Acknowledgments

Acknowledgments

There are an enormous number of people who | witkédto express my gratitude to.
Firstly, | would like to pay special tribute to thhesearch group ACRO, for their invaluable
assistance in preparing my project. It is a pleasorexpress my thank to them: Eric Claesen
(my project coordinator), Wim Beckers, Roel Conindgéevin Donné, Sven Boedrij,
Veronique Theunis, Ann Claes, Stijn Delen, GeetrLand Nico Bartholomevis; | want to
thank all of them for their kind assistance durthg developing of this project. | owe an
immense debt of gratitude to them for having givea the love for and curiosity about
robotic, automation and visual-servoing applicagion

| am indebted to several people for giving me eragement to develop this project.
Firstly | would like to express my profound gratieuto Raquel, my girlfriend, for provided
me courage enough for keep on working when | neéddé most. | am also very gratefully
with Yves for his kindness and for keeping me conypne whole time. | thank my family
and my Spanish friend for their loving support fr&@pain, Greet Raymaekers (my Erasmus
coordinator) and Erasmus students who are studwitigme in Hasselt and those who left.

Index

Index

0. Background and objectives

1. Introduction to HALCON programming
1.1. Introduction. Vision development environment
1.2. Develop applications with HALCON
1.2.1. Architecture and data structures
1.2.1.1. HALCON operators
1.2.1.2. Parameters and data structures
1.2.2. Image acquisition
1.3. HDevelop
1.4. Using HALCON within programming languages
1.5. Examples and applications

2. KUKA robot. Overview and programming over KCP
2.1. Robot description. KUKA KR3
2.2. Technical data
2.3. Quick description of the robot system
2.3.1. KCP teach pendant
2.3.2. Operating modes
2.3.3. Changing user group
2.2.4. Coordinate system
2.2.5. Tool calibration
2.2.6. Structure of a KRL program (KUKA Robot Language)
2.2.7. Programming motions
2.2.7.1. Inline form for motions
2.4. Initial programs

3. Manufacturing the surface of work
3.1. Surface of work and possible alternatives
3.2. Features and reasons

3.3. Camera support

3.4. Plans

4. Visual Basic programming

4.1. A brief description of Visual Basic
4.2. Drawing the user interface

4.3. Learning to program in Visual Basic

5. Motor-PLC connection via PROFIBUS
5.1. Components and connection cables

5.2. PROFIBUS network configuration

5.3. Testing the motor variable values

Page

=

B
RRoocounuwww

Index

6. Step7 program for the conveyor
6.1. Requirements
6.2. Step7 program

7. Step7 program for the conveyor

7.1. Camera. Properties and location

7.2. Choosing the correct lens

7.3. Lighting the surface

7.4. Cdlibrating the coordinates on the work area

7.5. HALCON program for the real process of the project

8. OPC communication
8.1. OPC overview
8.2. OPC server via PROFIBUS connection
8.2.1. Create an OPC connection
8.2.2. Check OPC connection
8.3. New Step7 program for the conveyor with OPC

9. Communication and Visual Basic programs

9.1. Summary

9.2. Program that controls the belt over PROFIBUS

9.3. Robot-PC Ethernet communication and Visual Basic programs
9.3.1. General aspects
9.3.2. First version of the server program in the robot
9.3.3. Program in the main PC

10. Robot setting: suction system and calibration
10.1. Robot suction system
10.1.1. Compressor (Panther-Werther International)
10.1.2. Solenoid valve MFH-2-M5 - 4573
10.1.3. PE converter PEN-M5 - 8625
10.1.4. Vacuum generator VAD-MS5 - 19293
10.1.5. Suction cup tool
10.2. Robot calibration
10.2.1. Tool calibration
10.2.2. Base calibration

11. Flowchart and final programs

11.1. Flowchart

11.2. Final programs
11.2.1. General aspects in the communication
11.2.2. Main program
11.2.3. Client server program in the robot
11.2.4. Robot program

11.3. Picture of the final process

12. Conclusions: improvements and future applicabns
12.1. Conclusions

52
52
52

58
58
59
59
61
64

68
68
68
69
77
78

80
80
80
81
81
82
83

84
84
84
85
85
86
86
87
87
88

90
90
92
92
93
97
100
103

104
104

Index

12.2. Improvements and future applications

13. Bibliography

APPENDIX.
Al. Visua Basic learning programs
A2. Visua Basic communication programs
A2.1 Code of program to control the belt
A2.2 Code of server program in the robot
A2.3 Code of Ethernet communication in the main PC
A3. Visua Basic final programs
A3.1 Code of the main program
A3.2 Code of server program in the robot
A3.3 Code of Module added in server program
A4. Datasheet of the motor

104

106

108
117
117
120
124
126
126
142
150
154

Index

-iv-

0-Background and Objectives

CHAPTERO

Background and Objectives

The current Project is developed in ACRO, Autonmmitgy Centrum Research en
Opleiding, but these acronyms are more than onlgdst0ACRO is a Research and project
Group in the field of automation and is a certifitROFIBUS COMPETENCE CENTER.
This group gives PROFIBUS training in a practicallyented industrial environment and can
offer you a complete PROFIBUS service. Profibusrisy one element of automation, ACRO
offers a complete package of trainings and servitasitomation.

The topics of the research group ACRO are:
Industrial real-time networks (fieldbus)
Real-time vision applications
Sensor based robotics
Real-time camera hardware

Real-time operating systems

This project consists in implementation of a Vissatvoing application. The
application will use a robot, a conveyor and angeianalyse-system. Visual-servoing means
that a robot is controlled real-time by analysesmages. In this way, data which are obtained
from the image are used to implement some appicatike:

- To track an object with the robot as farer as iblel of action permit it.
- To track an unknown outline with the robot.
- To pick up a piece with the robot on a moveablevegor

The available robot is a KUKA KR 3. The robot hasl€grees of freedom, an own
operating system, a PROFIBUS Interface and an E¢thénterface to communicate with the
objective world.

0-Background and Objectives

The vision system will consist of an USB camerasiBa Scout” or “IDS Ueye” with
lens and finally lightning. The software which aysas the images will use HALCON and the
computer application will be written in Visual Bagir C++.

The communication between the robot and the visigstem (PC) will occur over
Ethernet or PROFIBUS and the communication betwkercomputer and the conveyor over
PROFIBUS via OPC.

All these goals show an open field in which thejgebis developed. Because of this, all
the decisions made during the project are managettiéb student in order to create a final
application inside of the defined objectives.

1-Introduction to HALCON programming

CHAPTER 1

Introduction to HALCON programming

1.1. — Introduction. Vision development environment

HALCON defines the state of the art in machine onsisoftware. It provides an
extensive vision library. HALCON solves your taskfast and with highest accuracy.

Solving image processing tasks is just one paat @@mplete solution, which comprises
other software components like process controlabalthse access, and hardware components
from illumination to image acquisition devices amdny other mechanical components. The
image processing system is easy to use.

HALCON takes cares of all the important aspects:

* The software development is supported by theractive tool HDevelop, which
enables a quick development of image processings tasmbined with an easy
integration into standard development environméhkésMicrosoft Visual C++ via
the automatic code export.

* The problem-oriented documentation covers ellels from a quick access to
important information up to a detailed discussibadvanced topics.

* These descriptions are combined with hundredexamples for an intuitive
understanding of the solutions, which can servetessplates to shorten the
development time.

e Last but not least, HALCON provides open irdeds for efficient data exchange, to
integrate own operators, or to access specialiaetitare round off the system.

1.2. — Develop applications with HALCON

HALCON offers many ways for the application devetgmt. But to make full use of
the architecture the mode depicted in figure 1rec®@mmended.

1-Introduction to HALCON programming

g 5
HDevelop ; Visual Studio -g_ Application
= _ _;‘_ § 25 g =
= % z
= =
a— -_,.;_u_.__
Prototyping User Interface . |
Method Development Further Tools i HALGON Library |

Picture 1.1. Three-step approach for the applinadievelopment.

Image inspection, prototyping of the vision methadd the final development of the
vision method are done within HDevelop. Here, thegpam is structured into procedures in
which each procedure represents one sub taskinlikaization, processing, and cleanup. The
main program is used only as a test environmeaoaliche procedures by passing images and
receiving the results. This program is then exmbrte the language of the desired
programming environment.

The complete application is developed in a programgnenvironment like Microsoft
Visual Studio. The code from HDevelop is imported)., via an include statement. The user
interface and other necessary code is implemerded) the normal mechanisms offered by
the given language. Finally, the project is congpéad linked.

Together with the HALCON library, the generatedgreom represents the solution that
can, e.g., be loaded onto the destination machirsemt to a customer. An overview on the
philosophy of developing with HALCON can be seerfigure 1.1. The three-step approach
has several advantages:

- Whenever needed the vision part can easily be gmomor extended because
HDevelop offers much better inspection and debugyaeilities for image data
than the standard programming environments.

