e−iϕ0 eiϕ0

)
,

(36)
and the centrally extended group law (10) now adopts the form

U ′′ = U ′U ,

Q′′ = Q+ U−1Q′U ,

Q̄′′ = Q̄+ U−1Q̄′U , (37)

ζ ′′ = ζ ′ζ exp
1

4
tr

[(
Q Q̄

)
S

(
U−1Q′U
U−1Q̄′U

)]
exp 2iλ(ϕ′′

0 − ϕ′
0 − ϕ0) ,

where we miss the mixed cocycle ξ2 because we are working in 0 spatial dimensions (we
are restricting ourselves to a “single point”). We are also keeping only the (relevant)
linear term λϕ0 in the expansion of tr[λσ3 logU ] (σ3 is the standard Pauli matrix). The
left- and right-invariant vector fields are explicitly:

X̃L
ζ = X̃R

ζ = ζ
∂

∂ζ
, (38)
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X̃L
Q =

∂

∂Q
+

1

2
Q̄ζ

∂

∂ζ
, X̃L

Q̄ =
∂

∂Q̄
− 1

2
Qζ

∂

∂ζ
,

X̃L
ϕ0

=
∂

∂ϕ0

− 2iϕ+

∂

∂ϕ+

+ 2iϕ
−

∂

∂ϕ
−

− 2(Q× ∂

∂Q
)0 − 2(Q̄× ∂

∂Q̄
)0 ,

X̃L
ϕ+

=
−i
2
ϕ

−

∂

∂ϕ0

+
∂

∂ϕ+

+ ϕ2
−

∂

∂ϕ
−

+ i(Q× ∂

∂Q
)− + i(Q̄× ∂

∂Q̄
)− + λϕ

−
ζ
∂

∂ζ
,

X̃L
ϕ
−

=
i

2
ϕ+

∂

∂ϕ0
+ ϕ2

+

∂

∂ϕ+

+
∂

∂ϕ
−

− i(Q× ∂

∂Q
)+ − i(Q̄×

∂

∂Q̄
)+ − λϕ+ζ

∂

∂ζ
,

X̃R
Q = U

∂

∂Q
U−1 − 1

2
UQ̄U−1ζ

∂

∂ζ
,

X̃R
Q̄ = U

∂

∂Q̄
U−1 +

1

2
UQU−1ζ

∂

∂ζ
,

X̃R
ϕ0

=
∂

∂ϕ0

,

X̃R
ϕ+

=
i

2
e−2iϕ0ϕ

−

∂

∂ϕ0
+ e−2iϕ0(1 + ϕ+ϕ−

)
∂

∂ϕ+

− λe−2iϕ0ϕ
−
ζ
∂

∂ζ
,

X̃R
ϕ
−

= − i
2
e2iϕ0ϕ+

∂

∂ϕ0
+ e2iϕ0(1 + ϕ+ϕ−

)
∂

∂ϕ
−

+ λe2iϕ0ϕ+ζ
∂

∂ζ
,

where (A × B)a ≡ ǫabcAbBc, ǫ
123 = 1, denotes the vector product and (A × B)± ≡

(A× B)1 ± i(A×B)2. The commutators (13) now adopt the following form:
[
X̃R
Q+
, X̃R

Q̄−

]
= −iΞ

[
X̃R
Q−
, X̃R

Q̄+

]
= −iΞ

[
X̃R
Q0
, X̃R

Q̄0

]
= −iΞ[

X̃R
ϕ0
, X̃R

ϕ+

]
= −2iX̃R

ϕ+

[
X̃R
ϕ0
, X̃R

ϕ
−

]
= 2iX̃R

ϕ
−

[
X̃R
ϕ+
, X̃R

ϕ
−

]
= −iX̃R

ϕ0
− 2iλΞ[

X̃R
ϕ0
, X̃R

Q0

]
= 0

[
X̃R
ϕ0
, X̃R

Q+

]
= −2iX̃R

Q+

[
X̃R
ϕ0
, X̃R

Q−

]
= 2iX̃R

Q−[
X̃R
ϕ+
, X̃R

Q0

]
= 2X̃R

Q+

[
X̃R
ϕ+
, X̃R

Q+

]
= 0

[
X̃R
ϕ+
, X̃R

Q−

]
= −X̃R

Q0[
X̃R
ϕ
−
, X̃R

Q0

]
= 2X̃R

Q−

[
X̃R
ϕ
−
, X̃R

Q+

]
= −X̃R

Q0

[
X̃R
ϕ
−
, X̃R

Q−

]
= 0

(39)

where we have omitted the commutators
[
X̃R
ϕ0,ϕ+ ,ϕ−

, X̃R
Q̄j

]
, which have the same form as

for the X̃R
Qj

vector fields. One can also work out easily the Quantization 1-form (11),
which is:

