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1 Introduction

The conformal group SO(4, 2) has ever been recognized as a symmetry of the Maxwell equations
for classical electro-dynamics [C-B], and more recently considered as an invariance of general,
non-abelian, maseless gauge field theories at the classical level. However, the quantum theory
raises, in general, serious problems in the implementation of conformal symmetry, and much work
has been devoted to the study of the physical reasons for that (see e.g. Ref. [Fr]). Basically,
the main trouble associated with this quantum symmetry (at the second quantization level) lies
in the difficulty of finding a vacuum, which is stable under special conformal transformations
acting on the Minkowski space in the form:

xµ → x′
µ

=
xµ + cµx2

σ(x, c)
, σ(x, c) = 1 + 2cx+ c2x2. (1)

These transformations, which can be interpreted as transitions to systems of relativistic, uni-
formly accelerated observers (see e.g. Ref. [H]), cause vacuum radiation, a phenomenon analo-
gous to the Fulling-Unruh effect [Fu, U] in a non-inertial reference frame. To be more precise,
if a(k), a+(k) are the Fourier components of a scalar massless field φ(x), satisfying the equation

ηµν∂µ∂νφ(x) = 0 , (2)

then, the Fourier components a′(k), a′+(k) of the transformed field φ′(x′) = σ−l(x, c)φ(x) by
(1) (l being the conformal dimension) are expressed in terms of both a(k), a+(k) through a
Bogolyubov transformation

a′(λ) =

∫

dk
[

Aλ(k)a(k) +Bλ(k)a+(k)
]

. (3)

In the second quantized theory, the vacuum states defined by the conditions a(k)|0〉 = 0 and
a′(λ)|0′〉 = 0, are not identical if the coefficients Bλ(k) in (3) are not zero. In this case the new
vacuum has a non-trivial content of untransformed particle states.

This situation is always present when quantizing field theories in curved space as well as in
flat space, whenever some kind of global mutilation of the space is involved. This is the case of
the natural quantization in Rindler coordinates [BD], which leads to a quantization inequivalent
to the normal Minkowski quantization, or that of a quantum field in a box, where a dilatation
produces a rearrangement of the vacuum [Fu]. Nevertheless, it must be stressed that the situation
for SCT is more peculiar. The rearrangement of the vacuum in a massless QFT due to SCT,
even though they are a symmetry of the classical system, behaves as if the conformal group were
spontaneously broken, and this fact can be interpreted as a kind of topological anomaly.

Thinking of the underlying reasons for this anomaly, we are tempted to make the singular
action of the transformations (1) in Minkowski space responsible for it, as has been in fact
pointed out in [GU]. However, a deeper analysis of the interconnection between symmetry and
quantization will reveal a more profound obstruction to the possibility of implementing unitar-
ily STC in a generalized Minkowski space, free from singularities, when conformally invariant
fields are forced to evolve in time. This way, the quantum time evolution itself destroys the
conformal symmetry, leading to some sort of dynamical symmetry breaking which preserves the
Weyl subgroup (Poincaré + dilatations).

This obstruction is traced back to the impossibility of representing the entire SO(4, 2) group
unitarily and irreducibly on a space of functions depending arbitrarily on ~x (see e.g. Ref. [Fr]),
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so that a Cauchy surface determines the evolution in time. Natural representations, however, can
be constructed by means of wave functions having support on the hole space-time and evolving
in some kind of proper time.

From the point of view of particle quantum mechanics (or “first” quantization), the free
arguments of wave functions in the configuration-space “representation” correspond to half of
the canonically conjugated variables in phase space (or classical solution manifold), and this
phase space is usually defined as a co-adjoint orbit of the basic symmetry group characterizing
the physical system. Thus, for instance, for the Galilei or Poincaré group the phase space
associated with massive spinless particles has dimension 6 and the corresponding wave functions
in configuration space have the time variable factorized out. However, as mentioned above,
this is not the case for the conformal group, for which we shall realize that time is a quantum

observable subject to uncertainty relations; this fact extends covariance rules to the quantum
domain.

The present study is developed in the framework of a Group Approach to Quantization
(GAQ)[AA1, ANR], which proves to be specially suitable for facing those quantization problems
arising from specific symmetry requirements. Furthermore, this formalism has the virtue of
providing in a natural way the space on which the wave functions are defined. A very brief report
on GAQ is presented in Sec. 2. In Sec. 3 we apply this quantization technique to the particular
case of the group SO(2, 2), which is the 1+1 dimensional version of the SO(4, 2) symmetry.
Although the conformal symmetry in 1+1 dimensions is far richer, we proceed in a way that
can be straightforwardly extended to the realistic dimension. In this example we show how a
(compact) configuration space, locally isomorphic to Minkowski space time, can be found inside
the SO(2, 2) group manifold on which the whole conformal group acts without singularities. We
also prove that the unitarity of the irreducible representations of SO(2, 2) requires the dynamical
character of the time variable, or that which is similar, prevents the existence of a conformally
invariant quantum evolution equation in the time variable. We examine two cases corresponding
to non-compact and compact “proper time” dynamics in Subsec. 3.1 and 3.2 , respectively.
Sec. 4 is devoted to the application of GAQ to a very special infinite-dimensional Lie group
G̃(2)(H(G̃), G̃) directly attached to the quantum mechanical Hilbert space H(G̃) of a “first”-
quantized system characterized by the quantizing group G̃ (a central extension of G = SO(2, 2),
for the present case). This mechanism is nothing other than a group version of the “second”-
quantization algorithm. With this algorithm at hand we formulate in Sec. 4.1 a conformally
invariant quantum field theory and, in Sec. 4.2, we investigate the effect of a SCT on a Weyl
vacuum and the associated radiation phenomenon. We calculate exactly the spectrum of an
accelerated Weyl vacuum, which proves to be a generalization of the black body spectrum, this
recovered as a given limit. Final comments are presented in the last Sec. 5.

2 Quantization on a group G̃

The starting point of GAQ is a group G̃ (the quantizing group) with a principal fibre bundle
structure G̃(B,T ), having T as the structure group and B being the base. The group T gener-
alizes the phase invariance of Quantum Mechanics. Although the situation can be more general
[ANR], we shall start with the rather general case in which G̃ is a central extension of a group
G by T [T = U(1) or even T = C∗ = ℜ+ ⊗ U(1)]. For the one-parametric group T = U(1), the
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group law for G̃ = {g̃ = (g, ζ)/g ∈ G, ζ ∈ U(1)} adopts the following form:

g̃′ ∗ g̃ = (g′ ∗ g, ζ ′ζeiξ(g′,g)) (4)

where g′′ = g′ ∗ g is the group operation in G and ξ(g′, g) is a two-cocycle of G on ℜ fulfilling:

ξ(g2, g1) + ξ(g2 ∗ g1, g3) = ξ(g2, g1 ∗ g3) + ξ(g1, g3) , gi ∈ G. (5)

In the general theory of central extensions [B], two two-cocycles are said to be equivalent if they
differ in a coboundary, i.e. a cocycle which can be written in the form ξ(g′, g) = δ(g′ ∗ g) −
δ(g′)− δ(g), where δ(g) is called the generating function of the coboundary. However, although
cocycles differing on a coboundary lead to equivalent central extensions as such, there are some
coboundaries which provide a non-trivial connection on the fibre bundle G̃ and Lie-algebra
structure constants different from that of the direct product G ⊗ U(1). These are generated
by a function δ with a non-trivial gradient at the identity, and can be divided into equivalence
Pseudo-cohomology subclasses: two pseudo-cocycles are equivalent if they differ in a coboundary
generated by a function with trivial gradient at the identity [S, AA2, AGM]. Pseudo-cohomology
plays an important role in the theory of finite-dimensional semi-simple group, as they have trivial
cohomology. For them, Pseudo-cohomology classes are associated with coadjoint orbits [AGM].

The right and left finite actions of the group G̃ on itself provide two sets of mutually com-
muting (left- and right-, respectively) invariant vector fields:

X̃L
g̃i =

∂g̃′′j

∂g̃i

∣
∣
∣
∣
∣
g̃=e

∂

∂g̃j
, X̃R

g̃i =
∂g̃′′j

∂g̃′i

∣
∣
∣
∣
∣
g̃′=e

∂

∂g̃j
,
[

X̃L
g̃i , X̃

R
g̃j

]

= 0, (6)

where {g̃j} is a parameterization of G̃. The GAQ program continues finding the left-invariant
1-form Θ (the Quantization 1-form) associated with the central generator X̃L

ζ = X̃R
ζ , ζ ∈ T ,

i.e. the T -component θ̃L(ζ) of the canonical left-invariant 1-form θ̃L on G̃. This constitutes the
generalization of the Poincaré-Cartan form of Classical Mechanics (see [AM]). The differential
dΘ is a presymplectic form and its characteristic module, KerΘ∩KerdΘ, is generated by a left
subalgebra GΘ named characteristic subalgebra. The quotient (G̃,Θ)/GΘ is a quantum manifold

in the sense of Geometric Quantization [GQ]. The trajectories generated by the vector fields in
GΘ constitute the generalized equations of motion of the theory (temporal evolution, rotations,
etc...), and the “Noether” invariants under those equations are Fg̃j ≡ iX̃R

g̃j
Θ, i.e. the contraction

of right-invariant vector fields with the Quantization 1-form.
Let B(G̃) be the set of complex-valued T -functions on G̃ in the sense of principal bundle

theory:
ψ(ζ ∗ g̃) = DT (ζ)ψ(g̃), ζ ∈ T , (7)

where DT is the natural representation of T on the complex numbers C. The representation of
G̃ on B(G̃) generated by G̃R = {X̃R} is called Bohr Quantization and is reducible. The reduction
can be achieved by means of the restrictions imposed by a full polarization P:

X̃Lψ
P

= 0, ∀X̃L ∈ P , (8)

which is a maximal, horizontal (excluding X̃L
ζ ) left subalgebra of G̃L which contains GΘ. It

should be noted that the existence of a full polarization, containing the whole subalgebra GΘ, is
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not guaranteed. In case of such a breakdown, called anomaly, or simply for the desire of choosing
of a preferred representation space, a higher-order polarization has to be imposed [ABLN]. A
higher-order polarization is a maximal, horizontal subalgebra of the left enveloping algebra U G̃L

which contains GΘ.
The group G̃ is irreducibly represented on the space H(G̃) ≡ {|ψ〉} of polarized wave func-

tions, and on its dual H∗(G̃) ≡ {〈ψ|}. If we denote by

〈g̃
P
|ψ〉 ≡ ψ

P
(g̃) , 〈ψ′|g̃

P
〉 ≡ ψ′∗

P
(g̃) (9)

the coordinates of the “ket” |ψ〉 and the “bra” 〈ψ′| in a representation defined through a po-
larization P (first- or higher-order), then, a scalar product on H(G̃) can be naturally defined
as:

〈ψ′|ψ〉 ≡
∫

G̃
v(g̃)ψ′

P

∗(g̃)ψ
P
(g̃), (10)

where
v(g̃) ≡ θL

g̃i∧ dim(G̃)... ∧θL
g̃n (11)

is the left-invariant integration volume in G̃ and

1 =

∫

G̃
|g̃

P
〉v(g̃)〈g̃

P
| (12)

formally represents a closure relation. A direct computation proves that, with this scalar prod-
uct, the group G̃ is unitarily represented through the left finite action (ρ denotes the represen-
tation)

〈g̃
P
|ρ(g̃′)|ψ〉 ≡ ψ

P
(g̃′−1 ∗ g̃) . (13)

The adjoint action is then defined as

〈ψ′|ρ†(g̃′)|ψ〉 ≡ 〈ψ|ρ(g̃′)|ψ′〉∗, i.e 〈g̃
P
|ρ†(g̃′)|ψ〉 = ψ

P
(g̃′ ∗ g̃) . (14)

We can relate the coordinates of |ψ〉 in two given representations, corresponding with two
different polarizations P1 and P2, as follows:

ψ
P 1

(g̃) = 〈g̃
P 1

|ψ〉 =

∫

G̃
v(g̃′)〈g̃

P 1
|g̃′

P 2
〉〈g̃′

P 2
|ψ〉 ≡

∫

G̃
v(g̃′)∆

P1P2
(g̃, g̃′)ψ

P2
(g̃′) , (15)

where ∆
P1P 2

(g̃, g̃′) is a “polarization changing” operator. An explicit expression of ∆
P1P2

can
be obtained by making use of a basis {|n〉}n∈I (I is a set of indices) of H(G̃), as follows:

∆
P1P2

(g̃, g̃′) = 〈g̃
P 1

|g̃′
P 2

〉 =
∑

n∈I

ψ∗
P1,n(g̃)ψ

P 2,n(g̃′) , (16)

where ψ
P i,n(g̃) ≡ 〈g̃

P i
|n〉 are the coordinates of |n〉 in a polarization Pi.

Constraints are consistently incorporated into the theory by enlarging the structure group
T (which always includes U(1)), i.e. through T -function conditions:

ρ(t̃)|ψ〉 = D
(ǫ)
T (t̃)|ψ〉 , t̃ ∈ T (17)
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or, for continuous transformations,

X̃R
t̃ |ψ〉 = dD

(ǫ)
T (t̃)|ψ〉 , (18)

D
(ǫ)
T means a specific representation of T [the index ǫ parametrizes different (inequivalent) quan-

tizations] and dD
(ǫ)
T is its differential.

It is obvious that, for a non-central structure group T , not all the right operators X̃R
g̃

will preserve these constraints; a sufficient condition for a subgroup G̃T ⊂ G̃ to preserve the
constraints is (see [ACG]):

[

G̃T , T
]

⊂ KerD
(ǫ)
T (19)

[note that, for the trivial representation of T , the subgroup G̃T is nothing other than the nor-

malizer of T ]. G̃T takes part of the set of good operators [ANR], of the enveloping algebra U G̃R

in general, for which the subgroup T behaves as a gauge group (see [NAC] for a thorough study
of gauge symmetries and constraints from the point of view of GAQ). A more general situation
can be posed when the constraints are lifted to the higher-order level, not necessarily first order
as in (18), that is, they are a subalgebra of the right enveloping algebra U G̃R. An interesting
example of this last case arises when one selects representations labelled by a value ǫ of some
Casimir operator Q of a subgroup G̃Q of G̃. This is exactly the case that interests us: null mass
representations (ǫ = m = 0) of the Poincaré group (G̃Q = SO(3, 1) ⊗s T4 , Q = PνP

ν) inside
the conformal group (G̃ = SO(4, 2)).

In the more general case in which T is not a trivial central extension, T 6= Ť × U(1), where
Ť ≡ T/U(1) -i.e. T contains second-class constraints- the conditions (18) are not all compatible
and we must select a subgroup TB = Tp × U(1), where Tp is the subgroup associated with a
right polarization subalgebra of the central extension T (see [ANR]).

For simplicity, we have sometimes made use of infinitesimal (geometrical) concepts, but all
this language can be translated to their finite (algebraic) counterparts (see [ANR]), a desirable
way of proceeding when discrete transformations are incorporated into the theory.

3 Conformally invariant Quantum Mechanics

Conformally invariant Quantum Mechanics (in 1+1D) will be developed by finding the unitary
irreducible representations of the centrally extended SO(2, 2) group in exactly the same way the
Hilbert space of the Galilean particle is obtained from the unitary irreducible representations of
the centrally extended Galilei group (see e.g. Ref. [AA1]). The configuration space of the theory
or, rather, an analytic continuation of Minkowski space, will arise as a homogeneous space of the
group, on which the wave functions supporting the irreducible representation take arguments.

Except for discrete symmetries, which are not relevant at the Lie algebra level, SO(2, 2) ∼
SU(1, 1) ⊗ SU(1, 1) so that we shall look at the structure of

SU(1, 1) =

{

U =

(

z1 z2
z∗2 z∗1

)

, zi, z
∗
i ∈ C/det(U) = |z1|2 − |z2|2 = 1

}

. (20)

SU(1, 1) is a fibre bundle with fibre U(1) and base the hyperboloid. A system of coordinates
adapted to this fibration is the following:

η ≡ z1
|z1|

, α ≡ z2
z1
, α∗ ≡ z∗2

z∗1
, η ∈ U(1), α, α∗ ∈ D1, (21)
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where D1 is the unit disk and the coordinates α,α∗ are related to the stereographical projection
of the hyperboloid on the disk. The inverse transformation is:

z1 =

√

1

1 − αα∗
η, z2 =

√

1

1 − αα∗
αη. (22)

The group law U ′′ = U ′U in η, α, α∗ coordinates is:

η′′ =
z′′1
|z′′1 |

=
η′η + η′η∗α′α∗

√

(1 + η∗2α′α∗)(1 + η2αα∗′)

α′′ =
z′′2
z′′1

=
αη2 + α′

η2 + α′α∗
(23)

α∗′′ =
z′′2

∗

z′′1
∗ =

α∗η−2 + α∗′

η−2 + α∗′α
,

from which we can extract the left- and right-invariant vector fields:

XL
η = η

∂

∂η
− 2α

∂

∂α
+ 2α∗ ∂

∂α∗
(24)

XL
α = −1

2
ηα∗ ∂

∂η
+

∂

∂α
− α∗2 ∂

∂α∗

XL
α∗ =

1

2
ηα

∂

∂η
− α2 ∂

∂α
+

∂

∂α∗

XR
η = η

∂

∂η

XR
α =

1

2
η−1α∗ ∂

∂η
+ η−2(1 − αα∗)

∂

∂α

XR
α∗ = −1

2
η3α

∂

∂η
+ η2(1 − αα∗)

∂

∂α∗
.

They close the Lie algebra:
[

XL
η ,X

L
α

]

= 2XL
α ,

[

XL
η ,X

L
α∗

]

= −2XL
α∗ ,

[

XL
α ,X

L
α∗

]

= XL
η , (25)

and the corresponding right version by changing the sign to the structure constants.
Let us parameterize G = SO(2, 2) as two copies of SU(1, 1) with parameters {(η, α, α∗);

(η̄, ᾱ, ᾱ∗)}. There are two possibilities of combining the generators in the Lie algebra

GL = {XL
η ,X

L
α ,X

L
α∗ ,XL

η̄ ,X
L
ᾱ ,X

L
ᾱ∗} (26)

of G, in order to get the usual conformal generators

GL = {DL,ML, P0
L, P1

L,K0
L,K1

L} (27)

which fulfil the ordinary commutation relations [K]:
[

PL
0 ,D

L
]

= −PL
0

[

PL
1 ,D

L
]

= −PL
1

[

PL
0 ,M

L
]

= −PL
1

[

PL
1 ,M

L
]

= −PL
0

[

PL
0 ,K

L
0

]

= −2DL
[

PL
1 ,K

L
0

]

= −2ML

[

PL
0 ,K

L
1

]

= 2ML
[

PL
1 ,K

L
1

]

= 2DL
[

KL
0 ,D

L
]

= KL
0

[

KL
1 ,D

L
]

= KL
1

[

KL
0 ,M

L
]

= −KL
1

[

KL
1 ,M

L
]

= −KL
0

[

DL,ML
]

= 0
[

PL
0 , P

L
1

]

= 0
[

KL
0 ,K

L
1

]

= 0

(28)
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where D,M,Pµ,Kµ are the generators of dilatation, boosts, space-time translations and spe-
cial conformal transformations, respectively. One of the two mentioned choices lead to a non-
compact dilatation subgroup, whereas the other leads to a compact one. Let us show what this
combinations are in both cases:

COMPACT D NON COMPACT D

DL = −1
2

(

XL
η +XL

η̄

)

DL = − i
2

(

XL
α −XL

α∗ +XL
ᾱ −XL

ᾱ∗

)

ML = 1
2

(

XL
η −XL

η̄

)

ML = i
2

(

XL
α −XL

α∗ −XL
ᾱ +XL

ᾱ∗

)

PL
0 = −

(

XL
α∗ +XL

ᾱ∗

)

PL
0 = 1

2

(

XL
α +XL

α∗ −XL
ᾱ −XL

ᾱ∗ − i(XL
η −XL

η̄ )
)

PL
1 = XL

α∗ −XL
ᾱ∗ PL

1 = −1
2

(

XL
α +XL

α∗ +XL
ᾱ +XL

ᾱ∗ − i(XL
η +XL

η̄ )
)

KL
0 = XL

α +XL
ᾱ KL

0 = 1
2

(

−XL
α −XL

α∗ +XL
ᾱ +XL

ᾱ∗ − i(XL
η −XL

η̄ )
)

KL
1 = XL

α −XL
ᾱ KL

1 = −1
2

(

XL
α +XL

α∗ +XL
ᾱ +XL

ᾱ∗ + i(XL
η +XL

η̄ )
)

(29)

The group G = SU(1, 1) ⊗ SU(1, 1) is non-compact and semisimple. The left-invariant
integration volume can be expressed as:

v(g) ≡ θL
gi∧ dim(G)... ∧θL

gn = − 1

η(1 − αα∗)2
1

η̄(1 − ᾱᾱ∗)2
dα ∧ dα∗ ∧ dη ∧ dᾱ ∧ dᾱ∗ ∧ dη̄, (30)

which becomes singular for values |α|, |ᾱ| → 1 (unit circumferences surrounding both open disks).
However, resorting to a central extension G̃ of G, necessarily trivial since G is semisimple and
finite-dimensional, we shall turn the extended scalar product, between wave functions on the
group, finite for some range of the extension parameter.