- A newly exported HDevelop program can be incorpatanto the programming
environment quite easily because the code is iecudand requires
modifications in the general code only if the pagtens have been changed or
new procedures have been introduced. This closesl¢helopment cycle in a
natural manner.

1-Introduction to HALCON programming

- Because the vision part is separated from the gemede it can easily be
executed in a standalone manner. Furthermorenibeagiven to others without
the need to pass the whole project. Especialljhéndase of support questions,
the HDevelop program with one or more images caicktube sent to the
distributor.

1.2.1. — Architecture and data Structures

HALCON's architecture, data structures, and intemmechanisms were developed
according to the philosophy that they should be:

1) Efficient. Efficient means that the execution time of eadhLBON operator should
be as short as possible. Furthermore, the opedatsign has been made such that
combinations that are standard sequences or mangler tasks must still remain
efficient.

2) Open. The open architecture is important in two respeirst, it must be possible to
make use of HALCON from many different languagesrd;l passing of external data
to HALCON and accessing internal data of HALCON tralso be supported. Finally,
there must be transparent interfaces to integrat¥-defined operators and non-
standard image acquisition devices. This open tciure allows, e.g., a simple
update to a new version of a frame grabber interf@ithout changing the installation
of HALCON.

3) Sandardized. Standardized means that the signatures, nammgigusage of operators
and data strict rules. This allows a quick learringhbined with few possible errors.

4) Self-describing. HALCON provides detailed information about eagei@tor and their
parameters not only in the documentation but atdme via specialized operators.

1.2.1.1.- HALCON operators

Whenever any kind of functionality is used from tH&LCON library, it is done via an
operator. The current version has more than 1106ese operators. Most of them comprise
multiple methods, which are selected via parametefsll list of all operators can be found
in the Reference Manuals or in the dialog Operatdgr$iDevelop. Important features of
operators are:

- There is no hierarchy among operators. From thievaoé architecture point of
view, all operators are on the same level.

1-Introduction to HALCON programming

1.21.2-

Images

Of course, there are logical groups of operatongs €an directly be seen by the
classes offered for C++ and COM, where operatooggssing the same data
type are used as members of the correspondingslass

Operators have standardized rules for orderingtiapd output parameters.

The design of operators follows the rules of theroprchitecture. Therefore,
you can create your own operators and thus extexidd®N, while getting the
same look-and-feel for your own operators.

Many operators can make transparent use of autorpatallelization, which
allows an easy way of speeding up the program wiséng large images on a
multi-CPU computer.

Parameters and Data Structures

HALCON has two basic types of parameters: iconitad@mages etc.) and
control data (integers, handles, etc.).

The parameters for each operator are arrangedsitaralardized order: input
iconic, output iconic, input control, and outputnt@l. Not all of the groups
might be needed for a given operator. Howeverptider remains the same.

Each operator has a self-describing interface. @b&iption contains, besides
the standard documentation, information about patera like types or value
lists, which can be accessed online.

Input parameters of operators are never modifiddchvresults in a very clear
and simple sementics. There are only three operdt@t do not follow this
principle to ensure maximum performance (namelygsayval, overpaint gray
and overpaint region).

The open architecture allows to access interna datl to integrate external
data.

All necessary data structures for 2D image proogssike (multichannel)
images, region, contours, tuples (a kind of arrag, are directly supported
using an extremely efficient implementation.

Images belong to the iconic data.

1-Introduction to HALCON programming

The major part of an image are the channels,matrices containing the gray values of
various pixel types.

For each image, the so-callddmain specifies which part of the image is processed. It
thus acts as egion of interest (ROI). The domain is a HALCON region and can therefbe
defined very flexibly (from a simple rectangle tget of unconnected pixels, see below).

Pixel data

An almost arbitrary content is possible, from s&nddB-bit gray values to floating-point
numbers describing derivatives. For integer values, two, and four byte versions (with and
without sign) are available. Besides this, floatimgnt and complex images are available.
Finally, special data types for describing edgedation or hue values are supported.

Image Channels

A channel corresponds to an image matrix. Each éntagm have an arbitrary number of
channels. All channels of an image have the sapge Siypical cases are: single-channel gray
value image, color image with three channels (&&B), or a multichannel image from a
multispectral sensor or as a result of texturerifiy.

Coordinate Systems

The origin of an image is the upper left cornettmabordinates (0,0). The single pixels
are accessed using row and column coordinatesinikematrix. The coordinates range from
(0,0) up to (height-1, width-1). A pixel has anenttof 1, whereas the center of gravity of the
first pixel of an image is (0,0). This has the effthat this pixel ranges from (-0.5, -0,5) to
(0.5,0.5).

Regions
- Regions belong to the iconic data.

- A region is defined as a set of pixels, which apé mecessarily limited to the
coordinate range of a given image.

- The pixels of a region are not necessarily conmeci@is means that even an
arbitrary collection of pixels can be handled as aegion. If connected
components as separate regions are needed, thatapeonnection can be
called.

- Because the coordinates of pixels inside a regimn reot limited to the
coordinates of a given image, the region can kgetathan the image, possibly
as the result of a dilation operation. Whethergiore should be clipped to the

1-Introduction to HALCON programming

XLDs

maximum image extents can be controlled using gezador set system with the
parameter value 'clip region'.

The implementation of regions is based on an efficimplementation of the
runlength encoding. This encoding facilitates lovemory consumption with

efficient processing and easy use as regions efast (domains).

Because of the implementation based on runlengtiodéng, it is possible to
have overlapping regions, e.g., as the result oflilation of connected
components. This would not be possible with a atatgmplemention based on
label images.

The number of regions for an application is virtyainlimited.

XLDs belong to the iconic data.

XLD is the abbreviation for eXtended Line Desciyptiand comprises all
contour and polygon based data.

Subpixel accurate operators like edges sub pixméhe contours as XLD data.
A contour is a sequence of 2D control points, wlaitdh connected by lines.
Typically, the distance between control pointshiewt one pixel.

XLD objects contain, besides the control points;called local and global
attributes. Typical examples for these are, elg,edge amplitude of a control
point or the regression parameters of a contounsag

Besides the extraction of XLD objects, HALCON sugpdurther processing.

Examples for this are the selection of contourgtam given feature ranges or
segmenting of a contour into lines, arcs, polygamgarallels.

Control Tuples

Tuples are the generic data type for integer amatkifig point values as well as
strings. A variable of type tuple can be of anyiaf three basic types.

Besides single values, arrays of the basic typessapported. Therefore, one
variable can contain none, one, or an arbitrarylmemof values, where the types
of each element can be different.

1-Introduction to HALCON programming

- In most cases, single values are treated in the saay as multiple values. If,
e.g., a feature operator is called with a singlgio® one feature value is
returned. When the operator is called with multipdgions a tuple with the
corresponding number of values is returned.

- The index of tuples range from 0 to the numberabdfi®s minus 1.
Handles

- Handles are references to complex data structergs, models for the shape-
based matching. For efficiency and data securdagaas, not the entire structure
but only the handle is passed to the programmer.

- All processing of data is controlled with a unigageger value. These integers
are magic numbers that must not be changed andlitfan from execution to
execution and version to version.

- Examples where handles are used are graphics wsddes, sockets, image
acquisition devices, OCR, OCV, measuring, matchamgl so on.

1.2.2. — Image acquisition

Currently, HALCON provides interfaces about 40 feargrabbers in the form of
dynamically loadable libraries (Windows: DLLs; UNIXhared libraries). These libraries are
installed together with the HALCON libraries. Lilboyanames start with the prefix HFG; the
libraries starting with parHFG are used by PardlaLCON.

The HALCON frame grabber interface libraries forhe tbridge between software
provided by the frame grabber’'s manufacturer and.&@N. They form a common, generic
interface that requires a small set of operatohg.on

If you successfully installed your frame grabbdl,yau need to do to access it from
HALCON is to call the operator open framegrabbpec#fying the name of the frame grabber
and some additional information, e.g., regardirg ¢bnnected camera. Then, images can be
grabbed by calling the operator grab image (or grage async).

1.3. — HDevelop

HDevelop is a powerful environment for both proftg and method development.
To use HDevelop you need to know just a few thiAgsload an example, select the menu
File > Open. This will open a file section dialog that wisothe main directories of the

-9-

1-Introduction to HALCON programming

HDevelop examples underWindows). For beginners, iecommended to select an example
from the directory Applications. As an alternatitlee menu File Open Example Program...
can be used. Here, a dialog that allows you tocsebeamples based on different categories
instead of the actual location is opened.

After loading the file, the corresponding prograode is displayed in the program
window. The used variables - so far not instantiatecan be seen in the variable watch
window. The program is now ready for execution.

