PROYECTO DE EJECUCIÓN DE BLOQUE PLURIFAMILIAR DE 14 VIVIENDAS, LOCAL Y 15 PLAZAS DE GARAJE, EN LORCA (MURCIA).

TRABAJO FIN DE GRADO

I.MEMORIA.

- DESCRIPTIVA-CONSTRUCTIVA- CUMPLIMIENTO CTE-ANEXOS

II.PLANOS.

III.PROGRAMACIÓN DE LA OBRA (GANTT).

IV. PRESUPUESTO Y MEDICIONES.

V.BIBLIOGRAFÍA Y NORMATIVA CONSULTADA.

CURSO 2014/15

AUTOR: Salvador Porlán Giner

TUTOR: Julián Pérez Navarro

SEPTIEMBRE 2015

ÍNDICE GENERAL

	IOR	

1. MEMORIA DESCRIPTIVA	1
1.1 . RESUMEN DE DATOS GENERALES	1
2. MEMORIA CONSTRUCTIVA	9
2.1. SISTEMA ESTRUCTURAL	9
2.2. SISTEMA ENVOLVENTE	12
2.3. SISTEMA DE COMPARTIMENTACIÓN	19
2.4. SISTEMA DE ACABADOS	25
2.5. SISTEMA DE ACONDICIONAMIENTO E INSTALACIONES	26
2.6. EQUIPAMIENTOS	34
3. CUMPLIMIENTO DEL CTE	35
3.1. SEGURIDAD ESTRUCTURAL	35
3.2. SEGURIDAD EN CASO DE INCENDIO	41
3.3. SEGURIDAD DE UTILIZACIÓN Y ACCESIBILIDAD	56
3.4. SALUBRIDAD	69
3.4.3 EXIGENCIA BÁSICA HS-3. CALIDAD DEL AIRE INTERIOR	91
3.4.4 EXIGENCIA BÁSICA HS-4. SUMINISTRO DE AGUA	94
3.5. PROTECCIÓN FRENTE AL RUIDO	104
3.6. AHORRO DE ENERGIA	107
ANEXOS:	
1. ESTUDIO GEOTÉCNICO	129
2. PREDIMENSIONADO DE CIMENTACIÓN Y ESTRUCTURA	144
3. PREDIMENSIONADO DE ZAPATAS	175
4. PREDIMENSIONADO PÓRTICO 1	183
5. PREDIMENSIONADO INSTALACIONES	192
II. PLANOS. (ÍNDICE DE PLANOS)	
III. PROGRAMACIÓN DE LA OBRA. DIAGRAMA DE GANTT.	
IV. MEDICIONES Y PRESUPUESTO. (RESUMEN PRESUPUESTO)	
V. BIBLIOGRAFÍA Y NORMATIVA CONSULTADA	

ÍNDICE DE PLANOS

-	PLANOS DESCRIPTIVOS O BASICOS:	<u>REF</u>
1.	PLANO DE SITUACIÓN Y EMPLAZAMIENTO	
2.	PLANO DE PARCELACIÓN Y URBANIZACIÓN	PU-01
3.	PLANO DE USOS, DISTRIBUCIÓN Y MOBILIARIO (PLANTA SÓTANO-BAJA)	UD-01
4.	PLANO DE USOS, DISTRIBUCIÓN Y MOBILIARIO (P.1ª a 4ª y P.5ª)	
5.	PLANO DE USOS, DISTRIBUCIÓN Y MOBILIARIO (P.ÁTICO y P.CUBIERTA)	
6.	PLANO DE ALZADOS	
7.	PLANO DE SECCIONES	
_	PLANOS CONSTRUCTIVOS O DE EJECUCIÓN:	
8.	PLANO DE REPLANTEO DE CIMENTACIÓN	RP₌∩1
9.	PLANO DE CIMENTACIÓN, PUESTA A TIERRA Y SANEAMIENTO	
-	PLANO DE DETALLES DE CIMENTACIÓN	
	PLANO DE REPLANTEO DE ESTRUCTURA (P.BAJA y P.1ª a 4ª)	
	PLANO DE REPLANTEO DE ESTRUCTURA (P.5º, P.ÁTICO y P.CUBIERTA)	
	PLANO DE ESTRUCTURA-ARMADURA INFERIOR (P.BAJA y P.1ª a 4ª)	
	PLANO DE ESTRUCTURA-ARMADURA INFERIOR (P.5ª, P.ÁTICO y P.CUBIERTA)	
	PLANO DE ESTRUCTURA-ARMADURA INFERIOR (P.5=, P.ATICO y P.CUBIERTA)	
	PLANO DE ESTRUCTURA-ARMADURA SUPERIOR (P.5ª, P.ÁTICO y P.CUBIERTA)	
	PLANO DE ESTRUCTURA. ARMADURA SUPERIOR (P.5º, P.ATICO Y P.CUBIERTA)	
	PLANO DE COTAS, NIVELES Y SUPERFICIES (P.SÓTANO-BAJA)	
	PLANO DE COTAS, NIVELES Y SUPERFICIES (P.SOTANO-BAJA) PLANO DE COTAS, NIVELES Y SUPERFICIES (P.1ª a 4ª y P.5ª)	
	, , ,	
	PLANO DE COTAS, NIVELES Y SUPERFICIES (P.ÁTICO y P.CUBIERTA)	
	PLANO DE DEFINICIÓN CONSTRUCTIVA. SECCIÓN CONSTRUCTIVA	
	PLANO DE INSTALACIONES DE FONTANERÍA Y A.C.S (P.SÓTANO Y P.BAJA)	
	PLANO DE INSTALACIONES DE FONTANERÍA Y A.C.S (P.1ª a 4ª y P.5ª)	
	PLANO DE INSTALACIONES DE FONTANERÍA Y A.C.S (P.ÁTICO Y P.CUBIERTA)	
	PLANO DE INSTALACIONES DE FONTANERÍA Y A.C.S – ESQUEMA VERTICAL	
	PLANO DE INSTALACIONES DE SANEAMIENTO (P.SÓTANO y P.BAJA)	
	PLANO DE INSTALACIONES DE SANEAMIENTO (P.1ª a 4ª y P.5ª)	
	PLANO DE INSTALACIONES DE SANEAMIENTO (P.ÁTICO y P.CUBIERTA)	
	PLANO DE INSTALACIONES DE SANEAMIENTO – ESQUEMA VERTICAL	
	PLANO DE INSTALACIONES DE ELECTRICIDAD, C.P.I Y TELECOMUNICACIONES (P.SÓTANO-BAJA	-
	PLANO DE INSTALACIONES DE ELECTRICIDAD, C.P.I Y TELECOMUNICACIONES (P.1ªa4ª y P.5ª)	
	PLANO DE INSTALACIONES DE ELECTRICIDAD, C.P.I Y TELECOMUNICACIONES (P.ÁTICO/CUBT).	
	PLANO DE INSTALACIONES DE ELECTRICIDAD. ESQUEMAS	
	PLANO DE INSTALACIONES DE TELECOMUNICACIONES. ESQUEMAS	
	PLANO DE INSTALACIONES DE CALEFACCIÓN (P.1ª a 4ª y P.5ª)	
	PLANO DE INSTALACIONES DE CALEFACCIÓN (P.ÁTICO Y P.CUBIERTA)	
	PLANO DE INSTALACIONES DE VENTILACIÓN-CLIMATIZACIÓN (P.SÓTANO Y P.BAJA)	
	PLANO DE INSTALACIONES DE VENTILACIÓN-CLIMATIZACIÓN (P.1ª a 4ª y P.5ª)	
	PLANO DE INSTALACIONES DE VENTILACIÓN (P.ÁTICO y P.CUBIERTA)	
	PLANO DE ACABADOS (P.SÓTANO-BAJA)	
	PLANO DE ACABADOS (P.1ª a 4ª Y P.5ª)	
	PLANO DE ACABADOS (P.ÁTICO y P.CUBIERTA)	
	MEMORIA DE CARPINTERÍA	
44.	PLANO DE CARPINTERÍA. DETALLES	CAR-02

MEMORIA DESCRIPTIVA.

1.1. RESUMEN DE DATOS GENERALES.

- Titulo del Proyecto :	Proyecto Básico y Ejecución de bloque plurifamiliar de						
	14 viviendas,	local y 15 p	olazas de gar	aje.			
- Emplazamiento:	Calle Virgen de la Soledad/Calle de Ministriles, Lorca (Murcia).						
	(ivial cia).						
- Uso del Edificio:							
-Usos	principales del	Edificio:					
co	esidencial [omercial [ficinas [turístic industi	rial	transporte espectáculo agrícola	sanitario deportivo educación		
-Usos	Subsidiarios de	l Edificio:					
_ re	esidencial	⊠ Garajes	Σι	ocales.	Otros: Oficinas		
- Número de Plantas:							
Sobre rasante	7	Bajo rasa	nte:		1		
- Superficies:							
superficie total construio rasante	da s/ 2	029,25 m ²	superficie to	otal	2476,10 m ²		
superficie total construi	da h/	446,85 m ²	presupuesto	n ejecución	1.292.773,83 €		
rasante	uu b/	T-10,05 III	material	o ejecución	1.232.773,03 €		

1.2. AGENTES.

Promotor:

Proyectista: Salvador Porlán Giner, № Colegiado: xxx, Colegio: X

Dirección: Alameda Poeta Para Vico, 15, Lorca (Murcia).

CIF/NIF: 23288121-T

Tlf: 636149037, e-mail: salvadorporlanginer@gmail.com

1.3. INFORMACIÓN PREVIA.

Antecedentes y condicionantes de partida:

Se recibe por parte del promotor el encargo de la redacción de proyecto de un edificio de viviendas en las plantas altas, local comercial/oficinas en la planta baja y garaje en sótano.

Emplazamiento:

El solar objeto del presente proyecto se encuentra en Lorca, entre las calles Virgen de la Soledad y Ministriles (Barrio de San Diego) tiene una geometría rectangular con una superficie en planta de 3632,44 m², de los cuales son objeto de este proyecto 446,85 m² (según plano de situación y emplazamiento).

Entorno físico:

La parcela de referencia, de forma rectangular, está situada de manera aislada, entre cuatro calles, al norte con calle Ministriles, al sur con calle Virgen de la Soledad, al oeste con calle Cristo de la Sangre y al este con Paseo del Paso Encarnado.

Datos del solar:

El solar se encuentra situado en el barrio de San Diego, zona de ensanche y periférica de la ciudad junto a edificaciones donde predomina la tipología de vivienda plurifamiliar aislada.

Datos de la edificación existente:

No procede, ya que se trata de una obra nueva.

Antecedentes de proyecto:

La información necesaria para redacción y desarrollo del proyecto (geometría, dimensiones), ha sido aportada por el promotor (UPCT).

Normativa urbanística: Es de aplicación el PGMO de Lorca vigente.

1.4. INFORMACIÓN DEL PROYECTO.

1.4.1. DESCRIPCIÓN GENERAL DEL EDIFICIO.

Descripción general del edificio:

Se trata de un edificio perteneciente a una urbanización de edificios adosados que comparten planta sótano, corresponde a la tipología de edificio de viviendas plurifamiliar, con una planta garaje bajo rasante y ocho plantas sobre rasante (P. baja, P. 1ªa4ª, P. 5ª, P. Ático de viviendas y P. cubierta no transitable).

Programa de necesidades:

El programa de necesidades requerido por el promotor viene condicionado por la demanda del mercado inmobiliario para este tipo de viviendas colectivas en un entorno urbano consolidado.

El edificio consta de 14 viviendas partidas en 5 tipologías:

TIPO A- Cocina, lavadero, salón-comedor, 2 baños, 3 dormitorios, lavadero y terraza.

TIPO B- Cocina, baño, salón-comedor y 2 dormitorios.

TIPO C- Cocina, baño, salón-comedor y 2 dormitorios.

TIPO D- Cocina, 2 salones, sala, 3 baños, 3 dormitorios, lavadero y terraza.

TIPO E- Cocina, 2 salones, sala, 3 baños, 3 dormitorios y terraza.

El programa de necesidades que se recibe por parte de la propiedad para la redacción del presente proyecto se refiere a una planta de sótano para garaje, planta baja de locales comerciales, así como para oficinas, seis plantas de viviendas y una última planta cubierta (no transitable).

Uso característico del edificio:

El uso característico el edificio es el residencial en plantas altas, mientras que en planta baja se destina a uso comercial.

Otros usos previstos: Se prevé además el uso de oficina en planta baja compartido con el uso comercial.

Relación con el entorno:

El entorno urbanístico queda definido por edificaciones de tipología similar, como resultado del cumplimiento de las ordenanzas municipales de la zona. Así como de parcelas aún sin edificar.

1.4.2. DESCRIPCIÓN DE LA GEOMETRÍA DEL EDIFICIO.

Descripción de la geometría del edificio:

El edificio proyectado corresponde a un edificio plurifamiliar con tres frentes de fachada y una medianera.

El solar tiene una forma de polígono irregular con una superficie de 440 m². La geometría del edificio, que se deduce de la aplicación sobre el solar de la ordenanza municipal, es la que se recoge en el conjunto de planos que describen el proyecto.

- Volumen:

El volumen del edificio es el resultante de la aplicación de las ordenanzas urbanísticas y los parámetros relativos a habitabilidad y funcionalidad.

- Accesos:

El acceso a pie se produce por la fachada sur del solar, coincidente con la calle Virgen de la Soledad, comunicando el espacio público (acera y acceso rodado) con los espacios privados del edificio (acceso peatonal a través de portal).

El acceso rodado al garaje común del conjunto de edificios a los que pertenece el edificio del presente proyecto se realiza por la conexión de calle Ministriles con la calle Cristo de la Sangre.

- Evacuación:

El solar cuenta con un lindero de contacto con el espacio público con calle Virgen de la Soledad.

- Cuadros de Superficies útiles y construidas:

PLANTA SÓTANO	SUPERFICIES			
PLANTA SOTANO	SUP. ÚTIL (m²)	SUP. CONSTRUIDA (m²)		
RAMPA ACCESO	\$			
TRASTEROS	20,78			
GARAJE	376,04	446,45		
ESCALERA	7,83			
VESTÍBULO	7,31			
TOTAL	411,96			

DI ANITA DA IA	SUPERFICIES			
PLANTA BAJA	SUP. ÚTIL (m²)	SUP. CONSTRUIDA (m²)		
LOCAL SIN USO	211,45			
CUARTO 1	2,80	1		
CUARTO 2	4,77			
ESCALERA	10,63	264.00		
ZAGUAN	12,24	20 1,00		
ARMARIO 1	0,75			
PLACETA	165,47			
TOTAL	408,11			

DI ANTAC 43 - 43	SUPERFICIES		
PLANTAS 1ª a 4ª	SUP. ÚTIL (m²)	SUP. CONSTRUIDA (m²)	
ESCALERA	9,57		
DISTRIBUIDOR	11,89	34,54	
VIVIENDA A			
COCINA	11,94		
LAVADERO	2.09		
SALÓN - COMEDOR	21,54		
BAÑO 1	4,15		
BAÑO 2	4,15		
DORMITORIO 1	14,60		
DORMITORIO 2	11,32		
DORMITORIO 3	9,83		
VESTÍBULO-PASO	6,23		
DISTRIBUIDOR	5,00		
TERRAZA	3,13		
TOTAL VIV A	93,98	108,68	

DI ANITAC 43 - 43	SUPE	SUPERFICIES		SUPERFICIES	
PLANTAS 1ª a 4ª	SUP. ÚTIL (m²)	SUP. CONSTRUIDA (m²)	PLANTAS 1ª a 4ª	SUP. ÚTIL (m²)	SUP. CONSTRUIDA (m²
VIVIENDA B			VIVIENDA C		
COCINA	6,91		COCINA	6,91	
BAÑO	4,02		BAÑO	4,12	
ASEO	3,70		SALÓN - COMEDOR	18,80	
SALÓN - COMEDOR	19,60		DORMITORIO 1	10,60	
DORMITORIO 1	12,41		DORMITORIO 2	10,28	
DORMITORIO 2	10,54		VESTÍBULO-DISTRIB.	5,16	
VESTÍBULO-DISTRIB.	5,51		TOTAL VIV B	55,87	66,20
TOTAL VIV B	62,69	73,53			100000,000

TOTAL CONSTRUIDO PLANTAS 1ª a 4ª S= 273,97m² x 4 PLANTAS =1095,88m²

PLANTA 5ª	SUPE	RFICIES	DI ANTA FA	SUPE	RFICIES
PLANTA 3"	SUP. ÚTIL (m²)	SUP. CONSTRUIDA (m²)	PLANTA 5ª	SUP. ÚTIL (m²)	SUP. CONSTRUIDA (m²)
ESCALERA	9,55	24,83	VIVIENDA D		
DISTRIBUIDOR	7,38	24,83	COCINA	14,67	
VIVIENDA E			SALÓN	27,84	
COCINA	13,84		SALA	9,62	
SALÓN	29,52		BAÑO 1	5,90	
SALA	12,82		BAÑO 2	3,63	
BAÑO 1	5,75		DORMITORIO 1	15,04	
BAÑO 2	4,04		DORMITORIO 2	15,02	
DORMITORIO 1	15,04		VESTÍBULO ESCALERA	11,29	
DORMITORIO 2	11,30		DISTRIBUIDOR	7,24	
VESTÍBULO ESCALERA	10,40		LAVADERO	2,77	
DISTRIBUIDOR	5,32		TOTAL VIV D en P. 58	113,02	128,53
TOTAL VIV E en P.5*	108,03	122,66	TOTAL CONSTRUIDO PLANTA 5ª S=273,9		S=273,94m²

DI ANTA ÁTICO	PLANTA ÁTICO SUPERFICIES PLANTA ÁTICO	DI ANTA ÁTICO	SUPER	RFICIES	
PLANTA ATICO	SUP. ÚTIL (m²)	SUP. CONSTRUIDA (m²)	PLANTA ATICO	SUP. ÚTIL (m²)	SUP. CONSTRUIDA (m²)
TERRAZA COMUNITARIA	15,16	1000, 700	TERRAZA COMUNITARIA	15,16	
DISTRIBUIDOR	7,10		DISTRIBUIDOR	7,10	
VIVIENDAE			VIVIENDA D		
SALÓN 2	33,80		SALÓN 2	35,55	
DORMITORIO 3	11,82		DORMITORIO 3	12,76	
BAÑO 3	3,70		BAÑO 3	3,40	
TERRAZA	70,00		TERRAZA	15,95+19,80=35,75	1
TOTAL VIVE	108,03+119,32=227,35		TOTAL VIV D	113,2+87,46=200,66	

S=264,00 m² TOTAL CONSTRUIDO PLANTA ÁTICO

TOTAL CONSTRUIDO PLANTA CUBIERTA S=131,40 m²

1.4.3. MARCO LEGAL APLICABLE (Estatal, Autonómico y Local).

Producción y gestión de residuos de construcción y demolición. RCD:

ICT: Reglamento regulador de las infraestructuras comunes

telecomunicaciones para el acceso a los servicios de telecomunicación

en el interior de las edificaciones.

REBT: Reglamento electrotécnico para baja tensión e instrucciones técnicas

complementarias. (ITC) BT 01 a BT 51.

Reglamento de instalaciones térmicas en edificios (RITE). RITE:

RIPCI: Reglamento de instalaciones de protección contra incendios.

EHE-08: Instrucción de hormigón estructural.

Norma de construcción sismorresistente. NCSE-02:

El presente proyecto cumple el Código Técnico de la Edificación, satisfaciendo las exigencias básicas para cada uno de los requisitos básicos de 'Seguridad estructural', 'Seguridad en caso de incendio', 'Seguridad de utilización y accesibilidad', 'Higiene, salud y protección del medio ambiente', 'Protección frente al ruido' y 'Ahorro de energía y aislamiento térmico', establecidos en el artículo 3 de la Ley 38/1999, de 5 de noviembre, de Ordenación de la Edificación.

Cumplimiento de otras normativas específicas:

Habitabilidad: LEY 5/1995, de 7 de abril, de condiciones de habitabilidad en edificios

de viviendas y promoción de la accesibilidad general de la Región de

Murcia.

1.4.4. CONDICIONES URBANÍSTICAS.

Categorización, clasificación y régimen del suelo				
Clasificación del suelo Urbano				
Calificación/Zonificación	Ensanche			
Planeamiento de aplicación	URBANIZACIÓN SECTOR .URPI-5			

Normativ	Normativa Básica y Sectorial de aplicación						
Otros planes de aplicación	No existe planeamiento complementario que regule la construcción del edificio objeto del presente proyecto.						
Parámetros tipológicos (cond	iciones de las parcelas pa	ara las obras de n	ueva planta)				
Parámetro	Referencia a:	Planeamiento	Proyecto				
Superficie mínima de parcela (m²)		200 m²	440 m²				
Long. Fachadas (m)		-	29,20 y 17,60 m				
Diámetro inscrito (m)		-	-				
Fondo mínimo (m)		-	-				
Parámetros volumétri	cos (condiciones de ocup	pación y edificabil	idad)				
Parámetro	Referencia a:	Planeamiento	Proyecto				
Ocupación		*100%	40%				
Coeficiente de edificabilidad		1 m2/m2	0,30 m2/m2				
Número máximo de plantas		8	7				
Condiciones de altura		<25.0 m	22,60 m				
Retranqueos víales		* <4 m	_ m				
Retranqueos linderos		0 M	0 m				

2. MEMORIA CONSTRUCTIVA - 2.1. SISTEMA ESTRUCTURAL.

2.1.1. Trabajos previos.

En primer lugar, se procederá al cerramiento y vallado de la obra. Se realizará una limpieza del solar y las instalaciones provisionales previstas como casetas (almacén, vestuarios y oficinas), aseos, etc... se situarán en las zonas previstas para su colocación con sus correspondientes acometidas provisionales, apuntalamientos y acodalamientos necesarios.

2.1.2. Replanteo.

Se realizará conforme a las especificaciones que aparecen en el plano de replanteo de pilares.

Se tomará una línea de nivel, que tendrá como referencia la acera de la calle Virgen de la Soledad, y se adoptará como cota ±0,00m.

2.1.3. Cimentación.

2.1.3.1. Descripción física del suelo.

- La cimentación del edificio se sitúa en un estrato descrito como: 'limos'.
- La profundidad de cimentación respecto de la rasante es de 3,25 m.
- La tensión admisible prevista del terreno a la profundidad de cimentación es de 1.35 Kp/cm2

El estudio geotécnico se realizará según lo expuesto en el CTE en su Documento Básico de Seguridad Estructural Cimientos (SE-C). Según este documento, para una construcción de entre 4 y 10 plantas, el tipo de construcción se clasifica en C-2. El terreno es de tipo T-1.

El Estudio Geotécnico incluirá un informe redactado y firmado por un técnico competente, visado por el Colegio Profesional correspondiente (según el Apartado 3.1.6 del Documento Básico SE-C).

2.1.3.2. Resumen del estudio geotécnico del suelo.

Estudio Geotécnico realizado por Ceico, Centro de Estudios, Investigaciones y Control de Obras S, L.

Situación del solar: Calle Virgen de la Soledad con calle Ministriles, Lorca (Murcia).

Superficie del solar:

La parcela tiene una superficie total de 3632,44 m2, de los cuales van a ser objeto de proyecto 440 m2.

La parcela se sitúa en un terreno descrito como tipo T-1, según el CTE.

Se han realizado dos sondeos de rotación con extracción de testigo continuo de 18 metros de profundidad y tres ensayos de penetración dinámica.

Según las prospecciones realizadas, se ha detectado bajo un suelo vegetal de espesor en torno a 0.5 m (Nivel 0), un paquete detrítico cuaternario que se extiende hasta el final de las prospecciones realizadas y que puede ser dividido en dos subniveles con entidad propia basándose en sus características geotécnicas:

Nivel 1. El primer nivel de relleno detectado hasta los 0.6/1.5 metros en los sondeos nº1 y 2, respectivamente, compuesto por gravas, bolos y algún canto antrópico de escombro. Este nivel será salvado por la excavación prevista para el cimiento.

Nivel 2. Las gravas y arenas de color violeta de cantos esquistosos detectadas en todo el perfil investigado a partir del nivel anterior. Se trata de un material granular con predominio de la fracción gruesa, así las muestras ensayadas contienen entre un 15ny un 20% de finos no plásticos, clasificados como GM y SM.

Consistencia media, con resultados de N entre 13 y 31, en los SPT practicados, aunque se obtiene algún valor algo más firme, de hasta 57 golpes en tramos más cementados.

En base a estos datos, obtenemos una densidad aparente de 21kN/m3, ángulo de rozamiento interno de 36 grados, cohesión de 45 Kpa. Módulo de deformación E= 40 Mpa y permeabilidad de $K = 10^{-5} \,\text{m/s}$.

Se prevé la realización de un edificio aislado que presentan las siguientes características:

Planta regular rectangular de unos 29,20 x 17,60 m, constarán de 7 plantas sobre rasante y sótano.

Todos los materiales atravesados resultan susceptibles frente a accesos de agua de cualquier origen, por lo que se recomienda que todas las conducciones resulten seguras y fácilmente localizables para reparar con prontitud cualquier fuga que se detecte. A la vez, es interesante dotar a la zona de una pendiente adecuada que evite remanencias de agua cerca de cimentación.

Todos los ensayos químicos realizados muestran concentraciones de ión sulfato en el terreno inferiores a 2000 mg/kg, correspondiente a un ambiente no agresivo frente al hormigón según el Anejo 5 de la EHE. Por tanto, no resulta necesario el uso de cementos sulforresistentes (SR).

Con los ensayos realizados no se han localizado suelos potencialmente colapsables ni expansivos.

Conclusiones y recomendaciones:

En función de los datos ya mencionados, la solución de cimentar mediante zapatas aisladas no resulta la más idónea por las grandes dimensiones de las mismas, pero aun así, será la solución adoptada por petición expresa del promotor.

El ambiente de la cimentación es **IIa**, según la Instrucción EHE-8.

Según la Norma Sismorresistente NCSR-02, la edificación a construir es de normal importancia.

El coeficiente de contribución es de K=1.

Valor de coeficiente de suelo es (C) igual a 1.6.

2.1.3.3. Acondicionamiento del terreno.

- 1- Desbroce y limpieza del terreno por medios mecánicos de una capa de unos 20-30 cm.
- 2- Vaciado con medios mecánicos hasta una cota de -3,25m y posterior transporte de tierras a vertedero.

2.1.3.4. Descripción de la cimentación.

La cimentación se resuelve mediante grandes zapatas, en su mayoría combinadas, de hormigón armado.

2.1.3.5. Predimensionado de la losa de cimentación.

El predimensionado de las zapatas se ha realizado según la EHE, (ver anexo).

2.1.4. Estructura de contención.

Muro de contención, con altura constante de 3.40 m y espesor de 40 cm en el perímetro de la excavación.

El hormigón empleado será HA-25/B/20/IIa fabricado en central y vertido con cubilote.

La armadura longitudinal y transversal estará compuesta por barras corrugadas de 16 mm de diámetro colocadas cada 20 cm, en ambas caras.

El acero utilizado será B 400 S.

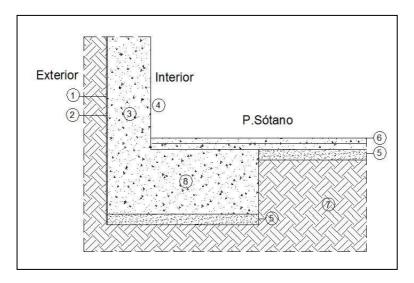
2.1.5. Estructura portante.

La estructura portante vertical se compone de 19 pilares de hormigón armado de dimensión y sección regular cuadrada, en todas las plantas (40x40cm). El arranque de pilares se realiza a partir de las esperas dispuestas en las diferentes zapatas en cimentación.

El criterio de identificación de los elementos estructurales se realiza mediante la numeración correlativa de pilares del número 1 al número 19.

CUADRO DE ARRANQUES DE PILARES							
Referencias/Esquema	Armados Esquinas	Armados Cara X	Armados Cara Y	Estribos			
0.40	4 Ø 20 (30+66+68)	2 Ø 16 (30+51+48)	2 Ø 16 (30+51+48)	Ø 6 c/15cm Ø 6 c/15cm			

2.1.6. Estructura horizontal.


La estructura portante horizontal sobre la que apoyan los forjados bidireccionales se resuelve mediante casetones de hormigón prefabricado y vigas planas. Las dimensiones y armaduras de estos elementos se indican en la siguiente tabla y su disposición en los correspondientes planos de proyecto:

	Armadura	Armadura		ones	Capa de	Canto total	
Forjado	en nervios Inf/sup	Intereje (cm)	Material	Altura (cm)	compresión (cm)	Canto total (cm)	
Forjado bidireccional	2Ø16	80	hormigón	25	5	30	

2.2. SISITEMA ENVOLVENTE.

2.2.1. Suelos en contacto con el terreno.

- Solera y Zapata con muro de sótano con impermeabilización exterior:

Leyenda:

- 1. Lámina nodular drenante Danodren H15 "DANOSA". Esp= 0,05 cm.
- 2. Emulsión asfáltica Maxdan Caucho "DANOSA". Esp=0,1 cm.
- 3. Muro de sótano de hormigón armado. Esp=40 cm.
- 4. Acabado natural del hormigón.
- 5. Capa de hormigón de limpieza H-100. Esp= 10cm.
- 6. Solera de hormigón. Acabado en fratasado mecánico. Sobre esta base fratasada se aplicarán pinturas compuestas de resinas "epoxi" específicas para este uso. Esp= 10+1 cm.
- 7. Terreno natural.

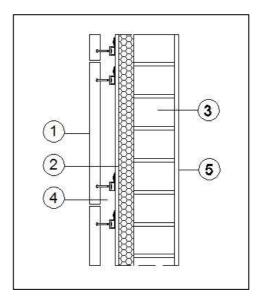
Limitación de demanda energética U_m: 3.09 W/m²K.

Protección frente al ruido: Masa superficial: 769.20 kg/m².

Caracterización acústica por ensayo, R_w(C; C_{tr}): 85.0(-1; -1)

dB.

Referencia del ensayo: No disponible. Los valores se han estimado mediante leyes de masa obtenidas extrapolando


el catálogo de elementos constructivos.

Protección frente a la humedad: Tipo de muro: Flexorresistente.

Tipo de impermeabilización: Exterior.

2.2.2. Fachadas.

- Fachada Ventilada de piedra natural:

Leyenda:

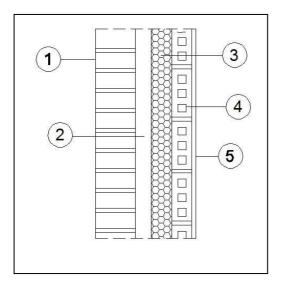
- 1. Aplacado de piedra caliza natural. Resistencia a compresión = 400Kg/cm2. Esp= 3 cm.
- 2. Asilamiento térmico con poliuretano proyectado sobre cerramiento. Esp= 4 cm.
- 3. Cerramiento: citara de ladrillo cerámico hueco doble. Esp= 12 cm.
- 4. Cámara de ventilación. Esp= 4 cm.
- 5. Enfoscado de mortero y Revestimiento de yeso. Esp= 1+1 cm.

Limitación de demanda energética U_m: 0.58 W/m²K.

Protección frente al ruido: Masa superficial: 215.90 kg/m².

Masa superficial del elemento base: 214.30 kg/m².

Caracterización acústica por ensayo, R_w(C; C_{tr}): 85.0(-1; -1)


Referencia del ensayo: No disponible. Los valores se han estimado mediante leyes de masa obtenidas extrapolando

el catálogo de elementos constructivos.

Protección frente a la humedad: Grado de impermeabilidad alcanzado: 2.

Solución adoptada: R1+C1.

- Fachada de ladrillo cara vista:

Leyenda:

- 1. Ladrillo cerámico cara vista. Esp= 10cm.
- 2. Cámara de ventilación. Esp= 4 cm.
- 3. Aislamiento térmico: poliuretano proyectado sobre cerramiento. Esp= 4cm.
- 4. Ladrillo hueco simple tomado con mortero M7 hidrofugado. Esp= 5 cm.
- 5. Enfoscado de mortero y Revestimiento de yeso. Esp= 1+1 cm.

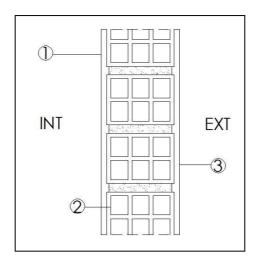
Limitación de demanda energética U_m: 0.58 W/m²K.

Protección frente al ruido: Masa superficial: 215.90 kg/m².

Masa superficial del elemento base: 214.30 kg/m².

Caracterización acústica por ensayo, R_w(C; C_{tr}): 85.0(-1; -1)

dB.


Referencia del ensayo: No disponible. Los valores se han estimado mediante leyes de masa obtenidas extrapolando

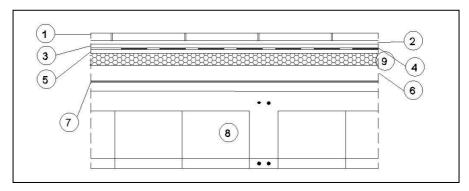
el catálogo de elementos constructivos.

Protección frente a la humedad: Grado de impermeabilidad alcanzado: 2.

Solución adoptada: R1+C1.

- Citara de medianera con edificio anexo:

Leyenda:


- 1. Guarnecido y enlucido de yeso. Esp= 1,5 cm.
- 2. Ladrillo cerámico hueco doble. Esp= 12 cm.
- 3. Enfoscado con mortero de cemento M-5. Esp= 1,5 cm.

*NOTA: En pilares y frentes de forjados se ha utilizado el material Polynum RPT (Rotura de puente térmico).

Composición: Lamina de Aluminio puro 100%, 4 mm de burbuja de polietileno FR + Malla de fibra de Vidrio.

2.2.3. Cubiertas y terrazas.

- Cubierta plana transitable (terrazas):

Leyenda:

- 1. Pavimento de Gres rústico para terrazas (30x30cm). Esp= 2 cm.
- 2. Mortero de cemento de agarre 1:8. Esp= 1 cm.
- 3. Mortero de cemento 1:6. Esp= 1 cm.
- 4. Lámina impermeabilizante para terrazas. Esp= 0,3 cm.
- 5. Mortero de cemento 1:6. Esp= 1 cm.
- 6. Formación de pendiente con hormigón aligerado. Esp= 10 cm.
- 7. Barrera de vapor con pintura bituminosa. Esp= 0,5 cm.
- 8. Forjado bidireccional de casetones de hormigón prefabricado permanentes. Esp= 30cm.
- 9. Aislante térmico. Poliestireno extrusionado. Esp=4cm.

Espesor Total = 45,80 cm.

- Cubierta plana no transitable (Azotea):

Leyenda:

- 1. Capa de gravilla. Esp= 5 cm.
- 2. Lámina impermeabilizante para terrazas. Esp= 0.3 cm.
- 3. Aislante térmico. Poliestireno extrusionado. Esp= 4 cm.
- 4. Formación de pendiente con hormigón aligerado. Esp 10 cm.
- 5. Barrera de vapor con pintura bituminosa. Esp= 0.5 cm.
- 6. Forjado bidireccional de casetones de hormigón prefabricado permanentes. Esp= 30cm.

Espesor Total= 49,80 cm.

2.2.4. Huecos en fachada.

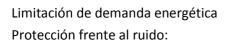
Puertas y ventana									
Acristalamiento	M _M	U_{Marco}	FM	Pa	См	U _{Hueco}	Fs	F _H	R _w (C;C _{tr})
Doble acristalamiento marca "TECHNAL", 8/10/7 (x16)	Ventana de aluminio, basculante dos hojas: Tipo V1– 210x100 cm	4.00	0.41	Clase 2	Claro (0.40)	3.35	0.76	0.36	30(-1;-2)
Doble acristalamiento marca "TECHNAL", 8/10/7 (x40)	Ventana de aluminio, corredera dos hojas: Tipo V2- 225x172 cm	4.00	0.46	Clase 2	Claro (0.40)	3.41	0.76	0.33	30(-1;-2)
Doble acristalamiento marca"TECHNAL", 8/10/7 (x10)	Ventana de aluminio corredera cuatro hojas: Tipo V3- 225x212 cm	5.70	0.27	Clase 3	Claro (0.40)	3.65	1.00	0.58	38(-1;-4)

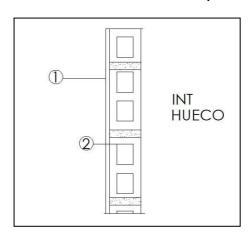
Puertas y ventana									
Acristalamiento	M _M	U_{Marco}	FM	Pa	См	U_{Hueco}	Fs	F _H	R _w (C;C _{tr})
Doble acristalamiento marca "TECHNAL", 8 /10/7 (x1)	Ventana de aluminio corredera dos hojas: Tipo V4- 225x161 cm	4.00	0.59	Clase 2	Claro (0.40)	3.55	1.00	0.35	30(-1;-2)
Doble acristalamiento marca "TECHNAL", 8/10/7 (x4)	Ventana de aluminio corredera dos hojas: Tipo V5- 225x200 cm	5.70	0.27	Clase 3	Claro (0.40)	3.65	0.67	0.39	38(-1;-4)
Doble acristalamiento marca "TECHNAL", 8/10/7 (x1)	Ventana de aluminio corredera cuatro hojas: Tipo V6- 225x275 cm	4.00	0.59	Clase 2	Claro (0.40)	3.55	0.82	0.29	30(-1;-2)
Doble acristalamiento marca "TECHNAL", 8/10/7 (x1)	Ventana de aluminio corredera cuatro hojas: Tipo V7- 225x392 cm	4.00	0.50	Clase 3	Claro (0.40)	3.45	0.76	0.31	38(-1;-4)
Doble acristalamiento marca "TECHNAL", 8/10/7 (x1)	Ventana de aluminio corredera cuatro hojas: Tipo V8- 225x400 cm	4.00	0.59	Clase 2	Claro (0.40)	3.55	0.67	0.23	30(-1;-2)
Doble acristalamiento marca "TECHNAL", 8/10/7 (x1)	Ventana de aluminio corredera dos hojas: Tipo V9- 225x150 cm	4.00	0.42	Clase 4	Claro (0.40)	3.37	0.76	0.35	30(-1;-2)
Doble acristalamiento marca "TECHNAL", 8/10/7 (x1)	Ventana de aluminio corredera dos hojas: Tipo V10- 225x280 cm	4.00	0.38	Clase 2	Claro (0.40)	3.32	0.82	0.40	30(-1;-2)
Doble acristalamiento marca "TECHNAL", 8/10/7 (x1)	Ventana de aluminio corredera cuatro hojas: Tipo V11- 225x487 cm	4.00	0.41	Clase 2	Claro (0.40)	3.35	1.00	0.47	30(-1;-2)

	acristalamiento "TECHNAL", 7 (x1)	Ventana de aluminio corredera dos hojas: Tipo V12-225x238 cm	4.0	0 0	.46	Clase 2	Claro (0.40)	3.41	1.00	0.44	30(-1;-2)
	acristalamiento "TECHNAL", 7 (x1)	Ventana de aluminio corredera dos hojas: Tipo V13-225x350 cm	4.0	0 0	.31	Clase 3	Claro (0.40)	3.24	0.74	0.40	38(-1;-4)
blinda edifici	alamiento do puerta acceso o, marca, NAL" 24 mm (x1)	Puerta de aluminio, abisagrada practicable de apertura hacia el interior,2hojas de 215x77 cm(abatibles), con superi fijo de 30x165 cm	4.0	0 0	.31	Clase 3	Claro (0.40)	3.24	1.00	0.54	38(-1;-4)
blinda local c		Puerta de aluminio, abisagrada practicable de apertura hacia el interior,2hojas de 215x82 cm(abatibles), con superi- fijo de 30x175 cm	4.0	0 0).31	Clase 3	Claro (0.40)	3.37	1.00	0.47	30(-1;-2)
Abrev	Abreviaturas utilizadas										
M_{M}	Material del marc	el marco U _H			Coe	ficiente	de tran	smisi	ión (V	V/m²	K)
U_{Marco}	Coeficiente de transmisión (W/m²K) F _s		F_S		Fac	tor de s	ombra				
FM	1 Fracción de marco F		F_H		Factor solar modificado						
Pa	Permeabilidad al aire de la carpintería		R _w (C;	C_{tr})	Valores de aislamiento acústico (dB)			B)			
C_M	Color del marco (d	absortividad)									

Puerta de entrada							
	Tipo	El ₂ t-C5	U_{Puerta}	R _w (C;C _{tr})			
Puerta d	de entrada (x1)	120	0.76	31(-1;-2)			
Puerta a	acceso vehículos (x1)		1.4	25(-1;-2)			
	Abreviatura	s utilizadas					
EI ₂ t-C5	Resistencia al fuego en minutos	w (C;C _{tr}) Valores de aislamiento acústico (dB)					
U_{Puerta}	Coeficiente de transmisión (W/m²K)						

2.3. SISTEMA DE COMPARTIMENTACIÓN.


2.3.1. Compartimentación interior vertical.


2.3.1.1. Parte ciega de la compartimentación interior vertical.

- Tabique Tipo F3 de una hoja para revestir (recubrimiento de huecos interiores).

Leyenda:

- 1. Enfoscado y Guarnecido de yeso + pintura plástica. Esp= 1-2 cm.
- 2. Ladrillo hueco simple tomado con mortero de agarre. Esp= 5cm. Espesor Total = 6cm.

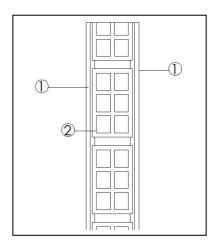
 $U_{\rm m}$: 2.12 W/m²K.

Masa superficial: 118.20 kg/m².

Caracterización acústica por ensayo, R_w(C;

C_{tr}): 39.7(-1; -1) dB.

Referencia del ensayo: No disponible. Los valores se han estimado mediante leyes de masa obtenidas extrapolando el catálogo de


elementos constructivos.

Seguridad en caso de incendio: Resistencia al fuego: El 60.

- Tabique Tipo F8 de dos hojas para revestir (Separación interior de estancias no húmedas).

Leyenda:

- 1. Enfoscado y guarnecido de yeso + pintura plástica. Esp=1,5-2,5 cm
- 2. Ladrillo hueco doble tomado con mortero de agarre. Esp= 7cm. Espesor Total= 10 cm.

Limitación de demanda energética

Protección frente al ruido:

 $U_m: 2.17 \text{ W/m}^2\text{K}.$

Masa superficial: 140.95 kg/m².

Caracterización acústica por ensayo, R_w(C; C_{tr}):

39.7(-1; -1) dB.

Referencia del ensayo: No disponible. Los valores

se han estimado mediante leyes de masa obtenidas extrapolando el catálogo de

elementos constructivos.

Seguridad en caso de incendio: Resistencia al fuego: El 60.

– Tabique Tipo F7 de una hoja para revestir (separación interior cuartos húmedos).

Leyenda:

- 1. Alicatado de gres cerámico. Esp= 0.5 cm.
- 2. Mortero de agarre o cola. Esp= 1cm.
- 3. Ladrillo hueco doble. Esp= 7 cm.
- 4. Enfoscado y guarnecido de yeso + pintura plástica. Esp= 1.5-2.5 cm. Espesor Total = 10 cm.

Limitación de demanda energética

Protección frente al ruido:

U_m: 2.22 W/m²K.

Masa superficial: 163.70 kg/m².

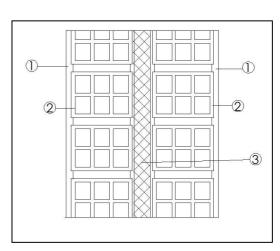
Caracterización acústica por ensayo, R_w(C; C_{tr}):

39.7(-1; -1) dB.

Referencia del ensayo: No disponible. Los

valores se han estimado mediante leyes de masa

obtenidas extrapolando el catálogo de


elementos constructivos.

Seguridad en caso de incendio: Resistencia al fuego: El 60.

- Tabique Tipo F6 de dos hojas para revestir (separación entre viviendas).

Levenda:

- 1. Enfoscado y guarnecido de yeso + pintura plástica. Esp=1.5-2.5 cm.
- 2. Ladrillo hueco Doble. Esp= 12cm.
- 3. Lámina de fibra de vidrio. Esp 4cm. Espesor Total= 30 cm.

Limitación de demanda energética

Protección frente al ruido:

U_m: 0.39 W/m²K.

Masa superficial: 241.10 kg/m².

Masa superficial del elemento base: 236.90

kg/m².

Caracterización acústica por ensayo, R_w(C; C_{tr}):

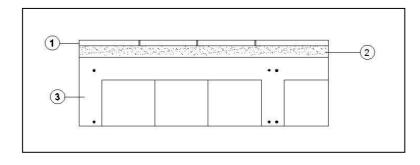
52.2(-1; -5) dB.

Referencia del ensayo: No disponible. Los

valores se han estimado mediante leyes de masa

obtenidas extrapolando el catálogo de

elementos constructivos.


Resistencia al fuego: El 180. Seguridad en caso de incendio:

2.3.1.2. Huecos verticales interiores.

Puertas					
Tipo	El ₂ t-C5	U_{Puerta}	R _w (C;C _{tr})		
P1- Puerta de paso interior abatible, cortafuegos (x8) (220x97 cm)	120	0.76	31(-1;-2)		
P2-Puerta de paso interior abatible, de aluminio (x7) (220x87 cm)		0.76	31(-1;-2)		
P6- Puerta de entrada a la vivienda, abatible, blindada (x14) (220x97 cm)		3.00	50(-1;-1)		
P9-Puerta de paso interior abatible, de madera (x78)		2.03	21(-1;-2)		
P7-Puerta de paso interior 2 hojas, fija y abatible, de madera (x4) (210x121 cm)		2.03	21(-1;-2)		
P8- Puerta de paso interior 2 hojas, fija y abatible, de madera (x4) (210x116 cm)		2.03	21(-1;-2)		
P10-Puerta de aluminio para lavadero, abatible (x5) (220x87 cm)		0.76	31(-1;-2)		
P11-Puerta de paso interior corredera, de madera (x1) (220x130 cm)		2.03	21(-1;-2)		
P12-Puerta de paso interior corredera, de madera (x2) (220x150 cm)		2.03	21(-1;-2)		
P13-Puerta de paso interior corredera, de madera (x1) (220x105 cm)		2.03	21(-1;-2)		
Abreviaturas utilizadas					
EI_2 t-C5 Resistencia al fuego en minutos I_{Puerta} Coeficiente de transmisión (W/m²K)	res de aislai	miento ad	cústico (dB)		

2.3.2. Compartimentación interior horizontal.

- Forjado bidireccional con suelo de granito y techo con forjado visto (separación P.Sótano-P.Baja).

Leyenda:

- 1. Solado de baldosas de granito de 40x40 cm recibidas con adhesivo cementoso. Esp=1.5 cm.
- 2. Base de mortero autonivelante. Esp=4 cm.
- 3. Forjado bidireccional de casetones de hormigón prefabricado permanentes. Esp= 30

Espesor Total= 35,50 cm.

Limitación de demanda energética U_c refrigeración: 0.79 W/m²K.

U_c calefacción: 0.71 W/m²K.

Protección frente al ruido: Masa superficial: 507.33 kg/m².

Masa superficial del elemento base: 376.13 kg/m².

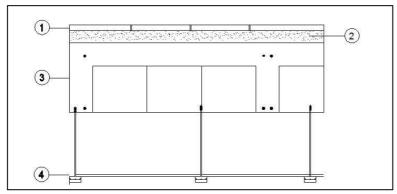
Caracterización acústica por ensayo, R_w(C; C_{tr}): 85.0(-1; 0)

dB.

Referencia del ensayo: forjado bidireccional.

Mejora del índice global de reducción acústica, ponderado

A, debida al suelo flotante, $2R_A$: 6 dBA.


Nivel global de presión de ruido de impactos normalizado,

por ensayo, L_{n.w}: 75.0 dB.

Reducción del nivel global de presión de ruido de impactos,

debida al suelo flotante, 2L_{D,w}: 33 dB.

- Forjado bidireccional con suelo de gres cerámico y falso techo de placas de cartón-yeso registrable.

Leyenda:

- 1. Solado de baldosas de gres cerámico de 30x30 cm recibidas con adhesivo cementoso. Esp=1.5 cm.
- 2. Base de mortero autonivelante. Esp=4 cm.
- 3. Forjado bidireccional de casetones de hormigón prefabricado permanentes. Esp= 30
- 4. Falso techo de placas de cartón-yeso registrable y perfiles metálicos. Esp= 2cm + 25 cm hueco (instalaciones).

Espesor total= 62,50 cm.

Limitación de demanda energética U_c refrigeración: 0.80 W/m²K.

U_c calefacción: 0.72 W/m²K.

Protección frente al ruido: Masa superficial: 478.33 kg/m².

Masa superficial del elemento base: 376.13 kg/m².

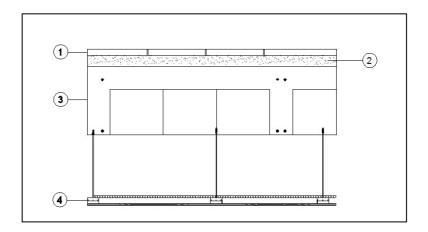
Caracterización acústica por ensayo, R_w(C; C_{tr}): 85.0(-1; 0)

dB.

Referencia del ensayo: forjado bidireccional.

Mejora del índice global de reducción acústica, ponderado

A, debida al suelo flotante, $\mathbb{Z}R_A$: 6 dBA.


Nivel global de presión de ruido de impactos normalizado,

por ensayo, L_{n,w}: 75.0 dB.

Reducción del nivel global de presión de ruido de impactos,

debida al suelo flotante, 2L_{D,w}: 33 dB.

- Forjado bidireccional con suelo de gres cerámico y falso techo continuo de cartón-yeso.

Leyenda:

- 1. Solado de baldosas de gres cerámico de 40x40 cm recibidas con adhesivo cementoso. Esp=1.5 cm.
- 2. Base de mortero autonivelante. Esp=4 cm.

- 3. Forjado bidireccional de casetones de hormigón prefabricado permanentes. Esp= 30 cm.
- 4. Falso techo continuo de cartón-yeso y perfiles metálicos. Esp= 2cm + 25 cm hueco (instalaciones).

Espesor total= 62,50 cm.

Limitación de demanda energética U_c refrigeración: 0.45 W/m²K.

U_c calefacción: 0.43 W/m²K.