Θ =
i

4
tr[D̄dD −DdD̄] +

ΘSU(2)︷ ︸︸ ︷
iλ

1 + χ+χ−

(χ
−
dχ+ − χ+dχ−

)−iζ−1dζ , (40)

where we denote D ≡ UQU−1, D̄ ≡ UQ̄U−1, χ+ ≡ e2iϕ0ϕ+ , χ−
≡ e−2iϕ0ϕ

−
. The charac-

teristic subalgebra is just
Gc =< X̃L

ϕ0
> , (41)

and a full-polarization subalgebra exists for arbitrary (non-zero) λ, which is:

Gp =< X̃L
ϕ0
, X̃L

ϕ+
, X̃L

Q > . (42)
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The general solution to the polarization equations X̃LΨ = 0, X̃L ∈ Gp leads to a Hilbert
space H(λ)(G̃) of wave functions of the form:

Ψ(λ)(ζ, ϕ0, ϕ+ , ϕ−
, Q, Q̄) = ζ(1 + ϕ+ϕ−

)−λe−
1
4

tr[Q̄Q]Φ(χ
−
, D̄), (43)

where Φ is an arbitrary power series in the variables χ
−

and D̄. A scalar product can be

given through the invariant integration volume of G̃:

µ(g̃) =
−i

(1 + ϕ+ϕ−
)2

[
3∏

a=1

dAa ∧ dEa
]
∧
[
dRe(ϕ+) ∧ dIm(ϕ+) ∧ dϕ0

]
∧ ζ−1dζ . (44)

The phase space related to this quantum system is clearly ℜ3×ℜ3×S2, as can be inferred
from the symplectic form ω ≡ dΘ/Gc (the quotient of dΘ by the trajectories generated
by left-invariant vector fields in (41)), the parameter λ being the analogous of the spin s.

The constraint equations

X̃R
ϕ0

Ψ
(λ)
phys. = 0 ⇒ χ

−

∂Φ

∂χ
−

+ i(D̄ × ∂Φ

∂D̄
)0 = 0 ,

X̃R
ϕ
−
Ψ

(λ)
phys. = 0 ⇒ ∂Φ

∂χ
−

+ i(D̄ × ∂Φ

∂D̄
)+ = 0 , (45)

keep 2 degrees of freedom out of the original 4 = 3 + 1 corresponding to this “spinning-
like particle”. They can be interpreted as zero total angular-momentum (orbital+spin)
conditions. Note that the condition

X̃R
ϕ+

Ψ
(λ)
phys. = 0⇒ −2λχ

−
Φ + χ2

−

∂Φ

∂χ
−

− i(D̄ × ∂Φ

∂D̄
)− = 0 (46)

is incompatible with both conditions in (45), which correspond to a polarization subalge-
bra Tp =< X̃R

ϕ0
, X̃R

ϕ
−
> of T , unless λ = 0. For λ = 0, the characteristic subalgebra (41)

contains the whole su(2) subalgebra, Φ does no longer depend on χ
−
, and the constraint

conditions (45,46) keep a “radial” dependence of Φ on R2 ≡ 1
2
tr[DD̄] (“s-waves”), as

corresponds to a spin-zero particle with zero orbital angular momentum.
The good operators are

G̃good =< tr[Q̂2], tr[ ˆ̄Q
2
], tr[Q̂ ˆ̄Q], Ĉ, Ξ > , (47)

where Ĉ = (X̃R
ϕ0

+ 2λΞ)2 + 2X̃R
ϕ+
X̃R
ϕ
−

+ 2X̃R
ϕ
−
X̃R
ϕ+

is the Casimir operator of SU(2).
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Note added. We thank the referee who brought the reference [16] to our attention. It
contains a nice summary of a generalization of Dirac’s method of quantization of con-
strained systems by using Mackey’s theory of inequivalent quantizations on a coset space
G/H . The reader may find it interesting to compare GAQ and this generalized version of
Dirac’s approach by using the simple example given in the Appendix. Both approaches
share the idea of “emergence of new (internal) degrees of freedom, existence of inequiv-
alent quantizations and the appearance of an H-connection” when constraints become
second class. In fact, the role played by the characteristic subgroup Gc in GAQ is sim-
ilar to the role played by H when quantizing on a coset space G/H ; also, the piece

ΘSU(2) = ∂
∂gj ξ(g

′|g)λ
∣∣∣
g′=g−1

dgj of the general connection form (11) in Eq. (40) corre-

sponds to a “SU(2)-connection”. However, an important distinction has to be made
between both schemes of constrained quantization. The counterpart of the constraint
equations (right conditions)

RhΨ(g) = Ψ(g ∗ h) ≡ Ψ(g) , ∀h ∈ H, g ∈ G ,

in the generalized Dirac’s approach to the constrained quantization on G/H , are the
polarization equations of GAQ (see paragraph before Eq. (14)) which, in contrast, are
intended to reduce the (left) regular representation Lg′Ψ(g) = Ψ(g′ ∗ g) of G on wave
functions Ψ. In brief, GAQ further “constrains” wave functions by means of extra T -
equivariance conditions (8) like (45), which are not present in the generalized Dirac’s
scheme of quantization. Also, T -equivariance conditions in GAQ force the definition of
good operators (observables), concept which is absent in the other scheme.
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