Steps to run a program:

1. Press the Run button to execute the program. Tantenat a stop statement, press
Run again.

2. Besides the Run button, HDevelop provides a Stdpomuwhich executes only a
single line and displays the results immediatetgrafards. If the program contains
procedures, it might be of interest to use thedmgtiStep Into and Step Out.

3. To rerun the complete program the Reset buttonbsamnised. To rerun parts only,
simply click with the mouse to the left of the desi program line. This will reposition
the program counter. When executing the progranwvaneill then start at the newly
selected position.

Useful hints for HDevelop:

1. At the lower end of the main window, HDevelop pars a status bar. This displays
useful information in many cases. Especially dutimg execution, when the program
stops to visualize results or waits for a userratgon corresponding instructions are
given.

2. Many programs will automatically display relevardata in the graphics window.
Manual visualization can easily be achieved by tmwilicking on the icons in the
variable watch window.

3. Depending on the selected installation type, nétirahges used in an example
program might be available. In this case, we recemued to insert the HALCON CD
or to install the needed images.

4. Some programs use frame grabbers for image adquisit the corresponding frame
grabber type is not available, an error messagé bel raised. In this case, we
recommend to either use another example or to mdadé parameters to fit to the
available hardware. Furthermore, if HDevelop Dersoused, no frame grabber
interfaces can be used, including the File frameblger, which reads images from
files. If you want to use these programs, pleaseHBevelop.

-10 -

1-Introduction to HALCON programming

1.4. — Using HALCON within Programming languages

HALCON offers three so-called language interfaddsey are libraries that enable you
to call the operators and to use the data typeeeoHALCON library in an easy way. Two
language interfaces are designed for specific laggs. These are the C and the C++
interfaces. In contrast, the COM interface is iretegent of a given language. It can be used,
e.g., with Visual Basic, C#, or Delphi.

Independent of which programming language you oboassuitable interface library
(HALCONCc.*, HALCONCcpp.*, HALCONXx.*) together with e HALCON library
(HALCON.*) must be linked to the application. In ditlon to this, for C and C++ the
corresponding include files must be included.

For each language interface, the names of typasses$, the naming conventions of
operators, etc. may differ to be compliant with tigpical rules that apply for the selected
language.

1.5. — Examples and applications

In order to explain the knowledge about the HALC@iMgramming during the first
three weeks, subsequently there are series ofssippograms as a prelude to the final
program, used in the robot implementation.

First of these, it is necessary to acquire imagesugh the camera by the following
program:

** Image Acquisition **

kkkkkkkkkhkkkkkkkkkkkkkkkhkikk

dev_close_window ()

close_all_framegrabbers ()

dev_open_window (0, 0, 640, 480, 'black’, WindowHandle)

open_framegrabber (‘'DirectShow', 1, 1, 0, 0, 0, 0, 'default', 8, 'rgb’, -1, 'false’, 'default’, ‘default’,
0, -1, AcqHandle)

grab_image_start (AcqHandle, -1)

*

while (true)
count_seconds (T1)
grab_image_async (Image, AcqHandle, -1)

* Do something
count_seconds (T2)
Result := 1/(T2-T1)

endwhile
close_framegrabber (AcqHandle)

-11 -

1-Introduction to HALCON programming

The following program looks for a transistor betweay electronic devices, it makes a
distinction between these and it marks only thagistor. It can be seen in the picture below
(Picture 1.2.):

** |_ooking for a transistor **

kkkkhkkkkkkhkkkkhkkkkhkkkhkhkkkhkhkkkkhk

dev_close_window ()

close_all_framegrabbers ()

dev_open_window (0, 0, 640, 480, 'black’, WindowHandle)

open_framegrabber ('DirectShow', 1, 1, 0, 0, 0, O, 'default’, 8, 'rgb’, -1, 'false’, 'default’, 'default’,
0, -1, AcqHandle)

grab_image_start (AcqHandle, -1)

dev_update_window (‘off")
while (true)

count_seconds (T1)

grab_image_async (Image, AcqHandle, -1)
count_seconds (T2)

Result := 1/(T2-T1)

rgbl _to gray (Image, Graylmage)

decompose3 (Image, 1, g, b)

threshold (r, Region, 0, 25)

connection (Region, ConnectedRegions)

select_shape (ConnectedRegions, SelectedRegions, ['area’,'compactness’], 'and’, [3000,1],
[4000,2))

shape_trans (SelectedRegions, RegionTrans, 'rectangle2’)
boundary (RegionTrans, RegionBorder, 'inner')
dev_set_color ('red’)

dev_set_line_width (2)

dev_set_draw (‘margin’)

dev_display (Image)

dev_display (RegionBorder)

endwhile
close_framegrabber (AcqHandle)

Picture 1.2. Looking for the transistor.

-12 -

1-Introduction to HALCON programming

In the following program, HALCON detects if thegion of the reluctance (circular
device) is correct. While the reluctance is on tbpnarks with a green square. When it is
bottom or sideway, it shows up a message “Wrongiposf the reluctance”:

** Detecting the position of the reluctance **

R e s g e e g e e e e e e e e T R e e T e e S S T R e T e T e e e e e e e e

dev_close_window ()

close_all_framegrabbers ()

dev_open_window (0, 0, 640, 480, 'black’, WindowHandle)

open_framegrabber (‘DirectShow', 1, 1, 0, 0, 0, 0, 'default’, 8, 'rgb’, -1, 'false’, 'default’, 'default’,
0, -1, AcqHandle)

grab_image_start (AcqHandle, -1)

*

dev_update_window ('off")
while (true)

count_seconds (T1)

grab_image_async (Image, AcqHandle, -1)
count_seconds (T2)

Result := 1/(T2-T1)

dev_set color (‘green’)

dev_set draw (‘margin’)

dev_set_line_width (2)

rgbl_to_gray (Image, Graylmage)

decompose3 (Image, r, g, b)

threshold (g, Region, 0, 53)

connection (Region, ConnectedRegions)

select_shape (ConnectedRegions, SelectedRegions, ['area’,'roundness’, ‘and’, [3000,0.65],
[4250,0.75])

shape_trans (SelectedRegions, RegionTrans, 'rectangle2’)
boundary (RegionTrans, RegionBorder, 'inner')
area_center (RegionTrans, Area, Row, Column)
dev_display (Image)

if (Area>0)
dev_display (RegionBorder)
else
set_tposition (WindowHandle, 30, 100)
set_font (WindowHandle, '-Arial-18-*-*-*-*-1-")
dev_set_color (‘yellow')
write_string (WindowHandle, "Wrong position of the resistance")
endif
stop ()

endwhile

close_framegrabber (AcqHandle)

-13-

1-Introduction to HALCON programming

Wrong position of the resistance

Picture 1.3.Position of the reluctance.

The third program extracts the outline of a singbdor object. For example, in the
Picture 1.4, HALCON draws the outline of a passport

** Drawing edges **

kkkkkkkkkkkkkkkkkkkkkkkk

dev_close_window ()

close_all_framegrabbers ()

dev_open_window (0, 0, 640, 480, 'black’, WindowHandle)

open_framegrabber (‘DirectShow', 1, 1, 0, 0, 0, O, 'default’, 8, 'rgb’, -1, 'false’, 'default’, ‘default’,
0, -1, AcqHandle)

grab_image_start (AcqHandle, -1)

while (true)

count_seconds (T1)

grab_image_async (Image, AcqHandle, -1)
count_seconds (T2)

Result := 1/(T2-T1)

threshold (Image, Region, 0, 70)

connection (Region, ConnectedRegions)

boundary (ConnectedRegions, RegionBorder, 'inner")
dilation_rectanglel (RegionBorder, RegionDilation, 10, 10)
unionl (RegionDilation, RegionUnion)

dev_display (Image)

dev_set_color (‘green’)

dev_set line_width (3)

dev_set_draw (‘margin’)

reduce_domain (Image, RegionUnion, ImageReduced)
edges_sub_pix (ImageReduced, Edges, 'lanser2’, 0.5, 20, 40)
stop ()

endwhile

close_framegrabber (AcqHandle)

-14 -

1-Introduction to HALCON programming

Picture 1.4.Drawing edges

-15 -

2- KUKA robot. Overwiew and programming over KCP

CHAPTER 2

KUKA Robot. Overview and programming over KCP

2.1. — Robot Description. KUKA KR3

The KR3 robot and its variants are six-axis indaktobots designed for light payload
applications that require articulated motion in tloeizontal and vertical planes.

Their main areas of application are:

- Machine loading and parts handling

- Laboratory automation

- Product testing

- Assembly

- Adhesive application

- Training

- Arc welding

- Machining task, such as grinding, polishing aetuiring

Designed for a nominal 3 Kg payload, the KR 3 pidegi a powerful combination of
high-speed flexible automation, reliability and @&d-use. The robot can be mounted upright
or inverted, and is sealed to IP54, allowing fevide range of possible uses.

