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Abstract 

Comparison of thematic maps is an important task in a number of disciplines. Map 

comparison has traditionally been conducted using cell-by-cell agreement indicators, 

such as the Kappa measure. More recently, other methods have been proposed that take 

into account not only spatially coincident cells in two maps, but also their surroundings 

or the spatial structure of their differences. The objective of this paper is to propose a 

framework for map comparison that considers 1) the patterns of spatial association in 

two maps, in other words, the map elements in their surroundings; 2) the equivalence of 

those patterns; and 3) the independence of patterns between maps. Two new statistics 

for the spatial analysis of qualitative data are introduced. These statistics are based on 

the symbolic entropy of the maps, and function as measures of map compositional 

equivalence and independence. As well, all inferential elements to conduct hypothesis 

testing are developed. The framework is illustrated using real and synthetic maps. 
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1. Introduction 

It is frequently the case when comparing maps that a researcher is interested in 

determining if two maps are significantly different, and if so, whether observed 

differences are random. There are numerous reasons why this type of information can 

be valuable. A number of distinct objectives have been identified in the literature (Boots 

and Csillag 2006; Kuhnert et al  2005; Stehman 1999). A researcher may be interested 

in accuracy assessment, that is, in assessing the degree of (mis)match between a 

reference map and one or more alternatives. For example, the maps could be of the 

same region but due to different producers, and end users need to understand the nature 

of the differences between maps (e.g., Wulder et al  2004). Alternatively, maps can be 

compared as part of a model validation exercise, when the comparison is made between 

a base map and the output of different modeling techniques or model specifications (e.g. 

discriminant analysis and neural networks; Foody 2004). In other situations, the 

comparison follows an interest to detect change, in order to determine whether the 

situation depicted in two maps of the same region remains unchanged (e.g., Mas 1999). 

Last but not least, there is a landscape ecology tradition that considers differences 

within or between regions (e.g., Gustafson 1998). 

A number of different approaches have been proposed in the literature to compare maps, 

including examination of the frequency of classes in each map, the use of coincidence 

matrices, the kappa measure of agreement, fuzzy kappa, and other approaches (e.g., 

Foody 2002; Hagen 2003; Remmel 2009). Our objective in this paper is to propose a 

novel framework for map comparison that is based on the use of symbolic entropy to 

detect spatial patterns in thematic maps (Ruiz et al  2010). The framework follows a 

number of logically consistent steps. First, the maps are separately tested for spatial 

association of the qualitative variable to determine if a spatial structure is present or 

contrariwise, whether the values of the variable are spatially random. Secondly, if 

spatial patterns are detected, which would indicate a systematic process in the 

generation of the maps, then the compositional equivalence of the maps is assessed. 

Finally, the maps are tested to determine if they are independent, or rather a transition 

rule could exist that links them. The two questions that we pose with regards to the 

comparison of maps are: 



1) Are the maps significantly different? And if so: 

2) Are the two maps independent? 

Our procedure makes use of the Q(m) statistic of spatial association introduced by Ruiz 

et al. (2010) for the analysis of mapped qualitative data. In addition, we introduce two 

new statistics needed for our comparison framework. The first of these new statistics is 

designed with the purpose of comparing the overall correspondence (i.e. the 

compositional equivalence) of map patterns. In broad terms, this is similar to the 

quantity agreement criterion, however considering series of spatially embedded map 

elements (i.e. map segments), as opposed to pairs of individual map elements. The 

second statistic is designed with the purpose of assessing whether two maps are 

independent. 

We illustrate the application of the framework and all test statistics using real data 

collected from the Canada Land Inventory, and synthetic data. Various cases that can be 

found in practice are discussed. In the conclusions, we identify directions for future 

research. 

2. Background 

Two important aspects to consider when conducting map comparisons are the 

compositional and configurational characteristics of the maps. The distinction between 

these two is perhaps best captured by Pontius et al. (2004) as the quantity agreement 

and the location agreement between maps. A rough measure of compositional 

agreement is given by the total number of elements in a map that belong to class i 

versus the number of elements in a second map that belong to the same class. In this 

way, two maps could have different composition if the coverage by class in one map is 

70% of the surface while in the other is only 50%. Of course, even if the proportion of 

cover by a specific class remained constant, it may have shifted over space, in which 

case the location agreement between the two maps would be poor. Coincidence matrices 

are used to record the degree of agreement between classes, and are the “golden 

standard” for accuracy assessment (Remmel 2009). Likewise, the kappa statistic, widely 

used in remote sensing applications, is based on an element-by-element comparison 

between the two maps. The comparison gives the number of spatially coincident cells in 

the maps that belong to the same or a different class. This approach introduces a 

measure of location agreement with respect to unchanged elements. Alternatives have 



been developed that improve the sensitivity of coincidence matrices and kappa to 

location and configuration differences (Pontius et al  2004; Remmel 2009). 

Overall, there has been over the past few years an increased recognition that the spatial 

structure of maps is important in many comparative situations, and this is reflected in 

some recent and not-so-recent developments in the literature . An early example where 

the spatial structure of maps was identified as an important element in map comparison 

is a paper by Congalton (1988), where a difference image was generated based on 

remotely sensed datasets that classified pixels in a pair of maps as identical (=0) or 

different (=1). The join-count statistic (Cliff and Ord 1981; Dacey 1968) was then 

applied to the resulting image to discover that the differences were not spatially random, 

but rather followed a systematic distribution suggestive of underlying topographical 

factors or systematic data processing error. A similar approach was used by Wulder et 

al. (2004) to detect whether maps obtained from different producers are different in 

systematic ways. There, two maps were simplified by collapsing all classes into forest 

and non-forest, and difference images were obtained. Two scenarios considered the 

differences between forest in the first map and non-forest in the second, and vice-versa. 