There are several central extensions of the conformal group, but we are interested in one that
afterwards leads to a generalized Minkowski space. This choice corresponds to an extension by a
coboundary locally generated by the dilatation parameter, which we shall consider as a “proper
time” (see Ref. [AA3]).

We shall separate the two cases: a) non-compact and b) compact dilatation subgroup, in
two subsections, respectively. The essentials of the problem we are involved in are insensitive
to the topological character of the dilatation subgroup; however, whereas the non compact
dilatation case will be useful to connect with some standard expressions in Minkowski space,
the compact dilatation case will be more manageable to construct and illustrate the second
quantization program. It can be proven that a consistent quantum theory needs the group C∗

as the structure group T for the first case, whereas a pseudo-extension by U(1) is enough for
the second one.

3.1 Non-compact dilatation subgroup

Let us look for a T = C∗ = {z = rζ; r ∈ ℜ+, ζ ∈ U(1)}-pseudo-extension

z′′ = z′zeξ(g
′,g), ξ(g′, g) = δ(g′ ∗ g) − δ(g′) − δ(g), z ∈ C∗ (31)

where δ(g) = −iβ(α − α∗ + ᾱ − ᾱ∗) is the function which generates the coboundary and β =
β1 + iβ2 is a complex parameter characterizing the representation.

The extended left- and right-invariant vector fields in G̃ are
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X̃L
r = X̃R

r = r
∂

∂r

X̃L
ζ = X̃R

ζ = ζ
∂

∂ζ

X̃L
η = XL

η + 2iβ1(α+ α∗)X̃L
r − 2β2(α+ α∗)X̃L

ζ

X̃L
α = XL

α − iβ1α
∗2X̃L

r + β2α
∗2X̃L

ζ

X̃L
α∗ = XL

α∗ + iβ1α
2X̃L

r − β2α
2X̃L

ζ

X̃R
η = XR

η

X̃R
α = XR

α − iβ1(η
−1(1 − αα∗) − 1)X̃R

r + β2(η
−1(1 − αα∗) − 1)X̃R

ζ

X̃R
α∗ = XR

α∗ + iβ1(η
2(1 − αα∗) − 1)X̃R

r − β2(η
2(1 − αα∗) − 1)X̃R

ζ (32)

and similar expression for the η̄, ᾱ, ᾱ∗ parameters. The new commutation relations for the
extended conformal Lie algebra G̃ of G̃ are two copies of:

[

X̃L
η , X̃

L
α

]

= 2X̃L
α − 2iβ1X̃

L
r + 2β2X̃

L
ζ

[

X̃L
η , X̃

L
α∗

]

= −2X̃L
α∗ − 2iβ1X̃

L
r + 2β2X̃

L
ζ

[

X̃L
α , X̃

L
α∗

]

= X̃L
η

[

X̃L
r , all

]

= 0
[

X̃L
ζ , all

]

= 0 , (33)

the right ones changing a global sign in the structure constants. The only change induced in
the Lie algebra commutators, when expressed in terms of

G̃L = {D̃L, M̃L, P̃L
0 , P̃

L
1 , K̃

L
0 , K̃

L
1 , X̃

L
ζ , X̃

L
r } (34)

(having the same functional form as in the right hand side of eq. (29)), is in the following two
commutators:

[

P̃L
0 , K̃

L
0

]

= −2D̃L + 4β1X̃
L
r + 4iβ2X̃

L
ζ

[

P̃L
1 , K̃

L
1

]

= 2D̃L − 4β1X̃
L
r − 4iβ2X̃

L
ζ , (35)

the remainder keeping the same expression as in Eq. (28). These relations show that the
two couples of generators P̃L

0 , K̃
L
0 and P̃L

1 , K̃
L
1 are canonically conjugate, i.e. they give rise to

central terms at the right-hand side of the corresponding commutator. Central extensions of
this kind were already considered in Refs. [AAB, AA3]. From (35) we conclude that, like the
space operator, time is not deprived of dynamical character, that is, it is an operator subject to
uncertainty relations (see [JR] for another definition of space-time position operators inside the
enveloping algebra of the conformal group).

The quantization form and its characteristic module are

Θ =
(

Θ(r),Θ(ζ)
)

8



Θ(r) = β1(Γ(η, α, α∗) + Γ(η̄, ᾱ, ᾱ∗)) + r−1dr

Θ(ζ) = −β2(Γ(η, α, α∗) + Γ(η̄, ᾱ, ᾱ∗)) + iζ−1dζ

Γ(η, α, α∗) ≡ 1

1 − αα∗

(

−2i(α+ α∗)η−1dη − iαα∗dα+ iαα∗dα∗
)

GΘ = < D̃L, M̃L > . (36)

Let B(G̃) be the set of complex valued T -functions on G̃ in the sense of principal bundle
theory: ψ(z∗g̃) = DT (z)ψ(g̃) and let us choose the representation DT (z) = zp, where p has to be
a negative integer for single-valuedness and “square integrable” condition of the wave function.
In order to reduce the representation of G̃ on B(G̃), we impose the full polarization subalgebra:

P =< D̃L, M̃L, K̃L
0 , K̃

L
1 > . (37)

The solution to the polarization conditions leads to a Hilbert space H(G̃) made of wave functions
of the form

ψ(β)(η, α, α∗, η̄, ᾱ, ᾱ∗, z) = zpWβ(α,α∗, ᾱ, ᾱ∗)φ(µ, µ̄)

Wβ(α,α∗, ᾱ, ᾱ∗) = wβ(α,α∗)wβ(ᾱ, ᾱ∗)

wβ(α,α∗) = (1 − αα∗)pβ(α+ i)−pβ(α∗ − i)−pβeipβ(α−α∗) , (38)

where Wβ is a “generating function” and φ is an arbitrary power series

φ(µ, µ̄) =
∞∑

n,n̄=−∞

an,n̄φn,n̄(µ, µ̄), φn,n̄(µ, µ̄) ≡ µnµ̄n̄ (39)

in the variables

µ =
α∗ − i

α+ i
η−2 =

z∗2 − iz∗1
z2 + iz1

, µ̄ =
ᾱ∗ − i

ᾱ+ i
η̄−2 =

z̄∗2 − iz̄∗1
z̄2 + iz̄1

. (40)

Note that (µ, µ̄) are defined in a two-dimensional torus T 2 = S1 × S1 (the 1+1 dimensional
version of the 3+1 dimensional projective cone S3 × S1/Z2). Let us show how the conformal
group act on T 2 free from singularities. For this, we have only to translate the group composition
law, originally written in global variables zi, z̄i, i = 1, 2, in Eq.(22), to the variables µ, µ̄:

µ → µ′′ ≡ z∗2
′′ − iz∗1

′′

z2′′ + iz1′′
=
z∗2

′z2 + z∗1
′z∗1 − i(z∗2

′z1 + z∗1
′z∗2)

z1′z2 + z2′z∗1 + i(z1′z1 + z2′z∗2)
=

µ− iα∗′

η′2(1 + iµα′)

µ̄ → µ̄′′ ≡ z̄∗2
′′ − iz̄∗1

′′

z̄2′′ + iz̄1′′
=
z̄∗2

′z̄2 + z̄∗1
′z̄∗1 − i(z̄∗2

′z̄1 + z̄∗1
′z̄∗2)

z̄1′z̄2 + z̄2′z̄∗1 + i(z̄1′z̄1 + z̄2′z̄∗2)
=

µ̄− iᾱ∗′

η̄′2(1 + iµ̄ᾱ′)
. (41)

This action is always well defined and transitive on T 2 (see Ref. [LM] for a more detailed study
of the global properties of a similar space in 3+1 dimensions), in contrast to the action on the
Minkowski space, which can be seen as a local chart of T 2 obtained by stereographical projection
(µ ≡ eiθ, µ̄ ≡ eiθ̄):

t =
1

2
(cot

θ

2
+ cot

θ̄

2
)

x =
1

2
(cot

θ

2
− cot

θ̄

2
), (42)
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as can be checked by realizing that the expression of the generators of the conformal group
in T 2 (see Eq. (44)) acquire the standard form in Minkowski space –except for (quantum)
inhomogeneous terms proportional to the extension parameter β– (see [K] for instance) when
expressed in terms of t, x. The manifold T 2 is thus a natural space-time on which a globally-
defined 1+1 conformaly invariant QFT can live.

The invariant integration volume is v(g̃) = v(g) ∧ (r−1dr) ∧ (iζ−1dζ) (see Eq.(30)). The
scalar product of two wave functions (38) will be finite when the factor ((1−αα∗)(1− ᾱᾱ∗))2pβ,
coming from Wβ (see Eq.(38)), cancels out the singularity of v(g̃) at the boundary of the unit
disk due to the factor ((1 − αα∗)(1 − ᾱᾱ∗))−2. This is possible when

pβ1 > 1/2 , (43)

with no restriction in the parameter β2 (this is the reason why the pseudo-extension by the real
positive line, with parameter β1 6= 0, is fundamental for this case).

The action of the right-invariant vector fields (operators in the theory) on polarized wave
functions (see Eq. (38)) has the explicit form:

D̃Rψ(β) = zpWβ ·
(

−1

2
(µ2 − 1)

∂

∂µ
− 1

2
(µ̄2 − 1)

∂

∂µ̄
− pβ(µ+ µ−1 + µ̄+ µ̄−1 − 2)

)

φ(µ, µ̄)

M̃Rψ(β) = zpWβ ·
(

1

2
(µ2 − 1)

∂

∂µ
− 1

2
(µ̄2 − 1)

∂

∂µ̄
− pβ(−µ− µ−1 + µ̄+ µ̄−1)

)

φ(µ, µ̄)

P̃R
0 ψ

(β) = zpWβ ·
(

− i

2
(µ− 1)2

∂

∂µ
+
i

2
(µ̄− 1)2

∂

∂µ̄
− pβ(µ− µ−1 − µ̄+ µ̄−1)

)

φ(µ, µ̄)

P̃R
1 ψ

(β) = zpWβ ·
(
i

2
(µ− 1)2

∂

∂µ
+
i

2
(µ̄− 1)2

∂

∂µ̄
− pβ(−µ+ µ−1 − µ̄+ µ̄−1)

)

φ(µ, µ̄)

K̃R
0 ψ

(β) = zpWβ ·
(
i

2
(µ+ 1)2

∂

∂µ
− i

2
(µ̄+ 1)2

∂

∂µ̄
+ pβ(µ− µ−1 − µ̄+ µ̄−1)

)

φ(µ, µ̄)

K̃R
1 ψ

(β) = zpWβ ·
(
i

2
(µ− 1)2

∂

∂µ
+
i

2
(µ̄− 1)2

∂

∂µ̄
− pβ(−µ+ µ−1 − µ̄+ µ̄−1)

)

φ(µ, µ̄)

X̃R
r ψ

(β) = pψ(β), X̃R
ζ ψ

(β) = pψ(β). (44)

This representation is irreducible for the extended conformal group G̃ and this is a consequence,
according to the general formalism, of the maximality of the full polarization subalgebra P in
Eq. (37), i.e. P cannot be further enlarged nor the representation further reduced. The process
of obtaining the unitary irreducible representations ends here. Any restriction desired on our
wave functions should then be imposed as constraints.