Protección frente al ruido: Masa superficial: 489.05 kg/m².

Masa superficial del elemento base: 376.13 kg/m².

Caracterización acústica por ensayo, R_w(C; C_{tr}): 85.0(-1; 0)

dB.

Referencia del ensayo: forjado bidireccional.

Mejora del índice global de reducción acústica, ponderado

A, debida al suelo flotante, $2R_A$: 6 dBA.

Nivel global de presión de ruido de impactos normalizado,

por ensayo, $L_{n,w}$: 75.0 dB.

Reducción del nivel global de presión de ruido de impactos,

debida al suelo flotante, 2L_{D,w}: 33 dB.

2.4. SISTEMA DE ACABADOS.

Exteriores:

- Fachada a la calle:

- 1. Fachada de revestimiento de mortero monocapa, acabado con árido proyectado, color blanco o gris, espesor 15 mm, aplicado manualmente. (en toda la fachada de Planta Baja).
- 2. Fachada de placas de piedra natural caliza de dimensiones 40 x 60 x 3 cm fijadas al soporte mediante taladros por placa dispuestos a una distancia mínima de 9 cm de los bordes. (desde planta 1ª a 5ª, "ver alzados y secciones").
- 3. Fachada con ladrillo cerámico cara vista tomado con mortero hidrófugo de agarre. (desde planta 1ª a Ático, "ver alzados y secciones").

- Solados:

- 1. El acabado de las azoteas transitables estará compuesto por baldosa cerámica de gres rústico antideslizante de 30 x 30 cm.
- 2. El acabado de las azoteas no transitables estará compuesto por la lámina de impermeabilización autoprotegida más capa de gravilla superior.
- 3. El acabado de la rampa a Garaje estará compuesta por solería con acabado en fratasado mecánico al igual que toda la P.Sótano.
- 4. El revestimiento de escalones (huella y tabica) será de baldosa de granito con bandas antideslizantes en la huella.

Interiores:

1.- Viviendas:

- Suelo:

- 1. Baldosa cerámica de gres esmaltado de 40x40 cm. (en toda la vivienda excepto baños y
- 2. Baldosas cerámica de gres esmaltado de 30x30 cm. (baños y aseos).

- Paredes:

- 1. Alicatado con baldosa de gres cerámico (azulejo) de 15 x 15 cm y acabado superficial liso, colocadas con mortero de cemento. Espesor de 0.5 cm. (en baños y cocinas).
- 2. Guarnecido y enlucido de yeso maestreado y pintura plástica "BRUGUER MISTRAL MATE". (En resto de estancias).

- Techo:

- 1. Falso techo continuo de placas de cartón-yeso laminado. (todas las estancias excepto baños y aseos).
- 2. Falso techo registrable de placas de cartón-yeso de 60x60 cm. (sólo en baños y aseos).

2.- Zonas comunes:

-Suelo: Baldosas de granito de 40 x 40 cm, recibidas con mortero de agarre.

- -Paredes: Guarnecido y enlucido de yeso maestreado y pintura plástica "BRUGUER MISTRAL MATE".
- Techo: Falso techo continuo de placas de cartón-yeso laminado.

3. - Sótano:

- Suelo: Solera de hormigón con acabado en fratasado mecánico e hidrofugación con líquido tapaporos.
- Paredes: Hormigón Visto.
- **Techo:** Techo visto de forjado reticular de bloques permanentes.

2.5. SISTEMA DE ACONDICIONAMIENTO E INSTALACIONES.

2.5.1. Sistemas de transporte y ascensores.

Ascensor eléctrico sin sala de máquinas ThyssenKrupp-Synergy.

Carga: 600 Kg.

Personas: 6.

Embarque: Un embarque.

Cabina:150 x 180 x 230 cm.

Puerta: 145 x 210 cm.

Hueco: 180x165 cm.

Velocidad: 1m/s.

Suspensión: 2:1.

Maximo Nº paradas: 16.

Recorrido máximo: 30m.

Maniobra: CMC con microprocesadores.

Cuadro de control: Próximo a la puerta de pasillo en la última parada.

Tipo de cabina: Cabina K29 con decoración S1.

Tipo de puertas: Dos hojas con apertura lateral.

Tipo de máquina: Gearless.

Regulación de velocidad: Convertidor de frecuencia VVVF.

Acometida 3x400V-50Hz.

Diámetro polea motriz: 240 mm.

Conexiones/hora: 180 c.p.h

Intensidad nominal de la instalación: 15 A.

Voltaie: 400 V.

Nivelación: ± 5mm.

Número de cables 6 6mm: 6 cables.

Potencia nominal: 4.7 KW.

Sistema de rescate eléctrico.

2.5.2. Protección frente a la humedad.

Datos de partida:

El edificio se sitúa en el término municipal de Lorca (Murcia), en un entorno de clase 'E1' siendo de una altura de 22,60 m. Le corresponde, por tanto, una zona eólica 'A', con grado de exposición al viento 'V3', y zona pluviométrica IV.

El tipo de terreno de la parcela (limos) presenta un coeficiente de permeabilidad de 1 x 10⁻⁶ cm/s, sin nivel freático (Presencia de agua: baja), siendo su preparación con colocación de sub-

Las soluciones constructivas empleadas en el edificio son las siguientes:

Suelos	Losa de H.A.
Fachadas	Fachada con revestimiento exterior continuo monocapa y dos hojas de fábrica. Grado de impermeabilidad 2. Fachada ventilada de placas de piedra caliza natural con hoja interior de tabicón LHD. Grado de impermeabilidad 5. Fachada de ladrillo cara vista con hoja interior de tabicón LHD. Grado de impermeabilidad 2.
Cubiertas	Cubierta plana transitable, sin cámara ventilada. (En terrazas). Cubierta plana no transitable, sin cámara ventilada. (En azotea).

Objetivo:

El objetivo es que todos los elementos de la envolvente del edificio cumplan con el Documento Básico HS 1 Protección frente a la humedad, justificando, mediante los correspondientes cálculos, dicho cumplimiento.

Prestaciones:

Se limita el riesgo previsible de presencia inadecuada de agua o humedad en el interior del edificio o en sus cerramientos, como consecuencia del agua procedente de precipitaciones atmosféricas, de escorrentías, del terreno o de condensaciones, al mínimo prescrito por el

Documento Básico HS 1 Protección frente a la humedad, disponiendo de todos los medios necesarios para impedir su penetración o, en su caso, facilitar su evacuación sin producir daños.

Bases de cálculo:

El diseño y el dimensionamiento se realiza en base a los apartados 2 y 3, respectivamente, del Documento Básico HS 1 Protección frente a la humedad.

2.5.3. Evacuación de residuos sólidos.

Datos de partida:

Objetivo:

El objetivo es que el almacenamiento y traslado de los residuos producidos por los ocupantes del edificio cumplan con el Documento Básico HS 2 Recogida y evacuación de residuos, justificando, mediante los correspondientes cálculos, dicho cumplimiento.

Prestaciones:

El edificio dispondrá de espacio y medios para extraer los residuos ordinarios generados de forma acorde con el sistema público de recogida, con la adecuada separación de dichos residuos.

Bases de cálculo:

El diseño y dimensionamiento se realiza en base al apartado 2 del Documento Básico HS 2 Recogida y evacuación de residuos.

2.5.4. Fontanería.

Datos de partida:

Tipos de suministros individuales	Cantidad
Viviendas	14
Local (sin uso específico)	1

Objetivo:

El objetivo es que la instalación de suministro de agua cumpla con el DB HS 4 Suministro de agua, justificándolo mediante los correspondientes cálculos.

Prestaciones:

El edificio dispone de medios adecuados para el suministro de agua apta para el consumo al equipamiento higiénico previsto, de forma sostenible, aportando caudales suficientes para su funcionamiento, sin alteración de las propiedades de aptitud para el consumo, impidiendo retornos e incorporando medios de ahorro y control de agua.

Bases de cálculo:

El diseño y dimensionamiento se realiza con base a los apartados 3 y 4, respectivamente, del DB HS 4 Suministro de agua. Para el cálculo de las pérdidas de presión se utilizan las fórmulas de Colebrook-White y Darcy-Weisbach, para el cálculo del factor de fricción y de la pérdida de carga, respectivamente.

2.5.5. Evacuación de aguas.

Datos de partida:

La red de saneamiento del edificio es semiseparativa. Se garantiza la independencia de las redes de pequeña evacuación y bajantes de aguas pluviales y residuales, unificándose ambas redes en los colectores en el techo de planta sótano. La conexión entre ambas redes se realiza mediante las debidas interposiciones de cierres hidráulicos, garantizando la no transmisión de gases entre redes, ni su salida por los puntos previstos para la captación.

Objetivo:

El objetivo de la instalación es el cumplimiento de la exigencia básica HS 5 Evacuación de aguas, que especifica las condiciones mínimas a cumplir para que dicha evacuación se realice con las debidas garantías de higiene, salud y protección del medio ambiente.

Prestaciones:

El edificio dispone de los medios adecuados para extraer de forma segura y salubre las aguas residuales generadas en el edificio, junto con la evacuación de las aguas pluviales generadas por las precipitaciones atmosféricas y las escorrentías debidas a la situación del edificio.

Bases de cálculo:

El diseño y dimensionamiento de la red de evacuación de aguas del edificio se realiza en base a los apartados 3 y 4 del BS HS 5 Evacuación de aguas.

2.5.6. Instalaciones térmicas del edificio.

Datos de partida:

El proyecto corresponde a un edificio con las siguientes condiciones exteriores:

Altitud sobre el nivel del mar: 325 m.

Percentil para invierno: 97.5 %.

Temperatura seca en invierno: 8 °C.

Humedad relativa en invierno: 70 %.

Velocidad del viento: 5.9 m/s.

Temperatura del terreno: 7.80 °C.

Objetivo:

El objetivo es que el edificio disponga de instalaciones térmicas adecuadas para garantizar el bienestar e higiene de las personas con eficiencia energética y seguridad.

Prestaciones:

El edificio dispone de instalaciones térmicas según las exigencias de bienestar e higiene, eficiencia energética y seguridad prescritas en el Reglamento de Instalaciones Térmicas en los Edificios.

Bases de cálculo:

Las bases de cálculo para el cumplimiento de la exigencia básica HE 2 están descritas en el Reglamento de Instalaciones Térmicas en los Edificios.

2.5.7. Ventilación.

Datos de partida:

Tipo	Área total (m²)
Viviendas	1479,86
zonas comunes	213,44
Aparcamientos y garajes	446,85
Cubierta no transitable	131,40

Objetivo:

El objetivo es que los sistemas de ventilación cumplan los requisitos del DB HS 3 Calidad del aire interior y justificar, mediante los correspondientes cálculos, ese cumplimiento.

Prestaciones:

El edificio dispondrá de medios adecuados para que sus recintos se puedan ventilar adecuadamente, eliminando los contaminantes que se produzcan de forma habitual durante su uso normal, de forma que se dimensiona el sistema de ventilación para facilitar un caudal suficiente de aire exterior y se garantice la extracción y expulsión del aire viciado por los contaminantes.

Bases de cálculo:

El diseño y el dimensionamiento se realizan con base a los apartados 3 y 4, respectivamente, del DB HS 3 Calidad del aire interior. Para el cálculo de las pérdidas de presión se utiliza la fórmula de Darcy-Weisbach.

2.5.8. Suministro de combustibles.

No se ha previsto suministro de gas en el edificio.

2.5.9. Electricidad.

Datos de partida:

La potencia total demandada por la instalación será:

Potencia total					
Esquema	P _{Dem} (kW)				
Potencia total demandada	398.83				

Dadas las características de la obra y los niveles de electrificación elegidos por el Promotor, puede establecerse la potencia total instalada y demandada por la instalación:

Potencia total prevista por instalación: CGP-1							
Concepto	P Unitaria (kW) Número		P Total (kW)				
Viviendas de electrificación baja	27.710	14					
Servicios comunes			11.108				
Garaje			16.958				

Objetivo:

El objetivo es que todos los elementos de la instalación eléctrica cumplan las exigencias del Reglamento Electrotécnico para Baja Tensión e Instrucciones Técnicas Complementarias (ITC) BT01 a BT05.

Prestaciones:

La instalación eléctrica del edificio estará conectada a una fuente de suministro en los límites de baja tensión. Además de la fiabilidad técnica y la eficiencia económica conseguida, se preserva la seguridad de las personas y los bienes, se asegura el normal funcionamiento de la instalación y se previenen las perturbaciones en otras instalaciones y servicios.

Bases de cálculo:

En la realización del proyecto se han tenido en cuenta las siguientes normas y reglamentos:

- REBT-2002: Reglamento electrotécnico de baja tensión e Instrucciones técnicas complementarias.
- UNE 20460-5-523 2004: Intensidades admisibles en sistemas de conducción de cables.
- UNE 20-434-90: Sistema de designación de cables.
- UNE 20-435-90 Parte 2: Cables de transporte de energía aislados con dieléctricos secos extruidos para tensiones de 1 a 30 kV.

- UNE 20-460-90 Parte 4-43: Instalaciones eléctricas en edificios. Protección contra las sobreintensidades.
- UNE 20-460-90 Parte 5-54: Instalaciones eléctricas en edificios. Puesta a tierra y conductores de protección.
- EN-IEC 60 947-2:1996: Aparamenta de baja tensión. Interruptores automáticos.
- EN-IEC 60 947-2:1996 Anexo B: Interruptores automáticos con protección incorporada por intensidad diferencial residual.
- EN-IEC 60 947-3:1999: Aparamenta de baja tensión. Interruptores, seccionadores, interruptores-seccionadores y combinados fusibles.
- EN-IEC 60 269-1: Fusibles de baja tensión.
- EN 60 898: Interruptores automáticos para instalaciones domésticas y análogas para la protección contra sobreintensidades.

2.5.10. Telecomunicaciones:

La infraestructura común de telecomunicación (en adelante 'ICT') consta de los elementos necesarios para satisfacer inicialmente las siguientes funciones:

- La captación y adaptación de las señales de radiodifusión sonora y televisión terrestre y su distribución hasta puntos de conexión situados en las distintas viviendas o locales, y la distribución de las señales de radiodifusión sonora y televisión por satélite hasta los citados puntos de conexión. Las señales de radiodifusión sonora y de televisión terrestre susceptibles de ser captadas, adaptadas y distribuidas serán las contempladas en el apartado 4.1.6 del anexo I del citado reglamento, difundidas por las entidades habilitadas dentro del ámbito territorial correspondiente.
- Proporcionar el acceso al servicio de telefonía disponible el público y a los servicios que se puedan prestar a través de dicho acceso, mediante la infraestructura necesaria que permita la conexión de las distintas viviendas o locales a las redes de los operadores habilitados.
- Proporcionar el acceso a los servicios de telecomunicaciones que se pretendan prestar por infraestructuras diferentes a las utilizadas para el acceso a los servicios contemplados en el apartado b) anterior (en adelante, servicios de telecomunicaciones de banda ancha) mediante la infraestructura necesaria que permita la conexión de las distintas viviendas o locales a las redes de operadores habilitados (operadores de redes de telecomunicaciones por cable, operadores de servicio de acceso fijo inalámbrico (SAFI) y otros titulares de licencias individuales habilitados para el establecimiento y explotación de redes públicas de telecomunicaciones).

La ICT está sustentada por la infraestructura de canalizaciones, dimensionada según el Anexo IV del R.D. 401/2003, que garantiza la posibilidad de incorporación de nuevos servicios que puedan surgir en un futuro próximo.

Se ha establecido un plan de frecuencias para la distribución de las señales de televisión y radiodifusión terrestre de las entidades con título habilitante que, sin manipulación ni conversión de frecuencias, permita la distribución de señales no contempladas en la instalación inicial por los canales previstos, de forma que no sean afectados los servicios existentes y se respeten los canales destinados a otros servicios que puedan incorporarse en un futuro.

2.5.11. Protección contra incendios.

Datos de partida.

- Uso principal previsto del edificio: Edificio plurifamiliar.

- Altura de evacuación del edificio:

- Ascendente: 22,60 m. Descendente: 3,25 m.

Sectores de incendio y locales o zonas de riesgo especial en el edificio	
Sector / Zona de incendio	Uso / Tipo
Sector residencial vivienda	Residencial vivienda
Sector aparcamiento	Aparcamiento

Objetivo:

Los sistemas de acondicionamiento e instalaciones de protección contra incendios considerados se disponen para reducir a límites aceptables el riesgo de que los usuarios del edificio sufran daños derivados de un incendio de origen accidental, consecuencia de las características del proyecto, construcción, uso y mantenimiento del edificio.

Prestaciones:

Se limita el riesgo de propagación de incendio por el interior del edificio mediante la adecuada sectorización del mismo; así como por el exterior del edificio, entre sectores y a otros edificios.

El edificio dispone de los equipos e instalaciones adecuados para hacer posible la detección, el control y la extinción del incendio, así como la transmisión de la alarma a los ocupantes.

Por otra parte, el edificio dispone de los medios de evacuación adecuados para que los ocupantes puedan abandonarlo o alcanzar un lugar seguro dentro del mismo en condiciones de seguridad, facilitando al mismo tiempo la intervención de los equipos de rescate y de extinción de incendios.

La estructura portante mantendrá su resistencia al fuego durante el tiempo necesario para que puedan cumplirse las anteriores prestaciones.

Bases de cálculo:

El diseño y dimensionamiento de los sistemas de protección contra incendios se realiza en base a los parámetros objetivos y procedimientos especificados en el DB SI, que aseguran la satisfacción de las exigencias básicas y la superación de los niveles mínimos de calidad propios del requisito básico de seguridad en caso de incendio.

Para las instalaciones de protección contra incendios contempladas en la dotación del edificio, su diseño, ejecución, puesta en funcionamiento y mantenimiento cumplen lo establecido en el Reglamento de Instalaciones de Protección contra Incendios, así como en sus disposiciones complementarias y demás reglamentaciones específicas de aplicación.

2.5.12. Pararrayos.

No es necesario instalar un sistema de protección contra el rayo.

2.5.13. Instalaciones de protección y seguridad (anti-intrusión).

No se ha previsto ningún sistema anti-intrusión en el edificio.

2.6. EQUIPAMIENTO.

Se enumera a continuación el equipamiento previsto en el edificio. (Según tipo de viviendas tipo A-B-C-D-E.

Baños:

- Lavabo para empotrar, serie Aloa "Roca", color blanco de 475 x 560 mm, con grifería monomando, serie Kendo "Roca" modelo 5º3058A00, acabado cromo- brillo, de 135 x 184 mm, y desagüe con sifón botella, serie botella, curvo, "Roca", modelo 5A6401614 acabado cromo de 250 x 35/95 mm. 24 Unidades.
- Lavabo mod. Meridian 700x570mm. para movilidad reducida con sifón integrado. 3 Unidades, viviendas accesibles.
- Inodoro de porcelana sanitaria, con tanque bajo y salida para conexión vertical, serie Giralda "Roca", color blanco, 390 x 380 mm. 24 Unidades.
- Inodoro mod. The Gap para T-BS-HH. 3 unidades, viviendas accesibles.
- Bidé de porcelana sanitaria para monobloque, seri Giralda "Roca de 360 x 570 mm, equipado con grifería monomando, serie Kendo "Roca", módulo 5º6058A00, acabado cromo brillo de 91 x 174 mm y desagüe, acabado blanco. 26 Unidades.
- Bañera de acero modelo Contesa "Roca", color blanco, 140 x 170 cm, sin asas, equipado con grifería monomando, serie Kendo "Roca" modelo 5º0158A00, acabado brillo, 190 x 293 mm. 12 Unidades.
- Plato de ducha de prcelana sanitaria modelo Ontario-N "Roca" modelo 5ª2058A00, acabado brillo, 107 x 275 mm. 12 Unidades.
- Plato de ducha modelo Royal Fizz, 1200x750mm. c/asiento y J/desagüe extraplano. 3 unidades, viviendas accesibles.

Cocina:

Amueblamiento de cocina con muebles bajos con zócalo inferior, estratificado con frente de 20 mm de grueso, con estratificado por ambas caras, cantos verticales post-formados alomados y cantos horizontales en ABS de 1,0 mm de grueso con lámina de aluminio.

Placa vitrocerámica para encimera, polivalente básica.

Horno eléctrico convencional.

Fregadero de acero inoxidable de 1 cubeta, con grifería monomando acabado cromado, con aireador.

Lavadero de gres, con soporte de 2 patas y grifería convencional, con caño giratorio superior, con aireador.

3. CUMPLIMIENTO DEL CTE - 3.1. SEGURIDAD ESTRUCTURAL.

3.1.1. NORMATIVA.

En el presente proyecto se han tenido en cuenta los siguientes documentos del Código Técnico de la Edificación (CTE):

- DB SE: Seguridad estructural.
- DB SE AE: Acciones en la edificación.
- DB SE C: Cimientos.
- DB SI: Seguridad en caso de incendio.

Además, se ha tenido en cuenta la siguiente normativa en vigor:

- EHE-08: Instrucción de Hormigón Estructural.
- NSCE-02: Norma de construcción sismorresistente: parte general y edificación.

De acuerdo a las necesidades, usos previstos y características del edificio, se adjunta la justificación documental del cumplimiento de las exigencias básicas de seguridad estructural.

3.1.1.2. DOCUMENTACIÓN.

El proyecto contiene la documentación completa, incluyendo memoria, anexo de predimensionado estructural, planos y mediciones.

3.1.1.3. EXIGENCIAS BÁSICAS DE SEGURIDAD ESTRUCTURAL (DB SE).

3.1.1.3.1. Análisis estructural y dimensionado.

Proceso:

El proceso de verificación estructural del edificio se describe a continuación:

- Determinación de situaciones de predimensionado.
- Establecimiento de las acciones.
- Análisis estructural.
- Predimensionado.

Situaciones de dimensionado:

- Persistentes: Condiciones normales de uso.
- Transitorias: Condiciones aplicables durante un tiempo limitado.
- Extraordinarias: Condiciones excepcionales en las que se puede encontrar o a las que puede resultar expuesto el edificio (acciones accidentales).

Periodo de servicio (vida útil):

En este proyecto se considera una vida útil para la estructura de 50 años.

Métodos de comprobación: Estados límite:

Situaciones que, de ser superadas, puede considerarse que el edificio no cumple con alguno de los requisitos estructurales para los que ha sido concebido.

Estados Límite Últimos:

Situación que, de ser superada, existe un riesgo para las personas, ya sea por una puesta fuera de servicio o por colapso parcial o total de la estructura.

Como estados límites últimos se han considerado los debidos a:

- Pérdida de equilibrio del edificio o de una parte de él.
- Deformación excesiva.
- Transformación de la estructura o de parte de ella en un mecanismo.
- Rotura de elementos estructurales o de sus uniones.
- Inestabilidad de elementos estructurales.

Estados límite de servicio:

Situación que de ser superada afecta a:

- El nivel de confort y bienestar de los usuarios.
- El correcto funcionamiento del edificio.
- La apariencia de la construcción.

3.1.1.3.2. Acciones.

Clasificación de las acciones.

Las acciones se clasifican, según su variación con el tiempo, en los siguientes tipos:

- Permanentes (G): son aquellas que actúan en todo instante sobre el edificio, con posición constante y valor constante (pesos propios) o con variación despreciable.
- Variables (Q): son aquellas que pueden actuar o no sobre el edificio (uso y acciones climáticas).
- Accidentales (A): son aquellas cuya probabilidad de ocurrencia es pequeña pero de gran importancia (sismo, incendio, impacto o explosión).

Valores característicos de las acciones.

Los valores de las acciones están reflejadas en la justificación de cumplimiento del documento DB SE AE (ver apartado Acciones en la edificación (DB SE AE)).

3.1.1.3.3. Datos geométricos.

La definición geométrica de la estructura está indicada en los planos de proyecto.

3.1.1.3.4. Características de los materiales.

Los valores característicos de las propiedades de los materiales se detallarán en la justificación del Documento Básico correspondiente o bien en la justificación de la instrucción EHE-08.

3.1.1.3.5. Modelo para el análisis estructural.

Se realiza un cálculo espacial en tres dimensiones por métodos matriciales, considerando los elementos que definen la estructura: zapatas en cimentación, muro de sótano, pilares, vigas, forjados bidireccionales y escaleras.

Se establece la compatibilidad de desplazamientos en todos los nudos, considerando seis grados de libertad y la hipótesis de indeformabilidad en el plano para cada forjado continuo, impidiéndose los desplazamientos relativos entre nudos.

A los efectos de obtención de solicitaciones y desplazamientos, se supone un comportamiento lineal de los materiales.

3.1.1.4. ACCIONES EN LA EDIFICACIÓN (DB SE AE).

3.1.1.4.1. Acciones permanentes (G).

Peso propio de la estructura:

Para elementos lineales (pilares, vigas, diagonales, etc.) se obtiene su peso por unidad de longitud como el producto de su sección bruta por el peso específico del hormigón armado: 25 kN/m³. En elementos superficiales (zapatas y muros), el peso por unidad de superficie se obtiene multiplicando el espesor 'e(m)' por el peso específico del material (25 kN/m³).

Cargas permanentes superficiales:

Se estiman uniformemente repartidas en la planta. Representan elementos tales como pavimentos, recrecidos, tabiques ligeros, falsos techos, etc.

Peso propio de tabiques pesados y muros de cerramiento:

Éstos se consideran como cargas lineales obtenidas a partir del espesor, la altura y el peso específico de los materiales que componen dichos elementos constructivos, teniendo en cuenta los valores especificados en el anejo C del Documento Básico SE AE.

Las acciones del terreno se tratan de acuerdo con lo establecido en el Documento Básico SE C.

Pesos propios considerados:

(Ver anexo de predimensionado de estructura).

3.1.1.5. CIMIENTOS (DB SE C).

3.1.1.5.1. Bases de cálculo.

Método de cálculo:

El comportamiento de la cimentación se verifica frente a la capacidad portante (resistencia y estabilidad) y la aptitud al servicio. A estos efectos se distinguirá, respectivamente, entre estados límite últimos y estados límite de servicio.

Las comprobaciones de la capacidad portante y de la aptitud al servicio de la cimentación se efectúan para las situaciones de dimensionado pertinentes.

Las situaciones de dimensionado se clasifican en:

- situaciones persistentes, que se refieren a las condiciones normales de uso;
- situaciones transitorias, que se refieren a unas condiciones aplicables durante un tiempo limitado, tales como situaciones sin drenaje o de corto plazo durante la construcción;
- situaciones extraordinarias, que se refieren a unas condiciones excepcionales en las que se puede encontrar, o a las que puede estar expuesto el edificio, incluido el sismo.

El dimensionado de secciones se realiza según la Teoría de los Estados Límite Últimos (apartado 3.2.1 DB SE) y los Estados Límite de Servicio (apartado 3.2.2 DB SE).

Verificaciones:

Las verificaciones de los estados límite se basan en el uso de modelos adecuados para la cimentación y su terreno de apoyo y para evaluar los efectos de las acciones del edificio y del terreno sobre el edificio.

Para verificar que no se supera ningún estado límite se han utilizado los valores adecuados para:

- las solicitaciones del edificio sobre la cimentación;
- las acciones (cargas y empujes) que se puedan transmitir o generar a través del terreno sobre la cimentación;
- los parámetros del comportamiento mecánico del terreno;
- los parámetros del comportamiento mecánico de los materiales utilizados en la construcción de la cimentación;
- los datos geométricos del terreno y la cimentación.

Acciones:

Para cada situación de dimensionado de la cimentación se han tenido en cuenta tanto las acciones que actúan sobre el edificio como las acciones geotécnicas que se transmiten o generan a través del terreno en que se apoya el mismo.

Proyecto de Ejecución de bloque plurifamiliar de 14 viviendas, local y 15 plazas de garaje

Coeficientes parciales de seguridad:

La utilización de los coeficientes parciales implica la verificación de que, para las situaciones de dimensionado de la cimentación, no se supere ninguno de los estados límite, al introducir en los modelos correspondientes los valores de cálculo para las distintas variables que describen los efectos de las acciones sobre la cimentación y la resistencia del terreno.

Para las acciones y para las resistencias de cálculo de los materiales y del terreno, se han adoptado los coeficientes parciales indicados en la tabla 2.1 del documento DB SE C.

3.1.1.5.2. Estudio geotécnico.

Se han considerado los datos proporcionados y ya descritos en el correspondiente apartado de la memoria constructiva.

En el anexo correspondiente a Información Geotécnica se adjunta el informe geotécnico del proyecto.

Parámetros geotécnicos adoptados en el cálculo:

Cimentación:

Profundidad del plano de cimentación: 3.25 m.

Tensión admisible: 1,35 kg/cm2.

3.1.1.5.3. Descripción, materiales y dimensionado de elementos.

Descripción:

La cimentación se resuelve mediante los siguientes elementos: zapatas de hormigón armado, cuyas tensiones máximas de apoyo no superan las tensiones admisibles del terreno de cimentación en ninguna de las situaciones de proyecto.

Materiales:

Cimentación:

Hormigón: HA-25; $f_{ck} = 25$ MPa; $\mathbb{Z}_c = 1.50$

Acero: B 400 S; f_{vk} = 400 MPa; \mathbb{Z}_s = 1.15

Dimensiones, secciones y armados:

Las dimensiones, secciones y armados se indican en los planos de estructura del proyecto. Se han dispuesto armaduras que cumplen con la instrucción de hormigón estructural EHE-08 atendiendo al elemento estructural considerado.

3.1.1.6. ELEMENTOS ESTRUCTURALES DE HORMIGÓN (EHE-08).

3.1.1.6.1. Bases de cálculo.

Requisitos:

La estructura proyectada cumple con los siguientes requisitos:

- Seguridad y funcionalidad estructural: consistente en reducir a límites aceptables el riesgo de que la estructura tenga un comportamiento mecánico inadecuado frente a las acciones e influencias previsibles a las que pueda estar sometido durante su construcción y uso previsto, considerando la totalidad de su vida útil.
- Seguridad en caso de incendio: consistente en reducir a límites aceptables el riesgo de que los usuarios de la estructura sufran daños derivados de un incendio de origen accidental.
- Higiene, salud y protección del medio ambiente: consistente en reducir a límites aceptables el riesgo de que se provoquen impactos inadecuados sobre el medio ambiente como consecuencia de la ejecución de las obras.

Conforme a la Instrucción EHE-08 se asegura la fiabilidad requerida a la estructura adoptando el método de los Estados Límite, tal y como se establece en el Artículo 8º. Este método permite tener en cuenta de manera sencilla el carácter aleatorio de las variables de solicitación, de resistencia y dimensionales que intervienen en el cálculo. El valor de cálculo de una variable se obtiene a partir de su principal valor representativo, ponderándolo mediante su correspondiente coeficiente parcial de seguridad.

3.1.1.7. ELEMENTOS ESTRUCTURALES DE ACERO (DB SE A).

No hay elementos estructurales de acero.

3.1.1.8. MUROS DE FÁBRICA (DB SE F).

No hay elementos estructurales de fábrica.

3.1.1.9. ELEMENTOS ESTRUCTURALES DE MADERA (DB SE M).

No hay elementos estructurales de madera.

3.2 SEGURIDAD EN CASO DE INCENDIO.

3.2.1- EXIGENCIA BÁSICA SI 1: PROPAGACIÓN INTERIOR.

3.2.1.1- COMPARTIMENTACIÓN EN SECTORES DE INCENDIO.

Las distintas zonas del edificio se agrupan en sectores de incendio, en las condiciones que se establecen en la tabla 1.1 (CTE DB SI 1 Propagación interior), que se compartimentan mediante elementos cuya resistencia al fuego satisface las condiciones establecidas en la tabla 1.2 (CTE DB SI 1 Propagación interior).

A efectos del cómputo de la superficie de un sector de incendio, se considera que los locales de riesgo especial, las escaleras y pasillos protegidos, los vestíbulos de independencia y las escaleras compartimentadas como sector de incendios, que estén contenidos en dicho sector no forman parte del mismo.

Toda zona cuyo uso previsto sea diferente y subsidiario del principal del edificio, o del establecimiento en el que esté integrada, constituirá un sector de incendio diferente cuando supere los límites que establece la tabla 1.1 (CTE DB SI 1 Propagación interior).

En sectores de uso 'Residencial Vivienda', los elementos que separan viviendas entre sí poseen una resistencia al fuego mínima El 60.

Las puertas de paso entre sectores de incendio cumplen una resistencia al fuego EI_2 t-C5, siendo 't' la mitad del tiempo de resistencia al fuego requerido a la pared en la que se encuentre, o bien la cuarta parte cuando el paso se realiza a través de un vestíbulo de independencia y dos puertas.

	Sectores de incendio									
	Sup. construida (m²)		(1)	Resistencia al fuego del elemento compartimentador ⁽²⁾						
Sector			Uso previsto (1)	Paredes	Paredes y techos (3) Puertas					
	Norma	Proyecto		Norma	Proyecto	Norma	Proyecto			
Sc_Garaje	-	669.43	Aparcamiento	EI 120	EI 180	EI ₂ 60-C5	2 x El ₂ 120-C5			
Sc_Residencial Vivienda	2500	1828.25	Residencial Vivienda	EI 60	EI 60	EI ₂ 30-C5	El ₂ 120-C5			

⁽¹⁾ Según se consideran en el Anejo A Terminología (CTE DB SI). Para los usos no contemplados en este Documento Básico, se procede por asimilación en función de la densidad de ocupación, movilidad de los usuarios, etc.

⁽²⁾ Los valores mínimos están establecidos en la tabla 1.2 (CTE DB SI 1 Propagación interior).

⁽³⁾ Los techos tienen una característica 'REI', al tratarse de elementos portantes y compartimentadores de incendio.

3.2.1.1.1.- Escaleras protegidas.

Las escaleras protegidas y especialmente protegidas tienen un trazado continuo desde su inicio hasta su desembarco en la planta de salida del edificio.

De acuerdo a su definición en el Anejo A Terminología (CTE DB SI), las escaleras protegidas y especialmente protegidas disponen de un sistema de protección frente al humo, acorde a una de las opciones posibles de las recogidas en dicho Anejo.

Las tapas de registro de patinillos o de conductos de instalaciones, accesibles desde estos espacios, cumplen una protección contra el fuego El 60.

	Escaleras protegidas								
	Número de	Número de Tipo de		Resistencia al fuego del elemento compartimentador (2) (3)					
Escalera	plantas	protección	independencia (1)	Paredes	Paredes y techos		Puertas ⁽⁴⁾		
					Proyecto		Proyecto		
Escalera	6 (Ascendente)	Especialmente protegida	Sí	EI 120	EI 180	EI ₂ 60-C5	2 x El ₂ 120-C5		

- (1) En escaleras especialmente protegidas, la existencia de vestíbulo de independencia no es necesaria si la escalera está abierta al exterior, ni en la planta de salida del edificio, cuando se trate de una escalera para evacuación ascendente, pudiendo en dicha planta carecer de compartimentación.
- ⁽²⁾ En la planta de salida del edificio, las escaleras protegidas o especialmente protegidas para evacuación ascendente pueden carecer de compartimentación. Las previstas para evacuación descendente pueden carecer de compartimentación cuando desemboquen en un sector de riesgo mínimo.
- (3) En escaleras con fachada exterior, se cumplen las condiciones establecidas en el artículo 1 (CTE DB SI 2 Propagación exterior) para limitar el riesgo de transmisión exterior del incendio desde otras zonas del edificio o desde otros edificios.
- ⁽⁴⁾ Los accesos por planta no serán más de dos, excluyendo las entradas a locales destinados a aseo, así como los accesos a ascensores, siempre que las puertas de estos últimos abran, en todas sus plantas, al recinto de la escalera protegida considerada o a un vestíbulo de independencia.

3.2.1.1.2.- Vestíbulos de independencia.

Los vestíbulos de independencia de las escaleras especialmente protegidas disponen de protección frente al humo conforme a alguna de las alternativas establecidas para dichas escaleras en el Anejo A Terminología (CTE DB SI).

La distancia mínima entre los contornos de las superficies barridas por las puertas de los vestíbulos es superior a 0,50 m.

Los vestíbulos que sirvan a uno o varios locales de riesgo especial no pueden utilizarse en los recorridos de evacuación de otras zonas, excepto en el caso de vestíbulos de escaleras especialmente protegidas que acceden a un aparcamiento, a zonas de ocupación nula y a dichos locales de riesgo especial.

Vestíbulos de independencia							
		Resiste	ncia al fuego	del elemento co	mpartimentador		
Referencia	Superficie (m²)	Pare	edes ⁽¹⁾	Puertas ⁽²⁾			
		Norma	Proyecto	Norma	Proyecto		
Vestíbulo independiente Sótano	7,83	EI 120	EI 180	2 x El ₂ 30-C5	2 x El ₂ 120-C5		

Notas:

3.2.1.2.- LOCALES DE RIESGO ESPECIAL.

Los locales y zonas de riesgo especial se clasifican conforme a tres grados de riesgo (alto, medio y bajo) según los criterios establecidos en la tabla 2.1 (CTE DB SI 1 Propagación interior), cumpliendo las condiciones que se determinan en la tabla 2.2 de la misma sección.

Zonas de riesgo especial								
Local o zona	G (1 / 2)	(1)	Resistencia al fuego del elemento compartimentador ⁽²⁾⁽³⁾⁽⁴⁾					
	Superficie (m²)	Nivel de riesgo (1)	Paredes y techos Puertas			ertas		
			Norma	Proyecto	Norma	tador (2)(3)(4) Puertas Norma Proyecto		
Contadores elec. P.B.	2.80	Bajo	EI 90	EI 180	EI ₂ 45-C5	EI ₂ 120-C5		

⁽¹⁾ La resistencia al fuego exigida a las paredes del lado del vestíbulo es El 120, independientemente de la resistencia exigida por el exterior, que puede ser mayor en función del sector o zona de incendio que separa el vestíbulo de independencia.

⁽²⁾ Puertas de paso entre los recintos o zonas a independizar, a las que se les requiere la cuarta parte de la resistencia al fuego exigible al elemento compartimentador que separa dichas zonas y, al menos, El₂ 30-C5.

Notas:

- (1) La necesidad de vestíbulo de independencia depende del nivel de riesgo del local o zona, conforme exige la tabla 2.2 (CTE DB SI 1 Propagación interior).
- ⁽²⁾ Los valores mínimos están establecidos en la tabla 2.2 (CTE DB SI 1 Propagación interior).
- (3) Los techos tienen una característica 'REI', al tratarse de elementos portantes y compartimentadores de incendio. El tiempo de resistencia al fuego no será menor que el establecido para la estructura portante del conjunto del edificio (CTE DB SI 6 Resistencia al fuego de la estructura), excepto cuando la zona se encuentre bajo una cubierta no prevista para evacuación y cuyo fallo no suponga riesgo para la estabilidad de otras plantas ni para la compartimentación contra incendios, en cuyo caso puede ser R 30.
- (4) Los valores mínimos de resistencia al fuego en locales de riesgo especial medio y alto son aplicables a las puertas de entrada y salida del vestíbulo de independencia necesario para su evacuación.

3.2.1.3- ESPACIOS OCULTOS. PASO DE INSTALACIONES A TRAVÉS DE ELEMENTOS DE COMPARTIMENTACIÓN DE INCENDIOS.

La compartimentación contra incendios de los espacios ocupables tiene continuidad en los espacios ocultos, tales como patinillos, cámaras, falsos techos, suelos elevados, etc., salvo cuando éstos se compartimentan respecto de los primeros al menos con la misma resistencia al fuego, pudiendo reducirse ésta a la mitad en los registros para mantenimiento.

Se limita a tres plantas y una altura de 10 m el desarrollo vertical de las cámaras no estancas en las que existan elementos cuya clase de reacción al fuego no sea B-s3-d2, B_L-s3-d2 o mejor.

La resistencia al fuego requerida en los elementos de compartimentación de incendio se mantiene en los puntos en los que dichos elementos son atravesados por elementos de las instalaciones, tales como cables, tuberías, conducciones, conductos de ventilación, etc., excluidas las penetraciones cuya sección de paso no exceda de 50 cm².

Para ello, se optará por una de las siguientes alternativas:

- a) Mediante elementos que, en caso de incendio, obturen automáticamente la sección de paso y garanticen en dicho punto una resistencia al fuego al menos igual a la del elemento atravesado; por ejemplo, una compuerta cortafuegos automática El t(i②o) ('t' es el tiempo de resistencia al fuego requerido al elemento de compartimentación atravesado), o un dispositivo intumescente de obturación.
- b) Mediante elementos pasantes que aporten una resistencia al menos igual a la del elemento atravesado, por ejemplo, conductos de ventilación EI t(i②o) ('t' es el tiempo de resistencia al fuego requerido al elemento de compartimentación atravesado).

3.2.1.4.- REACCIÓN AL FUEGO DE ELEMENTOS CONSTRUCTIVOS, DECORATIVOS Y DE MOBILIARIO.

Los elementos constructivos utilizados cumplen las condiciones de reacción al fuego que se establecen en la tabla 4.1 (CTE DB SI 1 Propagación interior).

Las condiciones de reacción al fuego de los componentes de las instalaciones eléctricas (cables, tubos, bandejas, regletas, armarios, etc.) se regulan en el Reglamento Electrotécnico de Baja Tensión (REBT-2002).

Reacción al fuego						
	Revestimiento (1)					
Situación del elemento	Techos y paredes	Suelos (2)				
Zonas comunes del edificio	C-s2, d0	E _{FL}				
Aparcamientos y garajes	B-s1, d0	B _{FL} -s1				
Escaleras y pasillos protegidos	B-s1, d0	C _{FL} -s1				
Locales de riesgo especial	B-s1, d0	B _{FL} -s1				
Espacios ocultos no estancos: patinillos, falsos techos ⁽⁴⁾ , suelos elevados, etc.	B-s3, d0	B _{FL} -s2 ⁽⁵⁾				

- (1) Siempre que se supere el 5% de las superficies totales del conjunto de las paredes, del conjunto de los techos o del conjunto de los suelos del recinto considerado.
- (2) Incluye las tuberías y conductos que transcurren por las zonas que se indican sin recubrimiento resistente al fuego. Cuando se trate de tuberías con aislamiento térmico lineal, la clase de reacción al fuego será la que se indica, pero incorporando el subíndice 'L'.
- (3) Incluye a aquellos materiales que constituyan una capa, contenida en el interior del techo o pared, que no esté protegida por otra que sea El 30 como mínimo.
- ⁽⁴⁾ Excepto en falsos techos existentes en el interior de las viviendas.
- (5) Se refiere a la parte inferior de la cavidad. Por ejemplo, en la cámara de los falsos techos se refiere al material situado en la cara superior de la membrana. En espacios con clara configuración vertical (por ejemplo, patinillos), así como cuando el falso techo esté constituido por una celosía, retícula o entramado abierto con una función acústica, decorativa, etc., esta condición no es aplicable.

3.2.2-EXIGENCIA BÁSICA SI 2: PROPAGACIÓN EXTERIOR.

3.2.2.1- MEDIANERÍAS Y FACHADAS.

En fachadas, se limita el riesgo de propagación exterior horizontal del incendio mediante el control de la separación mínima entre huecos de fachada pertenecientes a sectores de incendio distintos, entre zonas de riesgo especial alto y otras zonas, o hacia una escalera o pasillo protegido desde otras zonas, entendiendo que dichos huecos suponen áreas de fachada donde no se alcanza una resistencia al fuego mínima El 60.

En la separación con otros edificios colindantes, los puntos de la fachada del edificio considerado con una resistencia al fuego menor que El 60, cumplen el 50% de la distancia exigida entre zonas con resistencia menor que El 60, hasta la bisectriz del ángulo formado por las fachadas del edificio objeto y el colindante.

Además, los elementos verticales separadores de otros edificios cumplen una resistencia al fuego mínima El 120, garantizada mediante valores tabulados reconocidos (Anejo F 'Resistencia al fuego de los elementos de fábrica').

	Propagación horizontal									
Plantas	Fachada ⁽¹⁾	Separación ⁽²⁾	Separación horizontal mínima (m) (3)							
			Ángulo (4)	Norma	Proyecto					
Sótano	Muro de sótano con impermeabilización exterior	Sí	No procede ⁽⁵⁾							
Planta baja	Fachada con revestimiento continuo monocapa, de dos hojas de fábrica.	No	No procede							
Planta 1ª a 4ª	fachada ventilada fachada ladrillo cara vista	No	1	No proced	le					
Planta 5ª	fachada ventilada fachada ladrillo cara vista	No	No procede		le					
Planta Ático	fachada ladrillo cara vista	No	1	No proced	le					
Planta Cubierta	fachada ladrillo cara vista	Sí	N	o procede	(5)					

- (1) Se muestran las fachadas del edificio que incluyen huecos donde no se alcanza una resistencia al fuego El 60.
- (2) Se consideran aquí las separaciones entre diferentes sectores de incendio, entre zonas de riesgo especial alto y otras zonas o hacia una escalera o pasillo protegido desde otras zonas, según el punto 1.2 (CTE DB SI 2).
- Distancia mínima en proyección horizontal 'd (m)', tomando valores intermedios mediante interpolación lineal en la tabla del punto 1.2 (CTE DB SI 2).
- ⁽⁴⁾ Ángulo formado por los planos exteriores de las fachadas consideradas, con un redondeo de 5°. Para fachadas paralelas y enfrentadas, se obtiene un valor de 0°.
- (5) No existe riesgo de propagación exterior horizontal del incendio en las fachadas consideradas, ya que no existen puntos de resistencia al fuego menor que El 60 dentro del rango de separaciones prescritas en el punto 1.2 (CTE DB SI 2); por lo tanto, en dichas fachadas no procede realizar la comprobación de separación horizontal mínima.

La limitación del riesgo de propagación vertical del incendio por la fachada se efectúa reservando una franja de un metro de altura, como mínimo, con una resistencia al fuego mínima El 60, en las uniones verticales entre sectores de incendio distintos, entre zonas de riesgo especial alto y otras zonas más altas del edificio, o bien hacia una escalera protegida o hacia un pasillo protegido desde otras zonas.

En caso de existir elementos salientes aptos para impedir el paso de las llamas, la altura exigida a dicha franja puede reducirse en la dimensión del citado saliente.

	Propagación vertical								
Planta	Fachada ⁽¹⁾	Separación	Separación vertical mínima (m) ⁽³⁾						
			Norma	Proyecto					
Sótano - Planta baja	Muro de sótano con impermeabilización exterior	Sí	No pr	ocede ⁽⁴⁾					
Planta baja - Planta 1ª	Fachada con revestimiento continuo, de dos hojas de fábrica	No	No procede						
Planta 1ª - Planta 5ª	fachada ventilada fachada ladrillo cara vista	No	No p	rocede					
Planta5ª - Planta Ático	fachada ventilada fachada ladrillo cara vista	No	No procede						
Planta Ático – Planta cubierta	fachada ladrillo cara vista	Sí	No pr	ocede ⁽⁴⁾					

Notas:

- (1) Se muestran las fachadas del edificio que incluyen huecos donde no se alcanza una resistencia al fuego El 60.
- (2) Se consideran aquí las separaciones entre diferentes sectores de incendio, entre zonas de riesgo especial alto y otras zonas o hacia una escalera o pasillo protegido desde otras zonas, según el punto 1.3 (CTE DB SI 2).
- (3) Separación vertical mínima ('d (m)') entre zonas de fachada con resistencia al fuego menor que El 60, minorada con la dimensión de los elementos salientes aptos para impedir el paso de las llamas ('b') mediante la fórmula d 🛭 1 b (m), según el punto 1.3 (CTE DB SI 2).
- (4) En las fachadas consideradas, aun a pesar de separar distintas zonas o sectores de incendio, no existen puntos de resistencia al fuego menor que El 60 dentro del rango de separaciones prescritas en el punto 1.2 (CTE DB SI 2), por donde pueda propagarse verticalmente el incendio; por lo tanto, en dichas fachadas no procede realizar la comprobación de separación vertical mínima.

La clase de reacción al fuego de los materiales que ocupen más del 10% de la superficie del acabado exterior de las fachadas o de las superficies interiores de las cámaras ventiladas que dichas fachadas puedan tener, será B-s3 d2 o mejor hasta una altura de 3,5 m como mínimo, en aquellas fachadas cuyo arranque inferior sea accesible al público, desde la rasante exterior o desde una cubierta; y en toda la altura de la fachada cuando ésta tenga una altura superior a 18 m, con independencia de dónde se encuentre su arranque.

3.2.3- EXIGENCIA BÁSICA SI3: EVACUACIÓN DE OCUPANTES.

3.2.3.1.- COMPATIBILIDAD DE LOS ELEMENTOS DE EVACUACIÓN.

Los elementos de evacuación del edificio no deben cumplir ninguna condición especial de las definidas en el apartado 1 (DB SI 3), al no estar previsto en él ningún establecimiento de uso 'Comercial' o 'Pública Concurrencia', ni establecimientos de uso 'Docente', 'Hospitalario', 'Residencial Público' o 'Administrativo', de superficie construida mayor de 1500 m².

3.2.3.2.- CÁLCULO DE OCUPACIÓN, SALIDAS Y RECORRIDOS DE EVACUACIÓN.

El cálculo de la ocupación del edificio se ha resuelto mediante la aplicación de los valores de densidad de ocupación indicados en la tabla 2.1 (DB SI 3), en función del uso y superficie útil de cada zona de incendio del edificio.

En el recuento de las superficies útiles para la aplicación de las densidades de ocupación, se ha tenido en cuenta el carácter simultáneo o alternativo de las distintas zonas del edificio, según el régimen de actividad y uso previsto del mismo, de acuerdo al punto 2.2 (DB SI 3).

El número de salidas necesarias y la longitud máxima de los recorridos de evacuación asociados, se determinan según lo expuesto en la tabla 3.1 (DB SI 3), en función de la ocupación calculada. En los casos donde se necesite o proyecte más de una salida, se aplican las hipótesis de asignación de ocupantes del punto 4.1 (DB SI 3), tanto para la inutilización de salidas a efectos de cálculo de capacidad de las escaleras, como para la determinación del ancho necesario de las salidas, establecido conforme a lo indicado en la tabla 4.1 (DB SI 3).

En la planta de desembarco de las escaleras, se añade a los recorridos de evacuación el flujo de personas que proviene de las mismas, con un máximo de 160 A personas (siendo 'A' la anchura, en metros, del desembarco de la escalera), según el punto 4.1.3 (DB SI 3); y considerando el posible carácter alternativo de la ocupación que desalojan, si ésta proviene de zonas del edificio no ocupables simultáneamente, según el punto 2.2 (DB SI 3).