The brushless servomotors and high-stiffness haioranives used in the KR3 design
make it one of the fastest and most durable roloits class. Absolute encoders built into
each joint allow the KR 3 to retain positional infation, making it possible to turn on the
robot and be ready to go in mere seconds. Arm ipaspgarameters can be maintained in
memory for up to 2 months, even when the robotcmdroller are disconnected.

A fully integrated servo control network locatedthim the robot makes the KR 3
virtually immune to interference from external ¢temagnetic radiation. This internal design
also allows for a smaller controller, and reducks tomplexity of umbilical cable
management.

-16 -

2- KUKA robot. Overwiew and programming over KCP

Arm
Schwinge
Grundgestel
Karuzszel
Hand

O G0 P —

2.1. Principal components of the robot

Robot design

The ISO-standard mounting flange on the wrist al@wvide range of end effectors to
be used with the KR 3. The possible movementsefabot axes are depicted in Figure 2.2

2.2. Rotational axes and directions of rotation
The working range of the robot can be limited byansof software limit switches on

all axes. The working ranges of the main jointsraezhanically limited by hardstops, which
can be pre-adjusted at the factory.

-17 -

2- KUKA robot. Overwiew and programming over KCP

2.2. — Technical data

Number of axes

Weight

Mpunting position

Nominal payload

Reach
Repeatability
Encoder rezolution

Drive system

Tranzmizsion

Brakes

Motion modes

End-of-arm
connections

Energy supply

53 kg,

KR 3 Sl 24 kg

Upright or inverted

3 kg
KR 2 5l 1.5 kg
535 mm
+=0.05 mm

2048 counts per turn

Electromechanical,
brushless motors

Absolute encoders in
each joint
Harmonic Drive

Brakes on joints 1, 2,
3. and 5

Teach
Automatic

1SO2403-compliant
tool flange

Support for pneumatic
tools

Up to 4 electrically
isolated digital inputs
and outputs on axis 5

Axiz data
Axis Hange of motion Maximum speed
1 + 180° 240 °/s
2 -135° to +45° 210 /s
3 + 135° 240 °/s
4 + 180° 375 %/
] + 135° 300 °/s
6 continuous turn’ 375 °fs

-18 -

2- KUKA robot. Overwiew and programming over KCP

User inputs

4 floating digital inputs with reverse wvoltage
protection

Input voltage: 16Vio 30V
Input current at 24 V- approx. 8 mA
Coincidence factor. 100%

Filter constant: 1-2ms

Uzer outputs
4 floating digital inputs

Control voltage: 16Vto 30V
Voltage drop in ON

state (100 mA): =2V

Rated load: 100 mA
Coincidence factor: 100%

Load factor: 100%

Leakage current in OFF state: < 10 pA

Switching of inductive loads is permissible with
the use of free-wheeling diodes or other voltage-
limiting components (VCH).

Output protection through electronic and thermal
protection in case of short circuits; outputs re-
verse voltage proof up to 30 V.

75 | 270 129

—l
' 0
| :
1 d
' G
7 |l
| 3
4]

217

|
]
1
h

138 188

2.3. Critical dimensions KR 3 (mm)

-19 -

2- KUKA robot. Overwiew and programming over KCP

485

2.4. Working envelope for KR3 (mm)

2.3. — Quick description of the robot system

A KUKA robot system is made up of the following cpoments and is depicted in the
picture 2.5:

- Robot (1)

- Robot controller (3)

- KCP teach pendant (4)
- Connecting cables (2)
- Software

- Accessories

-20 -

2- KUKA robot. Overwiew and programming over KCP

Picture 2.5. KUKA robot system

2.3.1. — KCP teach pendant

The KUKA Control Panel is the teach pendant forrtheot system. The KCP has all
the functions required for operating and prograngmire robot system.

Picture 2.6. KCP

1. Mode selector switch. The operating mode is selected using the modetselswitch
on the KCP. The switch is activated by means oéywhich can be removed. If the
key is removed, the switch is locked and the opsyatmode can no longer be
changed.

2. Drives On. Switches the robot drives on.

3. Drives Off. Switches the robot drives off.

-21 -

2- KUKA robot. Overwiew and programming over KCP

4. Emergency Sop button.
5. Space Mouse. Jogs the robot.

6. Right-hand status keys. The status keys are used primarily for controlling robot and
setting values.

7. Enter key. The enter key is used to close an active windowmlore form. Changes are
saved.

8. Arrow keys. The arrow keys are used to jump from element tanetd in the user
interface.

9. Keypad.
10.Numeric keypad.
11. Softkeys. The icons change dynamically and always refer ecatttive window.

12.Sart backwards key. The start backwards key is used to start a prodgrackwards.
The program is executed step by step.

13.Sart key. The start key is used to start a program.
14.Sop key. The stop key is used to stop a program that isingnn

15.Window selection key. The window selection key is used to toggle betwienmain,
option and message windows. The selected windandisated by a blue background.

16.Esc key. The esc key is used to abort an action on theinteface.

17.Left-hand status key. The status keys are used for controlling the progexecution
and the robot movements.

18.Menu keys. The menu keys are used to open the menus.

The rear of KCP presents the disposition showrigtuRe 2.7 (next page)
1. Rating plate.

2. Sart key. The start key is used to start a program.

-22 -

2- KUKA robot. Overwiew and programming over KCP

T]
UL

Picture 2.7. Rear of KCP.
3. Enabling switch (buttons 3, 4, 5) The enabling switches have 3 positions:

- Not pressed
- Center position
- Panic position

The enabling switch must be held in the centertjrsin operating modes T1 and
T2 in order to be able to jog the robot. In the rapjeg modes Automatic and
Automatic External, the enabling switch has no fiomc

2.3.2. — Operating modes

The operating mode is selected using the modetselgwitch on the KCP. The switch
is activated by means of a key which can be remoletie key is removed, the switch is
locked and the operating mode can no longer begatan

Picture 2.8. Modes in KCP

1. Test2(T2)

2. Automatic (AUT). For robot system without higher-level controlledsly possible
with a connected safety circuit.

-23 -

2- KUKA robot. Overwiew and programming over KCP

3. Automatic External (AUT EXT). For robot system with higher-level controller,.e.g
PLC. Only possible with a connected safety circuit.

4. Test1(T1)

2.3.3. — Changing user group

Different functions are available in the KSS, depprg on the user group. The
following user groups are available:

- User. User group for the operator

- Expert. User group for the programmer. In this ugeup it is possible to switch
to the Windows interface.

- Administrator. The range of functions is the sarsetlat for the user group
"Expert". It is additionally possible, in this usgmoup, to integrate plug-ins into
the robot controller.

When the system is booted, the user group "Useseiscted by default. The user
groups "Expert" and "Administrator” are passwordtpcted.

2.2.4. — Coordinate system

The following Cartesian coordinate systems arengelfin the robot system:

WORLD

The World coordinate system is a permanently ddfi@artesian coordinate system. It
is the root coordinate system for the Robroot amdeBcoordinate systems. By default, the
World coordinate system is located at the roboebas

ROBROOT

The Robroot coordinate system is a Cartesian coateli system, which is always
located at the robot base. It defines the posiibtine robot relative to the World coordinate
system. By default, the Robroot coordinate systemdentical to the World coordinate
system. $Robroot allows the definition of an offsdt the robot relative to the World
coordinate system.

BASE

The Base coordinate system is a Cartesian cooedgyatem that defines the position of
the workpiece. It is relative to the World coordmaystem. By default, the Base coordinate
system is identical to the World coordinate systkns. offset to the workpiece by the user.

=24 -

2- KUKA robot. Overwiew and programming over KCP

2.2.5. — Tool calibration

During tool calibration, the user assigns a Caatescoordinate system (TOOL
coordinate system) to the tool mounted on the mogrilange. The TOOL coordinate system
has its origin at a user-defined point. This ideththe TCP (Tool Center Point). The TCP is
generally situated at the working point of the tool

Advantages of the tool calibration:

- The tool can be moved in a straight line in th@ direction.

- The tool can be rotated about the TCP withouhghmay the position of the TCP.

- In program mode: The programmed velocity is naiegd at the TCP along the path.
A maximum of 16 TOOL coordinate systems can bedavariable:
TOOL_DATA[1...16].

The following data are saved:

e XY, Z
Origin of the TOOL coordinate system relative t@ tALANGE coordinate
system.

« AB,C:

Orientation of the TOOL coordinate system relatit@ the FLANGE
coordinate system

Tool calibration consists of 2 steps:

1. Definition of the origin of the Tool coordinate system. The following methods
are available:

TCP calibration: XYZ 4-Point method

The TCP of the tool to be calibrated is moved toeference point from 4
different directions. The reference point can beely selected. The robot
controller calculates the TCP from the differeantje positions.

TCP calibration: XYZ Reference method

In the case of the XYZ Reference method, a new i®ahlibrated with a tool
that has already been calibrated. The robot cdetralompares the flange
positions and calculates the TCP of the new tool.