We are interested, however, in null mass representations, and these can be achieved by

selecting those wave functions ψ
(β)
c in H(G̃) which are nullified by the Casimir Q̃R ≡ (P̃R

0 )2 −
(P̃R

1 )2 of the Poincaré subgroup. More explicitly, wave functions which fulfil:

Q̃Rψ(β)
c = 0 ⇒

(

(µ̄− 1)2

(µ̄− µ̄−1)

∂

∂µ̄
+ pβ

)(

(µ− 1)2

(µ− µ−1)

∂

∂µ
+ pβ

)

φ(µ, µ̄) = 0

⇒ ∂ϕ(µ, µ̄)

∂µ∂µ̄
= 0 , (45)

where

φ(µ, µ̄) ≡
(

(µ− 1)2

µ

(µ̄− 1)2

µ̄

)−pβ

ϕ(µ, µ̄). (46)
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This Klein-Gordon-like evolution equation (in a light-cone-like coordinates) is then interpreted
as a constraint in the theory and leads to a new Hilbert space Hc(G̃) made of constrained wave
functions of the form:

ψ(β)
c = zpWβ

(

(µ− 1)2

µ

(µ̄− 1)2

µ̄

)−pβ

(ϕ(µ) + ϕ̄(µ̄)), (47)

that is, wave functions for which the arbitrary part splits up into functions which depend on µ
and µ̄ separately (they resemble the standard left- and right-hand moving modes). So long as
this constraint is imposed by means of generators of the left translation on the group, not all the
operators X̃R

gi will preserve this constraint; only the ones called good in the general approach of

Refs. [ANR, ACG] will do. One can obtain the good operators for the condition (45) by looking
at the (right) commutators:

[

D̃R, Q̃R
]

= −2Q̃R

[

M̃R, Q̃R
]

= 0
[

P̃R
0 , Q̃

R
]

= 0
[

P̃R
1 , Q̃

R
]

= 0
[

K̃R
0 , Q̃

R
]

= −4P̃R
0 D̃

R + 4P̃R
1 M̃

R − 8ipβP̃R
0

= f0(µ, µ̄)Q̃R − 8ipβP̃R
0

[

K̃R
1 , Q̃

R
]

= −4P̃R
1 D̃

R + 4P̃R
0 M̃

R − 8ipβP̃R
1

= f1(µ, µ̄)Q̃R − 8ipβP̃R
1 , (48)

[fν(µ, µ̄) are some functions on the torus], from which we can conclude that the set of (first-order)
good operators is

Ggood =< D̃R, M̃R, P̃R
0 , P̃

R
1 , X̃

R
r , X̃

R
ζ >, (49)

and close a subalgebra (Poincare+dilatation≡Weyl) of the extended conformal Lie algebra in
1 + 1 dimensions.

The fact that K̃R
0 and K̃R

1 are bad operators, i.e. they do not preserve the Hc(G̃) Hilbert
space, will be relevant in the “second quantization” of the constrained theory. The new (Weyl)
vacuum will no longer be annihilated by the second quantized version of K̃R

0 and K̃R
1 but, rather,

it will appear to be “polarized” from an accelerated frame (see Subsec. 4.2). This way, the
profound reason for the rearrangement of the vacuum (under special conformal transformations)
in (massless) Quantum Conformal Field Theories is not a singular action of this subgroup on
the space-time but, rather, the impossibility of properly implementing these transformations
in the constrained Hilbert space Hc(G̃). Note that the combinations A+ ≡ 1

2(K̃R
0 + K̃R

1 ) and

A− ≡ 1
2 (K̃R

0 − K̃R
1 ) are “partially good”, in the sense that they preserve the left- and right-hand

moving modes subspaces, respectively; we shall see (Subsec. 4.2) how its finite action on a Weyl
vacuum (in the second quantized theory) give rise to a thermal bath of left- and right-hand
moving scalar photons, respectively.

As far as the classical field theories is concerned, the existence of a well defined scalar product
does not really matter; the condition (43) can be violated by putting β = 0, thus leading to
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a reducible representation where the operators K̃R
0 and K̃R

1 leave the equation Q̃Rψ
(β)
c = 0

invariant, as it can be easily checked from the two last commutators in (48). However, for this
particular case, the loss of unitarity can give rise to some problems in the quantization procedure,
especially concerning the definition of the field propagators in the quantum field theory (see Sec.
4). Thus, for the null mass case, the conformal symmetry is “spontaneously broken” in the sense
that it is a symmetry of the classical massless field theory, whereas the corresponding quantum
field theory is only invariant under the Weyl subgroup. The appearance of terms proportional
to β at the right hand side of some commutators, as in (48), can be seen as an “anomaly” ;
however, this time, anomaly does not means obstruction to quantization but, on the contrary,
it is intrinsic to the quantization procedure and necessary for the good behaviour of the theory.

Note that for massive field theories the situation is slightly different. The only symmetry
which survives (both for classical and quantum theories), after the constraint

Q̃Rψ(β)
c = D(m)(Q̃R)ψ(β)

c = m2ψ(β)
c (50)

is imposed, is the Poincaré subgroup. Indeed, the dilatation generator is now a bad operator (it
does not preserve the constraint (50), as can be seen from the first line of (48)). Its finite action, of
course being bad, is not “so bad” in the sense that it changes from one representation D(m)(Q̃R)
to another D(m′)(Q̃R) with m′ = e2λm, where λ is the parameter of the transformation. That
is, it plays the role of a “quantization-changing operator” (see Ref. [ACG] for other relevant

examples), its domain being the union
⋃

m∈ℜ+ H(m)
c (G̃) of all the constrained Hilbert spaces

corresponding to different masses (i.e. a theory with continuum mass spectrum).
One can look for a physical interpretation of those facts and say that “quantum conformal

fields do not evolve in time”. The representation (44) is irreducible for the whole conformal
group, but reducible under Poincare+dilatation (Weyl) subgroup. Some external perturbation
breaks the conformal symmetry and forces the fields to evolve in time and acquire a fixed value
for the mass (we are interested in the massless case), so that these fields carry an irreducible
representation of the Poincare(+dilatation) subgroup. In this way, the dynamical symmetry
breaking and the fixing of the mass, even null, come together.

3.2 Compact dilatation subgroup

It can be proved that, for this case, a T = U(1)-pseudo-extension is enough to have a well
defined quantum theory. It has the form:

ζ ′′ = ζ ′ζeiξ(g
′,g) = ζ ′ζ

(

η′′η′
−1
η−1η̄′′η̄′−1η̄−1

)−2N
, (51)

where ξ(g′, g) is the two-cocycle (in fact, coboundary) generated by a multiple of i(log η+log η̄),
and the parameter N labels the irreducible representations and it must be quantized, taking the
values

N =
j

2
, j ∈ Z, (52)

for globality conditions.
The extended left- and right-invariant vector fields on G̃ are:
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X̃L
η = XL

η X̃R
η = XR

η

X̃L
α = XL

α +Nα∗X̃R
ζ X̃R

α = XR
α −Nη−2α∗X̃R

ζ

X̃L
α∗ = XL

α∗ −NαX̃L
ζ X̃R

α∗ = XR
α∗ +Nη2αX̃R

ζ

(53)

and similar expressions for the η̄, ᾱ, ᾱ∗ parameters. The new commutation relations for the
extended conformal Lie algebra G̃ of G̃ are two copies of:

[

X̃L
η , X̃

L
α

]

= 2X̃L
α

[

X̃L
η , X̃

L
α∗

]

= −2X̃L
α∗

[

X̃L
α , X̃

L
α∗

]

= X̃L
η − 2NX̃L

ζ
[

X̃L
ζ , all

]

= 0. (54)

which, expressed in terms of the basis {D̃L, M̃L, P̃L
0 , P̃

L
1 , K̃

L
0 , K̃

L
1 , X̃

L
ζ }, lead now to

[

P̃L
0 , K̃

L
0

]

= −2D̃L − 4NX̃L
ζ

[

P̃L
1 , K̃

L
1

]

= 2D̃L + 4NX̃L
ζ (55)

and the same expression as in (28) for the remainder.
The left-invariant 1-form Θ has now the form:

Θ =
iN

1 − αα∗

(

4αα∗η−1dη + α∗dc− αdα∗
)

+
iN

1 − ᾱᾱ∗

(

4ᾱᾱ∗η̄−1dη̄ + ᾱ∗dᾱ− ᾱdᾱ∗
)

− iζ−1dζ, (56)

the characteristic module GΘ and the polarization subalgebra having the same content in fields
as in the previous section. The polarized U(1)-functions (we choose the faithful representation
for U(1)) have now the form

ψ(N)(η, α, α∗, η̄, ᾱ, ᾱ∗, ζ) = ζWN(α,α∗, ᾱ, ᾱ∗)φ(s, s̄)

WN = wN (α,α∗)wN (ᾱ, ᾱ∗)

wN (α,α∗) = (1 − αα∗)N (57)

where WN is a “generating function” and φ is an arbitrary power series

φ(s, s̄) =
∞∑

n,n̄=0

an,n̄s
ns̄n̄ (58)

in the variables

s = η−2α∗ =
z∗2
z1
, s̄ = η̄−2ᾱ∗ =

z̄∗2
z̄1
. (59)

Let us show how the conformal group act on s, s̄ free from singularities. For this, let us
proceed as in Eq. (41):

s → s′′ ≡ z∗2
′′

z1′′
=
z∗2

′z2 + z∗1
′z∗1

z1′z1 + z2′z
∗
2

=
s+ α∗′

η′2(1 + sα′)

s̄ → s̄′′ ≡ z̄∗2
′′

z̄1′′
=
z̄∗2

′z̄2 + z̄∗1
′z̄∗1

z̄1z̄1 + z̄2′z̄∗2
=

s̄+ ᾱ∗′

η̄′2(1 + s̄ᾱ′)
(60)
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This action is always well defined and transitive on this space.
The invariant integration volume can be now chosen as v(g̃) = −(2π)−5v(g) ∧ (iζ−1dζ) and

the scalar product of two basic functions ψ̌
(N)
n,n̄ ≡ ζWNs

ns̄n̄ and ψ̌
(N)
m,m̄ ≡ ζWNs

ms̄m̄ is:

〈ψ̌(N)
n,n̄ |ψ̌(N)

m,m̄〉 =
n!(2N − 2)!