Ocu	Ocupación, número de salidas y longitud de los recorridos de evacuación												
Planta	S _{útil} ⁽¹⁾	S _{útil} ⁽¹⁾ Pocup		? _{ocup} (2)	? _{ocup} (2)	P _{calc} ⁽³⁾	Núm sali	Número de salidas ⁽⁴⁾		Longitud del recorrido ⁽⁵⁾ (m)		Anchura de las salidas ⁽⁶⁾ (m)	
	(m²)	(m²/p)			Proyecto	Norma	Proyecto	Norma	Proyecto				
Sc_Gararje_1 (Uso Aparcamiento), ocupación: 15 personas													
Sótano	399,63	40	15	1	1	35	15,00	0.80	0.82				
Sc_Residencia	l Vivier	nda_1 (Uso Re	sidencia	l Vivienda)	, ocupaci	ón: 40 perso	nas					
P.Ático	264	20	12	1	1	25	3,50	0.80	0.82				
Planta 1ª a 5ª	273,97	20	12	1	1	25	7,00	0.80	0.82				
Planta baja	264	20	12 (59)	1	1	25	22/5	0.80	1.75				

⁽¹⁾ Superficie útil con ocupación no nula, $S_{\acute{u}til}$ (m^2). Se contabiliza por planta la superficie afectada por una densidad de ocupación no nula, considerando también el carácter simultáneo o alternativo de las distintas zonas del edificio, según el régimen de actividad y de uso previsto del edificio, de acuerdo al punto 2.2 (DB SI 3).

⁽²⁾ Densidad de ocupación, \square_{ocup} (m^2/p); aplicada a los recintos con ocupación no nula del sector, en cada planta, según la tabla 2.1 (DB SI 3).

- Ocupación de cálculo, P_{calo} en número de personas. Se muestran entre paréntesis las ocupaciones totales de cálculo para los recorridos de evacuación considerados, resultados de la suma de ocupación en la planta considerada más aquella procedente de plantas sin origen de evacuación, o bien de la aportación de flujo de personas de escaleras, en la planta de salida del edificio, tomando los criterios de asignación del punto 4.1.3 (DB SI 3).
- (4) Número de salidas de planta exigidas y ejecutadas, según los criterios de ocupación y altura de evacuación establecidos en la tabla 3.1 (DB SI 3).
- (5) Longitud máxima admisible y máxima en proyecto para los recorridos de evacuación de cada planta y sector, en función del uso del mismo y del número de salidas de planta disponibles, según la tabla 3.1 (DB SI 3).
- (6) Anchura mínima exigida y anchura mínima dispuesta en proyecto, para las puertas de paso y para las salidas de planta del recorrido de evacuación, en función de los criterios de asignación y dimensionado de los elementos de evacuación (puntos 4.1 y 4.2 de DB SI 3). La anchura de toda hoja de puerta estará comprendida entre 0.60 y 1.23 m, según la tabla 4.1 (DB SI 3).

En las zonas de riesgo especial del edificio, clasificadas según la tabla 2.1 (DB SI 1), se considera que sus puntos ocupables son origen de evacuación, y se limita a 25 m la longitud máxima hasta la salida de cada zona.

Además, se respetan las distancias máximas de los recorridos fuera de las zonas de riesgo especial, hasta sus salidas de planta correspondientes, determinadas en función del uso, altura de evacuación y número de salidas necesarias y ejecutadas.

Longitud y número de salidas de los recorridos de evacuación para las zonas de riesgo especial									
Local o zona	Planta	nta Nivel de riesgo ⁽¹⁾ Número de salidas ⁽²⁾ recorrido ⁽³⁾ (m) Norma Proyecto Norma Proyecto				Longitud del recorrido ⁽³⁾ (m)		Anchura de las salidas ⁽⁴⁾ (m)	
				Proyecto	Norma	Proyecto			
contadores electricidad	Planta baja	Bajo	1	1	25	5,00	0.80	0.82	
ascensor terraza	P.Ático	Bajo	1	1	25	3,50	0.80	0.82	

- (1) Nivel de riesgo (bajo, medio o alto) de la zona de riesgo especial, según la tabla 2.1 (DB SI 1).
- (2) Número de salidas de planta exigidas y ejecutadas en la planta a la que pertenece la zona de riesgo especial, según la tabla 3.1 (DB SI 3).
- (3) Longitud máxima permitida y máxima en proyecto para los recorridos de evacuación de cada zona de riesgo especial, hasta la salida de la zona (tabla 2.2, DB SI 1), y hasta su salida de planta correspondiente, una vez abandonada la zona de riesgo especial, según la tabla 3.1 (DB SI 3).
- (4) Anchura mínima exigida tanto para las puertas de paso y las salidas de planta del recorrido de evacuación, en función de los criterios de dimensionado de los elementos de evacuación (punto 4.2 (DB SI 3)), como para las puertas dispuestas en proyecto. La anchura de toda hoja de puerta estará contenida entre 0.60 y 1.23 m, según la tabla 4.1 (DB SI 3).

3.2.3.3.- DIMENSIONADO Y PROTECCIÓN DE ESCALERAS Y PASOS DE EVACUACIÓN.

Las escaleras previstas para evacuación se proyectan con las condiciones de protección necesarias en función de su ocupación, altura de evacuación y uso de los sectores de incendio a los que dan servicio, en base a las condiciones establecidas en la tabla 5.1 (DB SI 3).

Su capacidad y ancho necesario se establece en función de lo indicado en la tabla 4.1 (DB SI 3), sobre el dimensionado de los medios de evacuación del edificio.

	Escaleras y pasillos de evacuación del edificio								
Fscalera	Sentido de	Altura de evacuación	Protección ⁽²⁾⁽³⁾		Tipo de ventilación ⁽⁴⁾	Ancho y capacidad de la escalera ⁽⁵⁾			
evacuaciór		(m) ⁽¹⁾			ventilacion	Ancho (m)	Capacidad (p)		
Escalera_1	Ascendente "de P.Sótano a P.Baja"	3.40	EP	EP	No necesaria [*]	1.00	206		
Escalera_1	Descendente "de P.Ático a P.Baja"	16,15	NP-C	NP-C	No aplicable	1.00	160		

- ⁽¹⁾ Altura de evacuación de la escalera, desde el origen de evacuación más alejado hasta la planta de salida del edificio, según el Anejo DB SI A Terminología.
- ⁽²⁾ La resistencia al fuego de paredes, puertas y techos de las escaleras protegidas, así como la necesidad de vestíbulo de independencia cuando son especialmente protegidas, se detalla en el apartado de compartimentación en sectores de incendio, correspondiente al cumplimiento de la exigencia básica SI 1 Propagación interior.
- ⁽³⁾ La protección exigida para las escaleras previstas para evacuación, en función de la altura de evacuación de la escalera y de las zonas comunicadas, según la tabla 5.1 (DB SI 3), es la siguiente:
- NP := Escalera no protegida,
- NP-C := Escalera no protegida pero sí compartimentada entre sectores de incendio comunicados,
- P := Escalera protegida,
- EP := Escalera especialmente protegida.
- (4) Para escaleras protegidas y especialmente protegidas, así como para pasillos protegidos, se dispondrá de protección frente al humo de acuerdo a alguna de las opciones recogidas en su definición en el Anejo DB SI A Terminología:
- Mediante ventilación natural; con ventanas practicables o huecos abiertos al exterior, con una superficie útil de al menos 1 m^2 por planta para escaleras o de $0.2 \cdot L$ m^2 para pasillos (siendo 'L' la longitud del pasillo en metros).
- Mediante conductos independientes y exclusivos de entrada y salida de aire; cumpliendo tamaños, conexionado y disposición requeridos en el Anejo DB SI A Terminología.
- Mediante sistema de presión diferencial conforme a UNE EN 12101-6:2006.
- (5) Ancho de la escalera en su desembarco y capacidad de evacuación de la escalera, calculada según criterios de asignación del punto 4.1 (DB SI 3), y de dimensionado según la tabla 4.1 (DB SI 3). La anchura útil mínima del tramo se establece en la tabla 4.1 de DB SU 1, en función del uso del edificio y de cada zona de incendio.
- * El desembarco no compartimentado de la escalera para evacuación ascendente proporciona la ventilación suficiente para cumplir la protección frente al humo exigible a la escalera, según

los criterios para la interpretación y aplicación del Documento Básico DB SI publicados por el Ministerio de Fomento.

3.2.3.4.- SEÑALIZACIÓN DE LOS MEDIOS DE EVACUACIÓN.

Conforme a lo establecido en el apartado 7 (DB SI 3), se utilizarán señales de evacuación, definidas en la norma UNE 23034:1988, dispuestas conforme a los siguientes criterios:

- a) Las salidas de recinto, planta o edificio tendrán una señal con el rótulo "SALIDA", excepto en edificios de uso 'Residencial Vivienda' o, en otros usos, cuando se trate de salidas de recintos cuya superficie no exceda de 50 m², sean fácilmente visibles desde todos los puntos de dichos recintos y los ocupantes estén familiarizados con el edificio.
- b) La señal con el rótulo "Salida de emergencia" se utilizará en toda salida prevista para uso exclusivo en caso de emergencia.
- c) Se dispondrán señales indicativas de dirección de los recorridos, visibles desde todo origen de evacuación desde el que no se perciban directamente las salidas o sus señales indicativas y, en particular, frente a toda salida de un recinto con ocupación mayor que 100 personas que acceda lateralmente a un pasillo.
- d) En los puntos de los recorridos de evacuación en los que existan alternativas que puedan inducir a error, también se dispondrán las señales antes citadas, de forma tal que quede claramente indicada la alternativa correcta. Tal es el caso de determinados cruces o bifurcaciones de pasillos, así como de aquellas escaleras que, en la planta de salida del edificio, continúen su trazado hacia plantas más bajas, etc.
- e) En dichos recorridos, junto a las puertas que no sean salida y que puedan inducir a error en la evacuación, debe disponerse la señal con el rótulo "Sin salida" en lugar fácilmente visible pero en ningún caso sobre las hojas de las puertas.
- f) Las señales se dispondrán de forma coherente con la asignación de ocupantes que se pretenda hacer a cada salida de planta, conforme a lo establecido en el apartado 4 (DB SI 3).

Las señales serán visibles incluso en caso de fallo en el suministro al alumbrado normal. Cuando sean fotoluminiscentes, sus características de emisión luminosa cumplirán lo establecido en las normas UNE 23035-1:2003, UNE 23035-2:2003 y UNE 23035-4:2003 y su mantenimiento se realizará conforme a lo establecido en la norma UNE 23035-3:2003.

3.2.3.5.- CONTROL DEL HUMO DE INCENDIO.

Dada la presencia en el edificio de una zona de uso 'Aparcamiento', sin consideración de aparcamiento abierto, se instalará un sistema de control del humo de incendio capaz de garantizar dicho control durante la evacuación de los ocupantes, de forma que ésta se pueda llevar a cabo en condiciones de seguridad.

Según lo expuesto en el apartado 8 (DB SI 3), el sistema de control del humo en este caso puede compatibilizarse con el sistema de ventilación por extracción mecánica con aberturas de admisión de aire, previsto en el DB HS 3 Calidad del aire interior; ya que, además de las condiciones que allí se establecen para el mismo, cumple las siguientes condiciones especiales:

- a) El sistema será capaz de extraer un caudal de aire de 150 l/s por plaza de aparcamiento, activándose automáticamente en caso de incendio mediante una instalación de detección.
- b) Los ventiladores, incluidos los de impulsión para vencer pérdidas de carga y/o regular el flujo, tendrán una clasificación F_{300} 60.
- c) Los conductos que transcurran por un único sector de incendio tendrán una clasificación E₃₀₀ 60. Los que atraviesen elementos separadores de sectores de incendio tendrán una clasificación EI 60.

3.2.4- EXIGENCIA BÁSICA SI 4: INSTALACIONES DE PROTECCIÓN CONTRA INCENDIOS.

3.2.4.1.- DOTACIÓN DE INSTALACIONES DE PROTECCIÓN CONTRA INCENDIOS.

El edificio dispone de los equipos e instalaciones de protección contra incendios requeridos según la tabla 1.1 de DB SI 4 Instalaciones de protección contra incendios. El diseño, ejecución, puesta en funcionamiento y mantenimiento de dichas instalaciones, así como sus materiales, componentes y equipos, cumplirán lo establecido, tanto en el artículo 3.1 del CTE, como en el Reglamento de Instalaciones de Protección contra Incendios (RD. 1942/1993, de 5 de noviembre), en sus disposiciones complementarias y en cualquier otra reglamentación específica que les sea de aplicación.

En las zonas de riesgo especial del edificio, así como en las zonas del edificio cuyo uso previsto es diferente y subsidiario del principal ('Residencial Vivienda') y que, conforme a la tabla 1.1 (DB SI 1 Propagación interior), constituyen un sector de incendio diferente, se ha dispuesto la correspondiente dotación de instalaciones necesaria para el uso previsto de dicha zona, siendo ésta nunca inferior a la exigida con carácter general para el uso principal del edificio.

Dota	Dotación de instalaciones de protección contra incendios en los sectores de incendio								
Dotación	Extintores portátiles ⁽¹⁾	Bocas de incendio equipadas ⁽²⁾	Columna seca	Sistema de detección y alarma ⁽³⁾	Instalación automática de extinción				
Sc_Aparcamiento_1 (Uso 'Aparcamiento')									
Norma	Sí	Sí	No	Sí	No				
Proyecto	Sí (3)	Sí (1)	No	Sí (8)	No				
Sc_Reside	encial Vivienda_	1 (Uso 'Residencial	Vivienda')						
Norma	Sí	No	No	No	No				
Proyecto	Sí (7)	No	No	No	No				

Notas:

(1) Se indica el número de extintores dispuestos en cada sector de incendio. Con dicha disposición, los recorridos de evacuación quedan cubiertos, cumpliendo la distancia máxima de 15 m desde todo origen de evacuación, de acuerdo a la tabla 1.1, DB SI 4.

⁽²⁾ Se indica el número de equipos instalados, de 25 mm, de acuerdo a la tabla 1.1, DB SI 4.

(3) Los sistemas de detección y alarma de incendio se distribuyen uniformemente en las zonas a cubrir, cumpliendo las disposiciones de la norma UNE 23007:96 que los regula.

Los extintores que se han dispuesto, cumplen la eficacia mínima exigida: de polvo químico ABC polivalente, de eficacia 21A-113B-C.

Dotación de instalaciones de protección contra incendios en las zonas de riesgo especial								
Referencia de la zona	Nivel de riesgo	Extintores portátiles ⁽¹⁾	Bocas de incendio equipadas	Sector al que pertenece				
contadores electricidad P.Baja	Bajo	Sí (1 dentro)		Sc_Residencial Vivienda_1				
ascensor P.Ático	Bajo	Sí (1 fuera)		Sc_Residencial Vivienda_1				

Notas:

(1) Se indica el número de extintores dispuestos dentro de cada zona de riesgo especial y en las cercanías de sus puertas de acceso. Con la disposición indicada, los recorridos de evacuación dentro de las zonas de riesgo especial quedan cubiertos, cumpliendo la distancia máxima de 15 m desde todo origen de evacuación para zonas de riesgo bajo o medio, y de 10 m para zonas de riesgo alto, en aplicación de la nota al pie 1 de la tabla 1.1, DB SI 4.

Los extintores que se han dispuesto, cumplen la eficacia mínima exigida: de polvo químico ABC polivalente, de eficacia 21A-113B-C.

3.2.4.2.- SEÑALIZACIÓN DE LAS INSTALACIONES MANUALES DE PROTECCIÓN CONTRA INCENDIOS.

Los medios de protección contra incendios de utilización manual (extintores, bocas de incendio, hidrantes exteriores, pulsadores manuales de alarma y dispositivos de disparo de sistemas de extinción) están señalizados mediante las correspondientes señales definidas en la norma UNE 23033-1. Las dimensiones de dichas señales, dependiendo de la distancia de observación, son las siguientes:

- De 210 x 210 mm cuando la distancia de observación no es superior a 10 m.
- De 420 x 420 mm cuando la distancia de observación está comprendida entre 10 y 20 m.
- De 594 x 594 mm cuando la distancia de observación está comprendida entre 20 y 30 m.

Las señales serán visibles, incluso en caso de fallo en el suministro eléctrico del alumbrado normal, mediante el alumbrado de emergencia o por fotoluminiscencia. Para las señales fotoluminiscentes, sus características de emisión luminosa cumplen lo establecido en las normas UNE 23035-1:2003, UNE 23035-2:2003 y UNE 23035-4:2003 y su mantenimiento se realizará conforme a lo establecido en la norma UNE 23035-3:2003.

3.2.5- EXIGENCIA BÁSICA SI 5: INTERVENCIÓN DE LOS BOMBEROS.

3.2.5.1.- CONDICIONES DE APROXIMACIÓN Y ENTORNO.

El vial previsto para la aproximación de los vehículos de bomberos cumple las siguientes condiciones, dispuestas en el punto 1.1 (CTE DB SI 5):

- Posee una anchura mínima libre de 12,72 m (calle Virgen de la Soledad) y 18,88 m (calle Cristo de la Sangre).
- Su altura mínima libre o gálibo es superior a 4.5 m.
- Su capacidad portante es igual o superior a 20 kN/m².

Dada la altura de evacuación del edificio (16,15 m), se ha previsto un espacio de maniobra para los bomberos que cumple las siguientes condiciones en las fachadas del edificio donde se sitúan los accesos:

- Posee una anchura mínima libre de 5 m.
- Queda libre en una altura igual a la del edificio.
- La separación máxima del vehículo de bomberos a la fachada del edificio es menor que 23 m, como corresponde a la altura de evacuación del edificio (comprendida entre 9 y 15 m).
- La distancia máxima hasta los accesos al edificio no es mayor que 30 m.
- La pendiente máxima es inferior al 10%.
- La resistencia al punzonamiento del suelo, incluyendo las tapas de registro de canalizaciones de servicios públicos mayores de 0.15 m x 0.15 m, es superior a 100 kN / 20 cm Ø.
- Se mantendrá libre de mobiliario urbano, arbolado, jardines, mojones u otros obstáculos que pudieran obstaculizar la maniobra de los vehículos de bomberos, incluyendo elementos tales como cables eléctricos aéreos o ramas de árboles que puedan interferir con las escaleras.

3.2.5.2.- ACCESIBILIDAD POR FACHADA.

En las fachadas en las que están situados los accesos del edificio (peatonal y rodado), existen huecos en cada planta que permiten el acceso desde el exterior al personal del servicio de extinción de incendios. Para esa labor, dichos huecos cumplen las condiciones siguientes:

- La altura del alféizar respecto del nivel de planta a la que se accede no es superior a 1.20 m.
- Sus dimensiones horizontal y vertical son como mínimo de 0.80 m y 1.20 m respectivamente.
- La distancia máxima entre los ejes verticales de dos huecos consecutivos, previstos para el acceso, no es superior a 25 m medidos sobre la fachada.
- No existen en dichos huecos elementos que impiden o dificultan la accesibilidad al interior del edificio, exceptuando los posibles elementos de seguridad que se dispongan en los huecos de las plantas cuya altura de evacuación no sea superior a 9 m.

3.2.6- EXIGENCIA BÁSICA SI 6: RESISTENCIA AL FUEGO DE LAS ESTRUCTURAS.

3.2.6.1. Introducción.

· Referencias:

- R. req.: resistencia requerida, periodo de tiempo durante el cual un elemento estructural debe mantener su capacidad portante, expresado en minutos.
- F. Comp.: indica si el forjado tiene función de compartimentación.
- a_m: distancia equivalente al eje de las armaduras (CTE DB SI Anejo C Fórmula C.1).
- a_{mín}: distancia mínima equivalente al eje exigida por la norma para cada tipo de elemento estructural.

• Comprobaciones:

Generales:

- Distancia equivalente al eje: a_m 2 a_{mín} (se indica el espesor de revestimiento necesario para cumplir esta condición cuando resulte necesario).

Particulares:

- Se han realizado las comprobaciones particulares para aquellos elementos estructurales en los que la norma así lo exige.

Sector o local de riesgo(1)	Uso de la zona inferior al forjado considerado	Planta superior al forjado considerad o	Material estructural considerado (2) Soportes, Vigas, Forjados	Estabilidad al fuego mínima de los elementos estructurales(3)
Sc- Aparcamientos	Aparcamientos	Planta	Estructura de hormigón armado	R120
Sc-residencial vivienda	Residencial vivienda	PB-P1-P2- P3-P4-P5- P.Ático	Estructura de hormigón armado	R 90

- (1) Sector de incendio, zona de riesgo especial o zona protegida de mayor limitación en cuanto al tiempo de resistencia al fuego requerida a sus elementos estructurales. Los elementos estructurales interiores de una escalera protegida o de un pasillo protegido serán como mínimo R 30.
- (2) Se define el material estructural empleado en cada uno de los elementos estructurales principales (soporte, vigas, forjados, losas, tirantes, etc.)
- (3) La resistencia al fuego de un elemento se establece comprobando las dimensiones de su sección transversal, obteniendo su resistencia por los métodos simplificados de cálculo dados en los Anejos B y F (CTE DB SI seguridad en caso de incendios), aproximados para la mayoría de las situaciones habituales.

3.3 SEGURIDAD DE UTILIZACIÓN Y ACCESIBILIDAD - 3.3.1. EXIGENCIA BÁSICA SUA 1: SEGURIDAD FRENTE AL RISGO DE CAÍDAS.

Se limitará el riesgo de que los usuarios sufran caídas, para lo cual los suelos serán adecuados para favorecer que las personas no resbalen, tropiecen o se dificulte la movilidad. Asimismo se limitará el riesgo de caídas en huecos, en cambios de nivel y en escaleras y rampas, facilitándose la limpieza de los acristalamientos exteriores en condiciones de seguridad.

3.3.1.1 RESBALADICIDAD DE LOS SUELOS.

Con el fin de limitar el riesgo de resbalamiento, los suelos de los edificios o zonas de uso Residencial.

Público, Sanitario, Docente, Comercial, Administrativo y Pública Concurrencia, excluidas las zonas de ocupación nula definidas en el anejo SI A del DB SI, tendrán una clase de resbaladicidad adecuada según el uso al que se destinen.

Así pues en el edificio proyectado se ha dispuesto un solado de pavimento Clase 1 en zonas interiores secas, pavimento clase 2 en zonas interiores húmedas, y pavimento clase 3 en zonas exteriores.

3.3.1.2. DISCONTINUIDADES EN EL PAVIMENTO.

	NORMA	PROYECTO
Resaltos en juntas	2 4 mm	No procede
Elementos salientes del nivel del pavimento	2 12 mm	No procede
Ángulo entre el pavimento y los salientes que exceden de 6 mm en sus caras enfrentadas al sentido de circulación de las personas	2 45°	No procede
Pendiente máxima para desniveles de 50 mm como máximo, excepto para acceso desde espacio exterior	② 2 5%	No procedde
Perforaciones o huecos en suelos de zonas de circulación	Ø 🛭 15 mm	No procede
Altura de las barreras de protección usadas para la delimitación de las zonas de circulación	₫ 0.8 m	No procede
Número mínimo de escalones en zonas de circulación que no incluyen un itinerario accesible	3	No proccede
Excepto en los casos siguientes:		
a) en zonas de uso restringido,		
b) en las zonas comunes de los edificios de uso Residencial Vivienda,		
c) en los accesos y en las salidas de los edificios,		
d) en el acceso a un estrado o escenario.		

3.3.1.2. DESNIVELES.

3.3.1.2.1. Protección de los desniveles.

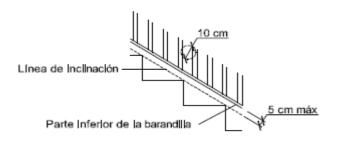
Barreras de protección en los desniveles, huecos y	
aberturas (tanto horizontales como verticales)	h 🛮 550 mm
balcones, ventanas, etc. con diferencia de cota 'h'	

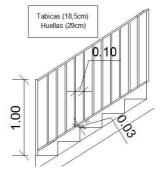
3.3.1.2.2. Características de las barreras de protección.

3.3.1.2.2.1. Altura.

	NORMA	PROYECTO
Diferencias de cota de hasta 6 metros	₫ 0.9 m	1.10 m
Otros casos	2 1.10 m	1.10 m
Huecos de escalera de anchura menor que 400 mm	2 900 mm	1.10 m

3.3.1.2.2.2. Resistencia.


Las barreras de protección tendrán una resistencia y una rigidez suficiente para resistir la fuerza horizontal establecida en el apartado 3.2.1 del Documento Básico SE-AE, en función de la zona en que se encuentren.

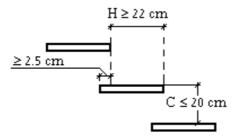

3.3.1.2.2.3. Características constructivas.

En cualquier zona de los edificios de uso Residencial Vivienda o de escuelas infantiles, así como en las zonas de uso público de los establecimientos de uso Comercial o de uso Pública Concurrencia, las barreras de protección, incluidas las de las escaleras y rampas, estarán diseñadas de forma que:

- No puedan ser fácilmente escaladas por los niños, para lo cual:
 - 1. En la altura comprendida entre 30 cm y 50 cm sobre el nivel del suelo o sobre la línea de inclinación de una escalera no existirán puntos de apoyo, incluidos salientes sensiblemente horizontales con más de 5 cm de saliente.
 - 2. En la altura comprendida entre 50 cm y 80 cm sobre el nivel del suelo no existirán salientes que tengan una superficie sensiblemente horizontal con más de 15 cm de fondo.
- No tengan aberturas que puedan ser atravesadas por una esfera de 10 cm de diámetro, exceptuándose las aberturas triangulares que forman la huella y la contrahuella de los peldaños con el límite inferior de la barandilla, siempre que la distancia entre este límite y la línea de inclinación de la escalera no exceda de 5 cm.

- Normativa -Proyecto

3.3.1.3. ESCALERAS Y RAMPAS.


3.3.1.3.1. Escaleras de uso restringido.

Escalera de trazado lineal:

	NORMA	PROYECTO
Ancho del tramo	₫ 0.8 m	No aplicable
Altura de la contrahuella	20 cm	No aplicable
Ancho de la huella	22 cm	No aplicable

Escalera de trazado curvo

	NORMA	PROYECTO
Ancho mínimo de la huella	② 5 cm	No aplicable
Ancho máximo de la huella	2 44 cm	No aplicable
Escalones sin tabica (dimensiones según gráfico)	2.5 cm	No aplicable

3.3.1.3.2. Escaleras de uso general.

3.3.1.3.2.1. Peldaños.

Tramos rectos de escalera:

	NORMA	PROYECTO	
		Escalera interior	Escaleras exteriores
Huella	28 cm	29 cm	-
Contrahuella	13 2 C 2 18.5 cm	18.50 cm	-
Relación huella-contrahuella	54 2 2C + H 2 70 cm	68,88 cm	-

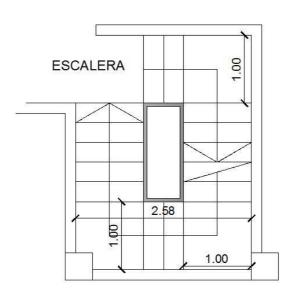
Escalera de trazado curvo:

	NORMA	PROYECTO
Huella en el lado más estrecho	2 170 mm	No aplicable
Huella en el lado más ancho	2 440 mm	No aplicable

3.3.1.3.2.2. Tramos.

Cada tramo tendrá 3 peldaños como mínimo.	CUMPLE
La máxima altura que puede salvar un tramo es 3.20 m.	CUMPLE

Entre dos plantas consecutivas de una misma escalera, todos los peldaños tendrán la misma contrahuella y todos los peldaños de los tramos rectos tendrán la misma huella.	CUMPLE
Entre dos tramos consecutivos de plantas diferentes, la contrahuella no variará más de ±1 cm.	CUMPLE
La anchura mínima del tramo para Uso Residencial Vivienda, incluso escalera de comunicación con aparcamiento será de 1 m.	CUMPLE
La anchura de la escalera estará libre de obstáculos.	CUMPLE


3.3.1.3.2.3. Mesetas.

Entre tramos de una escalera con la misma dirección:

	NORMA	PROYECTO
Anchura de la meseta	Anchura de la escalera	CUMPLE
Longitud de la meseta, medida sobre su eje	? 1 m	1 m

Entre tramos de una escalera con cambios de dirección (ver figura):

Anchura de la meseta	Anchura de la escalera	1 m
Longitud de la meseta, medida sobre su eje	2 1 m	1 m

3.3.1.3.2.4. Pasamanos.

Pasamanos continuo:

	NORMA	PROYECTO
	Desnivel	
Obligatorio en un lado de la escalera	salvado 🛭 550	CUMPLE
	mm	
	Anchura de la	
Obligatorio en ambos lados de la escalera	escalera 2 1200	CUMPLE
	mm	

Pasamanos intermedio:

	NORMA	PROYECTO
Son necesarios cuando el ancho del tramo supera el límite de la norma	2400 mm	CUMPLE
Separación entra pasamanos intermedios	2400 mm	CUMPLE
	000 5 11 5 4400	

Altura del pasamanos	900 2 H 2 1100	900 mm
Altura dei pasamanos	mm	300 111111

Configuración del pasamanos:

	NORMA	PROYECTO
Firme y fácil de asir		
Separación del paramento vertical	2 40 mm	30 mm
El sistema de sujeción no interfiere el paso continuo de la mano		

3.3.1.3.3. Rampas.

Pendiente.

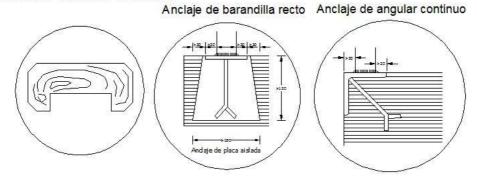
	NORMA	PROYECTO
Rampa de uso general	6% < p < 12%	No aplicable
	I < 3, p 2 10 %	
Para usuarios en silla de ruedas	I < 6, p ② 8 %	_
	Otros casos, p 2 6 %	
Para circulación de vehículos y personas en aparcamientos	p 2 17 %	17%

Tramos:

Longitud del tramo:

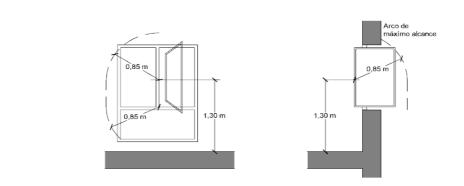
	NORMA	PROYECTO
Rampa de uso general	l 🛭 15,00 m	No aplicable
Para usuarios en silla de ruedas	I 2 9,00 m	-
Para circulación de vehículos y personas en aparcamientos	Sin límite	20,18 m

Mesetas:


Entre tramos con la misma dirección:

	NORMA	PROYECTO
Anchura de la meseta	Anchura de la rampa	CUMPLE
Longitud de la meseta	I	CUMPLE

Características del pasamanos:


El sistema de sujeción no interfiere el paso continuo de la mano. Firma fácil de asir.	me y Cumple	

Detalles Pasamanos de madera

3.3.1.4. LIMPIEZA DE LOS ACRISTALAMIENTOS EXTERIORES.

Se cumplen las limitaciones geométricas para el acceso desde el interior (ver figura).

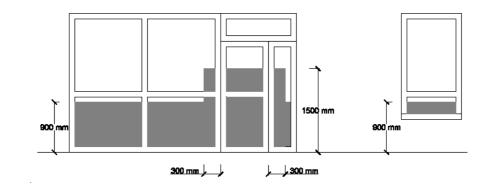
3.3.2. EXIGENCIA BÁSICA SUA 2: SEGURIDAD FRENTE AL RIESGO DE IMPACTO O ATRAPAMIENTO.

3.3.2.1. IMPACTO.

3.3.2.1.1. Impacto con elementos fijos:

	NORMA	PROYECTO
Altura libre en zonas de circulación de uso restringido	2 m	-
Altura libre en zonas de circulación no restringidas	2.2 m	2.5 m
Altura libre en umbrales de puertas	2 m	2.15 m
Altura de los elementos fijos que sobresalgan de las fachadas y que estén situados sobre zonas de circulación	∄ 2.2 m	CUMPLE
Vuelo de los elementos salientes en zonas de circulación con altura comprendida entre 0.15 m y 2 m, medida a partir del suelo.	☑ .15 m	CUMPLE

3.3.2.1.2. Impacto con elementos practicables:


En zonas de uso general, el barrido de la hoja de puertas laterales a vías de circulación no invade el pasillo si éste tiene una anchura menor que 2,5	CUMPLE
metros.	l

3.3.2.1.3. Impacto con elementos frágiles:

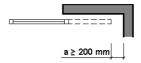
Superficies acristaladas situadas en las áreas con riesgo de impacto	con SUA 1, Apartado
barrera de protección	3.2

Resistencia al impacto en superficies acristaladas situadas en áreas con riesgo de impacto sin barrera de protección:

	NORMA(X-Y-Z)	PROYECTO
Diferencia de cota entre ambos lados de la superficie acristalada entre 0,55 m y 12 m	1/2/3-B/C/1	1-B-1
Diferencia de cota entre ambos lados de la superficie acristalada mayor que 12 m	1/2/3-B/C-1/2	1-B-1
Diferencia de cota entre ambos lados de la superficie acristalada menor que 0.55 m	1/2/3-B/C-1/2	1-B-1

3.3.2.1.4. Impacto con elementos insuficientemente perceptibles:

Grandes superficies acristaladas:


	NORMA	PROYECTO
Señalización inferior	0.85 < h < 1.1 m	No aplicable
Señalización superior	1.5 < h < 1.7 m	No aplicable
Altura del travesaño para señalización inferior	0.85 < h < 1.1 m	No aplicable
Separación de montantes	2 0.6 m	No aplicable

Puertas de vidrio que no disponen de elementos que permitan su identificación:

	NORMA	PROYECTO
Señalización inferior	0.85 < h < 1.1 m	No aplicable
Señalización superior	1.5 < h < 1.7 m	No aplicable
Altura del travesaño para señalización inferior	0.85 < h < 1.1 m	No aplicable
Separación de montantes	☑ 0.6 m	No aplicable

3.3.2.2. ATRAPAMIENTO.

	NORMA	PROYECTO
Distancia desde la puerta corredera (accionamiento manual) hasta el objeto fijo más próximo	₫ 0.2 m	CUMPLE
Se disponen dispositivos de protección adecuados al tipo de accionamiento para elementos de apertura y cierre automáticos.		CUMPLE

3.3.3. EXIGENCIA BÁSICA SUA 3: SEGURIDAD FRENTE AL RIESGO DE APRISIONAMIENTO EN RECINTOS.

- Cuando las puertas de un recinto tengan dispositivo para su bloqueo desde el interior y las personas puedan quedar accidentalmente atrapadas dentro del mismo, existirá algún sistema de desbloqueo de las puertas desde el interior del recinto. Excepto en el caso de los baños o los aseos de viviendas, dichos recintos tendrán iluminación controlada desde su interior.
- En zonas de uso público, los aseos accesibles y cabinas de vestuarios accesibles dispondrán de un dispositivo en el interior, fácilmente accesible, mediante el cual se transmita una llamada de asistencia perceptible desde un punto de control y que permita al usuario verificar que su llamada ha sido recibida, o perceptible desde un paso frecuente de personas.
- La fuerza de apertura de las puertas de salida será de 140 N, como máximo, excepto en las situadas en itinerarios accesibles, en las que se aplicará lo establecido en la definición de los mismos en el anejo A Terminología (como máximo 25 N, en general, 65 N cuando sean resistentes al fuego).
- Para determinar la fuerza de maniobra de apertura y cierre de las puertas de maniobra manual batientes/pivotantes y deslizantes equipadas con pestillos de media vuelta y destinadas a ser utilizadas por peatones (excluidas puertas con sistema de cierre automático y puertas equipadas con herrajes especiales, como por ejemplo los dispositivos de salida de emergencia) se empleará el método de ensayo especificado en la norma UNE-EN 12046-2:2000.

3.3.4. EXIGENCIA BÁSICA SUA 4: SEGURIDAD FRENTE AL RIESGO CAUSADO POR ILUMINACIÓN INADECUADA.

3.3.4.1.- ALUMBRADO NORMAL EN ZONAS DE CIRCULACIÓN.

			NORMA	PROYECTO
Zona		Iluminancia mínima [lux]		
	Exclusiva para personas	Escaleras	20	
Exterior		Resto de zonas	20	25
	Para vehículos o mixtas		20	
	Exclusiva para personas	Escaleras	100	154
Interior		Resto de zonas	100	125
	Para vehículos o mixtas		50	139
Factor de uniformidad media		fu 🛭 40 %	54 %	

3.3.4.2.- ALUMBRADO DE EMERGENCIA.

Dotación:

Contarán con alumbrado de emergencia:

- x Recorridos de evacuación
- x Aparcamientos cuya superficie construida exceda de 100 m²
- x Locales que alberguen equipos generales de las instalaciones de protección
- x Locales de riesgo especial
- Lugares en los que se ubican cuadros de distribución o de accionamiento de la instalación de alumbrado
- x Las señales de seguridad

Disposición de las luminarias:

	NORMA	PROYECTO
Altura de colocación	h 🛭 2 m	H = 2.50 m

Se dispondrá una luminaria en:

- Cada puerta de salida.
- Х Señalando el emplazamiento de un equipo de seguridad. Х
- Puertas existentes en los recorridos de evacuación.
- Escaleras (cada tramo recibe iluminación directa).
- x En cualquier cambio de nivel.
- x En los cambios de dirección y en las intersecciones de pasillos.

Características de la instalación:

Será fija.

Dispondrá de fuente propia de energía.

Entrará en funcionamiento al producirse un fallo de alimentación en las zonas de alumbrado normal.

El alumbrado de emergencia en las vías de evacuación debe alcanzar, al menos, el 50% del nivel de iluminación requerido al cabo de 5 segundos y el 100% a los 60 segundos.

	NORMA	PROYECTO
Puntos donde estén situados: equipos de seguridad, instalaciones de protección contra incendios y cuadros de distribución del alumbrado.	Iluminancia 2 5 luxes	29.93 luxes
Valor mínimo del Índice de Rendimiento Cromático (Ra)	Ra 🛭 40	Ra = 80.00

Iluminación de las señales de seguridad:

			NORMA	PROYECTO
×	Luminancia de cualquier área de color de segurid	ad	2 cd/m²	3 cd/m²
	Relación entre la luminancia máxima/mínima dentro del color blanco o de seguridad		2 10:1	10:1
	Relación entre la luminancia L_{blanca} , y la luminancia $L_{color} > 10$		2 5:1	
			2 15:1	10:1
	Tiempo en el que se debe alcanzar cada nivel de iluminación	2 50%	> 5 s	5 s
		100%	> 60 s	60 s

3.3.5. EXIGENCIA BÁSICA SUA 5: SEGURIDAD FRENTE AL RIESGO CAUSADO POR SITUACIONES DE ALTA OCUPACIÓN.

Las condiciones establecidas en DB SUA 5 son de aplicación a los graderíos de estadios, pabellones polideportivos, centros de reunión, otros edificios de uso cultural, etc. previstos para más de 3000 espectadores de pie.

Por lo tanto, para este proyecto, no es de aplicación.

3.3.6. EXIGENCIA BÁSICA SUA 6: SEGURIDAD FRENTE AL RIESGO DE AHOGAMIENTO.

Esta sección es aplicable a las piscinas de uso colectivo, salvo las destinadas exclusivamente a competición o a enseñanza, las cuales tendrán las características propias de la actividad que se desarrolle.

Quedan excluidas las piscinas de viviendas unifamiliares, así como los baños termales, los centros de tratamiento de hidroterapia y otros dedicados a usos exclusivamente médicos, los cuales cumplirán lo dispuesto en su reglamentación específica.

Por lo tanto, para este proyecto, no es de aplicación.

3.3.7. EXIGENCIA BÁSICA SUA 7: SEGURIDAD FRENTE AL RIESGO CAUSADO POR VEHÍCULOS EN MOVIMIENTO.

- Las zonas de uso Aparcamiento dispondrán de un espacio de acceso y espera en su incorporación al exterior, con una profundidad adecuada a la longitud del tipo de vehículo y de 4,5 m como mínimo y una pendiente del 5% como máximo.

Proyecto de Ejecución de bloque plurifamiliar de 14 viviendas, local y 15 plazas de garaje

- Debe señalizarse, conforme a lo establecido en el código de la circulación:
- a) el sentido de la circulación y las salidas;
- b) la velocidad máxima de circulación de 20 km/h;
- c) las zonas de tránsito y paso de peatones, en las vías o rampas de circulación y acceso.
- En los accesos de vehículos a viales exteriores desde establecimientos de uso Aparcamiento se dispondrán dispositivos que alerten al conductor de la presencia de peatones en las proximidades de dichos accesos.

3.3.8. EXIGENCIA BÁSICA SUA 8: SEGURIDAD FRENTE AL RIESGO CAUSADO POR LA ACCIÓN **DEL RAYO.**

3.3.8.1.- PROCEDIMIENTO DE VERIFICACIÓN.

Será necesaria la instalación de un sistema de protección contra el rayo cuando la frecuencia esperada de impactos (N_e) sea mayor que el riesgo admisible (N_a), excepto cuando la eficiencia 'E' este comprendida entre 0 y 0.8.

3.3.8.1.1.- Cálculo de la frecuencia esperada de impactos (Ne).

Siendo:

- N_g: Densidad de impactos sobre el terreno (impactos/año,km²).
- A_e: Superficie de captura equivalente del edificio aislado en m².
- C₁: Coeficiente relacionado con el entorno.

```
N_g (Lorca) = 1.50 impactos/año,km<sup>2</sup>
```

 $A_e = 9537.91 \text{ m}^2$

C₁ (próximo a otros edificios o árboles de la misma altura o más altos) = 0.50

 $N_e = 0.0072$ impactos/año

3.3.8.1.2.- Cálculo del riesgo admisible (Na).

Siendo:

- C₂: Coeficiente en función del tipo de construcción.
- C₃: Coeficiente en función del contenido del edificio.
- C₄: Coeficiente en función del uso del edificio.
- C₅: Coeficiente en función de la necesidad de continuidad en las actividades que se desarrollan en el edificio.

C₂ (estructura de hormigón/cubierta de hormigón) = 1.00

C₃ (otros contenidos) = 1.00

C₄ (resto de edificios) = 1.00

C₅ (resto de edificios) = 1.00

3.3.8.1.3.- Verificación.

Altura del edificio = 22.60 m <= 43.0 m
$$N_e = 0.0072 > N_a = 0.0055$$
 impactos/año

3.3.8.2.- DESCRIPCIÓN DE LA INSTALACIÓN.

3.3.8.2.1.- Nivel de protección.

Conforme a lo establecido en el apartado anterior, se determina que no es necesario disponer una instalación de protección contra el rayo. El valor mínimo de la eficiencia 'E' de dicha instalación se determina mediante la siguiente fórmula:

> N_a = 0.0055 impactos/año N_e = 0.0072 impactos/año E = 0.231

Como:

0 <= 0.231 < 0.80

Nivel de protección: IV

No es necesario instalar un sistema de protección contra el rayo

3.3.9. EXIGENCIA BÁSICA SUA 9: ACCESIBILIDAD.

3.3.9.1. CONDICIONES DE ACCESIBILIDAD.

- 1. Con el fin de facilitar el acceso y la utilización no discriminatoria, independiente y segura de los edificios a las personas con discapacidad se cumplirán las condiciones funcionales y de dotación de elementos accesibles que se establecen a continuación.
- 2. Dentro de los límites de las viviendas, incluidas las unifamiliares y sus zonas exteriores privativas, las condiciones de accesibilidad únicamente son exigibles en aquellas que deban ser accesibles.

3.3.9.1.1. Condiciones funcionales.

Accesibilidad en el exterior del edificio:

La parcela dispone de un itinerario accesible que comunica la vía pública y las zonas comunes exteriores, con la entrada principal al edificio.

Accesibilidad entre plantas del edificio:

Los edificios de uso Residencial Vivienda en los que haya que salvar más de dos plantas desde alguna entrada principal accesible al edificio hasta alguna vivienda o zona comunitaria, o con más de 12 viviendas en plantas sin entrada principal accesible al edificio, dispondrán de ascensor accesible o rampa accesible (conforme al apartado 4 del SUA 1) que comunique las plantas que no sean de ocupación nula (ver definición en el anejo SI A del DB SI) con las de entrada accesible al edificio. En el resto de los casos, el proyecto debe prever, al menos dimensional y estructuralmente, la instalación de un ascensor accesible que comunique dichas plantas.

Las plantas con viviendas accesibles para usuarios de silla de ruedas dispondrán de ascensor accesible o de rampa accesible que las comunique con las plantas con entrada accesible al edificio y con las que tengan elementos asociados a dichas viviendas o zonas comunitarias, tales como trasteros o plaza de aparcamiento de la vivienda accesible, sala de comunidad, tendedero, etc.

Accesibilidad en las plantas del edificio:

Los edificios de uso Residencial Vivienda dispondrán de un itinerario accesible que comunique el acceso accesible a toda planta (entrada principal accesible al edificio, ascensor accesible o previsión del mismo, rampa accesible) con las viviendas, con las zonas de uso comunitario y con los elementos asociados a viviendas accesibles para usuarios de silla de ruedas, tales como trasteros, plazas de aparcamiento accesibles, etc., situados en la misma planta.

Mecanismos:

Los interruptores, los dispositivos de intercomunicación y los pulsadores de alarma son mecanismos totalmente accesibles, excepto los ubicados en el interior de las viviendas y en las zonas de ocupación nula.

3.3.9.2. CONDICIONES Y CARACTERÍSTICAS DE LA INFORMACIÓN Y SEÑALIZACIÓN PARA LA ACCESIBILIDAD.

3.3.9.2.1. Dotación.

Se señalizarán los siguientes elementos accesibles

Entradas al edificio accesibles	No procede. Sólo existe una entrada al edificio
Itinerarios accesibles	No procede. Sólo existe un itinerario accesible
Ascensores accesibles	En todo caso.
Zonas dotadas con bucle magnético u otros sistemas adaptados para personas con discapacidad auditiva	No procede
Plazas de aparcamiento accesibles	En todo caso, excepto en uso Residencial Vivienda las vinculadas a un residente

3.3.9.2.2. Características.

Las entradas al edificio accesibles, los itinerarios accesibles, las plazas de aparcamiento accesibles y los servicios higiénicos accesibles (aseo, cabina de vestuario y ducha accesible) se señalizan mediante SIA, complementado, en su caso, con flecha direccional.

Las características y dimensiones del Símbolo Internacional de Accesibilidad para la movilidad (SIA) se establecen en la norma UNE 41501:2002.

3.4 SALUBRIDAD.

3.4.1.- EXIGENCIA BÁSICA HS 1: PROTECCIÓN FRENTE A LA HUMEDAD.

3.4.1.1.- MUROS EN CONTACTO CON EL TERRENO.

3.4.1.1.- Grado de impermeabilidad.

El grado de impermeabilidad mínimo exigido a los muros que están en contacto con el terreno se obtiene mediante la tabla 2.1 de CTE DB HS 1, en función de la presencia de agua y del coeficiente de permeabilidad del terreno.

La presencia de agua depende de la posición relativa del suelo en contacto con el terreno respecto al nivel freático, por lo que se establece para cada muro, en función del tipo de suelo asignado.

Coeficiente de permeabilidad del terreno: K_s: 1 x 10⁻⁶ cm/s⁽¹⁾

3.4.1.1.2.- Condiciones de las soluciones constructivas.

Muro de sótano con impermeabilización exterior

Presencia de agua: Baja 1(1) Grado de impermeabilidad:

Flexorresistente⁽²⁾ Tipo de muro:

Situación de la impermeabilización: Exterior

⁽¹⁾ Este dato se obtiene de la tabla 2.1, apartado 2.1 de DB HS 1 Protección frente a la humedad.

Impermeabilización:

12 La impermeabilización debe realizarse mediante la aplicación de una pintura impermeabilizante o según lo establecido en I1. En muros pantalla construidos con excavación, la impermeabilización se consigue mediante la utilización de lodos bentoníticos.

⁽¹⁾ Este dato se obtiene del informe geotécnico.

⁽²⁾ Muro armado que resiste esfuerzos de compresión y de flexión. Este tipo de muro se construye después de haber realizado el vaciado del terreno del sótano.

13 Cuando el muro sea de fábrica debe recubrirse por su cara interior con un revestimiento hidrófugo, tal como una capa de mortero hidrófugo sin revestir, una hoja de cartón-yeso sin veso higroscópico u otro material no higroscópico.

Drenaje y evacuación:

- D1 Debe disponerse una capa drenante y una capa filtrante entre el muro y el terreno o, cuando existe una capa de impermeabilización, entre ésta y el terreno. La capa drenante puede estar constituida por una lámina drenante, grava, una fábrica de bloques de arcilla porosos u otro material que produzca el mismo efecto. Cuando la capa drenante sea una lámina, el remate superior de la lámina debe protegerse de la entrada de agua procedente de las precipitaciones y de las escorrentías.
- D5 Debe disponerse una red de evacuación del agua de lluvia en las partes de la cubierta y del terreno que puedan afectar al muro y debe conectarse aquélla a la red de saneamiento o a cualquier sistema de recogida para su reutilización posterior.

3.4.1.1.3.- Puntos singulares de los muros en contacto con el terreno.

Deben respetarse las condiciones de disposición de bandas de refuerzo y de terminación, las de continuidad o discontinuidad, así como cualquier otra que afecte al diseño, relativas al sistema de impermeabilización que se emplee.

Encuentros del muro con las fachadas:

- En el mismo caso cuando el muro se impermeabilice con lámina, entre el impermeabilizante y la capa de mortero, debe disponerse una banda de terminación adherida del mismo material que la banda de refuerzo, y debe prolongarse verticalmente a lo largo del paramento del muro hasta 10 cm, como mínimo, por debajo del borde inferior de la banda de refuerzo.
- Cuando el muro se impermeabilice por el exterior, en los arranques de las fachadas sobre el mismo, el impermeabilizante debe prolongarse más de 15 cm por encima del nivel del suelo exterior y el remate superior del impermeabilizante debe relizarse según lo descrito en el apartado 2.4.4.1.2 o disponiendo un zócalo según lo descrito en el apartado 2.3.3.2 de la sección 1 de DB HS Salubridad.
- Deben respetarse las condiciones de disposición de bandas de refuerzo y de terminación así como las de continuidad o discontinuidad, correspondientes al sistema de impermeabilización que se emplee.