The results were helpful to identify spatial clusters (within a given level of statistical 

significance) where differences were common. 

The method used by Congalton and Wulder et al. is based on the pair-wise comparison 

of map elements. Other approaches have been proposed that compare map segments 

instead, by embedding a map element as part of a neighborhood, notably the fuzzy 

kappa index (Hagen 2003; Hagen-Zanker et al  2005; Hagen-Zanker 2006) and moving 

window approaches (Kuhnert et al  2005). The fuzzy kappa compares spatially 

coincident map segments according to their degree of similarity. The innovation in the 

case of this method is the use of fuzzy concepts, so that instead of a crisp all-or-nothing 

decision rule for coding differences, two maps segments can be perfectly, somewhat, or 

not at all different. Recently Hagen-Zanker (2009) has modified the fuzzy kappa 

statistic to account for the effect of spatial autocorrelation on expected agreement. 

Kuhnert et al. (2005) describe a moving windows approach for calculating similarity 

indicators. According to this approach, a difference image is scanned by means of a 

moving window that registers the degree of dissimilarity for a map segment – if 

differences are coded as 1 and agreements as 0 and there is perfect coincidence within 

the window, the index would be zero. On the other hand, if the map segments are 



completely different at the location, the index would be one. The index is aggregated to 

produce a summary measure for the difference image. 

Our approach shares some features with the fuzzy kappa and the moving windows 

approaches, in particular the way map elements are spatially embedded. In the case of 

Hagen (2003) the embedding provides the rational for the use of fuzzy concepts. The 

moving windows approach in contrast has much in common with various local statistics 

in spatial analysis (Fotheringham and Brunsdon 1999) despite the fact that in the end it 

is aggregated to produce a unique indicator for a map. In our case, the embedding is 

dictated by the mathematical framework of symbolic entropy. The fuzzy kappa is meant 

to be used as an interactive and exploratory tool to inform subjective interpretation of 

maps (Hagen-Zanker et al  2005, p.784; Hagen-Zanker 2009, p. 71). Our framework, in 

contrast, is staunchly inferential, and we derive all elements needed for conducting 

hypothesis testing. 

With regards to statistical significance in the comparison of thematic maps, both Foody 

(2004) and Boots and Csillag (2006) propound the importance of conducting 

significance testing. On the other hand, Pontius et al. (2004) caution against the 

temptation of conducting hypothesis tests. Of the reasons advanced by Pontius et al., we 

agree that statistically significant differences should not be confused with practically 

important differences. We expect that this point will be fairly evident to most potential 

users of our approach. Finally, our approach explicitly incorporates spatial association 

considerations, and thus directly addresses an important characteristic of maps that is in 

need of attention (Hagen-Zanker 2009). 

3. A Framework for Map Comparisons 

Comparison of maps in our framework is done according to a sequence of logically 

consistent steps. The technical details of each step will be elaborated in subsequent 

sections of the paper. To understand the basic concepts of the framework, consider the 

maps shown in Figure 1. We will illustrate the procedure in reference to these maps. 

 

 
 
 



 Map [1] 

 Map [2]  Map [3] 

 Map [4]  Map [5] 

 Map [6]  Map [7] 

 Map [8]  Map [9] 

Figure 1. Maps in example.  



Each map in Figure 1 is composed of three different colors (classes) in various spatial 

arrangements. We take Map [1] as the base map. This map was extracted from the 

Canada Land Inventory, and depicts land uses in a region in the province of Ontario. 

The specific land uses are not relevant for our discussion here, and the methods 

described below can be applied to any thematic map. In addition to Map [1], we also 

generate a number of synthetic maps as follows. First, we generate three random maps 

that lack an ordered spatial pattern: Map [2] is generated using a random sequence of 

values drawn from the standard normal distribution and subsequently discretized; Map 

[3] is derived from Map [2] using a simple rule whereby each map class changes to one 

other color – specifically, all 1’s become 2’s, all 2’s become 3’s, and all 3’s turn into 1’s 

– the map is random, but not independent from Map [2]; Map [4] is another completely 

random distribution of values, unrelated to Maps [2] and [3]. Map [6] is derived from 

the base map based on random transitions, so that a cell can, with equal probability, stay 

in its current state, or change to one of the other two classes  

In addition, to the base map and a series of random maps, we also include a set of 

patterned maps: Map [5] is derived from Map [1] using structured transitions, with class 

1 having a 30% chance of transitioning to 2, class 2 having a 10% of transitioning to 3, 

and 3 having a 30% chance of transitioning to class 2; Map [7] is the same as Map [1], 

but rotated 180 degrees; Map [8] is the mirror image of Map [1]; and finally Map [9] is 

simulated based on a pure autocorrelation model to produce a map pattern – this map 

has a high degree of spatial structure, but the data generating process is separate from 

any of the other patterned maps in the example. The relationships between the maps are 

shown in Figure 2 below. 



 
Figure 2. Relationships between maps in example. 

Broadly speaking, a map can display a spatial pattern of association, or in other words, a 

spatially coherent distribution of values of the qualitative variable. The alternative is 

that the distribution of values is spatially random. Accordingly, we can identify the 

following cases for pair-wise comparison of maps: 

Case 1. If one of the maps is spatially associated (i.e. there is spatial structure) 

and the other is random, it can be concluded that the maps are different and 

independent, since no organized transition rule can be used to convert one map 

into the other (i.e. Maps [1], [5], [7], [8], [9] : Maps [2], [3], [4], [6]). 