(2N + n− 1)!

n̄!(2N − 2)!

(2N + n̄− 1)!
δnmδn̄m̄ = C(N)

n C
(N)
n̄ δnmδn̄m̄

C(N)
n ≡ n!(2N − 2)!

(2N + n− 1)!
, (61)

where we are assuming that N > 1
2 , a necessary condition for having a well defined (finite) scalar

product [this condition can be relaxed to N > 0 by going to the universal covering group of G].
The set

B(HN (G̃)) =






ψ

(N)
n,n̄ ≡ 1

√

C
(N)
n C

(N)
n̄

ψ̌
(N)
n,n̄






(62)

is then orthonormal and complete, i.e. an orthonormal base of HN (G̃).
The actions of the right-invariant vector fields (operators in the theory) on polarized wave

functions (see Eq. (57)) have the explicit form:

D̃Rψ(N) = ζWN · (s ∂
∂s

+ s̄
∂

∂s̄
)φ(s, s̄)

M̃Rψ(N) = ζWN · (−s ∂
∂s

+ s̄
∂

∂s̄
)φ(s, s̄)

P̃R
0 ψ

(N) = ζWN · (− ∂

∂s
− ∂

∂s̄
)φ(s, s̄)

P̃R
1 ψ

(N) = ζWN · ( ∂
∂s

− ∂

∂s̄
)φ(s, s̄)

K̃R
0 ψ

(N) = ζWN · (−s2 ∂
∂s

− s̄2
∂

∂s̄
− 2N(s + s̄))φ(s, s̄)

K̃R
1 ψ

(N) = ζWN · (−s2 ∂
∂s

+ s̄2
∂

∂s̄
− 2N(s − s̄))φ(s, s̄)

X̃L
ζ ψ

(N) = ψ(N). (63)

The finite (left) action (13) of an arbitrary element g̃′ = (η′, α′, α∗′, η̄′, ᾱ′, ᾱ∗′, ζ ′) ∈ G̃ on an
arbitrary wave function

ψ(N)(g̃) =
∞∑

n,n̄=0

an,n̄ψ
(N)
n,n̄ (g̃), (64)

can be given through the matrix elements ρ
(N)
mn;m̄n̄(g̃′) ≡ 〈ψ(N)

m,m̄|ρ(g̃′)|ψ(N)
n,n̄ 〉 of ρ in the base

B(HN (G̃)). They have the following expression:

ρ
(N)
mn;m̄n̄(g̃) = ζ−1ρ(N)

mn (η, α, α∗)ρ
(N)
m̄n̄ (η̄, ᾱ, ᾱ∗)

ρ(N)
mn (η, α, α∗) =

√
√
√
√C

(N)
m

C
(N)
n

n∑

l=θnm

(

n
l

)(

2N +m+ l − 1
m− n+ l

)

×

(−1)lη2mα∗lαm−n+l(1 − αα∗)N (65)
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where the function θnm in the lower limit of the last summatory is defined by θnm ≡ (n −
m)

sign(n−m)+1
2 , the function sign(n) being the standard sign function (sign(0) = 1); it guarantees

the following inequality m−n+ l ≥ 0. These expressions will be very useful for the construction
of the corresponding quantum field theory in the next section.

The constrained wave functions ψ
(N)
c obeying

Q̃Rψ(N)
c = ((P̃R

0 )2 − (P̃R
1 )2)ψ(N)

c = 0 ⇒ ∂2φ

∂s∂s̄
= 0 (66)

have now the form
ψ(N)

c = ζWN · (ϕ(s) + ϕ̄(s̄)). (67)

We arrive at the same conclusions as in the non-compact dilatation case, concerning good and
bad operators. For this case, N plays the same role as β did in the former.

Let us investigate the conformal quantum field theory associated with this “first quantized”
theory and how to interpret the dynamical symmetry breaking of the conformal group in the
context of the corresponding “second quantized” theory. To this end, let us show how this
second quantization approach can be discussed within the GAQ framework.

4 “Second Quantization” on a group G̃: a model for a confor-

mally invariant QFT

In this subsection we shall develop a general approach to the quantization of linear, complex
quantum fields defined on a group manifold G̃ (more precisely, on the quotient G̃/(T ∪ P)).
This formalism can be seen as a “second quantization” of a “first quantized” theory defined by
a group G̃ and a Hilbert space H(G̃) of polarized wave functions.

The construction of the quantizing group G̃(2) for this complex quantum field is as follows.
Given a Hilbert space H(G̃) and its dual H∗(G̃), we define the direct sum

F(G̃) ≡ H(G̃) ⊕H∗(G̃)

=
{

|f〉 = |A〉 + |B∗〉; |A〉 ∈ H(G̃), |B∗〉 ∈ H∗(G̃)
}

, (68)

where we have denoted |B∗〉 according to 〈g̃∗
P
|B∗〉 ≡ 〈B|g̃

P
〉 = B∗

P
(g̃). The group G̃ acts on this

vectorial space as follows:
ρ(g̃′)|f〉 = ρ(g̃′)|A〉 + ρ(g̃′)|B∗〉 , (69)

where
〈g̃∗

P
|ρ(g̃′)|B∗〉 ≡ 〈B|ρ†(g̃′)|g̃

P
〉 = B∗

P
(g̃′−1 ∗ g̃). (70)

We can also define the dual space

F∗(G̃) ≡ H∗(G̃) ⊕H∗∗(G̃)

=
{

〈f | = 〈A| + 〈B∗| ; 〈A| ∈ H∗(G̃), 〈B∗| ∈ H∗∗(G̃) ∼ H(G̃)
}

, (71)

where G̃ acts according to the adjoint action

〈f |ρ†(g̃′) = 〈A|ρ†(g̃′) + 〈B∗|ρ†(g̃′) (72)
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and now
〈B∗|ρ†(g̃′)|g̃∗

P
〉 ≡ 〈g̃

P
|ρ(g̃′)|B〉. (73)

Using the closure relation (12), the product of two arbitrary elements of F(G̃) is

〈f ′|f〉 = 〈A′|A〉 +

0
︷ ︸︸ ︷

〈A′|B∗〉+

0
︷ ︸︸ ︷

〈B′∗|A〉+〈B′∗|B∗〉 , (74)

indeed, the second and third integrals
∫

G̃
v(g̃)A′

P

∗(g̃)B∗
P
(g̃) = 0 =

∫

G̃
v(g̃)B′

P
(g̃)A

P
(g̃) (75)

are zero because of the integration on the central parameter ζ ∈ U(1). Thus, the subspaces
H(G̃) and H∗(G̃) are orthogonal with respect to this scalar product in F(G̃). A basis for F(G̃)
is provided by the set {|n〉 + |m∗〉}n,m∈I .

The space M(G̃) ≡ F(G̃) ⊗F∗(G̃) can be endowed with a simplectic structure

S(f ′, f) ≡ −i
2

(〈f ′|f〉 − 〈f |f ′〉) , (76)

thus defining M(G̃) as a phase space. This phase space can be naturally embedded into a
quantizing group

G̃(2) ≡
{

g̃(2) = (g(2); ς) ≡ (g̃, |f〉, 〈f |; ς)
}

, (77)

which is a (true) central extension by U(1), with parameter ς, of the semidirect product G(2) ≡
G̃⊗ρM(G̃) of the basic group G̃ and the phase space M(G̃). The group law of G̃(2) is formally:

g̃′′ = g̃′ ∗ g̃
|f ′′〉 = |f ′〉 + ρ(g̃′)|f〉
〈f ′′| = 〈f ′| + 〈f |ρ†(g̃′)
ς ′′ = ς ′ςeiξ

(2)(g(2)′,g(2)) , (78)

where ξ(2)(g(2)′, g(2)) is a two-cocycle defined as

ξ(2)(g(2)′, g(2)) ≡ κS(f ′, ρ(g̃′)f) (79)

and κ is intended to kill any possible dimension of S.
A system of coordinates for G̃(2) corresponds to a choice of representation associated with a

given polarization P
f (+)
P

(g̃) ≡ 〈g̃
P
|f〉 , f (−)

P
(g̃) ≡ 〈g̃∗

P
|f〉 ,

f∗(+)
P

(g̃) ≡ 〈f |g̃∗
P
〉 , f∗(−)

P
(g̃) ≡ 〈f |g̃

P
〉 . (80)

This splitting of f is the group generalization of the more standard decomposition of a field in
positive and negative frequency parts. If we make use of the closure relation 1 =

∫

G̃ v(g̃){|g̃P 〉〈g̃P |+
|g̃∗

P
〉〈g̃∗

P
|} for F(G̃), the explicit expression of the cocycle (79) in this coordinate system (for sim-

plicity, we discard the semidirect action of G̃),

ξ(2)(g(2)′, g(2)) =
−iκ
2

∫ ∫

G̃
v(g̃′)v(g̃)

{

f ′∗(−)
P

(g̃′)∆(+)
P

(g̃′, g̃)f (+)
P

(g̃)

− f∗(−)
P

(g̃′)∆(+)
P

(g̃′, g̃)f ′(+)
P

(g̃) + f ′∗(+)
P

(g̃′)∆(−)
P

(g̃′, g̃)f (−)
P

(g̃) (81)

− f∗(+)
P

(g̃′)∆(−)
P

(g̃′, g̃)f ′(−)
P

(g̃)
}

,
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where

∆(+)
P

(g̃′, g̃) ≡ 〈g̃′
P
|g̃

P
〉 =

∑

n∈I

ψ
P ,n(g̃′)ψ∗

P ,n(g̃) ,

∆(−)
P

(g̃′, g̃) ≡ 〈g̃′∗
P
|g̃∗

P
〉 = ∆(+)

P
(g̃, g̃′) , (82)

shows that the vector fields associated with the co-ordinates in (80) are canonically conjugated

[

X̃L

f
∗(−)
P

(g̃′)
, X̃L

f
(+)
P

(g̃)

]

= κ∆(+)
P

(g̃′, g̃)X̃L
ς ,

[

X̃L

f
∗(+)
P

(g̃′)
, X̃L

f
(−)
P

(g̃)

]

= κ∆(−)
P

(g̃′, g̃)X̃L
ς . (83)

Here, the functions ∆(±)
P

(g̃′, g̃) play the role of propagators (central matrices of the cocycle). At

this point, we must stress the importance of a well defined scalar product in H(G̃) as regards
the good behaviour of the two-cocycle (81), an essential ingredient in the corresponding QFT.
The non-zero value of the central extension parameter of G̃ –see Eq. (43,52) and comments
after Eq. (61)– which prevents the whole conformal group from being an exact symmetry of
the massless quantum field theory (remember the comments after Eq. (48)) proves to be an
essential prerequisite for a proper definition of the conformal quantum field theory through the
group G̃(2).