Encuentros del muro con las cubiertas enterradas:

- Cuando el muro se impermeabilice por el exterior, el impermeabilizante del muro debe soldarse o unirse al de la cubierta.

Paso de conductos:

- Los pasatubos deben disponerse de tal forma que entre ellos y los conductos exista una holgura que permita las tolerancias de ejecución y los posibles movimientos diferenciales entre el muro y el conducto.
- Debe fijarse el conducto al muro con elementos flexibles.
- Debe disponerse un impermeabilizante entre el muro y el pasatubos y debe sellarse la holgura entre el pasatubos y el conducto con un perfil expansivo o un mástico elástico resistente a la compresión.

Esquinas y rincones:

- Debe colocarse en los encuentros entre dos planos impermeabilizados una banda o capa de refuerzo del mismo material que el impermeabilizante utilizado de una anchura de 15 cm como mínimo y centrada en la arista.
- Cuando las bandas de refuerzo se apliquen antes que el impermeabilizante del muro deben ir adheridas al soporte previa aplicación de una imprimación.

Juntas:

- En las juntas verticales de los muros de hormigón prefabricado o de fábrica impermeabilizados con lámina deben disponerse los siguientes elementos (véase la figura siguiente):
- a) Cuando la junta sea estructural, un cordón de relleno compresible y compatible químicamente con la impermeabilización;
- b) Sellado de la junta con una masilla elástica;
- c) Pintura de imprimación en la superficie del muro extendida en una anchura de 25 cm como mínimo centrada en la junta:
- d) Una banda de refuerzo del mismo material que el impermeabilizante con una armadura de fibra de poliéster y de una anchura de 30 cm como mínimo centrada en la junta;
- e) El impermeabilizante del muro hasta el borde de la junta;
- f) Una banda de terminación de 45 cm de anchura como mínimo centrada en la junta, del mismo material que la de refuerzo y adherida a la lámina.
- En las juntas verticales de los muros de hormigón prefabricado o de fábrica impermeabilizados con productos líquidos deben disponerse los siguientes elementos:
 - a) Cuando la junta sea estructural, un cordón de relleno compresible y compatible químicamente con la impermeabilización;
 - b) Sellado de la junta con una masilla elástica;
 - c) La impermeabilización del muro hasta el borde de la junta;

Proyecto de Ejecución de bloque plurifamiliar de 14 viviendas, local y 15 plazas de garaje

- d) Una banda de refuerzo de una anchura de 30 cm como mínimo centrada en la junta y del mismo material que el impermeabilizante con una armadura de fibra de poliéster o una banda de lámina impermeable.
- En el caso de muros hormigonados in situ, tanto si están impermeabilizados con lámina o con productos líquidos, para la impermeabilización de las juntas verticales y horizontales, debe disponerse una banda elástica embebida en los dos testeros de ambos lados de la junta.
- Las juntas horizontales de los muros de hormigón prefabricado deben sellarse con mortero hidrófugo de baja retracción o con un sellante a base de poliuretano.

3.4.1.2.- SUELOS.

3.4.1.2.1.- Grado de impermeabilidad.

El grado de impermeabilidad mínimo exigido a los suelos que están en contacto con el terreno se obtiene mediante la tabla 2.3 de CTE DB HS 1, en función de la presencia de agua y del coeficiente de permeabilidad del terreno.

La presencia de agua depende de la posición relativa de cada suelo en contacto con el terreno respecto al nivel freático.

Coeficiente de permeabilidad del terreno: K_s: 1 x 10⁻⁶ cm/s⁽¹⁾ Notas:

3.4.1.2.2.- Condiciones de las soluciones constructivas.

Zapatas de cimentación

Zapatas de cimentación (50-70 cm)

Presencia de agua: Baja 1⁽¹⁾ Grado de impermeabilidad: Placa⁽²⁾ Tipo de suelo:

Tipo de intervención en el terreno: Sin intervención

Notas:

- (1) Este dato se obtiene de la tabla 2.3, apartado 2.2 de DB HS 1 Protección frente a la humedad.
- (2) Solera armada para resistir mayores esfuerzos de flexión como consecuencia, entre otros, del empuje vertical del agua freática.

Constitución del suelo:

- C2 Cuando el suelo se construya in situ debe utilizarse hormigón de retracción moderada.
- C3 Debe realizarse una hidrofugación complementaria del suelo mediante la aplicación de un producto líquido colmatador de poros sobre la superficie terminada del mismo.

⁽¹⁾ Este dato se obtiene del informe geotécnico.

Drenaje y evacuación:

D1 Debe disponerse una capa drenante y una capa filtrante sobre el terreno situado bajo el suelo. En el caso de que se utilice como capa drenante un encachado, debe disponerse una lámina de polietileno por encima de ella.

3.4.1.2.3.- Puntos singulares de los suelos.

Deben respetarse las condiciones de disposición de bandas de refuerzo y de terminación, las de continuidad o discontinuidad, así como cualquier otra que afecte al diseño, relativas al sistema de impermeabilización que se emplee.

Encuentros del suelo con los muros:

- En los casos establecidos en la tabla 2.4 de DB HS 1 Protección frente a la humedad, el encuentro debe realizarse de la forma detallada a continuación.
- Cuando el suelo y el muro sean hormigonados in situ, excepto en el caso de muros pantalla, debe sellarse la junta entre ambos con una banda elástica embebida en la masa del hormigón a ambos lados de la junta.

Encuentros entre suelos y particiones interiores:

- Cuando el suelo se impermeabilice por el interior, la partición no debe apoyarse sobre la capa de impermeabilización, sino sobre la capa de protección de la misma.

3.4.1.3.- FACHADAS Y MEDIANERAS DESCUBIERTAS.

3.4.1.3.1.- Grado de impermeabilidad.

El grado de impermeabilidad mínimo exigido a las fachadas se obtiene de la tabla 2.5 de CTE DB HS 1, en función de la zona pluviométrica de promedios y del grado de exposición al viento correspondientes al lugar de ubicación del edificio, según las tablas 2.6 y 2.7 de CTE DB HS 1.

Clase del entorno en el que está situado el edificio: E1⁽¹⁾ Zona pluviométrica de promedios: Altura de coronación del edificio sobre el terreno: 15.6 m⁽³⁾ $A^{(4)}$ Zona eólica: V3⁽⁵⁾ Grado de exposición al viento: 2⁽⁶⁾ Grado de impermeabilidad:

Notas:

- (1) Clase de entorno del edificio E1(Terreno tipo IV: Zona urbana, industrial o forestal).
- ⁽²⁾ Este dato se obtiene de la figura 2.4, apartado 2.3 de DB HS 1 Protección frente a la humedad.
- (3) Para edificios de más de 100 m de altura y para aquellos que están próximos a un desnivel muy pronunciado, el grado de exposición al viento debe ser estudiada según lo dispuesto en DB SE-AE.
- (4) Este dato se obtiene de la figura 2.5, apartado 2.3 de HS1, CTE.
- (5) Este dato se obtiene de la tabla 2.6, apartado 2.3 de HS1, CTE.
- (6) Este dato se obtiene de la tabla 2.5, apartado 2.3 de HS1, CTE.

3.4.1.3.2.- Condiciones de las soluciones constructivas.

Fachada con revestimiento continuo, de dos hojas de fábrica.

R1+C1

Revestimiento exterior: Grado de impermeabilidad alcanzado: 2

- R) Resistencia a la filtración del revestimiento exterior:
- R1 El revestimiento exterior debe tener al menos una resistencia media a la filtración. Se considera que proporcionan esta resistencia los siguientes:

Revestimientos continuos de las siguientes características:

- Espesor comprendido entre 10 y 15 mm, salvo los acabados con una capa plástica delgada;
- Adherencia al soporte suficiente para garantizar su estabilidad;
- · Permeabilidad al vapor suficiente para evitar su deterioro como consecuencia de una acumulación de vapor entre él y la hoja principal;
- · Adaptación a los movimientos del soporte y comportamiento aceptable frente a la fisuración;
- · Cuando se dispone en fachadas con el aislante por el exterior de la hoja principal, compatibilidad química con el aislante y disposición de una armadura constituida por una malla de fibra de vidrio o de poliéster.
- revestimientos discontinuos rígidos pegados de las siguientes características:
- De piezas menores de 300 mm de lado;
- · Fijación al soporte suficiente para garantizar su estabilidad;
- Disposición en la cara exterior de la hoja principal de un enfoscado de mortero;

- · Adaptación a los movimientos del soporte.
- C) Composición de la hoja principal:
- C1 Debe utilizarse al menos una hoja principal de espesor medio. Se considera como tal una fábrica cogida con mortero de:
- ½ pie de ladrillo cerámico, que debe ser perforado o macizo cuando no exista revestimiento exterior o cuando exista un revestimiento exterior discontinuo o un aislante exterior fijados mecánicamente;
- 12 cm de bloque cerámico, bloque de hormigón o piedra natural.

Fachada ventilada B3+C1

Revestimiento exterior: **Sí**Grado de impermeabilidad alcanzado: **5**

- B) Resistencia a la filtración de la barrera contra la penetración de agua:
- B3- Debe disponerse una barrera de resistencia muy alta a la filtración. Se consideran como tal los siguientes:
- Una cámara de aire ventilada y un aislante no hidrófilo de las siguientes características:
- La cámara debe disponerse por el lado exterior del aislante;
- Debe disponerse en la parte inferior de la cámara y cuando ésta quede interrumpida, un sistema de recogida y evacuación del agua filtrada a la misma (véase el apartado 2.3.3.5 de DB HS 1 Protección frente a la humedad);
- El espesor de la cámara debe estar comprendido entre 3 y 10 cm;
- Deben disponerse aberturas de ventilación cuya área efectiva total sea como mínimo igual a 120 cm² por cada 10 m² de paño de fachada entre forjados repartidas al 50 % entre la parte superior y la inferior. Pueden utilizarse como aberturas rejillas, llagas desprovistas de mortero, juntas abiertas en los revestimientos discontinuos que tengan una anchura mayor que 5 mm u otra solución que produzca el mismo efecto.
- Revestimiento continuo intermedio en la cara interior de la hoja principal, de las siguientes características:
- Estanquidad al agua suficiente para que el agua de filtración no entre en contacto con la hoja del cerramiento dispuesta inmediatamente por el interior del mismo;
- Adherencia al soporte suficiente para garantizar su estabilidad;
- Permeabilidad suficiente al vapor para evitar su deterioro como consecuencia de una acumulación de vapor entre él y la hoja principal;
- Adaptación a los movimientos del soporte y comportamiento muy bueno frente a la fisuración, de forma que no se fisure debido a los esfuerzos mecánicos producidos por el

Proyecto de Ejecución de bloque plurifamiliar de 14 viviendas, local y 15 plazas de garaje

movimiento de la estructura, por los esfuerzos térmicos relacionados con el clima y con la alternancia día-noche, ni por la retracción propia del material constituyente del mismo;

- Estabilidad frente a los ataques físicos, químicos y biológicos que evite la degradación de su masa.

Composición de la hoja principal:

- C1 Debe utilizarse al menos una hoja principal de espesor medio. Se considera como tal una fábrica cogida con mortero de:
- ½ pie de ladrillo cerámico, que debe ser perforado o macizo cuando no exista revestimiento exterior o cuando exista un revestimiento exterior discontinuo o un aislante exterior fijados mecánicamente;
- 12 cm de bloque cerámico, bloque de hormigón o piedra natural.

3.4.1.3.3.- Puntos singulares de las fachadas.

Deben respetarse las condiciones de disposición de bandas de refuerzo y de terminación, así como las de continuidad o discontinuidad relativas al sistema de impermeabilización que se emplee.

Juntas de dilatación:

- Deben disponerse juntas de dilatación en la hoja principal de tal forma que cada junta estructural coincida con una de ellas y que la distancia entre juntas de dilatación contiguas sea como máximo la que figura en la tabla 2.1 Distancia entre juntas de movimiento de fábricas sustentadas de DB SE-F Seguridad estructural: Fábrica.

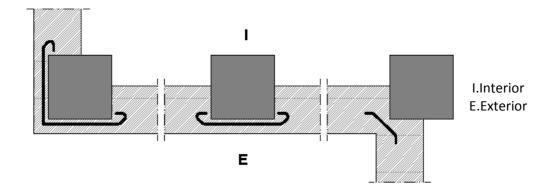
Distancia entre juntas de movimiento de fábricas sustentadas

Tipo de fábrica	Distancia entre las juntas (m)
de piedra natural	30
de piezas de hormigón celular en autoclave	22
de piezas de hormigón ordinario	20
de piedra artificial	20
de piezas de árido ligero (excepto piedra pómez o arcilla expandida)	20
de piezas de hormigón ligero de piedra pómez o arcilla expand	ida 15

- En las juntas de dilatación de la hoja principal debe colocarse un sellante sobre un relleno introducido en la junta. Deben emplearse rellenos y sellantes de materiales que tengan una elasticidad y una adherencia suficientes para absorber los movimientos de la hoja previstos y que sean impermeables y resistentes a los agentes atmosféricos. La profundidad del sellante debe ser mayor o igual que 1 cm y la relación entre su espesor y su anchura debe estar comprendida entre 0,5 y 2. En fachadas enfoscadas debe enrasarse con el paramento de la hoja principal sin enfoscar. Cuando se utilicen chapas metálicas en las juntas de dilatación, deben disponerse las mismas de tal forma que éstas cubran a ambos lados de la junta una banda de muro de 5 cm como mínimo y cada chapa debe fijarse mecánicamente en dicha banda y sellarse su extremo correspondiente (véase la siguiente figura).
- El revestimiento exterior debe estar provisto de juntas de dilatación de tal forma que la distancia entre juntas contiguas sea suficiente para evitar su agrietamiento.

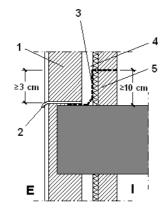
Arranque de la fachada desde la cimentación:

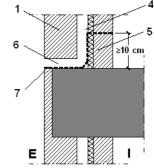
- Debe disponerse una barrera impermeable que cubra todo el espesor de la fachada a más de 15 cm por encima del nivel del suelo exterior para evitar el ascenso de agua por capilaridad o adoptarse otra solución que produzca el mismo efecto.
- Cuando la fachada esté constituida por un material poroso o tenga un revestimiento poroso, para protegerla de las salpicaduras, debe disponerse un zócalo de un material cuyo coeficiente de succión sea menor que el 3%, de más de 30 cm de altura sobre el nivel del suelo exterior que cubra el impermeabilizante del muro o la barrera impermeable dispuesta entre el muro y la fachada, y sellarse la unión con la fachada en su parte superior, o debe adoptarse otra solución que produzca el mismo efecto (véase la siguiente figura).
- Cuando no sea necesaria la disposición del zócalo, el remate de la barrera impermeable en el exterior de la fachada debe realizarse según lo descrito en el apartado 2.4.4.1.2 de DB HS 1 Protección frente a la humedad o disponiendo un sellado.


Encuentros de la fachada con los forjados:

- Cuando la hoja principal esté interrumpida por los forjados y se tenga revestimiento exterior continuo, debe adoptarse una de las dos soluciones siguientes (véase la siguiente figura):
- a) Disposición de una junta de desolidarización entre la hoja principal y cada forjado por debajo de éstos dejando una holgura de 2 cm que debe rellenarse después de la retracción de la hoja principal con un material cuya elasticidad sea compatible con la deformación prevista del forjado y protegerse de la filtración con un goterón;
- b) Refuerzo del revestimiento exterior con mallas dispuestas a lo largo del forjado de tal forma que sobrepasen el elemento hasta 15 cm por encima del forjado y 15 cm por debajo de la primera hilada de la fábrica.

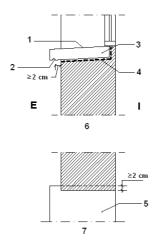
Encuentros de la fachada con los pilares:


- Cuando la hoja principal esté interrumpida por los pilares, en el caso de fachada con revestimiento continuo, debe reforzarse éste con armaduras dispuestas a lo largo del pilar de tal forma que lo sobrepasen 15 cm por ambos lados.
- Cuando la hoja principal esté interrumpida por los pilares, si se colocan piezas de menor espesor que la hoja principal por la parte exterior de los pilares, para conseguir la estabilidad


de estas piezas, debe disponerse una armadura o cualquier otra solución que produzca el mismo efecto (véase la siguiente figura).

Encuentros de la cámara de aire ventilada con los forjados y los dinteles:

- Cuando la cámara quede interrumpida por un forjado o un dintel, debe disponerse un sistema de recogida y evacuación del agua filtrada o condensada en la misma.
- Como sistema de recogida de agua debe utilizarse un elemento continuo impermeable (lámina, perfil especial, etc.) dispuesto a lo largo del fondo de la cámara, con inclinación hacia el exterior, de tal forma que su borde superior esté situado como mínimo a 10 cm del fondo y al menos 3 cm por encima del punto más alto del sistema de evacuación (véase la siguiente figura). Cuando se disponga una lámina, ésta debe introducirse en la hoja interior en todo su espesor.
- Para la evacuación debe disponerse uno de los sistemas siguientes:
 - a) Un conjunto de tubos de material estanco que conduzcan el agua al exterior, separados 1,5 m como máximo (véase la siguiente figura);
- b) Un conjunto de llagas de la primera hilada desprovistas de mortero, separadas 1,5 m como máximo, a lo largo de las cuales se prolonga hasta el exterior el elemento de recogida dispuesto en el fondo de la cámara.


- 1. Hoja principal
- 2. Sistema de evacuación
- 3. Sistema de recogida
- 4. Cámara

- 5. Hoja interior
- 6. Llaga desprovista de mortero
- 7. Sistema de recogida y evacuación
- I. Interior E. Exterior

Encuentro de la fachada con la carpintería:

Debe sellarse la junta entre el cerco y el muro con un cordón que debe estar introducido en un llagueado practicado en el muro de forma que quede encajado entre dos bordes paralelos.

- Cuando la carpintería esté retranqueada respecto del paramento exterior de la fachada, debe rematarse el alféizar con un vierteaguas para evacuar hacia el exterior el agua de lluvia que llegue a él y evitar que alcance la parte de la fachada inmediatamente inferior al mismo y disponerse un goterón en el dintel para evitar que el agua de lluvia discurra por la parte inferior del dintel hacia la carpintería o adoptarse soluciones que produzcan los mismos efectos.
- El vierteaguas debe tener una pendiente hacia el exterior de 10° como mínimo, debe ser impermeable o disponerse sobre una barrera impermeable fijada al cerco o al muro que se prolongue por la parte trasera y por ambos lados del vierteaguas y que tenga una pendiente hacia el exterior de 10° como mínimo. El vierteaguas debe disponer de un goterón en la cara inferior del saliente, separado del paramento exterior de la fachada al menos 2 cm, y su entrega lateral en la jamba debe ser de 2 cm como mínimo (véase la siguiente figura).
- La junta de las piezas con goterón debe tener la forma del mismo para no crear a través de ella un puente hacia la fachada.

1.Pendiente hacia el exterior
2.Goterón
3.Vierteaguas
4.Barrera impermeable
5.Vierteaguas
6.Sección
7.Planta
I.Interior
E.Exterior

Antepechos y remates superiores de las fachadas:

- Los antepechos deben rematarse con albardillas para evacuar el agua de lluvia que llegue a su parte superior y evitar que alcance la parte de la fachada inmediatamente inferior al mismo o debe adoptarse otra solución que produzca el mismo efecto.
- Las albardillas deben tener una inclinación de 10° como mínimo, deben disponer de goterones en la cara inferior de los salientes hacia los que discurre el agua, separados de los paramentos correspondientes del antepecho al menos 2 cm y deben ser impermeables o deben disponerse sobre una barrera impermeable que tenga una pendiente hacia el exterior de 10° como mínimo. Deben disponerse juntas de dilatación cada dos piezas cuando sean de piedra o prefabricadas y cada 2 m cuando sean cerámicas. Las juntas entre las albardillas deben realizarse de tal manera que sean impermeables con un sellado adecuado.

Anclajes a la fachada:

- Cuando los anclajes de elementos tales como barandillas o mástiles se realicen en un plano horizontal de la fachada, la junta entre el anclaje y la fachada debe realizarse de tal forma

Proyecto de Ejecución de bloque plurifamiliar de 14 viviendas, local y 15 plazas de garaje

que se impida la entrada de agua a través de ella mediante el sellado, un elemento de goma, una pieza metálica u otro elemento que produzca el mismo efecto.

Aleros y cornisas:

- Los aleros y las cornisas de constitución continua deben tener una pendiente hacia el exterior para evacuar el agua de 10° como mínimo y los que sobresalgan más de 20 cm del plano de la fachada deben
- a) Ser impermeables o tener la cara superior protegida por una barrera impermeable, para evitar que el agua se filtre a través de ellos;
- b) Disponer en el encuentro con el paramento vertical de elementos de protección prefabricados o realizados in situ que se extiendan hacia arriba al menos 15 cm y cuyo remate superior se resuelva de forma similar a la descrita en el apartado 2.4.4.1.2 de DB HS 1 Protección frente a la humedad, para evitar que el agua se filtre en el encuentro y en el remate;
- c) Disponer de un goterón en el borde exterior de la cara inferior para evitar que el agua de lluvia evacuada alcance la fachada por la parte inmediatamente inferior al mismo.
- En el caso de que no se ajusten a las condiciones antes expuestas debe adoptarse otra solución que produzca el mismo efecto.
- La junta de las piezas con goterón debe tener la forma del mismo para no crear a través de ella un puente hacia la fachada.

3.4.1.4.- CUBIERTAS PLANAS.

3.4.1.4.1.- Condiciones de las soluciones constructivas.

Cubierta plana transitable, no ventilada, con solado fijo, impermeabilización mediante láminas asfálticas. (Forjado bidireccional).

Techo con enlucido de yeso. Forjado unidireccional con bovedilla de hormigón.

Tipo: Transitable peatones

Formación de pendientes:

Pendiente mínima/máxima: 1.0 % / 5.0 %⁽¹⁾

Aislante térmico⁽²⁾:

Material aislante térmico: Lana de roca mineral

Espesor: **4.0** cm⁽³⁾

Barrera contra el vapor: Impermeabilización asfáltica bicapa adherida

Tipo de impermeabilización:

Descripción: Material bituminoso/bituminoso modificado

Notas:

- (1) Este dato se obtiene de la tabla 2.9 de DB HS 1 Protección frente a la humedad.
- (2) Según se determine en DB HE 1 Ahorro de energía.
- (3) Debe disponerse una capa separadora bajo el aislante térmico, cuando deba evitarse el contacto entre materiales químicamente incompatibles.

Sistema de formación de pendientes

- El sistema de formación de pendientes debe tener una cohesión y estabilidad suficientes frente a las solicitaciones mecánicas y térmicas, y su constitución debe ser adecuada para el recibido o fijación del resto de componentes.
- Cuando el sistema de formación de pendientes sea el elemento que sirve de soporte a la capa de impermeabilización, el material que lo constituye debe ser compatible con el material impermeabilizante y con la forma de unión de dicho impermeabilizante a él.

Aislante térmico:

- El material del aislante térmico debe tener una cohesión y una estabilidad suficiente para proporcionar al sistema la solidez necesaria frente a las solicitaciones mecánicas.
- Cuando el aislante térmico esté en contacto con la capa de impermeabilización, ambos materiales deben ser compatibles; en caso contrario debe disponerse una capa separadora entre ellos.
- Cuando el aislante térmico se disponga encima de la capa de impermeabilización y quede expuesto al contacto con el agua, dicho aislante debe tener unas características adecuadas para esta situación.

Capa de impermeabilización:

- Cuando se disponga una capa de impermeabilización, ésta debe aplicarse y fijarse de acuerdo con las condiciones para cada tipo de material constitutivo de la misma.
- Impermeabilización con materiales bituminosos y bituminosos modificados:
- Las láminas pueden ser de oxiasfalto o de betún modificado.
- Cuando la pendiente de la cubierta esté comprendida entre 5 y 15%, deben utilizarse sistemas adheridos.
- Cuando se quiera independizar el impermeabilizante del elemento que le sirve de soporte para mejorar la absorción de movimientos estructurales, deben utilizarse sistemas no adheridos.
- Cuando se utilicen sistemas no adheridos debe emplearse una capa de protección pesada.

Capa de protección:

- Cuando se disponga una capa de protección, el material que forma la capa debe ser resistente a la intemperie en función de las condiciones ambientales previstas y debe tener un peso suficiente para contrarrestar la succión del viento.

Proyecto de Ejecución de bloque plurifamiliar de 14 viviendas, local y 15 plazas de garaje

- Solado fijo:
- El solado fijo puede ser de los materiales siguientes: baldosas recibidas con mortero, capa de mortero, piedra natural recibida con mortero, hormigón, adoquín sobre lecho de arena, mortero filtrante, aglomerado asfáltico u otros materiales de características análogas.
- El material que se utilice debe tener una forma y unas dimensiones compatibles con la pendiente.
- Las piezas no deben colocarse a hueso.

Cubierta plana transitable, no ventilada, con solado fijo, impermeabilización mediante láminas asfálticas. (Forjado bidireccional).

Falso techo suspendido (placa de yeso laminado (PYL)) de 13 mm de espesor con cámara de aire de 25 cm de altura y tendido de aislante térmico de 30 mm de espesor. Forjado bidireccional con casetones permanentes de hormigón prefabricado.

Transitable peatones Tipo:

Formación de pendientes:

Pendiente mínima/máxima: 1.0 % / 5.0 %(1)

Aislante térmico⁽²⁾:

Material aislante térmico: Lana de roca mineral

4.0 cm⁽³⁾ Espesor:

Impermeabilización asfáltica bicapa adherida Barrera contra el vapor:

Tipo de impermeabilización:

Descripción: Material bituminoso/bituminoso modificado

Notas:

Sistema de formación de pendientes:

- El sistema de formación de pendientes debe tener una cohesión y estabilidad suficientes frente a las solicitaciones mecánicas y térmicas, y su constitución debe ser adecuada para el recibido o fijación del resto de componentes.
- Cuando el sistema de formación de pendientes sea el elemento que sirve de soporte a la capa de impermeabilización, el material que lo constituye debe ser compatible con el material impermeabilizante y con la forma de unión de dicho impermeabilizante a él.

Aislante térmico:

- El material del aislante térmico debe tener una cohesión y una estabilidad suficiente para proporcionar al sistema la solidez necesaria frente a las solicitaciones mecánicas.

⁽¹⁾ Este dato se obtiene de la tabla 2.9 de DB HS 1 Protección frente a la humedad.

⁽²⁾ Según se determine en DB HE 1 Ahorro de energía.

⁽³⁾ Debe disponerse una capa separadora bajo el aislante térmico, cuando deba evitarse el contacto entre materiales químicamente incompatibles.

- Cuando el aislante térmico esté en contacto con la capa de impermeabilización, ambos materiales deben ser compatibles; en caso contrario debe disponerse una capa separadora entre ellos.
- Cuando el aislante térmico se disponga encima de la capa de impermeabilización y quede expuesto al contacto con el agua, dicho aislante debe tener unas características adecuadas para esta situación.

Capa de impermeabilización:

- Cuando se disponga una capa de impermeabilización, ésta debe aplicarse y fijarse de acuerdo con las condiciones para cada tipo de material constitutivo de la misma.
- Impermeabilización con materiales bituminosos y bituminosos modificados:
- Las láminas pueden ser de oxiasfalto o de betún modificado.
- Cuando la pendiente de la cubierta esté comprendida entre 5 y 15%, deben utilizarse sistemas adheridos.
- Cuando se quiera independizar el impermeabilizante del elemento que le sirve de soporte para mejorar la absorción de movimientos estructurales, deben utilizarse sistemas no adheridos.
- Cuando se utilicen sistemas no adheridos debe emplearse una capa de protección pesada.

Capa de protección:

- Cuando se disponga una capa de protección, el material que forma la capa debe ser resistente a la intemperie en función de las condiciones ambientales previstas y debe tener un peso suficiente para contrarrestar la succión del viento.
- Solado fijo:
- El solado fijo puede ser de los materiales siguientes: baldosas recibidas con mortero, capa de mortero, piedra natural recibida con mortero, hormigón, adoquín sobre lecho de arena, mortero filtrante, aglomerado asfáltico u otros materiales de características análogas.
- El material que se utilice debe tener una forma y unas dimensiones compatibles con la pendiente.
- Las piezas no deben colocarse a hueso.

Sistema de formación de pendientes:

- El sistema de formación de pendientes debe tener una cohesión y estabilidad suficientes frente a las solicitaciones mecánicas y térmicas, y su constitución debe ser adecuada para el recibido o fijación del resto de componentes.
- Cuando el sistema de formación de pendientes sea el elemento que sirve de soporte a la capa de impermeabilización, el material que lo constituye debe ser compatible con el material impermeabilizante y con la forma de unión de dicho impermeabilizante a él.

Aislante térmico:

- El material del aislante térmico debe tener una cohesión y una estabilidad suficiente para proporcionar al sistema la solidez necesaria frente a las solicitaciones mecánicas.
- Cuando el aislante térmico esté en contacto con la capa de impermeabilización, ambos materiales deben ser compatibles; en caso contrario debe disponerse una capa separadora entre ellos.
- Cuando el aislante térmico se disponga encima de la capa de impermeabilización y quede expuesto al contacto con el agua, dicho aislante debe tener unas características adecuadas para esta situación.

Capa de impermeabilización:

- Cuando se disponga una capa de impermeabilización, ésta debe aplicarse y fijarse de acuerdo con las condiciones para cada tipo de material constitutivo de la misma.
- Impermeabilización con materiales bituminosos y bituminosos modificados:
- Las láminas pueden ser de oxiasfalto o de betún modificado.
- Cuando la pendiente de la cubierta esté comprendida entre 5 y 15%, deben utilizarse sistemas adheridos.
- Cuando se quiera independizar el impermeabilizante del elemento que le sirve de soporte para mejorar la absorción de movimientos estructurales, deben utilizarse sistemas no adheridos.
- Cuando se utilicen sistemas no adheridos debe emplearse una capa de protección pesada.

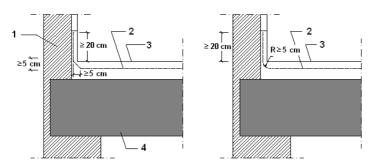
Camara de aire ventilada:

- Cuando se disponga una cámara de aire, ésta debe situarse en el lado exterior del aislante térmico y ventilarse mediante un conjunto de aberturas de tal forma que el cociente entre su área efectiva total, S_s , en cm², y la superficie de la cubierta, A_c , en m² cumpla la siguiente condición:
- Capa de protección:
- Cuando se disponga una capa de protección, el material que forma la capa debe ser resistente a la intemperie en función de las condiciones ambientales previstas y debe tener un peso suficiente para contrarrestar la succión del viento.

3.4.1.4.2.- Puntos singulares de las cubiertas planas.

Deben respetarse las condiciones de disposición de bandas de refuerzo y de terminación, las de continuidad o discontinuidad, así como cualquier otra que afecte al diseño, relativas al sistema de impermeabilización que se emplee.

Juntas de dilatación:

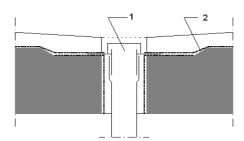

- Deben disponerse juntas de dilatación de la cubierta y la distancia entre juntas de dilatación contiguas debe ser como máximo 15 m. Siempre que exista un encuentro con un paramento vertical o una junta estructural debe disponerse una junta de dilatación coincidiendo con ellos. Las juntas deben afectar a las distintas capas de la cubierta a partir del elemento que sirve de

soporte resistente. Los bordes de las juntas de dilatación deben ser romos, con un ángulo de 45° aproximadamente, y la anchura de la junta debe ser mayor que 3 cm.

- -Cuando la capa de protección sea de solado fijo, deben disponerse juntas de dilatación en la misma. Estas juntas deben afectar a las piezas, al mortero de agarre y a la capa de asiento del solado y deben disponerse de la siguiente forma:
- a) Coincidiendo con las juntas de la cubierta;
- b) En el perímetro exterior e interior de la cubierta y en los encuentros con paramentos verticales y elementos pasantes;
- c) En cuadrícula, situadas a 5 m como máximo en cubiertas no ventiladas y a 7,5 m. como máximo en cubiertas ventiladas, de forma que las dimensiones de los paños entre las juntas guarden como máximo la relación 1:1,5.
- En las juntas debe colocarse un sellante dispuesto sobre un relleno introducido en su interior. El sellado debe quedar enrasado con la superficie de la capa de protección de la cubierta.

Encuentro de la cubierta con un paramento vertical:

 La impermeabilización debe prolongarse por el paramento vertical hasta una altura de 20 cm como mínimo por encima de la protección de la cubierta (véase la siguiente figura).

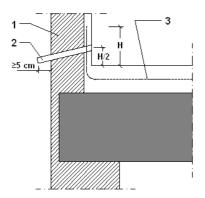

- 1.Paramento vertical
- 2.Impermeabilización
- 3. Protección
- 4.Cubierta
- El encuentro con el paramento debe realizarse redondeándose con un radio de curvatura de 5 cm aproximadamente o achaflanándose una medida análoga según el sistema de impermeabilización.
- Para que el agua de las precipitaciones o la que se deslice por el paramento no se filtre por el remate superior de la impermeabilización, dicho remate debe realizarse de alguna de las formas siguientes o de cualquier otra que produzca el mismo efecto:
- a) Mediante una roza de 3x3 cm como mínimo en la que debe recibirse la impermeabilización con mortero en bisel formando aproximadamente un ángulo de 30° con la horizontal y redondeándose la arista del paramento;
- b) Mediante un retranqueo cuya profundidad con respecto a la superficie externa del paramento vertical debe ser mayor que 5 cm y cuya altura por encima de la protección de la cubierta debe ser mayor que 20 cm;
- c) Mediante un perfil metálico inoxidable provisto de una pestaña al menos en su parte superior, que sirva de base a un cordón de sellado entre el perfil y el muro. Si en la parte inferior no lleva pestaña, la arista debe ser redondeada para evitar que pueda dañarse la lámina.

Encuentro de la cubierta con el borde lateral:

- El encuentro debe realizarse mediante una de las formas siguientes:
 - a) Prolongando la impermeabilización 5 cm como mínimo sobre el frente del alero o el paramento;
 - b) Disponiéndose un perfil angular con el ala horizontal, que debe tener una anchura mayor que 10 cm, anclada al faldón de tal forma que el ala vertical descuelgue por la parte exterior del paramento a modo de goterón y prolongando la impermeabilización sobre el ala horizontal.

Encuentro de la cubierta con un sumidero o un canalón:

- El sumidero o el canalón debe ser una pieza prefabricada, de un material compatible con el tipo de impermeabilización que se utilice y debe disponer de un ala de 10 cm de anchura como mínimo en el borde superior.
- El sumidero o el canalón debe estar provisto de un elemento de protección para retener los sólidos que puedan obturar la bajante. En cubiertas transitables este elemento debe estar enrasado con la capa de protección y en cubiertas no transitables, este elemento debe sobresalir de la capa de protección.
- El elemento que sirve de soporte de la impermeabilización debe rebajarse alrededor de los sumideros o en todo el perímetro de los canalones (véase la siguiente figura) lo suficiente para que después de haberse dispuesto el impermeabilizante siga existiendo una pendiente adecuada en el sentido de la evacuación.


- 1.Sumidero
- 2. Rebaje de soporte

- La impermeabilización debe prolongarse 10 cm como mínimo por encima de las alas.
- La unión del impermeabilizante con el sumidero o el canalón debe ser estanca.
- Cuando el sumidero se disponga en la parte horizontal de la cubierta, debe situarse separado 50 cm como mínimo de los encuentros con los paramentos verticales o con cualquier otro elemento que sobresalga de la cubierta.
- El borde superior del sumidero debe quedar por debajo del nivel de escorrentía de la cubierta.
- Cuando el sumidero se disponga en un paramento vertical, el sumidero debe tener sección rectangular. Debe disponerse un impermeabilizante que cubra el ala vertical, que se extienda hasta 20 cm como mínimo por encima de la protección de la cubierta y cuyo remate superior se haga según lo descrito en el apartado 2.4.4.1.2 de DB HS 1 Protección frente a la humedad.
- Cuando se disponga un canalón su borde superior debe quedar por debajo del nivel de escorrentía de la cubierta y debe estar fijado al elemento que sirve de soporte.

- Cuando el canalón se disponga en el encuentro con un paramento vertical, el ala del canalón de la parte del encuentro debe ascender por el paramento y debe disponerse una banda impermeabilizante que cubra el borde superior del ala, de 10 cm como mínimo de anchura centrada sobre dicho borde resuelto según lo descrito en el apartado 2.4.4.1.2 de DB HS 1 Protección frente a la humedad.

Rebosaderos:

- En las cubiertas planas que tengan un paramento vertical que las delimite en todo su perímetro, deben disponerse rebosaderos en los siguientes casos:
 - a) Cuando en la cubierta exista una sola bajante;
 - b) Cuando se prevea que, si se obtura una bajante, debido a la disposición de las bajantes o de los faldones de la cubierta, el agua acumulada no pueda evacuar por otras bajantes;
 - c) Cuando la obturación de una bajante pueda producir una carga en la cubierta que comprometa la estabilidad del elemento que sirve de soporte resistente.
 - La suma de las áreas de las secciones de los rebosaderos debe ser igual o mayor que la suma de las de bajantes que evacuan el agua de la cubierta o de la parte de la cubierta a la que sirvan.
 - El rebosadero debe disponerse a una altura intermedia entre la del punto más bajo y la del más alto de la entrega de la impermeabilización al paramento vertical (véase la siguiente figura) y en todo caso a un nivel más bajo de cualquier acceso a la cubierta.

- 1.Paramento vertical
- 2.Rebosadero
- 3.Impermeabilización

- El rebosadero debe sobresalir 5 cm como mínimo de la cara exterior del paramento vertical y disponerse con una pendiente favorable a la evacuación.

Encuentro de la cubierta con elementos pasantes:

- Los elementos pasantes deben situarse separados 50 cm como mínimo de los encuentros con los paramentos verticales y de los elementos que sobresalgan de la cubierta.
- Deben disponerse elementos de protección prefabricados o realizados in situ, que deben ascender por el elemento pasante 20 cm como mínimo por encima de la protección de la cubierta.

Anclaje de elementos:

- Los anclajes de elementos deben realizarse de una de las formas siguientes:
 - a) Sobre un paramento vertical por encima del remate de la impermeabilización;
 - b) Sobre la parte horizontal de la cubierta de forma análoga a la establecida para los encuentros con elementos pasantes o sobre una bancada apoyada en la misma.

Rincones y esquinas:

- En los rincones y las esquinas deben disponerse elementos de protección prefabricados o realizados in situ hasta una distancia de 10 cm como mínimo desde el vértice formado por los dos planos que conforman el rincón o la esquina y el plano de la cubierta.

Accesos y aberturas:

- Los accesos y las aberturas situados en un paramento vertical deben realizarse de una de las formas siguientes:
 - a) Disponiendo un desnivel de 20 cm de altura como mínimo por encima de la protección de la cubierta, protegido con un impermeabilizante que lo cubra y ascienda por los laterales del hueco hasta una altura de 15 cm como mínimo por encima de dicho desnivel;
- b) Disponiéndolos retranqueados respecto del paramento vertical 1 m como mínimo. El suelo hasta el acceso debe tener una pendiente del 10% hacia fuera y debe ser tratado como la cubierta, excepto para los casos de accesos en balconeras que vierten el agua libremente sin antepechos, donde la pendiente mínima es del 1%.
- Los accesos y las aberturas situados en el paramento horizontal de la cubierta deben realizarse disponiendo alrededor del hueco un antepecho de una altura por encima de la protección de la cubierta de 20 cm como mínimo e impermeabilizado según lo descrito en el apartado 2.4.4.1.2 de DB HS 1 Protección frente a la humedad.

3.4.2.-EXIGENCIA BÁSICA HS 2: RECOGIDA Y EVACUACIÓN DE RESIDUOS.

3.4.2.1.- ALMACÉN DE CONTENEDORES DE EDIFICIO Y ESPACIO DE RESERVA.

Cada edificio debe disponer como mínimo de un almacén de contenedores de edificio para las fracciones de los residuos que tengan recogida puerta a puerta, y, para las fracciones que tengan recogida centralizada con contenedores de calle de superficie, debe disponer de un espacio de reserva en el que pueda construirse un almacén de contenedores cuando alguna de estas fracciones pase a tener recogida puerta a puerta.

3.4.2.1.2.- Almacén de contenedores.

No procede ya que ninguna fracción tiene servicio de recogida puerta a puerta.

3.4.2.2.- ESPACIOS DE ALMACENAMIENTO INMEDIATO EN LAS VIVIENDAS.

- a) Deben disponerse en cada vivienda espacios para almacenar cada una de las cinco fracciones de los residuos ordinarios generados en ella.
- b) El espacio de almacenamiento de cada fracción debe tener una superficie en planta no menor que 30x30 cm y debe ser igual o mayor que 45 dm³.
- c) En el caso de viviendas aisladas o agrupadas horizontalmente, para las fracciones de papel / cartón y vidrio, puede utilizarse como espacio de almacenamiento inmediato el almacén de contenedores del edificio.
- d) Los espacios destinados a materia orgánica y envases ligeros deben disponerse en la cocina o en zonas anejas auxiliares.
- e) Estos espacios deben disponerse de tal forma que el acceso a ellos pueda realizarse sin que haya necesidad de recurrir a elementos auxiliares y que el punto más alto esté situado a una altura no mayor que 1,20 m por encima del nivel del suelo.
- f) El acabado de la superficie de cualquier elemento que esté situado a menos de 30 cm de los límites del espacio de almacenamiento debe ser impermeable y fácilmente lavable.

Cálculo de la capacidad mínima de almacenamiento.

	Vivienda Tipo A [3 dormitorios dobles]										
Fracción	CA ⁽¹⁾ (I/persona)	P _v ⁽²⁾ (ocupantes)	Capacidad (I)								
Papel / cartón	10.85	6	45.00								
Envases ligeros	7.80	6	45.00								
Materia orgánica	3.00	6	45.00								
Vidrio	3.36	6	45.00								
Varios	10.50	6	45.00								
		Capacidad mínima total	225.00								

Notas:

 $^{^{(2)}}$ P_{ν} , número estimado de ocupantes habituales del edificio, que equivale a la suma del número total de dormitorios sencillos y el doble de número total de dormitorios dobles.

	Vivienda Tipo B [2 dormitorios dobles]									
Fracción	CA ⁽¹⁾ (I/persona)	P _v ⁽²⁾ (ocupantes)	Capacidad (I)							
Papel / cartón	10.85	4	45.00							
Envases ligeros	7.80	4	45.00							
Materia orgánica	3.00	4	45.00							
Vidrio	3.36	4	45.00							
Varios	10.50	4	45.00							
		Capacidad mínima total	225.00							

⁽¹⁾ CA, coeficiente de almacenamiento (l/persona), cuyo valor para cada fracción se obtiene de la tabla 2.3 del DB HS 2.

	Vivienda Tipo B [2 dormitorios dobles]										
Fracción	CA ⁽¹⁾ (I/persona)	P _v (ocupantes)	Capacidad (I)								

Notas:

 $^{^{(2)}}$ $P_{\nu_{\nu}}$ número estimado de ocupantes habituales del edificio, que equivale a la suma del número total de dormitorios sencillos y el doble de número total de dormitorios dobles.

	Vivienda Tipo C [2 dor	mitorios dobles]		
Fracción	CA ⁽¹⁾ (I/persona)	P _v ⁽²⁾ (ocupantes)	Capacidad (I)	
Papel / cartón	10.85	4	45.00	
Envases ligeros	7.80	4	45.00	
Materia orgánica	3.00	4	45.00	
Vidrio	3.36	4	45.00	
Varios	10.50	4	45.00	
		Capacidad mínima total	225.00	

Notas:

Vivienda	Tipo D [2 dormitorios do	bles y 1 dormitorio senci	llo]	
Fracción	CA ⁽¹⁾ (I/persona)	P _v ⁽²⁾ (ocupantes)	Capacidad (I)	
Papel / cartón	10.85	5	45.00	
Envases ligeros	7.80	5	45.00	
Materia orgánica	3.00	5	45.00	
Vidrio	3.36	5	45.00	
Varios	10.50	5	45.00	
		Capacidad mínima total	225.00	

Notas:

 $^{^{(2)}}$ P_{v_r} número estimado de ocupantes habituales del edificio, que equivale a la suma del número total de dormitorios sencillos y el doble de número total de dormitorios dobles.

Vivienda Tipo E [3 dormitorios dobles]										
Fracción	CA ⁽¹⁾ (I/persona)	P _v ⁽²⁾ (ocupantes)	Capacidad (I)							
Papel / cartón	10.85	6	45.00							
Envases ligeros	7.80	6	45.00							
Materia orgánica	3.00	6	45.00							
Vidrio	3.36	6	45.00							
Varios	10.50	6	45.00							

⁽¹⁾ CA, coeficiente de almacenamiento (l/persona), cuyo valor para cada fracción se obtiene de la tabla 2.3 del DB HS 2.

⁽¹⁾ CA, coeficiente de almacenamiento (l/persona), cuyo valor para cada fracción se obtiene de la tabla 2.3 del DB HS 2.

 $^{^{(2)}}$ P_{ν} , número estimado de ocupantes habituales del edificio, que equivale a la suma del número total de dormitorios sencillos y el doble de número total de dormitorios dobles.

⁽¹⁾ CA, coeficiente de almacenamiento (l/persona), cuyo valor para cada fracción se obtiene de la tabla 2.3 del DB HS 2.

Vivienda Tipo E [3 dormitorios dobles]										
Fracción CA ⁽¹⁾ (I/persona) P _v ⁽²⁾ (ocupantes) Capacidad (I)										
		Capacidad mínima total	225.00							

Notas:

- (1) CA, coeficiente de almacenamiento (l/persona), cuyo valor para cada fracción se obtiene de la tabla 2.3 del DB HS 2.
- $^{(2)}$ $P_{\nu_{\nu}}$ número estimado de ocupantes habituales del edificio, que equivale a la suma del número total de dormitorios sencillos y el doble de número total de dormitorios dobles.

3.4.3.- EXIGENCIA BÁSICA HS 3: CALIDAD DEL AIRE INTERIOR.

3.4.3.1.- ABERTURAS DE VENTILACIÓN.

3.4.3.1.1.- Viviendas.

3.4.3.1.1.1.- Ventilación híbrida.

En condiciones favorables, la renovación de aire se produce de forma natural y en condiciones desfavorables, la ventilación se produce con extracción mecánica.

Consiste en crear corrientes de aire en la vivienda por medio de orificios de entrada de aire (aberturas de admisión) en las fachadas de los recintos secos (comedores, dormitorios y salas) o situadas en las carpinterías (aireadores), y en orificios de salida (aberturas de extracción) en la parte superior de los recintos húmedos (baños y cocinas).

Las aberturas de extracción enlazan a conductos de extracción y aspiradores híbridos que sólo se activan si las condiciones naturales de presión y temperatura no son favorables. Las aberturas de admisión deben comunicar directamente con el exterior. En general la dimensión de los conductos es mayor que para la ventilación mecánica

Viviendas Tipo A-B-C-D-E:

Cálo	Cálculo de las aberturas de ventilación											
		Λ		av	00	Aberturas de ventilación						
Local	Tipo	Au (m²)	No	qv (l/s)	qe (l/s)	Tab	qa (l/s)	Amin (cm²)	Areal (cm²)	Dimensiones (mm)		
						Α	10.0	40.0	96.0	800x80x12		
Salón / Comedor	Seco	15.8	4	12.0	14.1	Α	4.1	16.3	96.0	800x80x12		
Salott / Contedor	3600	13.8	4			Р	1/11	112.7	72.5	Holgura		
						Г	17.1		145.0	725x20x82		
				5.0		Α	7.1	28.3	96.0	800x80x12		
						Р	7.1	70.0	72.5	Holgura		
Dormitorios	Seco	7.1	1		7.1	Α	7.1	28.3	96.0	800x80x12		
Domitorios	3600	7.1	_	3.0	7.1	Р	2.1	70.0	72.5	Holgura		
						Р	1E O	120.0	72.5	Holgura		
						Г	13.0	120.0	145.0	725x20x82		
Cocina		7.4	-	14.2	18.3	Α	10.0	0.1	0.1	-		
Cocina	Húmedo	7.1				Р	8.3	70.0	72.5	Holgura		

	Cálo	culo de la	s abe	rtu	ras d	le ven	tilac	ión			
			۸.,		av.	00		Aberturas de ventilación			
	Local	Tipo	Au (m²)	No	qv (I/s)	qe (I/s)	Tab	•		Areal (cm²)	Dimensiones (mm)
							Ε	18.3	73.0	201.1	Ø 160
				-	15.0	15.0	Р	1E O	120.0	72.5	Holgura
D = 0	£	Húmedo	2.0					13.0	120.0	145.0	725x20x82
Bar	io / Aseo		2.9				Ε	15.0	60.0	122.7	Ø 125
							Е	15.0	60.0	122.7	Ø 125
		Abre	viatu	ras	utiliz	zadas					
Au	Área útil			Tal	า	•			•	lmisiór mixta	•
No	Número de ocupantes.	qa	C	audal	de v	entil	ación d	de la al	bertura.		
qv	qv Caudal de ventilación mínimo exigido.					Área mínima de la abertura.					
qe	qe Caudal de ventilación equilibrado (+/-entrada/salida de aire)					rea re	eal d	e la a	bertur	a.	

3.4.3.1.3.- Garajes.

3.4.3.1.3.1.- Ventilación natural.

No procede

3.4.3.2.- CONDUCTOS DE VENTILACIÓN.

3.4.3.2.1.- Viviendas.

3.4.3.2.1.1.- Ventilación híbrida.

3.4.3.2.1.1.1.- Conductos de extracción.

	Cálculo de conductos										
qv Sc Sreal Dimensione			nes	De	V	Lr	Lt	J			
Tramo		(l/s)	(cm²)	(cm²)	(mm)		(cm)	(m/s)	(m)	(m)	(mm.c.a.)
1.0 -	1.1	30.0	625.0	706.9		300	30.0	0.4	0.3	0.3	0.000
1.1 -	1.2	15.0	625.0	706.9		300	30.0	0.2	9.4	9.4	0.004
					Abreviaturas	utiliza	adas				
qv	Cauda	l de air	e en el co	onducto		v Velocidad					
Sc	Secció	n calcu	lada			Lr <i>Loi</i>	ngitud r	nedida s	obre į	olano	
Sreal <i>Sección real</i>					Lt Longitud total de cálculo						
De	Diáme	tro equ	ıivalente			J Péi	rdida de	e carga			

3.4.3.2.2.- Garajes.