The presence of spatial association in two maps is not by itself indicative of map 

agreement. When two maps are non-random, it becomes necessary to assess the overall 

similarity of the maps, that is, their compositional equivalence. If the overall 

composition of the maps is significantly different, the maps are of necessity different, 

and the question is whether the maps are independent, or a transition rule could possibly 

exist between them. If the overall composition of the maps is not significantly different, 

this would indicate compositional agreement, but not necessarily configurational 

agreement, and likewise it would be necessary to investigate whether the two maps are 

independent. This leads to the following cases: 

Case 2. If map 1 and map 2 are each spatially associated, two issues need to be 

resolved. The first question is whether there is compositional agreement between 

the two maps.  



Case 2.1. The composition of the maps agrees, and therefore the maps 

could either be identical in all respects or identical in composition but not in 

configuration (Map [1] : Map [7] : Map [8]). Determine whether the maps are 

independent or a transition rule could exist. 

Case 2.2. The composition of the maps does not agree, and therefore it can 

be concluded that the maps are different (Map [1] : Map [5] : Map [9]). 

Determine whether the maps are independent or a transition rule could exist. 

A third case is of considerably less practical interest, but we mention it for 

completeness. This is when the two maps are spatially random (e.g., Map [2] : Map [3] : 

Map [4] : Map [6]). The element-wise differences could be random or not. It is 

straightforward to verify whether the transitions are random by looking at the frequency 

distribution of classes. 

4. Test statistics 

In this section we introduce the technical tools needed to implement our map 

comparison framework. We begin by defining some important terms (a number of these 

concepts are described in detail in Ruiz et al  2010). We will consider a map to be the 

representation of a discrete spatial process { }s s SX ∈ , where S  is a set of coordinates. The 

spatial process can take a number of discrete values or classes 1 2{ }kA a a … a= , , ,  that 

could be for example k different land use classifications, types of forest cover, etc. The 

process can be considered to be spatially embedded, if we define a string that contains 

the classes found in a neighborhood of size m , called an m-surrounding. The m-

surrounding is similar to the neighborhood vector N used in the fuzzy kappa measure of 

agreement (Hagen 2003; Hagen-Zanker et al  2005):  

0 0 1 1
( ) ( )

ms s s sX m X X … X
−

= , , ,   (1) 

The string is defined for a specific coordinate corresponding to a location in the 

map ( 0s S∈ ) where 1 2 1ms s … s −, , ,  are the 1m −  nearest neighbors to 0s . In other words, 

0
( )sX m  is a list of values that represents a map segment of size m  centered on location 

0s . The values in the string are the classes found in a neighborhood of size m . We will 

denote the set of the 1m − -nearest neighbors by 1 2 1{ }s mN s s … s −= , , , . As an example, 



consider the simple case of a lineal transect with k=2 (a1=White=0, and a2=Blue=1; see 

Figure 3).  

 

 

Figure 3. Lineal transect with k=2. 

If the size of the m-surrounding is selected as 3, then X(3) for the second cell 

from the left is {Blue,White, White} or equivalently {1, 0, 0}. X(3) for the fifth cell 

from the left is {White, Blue, White} or {0, 1, 0}. 

It is easy to see that since the number of different classes in the map is k, the 

number of all possible values (the combination of classes) that an m -surrounding 

( )sM m  can take is mk . In the example above, with k=2 and m=3, there are eight 

possible combinations of classes (see Table 1). Each unique combination of classes is 

called a symbol, which we denote by iσ  (i=1, 2, ... , mk ) 

Table 1: List of symbols for k=2, m=3. 

1σ = {0,0,0} 5σ = {1,1,0} 

2σ = {1,0,0} 6σ = {1,0,1} 

3σ = {0,1,0} 7σ = {0,1,1} 

4σ = {0,0,1} 8σ = {1,1,1} 
 
Let:  

1 2{ }mk
…σ σ σΓ = , , ,   (2) 

be the set of all of these possible values. For a given map { }s s SX ∈  we say that a location 

s  is of iσ -type if and only if ( )s iX m σ= . In the example, the second cell from the left 

is said to be of 2σ -type, and the fifth cell from the left is of 3σ -type. Each cell can be 

assigned a unique symbol, out of the finite list of possible symbols. The cells on the 

edges would use the two nearest neighbors, and would therefore be of type  3σ  (on the 

left) and of type  6σ  (on the right). Precise rules for selecting the neighbors are 

described in more detail below. 

Let iσ ∈Γ  and denote by:  

{ | ( ) }
i s in s S X mσ σ= ∈ = ,   (3) 



the size of the subset of S  formed by all the elements of iσ -type.  Given this, it is easy 

to compute the empirical relative frequency of a symbol iσ ∈Γ  as:  

{ | is of type}( )
| |i

i
i

s S sp p
Sσ

σσ ∈ −
:= =   (4) 

where by | |S  we denote the cardinality of the set S  (the number of symbolized 

locations).  

Now, under this setting, we can define the symbolic entropy of a thematic map { }s s SX ∈  

for an embedding dimension 2m ≥ . This entropy is defined as the Shanon’s entropy of 

the mk  distinct symbols as follows:  

1
( ) ln( )

m

i i

k

X
i

h m p pσ σ
=

= −∑   (5) 

Symbolic entropy, ( )h m , is the information contained in comparing the m -

surroundings in the map. Note that 0 ( ) ln( )mh m k≤ ≤ , where the lower bound is attained 

when only one symbol occurs, and the upper bound is for a completely random system 

(i.i.d. spatial sequence) where all mk  possible symbols appear with the same 

probability. 