The propagators in two different parametrizations of G̃(2), corresponding to two different
polarization subalgebras P1 and P2 of G̃L (or U G̃L), are related through polarization-changing
operators (16) as follows:

∆(±)
P2

(h̃′, h̃) =

∫ ∫

G̃
v(g̃′)v(g̃)∆(±)

P 2P1
(h̃′, g̃′)∆(±)

P 1
(g̃′, g̃)∆(±)

P1P2
(g̃, h̃)

∆(+)
P iP j

(h̃, g̃) ≡ ∆
P iP j

(h̃, g̃) , ∆(−)
P iP j

(h̃, g̃) ≡ ∆
P iP j

(g̃, h̃) . (84)

To apply the GAQ formalism to G̃(2), it is appropriate to use a “Fourier-like” parametriza-
tion, alternative to the field-like parametrization above [see (80)]. If we denote by

an ≡ 〈n|f〉 , bn ≡ 〈n∗|f〉 ,
a∗n ≡ 〈f |n〉 , b∗n ≡ 〈f |n∗〉 , (85)

the Fourier coefficients of the “particle” and the “antiparticle”, a polarization subalgebra P(2)

for G̃(2) is always given by the corresponding left-invariant vector fields X̃L
an
, X̃L

bn
and the whole

Lie algebra G̃L of G̃, which is the characteristic subalgebra GΘ(2) of the second-quantized theory
(see next subsection). The operators of the theory are the right-invariant vector fields of G̃(2);
in particular, the basic operators are: the annihilation operators of particles and anti-particles,
ân ≡ X̃R

a∗
n
, b̂n ≡ X̃R

b∗n
, and the corresponding creation operators â†n ≡ − 1

κX̃
R
an
, b̂†n ≡ − 1

κX̃
R
bn

.

The operators corresponding to the subgroup G̃ [the second-quantized version X̃
R(2)
g̃j of the first-

quantized operators X̃R
g̃j in (6)] are written in terms of the basic ones, since they are in the

characteristic subalgebra GΘ(2) of the second-quantized theory.
The group G̃ plays a key role in picking out a preferred vacuum state and defining the notion

of a “particle”, in the same way as the Poincaré group plays a central role in relativistic quantum
theories defined on Minkowski space. In general, standard QFT in curved space suffers from the
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lack of a preferred definition of particles. The infinite-dimensional character of the symplectic
solution manifold of a field system is responsible for the existence of an infinite number of
unitarily inequivalent irreducible representations of the Heisenberg-Weyl (H-W) relations and
there is no criterion to select a preferred vacuum of the corresponding quantum field (see, for
example, [W, BD]). This situation is not present in the finite-dimensional case, according to the
Stone-von Newman theorem [St, N]. In our language, the origen of this fact is related to the lack
of a characteristic module for the H-W subgroup G̃(2)/G̃ of G̃(2); i.e., for the infinite-dimensional
H-W group, we can polarize the wave functions in arbitrary, non-equivalent directions. Thus, so
long as we can embed the (curved) space M into a given group G̃, the existence of a characteristic
module -generated by G̃L- in the polarization subalgebra helps us in picking out a preferred
vacuum state. This vacuum state will be characterized by being annihilated by the right version
of the polarization subalgabra dual to P(2), i.e, it will be invariant under the action of G̃ ⊂ G̃(2)

and annihilated by the right-invariant vector fields X̃R
a∗

n
, X̃R

b∗n
.

Other vacuum states might be selected as those states being invariant under a subgroup
G̃Q ⊂ G̃ only, for example, the uniparametric subgroup of time evolution (see e.g. [A] for a
discussion of vacuum states in de Sitter space). From our point of view, this situation would
correspond to a breakdown of the symmetry and could be understood as a constrained theory of
the original one. Indeed, let us comment on the influence of the constraints in the first quantized
theory at the second quantization level. Associated with a constrained wave function satisfying
(18), there is a corresponding constrained quantum field subjected to the condition:

ad
X̃

R(2)

t̃

(

X̃R
|f〉

)

≡
[

X̃
R(2)

t̃
, X̃R

|f〉

]

= dD
(ǫ)
T (t̃)X̃R

|f〉 , (86)

where X̃
R(2)

t̃
stands for the “second-quantized version” of X̃R

t̃
. It is straightforward to generalize

the last condition to higher-order constraints:

X̃R
1 X̃

R
2 ...X̃

R
j |ψ〉 = ǫ|ψ〉 →

ad
X̃

R(2)
1

(

ad
X̃

R(2)
2

(

...ad
X̃

R(2)
j

(

X̃R
|f〉

)

...

))

= ǫX̃R
|f〉 . (87)

The selection of a given Hilbert subspace H(ǫ)(G̃) ⊂ H(G̃) made of wave functions ψc obeing
a higher-order constraint Qψc = ǫψc, where Q = X̃R

1 X̃
R
2 ...X̃

R
j is some Casimir operator of

G̃Q ⊂ G̃, manifests, at second quantization level, as a new (broken) QFT. The vacuum for the
new observables of this broken theory (the good operators in (87)) does not have to coincide
with the vacuum of the original theory, and the action of the rest of the operators (the bad
operators) could make this new vacuum radiate. This is precisely the problem we are involved,
where Q ≡ Q̃R is the Casimir of the Poincaré subgroup inside the conformal group (see later in
Sec. 4.2).

In general, constraints lead to gauge symmetries in the constrained theory and, also, the
property for a subgroup N ⊂ G̃ of being gauge is heritable at the second-quantization level.

To conclude this subsection, it is important to note that the representation of G̃ on M(G̃)
is reducible, but it is irreducible under G̃ together with the charge conjugation operation an ↔
bn, which could be implemented on G̃(2). For simplicity, we have preferred to discard this
transformation; however, a treatment including it, would be relevant as a revision of the CPT

symmetry in quantum field theory. The Noether invariant associated with X̃
R(2)
ζ is nothing other

than the total electric charge (the total number of particles in the case of a real field bn ≡ an)
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and its central character, inside the “dynamical” group G̃ of the first-quantized theory, now
ensures its conservation under the action of the subgroup G̃ ⊂ G̃(2). To account for non-abelian
charges (iso-spin, color, etc), a non-abelian structure group T ⊂ G̃ is required.

4.1 The case of the conformal group

Let us now apply the GAQ formalism to the centrally extended group G̃(2) given through the
group law in (78) for the case of G̃ = SO(2, 2) and compact dilatation. We shall consider the
case of a real field and we shall use a “Fourier” parametrization in terms of the coefficients an,n̄

rather than a “field” parametrization in terms of f
P
(g̃). The explicit group law is:

g̃′′ = g̃′ ∗ g̃

am,m̄
′′ = am,m̄

′ +
∞∑

n,n̄=0

ρ
(N)
mn;m̄n̄(g̃′)an,n̄

a∗m,m̄
′′ = a∗m,m̄

′ +
∞∑

n,n̄=0

ρ
(N)∗
mn;m̄n̄(g̃′)a∗n,n̄ (88)

ς ′′ = ς ′ς exp
κ

2

∞∑

m,m̄=0

∞∑

n,n̄=0

(a∗m,m̄
′ρ

(N)
mn;m̄n̄(g̃′)an,n̄ − am,m̄

′ρ
(N)∗
mn;m̄n̄(g̃′)a∗n,n̄) .

The left- and right-invariant vector fields (we denote ∂m,m̄ ≡ ∂
∂am,m̄

, ∂∗m,m̄ ≡ ∂
∂a∗

m,m̄
) are:

X̃L
ς = X̃R

ς = ς
∂

∂ς

X̃L
an,n̄

=
∞∑

m,m̄=0

ρ
(N)
mn;m̄n̄(g̃)∂m,m̄ +

κ

2

∞∑

m,m̄=0

ρ
(N)
mn;m̄n̄(g̃)a∗m,m̄X̃

L
ς

X̃L
a∗

n,n̄
=

∞∑

m,m̄=0

ρ
(N)∗
mn;m̄n̄(g̃)∂∗m,m̄ − κ

2

∞∑

m,m̄=0

ρ
(N)∗
mn;m̄n̄(g̃)am,m̄X̃

L
ς

D̃L(2) = D̃L, M̃L(2) = M̃L, P̃
L(2)
0 = P̃L

0 ,

P̃
L(2)
1 = P̃L

1 , K̃
L(2)
0 = K̃L

0 , K̃
L(2)
1 = K̃L

1 , X̃
L(2)
ζ = X̃L

ζ

X̃R
an,n̄

= ∂n,n̄ − κ

2
a∗n,n̄X̃

L
ς

X̃R
a∗

n,n̄
= ∂∗n,n̄ +

κ

2
an,n̄X̃

L
ς

D̃R(2) = D̃R −
∞∑

m,m̄=0

(m+ m̄)(am,m̄∂m,m̄ − a∗m,m̄∂
∗
m,m̄)

M̃R(2) = M̃R(2) +
∞∑

m,m̄=0

(m− m̄)(am,m̄∂m,m̄ − a∗m,m̄∂
∗
m,m̄)

P̃
R(2)
0 = P̃R

0 +
∞∑

m,m̄=0

(√

(m+ 1)(2N +m)(am+1,m̄∂m,m̄ − a∗m,m̄∂
∗
m+1,m̄)

+
√

(m̄+ 1)(2N + m̄)(am,m̄+1∂m,m̄ − a∗m,m̄∂
∗
m,m̄+1)

)
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P̃
R(2)
1 = P̃R

1 −
∞∑

m,m̄=0

(√

(m+ 1)(2N +m)(am+1,m̄∂m,m̄ − a∗m,m̄∂
∗
m+1,m̄)

−
√

(m̄+ 1)(2N + m̄)(am,m̄+1∂m,m̄ − a∗m,m̄∂
∗
m,m̄+1)

)

K̃
R(2)
0 = K̃R

0 +
∞∑

m,m̄=0

(√

(m+ 1)(2N +m)(am,m̄∂m+1,m̄ − a∗m+1,m̄∂
∗
m,m̄)

+
√

(m̄+ 1)(2N + m̄)(am,m̄∂m,m̄+1 − a∗m,m̄+1∂
∗
m,m̄)

)

K̃
R(2)
1 = K̃R

1 +
∞∑

m,m̄=0

(√

(m+ 1)(2N +m)(am,m̄∂m+1,m̄ − a∗m+1,m̄∂
∗
m,m̄)

−
√

(m̄+ 1)(2N + m̄)(am,m̄∂m,m̄+1 − a∗m,m̄+1∂
∗
m,m̄)

)

X̃
R(2)
ζ = X̃R

ζ −
∞∑

m,m̄=0

(am,m̄∂m,m̄ − a∗m,m̄∂
∗
m,m̄). (89)