3.4.3.2.2.1.- Ventilación mecánica.

3.4.3.2.2.1.1.- Conductos de extracción. (Salida de aire).

				Cálc	ulo de	cond	ucto	S			
Tram	qv	Sc	Sreal	Dimensiones	De	V	Lr	Lt	J	Pent	Psal
IIaiii	(l/s)	(cm²)	(cm²)	(mm)	(cm)	(m/s)	(m)	(m)	(mm.c.a.)	(mm.c.a.)	(mm.c.a.)
5-6	48.0	119.9	875	350x250	32.8	0.5	0.8	0.8	0.002	1.457	1.456
4-5	46.1	115.4	1125	450x250	32.8	0.5	1.0	1.0	0.002	1.456	1.454
3-4	17.2	43.1	875	350x250	32.8	0.2	6.5	6.5	0.003	1.454	1.450
2-3	28.9	72.3	1375	550x250	32.8	0.3	1.9	1.9	0.002	1.454	1.452
1-2	27.1	67.8	1375	550x250	32.8	0.3	1.4	1.4	0.000	1.452	1.451
				Abre	viatur	as util	izada	ıS			
qv	Caudal	de aire	en el c	conducto		Lr	Long	jitud	medida sol	bre plano	
Sc	Sección	calcul	ada			Lt	Long	jitud	total de cá	lculo	
Sreal Sección real						J	Péra	lida d	de carga		
De Diámetro equivalente						Pent	Presión de entrada				
v	Velocia	ad				Psal	Pres	ión a	le salida		

3.4.3.2.2.1.2.- Conductos de admisión. (Entrada de aire).

					Cálc	ulo de	cond	ucto	S			
Tram		qv	Sc	Sreal	Dimensiones	De	V	Lr	Lt	J	Pent	Psal
IIaiii	(I/s) (cm^2) (cm^2) (mm) (cm^2)						(m/s)	(m)	(m)	(mm.c.a.)	(mm.c.a.)	(mm.c.a.)
3-4	4	48.0	119.9	875	350x250	32.8	0.5	0.5	0.5	0.001	1.470	1.469
2-3	4	44.6	111.6	1125	450x350	32.8	0.5	3.0	3.0	0.006	1.469	1.463
3-4	3	39.6	99.0	1375	550x250	32.8	0.4	1.4	1.4	0.008	1.463	1.455
					Abre	viatur	as util	izada	ıS			
qv	Са	udal	de aire	en el c	conducto		Lr	Longitud medida sobre plano				
Sc	Sei	cción	calcul	ada			Lt	Long	jitud	total de cá	lculo	
Sreal	Sreal Sección real							Péra	lida d	de carga		
De Diámetro equivalente							Pent	t Presión de entrada				
v	Ve	locid	ad				Psal	Pres	ión a	le salida		

3.4.3.3.- ASPIRADORES HÍBRIDOS, ASPIRADORES MECÁNICOS Y EXTRACTORES.

3.4.3.3.1.- Viviendas.

3.4.3.3.1.1.- Ventilación híbrida.

Cálculo de aspiradores									
Referencia	Caudal	Presión (mm.c.a.)							
Referencia	(l/s)	(mm.c.a.)							
E/V	30.0	0.549							

3.4.3.3.2.- Garajes.

3.4.3.3.2.1.- Ventilación mecánica.

Cálculo de ventiladores									
Referencia	Caudal	Presión (mm.c.a.)							
Kererencia	(l/s)	(mm.c.a.)							
V	48.0	2.634							

3.4.4.- EXIGENCIA BÁSICA HS4: SUMINISTRO DE AGUA.

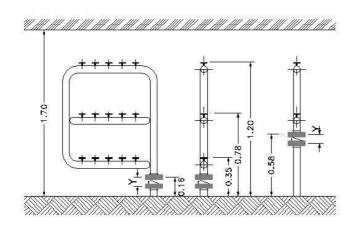
3.4.4.1.- ACOMETIDAS.

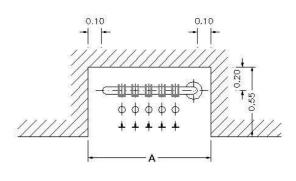
Tubo de polietileno de alta densidad (PE-100 A), PN=16 atm, según UNE-EN 12201-2.

					Cálc	ulo hidr	áulico	o de	las ac	ometic	das			
Tra	-ramo $\begin{pmatrix} L_r & L_t & Q_b \\ (m) & (m) & (m^3/h) \end{pmatrix}$ K $\begin{pmatrix} Q & h \\ (m^3/h) & (m.c.a) \end{pmatrix}$			D _{int}			J	Pent	P _{sal}					
		(m)	(m)	(m³/h)		(m-/n)	(m.c.	a.)	(mm)	(mm)	(m/s)	(m.c.a.)	(m.c.a.)	(m.c.a.)
1	2	23.80	27.37	84.24	0.11	9.63	2	.40	32.60	40.00	3.20	9.10	29.50	17.00
	Abreviatura				as ı	utilizac	las							
Lr	Long	gitud m	nedida	sobre p	lanos			D _{int}	Dián	netro ir	nterior			
\mathbf{L}_{t}	Long	gitud to	otal de	cálculo	(L _r + 1	L _{eq})		D_{co}	Dián	netro c	omerc	ial		
Q_b	Cau	dal bru	to					v	Velo	Velocidad				
K	K Coeficiente de simultaneidad						J	Péra	lida de	carga	del tram	o		
Q	Q Caudal, aplicada simultaneidad ($Q_b x K$)						P _{en}	Pres	Presión de entrada					
h Desnivel						P _{sal}	Pres	ión de :	salida					

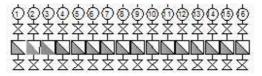
3.4.4.2.- TUBOS DE ALIMENTACIÓN.

Tubo de polietileno reticulado (PE-X), serie 5, PN=6 atm, según UNE-EN ISO 15875-2.


				Cál	lculo	hidráuli	co de lo	s tu	bos	de alin	nentac	ión		
Tra	amo	L _r	L _t	Q _b	K	Q	h	С	int	D_{com}	V	J	P _{ent}	P _{sal}
116	JIIIO	(m)	(m)	(m³/h)	K	(m³/h)	(m.c.a.	(m	nm)	(mm)	(m/s)	(m.c.a.)	(m.c.a.)	(m.c.a.)
2	-3	3.37	3.88	84.24	0.11	9.63	-2.40	32	2.60	40.00	3.20	1.29	17.00	18.12
3	-4	5.65	6.50	84.24	0.11	9.63	0.3	32	2.60	40.00	3.20	2.16	51.13	48.67
						Abr	eviatura	as ut	tiliza	das				
L_{r}	Long	gitud ı	media	la sobre	pland	os) _{int}	Diá	metro	interio	r		
\mathbf{L}_{t}	Long	gitud t	total d	de cálcu	lo (L _r -	+ L _{eq})		Ocom	Diá	metro	comer	cial		
Q_b	Cau	dal br	uto				,	/	Velocidad					
K	Coef	icient	e de s	simultar	eidad	l		l	Pér	dida de	carga	del tram	10	
Q	Cau	dal, a _l	olicad	a simult	aneid	lad (Q _b)	(K)	ent	Pre	sión de	entra	da		
h	Desr	nivel					sal	Pre	sión de	salida	1			


3.4.4.3.- GRUPOS DE PRESIÓN.

Grupo de presión, con 1 bomba centrífuga multietapa horizontal, con unidad de regulación electrónica potencia nominal total de 3,7 kW (3).


		Cálcu	lo hidráulic	o de los	grup	os de presió	n	
Gp	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		P _{dis} (m.c.a	a.)	V _{dep} (I)	P _{ent} (m.c.a.)	P _{sal} (m.c.a.)	
3	9.63	33.02	9.63	3	3.02	200.00	18.12	51.13
			Abrevi	aturas u	tilizac	das		
Gp	Grupo de pre	sión		P_{dis}	Pres	sión de diseñ	0	
\mathbf{Q}_{cal}	Caudal de cái	'culo		V_{dep}	Сар	acidad del de	epósito de me	mbrana
\mathbf{P}_{cal}	Presión de cá	lculo		P_{ent}	Pres	sión de entra	da	
\mathbf{Q}_{dis}	Caudal de dis	eño		P_{sal}	Pres	sión de salido	1	

3.4.4.4.- BATERÍAS DE CONTADORES

				Cá	ilculo hi	idráuli	ico de la	as bate	ería	s de conta	dores		
Bat	D _{bat}	Ni	$N_{\rm f}$	Α	D_{valv}	Υ	D_cont	J _{ent}		J_{ind}	J_{t}	P_{ent}	P_{sal}
201	(mm)	. • [(m)	(mm)	(m)	(mm)	(m.c.	a.)	(m.c.a.)	(m.c.a.)	(m.c.a.)	(m.c.a.)
16	40.00	17	2	1.64	63.00	0.09	20.00	C	.50	5.40	5.90	48.67	42.77
						Ab	reviatu	ras uti	lizad	das			
Bat	Batería	de	con	tadore	es divisio	onario	S	D_{cont}	Diá	metro de l	los contad	lores	
D_{bat}	Diámet	ro a	le la	ı bater	ría			\mathbf{J}_{ent}	Pér	dida por e	ntrada		
N_{i}	Númer	o de	coi	ntador	es			\mathbf{J}_{ind}	Pér	dida por c	ontador		
N_{f}	Númer	o de	fila	15				J_{t}	Pérdida total (J _{ent} + J _{ind})				
Α	A Ancho del área de mantenimiento					P_{ent}	Pre	sión de en	trada				
D_{valv}	D _{valv} Diámetro de la válvula de retención					\mathbf{P}_{sal}	Pre	sión de sa	lida				
Υ													

TABLA DE CONT	ADORES INDIVIDUALES
N° CONTADOR	DENOMINACIÓN
1	Comunitario
2	Vivienda 1º A
3	Vivienda 1º B
4	Vivienda 1° C
5	Vivienda 2º A
6	Vivienda 2º B
7	Vivienda 2º C
8	Vivienda 3º A
9	Vivienda 3º B
10	Vivienda 3° C
11	Vivíenda 4º A
12	Vivienda 4º B
13	Vivienda 4° C
14	Vivienda 5° D
15	Vivienda 5° E
16	Local Comercial P.Baja

3.4.4.5.- MONTANTES.

3.4.4.5.1.- Montantes.

Tubo de polietileno reticulado (PE-X), serie 5, PN=6 atm, según UNE-EN ISO 15875-2.

					Cálc	ulo hidi	áulic	o de	los m	ontan	tes			
Tre	amo	L_r	L_{t}	Q_b	K	Q	h		D_{int}	D_{com}	V	J	P _{ent}	P_{sal}
110	OIIIE	(m)	(m)	(m³/h)	2	(m³/h)	(m.c.a.)				(m/s)	(m.c.a.)	(m.c.a.)	(m.c.a.)
	-	31.20	35.89	6.48	0.42	2.69	14	.10	20.40	25.00	2.29	11.39	42.77	16.78
						Abre	viatur	as ı	ıtilizac	las				
L_{r}	Long	gitud m	nedida	sobre p	lanos			D _{int}	Dián	netro ii	nterior	,		
L_{t}	Long	gitud to	otal de	cálculo	$(L_r + I$	L_{eq})		D_{co}	_m Dián	netro c	omerc	ial		
Q_b	Cau	dal bru	to					٧	Velo	cidad				
K	Coeficiente de simultaneidad						J	Péra	lida de	carga	del tram	o		
Q	Q Caudal, aplicada simultaneidad ($Q_b x K$)					P _{en}	Pres	Presión de entrada						
h Desnivel						P_{sal}	Pres	ión de .	salida					

3.4.4.6.- INSTALACIONES PARTICULARES.

3.4.4.6.1.- Instalaciones particulares.

Tubo de polietileno reticulado (PE-X), serie 5, PN=6 atm, según UNE-EN ISO 15875-2.

	C	álcul	o hic	lráulic	o de	las ins	talacio	nes p	articu	lares			
Trai	m T _{tub}	L _r	L _t	Q _b (m³/	К	Q (m³/	h (m.c.a	D _{int}	D _{com}	V (m/s	J (m.c.a	P _{ent} (m.c.a	P _{sal}
0	' tub	(m)	(m)	h)	K	h)	.))))	.)	.)	.)
-	Instalación interior	2.3	2.7 5	3.64	0.5 4	1.96	-1.40	20.4	25.0 0	1.67	0.49	16.78	17.70
-	Cuarto húmedo	0.3 4	0.3	3.64	0.5 4	1.96	0.00	20.4 0	25.0 0	1.67	0.07	14.38	14.31
-	Puntal	2.0 9	2.4 0	0.72	1.0 0	0.72	-2.00	16.2 0	20.0	0.97	0.21	10.21	12.00
				Ab	revia	turas	utilizad	as					
	Tipo de tubería: F (/ caliente)	Agua	fría)	, C (Ag	iua	D _{ir}	o _{int} Diámetro interior						
L_r	Longitud medida so	bre p	oland	os		D_c	_{om} Dián	netro	comei	rcial			
L _t	Longitud total de co	álculo	(L _r -	+ L _{eq})		v	Velo	cidad					
Q_b	Caudal bruto					J	Pérd	ida de	carg	a del	tramo		
K	K Coeficiente de simultaneidad						nt Presi	ión de	entro	ada			
Q	Q Caudal, aplicada simultaneidad ($Q_b \times K$)						Presi	ión de	salid	а			
h	h Desnivel												
Inst	Instalación interior: (Vivienda)												

3.4.4.6.2.- Producción de A.C.S.

Cálculo hidráulico de los equipos de producción de A.C.S.								
Referencia	Descripción	Q _{cal} (m³/h)						
-	Caldera eléctrica para calefacción y ACS	1.73						
	Abreviaturas utilizadas							
Q _{cal} Caudal de cálculo								

3.4.4.7.- AISLAMIENTO TÉRMICO.

-Aislamiento térmico de tuberías en instalación interior de A.C.S., colocada superficialmente, para la distribución de fluidos calientes (de +60°C a +100°C), formado por coquilla de espuma elastomérica de 19 mm de diámetro interior y 25 mm de -Aislamiento térmico de tuberías en instalación interior de A.C.S., colocada superficialmente, para la distribución de fluidos calientes (de +60°C a +100°C), formado por coquilla de espuma elastomérica de 23 mm de diámetro interior y 25 mm -Aislamiento térmico de tuberías en instalación interior de A.C.S., colocada superficialmente, para la distribución de fluidos calientes (de +60°C a +100°C), formado por coquilla de espuma 26 mm de diámetro interior y 25 mm -Aislamiento térmico de tuberías en instalación interior de A.C.S., empotrada en paramento, para la distribución de fluidos calientes (de +40°C a +60°C), formado por coquilla de espuma elastomérica de 16,0 mm de diámetro interior y 9,5 mm de espesor. -Aislamiento térmico de tuberías en instalación interior de A.C.S., empotrada en paramento, para la distribución de fluidos calientes (de +40°C a +60°C), formado por coquilla de espuma elastomérica de 23,0 mm de diámetro interior y 10,0 mm de espesor. -Aislamiento térmico de tuberías en instalación interior de A.C.S., empotrada en paramento, para la distribución de fluidos calientes (de +60°C a +100°C), formado por coquilla de espuma elastomérica de 19 mm de diámetro interior y 25 mm de espesor.

3.4.5: EXIGENCIA BÁSICA HS 5: EVACUACIÓN DE AGUAS.

3.4.5.1.- RED DE AGUAS RESIDUALES. Red de pequeña evacuación:

	SECCIONES DE D	ESAGÜE
Ø	32 mm - BIDE	PENDIENTE - 2%
Ø	32 mm - LAVABO	PENDIENTE - 2%
Ø	40 mm - FREGADERO	PENDIENTE - 2%
Ø	40 mm - DUCHA	PENDIENTE - 2%
Ø	40 mm - BAÑERA	PENDIENTE - 2%
Ø	40 mm - LAVADORA	PENDIENTE - 2%
Ø	40mm - PILA/LAVADERO	PENDIENTE - 2%
Ø	50 mm - BOTE SIFÓNICO	PENDIENTE - 2%
Ø	110 mm - INODORO	PENDIENTE - 2%
Ø	40 mm - LAVAVAJILLAS	PENDIENTE - 2%
-		

Bajantes:

DIÁMETROS DE BAJANTES
BAJANTES DE PLUVIALES: P1-P2-P3-P4-P5-P6 P7-P8-P9100 mm
BAJANTES DE RESIDUALES O FECALES: F1-F2 F3-F4-F5-F6-F7150 mm

Arquetas:

	Arquetas										
	Ref.	Ltr	ic	D_{sal}	Dimensiones comerciales						
	Nei.	(m)	(%)	(mm)	(cm)						
	Arqueta sifónica	5.44	2.00	160	100x100x150 cm						
	Arqueta de bombeo	2.63	2.00	160	100x100x150 cm						
	Arqueta de paso enterrada	6.20	2.07	150	60x60x80 cm						
Δ	rqueta de paso colgada a pie de bajante	2.83	2.00	150	30x30x30 cm						
	Abreviatura	as util	izadas								
Ref.	Referencia en planos	ic Pendiente del colector									
Ltr	Longitud entre arquetas	D_{sal}	Diáme	tro del d	colector de salida						

3.4.5.2.- RED DE AGUAS PLUVIALES.

Sumideros:

	Sumideros										
	Α				0			Cálculo	hidráulico		
Tramo	(m ²)	(m)	(%)	UDs	D _{min} (mm)	(mm/h)	С	Y/D	V		
	, ,	(,	(,,,		(,	(,		(%)	(m/s)		
Cubierta .No Transitable											
(x4) BP1-2-3-6	30,00	8.89	2.00	-	50	90.00	0.60	-	-		
Terrazas Ático. Cubierta Transitable											
Ático D BP2	19.80	1.19	2.00	-	50	90.00	0.60	-	-		
Ático D BP6	15.95	2.05	2.00	-	50	90.00	0.60	-	-		
Ático E BP1	35.00	3.31	2.00	-	50	90.00	0.60	-	-		
Ático E BP3	35.00	2.92	2.00	-	50	90.00	0.60	-	-		
Vivienda A-Terraza BP5 (x4 plantas)	3,13	1.90	2.00	-	40	90.00	0.60	-	-		

	Sumideros										
	Tramo	A (m²)	L (m)	i (%)	UDs	D _{min} (mm)	l (mm/h)	С	Cálculo Y/D (%)	hidráulico v (m/s)	
		Abrev	iatura	ıs uti	lizada	as					
Α	Área de descarga al sumidero			I	Inten	sidad	pluviome	étrico	1		
L	Longitud medida sobre planos			С	Coefi	ciente	de escoi	rent	ía		
i	Pendiente			Y/D	Nivel	de lle	nado				
UDs	Unidades de desagüe	\ /	Velocidad BP- Bajante Pluviales								
D_{min}	Diámetro interior mínimo										

Colectores:

	Colectores en techo Planta Baja											
			;	D .	0	Cálculo hidráulico						
Tramo		(m)	(%)	D _{min} (mm)	Q _c (m³/h)	Y/D (%)	v (m/s)	D _{int} (mm)	D _{com} (mm)			
F:	3-F3`	1.80	2.00	160	32.20	37.54	0,7	144	150			
F	4-F4`	1.40	1.00	110	9.64	41.67	0.70	144	150			
F.	5-F5`	2.60	1.00	90	5.52	41.71	0.70	144	150			
F	6-F6`	1.36	5.10	90	0.45	8.04	0.70	144	150			
F	7-F7`	1.60	1.62	90	1.74	20.26	0.70	144	150			
				Abre	viaturas util	izadas						
L	Longitu	d medida	sobre pla	anos	Y/D	Nivel de llen	ado					
i	Pendier	nte			v	Velocidad						
D_{min}	D _{min} Diámetro interior mínimo				D _{int}	Diámetro in	terior com	ercial				
					Diámetro co	omercial						
Q_c	Caudal	dal calculado con simultaneidad										
						F- Bajante F	ecales/Res	iduales				

3.4.5.3.- COLECTORES MIXTOS.

Colectores del sistema semiseparativo:

Colectores en techo planta sótano												
				_	Cálculo hidráulico							
Tramo	(m)	(%)	UDs	D _{min} (mm)	Qb (m³/h)	K	Qs (m³/h)	Y/D (%)	v (m/s)	D _{int} (mm)	D _{com} (mm)	
F1-1	2.05	3.00	-							144	150	
				150	-		-	-	-			
P1-2	6.02	3.00	-	125	-		-	-	-	119	125	
1-2	2.35	3.00	-	250	-		-	-	-	249	250	
2-3	4.3	3.00	-	250	-		1	-	-	249	250	

			Co	lector	es en te	cho plan	ta	sótano				
									ılo hic	dráulico		
	Tramo	(m)	i (%)	UDs	D _{min} (mm)	Qb (m³/h)	K	Qs (m³/h)	Y/D (%)	v (m/s)	D _{int} (mm)	D _{com} (mm)
	F3′-3	6.00	3.00	-	150	-		-	-	-		
	F4′-4	3.5	3.00	-	150	-		-	-	-		
	3-4	1.5	3.00	-	250	-		-	-	-		
	F6′-5	1.45	3.00	-	150	-		1	-	1		
	5-6	6.55	3.00	-	250	-		1	-	1		
	P3-6	6.1	3.00	-	125	-		-	-	-		
	P4-7	5.5	3.00	-	125	-		-	-	-		
	6-7	0.35	3.00	-	250	-		1	-	1		
	7-8	2.25	3.00	-	250	-		1	-	•		
	P8-8	6.2	3.00	-	125	-		ı	-	ı		
8-	ACOMETIDA	4.6	3.00	-	250	-		-	-	1		
	F2-9	1.00	3.00	-	150	-		-	-	-		
	P2-10	5.00	3.00	-	125	-		-	-	-		
	9-10	2.40	3.00	-	250	-		-	-	-		
	10-11	1.5	3.00	-	250	-		-	-	-		
	F7`-11	1.8	3.00	-	150	-		-	-	-		
	11-12	8.2	3.00	-	250	-		-	-	-		
	F5´-12	5.4	3.00	-	150	-		-	-	-		
	12-13	2.0	3.00	-	250	-		-	-	-		
	P5-13	1.6	3.00	-	125	-		-	-	-		
	13-14	2.45	3.00	-	250	-		1	-	1		
	14-15	0.6	3.00	-	250	-		-	-	-		
	P6-14	5.05	3.00	-	125	-		-	-	-		
	P7-15	5.2	3.00	-	125	-		-	-	-		
	15-16	2.9	3.00	_	250	-		-	-	-		
	P9-16	5.2	3.00		125							
16	-ACOMETIDA	6.8	3.00		250							
	Abreviaturas utilizadas											
L	Longitud	medid	a sobr	e plan	os	Qs	С	audal coi	า simเ	ıltaneid	ad (Qb)	(k)
i	-	Pendi	ente			Y/D	, ,					
UDs	Unid	ades d	e desa	güe		v Velocidad						
D_{min}	Diámet					D _{int} Diámetro interior comercio					mercial	
						Diámetro comercial						
Qb	(Caudal	bruto			D _{com} P-Bajante Pluviales						
								F-Bajante Fecales				
K	Coeficier	ite de s	simulto	aneida	d					†		

	Colectores bajo solera cimentación														
		1			_		Cálculo hidráulico								
Tran	no	(m)	(%)	UDs	D _{min} (mm)	Qb (m³/h)) K	Qs (m³/h)	Y/D (%)	v (m/s)	D _{int} (mm)	D _{com} (mm)			
A-E	В	0.50	3.00		100						90	100			
C-E	В	6.20	3.00		100						90	100			
B-E	D	7.30	3.00		125						115	125			
E-C	D	0.50	3.00		100						90	100			
D-I	F	8.20	3.00		160						150	160			
F-C	G	6.00	3.00		125						115	125			
H-0	G	1.20	3.00		100						90	100			
G-	·l	3.67	3.00		100						90	100			
					Abr	eviatura	s uti	lizadas							
L		Longit	ud med	lida sol	bre plano	S	Qs	Cauda	ıl con s	imultane	idad (Qb	x k)			
i			Per	ndiente			Y/D		Niv	el de llen	ado				
UDs		U	nidades	de des	sagüe		٧		,	Velocidad	d				
D_{min}	Diámetro interior mínimo						D_{int}	Did	ámetro	interior	comercia	al .			
									Diám	etro com	ercial				
Qb	Caudal bruto						D_{com}								
		_				_			F-Ba	ıjante Fei †	cales				
K		Coefic	ciente d	le simu	ltaneidad	1				ı					

3.4.5.4.- SISTEMAS DE BOMBEO Y ELEVACIÓN Acometida 1

	Sistemas de bombeo y elevación											
Ref.	Descripción	Q_c (m ³ /h)	Q _d (m³/h)	Pr _d (m.c.a.)								
5	Conjunto de dos bombas iguales en funcionamiento alternativo, siendo cada una de ellas una bomba sumergible para achique de aguas fecales con cuerpos en suspensión o filamentosos, construida en acero inoxidable, con una potencia de 0,55 kW	5.92	7.40	4.05								
72	Conjunto de dos bombas iguales en funcionamiento alternativo, siendo cada una de ellas una bomba sumergible para achique de aguas de infiltración, limpias o ligeramente cargadas, construida en acero inoxidable, con una potencia de 0,55 kW	4.09	5.12	4.05								

Proyecto de Ejecución de bloque plurifamiliar de 14 viviendas, local y 15 plazas de garaje

	Sistemas de bombeo y elevación											
Ref.	Descripción		Q _c (m³/h)	Q_d (m ³ /h)	Pr _d (m.c.a.)							
81	Conjunto de dos bombas iguales en funcior siendo cada una de ellas una bomba sumer aguas fecales con cuerpos en suspensión o construida en acero inoxidable, con una po	7.61	9.52	4.05								
	Abreviatura	s ut	ilizadas									
Ref.	Referencia en planos	Q_d	Caudal de diseño									
Q_c	Caudal calculado con simultaneidad	Pr_d	Presión de diseño									

3.5 PROTECCIÓN FRENTE AL RUIDO.

3.5.1. FICHAS JUSTIFICATIVAS DE LA OPCIÓN GENERAL DE AISLAMIENTO ACÚSTICO.

Las tablas siguientes recogen las fichas justificativas del cumplimiento de los valores límite de aislamiento acústico, calculado mediante la opción general de cálculo recogida en el punto 3.1.3 (CTE DB HR), correspondiente al modelo simplificado para la transmisión acústica estructural de la UNE EN 12354, partes 1, 2 y 3.

Гabiquería:									
Tino	Características								
Tipo	en proyecto exigido								
Tabique de des beies, para revestir	m (kg/m²)= 248.4								
Tabique de dos hojas, para revestir	R _A (dBA) = 51.2 ② 33								
	$m (kg/m^2) = 118.2$								
	$R_A (dBA) = 38.7$ 2 33								
Tabique de una hoja, para revestir	$R_A (dBA) = 38.7$ 2 33								
	$R_A (dBA) = 38.7$ 2 33								
	R _A (dBA) = 38.7 ② 33								

Elementos de sepa	ración verti	cales entre:						
Recinto emisor	Recinto receptor	Tipo	Tipo Características					
Cualquier recinto no perteneciente a la unidad de		Elemento base Tabique de dos	m (kg/m²)= 265.4	D _{nT,A} = 52 dBA				
uso ⁽¹⁾	Protegido	hojas, para revestir	R _A (dBA)= 54.1					
Cualquier recinto no perteneciente		Puerta o ventana		D _ 40 dD4 🖾 20 dD4				
a la unidad de uso ⁽¹⁾		Puerta de entrada a acorazada	la vivienda,	R _A = 49 dBA 2 30 dBA				
(si los recintos comparten puertas		Cerramiento						
o ventanas)		Tabique de una hoja en ambas caras	con trasdosado	R _A = 59 dBA				
De instalaciones		Elemento base	m (kg/m²)= 65.1					
		Tabique de una hoja con trasdosado en ambas caras	R _A (dBA)= 32.1	D _{nT,A} = 59 dBA 2 55 dBA				
Cualquier recinto no perteneciente		Elemento base	m (kg/m²)= 288.2					
a la unidad de uso ⁽¹⁾	Habitable	Tabique de dos hojas, para revestir	R _A (dBA)= 54.1	D _{nT,A} = 46 dBA				

Elementos de separación verticales entre:								
Recinto emisor	Recinto receptor	Тіро	Características	Aislamiento acústico en proyecto exigido				
Cualquier recinto no perteneciente		Puerta o ventana		R ₄ =	49 dBA	☑ 20 dBA		
a la unidad de uso ⁽¹⁾⁽²⁾		Puerta de entrada a blindada	la vivienda,					
(si los recintos comparten puertas		Cerramiento		R _A =	51 dBA	☑ 50 dBA		
o ventanas)		Tabique de dos hojas	s, para revestir					
De instalaciones		Elemento base	m (kg/m²)= 65.1	n -	E4 4DA			
		Tabique de una hoja	$R_A (dBA) = 32.1$	$D_{nT,A} = 54$	54 UDA	± 45 UDA		
comparten puertas		Cerramiento						
o ventanas)		Tabique de una hoja en ambas caras	con trasdosado	R _A =	59 dBA	☑ 50 dBA		

⁽¹⁾ Siempre que no sea recinto de instalaciones o recinto de actividad.

⁽²⁾ Sólo en edificios de uso residencial o sanitario.

Elementos de separación horizontales entre:										
	Recinto receptor	Tipo	Características		Aislamiento acústico					
		Про			en proyecto	exigido				
Cualquier recinto		Forjado	m (kg/m²)=	376.1						
no perteneciente a		Forjado bidireccional	R _A (dBA)=	84.0	D _{nT,A} = 55 dBA	☑ 50 dB <i>P</i>				
la unidad de uso ⁽¹⁾	Protegido		L _{n,w} (dB)=	75.0						
		Suelo de baldosas de gres	®R _A (dBA)=	6						
			<pre>②L_w (dB)=</pre>	33	1' - 62 dB	8 2 65 dB				
		Techo suspendido	®R _A (dBA)=	0						
		Techo suspendido continuo	②L _w (dB)=	0	L _{nT,w} – 03 db					
De		Forjado	m (kg/m²)=	393.4						
instalaciones		Forjado bidireccional	R_A (dBA)=	84.7						
		Suelo de granito	②R _A (dBA)=	6	D _{nT,A} = 68 dBA	∆				
		Techo suspendido	== (l= +)	0						
		Revestimiento continuo	?R _A (dBA)=							
		Forjado	m (kg/m²)=	393.4						
		Forjado bidireccional	L _{n,w} (dB)=	74.3	L' _{nT,w} = 41 dB	2 60 dB				
		Suelo de gres	②L _w (dB)=	33						

Elementos de separación horizontales entre:						
Recinto	Recinto	Tino	Caractarísticas	Aislamiento acústico		
emisor	receptor	Tipo	Características	en proyecto	exigido	

⁽¹⁾ Siempre que no sea recinto de instalaciones o recinto de actividad.

Fachadas, cı	ubiertas y suelos en cor	tacto con el aire exterior:	
Ruido exterior	Recinto receptor	Тіро	Aislamiento acústico en proyecto exigido
L _d = 50 dBA	Protegido (Dormitorio)	Parte ciega: fachada ventilada de piedra natural caliza Huecos: Ventana de doble acristalamiento marca "TECHNAL", 8/10/7	D _{2m,nT,Atr} = 35 dBA
L _d = 60 dBA	Protegido (Estancia)	Parte ciega: fachada de ladrillo cara vista Cubierta plana transitable. (Forjado bidireccional) - Techo suspendido continuo Huecos: Ventana de doble acristalamiento, marca "TECHNAL", 8/10/7	D _{2m,nT,Atr} = 32 dBA ☑ 30 dBA

La tabla siguiente recoge la situación exacta en el edificio de cada recinto receptor, para los valores más desfavorables de aislamiento acústico calculados ($D_{nT,A}$, $L'_{nT,w}$, y $D_{2m,nT,Atr}$), mostrados en las fichas justificativas del cumplimiento de los valores límite de aislamiento acústico impuestos en el Documento Básico CTE DB HR, calculados mediante la opción general.

3.6 AHORRO DE ENERGÍA.

3.6.1.- EXIGENCIA BÁSICA HE 1: LIMITACIÓN DE DEMANDA ENERGÉTICA.

3.6.1.1. FICHAS JUSTIFICATIVAS DE LA OPCIÓN SIMPLIFICADA.

Ficha 1: Cálculo de los parámetros característicos medios.

ZONA CLIMÁTICA	B3 Zona de baja carga interna	▼ Zona de alta carga interna	
		=	

T	pos		U (W/m²K)	A · U (W/K)	Resultados	
	Contorno de ventanas		1.00	13.12		
	Tabique de una hoja, para revestir		0.54	2.33		
	Tabique de dos hojas, para revestir		0.40	68.51		
N	Fachada con revestimiento continuo, de dos hojas de fábrica		0.60	45	②A · U = 350.56 W/K	
	FACHADA VENTILADA		0.59	221.6	$U_{Mm} = 2A \cdot U / 2A = 0.54 \text{ W/m}^2\text{K}$	
	Tabique de una hoja, para revestir		0.54	13.92		
E	Fachada con revestimiento continuo, de dos hojas de fábrica		0.6	21.6	⊡ A = m²	
	Contorno de ventanas		1.00	3.64	$2A \cdot U = 111.87 \text{ W/K}$ $U_{Mm} = 2A \cdot U / 2A = 0.56 \text{ W/m}^2 \text{K}$	
	Tabique de dos hojas, para revestir		0.40	9.6		
	FACHADA VENTILADA		0.59	63.11		
	Tabique de una hoja, para revestir		0.54	13.93		
C	Tabique de dos hojas, para revestir		0.40	9.6	②A = m² ②A ·U = 94.82 W/K	
	Fachada con revestimiento continuo, de dos hojas de fábrica		0.60	71.29	U _{Mm} = ②A · U / ②A = 0.56 W/m ² K	
	Fachada con revestimiento continuo, de dos hojas de fábrica		0.60	45	∄A = m	
S	Contorno de ventanas		1.00	15.68	②A · U = 293.46 W/k	
	Tabique de dos hojas, para revestir		0.40	78.51	$U_{Mm} = 2A \cdot U / 2A = 0.55 \text{ W/m}^2$	
	Tabique de una hoja, para revestir		0.54	31.79		
	FACHADA VENTILADA		0.59	122.48		

Suelos (U _{sm})							
Tipos	A (m²)	U (W/m²K)	A · U (W/K)	Resultados			
Revestimiento continuo - Forjado bidireccional - Suelo de gres	-	0.15	1.49				
Revestimiento continuo - Forjado bidireccional –Suelo de granito	-	0.13	0.84				

Tipos	A (m²)	F	A·F (m²)	Resultados
				②A =
				?A · F =
				F _{Lm} = 2A · F / 2A =

Н	Huecos (U _{Hm} , F _{Hm})						
Т	ipos	A (m²)	U (W/m²K)	A · U (W/K)	Resultados		
Ν	Doble acristalamiento marca "TECHNAL" - 8/10/7	-	4.24	86.84	$PA = m^{2}$ $PA \cdot U = \frac{110.25}{W/K}$ $U_{Hm} = PA \cdot U / W/m^{2}K$ $PA = W/m^{2}K$		

3.6.2.- EXIGENCIA BÁSICA HE 2: RENDIMIENTO DE LAS INSTALACIONES TÉRMICAS.

3.6.2.1.- EXIGENCIA DE BIENESTAR E HIGIENE.

3.6.2.1.1.- Justificación del cumplimiento de la exigencia de calidad del ambiente.

La exigencia de calidad térmica del ambiente se considera satisfecha en el diseño y dimensionamiento de la instalación térmica. Por tanto, todos los parámetros que definen el bienestar térmico se mantienen dentro de los valores establecidos.

En la siguiente tabla aparecen los límites que cumplen en la zona ocupada.

Parámetros	Límite
Temperatura operativa en verano (°C)	23 2 T 2 25
Humedad relativa en verano (%)	45 🛭 HR 🖟 60
Temperatura operativa en invierno (°C)	21 2 T 2 23
Humedad relativa en invierno (%)	40 2 HR 2 50
Velocidad media admisible con difusión por mezcla (m/s)	V 2 0.14

A continuación se muestran los valores de condiciones interiores de diseño utilizadas en el proyecto:

	Condiciones interiores de diseño						
Referencia	Temperatura de	Temperatura de	Humedad relativa				
	verano	invierno	interior				
Baño / Aseo	24	21	50				
Cocina	24	21	50				
Dormitorio	24	21	50				
Pasillo /	24	21	50				
Distribuidor	24	21	30				
Salón / Comedor	24	21	50				

3.6.2.1.2.- Justificación del cumplimiento de la exigencia de calidad del aire interior.

3.6.2.1.2.1.- Categorías de calidad del aire interior.

La instalación proyectada se incluye en un edificio de viviendas, por tanto se han considerado los requisitos de calidad de aire interior establecidos en la sección HS 3 del Código Técnico de la Edificación.

3.6.2.1.2.2.- Caudal mínimo de aire exterior.

El caudal mínimo de aire exterior de ventilación necesario se calcula según el método indirecto de caudal de aire exterior por persona y el método de caudal de aire por unidad de superficie, especificados en la instrucción técnica I.T.1.1.4.2.3

Se describe a continuación la ventilación diseñada para los recintos utilizados en el proyecto.

	Caudales de ventilación				
Referencia	Por persona (m³/h)	Por unidad de superficie (m³/(h·m²))	Por recinto (m³/h)		
Baño / Aseo		2.7	54.0		
Cocina		7.2			
Dormitorio	18.0	2.7			
Pasillo / Distribuidor		2.7			
Salón / Comedor	10.8	2.7			

3.6.2.1.3.- Justificación del cumplimiento de la exigencia de higiene.

La temperatura de preparación del agua caliente sanitaria se ha diseñado para que sea compatible con su uso, considerando las pérdidas de temperatura en la red de tuberías.

La instalación interior de ACS se ha dimensionado según las especificaciones establecidas en el Documento Básico HS-4 del Código Técnico de la Edificación.

3.6.2.1.4.- Justificación del cumplimiento de la exigencia de calidad acústica.

La instalación térmica cumple con la exigencia básica HR Protección frente al ruido del CTE conforme a su documento básico.

3.6.2.2.- EXIGENCIA DE EFICIENCIA ENERGÉTICA.

3.6.2.2.1.- Justificación del cumplimiento de la exigencia de eficiencia energética en la generación de calor y frío.

3.6.2.2.1.1.- Generalidades.

Las unidades de producción del proyecto utilizan energías convencionales ajustándose a la carga máxima simultánea de las instalaciones servidas considerando las ganancias o pérdidas

de calor a través de las redes de tuberías de los fluidos portadores, así como el equivalente térmico de la potencia absorbida por los equipos de transporte de fluidos.

3.6.2.2.1.2.- Cargas térmicas.

3.6.2.2.1.2.2.- Cargas parciales y mínimas.

Se muestran a continuación las demandas parciales por meses para cada uno de los conjuntos de recintos.

Calefacción:

Conjunto de recintos	Carga máxima simultánea por mes (kW)					
	Diciembre	Enero	Febrero			
1º-A-2-3-4-5	2.13	2.13	2.13			
1º-B-2-3-4-5	2.13	2.13	2.13			
1º-C-2-3-4-5	1.67	1.67	1.67			
5º-D	2.19	2.19	2.19			
5º-E	2.30	2.30	2.30			

3.6.2.2.1.3.- Potencia térmica instalada.

En la siguiente tabla se resume el cálculo de la carga máxima simultánea, la pérdida de calor en las tuberías y el equivalente térmico de la potencia absorbida por los equipos de transporte de fluidos con la potencia instalada para cada conjunto de recintos.

Conjunto de recintos		P _{instalada} (kW)	a	%q	tub	%q _{equipos}	Q _{cal} (kW)	Total (kW)
1º-A-2-	21.00		2.2	21	2.00	2.19	3.08	
1º-B-2-	3-4-5	21.00		2.2	27	2.00	2.30	3.19
1º-C-2-	3-4-5	21.00		2.3	30	2.00	2.00	2.90
5º-D	5º-D			1.8	34	2.00	2.16	2.97
5º-E	5º-E		00 2		26	2.00	2.37	3.26
	A	breviatur	as uti	lizad	das			
P _{instalada}	Potencia instalada (kW)		%q _{equ}	uipos	la po de tr	entaje del equiv tencia absorbio ansporte de flu ncia instalada (la por los idos respe	equipos
%q _{tub}	Porcentaje de pérdida de calor en %q _{tub} tuberías para calefacción respecto a la potencia instalada (%)				_	a máxima simu acción (kW)	ltánea de	

La potencia instalada de los equipos es la siguiente:

Equipos	Potencia instalada de calefacción (kW)	Potencia de calefacción (kW)
Viv (x 14)	21.00	2.19
Total	294.0	30.66

Equipos	Referencia
Viv (x 14)	Caldera mural mixta eléctrica para calefacción y A.C.S., constituida por cuerpo de caldera, envolvente, vaso de expansión, bomba, termostato y todos aquellos componentes necesarios para su funcionamiento incorporados en su interior; incluso accesorios de fijación.

3.6.2.2.2.- Justificación del cumplimiento de la exigencia de eficiencia energética en las redes de tuberías y conductos de calor y frío.

3.6.2.2.1.- Aislamiento térmico en redes de tuberías.

3.6.2.2.2.1.1.- Introducción.

El aislamiento de las tuberías se ha realizado según la I.T.1.2.4.2.1.1 'Procedimiento simplificado'. Este método define los espesores de aislamiento según la temperatura del fluido y el diámetro exterior de la tubería sin aislar. Las tablas 1.2.4.2.1 y 1.2.4.2.2 muestran el aislamiento mínimo para un material con conductividad de referencia a 10 °C de 0.047 W/ (m·K).

El cálculo de la transmisión de calor en las tuberías se ha realizado según la norma UNE-EN ISO 12241.

3.6.2.2.1.2.- Tuberías en contacto con el ambiente exterior.

Se han considerado las siguientes condiciones exteriores para el cálculo de la pérdida de calor:

Temperatura seca exterior de invierno: 4.6 °C.

Velocidad del viento: 5.9 m/s.

3.6.2.2.2.1.3.- Tuberías en contacto con el ambiente interior.

Se han considerado las condiciones interiores de diseño en los recintos para el cálculo de las pérdidas en las tuberías especificados en la justificación del cumplimiento de la exigencia de calidad del ambiente del apartado 1.4.1.

A continuación se describen las tuberías en el ambiente interior y los aislamientos empleados, además de las pérdidas por metro lineal y las pérdidas totales de calor.

Tubería	Ø	্ৰ _{aisl.} (W/(m·K))	e _{aisl.} (mm)	L _{imp.} (m)	L _{ret.} (m)	? _{m.cal.} (W/m)	q _{cal.} (W)
Tipo 1	1/2"	0.037	25	20.82	20.86	9.80	408.3
Tipo 1	3/8"	0.037	25	347.35	362.03	8.38	5948.1
Tipo 1	3/8"	0.037	25	3.91	4.41	12.61	104.9

Proyecto de Ejecución de bloque plurifamiliar de 14 viviendas, local y 15 plazas de garaje

Tı	ubería	Ø	ি _{aisl.} (W/(m⋅K))	e _{aisl.} (mm)		imp. m)	L _{ret.} (m)	? _{m.cal.} (W/m)	q _{cal.} (W)
							Total	6461	
	Abreviatu				as util	izadas			
Ø Diámetro nominal			L _{ret.}	Longitud de retorno					
🗈 aisl. Conductividad del aislamiento				? _{m.cal.}	Valor r calefac	medio de las cción por un	pérdidas de idad de long	calor para itud	
e _{aisl.} Espesor del aislamiento			q _{cal.}	Pérdidas de calor para calefacción			ción		
L _{imp.} Longitud de impulsión									

Tubería	Referencia
Tipo 1	Tubería general de distribución de agua caliente de climatización formada por tubo de acero negro, con soldadura longitudinal por resistencia eléctrica, una mano de imprimación antioxidante, empotrada en paramento, con aislamiento mediante coquilla flexible de espuma elastomérica.

Para tener en cuenta la presencia de válvulas en el sistema de tuberías se ha añadido un 15 % al cálculo de la pérdida de calor.

3.6.2.2.1.4.- Pérdida de calor en tuberías.

La potencia instalada de los equipos es la siguiente:

Equipos	Potencia de calefacción (kW)
Tipo 1	(x14) 21.00
Total	294.00

Equipo	s Referencia
Tipo 1	Caldera mural mixta eléctrica para calefacción y A.C.S., constituida por cuerpo de caldera, envolvente, vaso de expansión, bomba, termostato y todos aquellos componentes necesarios para su funcionamiento incorporados en su interior; incluso accesorios de fijación

El porcentaje de pérdidas de calor en las tuberías de la instalación es el siguiente:

Calefacción:

Potencia de los equipos	q_{cal}	Pérdida de calor
(kW)	(W)	(%)
21.00 x14	464.2	2.2

Por tanto la pérdida de calor en tuberías es inferior al 4.0 %.

3.6.2.2.2.- Eficiencia energética de los motores eléctricos.

Los motores eléctricos utilizados en la instalación quedan excluidos de la exigencia de rendimiento mínimo, según el punto 3 de la instrucción técnica I.T. 1.2.4.2.6.

3.6.2.2.3.- Redes de tuberías.

El trazado de las tuberías se ha diseñado teniendo en cuenta el horario de funcionamiento de cada subsistema, la longitud hidráulica del circuito y el tipo de unidades terminales servidas.

3.6.2.2.3.- Justificación del cumplimiento de la exigencia de eficiencia energética en el control de instalaciones térmicas.

3.6.2.2.3.1.- Generalidades.

La instalación térmica proyectada está dotada de los sistemas de control automático necesarios para que se puedan mantener en los recintos las condiciones de diseño previstas.

3.6.2.2.3.2.- Control de las condiciones termohigrométricas.

El equipamiento mínimo de aparatos de control de las condiciones de temperatura y humedad relativa de los recintos, según las categorías descritas en la tabla 2.4.2.1, es el siguiente:

THM-C1:

Variación de la temperatura del fluido portador (agua-aire) en función de la temperatura exterior y/o control de la temperatura del ambiente por zona térmica.

Además, en los sistemas de calefacción por agua en viviendas se incluye una válvula termostática en cada una de las unidades terminales de los recintos principales.

THM-C2:

Como THM-C1, más el control de la humedad relativa media o la del local más representativo.

THM-C3:

Como THM-C1, más variación de la temperatura del fluido portador frío en función de la temperatura exterior y/o control de la temperatura del ambiente por zona térmica.

THM-C4:

Como THM-C3, más control de la humedad relativa media o la del recinto más representativo.

THM-C5:

Como THM-C3, más control de la humedad relativa en locales.

A continuación se describe el sistema de control empleado para cada conjunto de recintos:

Conjunto de recintos	Sistema de control
Todas las viviendas	THM-C1

3.6.2.2.3.3.- Control de la calidad del aire interior en las instalaciones de climatización.

El control de la calidad de aire interior puede realizarse por uno de los métodos descritos en la tabla 2.4.3.2.

Catego ría	Tipo	Descripción
IDA-C1		El sistema funciona continuamente
IDA-C2	Control manual	El sistema funciona manualmente, controlado por un interruptor
IDA-C3	Control por tiempo	El sistema funciona de acuerdo a un determinado horario
IDA-C4	Control por presencia	El sistema funciona por una señal de presencia
IDA-C5	Control por ocupación	El sistema funciona dependiendo del número de personas presentes
IDA-C6	Control directo	El sistema está controlado por sensores que miden parámetros de calidad del aire interior

Se ha empleado en el proyecto el método IDA-C1.

3.6.2.2.4.- Justificación del cumplimiento de la exigencia de recuperación de energía del apartado 1.2.4.5.

3.6.2.2.4.1.- Zonificación.

El diseño de la instalación ha sido realizado teniendo en cuenta la zonificación, para obtener un elevado bienestar y ahorro de energía. Los sistemas se han dividido en subsistemas, considerando los espacios interiores y su orientación, así como su uso, ocupación y horario de funcionamiento.

3.6.2.2.5.- Justificación del cumplimiento de la exigencia de aprovechamiento de energías renovables del apartado 1.2.4.6.

La instalación térmica destinada a la producción de agua caliente sanitaria cumple con la exigencia básica CTE HE 4 'Contribución solar mínima de agua caliente sanitaria' mediante la justificación de su documento básico.

3.6.2.2.6.- Justificación del cumplimiento de la exigencia de limitación de la utilización de energía convencional del apartado 1.2.4.7.

Se enumeran los puntos para justificar el cumplimiento de esta exigencia:

- El sistema de calefacción empleado no es un sistema centralizado que utilice la energía eléctrica por "efecto Joule".
- No se ha climatizado ninguno de los recintos no habitables incluidos en el proyecto.
- No se realizan procesos sucesivos de enfriamiento y calentamiento, ni se produce la interaccionan de dos fluidos con temperatura de efectos opuestos.
- No se contempla en el proyecto el empleo de ningún combustible sólido de origen fósil en las instalaciones térmicas.

3.6.2.2.7.- Lista de los equipos consumidores de energía.

Se incluye a continuación un resumen de todos los equipos proyectados, con su consumo de energía.

Calderas y grupos térmicos:

Equipos	Referencia
Tipo 1	Caldera mural mixta eléctrica para calefacción y A.C.S., constituida por cuerpo de caldera, envolvente, vaso de expansión, bomba, termostato y todos aquellos componentes necesarios para su funcionamiento incorporados en su interior; incluso accesorios de fijación

3.6.2.3.- EXIGENCIA DE SEGURIDAD.

3.6.2.3.1.- Justificación del cumplimiento de la exigencia de seguridad en generación de calor y frío del apartado 3.4.1.

3.6.2.3.1.1.- Condiciones generales.

Los generadores de calor y frío utilizados en la instalación cumplen con lo establecido en la instrucción técnica 1.3.4.1.1 Condiciones generales del RITE.

3.6.2.3.1.2.- Salas de máquinas.

El ámbito de aplicación de las salas de máquinas, así como las características comunes de los locales destinados a las mismas, incluyendo sus dimensiones y ventilación, se ha dispuesto según la instrucción técnica 1.3.4.1.2 Salas de máquinas del RITE.