In this section we introduce the tests that allow the researcher to assess the degree of 

spatial association (structure) of a thematic map, and compare two maps in terms of (1) 

their compositional equivalence and (2) their independence. In order to do so, we will 

consider two maps { }s s SX ∈  and { }s s SY ∈  with the same zoning system, and denote the 

symbolic frequencies in each map, and their combination, by (the statistics can be 

expanded to consider more than two maps simultaneously): 

{ | ( ) }
| |

{ | ( ) }
| |

2 | |

i

i i

i

i i

i

i i i i

s i

s i

n
n s S X m p

S
m

m s S Y m q
S
c

c n m g
S

σ
σ σ

σ
σ σ

σ
σ σ σ σ

σ

σ

= ∈ = ; =

= ∈ = ; = ,

= + ; =

  (6) 

4.1. Spatial structure: The Q(m) statistic 

Testing for spatial structure (i.e. spatial association) of a qualitative variable based on 

symbolic entropy is discussed in Ruiz et al. (2010). In this section, we limit ourselves to 



reviewing some key concepts of the relevant statistic. The reader is directed to the 

reference for further information. The Q(m) statistic is defined as follows: 

( ) ( ) ( )
1 1

2 | | ln
| |

m

i
k k

ij j
i j

n
Q m S q h m

S
σ α

= =

⎡ ⎤
= − +⎢ ⎥

⎣ ⎦
∑ ∑  (7) 

where ijα  the number of times that class ja  appears in symbol iσ  and ( )j jq P X a= = . 

The statistic is essentially a likelihood ratio test that compares the symbolic entropy of 

the map to the expected symbolic entropy under the null hypothesis of spatial 

independence (i.e. where all symbols appear with similar probability contingent on the 

frequency of classes). The statistic can be shown to be 2χ  distributed with 1mk −  

degrees of freedom (Ruiz et al  2010), and the decision rule at a 100(1 )%α−  confidence 

level is as follows: 

2Reject null hypothesis if ( )
Otherwise do not reject the null hypothesis

Q m αχ⎧ >
⎨
⎩

  (8) 

  In order to implement the test, the researcher must make a number of decisions. 

First, the researcher must decide the size of m for the m-surrounding; there is a certain 

degree of flexibility in doing so, however limited by some statistical and interpretive 

considerations. In order to achieve a sufficient approximation of the  2χ  distribution, it 

is strongly advisable to work with at least 5 mk  symbolized observations (Rohatgi 1976, 

chapter 10); in other words, there must be at least five times as many symbolized 

observations as symbols exist. Thus, the size of m may be constrained by the size of the 

map, with larger surroundings only practicable in large maps. In terms of interpretation, 

a large number of symbols capturing a high level of specificity may also be difficult to 

interpret. On the other hand, if spatial association is detected for a surrounding of size 

m, the statistic guarantees that the association exists for the full surrounding or even 

only part of it. The presence of spatial association at higher scales remains 

indeterminate. 

 Once a decision has been made regarding the size of the m-surrounding, a rule is 

needed to identify m-1 nearest neighbors for each location that will be symbolized. The 

rule implemented in Ruiz et al. (2010) is as follows: 

(a) The distance of the m-1 neighbours from s0 satisfies the condition that 
0 0 0
1 2 1m…ρ ρ ρ −≤ ≤ ≤ ; and 



(b) In the case of a tie in terms of the distance from s0, (i.e. if 0 0
1i iρ ρ += ) then 

precedence goes to the smaller angle (i.e. 0 0
1i iθ θ +< ).  

Plainly, neighbors are selected in order of proximity, and if there are ties 

according to this criterion, selection proceeds by direction. This ensures the uniqueness 

of ( )mX s  for all s S∈ . Other rules are certainly possible, for example by changing the 

criteria to select neighbors by direction if anisotropic processes are suspected; however, 

we do not pursue this idea further in the present paper.  

4.2. Compositional equivalence: The QE test 

After testing the maps for spatial structure, if the two maps are found to be non-random, 

we are interested in testing whether the composition of the maps is equivalent. In other 

words, we now wish to ascertain whether symbols appear with similar frequencies in 

both maps. Hence, the null hypothesis that we want to test is whether the symbolic 

distributions for both maps are equivalent, or: 

 0H : { }s s SX ∈  and { }s s SY ∈  follow the same distribution.  

The null hypothesis can be restated in terms of symbols as follows:  

0 for all 1 2
i i

mH p q i … kη η: = = , , ,   (9) 

that is, the frequency of symbols is identical in the two maps, for all symbols. In order 

to develop a test statistics, we define, for a symbol iσ ∈Γ , the following random 

variables: 

1 if ( ) 1 if ( )
( ) ( )

0 otherwise 0 otherwise
i i

m i m i

s s

X s Y s
Z X Z Yσ σ

σ σ= =⎧ ⎧
⎪ ⎪= =⎨ ⎨
⎪ ⎪, ,⎩ ⎩

 (10) 

Then ( )
i s

Z Xη  (respectively ( )
i s

Z Yη ) is a Bernoulli variable with probability of 

“success” 
i

pη  (resp. 
i

qη ), where “success” means that s  is of iσ -type.  

Now assume that set S  is finite and of order R . Then we are interested in knowing how 

many s ’s are of iσ -type for all symbol i Sσ ∈  in each of the maps. In order to answer 

the question, we construct the following variables  

( ) ( )( ) ( )
i i i is X s Y

s S s S
T X Z T Y Zσ σ σ σ

∈ ∈

= =∑ ∑   (11) 



The variable 
i

Tσ  can take the values {0 1 2 }… R, , , , . Notice that not all the variables 
i s

Zσ  

are independent (due to the overlapping of some m -surroundings), and therefore 
i

Tσ  is 

not exactly a Binomial random variable. Nevertheless, the sum of dependent indicators 

can be approximated to a Binomial random variable whenever the dependencies among 

the indicators are weak (Soon 1996). 