The non-trivial commutators between those vector fields are:
[

X̃L
an,n̄

, X̃L
a∗

m,m̄

]

= −κδnmδn̄m̄X̃
L
ς

[

D̃L(2), X̃L
an,n̄

]

= −(n+ n̄)X̃L
an,n̄

[

M̃L(2), X̃L
an,n̄

]

= (n− n̄)X̃L
an,n̄

[

P̃
L(2)
0 , X̃L

an,n̄

]

=
√

n(2N + n− 1)X̃L
an−1,n̄

+
√

n̄(2N + n̄− 1)X̃L
an,n̄−1

[

P̃
L(2)
1 , X̃L

an,n̄

]

= −
√

n(2N + n− 1)X̃L
an−1,n̄

+
√

n̄(2N + n̄− 1)X̃L
an,n̄−1

[

K̃
L(2)
0 , X̃L

an,n̄

]

=
√

(n+ 1)(2N + n)X̃L
an+1,n̄

+
√

(n̄+ 1)(2N + n̄)X̃L
an,n̄+1

[

K̃
L(2)
1 , X̃L

an,n̄

]

=
√

(n+ 1)(2N + n)X̃L
an+1,n̄

−
√

(n̄+ 1)(2N + n̄)X̃L
an,n̄+1

[

X̃
L(2)
ζ , X̃L

an,n̄

]

= X̃L
an,n̄

[

D̃L(2), X̃L
a∗

n,n̄

]

= (n+ n̄)X̃L
a∗

n,n̄
[

M̃L(2), X̃L
a∗

n,n̄

]

= −(n− n̄)X̃L
a∗

n,n̄

[

P̃
L(2)
0 , X̃L

a∗
n,n̄

]

= −
√

(n + 1)(2N + n)X̃L
a∗

n+1,n̄
−
√

(n̄+ 1)(2N + n̄)X̃L
a∗

n,n̄+1
[

P̃
L(2)
1 , X̃L

a∗
n,n̄

]

=
√

(n+ 1)(2N + n)X̃L
a∗

n+1,n̄
−
√

(n̄+ 1)(2N + n̄)X̃L
a∗

n,n̄+1
[

K̃
L(2)
0 , X̃L

a∗
n,n̄

]

= −
√

n(2N + n− 1)X̃L
a∗

n−1,n̄
−
√

n̄(2N + n̄− 1)X̃L
a∗

n,n̄−1
[

K̃
L(2)
1 , X̃L

a∗
n,n̄

]

= −
√

n(2N + n− 1)X̃L
a∗

n−1,n̄
+
√

n̄(2N + n̄− 1)X̃L
a∗

n,n̄−1
[

X̃
L(2)
ζ , X̃L

a∗
n,n̄

]

= −X̃L
a∗

n,n̄
, (90)

where we have omitted the commutators corresponding to the extended conformal subgroup,
which have the same form as in (28), except for the two commutators in (55).
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The quantization 1-form and the characteristic module are:

Θ(2) =
iκ

2

∞∑

n,n̄=0

(an,n̄da
∗
n,n̄ − a∗n,n̄dan,n̄) − iς−1dς

GΘ(2) = < D̃L(2), M̃L(2), P̃
L(2)
0 , P̃

L(2)
1 , K̃

L(2)
0 , K̃

L(2)
1 , X̃

L(2)
ζ > . (91)

A full polarization subalgebra is:

P(2) =< GΘ(2) , X̃L
an,n̄

>, ∀n, n̄ ≥ 0 (92)

and the polarized U(1)-functions have the form:

Ψ[a, a∗, g̃, ς] = ς exp






−κ

2

∞∑

n,n̄=0

a∗n,n̄an,n̄






Φ[a∗] ≡ ςΩΦ[a∗] , (93)

where Ω is the vacuum of the second quantized theory and Φ is an arbitrary power series in its
argument.

The actions of the right-invariant vector fields (operators in the second-quantized theory) on
polarized wave functions in (93) have the explicit form:

X̃R
an,n̄

Ψ = ςΩ · (−κa∗n,n̄)Φ ≡ ςΩ · (−κâ†n,n̄)Φ

X̃R
a∗

n,n̄
Ψ = ςΩ · (∂∗n,n̄)Φ ≡ ςΩ · (ân,n̄)Φ

D̃R(2)Ψ = ςΩ ·




∞∑

n,n̄=0

(n+ n̄)â†n,n̄ân,n̄



Φ

M̃R(2)Ψ = ςΩ ·


−
∞∑

n,n̄=0

(n− n̄)â†n,n̄ân,n̄



Φ

P̃
R(2)
0 Ψ = ςΩ ·



−
∞∑

n,n̄=0

√

(n+ 1)(2N + n)â†n,n̄ân+1,n̄ +
√

(n̄+ 1)(2N + n̄)â†n,n̄ân,n̄+1



Φ

P̃
R(2)
1 Ψ = ςΩ ·





∞∑

n,n̄=0

√

(n+ 1)(2N + n)â†n,n̄ân+1,n̄ −
√

(n̄+ 1)(2N + n̄)â†n,n̄ân,n̄+1



Φ

K̃
R(2)
0 Ψ = ςΩ ·



−
∞∑

n,n̄=0

√

(n+ 1)(2N + n)â†n+1,n̄ân,n̄ +
√

(n̄+ 1)(2N + n̄)â†n,n̄+1ân,n̄



Φ

K̃
R(2)
1 Ψ = ςΩ ·



−
∞∑

n,n̄=0

√

(n+ 1)(2N + n)â†n+1,n̄ân,n̄ −
√

(n̄+ 1)(2N + n̄)â†n,n̄+1ân,n̄



Φ

X̃
R(2)
ζ Ψ = ςΩ ·





∞∑

n,n̄=0

â†n,n̄ân,n̄



Φ (94)

where ân,n̄ and â†n,n̄ are interpreted as annihilation and creation operators of modes |n; n̄〉, D̃R(2)

is attached to the total energy (remember that the dilatation parameter plays the role of a
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proper time), and X̃
L(2)
ζ corresponds with the number operator. It should be mentioned that

all those quantities appear, in a natural way, normally ordered; this is one of the advantages of
this method of quantization: normal order does not have to be imposed by hand but, rather, it
is implicitly inside the formalism itself.

We can think of the Hilbert space as composed of modes:

1. pure non-bar |n1, n2, ...; 0〉 ,

2. pure bar |0; n̄1, n̄2, ...〉 ,

3. mixed |n1, n2, ...; n̄1, n̄2, ...〉 .

4.2 Breaking down to the Weyl subgroup. Vacuum radiation

In this subsection, we investigate the effect of SCT on a Weyl vacuum, i.e. a vacuum of the
massless QFT obtained after constraining the conformal quantum field theory developed in the
last subsection.

The field degrees of freedom of the massless field are obtained by translating the condition
(66) to the second quantization level, according to the general procedure (87) that is, by imposing

[

P̃
R(2)
0 + P̃

R(2)
1 ,

[

P̃
R(2)
0 − P̃

R(2)
1 , X̃R

an,n̄

]]

=

−4
√

n(2N + n− 1)
√

n̄(2N + n̄− 1)X̃L
an−1,n̄−1

= 0 , (95)

which selects the pure non-bar and pure bar operators, i.e, â†n,0 = − 1
κX̃

R
an,0

and â†0,n̄ = − 1
κX̃

R
a0,n̄

.
These operators, together with the Weyl generators (good operators of the first-quantized theory)
close a Lie subalgebra

G(2)
c =< D̃R(2), M̃R(2), P̃

R(2)
0 , P̃

R(2)
1 , X̃

L(2)
ζ , â†n,0, â

†
0,n̄ > (96)

of the original Lie algebra of the conformal quantum field. The vacuum of this constrained
theory does not have to coincide with the conformal vacuum |0〉 = |n = 0; n̄ = 0〉. In fact, any
conformal state made up of an arbitrary content of zero modes

|W{σ}〉 ≡
∞∑

q=0

σq(â
†
0,0)

q|0〉 (97)

behaves as a vacuum from the point of view of a Weyl observer, that is, it is annihilated by
the Weyl generators and the destruction operators ân,0 and â0,n̄, for all n, n̄ ∈ N − {0}. Note

that, since the operator â†0,0 is central in G(2)
c (it commutes with all the others), it would be

too restrictive to require (97) being nullified by â0,0; the only solution would be the conformal
vacuum |0〉. It is then natural to demand that â0,0 behave as a multiple ϑ of the identity that
is, it has to leave the Weyl vacuum stable

â0,0|W{σ}〉 = ϑ|W{σ}〉 ⇒ σ(0)
q =

ϑq

q!
σ0 , (98)

condition which, after normalizing, determines the Weyl vacuum up to a complex parameter ϑ

〈W{σ(0)}|W{σ(0)}〉 = 1 ⇒ |σ0| = e−
1
2
|ϑ|2 . (99)
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Thus, we have find a set of Weyl vacua (coherent states of the conformal quantum field, made
of zero modes)

|0〉ϑ ≡ e−
1
2
|ϑ|2eϑâ†

0,0 |0〉 , (100)

labeled by ϑ [the existence of a degenerate ground state resembles the “θ-vacuum” phenomenon
in Yang-Mills field theories [JcRb-CDG] and, in general, it is present whenever we deal with
non-simply connected phase spaces and constrained theories [ACG]]. As the final result is
independent of ϑ, from now on we shall implicitly choose ϑ = 1, for the sake of simplicity. An
orthonormal basis for the Hilbert space of the constrained theory can be obtained by taking the
orbit through the vacuum (100) of the creation operators as follows:

|m(n1), ...,m(nq),m(n̄1), ...,m(n̄j)〉ϑ ≡
(â†n1,0)

m(n1)...(â†nq ,0)
m(nq)(â†0,n̄1

)m(n̄1)...(â†0,n̄j
)m(n̄j)

(m(n1)!...m(nk)!m(n̄1)!...m(n̄j)!)1/2
|0〉ϑ .
(101)

We can make a comparison with the standard case of a massless field in 1+1 dimensional
Minkowski space-time and relate the non-bar and bar modes to the left-hand and right-hand
moving scalar photons, respectively. Let us introduce dimensions through the Planck constant
h and the frequency mode ν, so that the total energy is given by

Ê ≡ hν
(

D̃R(2) + 2NX̃
L(2)
ζ

)

≡ hνDR(2) ; (102)

the last redefinition of the dilatation generator is intended to render the commutation relations
(55) to the usual ones (28) by destroying the pseudo-extension (51). The expected value of the
energy in the general state (101) is

〈Ê〉 = hν(
q
∑

l=1

m(nl)nl +
j
∑

l=1

m(n̄l)n̄l + 2N) , (103)

where E0 ≡ 2Nhν represents the zero point energy, i.e. the expected value of the energy in
the Weyl vacuum. Zero modes represent virtual particles (they have no energy and cannot be
detected by a Weyl observer) and can be spontaneously created from the Weyl vacuum, as can
be deduced from the condition (98).