3.6.2.3.1.3.- Chimeneas.

La evacuación de los productos de la combustión de las instalaciones térmicas del edificio se realiza de acuerdo a la instrucción técnica 1.3.4.1.3 Chimeneas, así como su diseño y dimensionamiento y la posible evacuación por conducto con salida directa al exterior o al patio de ventilación.

3.6.2.3.1.4.- Almacenamiento de biocombustibles sólidos.

No se ha seleccionado en la instalación ningún productor de calor que utilice biocombustible.

3.6.2.3.2.- Justificación del cumplimiento de la exigencia de seguridad en las redes de tuberías y conductos de calor y frío del apartado 3.4.2.

3.6.2.3.2.1.- Alimentación.

La alimentación de los circuitos cerrados de la instalación térmica se realiza mediante un dispositivo que sirve para reponer las pérdidas de agua.

El diámetro de la conexión de alimentación se ha dimensionado según la siguiente tabla:

Potencia térmica nominal	Calor	Frio
(kW)	DN	DN
(****)	(mm)	(mm)
P 2 70	15	20
70 < P 2 150	20	25
150 < P 2 400	25	32
400 < P	32	40

3.6.2.3.2.2.- Vaciado y purga.

Las redes de tuberías han sido diseñadas de tal manera que pueden vaciarse de forma parcial y total. El vaciado total se hace por el punto accesible más bajo de la instalación con un diámetro mínimo según la siguiente tabla:

Potencia térmica nominal	Calor	Frio
(kW)	DN	DN
(KVV)	(mm)	(mm)
P 2 70	20	25
70 < P 2 150	25	32
150 < P 2 400	32	40
400 < P	40	50

Los puntos altos de los circuitos están provistos de un dispositivo de purga de aire.

3.6.2.3.2.3.- Expansión y circuito cerrado.

Los circuitos cerrados de agua de la instalación están equipados con un dispositivo de expansión de tipo cerrado, que permite absorber, sin dar lugar a esfuerzos mecánicos, el volumen de dilatación del fluido.

El diseño y el dimensionamiento de los sistemas de expansión y las válvulas de seguridad incluidos en la obra se han realizado según la norma UNE 100155.

3.6.2.3.2.4.- Dilatación, golpe de ariete, filtración.

Las variaciones de longitud a las que están sometidas las tuberías debido a la variación de la temperatura han sido compensadas según el procedimiento establecido en la instrucción técnica 1.3.4.2.6 Dilatación del RITE.

La prevención de los efectos de los cambios de presión provocados por maniobras bruscas de algunos elementos del circuito se realiza conforme a la instrucción técnica 1.3.4.2.7 Golpe de ariete del RITE.

Cada circuito se protege mediante un filtro con las propiedades impuestas en la instrucción técnica 1.3.4.2.8 Filtración del RITE.

3.6.2.3.2.5.- Conductos de aire.

El cálculo y el dimensionamiento de la red de conductos de la instalación, así como elementos complementarios (plenums, conexión de unidades terminales, pasillos, tratamiento de agua, unidades terminales) se ha realizado conforme a la instrucción técnica 1.3.4.2.10 Conductos de aire del RITE.

3.6.2.3.3.- Justificación del cumplimiento de la exigencia de protección contra incendios del apartado 3.4.3.

Se cumple la reglamentación vigente sobre condiciones de protección contra incendios que es de aplicación a la instalación térmica.

3.6.2.3.4.- Justificación del cumplimiento de la exigencia de seguridad y utilización del apartado 3.4.4.

Ninguna superficie con la que existe posibilidad de contacto accidental, salvo las superficies de los emisores de calor, tiene una temperatura mayor que 60 °C.Las superficies calientes de las unidades terminales que son accesibles al usuario tienen una temperatura menor de 80 °C.

La accesibilidad a la instalación, la señalización y la medición de la misma se ha diseñado conforme a la instrucción técnica 1.3.4.4 Seguridad de utilización del RITE.

3.6.3.- EXIGENCIA BÁSICA HE 3: EFICIENCIA ENERGÉTICA DE LAS INSTALACIONES DE ILUMINACIÓN.

3.6.4. EXIGENCIA BÁSICA HE 4: CONTRIBUCIÓN SOLAR MÍNIMA DE AGUA CALIENTE SANITARIA.

3.6.4.1. DETERMINACIÓN DE LA RADIACIÓN.

Para obtener la radiación solar efectiva que incide sobre los captadores se han tenido en cuenta los siguientes parámetros:

Orientación:	S(156º)
Inclinación:	48º

No se prevén sombras proyectadas sobre los captadores.

3.6.4.2.- DIMENSIONAMIENTO DE LA SUPERFICIE DE CAPTACIÓN.

El dimensionamiento de la superficie de captación se ha realizado mediante el método de las curvas 'f' (F-Chart), que permite realizar el cálculo de la cobertura solar y del rendimiento medio para periodos de cálculo mensuales y anuales.

Se asume un volumen de acumulación equivalente, de forma aproximada, a la carga de consumo diario promedio. La superficie de captación se dimensiona para conseguir una fracción solar anual superior al 70%, tal como se indica en el apartado 2.1, 'Contribución solar mínima', de la sección HE 4 DB-HE CTE.

El valor resultante para la superficie de captación es de 15.28 m², y para el volumen de captación de 1000 l.

Los resultados obtenidos se resumen en la siguiente tabla:

Mes	Radiación global (MJul/m²)	Temperatura ambiente diaria (ºC)	Demanda (MJul)	Energía auxiliar (MJul)	Fracción solar (%)
Enero	10.10	11	5267.96	2235.63	58
Febrero	14.80	11	4758.16	1185.10	75
Marzo	16.60	14	5161.08	1224.04	76
Abril	20.40	16	4876.15	870.21	82
Mayo	24.20	20	4824.94	563.67	88
Junio	25.60	24	4462.44	361.56	92

IMES	Radiación global (MJul/m²)	•	Demanda (MJul)	Energía auxiliar (MJul)	Fracción solar (%)
Julio	27.70	27	4397.43	0.00	102
Agosto	23.50	27	4290.56	0.00	100
Septiem bre	18.60	24	4359.01	290.31	93
Octubre	13.90	19	4733.58	883.62	81
Noviem bre	9.80	15	4891.17	1830.19	63
Diciemb re	8.10	11	5267.96	2649.20	50

3.6.4.3.- CÁLCULO DE LA COBERTURA SOLAR.

La instalación cumple la normativa vigente, ya que la energía producida no supera, en ningún mes, el 110% de la demanda de consumo, y no hay una demanda superior al 100% para tres meses consecutivos.

La cobertura solar anual conseguida mediante el sistema es igual al 79%.

3.6.4.4.- SELECCIÓN DE LA CONFIGURACIÓN BÁSICA.

La instalación consta de un circuito primario cerrado (circulación forzada) dotado de un sistema de captación con una superficie total de captación de 16 m² y de un interacumulador colectivo. Se ha previsto, además, la instalación de un sistema de energía auxiliar.

3.6.4.5.- SELECCIÓN DEL FLUJO CALOPORTADOR.

La temperatura histórica en la zona es de -6ºC. La instalación debe estar preparada para soportar sin congelación una temperatura de -11ºC (5º menos que la temperatura mínima histórica). Para ello, el porcentaje en peso de anticongelante será de 25% con un calor específico de 3.731 KJ/kgK y una viscosidad de 2.621240 MPa s a una temperatura de 45ºC.

3.6.4.6.- DISEÑO DEL SISTEMA DE CAPTACIÓN.

El sistema de captación estará formado por elementos del tipo S-21 ("MUTUALENERGY"), cuya curva de rendimiento INTA es:

Siendo:

a₁: Coeficiente de pérdida (3.56).

te: Temperatura media (ºC).

t^a: Temperatura ambiente (ºC).

I: Irradiación solar (W/m²).

La superficie de apertura de cada captador es de 2.00 m².

La disposición del sistema de captación queda completamente definida en los planos del provecto.

3.6.4.7.- DISEÑO DEL SISTEMA INTERCAMBIADOR-ACUMULADOR.

El volumen de acumulación se ha seleccionado cumpliendo con las especificaciones del apartado 3.3.3.1: Generalidades de la sección HE 4 DB-HE CTE.

50 < (V/A) < 180

donde:

A: Suma de las áreas de los captadores.

V: Volumen de acumulación expresado en litros.

Se ha utilizado el siguiente interacumulador:

Interacumulador para producción de A.C.S., de 1000 l de capacidad, 960 mm de diámetro y 2040 mm de altura, formado por cuba de acero vitrificado, serpentín fijo, aislamiento térmico de espuma de poliuretano de alta densidad, revestimiento externo, ánodo electrónico de corriente impresa, compuesto por un dispositivo electrónico y un electrodo de titanio y válvula de seguridad

La relación entre la superficie útil de intercambio del intercambiador incorporado y la superficie total de captación es superior a 0.15 e inferior o igual a 1.

3.6.4.8.- DISEÑO DE CIRCUITO HIDRÁULICO.

3.6.4.8.1.- Cálculo del diámetro de las tuberías.

Para el circuito primario de la instalación se utilizarán tuberías de cobre.

Para el circuito de A.C.S. se utilizarán tuberías de cobre.

El diámetro de las tuberías se selecciona de forma que la velocidad de circulación del fluido sea inferior a 2 m/s. El dimensionamiento de las tuberías se realizará de forma que la pérdida de carga unitaria en las mismas nunca sea superior a 40.00 mm.c.a/m.

3.6.4.8.2.- Cálculo de las pérdidas de carga de la instalación.

Deben determinarse las pérdidas de carga en los siguientes componentes de la instalación:

- Captadores
- Tuberías (montantes y derivaciones a las baterías de captadores del circuito primario).
- Intercambiador

FÓRMULAS UTILIZADAS:

Para el cálculo de la pérdida de carga, Pp, en las tuberías, utilizaremos la formulación de Darcy-Weisbach que se describe a continuación:

Siendo:

P: Pérdida de carga (m.c.a).

2: Coeficiente de fricción

L: Longitud de la tubería (m).

D: Diámetro de la tubería (m).

v: Velocidad del fluido (m/s).

Para calcular las pérdidas de carga, se le suma a la longitud real de la tubería la longitud equivalente correspondiente a las singularidades del circuito (codos, tés, válvulas, etc.). Ésta longitud equivalente corresponde a la longitud de tubería que provocaría una pérdida de carga igual a la producida por dichas singularidades.

De forma aproximada, la longitud equivalente se calcula como un porcentaje de la longitud real de la tubería. En este caso, se ha asumido un porcentaje igual al 15%.

El coeficiente de fricción, 🛭 , depende del número de Reynolds.

Cálculo del número de Reynolds: (R_e)

Siendo:

R_e: Valor del número de Reynolds (adimensional).

2: 1000 Kg/m³

v: Velocidad del fluido (m/s).

D: Diámetro de la tubería (m).

2: Viscosidad del agua (0.001 poises a 20°C).

Cálculo del coeficiente de fricción (2) para un valor de R_e comprendido entre 3000 y 10⁵ (éste es el caso más frecuente para instalaciones de captación solar):

$$\lambda = \frac{0.32}{R_{e}^{0.25}}$$

Como los cálculos se han realizado suponiendo que el fluido circulante es agua a una temperatura de 45°C y con una viscosidad de 2.621240 mPa s, los valores de la pérdida de carga se multiplican por el siguiente factor de corrección:

$$\int fa \ c \ to \ r = \sqrt[4]{\frac{\mu_{FC}}{\mu_{agua}}}$$

3.6.4.8.3.- Bomba de circulación.

La bomba de circulación necesaria en el circuito primario se debe dimensionar para una presión disponible igual a las pérdidas totales del circuito (tuberías, captadores e intercambiadores). El caudal de circulación tiene un valor de 920.00 l/h.

La pérdida de presión en el conjunto de captación se calcula mediante la siguiente fórmula:

$$\Delta P_T = \frac{\Delta P \cdot N \cdot (N+1)}{4}$$

Siendo:

☑P_T: Pérdida de presión en el conjunto de captación.

P: Pérdida de presión para un captador

N: Número total de captadores

Por tanto, los valores para la pérdida de presión total en el circuito primario y para la potencia de la bomba de circulación, de cada conjunto de captación, son los siguientes:

Proyecto de Ejecución de bloque plurifamiliar de 14 viviendas, local y 15 plazas de garaje

Conj. captación	Pérdida de presión total (Pa)	Potencia de la bomba de circulación (kW)
1	12680	0.07

La potencia de cada bomba de circulación se calcula mediante la siguiente expresión:

 $P = C \cdot \Delta p$

Siendo:

P: Potencia eléctrica (kW).

C: Caudal (I/s).

Pérdida total de presión de la instalación (Pa).

En este caso, utilizaremos una bomba de rotor húmedo montada en línea.

La bomba de circulación necesaria en el circuito de ACS se debe dimensionar para una presión disponible igual a las pérdidas totales del circuito (tuberías e intercambiadores). El caudal de circulación tiene un valor de 390.00 l/h.

Por tanto, los valores para la pérdida de presión total en el circuito primario y para la potencia de la bomba de circulación, de cada conjunto de captación, son los siguientes:

Conj. captación	Pérdida de presión total (Pa)	Potencia de la bomba de circulación (kW)
1	29959	0.07

La potencia de cada bomba de circulación se calcula mediante la siguiente expresión:

 $P = C \cdot \Delta p$

_					
`	ie	n	М	\sim	•
_			u	u	

P: Potencia eléctrica (kW).

C: Caudal (I/s).

②p: Pérdida total de presión de la instalación (Pa).

En este caso, utilizaremos una bomba de rotor húmedo montada en línea.

Según el apartado 3.4.4 'Bombas de circulación' de la sección HE 4 DB-HE CTE, la potencia eléctrica parásita para la bomba de circulación no deberá superar los valores siguientes:

Tipo de sistema	Potencia eléctrica de la bomba de circulación
	50 W o 2 % de la potencia calorífica máxima que pueda suministrar el grupo de captadores.
	1% de la potencia calorífica máxima que pueda suministrar el grupo de
grandes	captadores.

3.6.4.8.4.- Vaso de expansión.

El valor teórico del coeficiente de expansión térmica, calculado según la norma UNE 100.155, es de 0.089. El vaso de expansión seleccionado tiene una capacidad de 8 l.

Para calcular el volumen necesario se ha utilizado la siguiente fórmula:

$$V_t = V \cdot C_e \cdot C_p$$

Siendo:

V_t: Volumen útil necesario (I).

V: Volumen total de fluido de trabajo en el circuito (I).

C_e: Coeficiente de expansión del fluido.

C_p: Coeficiente de presión.

El cálculo del volumen total de fluido en el circuito primario de cada conjunto de captación se desglosa a continuación:

Conj. captación Vol. tuberías (I) Vol. captadores (I) Vol. intercambiadores (I) Total (I)

Proyecto de Ejecución de bloque plurifamiliar de 14 viviendas, local y 15 plazas de garaje

Conj. captación	Vol. tuberías (I)	Vol. captadores (I)	Vol. intercambiadores (I)	Total (I)
1	40.97	11.20	30.00	82.17

Con los valores de la temperatura mínima (-6ºC) y máxima (140ºC), y el valor del porcentaje de glicol etilénico en agua (25%) se obtiene un valor de 'Ce' igual a 0.089. Para calcular este parámetro se han utilizado las siguientes expresiones:

$$C_e = fc \cdot (-95 + 1.2 \cdot t) \cdot 10^{-3}$$

Siendo:

fc: Factor de correlación debido al porcentaje de glicol etilénico.

t: Temperatura máxima en el circuito.

El factor 'fc' se calcula mediante la siguiente expresión:

$$fc = a \cdot (1.8 \cdot t + 3.2)^b$$

Siendo:

$$a = -0.0134 \cdot (G^2 - 143.8 \cdot G + 1918.2) = 13.76$$

$$b = 0.00035 \cdot (G^2 - 94.57 \cdot G + 500.) = -0.43$$

G: Porcentaje de glicol etilénico en agua (25%).

El coeficiente de presión (Cp) se calcula mediante la siguiente expresión:

$$C_{p} = \frac{P_{\text{max}}}{P_{\text{max}} - P_{\text{min}}}$$

Proyecto de Ejecución de bloque plurifamiliar de 14 viviendas, local y 15 plazas de garaje

Siendo:

Pmax: Presión máxima en el vaso de expansión.

Pmin: Presión mínima en el vaso de expansión.

El punto de mínima presión de la instalación corresponde a los captadores solares, ya que se encuentran a la cota máxima. Para evitar la entrada de aire, se considera una presión mínima aceptable de 1.5 bar.

La presión mínima del vaso debe ser ligeramente inferior a la presión de tarado de la válvula de seguridad (aproximadamente 0.9 veces). Por otro lado, el componente crítico respecto a la presión es el captador solar, cuya presión máxima es de 10 bar (sin incorporar el kit de fijación especial).

A partir de las presiones máxima y mínima, se calcula el coeficiente de presión (Cp). En este caso, el valor obtenido es de 1.2.

3.6.4.8.5.- Purgadores y desaireadores.

El sistema de purga está situado en la batería de captadores. Por tanto, se asume un volumen total de 100.0 cm³.

3.6.4.9.- SISTEMA DE REGULACIÓN Y CONTROL.

El sistema de regulación y control tiene como finalidad la actuación sobre el régimen de funcionamiento de las bombas de circulación, la activación y desactivación del sistema antiheladas, así como el control de la temperatura máxima en el acumulador. En este caso, el regulador utilizado es el siguiente: .

3.6.4.10.- CÁLCULO DE LA SEPARACIÓN ENTRE FILAS DE CAPTADORES.

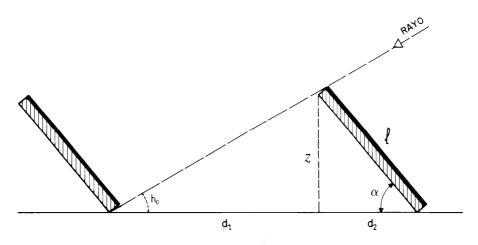
La separación entre filas de captadores debe ser igual o mayor que el valor obtenido mediante la siguiente expresión:

 $d = k \cdot h$

Siendo:

d: Separación entre las filas de captadores.

h: Altura del captador.


(Ambas magnitudes están expresadas en las mismas unidades).

'k' es un coeficiente cuyo valor se obtiene, a partir de la inclinación de los captadores con respecto al plano horizontal, de la siguiente tabla:

Valor del coeficiente de separación entre las filas de captadores (k)								
Inclinación (º)	20	25	30	35	40	45	50	55
Coeficiente k	1.532	1.638	1.732	1.813	1.879	1.932	1.970	1.992

A continuación se describe el cálculo de la separación mínima entre filas de captadores (valor mínimo de la separación para que no se produzcan sombras). En primer lugar, hay que determinar el día más desfavorable. En nuestro caso, como la instalación se diseña para funcionar durante todo el año, el día más desfavorable corresponde al 21 de Diciembre, cuando, al mediodía, la altura solar (h_0) tiene un valor de:

$$h_0 = 90^{\circ} - Latitud - 23.5^{\circ}$$

La distancia entre captadores (d) es igual a:

$$d = d_1 + d_2 = I (sen 2 / tan h_0 + cos 2)$$

Siendo:

I: Altura de los captadores en metros.

②: Ángulo de inclinación de los captadores.

h₀: Altura solar mínima (calculada según la fórmula anterior).

Por tanto, la separación mínima entre baterías de captadores será de 3.98 m.

3.6.4.11.- AISLAMIENTO.

El aislamiento térmico del circuito primario se realizará mediante coquilla flexible de espuma elastomérica. El espesor del aislamiento será de 30 mm en las tuberías exteriores y de 20 mm en las interiores.

3.6.5- EXIGENCIA BÁSICA HE 5: CONTRIBUCIÓN FOTOVOLTÁICA MÍNIMA DE ENERGÍA ELÉCTICA.

No se contempla contribución fotovoltaica de energía eléctrica.

ESTUDIO GEOTÉCNICO

OBRA: Solar situado en Calle Ministriles/Virgen de la soledad/Paso Encarnado, Lorca (Murcia).

CLIENTE: Universidad Politécnica de Cartagena (UPCT).

El siguiente Estudio ha sido realizado por CEICO, Centro de Estudios, Investigaciones y Control de Obras S, L.

1.1. DESCRIPCIÓN DEL SOLAR.

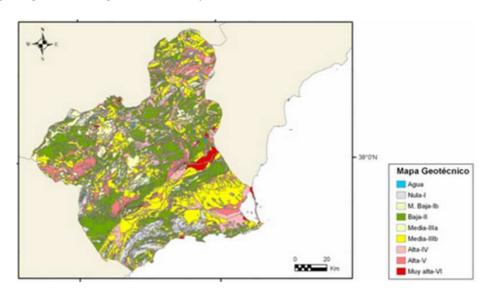
La parcela es de forma poligonal irregular y tiene unos 3632,44 m² de superficie total y en la zona donde va ubicado el edificio posee una superficie de 440 m². Presenta una topografía horizontal y se encuentra prácticamente a nivel de las calles adyacentes.

1.2. CONSTRUCCIÓN PROYECTADA.

Se proyecta la construcción de un edificio de 7 plantas sobre rasante y 1 bajo rasante, con una altura total de 22,60 metros. La cimentación será por zapatas de un canto aproximado de 70 cm y los forjados reticulares de hormigón.

Responde así, según el vigente CTE a una construcción tipo C-2 (construcciones entre 4 y 10 plantas).

Está prevista una excavación de unos 5,5 m al apoyo del cimiento, respecto a la cota que se practicaron los reconocimientos.


1.3. ZONIFICACIÓN GEOTÉCNICA.


Según la cartografía de zonificación geotécnica de la Región de Murcia, la parcela se emplaza en la Zona III (depósitos aluvio-coluviales), que se asimila a terrenos tipo T-1(terrenos favorables) según el CTE.

A continuación se incluye un cuadro resumen en el que se recoge la equivalencia entre las zonas geotécnicas y los grupos de terrenos definidos en el CTE, así como las condiciones de cimentación "estimadas" y la posible problemática geotécnica asociada a cada una de dichas zonas.

CTE	Guía Murcia	Denominación	Cimentación usual	Problemática geotécnica
T-1	Zona I	Sustrato rocoso: Rocas duras	Elevada capacidad portante. Cimentación superficial.	-Inestabilidades puntuales. -Voladuras o explosivos. -Karstificación (calizas). -Recubrimientos y alteración superficial.
	Zona II	Sustrato rocoso: Rocas blandas.	Cimentación superficial. Capacidad portante moderada a alta.	-Alteración superficialDeslizamientos en laderas naturales o taludes. -Asientos diferenciales
T-1/T-2	Zona III	Aluvio-coluvial	*Términos granulares: -Cimentación superficial. Capacidad portante media-alta *Términos cohesivos:	-Abarrancamientos e inestabili- dades en áreas proximales, -Asientos diferenciales.
T-2	-Cimentación superficial o s Funda (capacidad portante b		 -Cimentación superficial o semipro- funda (capacidad portante baja a media). Pozos o pilotaje en grandes estructuras. 	-Asientos en términos arcillo- sos con nivel freático elevado. -Expansividad moderada.
T-3	Zona IV	Arcillas y margas con yesos	Cimentación superficial o semipro- funda. Capacidad portante media.	-Karstificación en yesosAgresividad del terrenoRiesgo de expansividad elevadoInestabilidades de laderas. naturales y taludes.
	Zona V	Arcillas blandas y fangos	Capacidad portante baja a muy baja. Estructuras de poca carga (losa o pilotaje) y de grandes cargas (pilotaje).	 -Asientos de consolidación. -Nivel freático elevado o superficial (entibación y drenajes). Variaciones significativas. -Agresividad química del agua freática.
	Zona VI	Arenas litorales	Capacidad portante bajaEdificios 1-3 plantas: En general, cimentación superficialEdificios de más de tres plantas. losa o pilotaje.	-Nivel freático elevado. Drena- jes e inestabilidad de taludes. -Agresividad química del agua freática. -Materia orgánica. Asientos adicionales.
	Zona VII	Zonas especiales	Variables	Problemas geotécnicos varia- dos e impredecibles. Empleo de técnicas de investigación espe- cificas.

Mapa geológico de la Región de Murcia y de la ciudad de Lorca:

1.4. OBJETO.

El objeto de la investigación realizada es determinar la naturaleza, propiedades geotécnicas y químicas del terreno y su capacidad portante en profundidad y extensión lateral. Se determinarán los parámetros necesarios para el cálculo de la cimentación, excavación y contención del edificio proyectado.

CARACTERÍSTICAS DEL SOLAR				
Superficie	3632,44m²			
Topografía	Horizontal			
Desnivel	-			
Ocupación actual	Solar sin uso			
CARACTERÍSTICAS DE LA CONSTRUCCIÓN				
Plantas	Sótano+p.baja+5p.viviendas+p.trasteros			
Área	700m²			
Cota de Apoyo	-4,00m			
Edificio S/CTE	C-2			
CARACTERÍSTICA	AS DEL TERRENO			
Terreno previsto	Granular (Arenas y Gravas)			
Zonificación Geotécnica	Zona III			
Terreno S/CTE	T-1			

Cotas referidas a la +-0,00 de la Calle Ministriles (límite norte de la parcela)

2.- TRABAJOS Y ENSAYOS REALIZADOS

2.1.- METODOLOGÍA.

De acuerdo con las instrucciones del documento básico DB-SE-C del CTE, se plantea una campaña de reconocimiento mediante dos sondeos mecánicos a rotación, un ensayo de penetración continua tipo DPSH y la inspección geológica del entorno.

Sobre las muestras obtenidas se practicaron los suficientes ensayos de laboratorio para una adecuada identificación de las propiedades de las unidades geomecánicas existentes en el subsuelo del solar, apoyados en las correlaciones con los ensayos in situ llevados a cabo.

2.2. TRABAJOS DE CAMPO.

Los trabajos de campo comprenden la obtención de muestras del terreno, la realización de ensayos in situ y las observaciones que conducen a un conocimiento de la estructura del terreno, consistieron en:

- (1) Visita de inspección al emplazamiento por parte de geólogo, al objeto de comprobar las condiciones particulares del mismo y valorar posibles heterogeneidades en la naturaleza u orografía del mismo. De igual modo, se procedió al estudio de afloramientos existentes en parcelas próximas y donde se observaba el substrato, para determinar la extensión de los materiales descubiertos en los sondeos. Se prestó especial atención a las edificaciones circundantes, en particular a la posible existencia de patologías o desperfectos.
- (2) Sondeos mecánicos a rotación con extracción de testigo continuo, mediante sonda TP-50 montada sobre camión. Se utilizó batería sencilla tipo B, de 101 mm de diámetro y 1.5 m de longitud. La herramienta de corte utilizada fue siempre corona de widia. Las muestras obtenidas se alojaron en las correspondientes cajas alberga testigos.

Se procedió a la ejecución de ensayos de penetración estándar (SPT), en el interior de las perforaciones, para obtener datos in situ sobre la compacidad del terreno. De igual modo, se procedió a la extracción de muestras inalteradas del terreno, para su posterior ensayo en laboratorio.

A la vista del testigo continuo, obtenido en los sondeos, se han levantado las correspondientes columnas litoestratigráficas, en las que se indican las distintas capas atravesadas y la clasificación y descripción de las mismas, los resultados de los ensayos de penetración estándar realizados, resultados de ensayos de laboratorio y otros datos complementarios.

Se han realizado seis (6) ensayos de penetración estándar (SPT), y se procedió a la extracción de cuatro (4) muestras inalteradas (MI) cuya situación viene reflejada en las columnas de los sondeos. Las cotas con respecto a la boca de éstos fueron las siguientes:

SONDEO	ENSAYO	N°	COTA (m)	GOLPEO	N	TERRENO
S-1	MI	1	1.00-1.60	2+4+4+5		Limos arcillosos
S-1	MI	2	3.50-4.10	0+2+2+7		Arenas finas
S-1	SPT	1	6.60-7.20	3+3+5+5	8	Arenas finas
S-1	SPT	2	9.60-10.20	3+3+4+4	7	Limos arcillosos
S-1	SPT	3	12.60-13.20	4+5+4+5	9	Limos arcillosos
	307 17		12.00			Elifico di olilosos
	ENSAYO	N°	COTA (m)	GOLPEO	N	TERRENO
SONDEO	ENSAYO	N°	COTA (m)	GOLPEO		TERRENO
SONDEO S-2	ENSAYO MI	N° 1	COTA (m) 1.00-1.60	GOLPEO 4+5+5+6		TERRENO Arcillas limosas
SONDEO S-2 S-2	ENSAYO MI MI	N° 1 2	COTA (m) 1.00-1.60 3.50-4.10	GOLPEO 4+5+5+6 0+0+1+1	N	TERRENO Arcillas limosas Arenas finas

Consiste el ensayo (SPT), de acuerdo con la norma UNE 103 800, en la penetración de un tubo hueco, de 60 cm de longitud, por golpeo de una maza de 63,5 kg de peso, con caída libre desde una altura de 76 cm, anotándose el número de golpes precisos para lograr cada una de las cuatro penetraciones parciales de 15 cm.

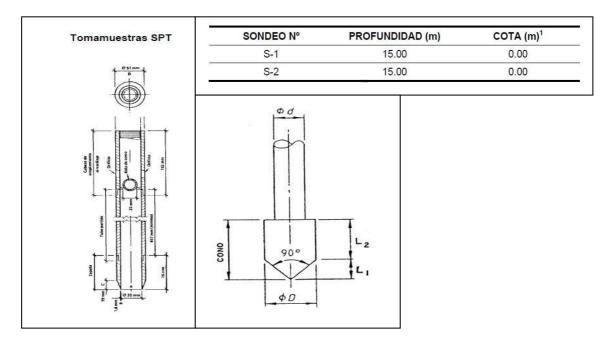
A fin de alcanzar la máxima precisión, tanto la regulación de la altura de caída como el conteo del número de golpes se realizan de modo automático.

Con objeto de eliminar las posibles perturbaciones del suelo como consecuencia de la perforación, solo se considera el número de golpes "N", suma de la hinca de los 30 cm intermedios. Se ha considerado rechazo cuando alguno de los valores de golpeo de un tramo de hinca parcial de 15 cm fue superior a 50.

Al extraer la cuchara estándar, se obtiene simultáneamente una muestra alterada de suelo.

En presencia de gravas, o en terrenos compactos, se utiliza una zapata cónica, denominada "puntaza ciega", del mismo diámetro que el tomamuestras, siendo los valores que se obtienen equivalentes al N de SPT.

Evidentemente, con esta puntaza no se obtiene muestra del terreno.


La obtención de las muestras inalteradas se realizó mediante tomamuestras tipo ISSA de diámetro exterior 79.38 mm, e interior 71 mm, siendo este el diámetro de la muestra, que se aloja en una camisa interior de PVC.

Este tomamuestras tiene una relación de áreas de 24.99, un despeje interior de 0.56 y un espesor de zapata de 4.19 mm. La longitud de muestra obtenida es de hasta 725 mm, aunque el tubo interior portamuestras es sólo de 60 cm. Con estos valores se cumple la

NTECEG de Estudios Geotécnicos, siendo las muestras extraídas del tipo II. El

tomamuestras se introdujo en el terreno por golpeo, lo que supone una mayor perturbación del suelo que la hinca por presión.

Las profundidades alcanzadas por los sondeos fueron:

Un ensayo de penetración dinámica DPSH, de acuerdo con la norma UNE 103 801, al objeto de conocerla resistencia del terreno a la penetración de una puntaza, merced a la caída libre de una maza de golpeo, contándose el número de golpes necesarios para introducirla 20 cm (N_{20}). Se considera rechazo (R) cuando el valor de N_{20} es mayor de 100.

El tipo de puntaza empleada es la perdida, de forma cilíndrica y que termina en forma cónica. El área de la sección es de 20 cm² (\emptyset = 51 mm), la longitud de la parte cilíndrica es de 50 mm y la parte cónica de 25 mm.

La altura de caída de la maza es de 760 mm, y su masa de 63.5 kg. La masa del varillaje es de 6.1 kg/m. Con el fin de alcanzar la máxima precisión, tanto la regulación de la altura de caída como el conteo del número de golpes se realizan de modo automático.

La profundidad alcanzada fue:

PENETRACIÓN Nº	PROFUNDIDAD (m)	COTA (m) 1
P-1	14.00	0.00

A las que se dieron por concluidos sin haber alcanzado el rechazo.

Los puntos donde se practicaron los sondeos y la penetración dinámica fueron señalados por personal técnico de CEICO.

Los sondeos y la penetración dinámica fueron llevados a cabo por SYCRO SERCONLAB,

S.L., acreditado en área de sondeo, toma de muestras y ensayos "in situ" para reconocimientos geotécnicos (GTC), y supervisado por personal técnico de CEICO, que procedió a la testificación de los materiales extraídos de forma simultánea a la perforación.

2.3. ENSAYOS DE LABORATORIO.

Sobre las muestras del terreno obtenidas se realizaron una serie de ensayos de laboratorio, encaminados a la identificación y estudio de los distintos parámetros del suelo. Los ensayos realizados fueron:

- El reconocimiento de visu y descripción de las muestras.
- Análisis granulométrico por tamizado, realizado de acuerdo con la norma UNE 103 101, con la finalidad de determinar los distintos porcentajes de gravas (>2 mm), arenas (>0.08 mm) y finos (<0.08 mm, arcillas y limos) que componen el suelo objeto de estudio.

La curva granulométrica, así como el porcentaje de suelo que pasa cada tamiz se indican en el gráfico del anejo correspondiente. Los porcentajes de grava, arena y finos (limo y arcilla) de las muestras fueron:

SONDEO	COTA (m)	Gravas (%) > 2 mm	Arenas (%) > 0.08 mm	Finos (%) < 0.08 mm
S-1	1.00-1.60	0	1.3	98.7
S-1	3.50-4.10	0	3.8	96.2
S-2	1.00-1.60	0	18.3	81.7
S-2	3.50-4.10	0	4.1	95.9

-Límites de Atterberg, son los estados de humedad que separan los distintos comportamientos del suelo, los principales son el límite líquido (WL), límite plástico (WP), y la diferencia entre ambos, el índice de plasticidad (IP).

Su determinación permite conocer las propiedades de la fracción fina del suelo. Los ensayos se realizan de acuerdo con las normas UNE 103 103 y 103 104.

Estos valores, junto con los del análisis granulométrico permiten clasificar el suelo según las normas S.U.C. y A.A.S.H.T.O.:

SONDEO	COTA (m)	W_L	W_P	I P	S.U.C.	A.A.S.H.T.O.
S-1	1.00-1.60	54	22	32	CH	A-7-6
S-1	3.50-4.10	32	23	9	CL	A-4
S-2	1.00-1.60	54	22	32	СН	A-7-6
S-2	3.50-4.10	34	20	14	CL	A-6

-Ensayos de resistencia a compresión simple: El objeto de este ensayo es determinar la resistencia del terreno, siendo aplicable a terrenos cohesivos, es decir, arcillosos.

Conjuntamente a la resistencia a la compresión simple (qu) se determina el peso específico aparente (γ) y la humedad natural (ω) de las muestras.

El procedimiento consiste en la compresión, inconfinada lateralmente, de una probeta de suelo entre dos platos paralelos, correspondiendo el valor de resistencia a compresión simple al máximo de la curva tensión-deformación o, en el caso de que no se produzca un máximo, al correspondiente al 15 % de deformación (ε). El ensayo se ajusta a la norma UNE 103 400. Los resultados obtenidos fueron:

SONDEO	COTA (m)	q _u (kPa)	თ (%)	γ (kN/m³)	CONSISTENCIA
S-1	1.00-1.60	132	26.54	1.64	FIRME
S-1	3.50-4.10	43	24.97	1.53	BLANDA
S-2	1.00-1.60	157	28.25	1.52	FIRME
S-2	3.50-4.10	33	28.44	1.51	BLANDA

-Ensayo de corte directo, con el objeto de determinar los parámetros φ (ángulo de rozamiento interno) y c (cohesión) del terreno.

Consiste este ensayo en la elaboración de, al menos, tres probetas de la muestra investigada, procediendo, en primer lugar, a su consolidación bajo una carga normal (según el tipo de ensayo), una vez se ha alcanzado la consolidación se aplica un esfuerzo tangencial y se mide la resistencia de la probeta al corte, hasta que ésta disminuye, que es cuando se considera rota. De igual modo se procede con las otras dos probetas, variando la carga normal, consiguiendo así tres pares de valores presión normal (σ) - resistencia al corte (τ), que son tres puntos de la envolvente de Mohr. Así, representando gráficamente los primeros en abscisas y los segundos en ordenadas, el ángulo de la recta con las abscisas es el ángulo de rozamiento interno (ϕ) y su intersección con el de ordenadas es la cohesión (c).

Se realizó un ensayo no consolidado y no drenado (UU) que aporta valores resistentes en tensiones totales. El procedimiento de ensayo viene regulado por la norma UNE 103 401. Los resultados obtenidos fueron:

SONDEO	COTA (m)	$\phi_{\mathbf{u}}$	c _u (kPa)	γ (g/cm³)	ω (%)
S-1	1.00-1.60	11.30	20.37	1.51	26.37
S-2	3.50-4.10	16.40	14.00	1.51	25.88

-Determinación del contenido en sulfatos, en muestras de suelo, a fin de evaluar su agresividad frente al hormigón. Según la instrucción EHE, se considera agresivo un suelo con un contenido en sulfatos superior a 3000 mg/kg, siendo necesario el empleo de tipo SR. El ensayo se realiza de acuerdo con el procedimiento descrito en el anejo 5 de la instrucción EHE. Los resultados obtenidos fueron:

SONDEO	COTA (m)	SO ₄ (mg/kg)
S-1	3.50-4.10	966
S-2	3.50-4.10	193

-Análisis químico, en una muestra de aguas freáticas del sondeo S-1, a fin de evaluar su agresividad frente al hormigón. Según la instrucción EHE, se deberán emplear cementos tipo SR cuando el contenido en sulfatos de las aguas sea mayor de 600 mg/l.

Por otro lado, la instrucción EHE clasifica la agresividad del agua según los siguientes baremos:

PARÁMETRO	GRA	DO DE AGRESIVID	AD
	DÉBIL	MEDIO	FUERTE
SULFATOS (SO ₄ ² -)(mg/l)	200 – 600	600 – 3000	> 3000

El resultado obtenido en el análisis fue:

SULFATOS (SO ₄ ² -)(mg/l)	1505
30LFATUS (304)(mg/l)	1000

Todas las determinaciones se realizaron de acuerdo con los procedimientos indicados en el apartado 5 de la instrucción EHE.

3. CARACTERÍSTICAS GEOLÓGICAS.

3.1 GEOLOGÍA LOCAL.

En los sondeos se identifica una alternancia de niveles detríticos finos con niveles cohesivos. En detalle, en los sondeos se distingue el siguiente corte del terreno:

- Un primer horizonte de tierra vegetal con un espesor variable, entre 0.20 y 0.40 m.
- Un segundo nivel de rellenos gravosos y arenosos de entre 0.60 y 1.50 metros y de gravas y arenas limosas y cantos de naturaleza esquistosa.

No se detectó la presencia de nivel freático en los sondeos en las fechas de realización de los mismos.

3.2 CARACTERÍSTICAS GEOTÉCNICAS.

El análisis de los sondeos y penetraciones dinámicas muestran dos tipos de niveles en el subsuelo, atendiendo a sus propiedades geomecánicas.

Nivel 1. El primer nivel de relleno detectado hasta los 0.6/1.5 metros en los sondeos nº1 y 2, respectivamente, compuesto por gravas, bolos y algún canto antrópico de escombro. Este nivel será salvado por la excavación prevista para el cimiento.

Nivel 2. Las gravas y arenas de color violeta de cantos esquistosos detectadas en todo el perfil investigado a partir del nivel anterior. Se trata de un material granular con predominio de la fracción gruesa, así las muestras ensayadas contienen entre un 15ny un 20% de finos no plásticos, clasificados como GM y SM.

Consistencia media, con resultados de N entre 13 y 31, en los SPT practicados, aunque se obtiene algún valor algo más firme, de hasta 57 golpes en tramos más cementados.

En base a estos datos, obtenemos una densidad aparente de 21kN/m3, ángulo de rozamiento interno de 36 grados, cohesión de 45 Kpa. Módulo de deformación E= 40 Mpa y permeabilidad de K= 10^{-5} m/s.

4. RIESGOS NATURALES.

4.1.- INUNDABILIDAD.

En base al Atlas Inventario de Riesgos Naturales de la Comunidad Autónoma de la Región de Murcia, la parcela investigada se sitúa en una zona con peligrosidad natural por inundaciones máxima, si bien las obras de encauzamiento del río Guadalentín han reducido el riesgo en gran medida.

4.2.- ESTABILIDAD DE LADERAS.

El grado de peligrosidad por movimiento de laderas es nulo. Se trata de un área con pendientes bajas, sin movimientos de ladera.

4.3.- SISMICIDAD.

De acuerdo con la norma Sismorresistente NCSE-02, el valor de la aceleración sísmica básica (ab) para Lorca (Murcia) es de 0.12 g.

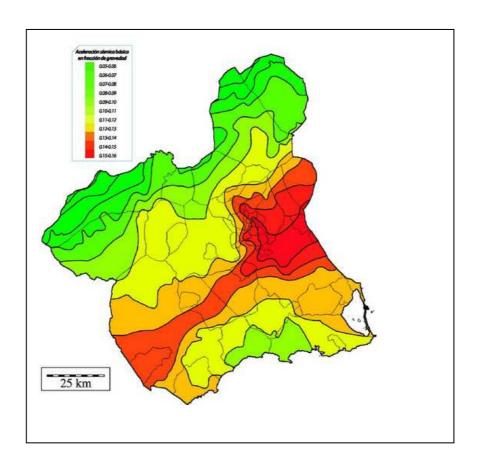
El valor de la aceleración sísmica de cálculo (ac) se obtiene de la expresión:

$ac = S \cdot \rho \cdot ab$

Donde:

ab = aceleración sísmica básica

ρ = coeficiente adimensional de riesgo, con un valor de 1.0 para construcciones de importancia normal y 1.3 para importancia especial.


S = coeficiente de amplificación del terreno, de valor:

Si
$$\rho \cdot \mathbf{a_b} \le 0.1 \text{ g} \Rightarrow S = \frac{C}{1.25}$$

Si $0.1 \text{ g} < \rho \cdot \mathbf{a_b} < 0.4 \text{ g} \Rightarrow S = \frac{C}{1.25} + 3.33 \left(\rho \cdot \frac{a_b}{g} - 0.1 \right) \left(1 - \frac{C}{1.25} \right)$
Si $\rho \cdot \mathbf{a_b} \ge 0.4 \text{ g} \Rightarrow S = 1$

Donde C es un coeficiente del terreno existente en los 30 m superiores, pudiendo estimarse en este caso un valor de C=1.6.

En consecuencia, el valor de aceleración sísmica de cálculo ac es de 0.151.

En esta zona el coeficiente de contribución es igual a uno (K = 1).

4.4.- AGRESIVIDAD.

El contenido en sulfatos de las muestras inalteradas analizadas es inferior a 2000 mg/k. Es decir, el ambiente de la cimentación es IIa, según la instrucción EHE.

4.5.- EXPANSIVIDAD.

Los ensayos de laboratorio realizados muestran un terreno con un porcentaje de finos entre un 81.7 y 98.7% de finos de plasticidad media y alta, pero el elevado nivel freático (detectado a 1.20 m), que satura el subsuelo, impedirá el incremento volumétrico.

En consecuencia, se puede concluir que se trata de materiales cuyo riesgo potencial de expansividad es nulo.

4.6.- PERMEABILIDAD.

Se han realizado ensayos Lefranc en el interior de los sondeos, obteniéndose valores de permeabilidad del orden de ks=10-3 cm/s.

5. CONDICIONES DE CIMENTACIÓN

Se justifica en este capítulo el análisis y cálculo de la cimentación de la estructura proyectada, así como de la excavación y contención y otras circunstancias que puedan ser relevantes. Los datos de partida son los siguientes:

- Se proyecta la construcción de un un edificio de 7 plantas sobre rasante y sótano .
- Está prevista una excavación de unos 4 m con respecto a la cota +-0,00 a la que se realizaron los reconocimientos.
- Los resultados obtenidos en los ensayos realizados, ya analizados y comentados en los capítulos anteriores.

Pasaremos a analizar las condiciones de cimentación de este edificio.

6. ANÁLISIS DE LA CIMENTACIÓN.

En términos generales, la tensión admisible se determina mediante el cálculo de la tensión admisible frente al hundimiento, es decir, la carga máxima que se puede transmitir al terreno sin que se produzca su fallo y la consiguiente ruina de la edificación, y la tensión admisible por asientos, o carga máxima que se puede introducir al terreno sin que, a medio o largo plazo, se produzcan asientos intolerables por la construcción. Una vez determinados estos dos valores se adopta el menor de ellos.

En principio, se propone una cimentación por zapatas, que apoyará a unos 4,00 m de profundidad, en el caso del foso de ascensor bajará a cota -4,75.

7. CONCLUSIONES Y RECOMENDACIONES

En función de lo indicado en los capítulos anteriores, entendemos que el tipo de cimentación a adoptar según proyecto será por zapatas, apoyando a -4.75 m y -4.00 m, aunque la solución más viable sea la de cimentar mediante losa, debido a la gran dimensión de las zapatas. En este caso se podría tomar como tensión admisible 1.5 Kg/cm2. La excavación mínima que se podría realizar para descargar el terreno y conseguir una tensión de trabajo neta que no supere los 5 cm de asiento sería de 3.5 metros con respecto a calle Herrerías. En ese caso se obtendría un valor de tensión admisible de 1.35 Kg/cm2, obteniéndose el mismo valor para el Módulo de Balasto.

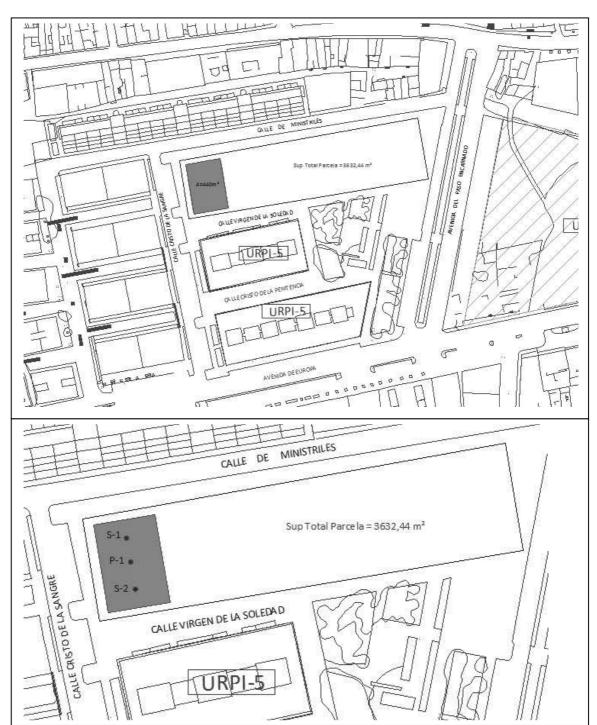
El ambiente de la cimentación es **IIa**, según la Instrucción EHE-8.

Según la Norma Sismorresistente NCSR-02, la edificación a construir es de normal importancia.

El coeficiente de contribución es de K=1.

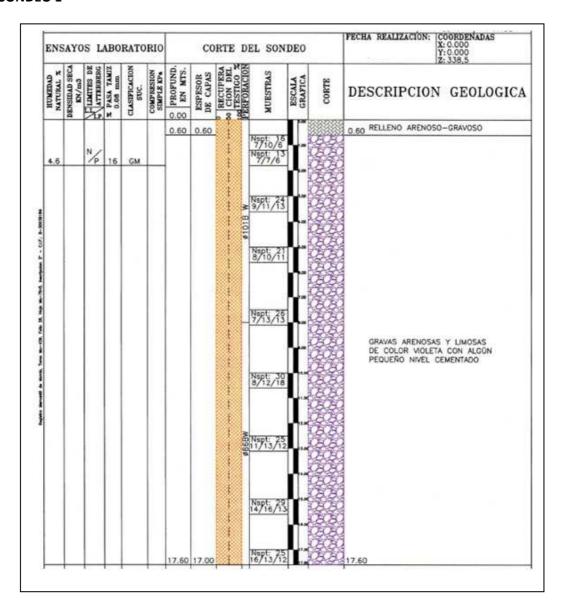
Valor de coeficiente de suelo es (C) igual a 1.6.

El valor de la aceleración sísmica básica (ab) es 0.12 g.

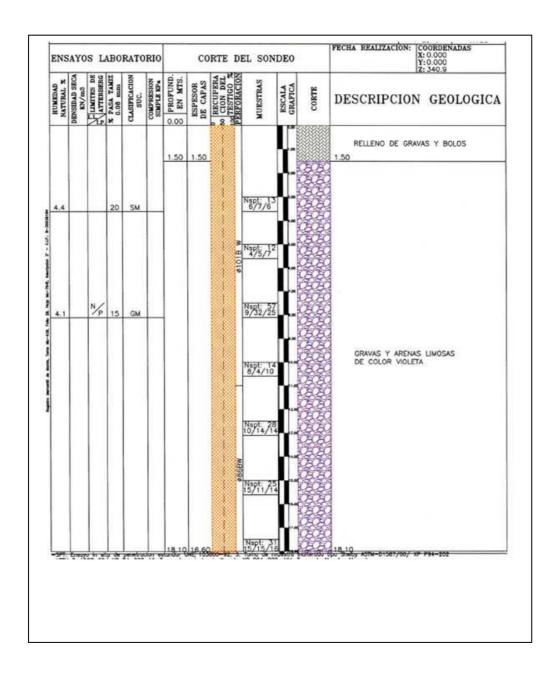

El valor de la aceleración sísmica de cálculo (ac) es 0.151 g.

El coeficiente de contribución K=1.