A procedure to obtain a good approximation to a Binomial distribution is described in 

Ruiz et al. (Ruiz et al  2010). Briefly, we can consider as a set of locations the subset S  

formed by those coordinates in S  such that for any two coordinates s s S′, ∈  the sets of 

nearest neighbors of s  and s′  have a small (or even empty) intersection, that is: 

s sN N r′| ∩ |=   (12) 

for a small enough positive integer r . We will call the integer r  as the overlapping 

degree.  

Now we propose a construction of the set S . First chose a location 0 Ss ∈  at random 

and fix an integer r  with 0 r m≤ < . Let 
0

0 0 0
1 2 1{ }ms

N s s … s −= , , ,  be the set of nearest 

neighbors to 0s , where the 0
is ’s are ordered by distance to 0s . Let us call 0

11 m rss − −=  and 

define 0 0
0 1 20{ }m rA s … ss − −= , , , . Take the set of nearest neighbors to 1s , namely 

1

1 1 1
1 2 1{ }ms

N s s … s −= , , , , in the set of locations 0S A  and define 1
12 m rss − −= . Now for 

1i >  we define 1
1

i
m ri ss
−
− −=  where 1

1
i
m rs −
− −  is in the set of nearest neighbors to 1is − , 

1

1 1 1
1 2 1{ }

i

i i i
ms

N s s … s
−

− − −
−= , , , , in the set 1

0{ }i
j jS A−
=∪ . Continue this process while there are 

locations to be symbolized. Therefore we have constructed a set of locations:  

0 1{ }MS …s s s= , , ,   (13) 

such that the variables: 

( ) ( )( ) ( ) ( ) ( )
i i i i i is X s Y

s S s S

T X Z B S p T Y Z B S qσ σ σ σ σ σ
∈ ∈

= = | |, = = | |,∑ ∑  (14) 

based on S  can be approximated to a binomial distribution for a suitable choice of r  ( r  

small enough) for all 1 2 mi … k= , , , . Moreover, when 0r =  (i.e. no overlap is allowed) 

we exactly have Binomial random variables. Note that the maximum number of 

locations that can be symbolized with an overlapping degree r  is 1R m
m rM −
−= +⎡ ⎤⎣ ⎦ , where 



[ ]x  denotes the integer part of a real number x , and therefore reducing the degree of 

overlap also implies that the number of symbolized locations will be smaller than the 

number of observations in the sample.  

Now, the distribution of the 2 mk  random variables:  

1 1
( ( ) ( ) ( ) ( ))

m mk k
T T X … T X T Y … T Yσ σ σ σ= , , , , ,   (15) 

is a multinomial distribution and its likelihood function 
1 1

( )
m mk k

L p … p q … qσ σ σ σ, , , , ,  is 

given by:  

1 1

1 1

1 1

2 m mk k

m mk k
m mk k

n mn mM p p q q
n n m m

σ σσ σ
σ σ σ σ

σ σ σ σ

!
! ! ! !

  (16) 

In order to obtain the maximum likelihood estimators ˆ
i

pσ  and ˆ
i

qσ  of 
i

pσ  and 
i

qσ  

respectively and taking into account that:  

1 1
1

i i

n n

i i
p qσ σ

= =

= =∑ ∑   (17) 

we solve the following system of equations:  

1 1 1 1
ln( ( )) ln( ( ))

0 0m m m mk k k k

i i

L p … p q … q L p … p q … q

p q
σ σ σ σ σ σ σ σ

σ σ

∂ , , , , , ∂ , , , , ,
= =

∂ ∂
 (18) 

for all 1 1mi … k= , , −  to obtain:  

i i

ii

n m
qp M M

σ σ

σσ
= = .   (19) 

Denote by (0)pσ  and (0)qσ  the probabilities under the null for all symbols σ ∈Γ  Then the 

likelihood ratio statistic is (see for example Lehmann 1986):  

1 1

1 1

1 1

1 1

(0) (0)(0) (0)

( )
m mk k

m mk k

m mk k

m mk k

n mn m

n mn m

p p q q
T

p p q q

σ σσ σ

σ σσ σ

σ σ σ σ

σ σ σ σ

λ =   (20) 

Now, under the null, we have that 
i i

p qσ σ=  and hence 1
2i i

p gσ σ=  for all 1 2 mi … k= , , , . 

Therefore: 
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We define the structural equivalence test as ( )( )( ) 2 lnEQ m Tλ= − , which is known to 

asymptotically follow a 2χ  distribution with 1mk −  degrees of freedom (Lehmann 

1986). Hence, the estimator ˆ ( )EQ m  of ( )EQ m  can be shown to be: 
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where 
1

( ) ln( )
m

i i

k

i
h m g gσ σ

=

= −∑  is the total symbolic entropy. We have proved the 

following result. 

Theorem 1.  Let { }s s SX
∈

 and { }s s SY
∈

 be two maps with S M| |= . Let 

1 2{ }mk
…σ σ σΓ = , , ,  be the set of mk  symbols as defined in (2) If { }s s SX

∈
 and { }s s SY

∈
 

are structural equivalent then:  

1 1ˆ ( ) 4 ln(2) ( ) ( ) ( )
2 2E X YQ m M h m m mh h

⎡ ⎤= + − −⎢ ⎥⎣ ⎦
 (23) 

is asymptotically 2
1mk

χ
−

 distributed.  

The ( )EQ m -test can be generalized to the case of N  maps, 

1 2{ } { } { }s s Nss S s S s SX X … X
∈ ∈ ∈
, , ,  as it can be seen in the next corollary. The proof is 

straightforward following the steps of the proof of Theorem 1.  