2. Definition of the orientation of the Tool coordinate system. The following
methods are available

-25 -

2- KUKA robot. Overwiew and programming over KCP

Defining the orientation: ABC World method

The axes of the TOOL coordinate system are aligragdllel to the axes of the
WORLD coordinate system. This communicates thentmieon of the TOOL
coordinate system to the robot controller.

Defining the orientation: ABC 2-Point method

The axes of the TOOL coordinate system are comratetcto the robot
controller by moving to a point on the X axis angaant in the XY plane.

This method is used if it is necessary to defireedhis directions with particular
precision.

The tool data can be entered manually.
Possible sources of data:

- CAD

- Externally calibrated tool

Tool manufacturer specifications

2.2.6. — Structure of a KRL program (KUKA Robot Lan guage)

The picture below shows the structure of a KUKA Biobanguage program:

1 DEF my program|]
! IHI

4 FTP HOME “al= 100 & DEFAULT

8 LIN polnt 5 CONT Val= 2 m/s CFOATL Tool[2] Hase[4)
14 FTF polint 1 CONT Val= 100 % POAT] Tool|3] Baas(4)
20 FTP HOME “al= 1] &% DEFAULT

21
12 END

Picture 2.9. KRL program

1. Def line. The Def line indicates the name of the prograimthé program is a
function, the Def line begins with ‘Deffct’ and dams additional information.

2. Ini line. The Ini line contains initializations for intednzariables and parameters.
This line mustn’t be deleted.

4. Home position. The Home position is not program-specific. lgenerally used as
the first and last position in the program as insquely defined and uncritical. The
Home position is stored by default in the robottoalker.

22.End line. The End line is the last line in any program. ¥ tbrogram is a function,
the wording of the End line is ‘Endfct’.

-26 -

2- KUKA robot. Overwiew and programming over KCP

2.2.7. — Programming motions
PTP motion

The robot guides the TCP along the fastest patin@éoend point. The fastest path is
generally not the shortest path and is thus naiagght line. As the motions of the robot axes
are rotational, curved paths can be executed fésaer straight paths. The exact path of the
motion cannot be predicted.

Picture 2.10. PTP motion

LIN motion

The robot guides the TCP at a defined velocity @lithe shortest path to the end point.
The shortest path is always a straight line.

Picture 2.11. LIN motion

-27 -

2- KUKA robot. Overwiew and programming over KCP

CIRC motion

The robot guides the TCP at a defined velocity glawrircular path to the end point.
The circular path is defined by a start point, &axy point and end point.

Picture 2.12. CIRC motion

2.2.7.1.- Inline form for motions

MW =1[P1 [conT =] vel=[2 mis[cPDaTT
Picture 2.13. Inline form for LIN motions

1. Type of motion (PTP, LIN, CIRC)

2. Name of the end point. The system automaticallyeggies a name. The name can be
overwritten.

3. CONT: end point is approximated; [blank]: the matgiops exactly at the end point
4. Velocity (0.001... 2 m/s)

5. Name for the motion data set. The system autoniigtiganerates a name. The name
can be overwritten.

If is chosen a CIRC motion additionally appearstheoauxiliary point what defines
the coordinates of the auxiliary point to descidleecircle.

-28 -

2- KUKA robot. Overwiew and programming over KCP

Option window “Frames”

Frames 11

~Tool

[[2] Werkzeug 1 L] _®

Dase

[[2] Basis 2 1—C

~ExternalTCP

T - ()

Picture 2.14. Frames

1. Tool selection. Range of values [1-16]
2. Base selection. Range of values [1-32]
3. External TCP. False: Tool on mounting flange

True: Fixed tool

Option window “Motion parameter” (in PTP motions)

Motion parameter 11

Acceleration
100 Yo
w0
(ammn L
Approximation distance
fi0 m
o = @
(AN RN EA R RRRFRNA AR RRRRNRNR

Picture 2.15. Motion parameter

1. Acceleration. Refers to the maximum value speciiietthe machine data [1-100%)]

2. Furthest distance before the end point at whichreedmate positioning can being.
This box is only displayed if CONT has been seléatethe inline form [0-100%]

In CIRC and LIN motions the orientation of a toaincbe different at the start point
and end point of a motion. It can be selected mew option called “Orientated Control
Selection”. There are several different types ahsition from the start orientation to the end
orientation. Three options are available: Standandst PTP and Constant.

-29 -

2- KUKA robot. Overwiew and programming over KCP

2.4. — Initial programs

The programs below show the structure of an easgram using point to point motion,
circular, linear and some coordinates given byuber to move the robot some distances in
millimeters (Picture 2.17).

File tomitor Setup Commands Technology Help

Program

Configure

1003

42 AM 1356

A 1356

KCP
KCP

7
KR.C: iR 1Y PROGRAMITEST SRC Ln 5, Col0
El Tirme | na. | Source | Meszage | 7
ﬂ 10:26:35 Ak 200 kS Dinves contactor off _‘O’_

Start key required

Start key required

Num | Cop [[S/[M[R]

[][T1][Pov 100% || ACRO_R1|[10:32.8M| <.
e Metian Lack Last Crnd Oose | NAVIGATOR |
Picture 2.16. First program
File: Fragrarn Configure Mitikar Setup Commands Technaology Help

100%
@: -

24M 1356

KCF

Start key required

7
[kRC AR LPROGRAMIBASE . SRC Ln 1, Col 0 (@ |
- E| Time | ho. | Source | Message | 7
€ 0k3msM 200 KS Drives contactar off .‘O’.

[[1P=1][11| POV 100% || ACRD_R1|[10:27 AM|

Nom [2o][7] BASE
I I

Oose | MAVIGATOR |

Picture 2.17. Second program

-30 -

2- KUKA robot. Overwiew and programming over KCP

Picture 2.18. Third program

-31 -

3-Manufacturing the surface of work

CHAPTER 3

Manufacturing the surface of work

3.1. — Surface work and possible alternatives

The robot has its own support but it needs an madit surface to work, where are
situated the conveyor, the camera, etc. This iresbhinking about different ways to get the
best solution.

Firstly was chosen a metal plate fixed on the lodiske robot. But it wasn’t a good idea
because the robot could produce movements on tite, gt could make errors while the
camera is grabbing images and even it would benatahle structure.

Afterwards was decided that the best choice wadetign a table, more stable and
robust than previous plate. To design this, atidginning it was necessary to take measures
about the maximum length that the robot can rearhng the movements. The work surface
will be on the same level as the robot base. Take account that the working envelope
measures displayed in the previous chapter (PicRde, the required table needs the
following dimensions:

- Length: 1220 mm
- Width: 780 mm
- Height: 865 mm

The next step is to check if there are enough nadgewhich are necessary to make the

table (1220 x 780) in the workplace.

3.2. — Features and reasons

Looking at the robot scope, it is common to thin&ttthe table is enough to implement
the process (too big), but it's thought to hold theo future process.

-32 -

3-Manufacturing the surface of work

The color of the table is white to help and simpliie images later collected through
the camera. In this way Halcon programming is neffeeient and it reduces the mistakes.
The steel structure of the table is colored browvodnserve the esthetic form of the remaining
tables inside the department.

The table legs are adjustable in height to alldimeregulation.

3.3. — Camera support

The camera presents a new problem. The best positiplace it is above the robot in
the central part of the table, but it has to keepréain distance to not crash the robot while it
IS moving.

In consequence of this, the camera support hassrajpe to avoid a collision with the

robot. By tudying the robot movements and by cosrand) the security distances, the final
shape of the support is obtained.

3.4. — Plans

The following pages show the plans made in AUTOCDorder to know how the
layout of the project is going to be and to knoe thal measures of the elements.

-33-

3-Manufacturing the surface of work

[
A 2 A
‘5 i
T \;f&’ <
u i

p=)

General plan

-34 -

3-Manufacturing the surface of work

23

Nl

59

=11}

93

23

Camera Support

3-Manufacturing the surface of work

1220

385

BT

-

Work table

- 36 -

4- Visual Basic programming

CHAPTER 4

Visual Basic programming

4.1. — A brief description of Visual Basic

Visual Basic is a high level programming languagehed from the earlier DOS
version called Basic. Basic means Beginners' Atppse Symbolic instruction Code. It is a
fairly easy programming language to learn. The sold®k a bit like English Language.
Different software companies produced differentsiar of Basic, such as Microsoft QBasic,
QuickBasic, GWBasic and so on.

Visual Basic is a visual and events driven Programgnhanguage. These are the main
divergence from the old Basic. In Basic, prograngri;idone in a text-only environment and
the program is executed sequentially. In Visuali@gsrogramming is done in a graphical
environment. Because users may click on a certgj@corandomly, so each object has to be
programmed independently to be able to respongtidse actions (events). Therefore, a
Visual Basic Program is made up of many subprograash has its own program codes, and
each can be executed independently and at the thameach can be linked together in one
way or another.