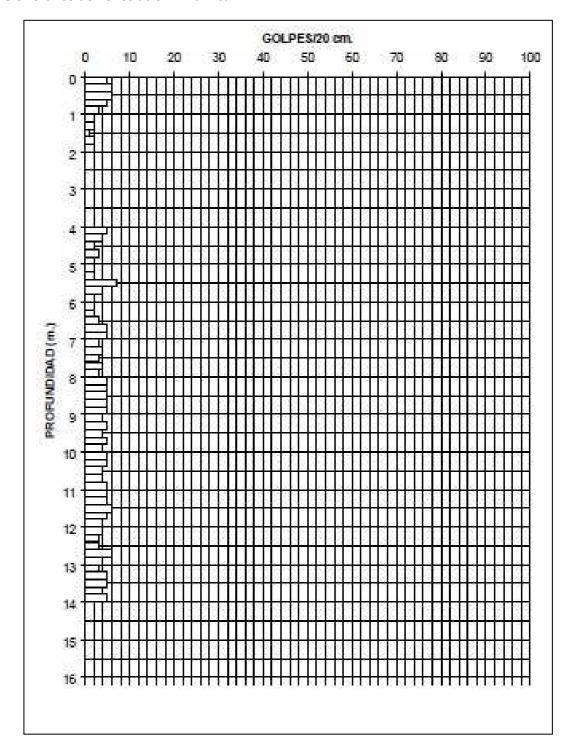
8. ANEXOS.


Se adjuntan a continuación los siguientes documentos:

8.1. Plano de situación con indicación de los puntos donde se practicaron los sondeos y la penetración dinámica.



- S- Sondeo / P- Penetración Dinámica.
- 8.2. Columnas y actas de los sondeos con la descripción y clasificación de los terrenos atravesados.


SONDEO 1

SONDEO 2

8.3. Gráfico de Penetración Dinámica.

8.4. FOTOGRAFÍAS MUESTRAS.

PREDIMENSIONADO CIMENTACIÓN Y ESTRUCTURA.

1. JUSTIFICACIÓN DE LAS SOLUCIONES ADOPTADAS.

Según proyecto se realizará una cimentación por zapatas de hormigón armado aunque sea más viable una cimentación por losa continua, tal y como se ha podido ver tras el estudio geotécnico y como se demostrará también más adelante en el estudio de cargas realizado. Los pilares de hormigón armado y forjado reticular con casetones de hormigón perdidos, con canto de 30 cm, capa de compresión de 5 cm e intereje entre casetones de 80 cm. El forjado ha sido seleccionado como bidireccional por ser el perteneciente a la OPCIÓN A del Enunciado del Trabajo Final de Grado 2014/2015.

1.1. ESTRUCTURA.

Estructura de hormigón armado, con pilares y forjados reticulares con casetones de hormigón no recuperables.

1.2. CIMENTACIÓN.

Cimentación mediante zapatas de hormigón armado de 70 cm de canto aproximado.

1.3. MÉTODO DE CÁLCULO.

1.3.1 HORMIGÓN ARMADO.

Para la obtención de las solicitaciones se ha considerado los principios de la Mecánica Racional y las teorías clásicas de la Resistencia de Materiales y Elasticidad.

El método de cálculo aplicado es de los Estados Límites, en el que se pretende limitar que el efecto de las acciones exteriores ponderadas por unos coeficientes, sea inferior a la respuesta de la estructura, minorando las resistencias de los materiales.

En los estados límites últimos se comprueban los correspondientes a: equilibrio, agotamiento o rotura, adherencia, anclaje y fatiga (si procede).

En los estados límites de utilización, se comprueba: deformaciones (flechas), y vibraciones (si procede).

Definidos los estados de carga según su origen, se procede a calcular las combinaciones posibles con los coeficientes de mayoración y minoración correspondientes de acuerdo a los coeficientes de seguridad definidos en el art. 12º de la norma EHE-08 y las combinaciones de hipótesis básicas definidas en el art 13º de la norma EHE-08.

Situaciones no sísmicas

$$\sum_{j \, \geq 1} \gamma_{Gj} G_{kj} + \gamma_{Q1} \Psi_{p1} Q_{k1} + \sum_{i \, > 1} \gamma_{Qi} \Psi_{ai} Q_{ki}$$

Situaciones sísmicas

$$\sum_{j \, \geq 1} \gamma_{\mathsf{G}j} G_{kj} + \gamma_{\mathsf{A}} A_{\mathsf{E}} + \sum_{i \, \geq 1} \gamma_{\mathsf{Q}i} \Psi_{\mathsf{a}i} Q_{ki}$$

La obtención de los esfuerzos en las diferentes hipótesis simples del entramado estructural, se harán de acuerdo a un cálculo lineal de primer orden, es decir admitiendo proporcionalidad entre esfuerzos y deformaciones, el principio de superposición de acciones, y un comportamiento lineal y geométrico de los materiales y la estructura.

Para la obtención de las solicitaciones determinantes en el dimensionado de los elementos de los forjados (vigas, viguetas, losas, nervios) se obtendrán los diagramas envolventes para cada esfuerzo.

Para el dimensionado de los soportes se comprueban para todas las combinaciones definidas.

1.3.2. ACERO LAMINADO Y CONFORMADO.

Se dimensiona los elementos metálicos de acuerdo a la norma CTE SE-A (Seguridad estructural), determinándose coeficientes de aprovechamiento y deformaciones, así como la estabilidad, de acuerdo a los principios de la Mecánica Racional y la Resistencia de Materiales.

Se realiza un cálculo lineal de primer orden, admitiéndose localmente plastificaciones de acuerdo a lo indicado en la norma.

La estructura se supone sometida a las acciones exteriores, ponderándose para la obtención de los coeficientes de aprovechamiento y comprobación de secciones, y sin mayorar para las comprobaciones de deformaciones, de acuerdo con los límites de agotamiento de tensiones y límites de flecha establecidos.

Para el cálculo de los elementos comprimidos se tiene en cuenta el pandeo por compresión, y para los flectados el pandeo lateral, de acuerdo a las indicaciones de la norma.

1.3.3. MUROS DE FÁBRICA DE LADRILLO.

Para el cálculo y comprobación de tensiones de las fábricas de ladrillo se tendrá en cuenta lo indicado en la norma CTE SE-F.

El cálculo de solicitaciones se hará de acuerdo a los principios de la Mecánica Racional y la Resistencia de Materiales.

Se efectúan las comprobaciones de estabilidad del conjunto de las paredes portantes frente a acciones horizontales, así como el dimensionado de las cimentaciones de acuerdo con las cargas excéntricas que le solicitan.

2. CARACTERÍSTICAS DE LOS MATERIALES A UTILIZAR.

Los materiales a utilizar así como las características definitorias de los mismos, niveles de control previstos, así como los coeficientes de seguridad, se indican en el siguiente cuadro:

2.1. HORMIGÓN ARMADO.

HA-25/B/20/IIa

2.1.1 Hormigones.

	Toda la obra	Cimentación	Soportes (Comprimidos)	Forjados (Flectados)	Otros
Resistencia Característica a los 28 días: f _{ck} (N/mm²)	25	25	25	25	25
Tipo de cemento (RC-03)	CEM II/ A-S				
Cantidad máxima/mínima de cemento (kp/m³)	400/300				
Tamaño máximo del árido (mm)		40	30	15/20	25
Tipo de ambiente (agresividad)	lla				
Consistencia del hormigón		Plástica	Blanda	Blanda	Blanda
Asiento Cono de Abrams (cm)		6 a 9	6 a 9	6 a 9	6 a 9
Sistema de compactación	Vibrado				
Nivel de Control Previsto	Estadístico				
Coeficiente de Minoración	1.5				
Resistencia de cálculo del hormigón: f _{cd} (N/mm²)	16.66	16.66	16.66	16.66	16.66

2.1.2. Acero en barras.

	Toda la obra	Cimentación	Comprimido s	Flectados	Otros
Designación	B-400-S				
Límite Elástico (N/mm²)	400				
Nivel de Control Previsto	Normal				
Coeficiente de Minoración	1.15				
Resistencia de cálculo del acero (barras): f _{yd} (N/mm²)	348				

2.1.3. Acero en Mallazos.

	Toda la obra	Cimentación	Comprimido s	Flectados	Otros
Designación	B-500-T				
Límite Elástico (kp/cm²)	500				

2.1.4. EJECUCIÓN.

	Toda obra	la	Cimentación	Comprimido s	Flectados	Otros
A. Nivel de Control previsto	Norma	al				
B. Coeficiente de Mayoración de las acciones desfavorables						
Permanentes/Variables	1.35/1	.5				

2.2. ACEROS LAMINADOS.

			Toda obra	la	Comprimido s	Flectados	Traccionado s	Placas anclaje
Acoro	2	Clase y Designación	S275					
Acero Perfiles	en	Límite Elástico (N/mm²)	275					
Acero	2	Clase y Designación	S275					
Chapas	en	Límite Elástico (N/mm²)	275					

2.3. ACEROS CONFORMADOS.

			Toda obra	la	Comprimido s	Flectados	Traccionado s	Placas anclaje
Acoro	3	Clase y Designación	S235					
Acero Perfiles	en	Límite Elástico (N/mm²)	235					
Acero	en	Clase y Designación	S235					
Placas Paneles	У	Límite Elástico (N/mm²)	235					

2.4. UNIONES ENTRE ELEMENTOS.

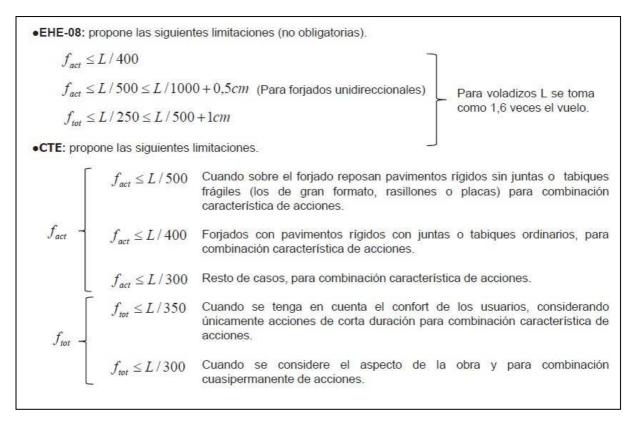
		Toda la obra	Comprimidos	Flectados	Traccionados	Placas anclaje
	Soldaduras					
	Tornillos Ordinarios	A-4t				
Sistema	Tornillos Calibrados	A-4t				
Sistema y Designación	Tornillo de Alta Resist.	A-10t				
	Roblones					
	Pernos o Tornillos de Anclaje	B-400-S				

2.5. ENSAYOS A REALIZAR.

Hormigón Armado. De acuerdo a los niveles de control previstos, se realizaran los ensayos pertinentes de los materiales, acero y hormigón según se indica en la norma Cap. XVI, art. 85.

Aceros estructurales. Se harán los ensayos pertinentes de acuerdo a lo indicado en el capítulo 12 del CTE SE-A.

2.6. ASIENTOS ADMISIBLES Y LÍMITES DE DEFORMACIÓN.


Asiento admisible en la cimentación. De acuerdo a la norma CTE SE-C, artículo 2.4.3, y en función del tipo de estructura, se considera aceptable un asiento máximo admisible de: 1,35 kg/cm2.

Límites de deformación de la estructura. Según lo expuesto en el artículo 4.3.3 de la norma CTE SE, se han verificado en la estructura las flechas de los distintos elementos. Se ha verificado tanto el desplome local como el total de acuerdo con lo expuesto en 4.3.3.2 de la citada norma.

Hormigón armado. Para el cálculo de las flechas en los elementos flectados, vigas y forjados, se tendrán en cuenta tanto las deformaciones instantáneas como las diferidas, calculándose las inercias equivalentes de acuerdo a lo indicado en la norma.

Para el cálculo de las flechas se ha tenido en cuenta tanto el proceso constructivo, como las condiciones ambientales, edad de puesta en carga, de acuerdo a unas condiciones habituales de la práctica constructiva en la edificación convencional. Por tanto, a partir de estos supuestos se estiman los coeficientes de fluencia pertinentes para la determinación de la flecha activa, suma de las flechas instantáneas más las diferidas producidas con posterioridad a la construcción de las tabiquerías.

En el siguiente cuadro se representan los valores límite admisibles para flechas:

Desplazamientos horizontales				
Local	Total			
Desplome relativo a la altura entre plantas: δ /h<1/250	Desplome relativo a la altura total del edificio: δ /H<1/500			

3. ACCIONES Y BASES DE CÁLCULO.

3.a). ACCIONES GRAVITATORIAS.

3.1. CARGAS SUPERFICIALES.

3.1.1. PESO PROPIO DEL FORJADO.

Se han dispuesto los siguientes tipos de forjados reticulares:

Forjado	Tipo	Entre ejes (cm)	Canto Total (cm)	Altura de Bovedilla (cm)	Capa de Com- presión (cm)	P. Propio (KN/m²)
Planta Baja	30+5	80	35	25	5	5.0
Planta viv	30+5	80	35	25	5	5.0
Planta Ático	30+5	80	35	25	5	5.0
Cubierta	30+5	80	35	25	5	5.0

3.1.2. PAVIMENTOS Y REVESTIMIENTOS.

PLANTA	ZONA	CARGA KN/m²
P. Baja	-	2.0
Planta Viv.	-	1.0
Planta Ático	-	1.0
P. Cubierta	-	2.5

3.1.3. SOBRECARGA DE TABIQUERÍA.

PLANTA	ZONA	CARGA KN/m²
P. Baja	-	1.0
Planta Viv.	-	1.0
Planta Ático	-	1.0

3.1.4. SOBRECARGA DE USO.

PLANTA	ZONA	CARGA KN/m²
P. Baja	-	2.0
Planta Viv.	-	2.0
Planta Ático	-	2.0
P. Cubierta	(transitable)	1.0

3.1.5. SOBRECARGA DE NIEVE.

PLANTA	ZONA	CARGA KN/m²
P. Cubierta	-	0.2

3.2. CARGAS LINEALES.

3.2.1. PESO PROPIO DE CERRAMIENTOS

PLANTA	ZONA	CARGA KN/m
todas	-	9.0

3.2.2. PESO PROPIO DE MEDIANERAS.

PLANTA	ZONA	CARGA KN/m
todas	-	6.0

3.2.3. SOBRECARGA EN VOLADIZOS.

PLANTA	ZONA	CARGA KN/m
todas	-	2.0

3.2.4. CARGAS LINEALES EN ANTEPECHOS.

PLANTA	ZONA	CARGA KN/m
todas	-	3.0

4. ACCIONES DEL VIENTO.

4.1. ALTURA DE CORONACIÓN DEL EDIFICIO.

Altura del Edificio = 22,60 metros.

4.2. GRADO DE ASPEREZA.

Grado II.

4.3. PRESIÓN DINÁMICA DEL VIENTO. (No procede).

4.4. ZONA EÓLICA.

Según el CTE DB SE-AE es zona X. Situación Normal.

5. ACCIONES TÉRMICAS Y REOLÓGICAS.

De acuerdo a la CTE DB SE-AE, se han tenido en cuenta en el diseño de las juntas de dilatación, en función de las dimensiones totales del edificio.

6. ACCIONES SÍSMICAS.

De acuerdo a la norma de construcción sismorresistente NCSE-02, por el uso y la situación del edificio, en el término municipal de Lorca, si se consideran las acciones sísmicas.

6.1. CLASIFICACIÓN DE LA CONSTRUCCIÓN.

Importancia Normal.

6.2. COEFICIENTE DE RIESGO.

Coeficiente = 1.

6.3. ACELERACIÓN BÁSICA.

ab=0.12 ; Coeficiente de Contribución K=1.

6.4. ACELERACIÓN DE CÁLCULO.

ac=0.151

6.5. COEFICIENTE DEL TERRENO.

C = 1.6

6.6. AMORTIGUAMIENTO

El amortiguamiento expresado en % respecto del crítico, para el tipo de estructura considerada y compartimentación será del 5%.

6.7. FRACCIÓN CUASI – PERMANENTE DE SOBRECARGA.

En función del uso del edificio, la parte de la sobrecarga a considerar en la masa sísmica movilizable será de 0.5.

6.8. DUCTILIDAD.

De acuerdo al tipo de estructura diseñada, la ductilidad considerada es BAJA. Ductilidad=2.

7. COMBINACIONES DE ACCIONES CONSIDERADAS.

7.1. HORMIGÓN ARMADO.

Hipótesis y combinaciones. De acuerdo con las acciones determinadas en función de su origen, y teniendo en cuenta tanto si el efecto de las mismas es favorable o desfavorable, así como los coeficientes de ponderación se realizará el cálculo de las combinaciones posibles del modo siguiente:

ESTADOS LÍMITE ÚLTIMOS DE ROTURA, E.L.U. Hormigón: EHE-08/CTE.

$$\begin{split} & \textbf{Situaciones no sísmicas} \\ & \sum_{j \, \geq 1} \gamma_{Gj} G_{kj} + \gamma_{Q1} \Psi_{p1} Q_{k1} + \sum_{i \, > 1} \gamma_{Qi} \Psi_{ai} Q_{ki} \\ & \textbf{Situaciones sísmicas} \\ & \sum_{j \, \geq 1} \gamma_{Gj} G_{kj} + \gamma_{A} A_{E} + \sum_{i \, \geq 1} \gamma_{Qi} \Psi_{ai} Q_{ki} \end{split}$$

	Situ	uación 1: Persisten	te o transitoria		
	Coeficientes parciales de seguridad (γ) Favorable Desfavorable		Coeficientes de combinación (Ψ)		
			Principal (ψ _p) Acompañamiento (ψ		
Carga permanente (G)	1.00	1.35	1.00	1.00	
Sobrecarga (Q)	0.00	1.50	1.00	0.70	
Viento (Q)	0.00	1.50	1.00	0.60	
Nieve (Q)	0.00	1.50	1.00	0.50	
Sismo (A)					
		Situación 2: S	ísmica		
	Coeficient	es parciales de	Coeficient	es de combinación (Ψ)	
	segu	ıridad (γ)			

	Favorable	Desfavorable	Principal (ψ _p)	Acompañamiento (ψ _a)
Carga permanente (G)	1.00	1.00	1.00	1.00
Sobrecarga (Q)	0.00	1.00	0.30	0.30
Viento (Q)	0.00	1.00	0.00	0.00
Nieve (Q)	0.00	1.00	0.00	0.00
Sismo (A)	-1.00	1.00	1.00	0.30(*)

ESTADOS LÍMITE ÚLTIMOS DE ROTURA, E.L.U. Hormigón en cimentaciones: EHE-**08/CTE**

Situaciones no sísmicas
$$\sum_{j \, \geq 1} \gamma_{Gj} G_{kj} + \gamma_{Q1} \Psi_{p1} Q_{k1} + \sum_{i \, > 1} \gamma_{Qi} \Psi_{ai} Q_k$$

	Situ	uación 1: Persistent	te o transitoria		
	Coeficientes parciales de seguridad (γ) Favorable Desfavorable		Coeficientes de combinación (ψ)		
			Principal (ψ _p)	Acompañamiento (ψ _a)	
Carga permanente (G)	1.00	1.60	1.00	1.00	
Sobrecarga (Q)	0.00	1.60	1.00	0.70	
Viento (Q)	0.00	1.60	1.00	0.60	
Nieve (Q)	0.00	1.60	1.00	0.50	
Sismo (A)					
		Situación 2: S	ísmica		
	Coeficientes parciales de seguridad (γ)		Coeficientes de combinación (Ψ)		
	Favorable	Desfavorable	Principal (ψ _p)	Acompañamiento (ψ_a)	
Carga permanente (G)	1.00	1.00	1.00	1.00	
Sobrecarga (Q)	0.00	1.00	0.30	0.30	
Viento (Q)	0.00	1.00	0.00	0.00	
Nieve (Q)	0.00	1.00	0.00	0.00	
Sismo (A)	-1.00	1.00	1.00	0.30(*)	

7.2. ACERO LAMINADO.

ESTADOS LÍMITE ÚLTIMOS DE ROTURA, E.L.U. Acero laminado: CTE DB-SE A.

Situaciones no sísmicas
$$\sum_{j\geq 1} \gamma_{Gj} G_{kj} + \gamma_{Q1} \Psi_{p1} Q_{k1} + \sum_{i>1} \gamma_{Qi} \Psi_{ai} Q_{ki}$$
 Situaciones sísmicas

$$\sum_{j \, \geq 1} \gamma_{\mathsf{G}j} G_{\mathsf{k}j} + \gamma_{\mathsf{A}} A_{\mathsf{E}} + \sum_{i \, \geq 1} \gamma_{\mathsf{Q}i} \Psi_{\mathsf{a}i} Q_{\mathsf{k}i}$$

	Sit	tuación 1: Persisten	te o transitoria		
	Coeficientes parciales de		Coeficientes de combinación (Ψ)		
	segu	ıridad (γ)		\'\'	
	Favorable	Desfavorable	Principal (ψ _p)	Acompañamiento (ψ _a)	
Carga permanente (G)	0.80	1.35	1.00	1.00	
Sobrecarga (Q)	0.00	1.50	1.00	0.70	
Viento (Q)	0.00	1.50	1.00	0.60	
Nieve (Q)	0.00	1.50	1.00	0.50	
Sismo (A)					
		Situación 2	: Sísmica		
	Coeficiente	es parciales de	Coeficientes de combinación (ψ)		
		ridad (γ)			
	Favorable	Desfavorable	Principal (ψ _p)	Acompañamiento (ψ _a)	
Carga permanente (G)	1.00	1.00	1.00	1.00	
Sobrecarga (Q)	0.00	1.00	0.30	0.30	
Viento (Q)	0.00	1.00	0.00	0.00	
Nieve (Q)	0.00	1.00	0.00	0.00	
Sismo (A)	-1.00	1.00	1.00	0.30(*)	

7.3. ACERO CONFORMADO Y MADERA.

Se aplican los mismos coeficientes y combinaciones que en el acero laminado.

8. CÁLCULO DE LA CIMENTACIÓN POR ZAPATAS.

CARACTERÍSTICAS DE LOS FORJADOS:

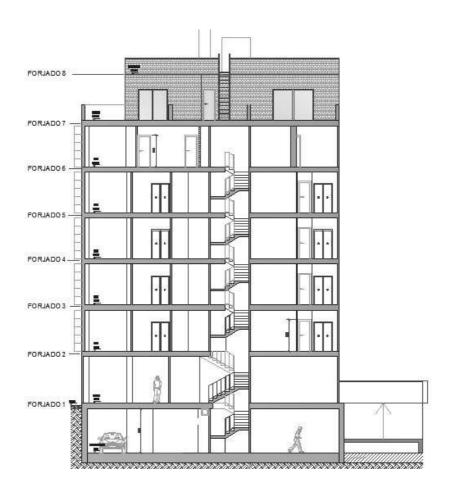
Forjados reticulares "In Situ", canto de los casetones (perdidos de hormigón) 25 cm, espesor de la capa de compresión 10 cm, intereje 80 cm; canto total 35 cm. Peso propio del forjado 3,6 KN/m².

Acero de negativos: 2Ø12, ver planos de estructura y secciones constructivas.

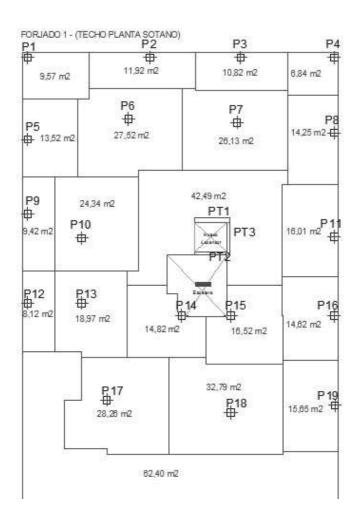
Acero de positivos: 2Ø12, ver planos de estructura y secciones constructivas.

Armadura de montaje: 1Ø10.

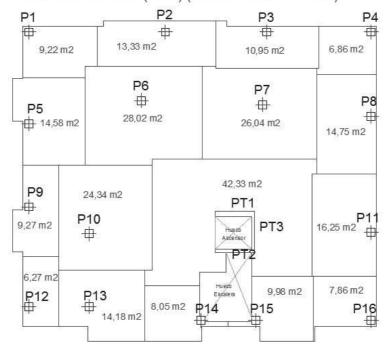
Malla electrosoldada en el montaje: Ø6 C/ 25 cm.

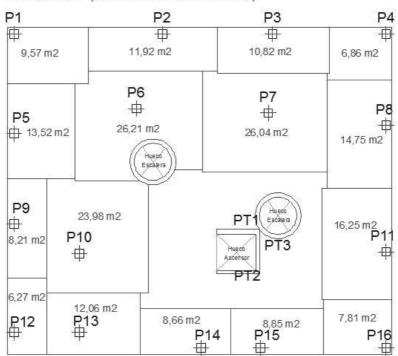

Mallazo electrosoldado: Ø6 de dimensiones 20x30 cm.

- NORMAS CONSIDERADAS:

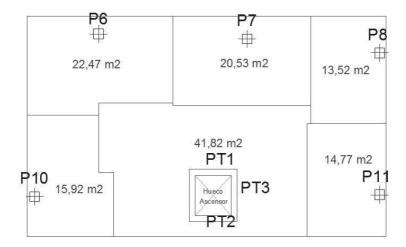

HORMIGÓN: EHE-CTE.

ACEROS CONFORMADOS: CTE DB-SE A.


ACEROS LAMINADOS Y ARMADOS: CTE DB-SE A.



SUPERFICIES DE LOS FORJADOS REPARTIDAS POR PILARES.


FORJADO 2-3-4-5-6 (TIPO) (SUELO PLANTA 1ª a 5ª)

FORJADO 7 (SUELO PLANTA ÁTICO)

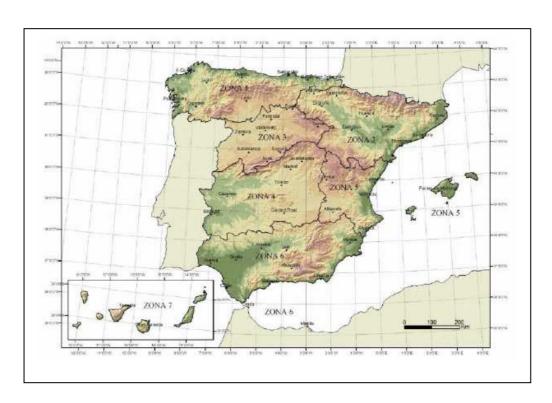
FORJADO 8 (SUELO CUBIERTA)

SUPERFICIES TOTALES AGRUPADAS POR PILARES:

PANTALLA ASCENSOR PT (123) = $42,49 + (42,33*5) + 44,85 + 41,82 = 340,81m^2$

CÁLCULO DE CARGAS:

Cargas Permanentes: Elementos estructurales, cerramientos, elementos separadores, tabiquería, carpinterías, revestimientos, rellenos y equipos fijos.


Cargas Variables: Sobrecargas de uso, nieve y viento.

Tablas:

Materiales y elementos	Peso especi- fico aparente kN/m³	Materiales y elementos	Peso especi- fico aparente kN/m ³
Materiales de albañilería	EL-17-1-17-17-17-17-17-17-17-17-17-17-17-1	Madera	0.000
Arenisca	21,0 a 27,0	Aserrada, tipos C14 a C40	3,5 a 5,0
Basalto Calizas compactas, mármoles	27,0 a 31,0 28.0	Laminada encolada Tablero contrachapado	3,7 a 4,4 5.0
	30.0		
Diorita, gneis Granito	27.0 a 30.0	Tablero cartón gris	8,0 12.0
	28.0	Aglomerado con cemento Tablero de fibras	8.0 a 10.0
Sienita, diorita, pórfido			8,0 a 10,0 4.0
Terracota compacta Fábricas	21,0 a 27,0	Tablero ligero Metales	4,0
Bloque hueco de cemento	13.o a 16.0	Acero	77.0 a 78.5
Bloque hueco de cerriento	10.0	Aluminio	27.0
Lagrino ceramico macizo	18.0	Bronce	83.0 a 85.0
Ladrillo derámico perforado	15.0	Cobre	87.0 a 89.0
Ladrillo derámico hueco	12.0	Estado	74.0
Ladrillo silicocalcareo	20.0	Hierro colado	71.0 a 72.5
Mamposteria con mortero	20,0	Hierro forjado	76.0
de arenisca	24.0	Latón	83,0 a 85,0
de basalto	27.0	Plomo	112,0 a 114,0
de caliza compacta	26.0	Zinc	71.0 a 72.0
de granito	26.0	Plásticos y orgánicos	1.10 2.12.0
Silleria	20,0	Caucho en plancha	17.0
de arenisca	26.0	Lámina acrílica	12.0
de arenisca o caliza porosas	24.0	Linóleo en plancha	12.0
de basalto	30.0	Mástico en plancha	21.0
de caliza compacta o mármol	28.0	Poliestireno expandido	0.3
de granito	28.0	Otros	7.42
Hormigones y morteros		Adobe	16,0
Hormigon ligero	9,0 a 20,0	Asfalto	24,0
Hormigón normal (1)	24,0	Baldosa ceramica	18,0
Hormigón pesado	> 28,0	Baldosa de gres	19,0
Mortero de cemento	19,0 a 23,0	Papel	11,0
Mortero de yeso	12,0 a 28,0	Pizarra	29,0
Mortero de cemento y cal	18,0 a 20,0	Vidrio	25,0
Mortero de cal	12.0 a 18.0	(2.640,660)	- 1000 MIN

Elemento		Peso
Foriados		kN/m²
£ : # 6 ** \$\$\$ #1. \$1. \$1. \$1. \$1. \$1. \$1. \$1. \$1. \$1. \$	Chapa grecada con capa de hormigón; grueso total < 0,12 m	2
	Forjado unidireccional, luces de hasta 5 m; grueso total < 0,28 m	3
	Forjado uni o bidireccional; grueso total < 0,30 m	4
	Forjado bidireccional, grueso total < 0,35 m	5
	Losa maciza de hormigón, grueso total 0,20 m	5
Cerramientos	s y particiones (para una altura libre del orden de 3,0 m) incluso enlucido	kN / m
	Tablero o tabique simple; grueso total< 0,09 m	3
	Tabicón u hoja simple de albañilería, grueso total < 0,14 m	5
	Hoja de albañilería exterior y tabique interior; gueso total < 0,25 m	7
Solados (incluyendo material de agarre)		kN/m²
	Lámina pegada o moqueta; grueso total < 0,03 m	0,5
	Pavimento de madera, cerámico o hidráulico sobre plastón; grueso total < 0,08 m	1,0
	Placas de piedra, o peldañeado: grueso total < 0,15 m	1.5
Cubierta, sob	ore forjado (peso en proyección horizontal)	kN / m²
	Faldones de chapa, tablero o paneles ligeros	1,0
	Faldones de placas, teja o pizarra	2,0
	Faldones de teja sobre tableros y tabiques palomeros	3,0
	Cubierta plana, recrecido, con impermeabilización vista protegida	1,5
	Cubierta plana, a la catalana o invertida con acabado de grava	2,5
Rellenos	140	kN/m
	Agua en aljibes o piscinas	10
	Terreno , como en jardineras, incluyendo material de drenaje (1)	20

A	Table		Comprobacione locales Carga concentrada [kN]		
		Sub			
А	Zonas residenciales	Α	Viviendas y zonas de habitaciones en, hospi- tales y hoteles	2	2
	2000000	A2	Trasteros	3	2
В	Zonas administrativas	le.	7-9	2	2
	Zonas de acceso al público (con la excep- ción de las superficies pertenecientes a las	C	Zonas con mesas y sillas	3	4
С		C2	Zonas con asientos fijos Zonas sin obstáculos que impidan el libre movimiento de las personas como vestíbulos de edificios públicos, administrativos, hote- les; salas de exposición en museos; etc.	5	4
	categorías A, B, y D)	C	Zonas destinadas a gimnasio u actividades físicas	5	7
		C5	Zonas de aglomeración (salas de conciertos, estadios, etc)	5	4
123	-14 SANS	D	Locales comerciales	5	4
D	Zonas comerciales	Dž	Supermercados, hipermercados o grandes superficies	5	7
E	Zonas de tráfico y de ap	arcamie	ento para vehiculos ligeros (peso total < 30 kN)	2	20 (1)
F	Cubiertas transitables a	cces ble	s sólo privadamente 121	-1	2
G	Cubiertas accesibles	G	Cubiertas con inclinación inferior a 20º	1(4)	2
G únicamente para con- servación (3)	G₽	Cubiertas con inclinación superior a 40º	0	2	

Altitud (m)	Zona de clima invernal, (según figura E.2)							
	1	2	3	4	5	6	7	
0	0,3	0,4	0,2	0,2	0,2	0,2	0,2	
200	0,5	0,5	0,2	0,2	0,3	0,2	0,2	
400	0,6	0,6	0,2	0,3	0,4	0,2	0,2	
500	0,7	0,7	0,3	0,4	0,4	0,3	0,2	
600	0,9	0,9	0,3	0,5	0,5	0,4	0,2	
700	1,0	1,0	0,4	0,6	0,6	0,5	0,2	
800	1,2	1,1	0,5	8,0	0,7	0,7	0,2	
900	1,4	1,3	0,6	1,0	0,8	0,9	0,2	
1.000	1,7	1,5	0,7	1,2	0,9	1,2	0,2	
1.200	2,3	2,0	1,1	1,9	1,3	2,0	0,2	
1.400	3,2	2,6	1,7	3,0	1,8	3,3	0,2	
1.600	4,3	3,5	2,6	4,6	2,5	5,5	0,2	
1.800	*	4,6	4,0	#2		9,3	0,2	
2.200	3-5	8,0	-	+3	99		8	

Según las diferentes tablas del CTE, referentes cargas permanentes o gravitatorias y cargas variables, calcularemos las cargas por superficie que afectan a cada pilar, para posteriormente calcular el predimensionado de zapatas en cimentación.

CARGAS CONSIDERADAS POR FORJADOS (según tablas CTE):

Forjado 1. Techo planta sótano:

Forjado 2. Techo planta baja:

Forjado 3. Techo planta primera:

Forjado 4. Techo planta segunda:

Forjado 5. Techo planta tercera:

Forjado 6. Techo planta cuarta:

Peso propio forjado (canto=0,35 m): 5,0 KN/m².

Cargas muertas + tabiquería: 2 KN/m².

Sobrecargas de uso en viviendas: 2 KN/m².

Forjado 7-8. Techo planta quinta y techo planta ático:

Peso propio forjado (canto=0,35 m): 5,0 KN/m².

Cargas muertas + tabiquería: 2 KN/m².

Sobrecarga de uso cubierta transitable: 1 KN/m².

Sobrecarga de nieve: 0,2 KN/m².

Medianeras hasta 3 metros:

Cargas lineales: 6 KN/ml

Capuchina hasta 3 metros:

Cargas lineales: 9 KN/ml

Antepechos hasta 1,2 metros:

Cargas lineales: 3 KN/ml

Q max admisible del terreno = 1,35 Kg/cm2. Ductilidad de la estructura baja= U=2

CÁLCULO DE LA CARGA (AXIL) QUE AGUANTA CADA PILAR:

PILAR 1:

PILAR 2:

TOTAL AXIL P1 = 142,65 + 697,5 + 78,17 = **918,32 KN**

Forjado 2, 3 → Cerramiento= 5,92 m * 9KN/m = 53,28 KN

TOTAL AXIL P2 = 160,56 + 866,25 + 91,66 = 1118,47 KN

PILAR 3:

TOTAL AXIL P3 =143,46 + 723,15 + 88,02 = **954,63 KN**

PILAR 4:

$$6,86 \text{ m}^2 * 6,2 \text{ KN/m}^2 = 42,53 \text{ KN}$$

TOTAL AXIL P4 = 101,61 + 509,00 + 65,48 = **676,09 KN**

PILAR 5:

TOTAL AXIL P5 = 160,92 + 852,3 + 96,9 = 1110,12 KN

PILAR 6:

Forjado 1
$$\longrightarrow$$
 P.P forjado + Tabiquería + S.C. Uso (vivienda)= 5+2+2= 9 KN/m²
27,52 m² * 9 KN/m²= 247,68 KN

3, 4, 5, 6
$$28,02 \text{ m}^2 * 9 \text{ KN/m}^2 = (252,18)* 5 \text{ plantas} = 1260,9 \text{ KN}$$

TOTAL AXIL P6 = 247,68 + 1260,9 + 308,7 + 169,19 = **1986,47 KN**

PILAR 7:

P forjado + S. Nieve + S.C. Uso (C. No Transitable)= 5+0,2+1= 6,2 KN/m²

TOTAL AXIL P7 = 237,17 + 1171,8 + 274,06 + 144,14 = **1827,17 KN**

PILAR 8:

Medianera =
$$5,00 \text{ m} * 6KN/m = 30 \text{ KN}$$

TOTAL AXIL P8 =158,25 + 813,75 + 182,51 + 118,50 = **1273,01 KN**

PILAR 9:

P.P forjado + Tabiquería + S.C. Uso (vivienda)= 5+2+2= 9 KN/m²

$$Total = (41,04 + 83,43)*5 plantas = 622,35 KN$$

P.P forjado + SCU cubierta transitable +Sobrecarga de nieve= 5+1+0,2= 6,2 KN/m²

TOTAL AXIL P9 = 131,85 + 622,35 + 64,58 = **818,78 KN**

PILAR 10:

P forjado + S. Nieve + S.C. Uso (C. Transitable)= 5+0,2+1= 6,2 KN/m²

$$6,80 \text{ m}^2 * 6,2 \text{ KN/m}^2 = 42,16 \text{ KN}$$

Cerramiento = 8,01 * 9KN/m = 72,09 KN

Forjado 8 → Antepecho = 8,46 m * 3 KN/m = 25,38 KN

P forjado + S. Nieve + S.C. Uso (C. No Transitable)=
$$5+0.2+1=6.2 \text{ KN/m}^2$$

 $15,92 \text{ m}^2 * 6.2 \text{ KN/m}^2 = 98,70 \text{ KN}$
 $\underline{\text{Total}} = 25,38 + 98,70 = 124,08 \text{ KN}$

TOTAL AXIL P10 = 1314,36 + 268,87 + 124,08 = 1707,31 KN

PILAR 11:

4, 5, 6 P.P forjado + Tabiquería + S.C. Uso (vivienda)=
$$5+2+2=9$$
 KN/m²

$$16,25 \text{ m}^2*9 \text{ KN/m}^2=146,25 \text{ KN}$$

$$\underline{\text{Total}}=(30,06+146,25)*5 \text{ plantas}=881,55 \text{ KN}$$

Antepecho =
$$0.5 \text{ m} * 3\text{KN/m} = 1.5 \text{ KN}$$

P.P forjado + Tabiquería + S.C. Uso (vivienda)= 5+2+2= 9 KN/m²

P forjado + S. Nieve + S.C. Uso (C. Transitable)= 5+0,2+1= 6,2 KN/m²

P forjado + S. Nieve + S.C. Uso (C. No Transitable)= 5+0,2+1= 6,2 KN/m²

TOTAL AXIL P11 = 174,15 + 881,55 + 197,63 + 128,80 = **1382,13 KN**

PILAR 12:

TOTAL AXIL P12 = 11,25 + 519,75 + 54,71 = **585,71 KN**

PILAR 13:

TOTAL AXIL P13 = 185,20 + 864,65 + 96,04 = **1145,89 KN**

PILAR 14:

P.P forjado + Tabiquería + S.C. Uso (vivienda)= 5+2+2= 9 KN/m²

P forjado + S. Nieve + S.C. Uso (C. Transitable)= 5+0,2+1= 6,2 KN/m²

$$Total = (44,10 + 72,45)*5 plantas = 582,75 KN$$

P forjado + S. Nieve + S.C. Uso (C. Transitable)= 5+0,2+1= 6,2 KN/m²

$$8,66 \text{ m}^2 * 6,2 \text{ KN/m}^2 = 53,69 \text{ KN}$$

TOTAL AXIL P14 = 147,76 + 582,75 + 72,38 = 802,89 KN

PILAR 15:

P.P forjado + Tabiquería + S.C. Uso (vivienda)= 5+2+2= 9 KN/m²

$$6,29 \text{ m}^2 * 9 \text{ KN/m}^2 = 56,61 \text{ KN}$$

$$6,86 \text{ m}^2 * 9 \text{ KN/m}^2 = 61,74 \text{ KN}$$

P forjado + S. Nieve + S.C. Uso (C. Transitable)= 5+0,2+1= 6,2 KN/m²

P.P forjado + SCU cubierta transitable +Sobrecarga de nieve= 5+1+0,2= 6,2 KN/m²

TOTAL AXIL P15 = 158,37 + 545,35 + 67,59 = **771,31 KN**

PILAR 16:

P.P forjado + Tabiquería + S.C. Uso (vivienda)= 5+2+2= 9 KN/m²

$$8,35 \text{ m}^2 * 9 \text{ KN/m}^2 = 75,15 \text{ KN}$$

P forjado + S. Nieve + S.C. Uso (C. Transitable)= 5+0,2+1= 6,2 KN/m²

P.P forjado + Tabiquería + S.C. Uso (vivienda)= 5+2+2= 9 KN/m²

$$7,86 \text{ m}^2 * 9 \text{ KN/m}^2 = 70,74 \text{ KN}$$

$$\underline{\text{Total}} = (27.9 + 15 + 70.74) * 5 \text{ plantas} = 568.20 \text{ KN}$$

TOTAL AXIL 16 = 170,12 + 568,20 = **738,32 KN**

PILAR 17:

TOTAL AXIL P17 =175,21 KN

PILAR 18:

TOTAL AXIL P18 = **203,30 KN**

PILAR 19:

TOTAL AXIL P19 = 30,30 + 97,03 = **127,33 KN**

PANTALLA ASCENSOR PT:

3, 4, 5, 6
$$42,33m^2 * 9 \text{ KN/m}^2 = 380,09 \text{ KN} * 5 \text{ plantas} = 1900,45 \text{ KN}$$

TOTAL AXIL PT = 381,96 + 1900,45 403,83 + 259,28 = **2945,52 KN**

MURO GARAJE M:

Forjado 1
$$\longrightarrow$$
 P forjado + S. Nieve + S.C. Uso (C. Transitable)= 5+0,2+1= 6,2 KN/m² 62,40 m² * 6,2 KN/m²= **386,88 KN**

A continuación se expone una tabla resumen con los axiles clasificados en grupos para el cálculo del predimensionado de zapatas. De cada grupo de axiles cogeremos el axil mayor para realizar el cálculo más desfavorable. Los grupos se formarán siguiendo un criterio de similitud de cargas y diseño de la zapata final.

Tabla resumen de axiles:

AXIL (N)	CARGA (KN)	GRUPO	TIPO DE ZAPATA
N 1	918,32	A	ESQUINA
N 2	1118,47	Α	MEDIANERA
N 3	954,63	Α	MEDIANERA
N 4	676,09	В	ESQUINA
N 5	1110,12	А	MEDIANERA
N 6	1986,47	С	AISLADA
N 7	1827,17	С	AISLADA
N 8	1273,01	A	MEDIANERA
N 9	818,78	В	MEDIANERA
N 10	1707,31	С	AISLADA
N 11	1382,13	С	MEDIANERA
N 12	585,71	В	MEDIANERA
N 13	1145,89	A	AISLADA
N 14	802,89	В	AISLADA
N 15	771,31	В	AISLADA
N 16	738,32	В	MEDIANERA
N 17	175,21	D	AISLADA
N 18	203,30	D	AISLADA

Proyecto de Ejecución de bloque plurifamiliar de 14 viviendas, local y 15 plazas de garaje

N 19	127,33	D	MEDIANERA
PT PANTALLA ASCENSOR	2945,52	Е	AISLADA
MURO	386,88	D	CORRIDA

- Para el Grupo A, cogemos el axil mayor del grupo, Na=1273,01KN y redondeamos:

Na=1280 KN

- Para el Grupo B cogemos el axil mayor del grupo , NB=818,78KN y redondeamos:

N_B=820 KN

- Para el Grupo C, cogemos el axil mayor del grupo, Nc=1986,47KN y redondeamos:

Nc=1990 KN

- Para el Grupo D, cogemos el axil mayor del grupo, ND=203,30KN y redondeamos:

N_D=200,00 KN

- Para el Grupo E, NE=2945,52 KN ≈ **2950 KN**

Datos generales: HA-25 Recubrimientos: inf (5cm), sup (7cm)

 σ_{adm} : 1,35 Kg/cm² = 135 KN/m² Pilar (40x40cm)

PREDIMENSIONADO GRUPO A: NA=1280 KN. Pilar (40x40cm).

Para una primera estimación, sin tener en cuenta el Peso Propio de la zapata ni la excentricidad de la carga (zapata cuadrada).

$$A_0 = \frac{1,25.\,\text{N}}{\sigma_{\text{adm}}} = \frac{1,25\text{x}1280}{135} = 11,85\,\text{m}^2 \; ; \; \; a_0 = \sqrt{A_0} = \sqrt{11,85} = 3,44m \approx 3,50\,m$$

Obtenida el área A de la zapata, podríamos calcular sus lados a y b (zapata rectangular), aunque siempre que se pueda y lo permita el pilar de arranque optaremos por una zapata cuadrada.