Corollary 2. Let { }is s SX
∈

 1 2i … N= , ,  be N  maps with S M| |= . Let 

1 2{ }mk
…σ σ σΓ = , , ,  be the set of mk  symbols as defined in (2) If { }is s SX

∈
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equivalent for all 1 2i … N= , , ,  then  
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is asymptotically 2
( 1)( 1)mN k

χ
− −

 distributed. 

4.3. Map independence: The QI test 

Two maps known to have spatial association as determined by Q(m) are 

organized and therefore in principle interesting. The maps can be compositionally 

equivalent as determined by the QE(m) statistic. This does not yet indicate whether the 

maps are related in a non-random fashion. We are therefore interested in assessing 

whether the maps, namely { }s s SX ∈  and { }s s SY ∈ , are dependent or independent maps. In 

this case, independence means that a non-random transformation rule does not exist that 

could be used to convert one map into the other. Note that two independent maps can be 

structurally equivalent and viceversa. Then next step is to test for independence. First 

we are going to introduce some definitions and notation that will be needed in order to 

construct the statistic. 

Consider the map overlay { ( , )}s s s s SW X Y ∈= . Let Ω = Γ×Γ  be the direct product of the 

set of symbols 1 2{ }mk
…σ σ σΓ = , , , . We will call the elements in Ω  symbols for the 2-

dimensional map. Next we define the m-surrounding associated to the 2-dimensional 

map { ( , )}s s s s SW X Y ∈=  as ( ) ( ( ), ( ))s s sW m X m Y m= . Now given a symbol ( )x y
i jσ σ, ∈Ω  

we will say that a location s is of ( )x y
i jσ σ, -type for W if and only if the location s is of 

x
iσ -type for the map X and of y

jσ -type for the map Y.  Let 

{ | ( ) ( , )}ij s i jd s S W m σ σ= ∈ =  and denote by 
| |

ij
ij

d
p

S
=  the probability of the symbol 

( )x y
i jσ σ,  to occur. Then we can define the symbolic entropy of the map overlay as 
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Define the indicator function 

1 if  is of ( , )-type for W
0 otherwise
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s

I
σ σ⎧
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  (25) 

Hence we have that ( )ijs ijI B p=  is a Bernoulli random variable with 

probability of “success” ijp .  As in the previous section we can define a subset of 



locations S such that ijs
s S

I
∈
∑  can be approximated to a binomial distribution for a 

suitable choice of r  ( r  small enough) for all , 1 2 mi j … k= , , , . Therefore 

( )ij ijs ij
s S

F I B M p
∈

= = , ,∑  is a binomial random variable where M  denotes the 

cardinality of the set S . Then:  

12 13 1( )kkF F F … F −= , , ,   (26) 

is a multinomial distribution. Now we are interested in testing for the following null: 

{ } { }0 s sThe maps X  and  are independent
s S s S

H Y
∈ ∈

: .  (27) 

This null hypothesis can be restated in terms of symbols as:  

0 i jijH p p qσ σ: =   (28) 

Following the same steps as in the previous section we get that under the null 

the likelihood ratio statistic remains as:  
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We then define ( )( )( ) 2 lnIQ m Fλ= − , which asymptotically follows a 2χ  

distribution with ( 2) 1m mk k − +  degrees of freedom see (see Lehmann 1986). Hence, 

and taking into account that 
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Therefore we have proved the following result.  



Theorem 3.  Let { }s s SX
∈

 and { }s s SY
∈

 be two maps and let 1 2{ ( , )}s s s s SW X X
∈

=  

be a 2-dimensional map with S M| |= . Let 1 2{ }mk
…σ σ σΓ = , , ,  be the set of mk  

symbols as defined in (2). If { }s s SX
∈

 and { }s s SY
∈

 are independent then  

[ ]( ) 2 ( ) ( ) ( )I X Y WQ m M h m h m h m= + −   (31) 

is asymptotically 2
( 2) 1m mk k

χ
− +

 distributed.  

The ( )IQ m -test can be generalized to the case of N  maps, 

1 2{ } { } { }s s Nss S s S s SX X … X
∈ ∈ ∈
, , ,  as it can be seen in the next corollary. The proof is 

straightforward following the steps of the proof of Theorem 3. 

Corollary 4. Let { }is s SX
∈

 1 2i … N= , ,  be N  maps and 

let 1 2{ ( , , , )}s s s Ns s SW X X X
∈

= …  be a N-dimensional map with S M| |= . Let 

1 2{ }mk
…σ σ σΓ = , , ,  be the set of mk  symbols as defined in (2) If { }is s SX
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independent for all 1 2i … N= , , ,  then  
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is asymptotically 2
( 1) 1Nm mk N k

χ
− − −

 distributed.  

5. Illustration 

The framework proposed in the preceding sections is illustrated with reference to the 

maps in Figure 1. The first step is to test the maps for spatial association. We calculate 

the Q(m) statistic for all maps using an m-surrounding of 4 and symbolize the 

observations using an overlap degree r=1. The results of applying the statistic to the 

maps appear in Table 2. The table shows the value of the statistic for each map, the 

probability value, and the decision (at a 95% level of confidence). In addition, we also 

include a figure showing the frequency distribution of equivalent symbols in each map. 

The equivalent symbols are a reduced form of the symbols that display only the number 

of cases of each class in an m-surrounding, instead of all proximity information; this 

reduction of information facilitates interpretation. The figures are illustrative only, and 

the tests are based on the standard symbolization. The vertical axis in the figure is the 

proportion of the total, and in the horizontal axis the equivalent symbols appear. For 



example {0 0 4} is the symbol indicating an m-surrounding of 4 where all map elements 

are of class a3; {2 1 1} is the symbol indicating an m-surrounding of 4 where two 

elements are of class a1, one is of class a2, and one is of class a3.  