You can choose to start a new project, open arirexiproject or select a list of recently
opened programs. A project is a collection of fillkat make up your application. There are
various types of applications we could create; harewe shall concentrate on creating
Standard EXE programs (EXE means executable prggram

The Visual Basic Environment consists of the:

« A Blank Form for you to design your applicatiomgerface.

« The Project window which displays the files that areated in your application.

- The Properties window which displays the properiésvarious controls and
objects that are created in your applications.

-37-

4- Visual Basic programming

It also includes a Toolbox that consists of all thatrols essential for developing a VB
Application. Controls are tools such as text banmand button, label, combo box, picture
box, image box, timer and other objects that cadrbgged and drawn on a form to perform
certain tasks according to the events associatédtiaeam. Additional objects can be added by
clicking on the project item on the menu and cbickcomponents on the drop-down list.

4.2. — Drawing the user interface
There are three primary steps involved in buildangisual Basic application:

1. Draw the user interface
2. Assign properties to controls
3. Attach code to controls

Visual Basic operatesin three modes

= Design mode - used to build application
= Run mode - used to run the application
= Break mode - application halted and debuggeradate

Six windows appear when you start Visual Basic

The Main Window consists of the title bar, menu, laaud toolbar. The title bar indicates
the project name, the current Visual Basic opegatode, and the current form. The menu
bar has dropdown menus from which you control thperation of the Visual Basic
environment. The toolbar has buttons that provid®tsuts to some of the menu options. The
main window also shows the location of the curifentn relative to the upper left corner of
the screen and the width and length of the cufioant.

Projecil - FErosalt Visusl Baske |&Seigs)
Eis Edd Rswr Propc Fgoat [ibog Bon hery Diagar Tocls Adddne Teedaw Hadp

‘A PER BN] WTRYRAY Dy am
T ‘1| | \'l Code Editar / f Ilr Py [Form position |
. | \

\ \| Object
Ly a
II IR Run || stes | | | =rowser ‘\\ Farm
Lo

! || tenu) I"'L Fause || project i| Fomm
| {1 editor b s Exolorer ||l Lavout || Toolbox
| [Save -

e e

|| farm | Open

project

-

Add
projec

Picture 4.1. Title bar, menu bar and toolbar

The Form Window is central to developing Visual Baapplications. It is where you
draw your application.

-38 -

4- Visual Basic programming

& Fasmnl HI?I E]

Picture 4.2. Form window

The Toolbox is the selection menu for controls usegbur application.

General
Pointer | & B | Ficture Box
Label /A [@] | Text Box

Frame | =1 [Command Bution
Check Box M & Option Button
Combo Box E] BB | List Box

Horizontal Scroll Ae i Vertical Scroll Bar
Timer &1 &5 | Crive List Box
Directory List Box 1 [= File List Box
Shapes B ™ Lines
image Box [@] B | pata Tool

Object Linking |5l

Picture 4.3. Toolbox

The Form Layout Window shows where (upon programcaton) your form will be
displayed relative to your monitor’s screen:

N = Form Laymut Hm ﬂ

.|

Picture 4.4. Form layout window

The Properties Window is used to establish infiralperty values for objects. The drop-
down box at the top of the window lists all objeatsthe current form. Two views are
available: Alphabetic and Categorized. Under thog lbre the available properties for the
currently selected object.

-39 -

4- Visual Basic programming

L

Foemil Form
Aiphshntic | Categorized I
Farmi

|

: -

Picture 4.5. Properties window

The Project Window displays a list of all forms amibdules making up your
application. You can also obtain a view of the FaanCode windows (window containing
the actual Basic coding) from the Project window.

Froject-Froiectt &
= £
[F] yl_:-mje:ti {Projectl)

=149 Formz

= R

Picture 4.6. Project window

4.3. — Learning to program in Visual Basic

In order to make a program that contains the pséatowed by the robot over the
camera, the first step is to start programming s@mgple programs and then, with the
knowledge acquired, make the last application @agfor the project.

In this way, the programs made during the periodeafning to program in Visual
Basic are attached in the Appendix 1 (the windoagpmm and the code of each one).

- 40 -

5-Motor-PLC connection via PFOFIBUS

CHAPTER 5

Motor-PLC connection via PROFIBUS

5.1. — Components and connection cables

The goal of the project includes a conveyor whiabves one object on the table. The
conveyor needs a step motor to run. The power teentize conveyor is supplied by a motor
of the MAC's family, specifically the motor MAC95F4 (datasheet in the Appendix 4).

The motor has a PROFIBUS connection and it requar@4.C to be commanded. The
PLC is from Siemens, specifically from the family-S00 (S7 CPU 314-6CG03-0ABO0).

The motor has two connections; one is the powautiapd the other is the PROFIBUS
connector. The power is provided by a power supgiich supplies the necessary voltage to
the motor (between 12 and 48 VDC). The maximumagdtin the power supply is 30 V
which is used.

The pin connections are detailed in the picturdsvine

Expansion module MAC00-FP4 front plate

BUS1 PWR
Primary Profibus-DP Power
connector. MI12 - 5pin male

M12 - 5pin male connector including:

connector including: P+, P- and secondary

Profibus-DP interface supply (optional).
/0

BUS2

Secondary Profibus-DP
connector:

MI2 - 5pin female
connector including:
Profibus-DP interface

M12 - 8pin female
connector including:
RS232 Interface
Selectable 1/O’s such
as analogue input, O,

02, INI. NL, PL.

TTIMACR

Picture 5.1. MACOO FP4 connectors

-41 -

5-Motor-PLC connection via PFOFIBUS

“PWR” - Power input. M12 - 5-pin male connector

JVL Cable

WI1000M12 | Isolation
Signal name | Description Pin no. FSA05N group
P+ Main supply +12-48VDC. Connectwithpin2* | 1 Brown 1
P+ Main supply +12-48VDC. Connectwithpin1* | 2 White 1
P- Main supply ground. Connect with pin 5 * 3 Blue 1
Cv Control voltage +12-48VDC. 4 Black 1
P- Main supply ground. Connect with pin 3 * 5 Gray 1

* Mote: P+ and P- are each available at 2 terminals. Make sure that both terminals are connected in order
to split the supply current in 2 terminals and thereby avoid an overload of the connector.

“BUS1” - Profibus-DP interface. M12 - 5-pin male connector

Cable: user | Isolation
Signal name | Description Pin no. supplied group
- Reserved for future purpose - do not connect | 1 - 2
A Terminal A {Siemens syntax) for the Profibus-DP 2 2
- interface -
DGND Profibus-DP interface ground 3 - 2
Terminal A (Siemens syntax) for the Profibus-DP _
B+ interface 4 2
SHIELD Cable shield. Internally conn. to the motor housing. 5 - 2

Table 5.1. Detailed pin connections

5.2. — PROFIBUS network configuration

The PROFIBUS network configuration is used to camrthe motor (slave) and the
PLC (master) by the program of Siemens, Simatip 3tdeach step is detailed below:

2 srme omoger —— R Il

File PLC View Options Window Help

Dl B2l B &l v

New Project x|

User projects | Libraris | iulipeoiects |

ame | Storage path |

E: C:\Program Files\Siemens\Stepris7i_
B burke C:\Program Files\Sismens\Step7ys7
B Cel3davidsteven C:\Piogram Files\Siemens\Step7i57
2P Confiuratie CPIN4C20P T \Program Files\Siemens\Step7\s7
2P Configurstie CP5613 C:AProgram Files\Siemens\Step7ss7
B CPSE13 slave C:AFiogram Files\Siemens\Step7is?

TPRREIA slasea P APrnaram Filash SiamanclStan T« T

I=| add to curtert muliprojeot
Type:
Project ~]

[T F Libray.