Calculamos β y η para $\eta < \frac{1}{90}$, sin tener en cuenta el momento M, cometiendo un error menor al 5%.

$$\beta = \frac{25 - 0,075. \sigma_{adm}}{100} = \frac{25 - 0,075x135}{100} = 0,148 > 0,05$$

$$\eta = \frac{1}{90} = 1,11.10^{-2} < 1.10^{-2}$$

$$\Delta = a. a = \frac{N(1 + 3\eta). (1 + \beta)}{\sigma_{adm}} = \frac{1280(1 + 3x1.10^{-2}). (1 + 0,148)}{135} = \frac{1513,52}{135} = 11,21m^2$$

$$a = \sqrt{11,21} = 3,34 \ m \approx 3,40 \ m$$

El canto de la zapata dependerá de la tensión admisible del terreno:

Estamos en el caso σadm<160KN/m². Zapatas mucho mayores (flexibles). El canto se limita a punzonamiento en lugar de a cortante. El canto útil (en metros) para zapatas de espesor constante será:

$$d_{p} = \alpha. d_{c} + (1 - \alpha). \sqrt{\frac{a.b. N_{d}}{a.b. 2552 - N_{d}}} \ge 0.24 \text{ m}; \quad \alpha = 0.67 + 0.33 \frac{\sigma_{adm} - 50}{110}$$

$$N_d = N. \, Y_f = 1280x1,35 = 1728 \, KN; \qquad v = \frac{a - a'}{2} = \frac{3,40 - 0,40}{2} = 1,5 \, m$$

$$\alpha = 0.67 + 0.33 \frac{135 - 50}{110} = 0.925$$

$$d_c = \frac{2,09. N_d}{N_d + a.b.1120} (v - 0,23) \ge 0,24m$$

$$d_c = \frac{2,09.1728}{1728 + 3,4 * 3,4 * 1120} (1,5 - 0,23) = 0,31m > 0,24m$$

$$d_p = 0.925.0,31 + (1 - 0.925).\sqrt{\frac{3,4x3,4x1728}{3,4x3,4x2552 - 1728}} = 0.36m \ge 0.24 \text{ m};$$

Si colocamos Ø20 mm en la parrilla inferior de las zapatas, tendremos un canto:

$$h = d_p + \frac{\text{Ø20}}{2} + r = 360 + 10 + 50 = 420 mm \approx 0,45 \ m$$
 Dimensiones zapata grupo A (3,40x 3,40 x 0,45 m)

Según EHE (Art 58.2) las zapatas se clasifican en rígidas y flexibles según la relación entre el vuelo máximo y el canto mayor:

Zapata Rígida
$$\rightarrow v_{max} \le 2.h \rightarrow 2.05 \le 2x0.5 = 1m$$
 No cumple

Zapata Flexible
$$\rightarrow v_{m\acute{a}x} > 2. h \rightarrow 2.05 > 2x0.5 = 1m$$
 Si cumple

Según EHE (Art 58.8.1) el canto mínimo en el borde de la zapata:

- Zapata de hormigón en masa: 35 cm
- Zapata de hormigón armado: 25 cm
- Encepados sobre pilotes: 40 cm (o el diámetro del pilote)

Zapata Flexible
$$\rightarrow v_{m\acute{a}x} > 2.h \rightarrow 1.5 > 2x0.45 = 0.90m$$
 Si cumple

PREDIMENSIONADO GRUPO B: NB=820 KN. Pilar (40x40cm).

$$A_0 = \frac{1,25.\,\text{N}}{\sigma_{\text{adm}}} = \frac{1,25 \times 820}{135} = 7,59\,\text{m}^2 \; ; \; \; a_0 = \sqrt{A_0} = \sqrt{7,59} = 2,751 m \approx 2,75 m$$

$$\Delta = a. a = \frac{N(1+3\eta).(1+\beta)}{\sigma_{adm}} = \frac{820(1+3x1.10^{-2}).(1+0.148)}{135} = \frac{969.60}{135} = 7.18m^2$$

$$a = \sqrt{7,18} = 2,679m \approx 2,70 m$$

$$N_d = N. \, \forall_f = 820x1,35 = 1107 \, KN; \qquad v = \frac{a - a'}{2} = \frac{2,70 - 0,40}{2} = 1,15 \, m$$

$$\alpha = 0.67 + 0.33 \frac{\sigma_{\text{adm}} - 50}{110}$$

$$\alpha = 0.67 + 0.33 \frac{135 - 50}{110} = 0.925$$

$$d_c = \frac{2,09.\,N_d}{N_d + a.\,b.\,1120}(v - 0,23) \ge 0,24m$$

$$d_c = \frac{2,09.1107}{1107 + 2,7 * 2,7 * 1120} (1,15 - 0,23) = 0,22m < 0,24m$$

$$d_p = \alpha. d_c + (1 - \alpha). \sqrt{\frac{a. b. N_d}{a. b. 2552 - N_d}} \ge 0.24 \text{ m}$$

$$d_p = 0.925.0,24 + (1 - 0.925). \sqrt{\frac{2.7x2.7x1107}{2.7x2.7x2552 - 1107}} = 0.272m \ge 0.24 \text{ m};$$

$$h = d_p + \frac{\varnothing 20}{^2} + r = 300 + 10 + 50 = 360mm \approx 0,40~m$$
 Dimensiones zapata grupo B (2,70x 2,70 x 0,40 m)

Zapata Flexible $\rightarrow v_{max} > 2.h \rightarrow 1.15 > 2x0.40 = 0.80m$ Si cumple

PREDIMENSIONADO GRUPO C: Nc=1990 KN. Pilar (40x40cm).

$$A_0 = \frac{1,25.\,\text{N}}{\sigma_{\text{adm}}} = \frac{1,25\text{x}1990}{135} = 18,42\text{m}^2 \; ; \; \; a_0 = \sqrt{A_0} = \sqrt{18,42} = 4,29m \approx 4,30m$$

$$\Delta = a. a = \frac{N(1+3\eta).(1+\beta)}{\sigma_{adm}} = \frac{1990(1+3x1.10^{-2}).(1+0.148)}{135} = \frac{2353.05}{135} = 17.43m^2$$

$$a = \sqrt{17,43} = 4,17m \approx 4,20 m$$

$$N_d = N. \, \forall_f = 1990x1,35 = 2686,5 \, KN; \qquad v = \frac{a - a'}{2} = \frac{4,20 - 0,40}{2} = 1,90 \, m$$

$$\alpha = 0.67 + 0.33 \frac{\sigma_{\text{adm}} - 50}{110}$$

$$\alpha = 0.67 + 0.33 \frac{135 - 50}{110} = 0.925$$

$$d_c = \frac{2,09. N_d}{N_d + a.b.1120} (v - 0,23) \ge 0,24m$$

$$d_c = \frac{2,09.2686,5}{2686,5 + 4,2 * 4,2 * 1120} (1,90 - 0,23) = 0,41m > 0,24m$$

$$\begin{split} \mathrm{d_p} &= \alpha.\,\mathrm{d_c} + (1-\alpha).\,\sqrt{\frac{\mathrm{a.\,b.\,N_d}}{\mathrm{a.\,b.\,2552-N_d}}} \geq 0,\!24\,\mathrm{m} \\ \mathrm{d_p} &= 0,\!925.0,\!41 + (1-0,\!925).\,\sqrt{\frac{4,\!2x4,\!2x2686,\!5}{4,\!2x4,\!2x2552-2686,\!5}} = 0,\!458\mathrm{m} \geq 0,\!24\,\mathrm{m}\,; \\ h &= d_p + \frac{\varnothing 20}{2} + r = 458 + 10 + 50 = 518mm \approx 0,\!55\,m \end{split}$$
 Dimensiones zapata grupo C $(4,\!20x\,4,\!20\,x\,0,\!55\,\mathrm{m})$

Zapata Flexible $\rightarrow v_{max} > 2.h \rightarrow 1,90 > 2x0,55 = 1,10m$ Si cumple

PREDIMENSIONADO GRUPO D: ND=200 KN. Pilar (40x40cm).

$$A_0 = \frac{1,25.\,\mathrm{N}}{\sigma_{\mathrm{adm}}} = \frac{1,25 \times 200}{135} = 1,85 \mathrm{m}^2 \; ; \; \; a_0 = \sqrt{A_0} = \sqrt{1,85} = 1,36 m \approx 1,40 m$$

$$\Delta = a. a = \frac{N(1+3\eta).(1+\beta)}{\sigma_{adm}} = \frac{200(1+3x1.10^{-2}).(1+0.148)}{135} = \frac{236.48}{135} = 1.75m^2$$

$$a = \sqrt{17,43} = 1,32m \approx 1,40 m$$

$$N_d = N. \forall_f = 200x1,35 = 270 \text{ KN}; \qquad v = \frac{a - a'}{2} = \frac{1,40 - 0,40}{2} = 0,5m$$

$$\alpha = 0.67 + 0.33 \frac{\sigma_{\text{adm}} - 50}{110}$$

$$\alpha = 0.67 + 0.33 \frac{135 - 50}{110} = 0.925$$

$$d_c = \frac{2,09. N_d}{N_d + a.b.1120} (v - 0,23) \ge 0,24m$$

$$d_c = \frac{2,09.270}{270 + 1,40 * 1,40 * 1120} (0,50 - 0,23) = 0,061m < 0,24m$$

$$d_{p} = \alpha. d_{c} + (1 - \alpha). \sqrt{\frac{a. b. N_{d}}{a. b. 2552 - N_{d}}} \ge 0.24 \text{ m}$$

$$d_{\rm p} = 0.925.0,24 + (1 - 0.925).$$
 $\sqrt{\frac{1,4x1,4x270}{1,4x1,4x2552 - 270}} = 0.247 \text{m} \ge 0.24 \text{ m};$

$$h = d_p + \frac{\emptyset 20}{2} + r = 250 + 10 + 50 = 310mm \approx 0,35 \, m$$
 Dimensiones zapata grupo D (1,40x 1,40 x 0,35 m)

Zapata Flexible $\rightarrow v_{m\acute{a}x} > 2.h \rightarrow 0.50 > 2x0.35 = 0.70m$ No cumple

PREDIMENSIONADO GRUPO E: NE=2950 KN. Pilar (40x40cm).

$$A_0 = \frac{1,25.\,\mathrm{N}}{\sigma_{\mathrm{adm}}} = \frac{1,25 \times 2950}{135} = 27,31 \mathrm{m}^2 \; ; \; \; a_0 = \sqrt{A_0} = \sqrt{27,31} = 5,22 m \approx 5,25 m$$

$$\Delta = a.\,a = \frac{N(1+3\eta).\,(1+\beta)}{\sigma_{adm}} = \frac{2950(1+3x1.\,10^{-2}).\,(1+0.148)}{135} = \frac{3488.19}{135} = 25.83m^2$$

$$a = \sqrt{25,83} = 5,083m \approx 5,00 m$$

$$N_d = N. \, \forall_f = 2950x1,35 = 3982,50KN; \qquad v = \frac{a - a'}{2} = \frac{5,00 - 0,40}{2} = 2,30m$$

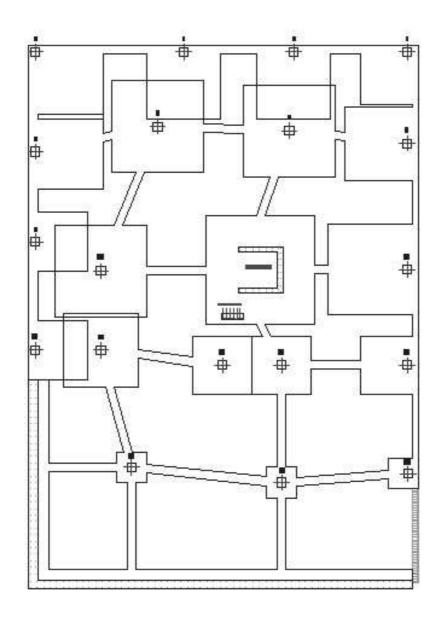
$$\alpha = 0.67 + 0.33 \frac{\sigma_{\text{adm}} - 50}{110}$$

$$\alpha = 0.67 + 0.33 \frac{135 - 50}{110} = 0.925$$

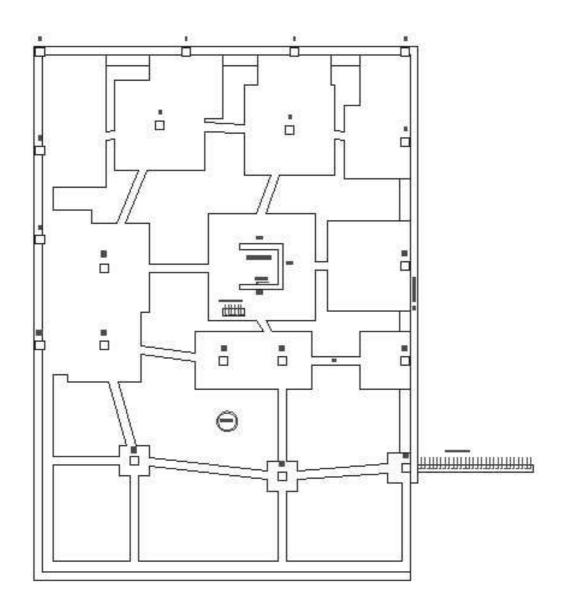
$$d_c = \frac{2,09.\,N_d}{N_d + a.\,b.\,1120}(v - 0,23) \ge 0,24m$$

$$d_c = \frac{2,09.3982,5}{3982,5+5*5*1120}(2,30-0,23) = 0,5387m > 0,24m$$

$$d_p = \alpha. d_c + (1 - \alpha). \sqrt{\frac{a.b. N_d}{a.b. 2552 - N_d}} \ge 0.24 \text{ m}$$

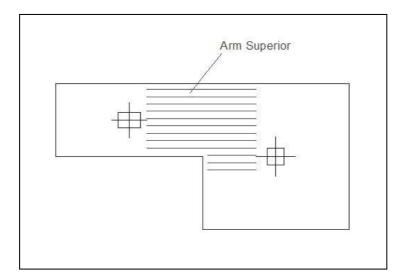

$$d_{\rm p} = 0.925.0,53 + (1 - 0.925). \sqrt{\frac{5x5x3982,5}{5x5x2552 - 3982,5}} = 0.586 \text{m} \ge 0.24 \text{ m};$$

$$h = d_p + \frac{\emptyset 20}{2} + r = 586 + 10 + 50 = 646mm \approx 0,65 m$$

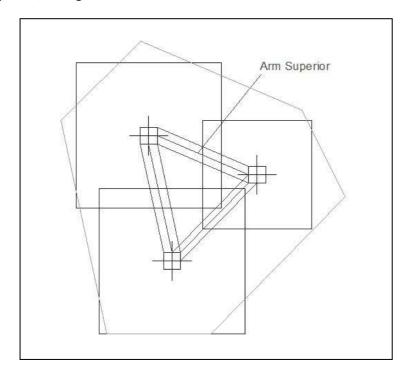

Dimensiones zapata grupo E (5,00x 5,00 x 0,65 m)

Zapata Flexible $\rightarrow v_{m\acute{a}x} > 2.h \rightarrow 2.30 > 2x0.65 = 1.30m$ Si cumple

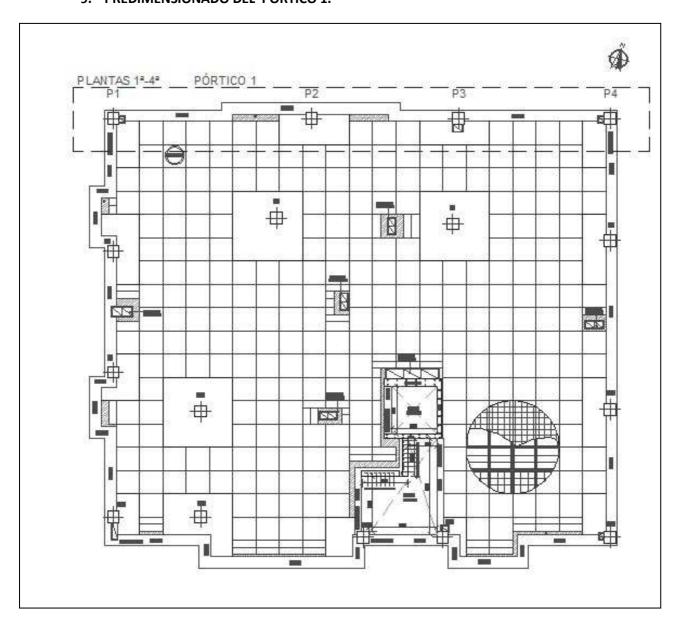
Con las dimensiones de las zapatas obtenidas, la planta en cimentación quedaría de la siguiente forma:



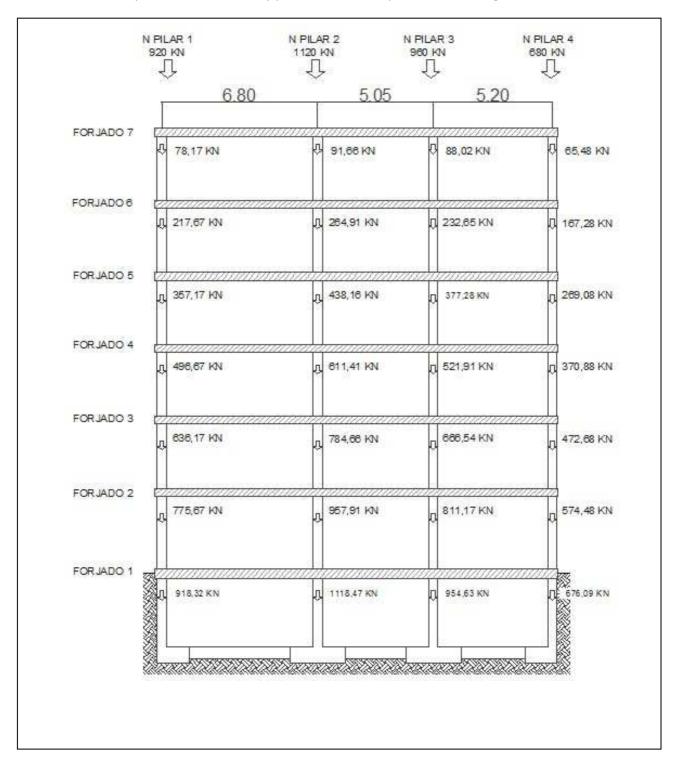
Debido a que algunas zapatas aisladas quedan unidas o prácticamente unidas, con una superposición mínima de bulbos, optamos por realizar en algunas zonas, grandes zapatas combinadas, quedando la cimentación de la siguiente forma:


Cuando se superponen las superficies de cimentación de dos cargas, resulta conveniente construir una sola zapata para ambas cargas.

En zapatas combinadas, aparece un esfuerzo de tracción en la parte superior que las une. Ahí colocaremos armadura superior, ver figura:



En el caso de 3 zapatas que se superponen, se construirá una envolvente que compense las superficies superpuestas, que será sensiblemente paralela a los ejes que unen las tres zapatas.


En el centro de gravedad de la envolvente creada debe coincidir con el centro de las 3 cargas. Igualmente colocaremos armadura en la parte superior de la zapata en la dirección del eje de unión de los pilares, ver figura:

9. PREDIMENSIONADO DEL PÓRTICO 1.

Una vez realizado el diseño de la estructura y los planos de planta de los diferentes forjados y pilares que la componen, hemos predimensionado las vigas mediante el cálculo del pórtico que hemos considerado más desfavorable, el señalado en la figura anterior (), ya que es el que tiene una mayor luz a ambos lados y por lo tanto un mayor ámbito de carga.

- DATOS DE PARTIDA PARA EL CÁLCULO DEL PÓRTICO 1 (según EHE-08):

- Distancia entre pórticos: 2,40 m

- Hormigón: HA-25/B/20/IIa

o Yc=1,50 YfG=1,35

- Acero: B 400 S

o Y1,15 YfQ=1,50

- Vida útil de la estructura: 50 años

- Control de Ejecución Normal

- Recubrimiento Nominal = $rmin + \Delta r = 15 + 10 = 25 mm$

o Δr – 0 mm – Elementos prefabricados- Control Intenso

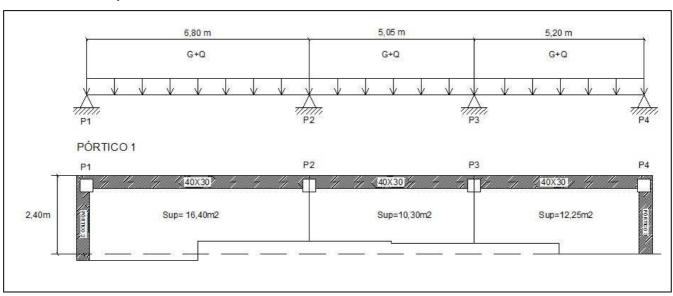
o Δr – 5 mm- Elementos "in situ" - Control Intenso

o $\Delta r - 10$ mm- resto de casos

- Para "ELS" Estados Límite de Servicio - No se mayoran las cargas

- Para "ELU" Estados Límite Últimos- Se mayoran cargas

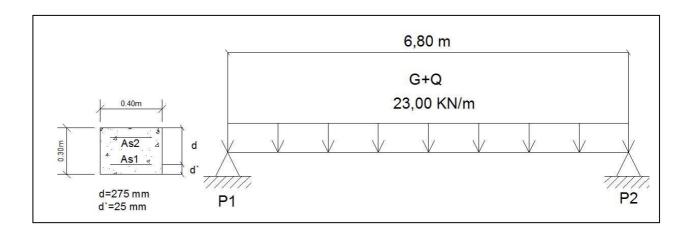
- PREDIMENSIONADO DE LA SECCIÓN:

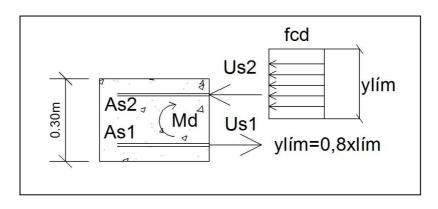

Nota: fijamos un ancho de sección b=40cm.

$$dlim = \frac{1,8\sqrt{Md}}{\sqrt{fcd \ x \ b}} = 1,8\frac{\sqrt{18,3}}{\sqrt{1667.0,40}} = 0,298 \text{ m}$$

"Para que no nos salga una viga descolgada cogemos un h=30 cm, con misma sección que el forjado"

- Dimensión Viga: (400 x 300) mm2


- ESQUEMA DE CARGAS Y DIMENSIONES DEL PÓRTICO 1:


- <u>ESQUEMA DE CARGAS:</u>	x2,40 m	(pasamos a carga lineal)
- Peso Propio Forjado	3,5 Kn/m2	8,40 Kn/m
- Peso Propio Viga	(0,4x0,3x25)	3,00 Kn/m
- Peso Propio Solado -	1,0 Kn/m2	2,40 Kn/m
- Peso Propio Tabiquería -	1,5 Kn/m2	3,60 Kn/m
- Peso Propio Instalaciones-	0,3 Kn/m2	0,72 Kn/m
- Sobrecarga de Uso	2,0 Kn/m2	4,80 Kn/m

Carga Lineal Total - $\mathbf{q} = 22,92 \text{ Kn/m} - \text{Redondeamos a } 23 \text{ KN/m}$, "esta será la carga característica que va a tener el forjado durante su vida útil".

- Calculamos la armadura de la sección del tramo P1-P2:

$$Md = (qd*L2)/8 = (31,662*6,80^2)/8 = 183,00 KN*m$$

$$Fcd = fck/Yc = 2500/1,5 = 1667 t/m2$$

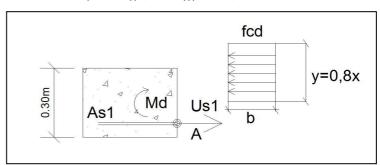
Fyd =
$$fyk/Ys = 400/1,15 = 347,82 N/mm$$

$$Xlim = d/(1+(fyd/700)) = 275/(1+((400/1,15)/700))) = 183,71 mm$$

Proyecto de Ejecución de bloque plurifamiliar de 14 viviendas, local y 15 plazas de garaje

Mlim = fcd*b*ylim(b-((ylim/2))) = 16666*0,40*0,146968*(0,275-((0,146/2))) = 197,91 KN.m

 $\Sigma MA=0$;


Md = fcd*b*y*(d-(y/2)) = fcd*b*y*(d-0,5y)

183 = 16666*0,40*y*(0,275-0,5y)

 $183 = 1833,26y - 3333,20y^2$

 $3333,2y^2-1833,26y+183=0$

$$y = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$
 ax²+bx+c=0

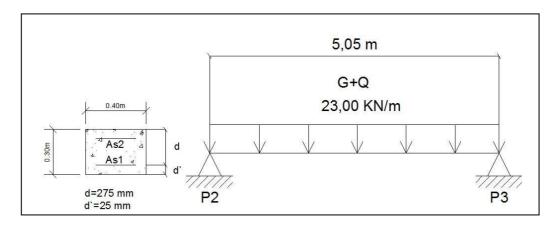
$$y = \frac{1833,26 \pm \sqrt{3360842,228 - 4 * 3333,2 * 183}}{2 * 3333,2}$$

y1 = 1833,26 + 959,65 / 6666,4 = 0,418 m "se sale de la sección"

y2 = 1833,26 - 959,65 / 6666,4 = 0,131 m "válido" y2 = 13,1 cm

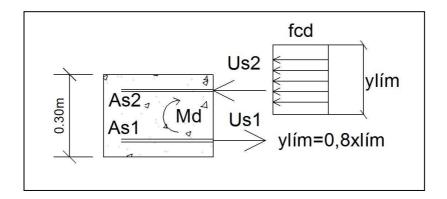
 $\Sigma FH = 0;$

Us1= fcd*b*y = 16666*0,40*0,131 = 873,29 KN


Área de 1 Ø 20 mm – A (Ø20)= $Pi*20^2/4 = 314,16 \text{ mm}^2$

Capacidad mecánica – Us1 (Ø20mm)=A*fyd= 314,16*347,82= 109270,87 N = 109,27 KN

As1= 873,29/109,27=7,99 = 8 Ø 20 mm


As2 – Armadura de montaje = 2 Ø 20 mm

- Calculamos la armadura de la sección del tramo P2-P3:

qd = (8,40+3,00+2,40+3,60+0,72)*1,35+(4,80)*1,50=31,662 KN/m

 $Md = (qd*L2)/8 = (31,662*5,05^2)/8 = 100,93 KN*m$

Fcd = fck/Yc = 2500/1,5 = 1667 t/m2

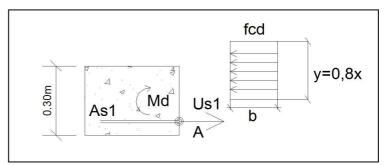
Fyd = fyk/Ys = 400/1,15 = 347,82 N/mm

Xlim = d/(1+(fyd/700)) = 275/(1+((400/1,15)/700))) = 183,71 mm

Ylím = 0,8*xlím = 0,8 * 183,71 = 146,968 mm

Mlim = fcd*b*ylim(b-((ylim/2))) = 16666*0,40*0,146968*(0,275-((0,146/2))) = 197,91 KN.m

 $\Sigma MA=0$;


$$Md = fcd*b*y*(d-(y/2)) = fcd*b*y*(d-0,5y)$$

$$100 = 16666*0,40*y*(0,275-0,5y)$$

$$100 = 1833,26y - 3333,20y^2$$

$$3333,2y^2-1833,26y+100=0$$

$$y = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$
 ax²+bx+c=0

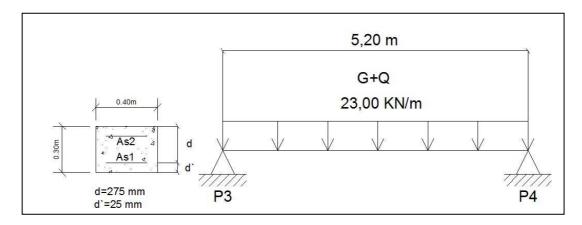
$$y = \frac{1833,26 \pm \sqrt{3360842,228 - 4 * 3333,2 * 100}}{2 * 3333.2}$$

y1 = 1833,26 + 1423,92 / 6666,4 = 0,488 m "se sale de la sección"

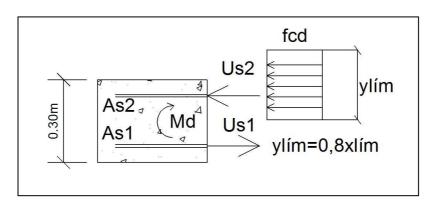
y2 = 1833,26 - 1423,92 / 6666,4 = 0,0614 m "válido" y2 = 6,14 cm

 $\Sigma FH = 0;$

Us1= fcd*b*y = 16666*0,40*0,0614 = 409,34 KN


Área de 1 Ø 20 mm – A (Ø20)= $Pi*20^2/4 = 314,16 \text{ mm}^2$

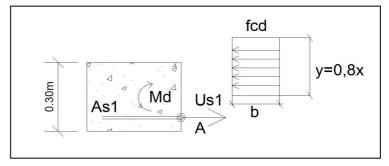
Capacidad mecánica – Us1 (Ø20mm)=A*fyd= 314,16*347,82= 109270,87 N = 109,27 KN


As1= 409,34/109,27= 3,746 = 4 Ø 20 mm

As2 – Armadura de montaje = 2 Ø 20 mm

Calculamos la armadura de la sección del tramo P3-P4:

$$Md = (qd*L2)/8 = (31,662*5,20^2)/8 = 107,01 KN*m$$


$$Fcd = fck/Yc = 2500/1,5 = 1667 t/m2$$

$$Fyd = fyk/Ys = 400/1,15 = 347,82 N/mm$$

$$Xlim = d/(1+(fyd/700)) = 275/(1+((400/1,15)/700))) = 183,71 mm$$

Mlim = fcd*b*ylim(b-((ylim/2))) = 16666*0,40*0,146968*(0,275-((0,146/2))) = 197,91 KN.m

 Σ MA=0; Md = fcd*b*y*(d-(y/2)) = fcd*b*y*(d-0,5y) 107 = 16666*0,40*y*(0,275-0,5y) $107 = 1833,26y - 3333,20y^2$

3333,2
$$y^2$$
-1833,26 y +107 = 0

$$y = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$
 ax²+bx+c=0

$$y = \frac{1833,26 \pm \sqrt{3360842,228 - 4 * 3333,2 * 107}}{2 * 3333,2}$$

y1 = 1833,26 + 1390,76 / 6666,4 = 0,483 m "se sale de la sección"

y2 = 1833,26 – 1390,76 / 6666,4 = 0,0663 m "válido" y2 = 6,63 cm

 $\Sigma FH = 0;$

Us1= fcd*b*y = 16666*0,40*0,0663 = 442,5 KN

Área de 1 Ø 20 mm – A (Ø20)= $Pi*20^2/4 = 314,16 \text{ mm}^2$

Capacidad mecánica – Us1 (Ø20mm)=A*fyd= 314,16*347,82= 109270,87 N = 109,27 KN

As1= 442,5/109,27= 4,04 = 4 Ø 20 mm

As2 – Armadura de montaje = 2 Ø 20 mm

Comprobamos las cuantías mínimas:

Cuantía Geométrica:

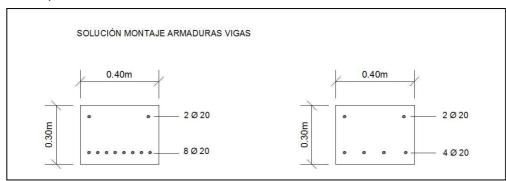
$$Ac = 400X300 = 120000 \text{ mm}^2$$

p=As/Ac

P1-P2 p1=As1/Ac=2512,28/120.000 = 0,0209 **CUMPLE**

P2-P3 p1=As1/Ac=1256,64/120.000 = 0,0104 **CUMPLE**

P3-P4 p1=As1/Ac= 1256,64/120.000 = 0,0104 **CUMPLE**


Cuantía Mecánica:

Us1>=0,04*fcd*b*h

Us1=0,04*1667*0,4*0,3 = 8,00 t = 80,0 KN - 873,29 > 80 KN **CUMPLE** P1-P2

P2-P3 409,34 > 80 KN *CUMPLE* P3-P4 442,5 > 80 KN **CUMPLE**

Comprobamos si caben las armaduras:

Proyecto de Ejecución de bloque plurifamiliar de 14 viviendas, local y 15 plazas de garaje

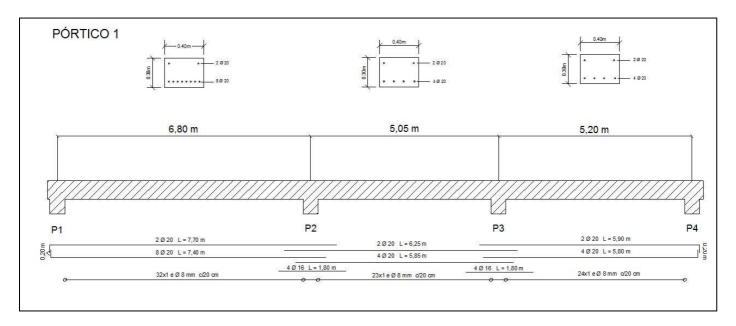
Tramo P1-P2 – 400mm-(8x20mm)=240mm-2x25mm (recubrimientos)= 190:7 espacios = 27 mm = 2,7 cm

Tramo P2-P3-P4 - 400mm-(4x20mm)=320mm-2x25(recub.)=270:3 espacios = 90 mm = 9 cm

Según la EHE-08: Separación debe de ser mayor que el diámetro del redondo y mayor a 2 cm, por lo tanto: **CUMPLE**

- Calculamos los estribos de la viga (Armadura Transversal):

Las limitaciones según la instrucción EHE-08 son:


Usaremos 6≤ Ø≤10

Separación máxima entre estribos ≤ 30 cm; 0,85 d; 3xb.

 $S = 0.85 \times 0.275 = 0.2375 \text{ m}.$

Usamos Ø8mm cada 20 cm.

ESQUEMA FINAL:

PREDIMENSIONADO INSTALACIONES.

AGUA FRÍA. (NTE-IFF).

Hacemos el cálculo de diámetros de los conductos por tramos. Según los planos descriptivos de fontanería, cada vivienda tiene de media 10 grifos para agua fría.

Con la siguiente tabla 1 de la NTE-IFF, nos proporciona el diámetro D de una tubería, según el número de grifos servidos por el tramo calculado.

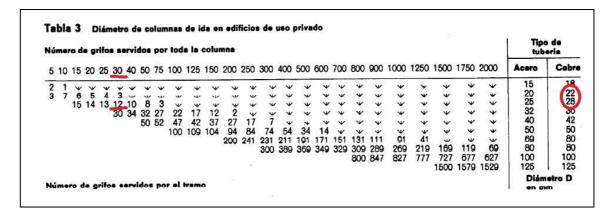
Uso del	Público	3	8	15	33	51	99	206	322	663	1217	2008
edificio	Privado	3	9	18	42	67	134	291	409	1027	1929	3286
Tipo de	Acero	15	20	25	32	40	50	65	80	100	125	150
tubería	Cobre o PVC	10	15 metro	20 D en	25 mm	30	40	60	80	100	125	150

Escogemos diámetros de tuberías para derivaciones individuales de viviendas de 15 mm.

Para los montantes de agua fría utilizamos diámetros de 20-25 mm.

AGUA CALIENTE. (NTE-IFC).

Para el dimensionamiento de la red, cada bañera se contará como dos grifos considerando que lleve o pueda llevar una ducha incorporada. Para instalaciones centralizadas con columna de retorno, el diámetro de cada tramo se determina en la Tabla 2 siguiente, en función del número de grifos a que abastece y el uso que se le dé al edificio.


Hacemos el cálculo de diámetros de los conductos por tramos. Según los planos descriptivos de fontanería, cada vivienda tiene de media 5-6 grifos para agua caliente.

Según la siguiente tabla 2 de la NTE-IFC:

Tabla 2		Νú	mero	de	grifo	ser	vidos	por e	l tram	o dist	ribuido	r
Uso del	Público	2	6	12	27	40	80	170	270	550	1000	1670
edificio	Privado	2	7	15	35	55	110	240	390	850	1600	2740
Tipo de	Acero	15	20	25	32	40	50	65	80	100	125	150
tuberia	Cobre	18	22	28	36	42	50	80	80	100	125	160
		Dia	met	o D	en m	m						

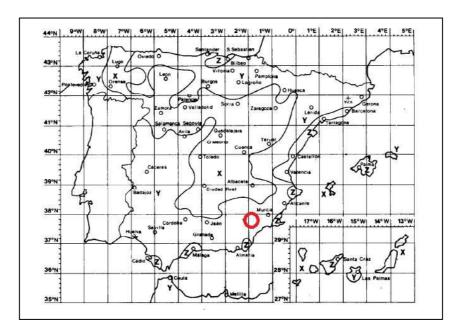
Escogemos diámetros de tuberías para derivaciones individuales de viviendas de 22 mm.

Columnas de ida. El diámetro D, de cada tramo se determina mediante la siguiente tabla 3 en función del número de grifos servidos por el tramo y el número de grifos servidos por toda la columna.

Usamos diámetros D para montantes comprendidos entre 22-28 mm.

SANEAMIENTO. (NTE-ISS).

Cálculo de conductos:


El diámetro D preciso para cada desagüe de cada aparato viene dado en correspondiente especificación y en los planos y memoria descriptiva.

El diámetro D preciso para cada tramo de las derivaciones, bajantes y colectores de la red, se determina en la Tabla 1 a partir de:

- a) La superficie de cubierta que evacua por el tramo en estudio y la zona pluviométrica del edificio.
- b) El número de aparatos evacuados por el tramo.
- c) La pendiente de la tubería en dicho tramo.

Las bajantes serán de diámetro constante en toda su longitud e igual al obtenido para el tramo de mayor caudal, como se podrá comprobar en los planos I-S de saneamiento y en el esquema.

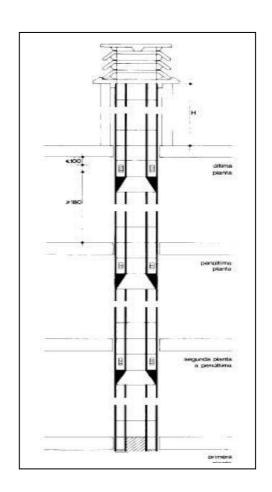
La zona pluviométrica se determina según las coordenadas geográficas del emplazamiento en el mapa adjunto. En este caso se corresponde con la zona marcada (Y), Lorca (Murcia).

Con la siguiente Tabla 1 calculamos los diámetros de bajantes y colectores:

	e super						€	Pend	lente	de la t	ubería	en %	>	N.º d	e Inod	oros,	√ verte	deros	y plac	as tur	cas	D
Zona X	Zona Y	Zona Z				Nún	nero d	ie ap	arato	s inst	alado	s exc	epto	inod	oros,	verte	dero	s y pi	acas	turce	s .	
1000 900 800 700 600 500 400 300 200 150 100 75 50 30 20 10 0	665 600 535 465 400 335 265 200 135 100 65 50 35 20 15 6	445 400 355 310 265 220 175 135 90 65 45 35 25 10 5	247 284 300 307 350 397 425 440 464 474 484 489 493 497 498 499 500	80 117 134 140 184 230 259 274 297 308 317 322 326 330 331 332 334	14 50 67 74 117 164 192 207 230 241 250 255 260 264 265 266 267	0 0 0 7 50 97 125 140 164 174 189 193 197 198 199 200	0 0 30 59 74 97 108 117 126 130 131 132 134	0 25 40 64 74 84 89 93 97 98 99	9 24 47 58 67 72 76 80 81 82 84	0 7 30 41 50 55 60 64 65 66 67	0 14 24 34 39 43 47 48 49 50	0 8 17 22 26 30 31 32 34	1 10 15 20 24 25 26 27	0 4 9 13 17 18 19 20	0 2 6 10 11 12 14	0 0 4 5 6 7	2 3 4 5	0 2 3 4	0 2 3	0 2	0	Diámetro D mm
		1,5 %	10	22 7 0	27 12 1 0	32 17 6 0	37 22 11 0	40 25 14 0	41 26 15 0	42 27 16 0	43 28 17 0	45 30 19 0	45 30 19 0	46 31 20 0	46 31 20 1 0	47 32 21 1 •	48 33 22 5 2 7 9	48 33 22 5 2 1	49 33 22 5 2 1 2	49 34 23 5 2 1 2 0	49 34 23 5 2	300 250 200 150 125 100 80 60 50
		3 %	26 5 0	41 20 3 0	46 25 8 0	52 31 14 0	58 37 20 0	61 40 23 0	62 41 24 0	64 43 26 0	65 44 27 0	66 45 28 1 0	67 46 29 2 1 0	68 47 30 2 1 0	68 47 30 2 1 0	69 48 31 3 2 1	70 49 32 5 2 1	70 49 32 5 3 1	70 49 32 5 3 2	71 50 39 6 3	71 50 33 6 3 2	300 250 200 150 125 100

Para bajantes y colectores de pluviales tenemos superficies de recogida de agua que oscilan entre 40 m2 y 15m2 en terrazas y cubiertas con una pendiente de 1,5%, así que según la tabla 1 de la NTE-ISS, escogemos un diámetro unificado para todas las bajantes pluviales de P1 a P9 de 100 mm.

Para bajantes y colectores de residuales tenemos pendientes en los colectores del 3 % y una media de 5 aparatos instalados excepto inodoros, según la norma, por lo tanto escogemos un diámetro D para bajantes F1 a F7 de 150mm.


En los colectores suspendidos del techo de planta sótano escogemos, para los tramos 1-8-Acometida y 9-16-Acometida, diámetros D de 250 mm.

VENTILACIÓN. (NTE-ISV).

Diseño de los conductos de ventilación (shunts) según el siguiente esquema:

Conducto vertical de tiro forzado de piezas prefabricadas. Dos acometidas por planta (ver detalles y planos I-VC).

De 1 hasta 8 plantas.

VENTILACIÓN EN COCINAS-ASEOS:

Cálculo de la entrada y salida de aire en cocinas, según la tabla 1.

Tendríamos el tipo A-2 que se refiere a aparatos instalados como aparatos de cocción, calentador instantáneo y otros.

1	Tipo de in	stalación			
Combusti- ble	A · 1	A - 2	B - 1	B - 2	B-3
Sólido o liquido	200	200	200	200	200
Gaseoso	100	150	50	70	•
	Sección S	en cm ²			

Proyecto de Ejecución de bloque plurifamiliar de 14 viviendas, local y 15 plazas de garaje

Según la tabla anterior utilizamos unos conductos circulares de chapa galvanizada por falso techo de un diámetro D para cocinas de 150mm, ya que necesitamos una superficie de evacuación de gases de 150 cm2 y la superficie de una circunferencia de 150 mm de diámetro es : $A=Pi \times Radio2 = Pi \times 7,5^2 = 176 \text{ cm } 2$.

Para la ventilación de aseos y baños reducimos el diámetro de los conductos a 100 mm ya que no habría conexión a aparatos de cocción y tienen el enganche al shunt más cercano.

A= Pi x Radio2 = Pi x 5.0^2 = 78.53 cm2.

VENTILACIÓN GARAJE:

Cálculo de la entrada y salida de aire en garajes.

La sección total necesaria S en cm2 de rejilla de fachada y el caudal total Q en m3xh de los extractores se determina en la siguiente tabla, en función de la superficie de nuestro garaje, que es de 376,04 m2.

	Superfici	e del garajo	en m²							
	250	500	750	1.000	1.250	1.500	1.750	2.000	2.250	2.500
Superficie de rejillas S en cm²	2.400	4.800	7.200	9.600	12.000	14.400	16.800	19.200	21.500	24.000
Caudal del extractor O en m³/h	3.750	7.500	11.250	15.000	18.750	22.500	26.250	30.000	33.750	37.500

Necesitaríamos una superficie de rejilla media de unos 3000cm2. Por lo tanto colocamos una rejilla de entrada de aire de 55x55 cm, que iría por la hornacina de la fachada que da a la calle Cristo de la Sangre y baja hasta la planta sótano. (Ver planos tipo I-VC-01).

La sección necesaria S en cm2 de los conductos verticales y horizontales de entrada de aire, se determinan según la siguiente tabla, en función también de la superficie del garaje.

1	Superfic	ie del gara	je en m²							
	250	500	750	1.000	1.250	1.500	1.750	2.000	2.250	2.500
Conductos verticales	2.400	4.800	7.200	9.600	12.000	14.400	16.800	19.200	21.600	24.000
Conductos horizontales	3.200	6.000	9.000	10.500	13.200	15.600	18.000	20.400	22.800	25.200
	Sección	S en cm ²								

Necesitamos también conductos de una superficie media de 3000 cm2.

El conducto de evacuación vertical hasta cubierta tendrá una superficie constante de 70 x 40 cm = 2800cm2.

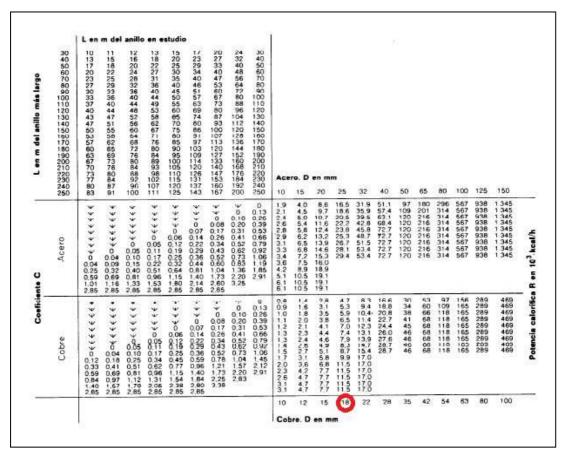
Los conductos horizontales por techo de planta sótano oscilarán entre 550 x 250 mm y 350 x 250 mm, suficientes para evacuar los gases del garaje y serán de chapa galvanizada.

La presión estática P en mm.c.a y el caudal Q en m3.h de los ventiladores extractores centrífugos se determina por la siguiente tabla en función de la superficie del garaje en m2, la sección S del conducto en cm2 y la altura en m del conducto de salida de aire

Sup Garaje: 376,04 m2

Altura conducto: 27 m

Sup conducto: 2800 cm2


		S en cm ²	Altura de 6	12	18	24	30	36	42	48	54	60	66	Cauda en m ³ /
	_	1.200	-	-	-	-	-	-		5,0	5,4	5,8	6,3	
	250	1,600	-	****	_	-	-	_	_	_		=	=	2.200
		2.400	· 12=2	08.5			\equiv	=	=	=	_	_	_	-
		1,200	7,5	9,1	10,5	12,0	13,5	14.9	16,4	17,9	19,3	20,8	22,3	
	500	1.600	_	-	5,6	6,4	7.1	7,9	8,6	P,3	10,1	10,8	11,5	4.40
	10000	2.000	=	=		=	_	=	5,3	5,8	6,2	6,7	7,1	A145000
		1,200	16.9	20.0	23,1	26.2	29,2	32.3	35,4	38.5	41,5	44.6	47.7	- 93
	750	1,600	9,4	10.9	12.4	14,0	15,5	17,1	18,6	20,1	21.7	23,2	24,8	6.60
	150	2.000	6,0	7,0	7.9 5.2	8,8 5,8	9,8 6.4	7.0	7,6	12,5 8.2	13,5 8,8	9.3	15,3	0.00
			200					V North				1.75		
		1.200	29,9 16.5	35,1	40.3 21.8	45,5 24,4	50,7 27,0	55,9 29,6	61,1 32,2	66,3 34,8	71,5 37,4	76,7 40,0	81,9 42,6	
Ë	1.000	2.000	10,7	12.3	13.8	15,4	17,0	18,5	20,1	21,7	23,2	24,8	26,4	8.80
=		2.400	7,2	8,2	9,2	10,2	11,2	12,2	13,2	14,2	15,1	16,1	17,1	
D		1.200	46,5	54,3	62,1	69,9	77.7	85,5	93,3	101,1	108,9	116,7	124,5	
ag.	1.250	1.600	25,7 16,7	29,7 19.0	33,6	37,5 23,7	41,4 26,1	45,3 28,4	49,2 30,8	53,1 33,2	57,1 35,5	61,0 37,9	64,9	11.00
9		2.400	11,3	12,7	14.2	15,7	17,2	18,7	20,2	21,7	23,2	24,6	26,1	
		1.200	55,6	77,5	88,4	99,3	110,1	121,0	131,9	148,2	159,1	170,0	180,9	
Ť	1.500	1.600	36,9	42,4	47.5	53,3	58,8	64,2	69.7 43.6	75,1	80,6	86,0	91,5	13.20
Superficie del garaje en		2.000	23,9 16,2	27,2 18,3	30,5 20,3	33,8 22,4	37,1 24.5	40,4 26,5	28.6	46,9 30,7	50,2 32,8	53,5 34,8	56,8 36,9	
		1.200	90,3	104,7	119.1	123.0	148,0	162,4	176.8	191,2	205,7	220,1	234,5	
	1.750	1.600	50,1	57,3	64,6	71,8	79,0	86,2	93,5	100,7	107,9	115,2	122,4	15.40
		2.000	32,5 22.0	36,8 24,7	41,2 27,5	45,5 30,2	49,9 33,0	54,2 35,7	58,6 38.4	62,9	67,3 43,9	71,6 46,7	76,0 49,4	0,5130
		1.200	117,6	138.0	154,3	172.7	191.1	209.5	227,9	246,3	264,7	260.1	301,5	
	2.000	1.600	65,2	74,5	83,7	92,9	102,1	111,4	120,6	129,8	139,0	148,3	157,5	17.60
	2.000	2.000	42,3	47,9 32,1	53,4 35,6	59,0	64,5 42,6	70,1 46,1	75,6 49,7	81,2	86,7 56,7	93,3	97,8	17.00
		2.400	28,6	1000000		39,1				53,2		60,2	63,7	
		1.200	148,4 82,4	171,2 93,8	104,0	216.8 116.7	230,6 128,1	262,4 139,5	285,2 151.0	308,0 162,4	330,8 173,5	353,6 185,3	376,4 196,7	10.00
	2.250	2.000	53,5	60,3	67,2	74,1	81,0	87,8	94,7	101,6	108,5	115,4	122,2	19.80
		2.400	36,2	40,5	44,9	49,2	53,5	57,9	62,2	66,6	70,9	75,3	79,6	
		1.200	182,7	210,3	138,0	265,6	293,2	320,9	348,5	376,1	403,8	431.4	459,0	
	2.500	1.600	101,5 65,9	115,3 74,2	129,2 82,5	143,0	156,9 99,2	170,7	184,6 115,9	198,5 124,2	212,3 132,5	226,2 140,9	240,0	22,00
		2.400	44,6	49,8	55,1	60.4	55,6	70,9	76,2	81,4	86,7	91,9	97,2	Can 0000
		ACTORNIA.	Presión											

Obtenemos un caudal de 2.200 m3/h.

RADIACIÓN-CALEFACCIÓN. (NTE-ICR).

Para obtener el diámetro D en mm, para cualquier tramo de distribuidor, columna o derivación de la instalación, se determina mediante la siguiente tabla y a partir de los datos que tenemos:

- Longitud de cálculo L del anillo más largo por vivienda 35 m.
- Número de radiadores medio. 8-10 radiadores por vivienda.
- Conductos de cobre Cu.
- Una potencia calorífica aproximada de 7 Kcl/h.

Obtenemos un diámetro de 18 mm para cada una de las derivaciones individuales de las 14 viviendas.

CLIMATIZACIÓN.

Para el predimensionado de los conductos de climatización en un sistema de aire-aire, nos basamos en el salón-comedor de la vivienda tipo C, la cual escogemos como estancia tipo.

Datos:

Superficie Salón: 18,80 m²

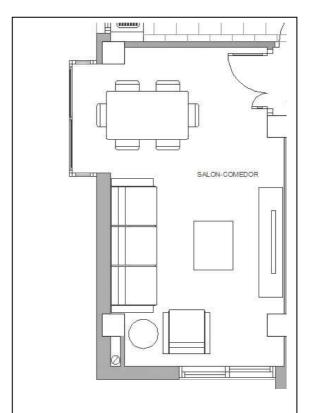
Potencia térmica para vivienda: 116 W/m²

(Según tabla anexa)

- Potencia calorífica-frigorífica:

Sup SalónxPotencia Térmica

 $18,80 \text{ m}^2 \text{ x } 116 \text{ W/m}^2 = 2180,80 \text{ W}$


- Potencia eléctrica:

Sup Salón x Potencia eléctrica

18,80 m² x 64 W/m² = 1203,2 W

Predimensionamos para una potencia
media por estancia de 2000 W según
esta última tabla:

"como podemos observar predimensionamos conductos rectangulares de fibra de vidrio para las estancias de todas las viviendas de 250 x 150 mm de sección"

Actividad a acondicionar:	Refrigeración W/m² (kcal/h.m²)	Pot. Eléctrica W/m²
Viviendas	116 (100)	64
Oficinas	140 (120)	78
Locales comerciales	163 (140)	91
Hoteles (habitaciones)	140 (120)	78
Restaurantes	360 (310)	200
Teatros	244 (210)	136
Museos	175 (150)	97

Potencia calorífica W (kcal/h)	○ Ø cm	Lados cm	Lados cm
1.800 (1.540)	20	20 x 20	25 x 15
3.060 (2.630)	25	25 x 25	30 x 20
4.860 (4.170)	35	30 x 30	40 x 25
9.360 (8.040)	40	35 x 35	50 x 30
16.200 (13.930)	50	45 x 45	60 x 35
23.400 (20.120)	60	55 x 55	75 x 40
36.000 (30.960)	70	65 x 65	95 x 45
50.400 (43.340)	80	75 x 75	110 x 50
64.800 (55.720)	90	85 x 85	125 x 55
86.400 (74.300)	100	95 x 95	145 x 60

BIBLIOGRAFÍA Y NORMATIVA CONSULTADA

• CTE (CÓDIGO TÉCNICO DE LA EDIFICACIÓN)

Seguridad estructural.

Seguridad en caso de incendio.

- SI 1 Propagación interior.
- SI 2 Propagación exterior.
- SI 3 Evacuación de ocupantes.
- SI 4 Instalaciones de protección contra incendios.
- SI 5 Intervención de los bomberos.
- SI 6 Resistencia al fuego de las estructuras.

Seguridad de utilización y accesibilidad.

- SUA 1 Seguridad frente al riesgo de caídas.
- SUA 2 Seguridad frente al riesgo de impacto o de atrapamiento.
- SUA 3 Seguridad frente al riesgo de aprisionamiento en recintos.
- SUA 4 Seguridad frente al riesgo causado por iluminación inadecuada.
- SUA 5 Seguridad frente al riesgo causado por situaciones de alta ocupación.
- SUA 6 Seguridad frente al riesgo de ahogamiento.
- SUA 7 Seguridad frente al riesgo causado por vehículos en movimiento.
- SUA 8 Seguridad frente al riesgo causado por la acción del rayo.
- SUA 9 Accesibilidad.

Salubridad.

- HS 1 Protección frente a la humedad.
- HS 2 Recogida y evacuación de residuos.
- HS 3 Calidad del aire interior.
- HS 4 Suministro de agua.
- HS 5 Evacuación de aguas.

Protección frente al ruido.

Ahorro de energía.

- HE 1 Limitación de demanda energética.
- HE 2 Rendimiento de las instalaciones térmicas.
- HE 3 Eficiencia energética de las instalaciones de iluminación.
- HE 4 Contribución solar mínima de agua caliente sanitaria.
- HE 5 Contribución fotovoltaica mínima de energía eléctrica.
- EHE 2008
- NTE (NORMAS TÉCNOLÓGICAS DE LA EDIFICACIÓN)
- RBTE
- LEY DE 5/1995, DE 7 DE ABRIL, DE CONDICIONES DE HABITABILIDAD EN EDIFICIOS DE VIVIENDAS Y PROMOCIÓN DE LA ACCESIBILIDAD GENERAL. REGIÓN DE MURCIA.
- EFHE (NORMA DE CONSTRUCCIÓN SISMORESISTENTE)
- RITE
- ESTUDIO GEOTÉCNICO DE CEICO S, L.
- PGMO DE LORCA.
- BANCO DE PRECIOS, JUNTA DE ANDALUCÍA 2013