Table 2: Q(m) test for spatial association (non-random maps in bold, p-values in 
parentheses). Test is conducted for m=4 and r=1.  
Map # Q 

(p-value) 
Decision 
(independence)

Frequency distribution of symbols 

Map 1 

3509.10 
(0.000) Reject 

 
Map 2 

70.52 
(0.7668) Do not reject 

 
Map 3 

70.52 
(0.7668) Do not reject 

 
Map 4 

60.595 
(0.9480) Do not reject 

 
 
 

 

 

Table 2 (continued): Q(m) test for spatial association (non-random maps in bold, p-
values in parentheses). Test is conducted for m=4 and r=1.  



Map # Q 
(p-value) 

Decision 
(independence)

Frequency distribution of symbols 

Map 5 

846.92 
(0.000) Reject 

 
Map 6 

74.19 
(0.6619) Do not reject 

 
Map 7 

3501.70 
(0.000) Reject 

 
Map 8 

3548.70 
(0.000) Reject 

 
Map 9 

1976.80 
(0.000) Reject 

 
 
As seen in the table, the null hypothesis of spatial independence is rejected for Map [1], 

thus confirming the visual impression of a highly structured spatial distribution of 

variable values. As expected, the null hypothesis is rejected also for Maps [5], [7], and 

[8], since these maps (see Figure 2) were derived from Map [1] according to some 



organized principle (i.e., non-random transitions, rotation, and reflection, respectively). 

As well, the test also rejects the hypothesis of independence for Map [9], which was 

simulated using a strongly autocorrelated spatial process. The null hypothesis is not 

rejected for Maps [2], [3], and [4]. Likewise, the hypothesis is not rejected for Map [6], 

which was originally based on Map [1], but subjected to a process of random 

transitions. 

At this point, our interest in the comparison of maps would practically be limited to 

pairs of maps that display a significant degree of spatial association. This would mean a 

pair-wise comparison of Maps [1] : [5] : [7] : [8] : [9]. For illustrative purposes, we 

calculate the statistics for all pairs of maps, as this serves to demonstrate the 

appropriateness of the statistics in a wide range of situations. 

The next step in our comparison framework is to determine if two maps are 

compositionally equivalent, or in other words, to evaluate if the symbols appear with 

similar or significantly different frequency. The results of applying the QE test to each 

pair of maps appear in Table 3 (calculation of the statistic is based on the same 

parameters used before, namely m=4 and r=1). First, note that a map is identical to 

itself, and therefore the statistic always fails to reject the null hypothesis of 

compositional equivalence when the two maps in the input are the same. When two 

maps are random, the expectation is that they will be equivalent in their composition, 

since by definition in a random map all symbols appear with similar frequencies 

(contingent on the frequency of classes; see frequency plots in Table 3 for Maps [2], [3], 

[4], and [6]). The test confirms this, by failing to reject the null hypothesis for the 

comparison of Maps [2] : [3] : [4] : [6]. Next, the expectation is that any spatially 

associated map will have a different composition when compared to any random map, 

which would lead to the conclusions that the two maps are different (and the 

comparison is relatively uninteresting, since one of the two maps is random). This 

intuition is again confirmed by the results in the table, where it can be seen that the null 

hypothesis of compositional equivalence is rejected for Maps [1], [5], [7], [8], and [9] : 

[2], [3], [4], and [6]. In other words, any two maps in these pairs are significantly 

different from each other.  

The more interesting cases are when the two maps for the comparison display 

significant spatial association, or in other words, patterning. The results are again in full 

agreement with the setup of the example. First, we fail to reject the null hypothesis 

when comparing Maps [1] : [7] : [8]. This is logical, since the input maps in each case 



are essentially the same map, only with different orientations. In contrast, the null 

hypothesis is rejected when comparing Maps [1], [7], [8] : [5] : [9]. In the case of Maps 

[1], [7], and [8] : [5], this is to be expected since Maps [1], [7], and [8] have already 

been determined to be equivalent, and Map [5] was obtained from Map [1] using a 

transformation rule that changed its composition. As a result, Maps [5] is significantly 

different from the others. Finally, Map [9] was generated using a separate spatially 

structured process that was not constrained to generate the same composition as any of 

the preceding maps. 

Table 3: QE test for compositional equivalence (non-random maps in bold, and p-values 

in parentheses). Decision rule is to reject the hypothesis of equivalence. Shaded cells 

indicate reject. 

 Map 1 Map 2 Map 3 Map 4 Map 5 Map 6 Map 7 Map 8 Map 9 
0.0 1331.6 1335.4 1280.3 767.4 1318.3 63.4 53.8 362.6 Map 1 

(1.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.914) (0.989) (0.000) 
 0.0 61.9 73.9 463.1 66.6 1323.0 1338.7 922.4 Map 2 
 (1.000) (0.933) (0.670) (0.000) (0.858) (0.000) (0.000) (0.000) 
  0.0 72.4 472.5 76.8 1308.9 1327.7 874.7 Map 3 
  (1.000) (0.715) (0.000) (0.580) (0.000) (0.000) (0.000) 
   0.0 441.8 74.3 1278.0 1293.0 871.4 Map 4 
   (1.000) (0.000) (0.660) (0.000) (0.000) (0.000) 
    0.0 463.7 755.3 780.1 509.5 Map 5 
    (1.000) (0.000) (0.000) (0.000) (0.000) 
     0.0 1315.4 1327.6 875.7 Map 6 
     (1.000) (0.000) (0.000) (0.000) 
      0.0 40.0 359.6 Map 7 
      (1.000) (1.000) (0.000) 
       0.0 343.6 Map 8 
       (1.000) (0.000) 
        0.0 Map 9 
        (1.000) 

 
The final step in our comparison framework is to test the hypothesis of independence 

between two maps. The objective is to determine whether two maps could be linked by 

a rule other than random transitions. As seen in Table 4, the QI statistic (calculated with 

m=1) correctly rejects the null hypothesis when the two maps compared are the same: a 

map is not independent from itself. 