Storage location

IE \Program Files\Siemens\StepFis7proj Browse...
ot | b

PressFi ko get Help CPSE11{MPT)

dstart | [8 & G 7 |[Fsraticranager R-EEEEY
Picture 5.1. First picture in PROFIBUS network dguafation

- 42 -

5-Motor-PLC connection via PFOFIBUS

Open the program Simatic Step 7 and create a nej@gbr The following window
will appear (Picture 5.2)

JL] SIMATIC Manager - Project =18l xj

Fle Edit Insert PLC Wiew Options Window Help

Dl Bl i lcle] i) sl lE Bl e 15 Be] s)

= \Progs

Press FL o get Help, [P LMPL)

%Start]“@_@‘ &8 5 PH #SIMATIC Manager - Pr... B |Documertt - Microsoft ... (ﬂma&&ﬂk%ﬁﬁ s
Picture 5.2. Second picture in PROFIBUS networkfigomation

Insert a new object, in this case the PLC is froexfamily S7-300

»

Obiject Properties. ., Alb+Return

Other station
SIMATIC S5
PG[PC
SIMATIC OF
MPI
PROFIBUS
Industrial Ethernet
PTP

57 Program.
M7 Program

st 1 &) @ 55 7] [mnric g v Eloscmer bt (ORCLAMEIT ww
Picture 5.3. Third picture in PROFIBUS network dgofation

-43 -

5-Motor-PLC connection via PFOFIBUS

3. Access into SIMATIC 300(1) on the left side, thegmam shows the next window
(Picture 5.4). Choose the rail in Rack-300 and alabde click

[Hw Config - [SIMATIC 300(1) {Configuration) -- Project]

A =lalxf
Gy station Edt Inserc PLC View Options Window Help

lsix|
Dlsle-B % & wel dblal o) B el

e 3oid
Eind: wj. ﬂﬂ
Erofie: | Standard e

-8 PROFIBUIS DP
158 PROFIBUS P4
6138 PROFINET 10
EH SIMATIC 200
w3 o7
1 cPamn
CPU-300
Fi-300
Gateway
1M-300
= M7EXTENSION
i | Ll_l P5-300
{3 RACK-300
=i
=[] simaTic 300(1) aa SMQ
SIMATIC 400
SIMATIC HMI Station
f SIMATIC PC Based Contiol 300400
-, SIMATIC PC Station

ppeeepe

e

g e e e e S B 8

Slot| Designation |
1

[BES7 330-177 700840 o]
(Awailable in vatious lengths

I)
i#lstart H] 5] & =3 ”H & SIMATIC Manager - Project | B)Document1 - Micrasoft W... || BRHW Config - [SIMATIC .. RS EME T s

Picture 5.4. Fourth picture in PROFIBUS network figuration

Press F1 ko get Help,

4. Then is necessary to look for the exact PLC inligteon the right side (S7 CPU
314-6CG03-0AB0)

[Hw Config - [SIMATIC 300(1) {Configuration) - Project]

i =@

@l Station Edit Insert PLC View Options Window Help =l x|
Dlle(® 5] &) | bl Fmel 22 |

(=0uR e

Find ":lz ﬁﬂ

Pofle: [stand=d =

39 PROFINET 10 |
 SIMATIC 300
Jer s Ry
5 = cPam
=13 CPU-300
£ CPU 12
£ CPUA121FM
L3 cruatee
L CPU3I3
L3 ceu e
- - CRUFA2 DP
= | | LI—I {__] CPU 313C-2 PP
L3 cPUae
] CPU 3141FM
:l:! 0 UR {1 CPU 314C2DP
Slot Module Dider number Fimware | MPladdiess | I addriess | O addiess | Comment | i H ggg; j}jggiﬁ?ﬁgﬁ
1 [§ ees7 3146cro2 0880
=] EES7 314-6C603-04B0
A
£ CPU 2 PP =
L CPU3IS
] CPU 315:2DP
£ CPU NS 2PN/DP
L3 CPU3IF2 0P
7] CPU 315F-2 PN/DP
L3 cPUAE
[CPU 316:2DP
L1 CPU R17-2
L3 CPU A1 72PN/DP
[0 CPU 317F2 El

o~ m|on] e[

~a|m e[|l

BEST 314-BCGO3N4E0 33
wiork memery 95KE: 0.1ms/1000 =
instiuctions: DI24/D016: AI5A02

tecrated: 4 pube cutpuls REKHzEA o

Press Fi ko gat Help,

Cha
i Start “ M E & & ”“ o SIMATIC Manager - Project | B |Document - Microsoft 4. | @l Hw Config - [SIMATIC ... R aE ws

Picture 5.5. Fifth picture in PROFIBUS network dgafation

-44 -

5-Motor-PLC connection via PFOFIBUS

5. The program shows a window with properties in whglmecessary to indicate the
MPI address, in this case is the number 2.

- [SIMATIC 300(1) (Configuration) -- Project] _18 x|
Bl Station Edic Insert PLC Wiew Options Window Help -18] x|

Dl(E{R (% &) e sl @] 38 el

A oy

w
End ntlag]
CPU 314C-2DP_ : Prafile: Standard »

@ P
2z DIEFDOE e PROFINET 10 |
1@ SIMATIC 300

23 A A
c7

Cous
P30
- CPU-300
£ CPU 312
-3 CPU H121FM
-3 cPU 3t2C
£ cru 33
£ crumIC
- & CPUAIC20P
1 | 4,|—| & CRUTIc2PP
£ cPu 34
-3 CPU 3141FM
=R .5 CPU 31402 DP
Siot Module | Order numbes Fimwaie | MPladdiess | | address | 0 addiess | Comment | E Eggzgzgggﬁxsg
[5857 31460F020080
50 BES7 1460G0304B0
]
£ CPU T2 PP =
3 crU3S
£ CPU 31520F
£ CPU 3152 PN/DP
£ CPU S15F-2DF
£ CPU F15F2PN/DP
-3 CPU 316
-3 CPU 316.20P
L cru T2
£ CPU 317-2PN/DP
a El
EES7 314 60G02 1480 33
otk memory 9BKE: 0 Tms/1000 :
instrctions: DI24/D0TE: Al5/402
intsgrated: 4 pulse ouputs R5IHL o

Insertion possible [chg.
@R start H] () @ (51 || S SIMATIC Manager - Project | Bbocumentt - Micrasoft ... |[B W Config - [STMATIC ... [T asg BT o0

Picture 5.6. Sixth picture in PROFIBUS network dguafation

2 |[{ CPU 314C-2DP i@r 314-6CG03-0AB0 V2.0 2
=4l W

LUTRADTTE
P e
Ly
A

by
=

==

6. Afterwards the program has to recognize the maorit needs a *.gsd file of the
motor which has to be installed.

F ration) -- Project] =181
@l staton Edt Insert PLC Visw | Options Window Help =l=1x|
D |§ %ﬂ E‘H’ é! % i Customize. .. Chrl+AI+E
| SoedfyModile, A —————————————————inlx
Configurs Metwork
Symbel Table AT Find. | ﬂﬁl
X Repart Error, l—_l
Az EPPLI e :::Zata\o me‘l‘e" i sttt =
22 DEDOTE e & W PAOFINET 10 =
23 [[| amac s g E-E SIMATIC 300
24 oot Tnstall H! Lipdates .. c7
25 Evstion cP300
-3 CPU-300
Find in Service f Support... £ cPUFI2
£ CRUIZIFM
£ crumEC
£ cPUzI3
£ crumIIC
. £ cPUZIT20P
i | ﬂ_l 3 cPusic2 PP
£ CPU 314
-3 CPU3141FM
&= oA .0 CPU 314C:20P
- [f 6ES7 314-6CF0004B0
5ot Module | Dider number Fimware | MPladdiess | | addiess | O addiess | Comment | 8§ ces7 31460k 0080

[eEs7 314-6CFOZ-00BO
B BEST 314-60603-0480

2 |[f CPU314C-2DP I@T 314-6CG03-0AB0 V2.0 2
ol e

= w20
ﬁf‘;fﬁ’g £ CPUTAC2 PP =
Bz £2 CPU 315
% -5 3
e {3 CPUIS20P

-[3] CPU 3152 PN/DP
-{] CPU 315F-2DF
{1 CPU 315F 2 PNJDP
{1 crU3IE

{1 CRU 3182 0F

CRU 3172

CPU 317-2 PN/DP
CPU 317F-2

S A =
GES7 314 60503 DABD ﬂ ﬂ
otk memory 9BKB: 0 1ms/1000 =
instructions: DI24/DI016: Al5/402

integraled; & pulse outpuis [25kHzL4 |

Installs riew GSD Files i the system and updates the contents of the catalog chg

I
i#listart “ [() @ (1 || $SIMATIC Manager - Project | BFjDocumentt - icrosoft W... | [rw Config - [SIMATIC . [asa BT ws
Picture 5.7. Seventh picture in PROFIBUS netwonkficuration

- 45 -

5-Motor-PLC connection via PFOFIBUS

7. The gsd-file can be downloaded from internet in website. The name of this is
JVLIO6BC.gsd

=18l
=181 x|

s Window Help

T

- oix
And | nj, nj
Profie: [Standard -

SIMATIC 300
Install G50 Files trom the dreclory 7 1@ o7
.21 CPan
= Ele {03 cPU300

£ cPu 3T
{3 CPU312IFM
-0 cPU3IC

CPU 314C-2 DP.