It is natural to think that zero modes will play an important role in the radiation of a Weyl
vacuum, as they will be made real by acceleration. In fact, let us show how a finite special

conformal transformation, generated by A
(2)
+ ≡ 1

2 (K̃
L(2)
0 + K̃

L(2)
1 ), applied to a Weyl vacuum

gives rise to a “thermal bath” of no-bar modes (left-hand moving scalar photons), whereas

the combination A
(2)
− ≡ 1

2(K̃
L(2)
0 − K̃

L(2)
1 ) gives rise to a “thermal bath” of bar modes (right-

hand moving scalar photons). The finite action of A
(2)
+ , with parameter α (the corresponding

acceleration is a ≡ −(2π)2 cν
log |α|2 , where c is the speed of light), on the Fourier parameter,

a∗0,0 → a∗0,0
′ =

∞∑

n=0

(−1)n

√
√
√
√C

(N)
0

C
(N)
n

a∗n,0α
n =

∞∑

n=0

rna
∗
n,0α

n

rn ≡ (−1)n

√
√
√
√C

(N)
0

C
(N)
n

(104)
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(according to the general expression in the third line of (88) and the last equality in Eq. (65)),
leads to the following transformation on the Weyl vacuum:

|0〉ϑ → |Ψ(α)〉ϑ ≡ e−
1
2 eâ

†
0,0

′ |0〉 =
∞∑

q=0

αq
∑

m1, ...,mq :
∑q

n=0 nmn = q

q
∏

n=0

rmn
n

mn!

q
∏

n=0

(â†n,0)
mn |0〉ϑ , (105)

where m0 = 0 and we have used the general identity

(
∞∑

n=0

γnα
n

)l

=
∞∑

q=0

δqα
q

δ0 = γl
0

δq =
1

qγ0

q
∑

s=1

(sm− q + s)γsδq−s . (106)

The relative probability of observing a state with total energy Eq = hνq+E0 in a Weyl vacuum
from an accelerated frame (i.e. in |Ψ(α)〉ϑ) is

Pq = Λ(Eq)(|α|2)q

Λ(Eq) ≡
∑

m1, ...,mq :
∑q

n=0 nmn = q

q
∏

n=0

r2mn
n

mn!
. (107)

We can associate a thermal bath with this distribution function by noticing that Λ(Eq) represents
a relative weight proportional to the number of states with energy Eq, and the factor (|α|2)q fits
this weight properly to a temperature as

(|α|2)q = eq log |α|2 = e−
Eq−E0

kT , where T ≡ − hν

k log |α|2 =
h̄a

2πck
(108)

is the temperature associated with a given acceleration a, and k is the Boltzmann’s constant.
This simple, but profound, relation between temperature and acceleration was first considered
by Unruh [U]. The balance between the “multiplicity factor” Λ(Eq) (an increasing function of
the energy) and the temperature factor (108) (a decreasing function of the energy) is favorable
(maximum) for a given system of this canonical ensemble, the energy of which is a repersentative
value of the mean energy. In fact, this mean energy can be calculated exactly as the expected
value of the energy operator Ê in the state |Ψ(α)〉ϑ. To this end, let us perform some intermediate
calculations. The norm of this accelerated vacuum is

Nor[Ψ(α)] ≡ ϑ〈Ψ(α)|Ψ(α)〉ϑ = exp

(

−1 +
∞∑

n=0

r2n|α|2n

)

= exp
(

(1 − |α|2)−2N − 1
)

. (109)

The probability Pn(m) of observing m particles with energy En coincides with the expected
value of the projector P̂n(m) on the state |m(n)〉ϑ, i.e.:

Pn(m) ≡ ϑ〈Ψ(α)|P̂n(m)|Ψ(α)〉ϑ
Nor[Ψ(α)]

=
1

Nor[Ψ(α)]

(r2n|α|2n)m

m!
; (110)
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it can be seen that the closure relation
∑∞

n,m=0 Pn(m) = 1 is in fact verified. The mean number
Nn of left-hand moving scalar photons with energy En corresponds with the expected value of
the number operator N̂n ≡ â†n,0ân,0 , i.e. :

Nn =
∞∑

m=0

mPn(m) =
1

Nor[Ψ(α)]
r2n|α|2n exp

(

r2n|α|2n
)

. (111)

With this information at hand, we can calculate the expected value of the total energy as:

E[Ψ(α)] ≡ E0 + hν
∞∑

n=1

nNn = E0 +
2Nhν|α|2

(1 − |α|2)2N+1
. (112)

If we subtract the zero-point energy, normalize by a 2N factor (this normalization can be seen

as a reparametrization of the proper time) and make use of the relation |α|2 = e−
hν
kT in (108),

we obtain a more “familiar” expression for the mean energy per mode

ǫN (ν, T ) =
hνe−

hν
kT

(1 − e−
hν
kT )2N+1

, (113)

the value N = 0 corresponding with the well known case of the Bose-Einstein statistic. Note
that this particular value of N can be reached only as a limiting process formulated on the
universal covering of SU(1, 1) ⊗ SU(1, 1) or, equivalently, by uncompactifying the proper time
(U(1) → ℜ).

Let us compare the spectral distribution of the radiation of the Weyl vacuum for different
values of N , with the well known case of the black body radiation (Planck’s spectrum). For
this purpose, we have to multiply the mean energy per mode by the number of states with
frequency ν which, in d dimensions, would be proportional to νd−1. If we denote this product
by u(x,N) ≡ u0 x

d−1ǫN (x, T0) with x ≡ hν
kT0

(u0 is a constant, for a fixed temperature T0, with
dimensions of energy per unit of volume), Figure 1 shows the departure from the Planckian
spectrum (N = 0) for four diferent values N = 1

2 ,
3
4 , 1, 1.1 in the realistic dimension d = 3.

Note that the value of N ≡ Nc = d−1
2 corresponds to a critical situation: over this value the

theory exhibits an “infrared catastrophe”.

5 Other representations: some comments

We have shown that it is impossible to establish conformally invariant evolution equations in a
(even compactified) Minkowski space, not only for massive fields but, also for massless quantum

fields.
If we wish the whole conformal group to be an exact symmetry of physical laws (at least,

at very high energies), then we should reconsider the convenience of the Minkowski space as
the frame for describing quantum physical phenomena. In fact, there exists a wider consistent
quantum dynamics in which the conformal invariance is exact. The price to be paid is the
introduction of an extra dimension, thus increasing by one the number of space-time parameters.
The physical interpretation of this new parameter remains obscure but, interpretations in terms
of a “unit of measurement” à la Weyl [BtH] and/or a “variable mass” interpretation have already
been treated in the literature, even at the non-relativistic (Galilean) level [NiBt].
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In the present scheme, this kind of representation can be obtained through a higher-order
polarization which, as we are going to see, carries an index m0 eventually interpreted as a
conformally invariant mass (see [BtH]). In fact, let us use the following couples of generators:

Π̃L
0 ≡

√
2

2
(P̃L

0 + K̃L
0 ) ; X̃L

0 ≡
√

2

2
(P̃L

0 − K̃L
0 )

and (114)

Π̃L
1 ≡

√
2

2
(P̃L

1 + K̃L
1 ) ; X̃L

1 ≡
√

2

2
(P̃L

1 − K̃L
1 )

as conjugate variables. If one tries to introduce the set {X̃L
0 , X̃

L
1 } in the polarization, then we

face the problem that the characteristic module generated by the operators D̃L, M̃L is too large,

since
[

X̃L
ν , D̃

L
]

= −Π̃L
ν ; in fact, only M̃L possesses a compatible set of commutation relations.

As we have already pointed out, the dilatation could be introduced at the price of being a higher-
order operator (something similar occurs with the time operator in the free particle case as long
as we stay in position representation). More precisely, with this higher-order polarization, one
can reduce the representation as follows:

P =< M̃L, X̃L
0 , X̃

L
1 , C̃

L > , (115)

where C̃L is just a Casimir operator of the extended conformal group [we can always add an
arbitrary central term to C̃L]. For example, in the compact dilatation case

C̃L = (M̃L)2 + (D̃L + 2NX̃L
ζ )2 − (Π̃L)2 + (X̃L)2 . (116)

Polarized wave functions evolve according to a Klein-Gordon-like equation

(Π̃L)2ψ = (D̃L + 2N)2ψ , (117)

which can be interpreted as the motion equation of a scalar field with variable square mass
m2 = (D̃L + 2N)2 = (DL)2. The value of the Casimir on polarized wave functions is C̃Rψ =
N(N − 1)ψ ≡ m0ψ, which justify the denomination of m0 as a conformally invariant mass [it
proves to be quantized for this case, the reason being related to the compact character of the
proper time (dilatation)]. The allowed value of N , N = 1 thus corresponds with null conformal
mass. The precise connection between N and the curvature of some homogeneous subspaces
(let us say, the Anti-de Sitter universe in 2 + 1 dimensions) inside the conformal group is being
investigated [ACC].

Note that the Cauchy hyphersurfaces of Eq. (117) have dimension 2, and the physical
interpretation of the extra dimension remains unclear. Two different approaches can be taken
which could be consistent with the physical meaning of the conformal group. One is related to
the Weyl idea of different lengths in different points of space time [We]. The “rule” for measuring
distances changes at different positions. In Quantum Mechanics, this implies that wave functions
measuring probability densities do have different integration measures as functions of space-time.
This change in the measure of integration needs to be related to the extra parameter appearing
in our Group Approach to Quantization of the full conformal group. The other interpretation
–not necessarily unrelated to the previous one– could be attached to the variable character of
mass. Even at the level of one particle ordinary conformal quantum mechanics, the inescapable
consequence of a variable mass appearing in the formalism was already observed several years
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ago by Niederer [NiBt]. It indeed would not be a surprise should this fact also have some
consequences in the full quantization. Neither interpretation, however, is without controversy, as
emphasized previously by Rohrlich [R]. At any rate, we have considered here a more satisfactory
point of view by examining the dynamical breaking of the conformal group down to the Weyl
subgroup in the framework of the Group Approach to Quantization.

Acknowledgements

M. Calixto thanks the Spanish MEC for a FPI grant. M.C. is also grateful to A.P. Balachandran
for his hospitality at the Department of Physics of the Syracuse University, where some of the
work on the manuscript was carried out.

References

[A] Bruce Allen, Phys. Rev.D32, 3136 (1985).
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u(x,N)

Figure 1: Departure from the Planck’s spectrum (tickest line) for increasing values of N (de-
creasing tickness).
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