We begin our discussion of these results with Map [1]. In this case, we observe that the 

null hypothesis is not rejected when the map used in the comparison is random (i.e. 

Maps [2], [3], [4], and [6]); as expected, an organized rule does not exist that could 

transform one map into the other, and the maps are independent. The null hypothesis is 



correctly rejected when comparing Maps [1]: [5], [7], [8]. Since an underlying rule 

exists that can be used to transform the maps (e.g., from [1] to [5] and vice versa if the 

rule is inverted), the maps are not independent. The test cannot identify the underlying 

rule, but can point to its existence. 

 With respect to Map [2], the statistic correctly rejects the hypothesis of independence 

when the comparison is made with respect to Map [3]. As seen in Figure 2, the two 

maps are random; however, Map [3] was derived from Map [2] using a set of systematic 

transitions rules. This result indicates that the statistic is able to detect patterns of 

dependency between maps, even if the two maps are random. When comparison is 

made to any of the other maps in the example, on the other hand, the test fails to reject 

the null hypothesis. This is precisely as expected, since the map is random and therefore 

independent from the other cases. The situation is the same for random maps [3], [4], 

and [6] when compared to any other maps (with the exception of the comparison 

between Maps [2] : [3] as per the preceding discussion). 

Table 4: QI test for independence (non-random maps in bold, and p-values in 
parentheses). Decision rule is to reject hypothesis of independence. Shaded cells 
indicate reject. 
 Map 1 Map 2 Map 3 Map 4 Map 5 Map 6 Map 7 Map 8 Map 9 

4455.1 1.2 1.2 6.2 1942.3 1.1 1031.4 635.4 160.1 Map 1 
(0.000) (0.880) (0.880) (0.183) (0.000) (0.893) (0.000) (0.000) (0.000) 

 4455.1 4455.1 2.5 3.0 1.3 6.7 3.0 2.6 Map 2 
 (0.000) (0.000) (0.642) (0.559) (0.861) (0.152) (0.560) (0.629) 
  4455.1 2.5 3.0 1.3 6.7 3.0 2.6 Map 3 
  (0.000) (0.642) (0.559) (0.861) (0.152) (0.560) (0.629) 
   4455.1 2.0 4.1 2.5 2.5 2.3 Map 4 
   (0.000) (0.732) (0.389) (0.637) (0.645) (0.687) 
    4452.5 7.0 282.8 258.1 46.8 Map 5 
    (0.000) (0.134) (0.000) (0.000) (0.000) 
     4454.9 2.0 3.1 0.9 Map 6 
     (0.000) (0.744) (0.534) (0.921) 
      4455.1 321.9 239.5 Map 7 
      (0.000) (0.000) (0.000) 
       4455.1 258.0 Map 8 
       (0.000) (0.000) 
        4217.1 Map 9 
        (0.000) 

 
 
Application of the test to Maps [5] : [7] : [8] leads to rejection of the null hypothesis, for 

the evident reason that underlying transition rules exist among these maps through their 

connection with Map [1]. 



An intriguing case is Map [9]. The statistic rejects the hypothesis of independence when 

the comparison is made with respect to Maps [1], [5], [7], and [8]. As previously 

explained, this map was generated using a separate spatial autocorrelation process, and 

Map [9] is therefore not directly derived from any of these maps. Considering the high 

degree of spatial association in the map, on the other hand, it is perfectly plausible that 

some set of non-random transformations could exist to link Maps [1], [5], [7], [8] : [9]. 

These results offer a cautionary counter-example in the application of the statistic: quite 

simply, lack of independence does not necessarily imply causality. This point should be 

clear to anyone familiar with elementary statistics and the basic tenet that correlation is 

not causation. While the statistic appears to do a reasonable job of identifying lack of 

independence due to causal processes, the temptation should be avoided to infer 

causality based on this test.  

6. Conclusions 

In this paper we have introduced a new approach for the comparison of thematic maps. 

Our approach sequentially tries to identify differences between maps by assessing the 

degree of spatial association of each map and the compositional equivalence between 

maps based on map segments (as opposed to map cells/elements), and by testing for 

independence between the two maps. The framework covers a wide range of cases of 

practical interest, and provides a complete inferential framework with clearly defined 

null hypotheses at each step of the sequence. While the issue of significance testing in 

map comparison appears to be somewhat controversial, we would argue that testing for 

well defined hypotheses, such as introduced in this paper, can enhance exploratory 

analysis by clarifying the relationships between maps. 

In order to implement our map comparison framework, we have introduced two new 

statistics for the spatial analysis of qualitative data. The statistics are essential to our 

approach, but will likely be of interest in a broader variety of settings: for instance, QE 

can be applied to maps in different regions and/or with different zoning systems to 

assess similarities in composition. One limitation of our approach is that maps can be 

tested for differences at a given level of confidence. However, unlike the method of 

Wulder et al. (2004) that can detect clusters of differences between maps, when 

differences are detected in our framework, the statistics do not directly indicate where 

they happen. Therefore, our approach is still lacking tools for the identification of 

clusters of coincidences or differences. This is a matter for future research. 



Also, in terms of additional research, in this paper we introduced two new statistics, that 

were shown to perform well in the example. The finite sample properties of Q(m) were 

already investigated in Ruiz et al. (2010). The next step is to investigate, using carefully 

designed simulation experiments, the small sample properties of QE(m) and QI, in order 

to ascertain their size and power under different sample sizes, size of m-surrounding, 

degree of overlap r, and level of spatial association in each map. This is the subject of 

ongoing research. 
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