Xz oF

2z DI DOTE

23 AACE

24 Couar
Fosiian

Release | Version

£ CPUBT
-3 CRUSIAC
£ CRU313C2DP
J {1 CRUBIAC2 AP
1 cPU31e
L CRU3T4IFM
ﬂz] o) UR {3 CPU34C2DP
[BES7 F146CFI0.0480

5'”‘ s | o [EL 6E57 314-6CF01-04B0
[EES7 3146CF02.0080
5;” A2 LR BES =+ BEST 314606030480

Def
Default

WACTORF MACO0FFs]
= - [@ 2o
A I £ CRU BTG PP -
oo £ CRU 315
o ftal | Showlog Selectall Deschectal | & crums2op
. {3 CRU 152 FNDR

CPU 315F-2DP

£ CPUF1SF2PN/DP

Ceze | Help s
-3 CPUIE20P
3 cPu3iR2
- CPU 317-2 PN/DP
- CPU3I7F-2 ﬂ
GES7 314-6CG03-0880 33
Wk memory 36KB: 0. 1ms/1000 —
instructions: DI24/D016: Al5/A02
inegrated: 4 pulee oulpuls 25K o

Press F1 to get Help. [Cha
M start “ B & 5 ”H M SIMATIC Manager - Project | B)Document . - Microsoft W... | B nw Config - [SIMATIC .. WW
Picture 5.8. Eighth picture in PROFIBUS network faguration
8. Open the object properties clicking with the rightton on DP.
SIMATIC 300(1) (Configuration) -- Project] 2 ;lﬂ_li!
Gy station Edt Inserc PLC View Options Window Help =18

e] sl [=] % w2l

— —oid

Froflel [Standad 7]
¥ PROFINET 10 -]

SIMATIC 300

Replace Obiect... w3 o7

Add Master System 2} L:J CP-300

3 Dist ot Master, 5 &1 cPU-am

CPU 312

CPU 312 IFM
{1 cPu3te

{2 crum3

{1 cPu3taC

{3 crRUTIaC2DP
il Specy Madile): 4,_| £ cPuF13C2 PP

. £3 cru a4

. Delete Del {3 CPU 141N
=0 o

Siot| [§ Mod

-

Paste

|| =

FRORINET 10 Toptiogys
Isachrane Wode

{1 CPU4C2DF
- [GEST 314607000480
[6ES7 314607010480
. WeritoriModfy (8 eES7 M4ecrO20eB0
2 ceus 2 (] BEST 14606030480
= - [@ van
{3 CPU314C2 PP -
{3 CPU3IS
{3 CRU3I52DP
{3 CPU 3152 PN/DF
(] CPU3ISF2DP
] CPU 316F-2 PN/DP
{3 CRU3ME
CPU 31682 DP
{3 CPu 3172
{3 CPU 3172 PH/DP
70

o crumEF2 El
1 [EES7 314 BCG03 ABD 3 £
heiork memory 96KB; 0 1ms/1000 i
instiuctions. DI24/D01E; Al5/ADZ
| rtegratect: 1 puise outpus (25kH2: 4 o |

ca1 oo olos o | MPladdiess |l addess | O adress | Comment |

Product Support Information Chil+F2
FAGE Ctrl+F7
Find Manual Chl+Fe

Displays properties of the selected object for editing, ch

I
M start H]) & G ”H & SIMATIC Manager - Project | B)Documenti - Microsoft ... |[BRAW Config - [SIMATIC ... |4 BlS c Ee2, BE s
Picture 5.9. Ninth picture in PROFIBUS network dgafation

- 46 -

5-Motor-PLC connection via PFOFIBUS

9. In the object properties window click on properties

[1:2Hw Config - [SIMATIC 300(1) { L =18
g stetion Insert FLC Visw Options Window Help =18 %]

DlzlelR 5 8 o] dbial o]

= Dixl
Eind | h:l, #i
3 Erofile: Standard ~
et adp BT 2l
| dvace HE SIMATIC 300
@c?

ot Genersl | Addiosses | Dpersting Made | Configuration |

{1 CP-300
Shott Desciption P &1 CPU300
&l {3 cru sz

£3 CPU 321FM
-£3 CPU F2C
b -£3 crum3
Ordlet Nou: G 3a
{1 CPUmIEC2DP
Name: £ CPUFIIC2 PP
-£3 CPU 314
-[] CPU 3141FM
:[:] 0 UR Type FROFIBLIS [CPU 314C20P

Ackiess: 5 @ FES? 3146CF00-0480
Siot| [Module | Oider [

1| Metworked: Mo Properties. --[8] BES7 314-6CF02-04B0
CPU 314C-2 DP BES7 3 = BEST 314-6CGE030ARD

Ll Comment B vzo
ol Bz - S
o ee—— L crPums
= B -3 CPU 3152DP
2 -3 CPU 3152PN/DP
] CPU 215F-2DP
ok | Carcel Hel {2 CPU 315F-2 PN/DP
——I —D—I £ CPu 3B
-3 CPU H62DP
-3 cRU T2
- CPU 317-2PN/DP
&

BES7 314-600 3 T
work memory 9EKB: 0. 1rs/1000 i

instruictions: DI24/D01E; A15/A02
integrated: 4 pulse outputs [2.5kHz); 4 j

Press F1 to get Help, iChg

\
Hstart|| (1]) & 5 7|| HsMATIC Manager -Project | pacumentt -Mizasoft W... | [EHw Config - [SIMATIC ... ERLEMERT o5
Picture 5.9. Ninth picture in PROFIBUS network dgaofation

10. Afterwards select in the menu bar Parametersadiaeess is just the number which
identify the network (realize that this addressa$ the same as the MPI address).
Revise if it's correct and click on New.

SEIE)
eI

ally seation Insert FL

O3B (= =
R

Al ———0x
Einct n:l: nﬂ
Profle: [Stnded]

DIEHOE

x|p % PAOFINET IO |
AiSACE T SIMATIC 300
Court General | Addiesses | Uperating Mode | Configuration | B €7
-3 CPU-300
Gereral Paramisters | £3 cru 2
-3 CPU H121FM
Address: 5 = 4 CRU 3120
3 CPU N3
{3 CPUN3C
] CPU 313C20P
T | u CPU 313C-2 PP
Subret {3 CPU 314
-3 CPU 3141FM
Kl G Hew 3 CPU FAC2 0P
?\nt [{ Modile | Dider o R g EE:; 2::25:3?‘&23
1| Delete (B 6E57 3146CF02.0480
2 5557 3 50 BES7 1460G0304B0
-]
iy I3 CPU F4C2 PP =
[et | {23 CPU 315
ﬁ"_‘”’ [CPU 3152DP
Finsiti)] CPU 315:2 PNJOP

{] CPU 315F2DF
oK. Cancel Help L1 CPU 315F-2PN/DP
= -£31 CPU 316
-£3] CPU 31620P
L] crusTe
£ CRU 3172PN/DP
£ CRUATF2 El

BES7 314-BCG03-04B0 3 T
w'ork memory SERE 0 1ms/1000 —

instructions. DI24/DIOE; Al5/A02
integrated: i puise outpuis 25kH2L 4+

Press F1 ta get Help, [cha
@R start H] () @ (51 || S SIMATIC Manager - Project | Bbocumentt - Mirasoft ... |[B W Config - [STMATIC ... ¢ B s M

Picture 5.10. Tenth picture in PROFIBUS networkfiuration

-47 -

5-Motor-PLC connection via PFOFIBUS

11.Select Transmission Rate 1.5Mbps and Profile UsalefDP/MFS) and click OK,
the new network appears in the last window.

L =18
Options Wiridow 3 =& x|

Al ———0x
Einct n:l: nﬂ
Profle: [Stnded]

Properties - DP - (RO/SZ.1) x| b B8 PROFINET 10 |
i e 2 @ SIMATIC 300

[R

@] CP300

E

DIEHOE
23 A A
Counr

Benersl | Addiesses | Operating Made |
Properties - PROFIBUS intetface DP |
.2 CPU-300

Properties - New subnet PROFIBUS £ cru iz

General Network Settings | -0 CPU H21PM
-£2 CRUF2C

£ cru 33
Highest PROFIBLIS WG {1 CPU 3130
Address: 128 T ™ Change {3 CPU F13C2DP
4 £ cPuac2 PP
{3 CPU 34
-£3 CPU 3141FM
J-{1] CPU 31452 DP
[B EEs7 3146CFO00480

wliguration |

X
x|

:‘\:] 0 UR Transmission Rate:

siot| [§ Module | Diderr [ES7 3146CF01-04B0
1 [Es? 31460F02 0880

[l cPU 314C-2 DP GES7 3 (] BES? 314-60G0304B0

LF !
= Profile: oF V20
L DPITE -
VEAGE Standard £ CPU H4C2 PP
I EEE 3 cPu s
e UserDefined e

Foshion Bus Parametets... | 1 CRU 3152 PN/DP
{3 CPU F15F2DP
23 CPU T1F2PN/DP
i o | Cancel Hel -0 CRU 316
_Ceeel | b | .3 CPU 316.20P

| -3 CPUFT-2

o
5

L CPU 317-2PN/DP

- CPU317F-2

BES7 314-BCG03-04B0 3 T
w'ork memory SERE 0 1ms/1000 —

==

instructions. DI24/DIOE; Al5/A02
integrated: i puise outpuis 25kH2L 4+

Press F1 ta get Help, [cha
@R start H] () @ (51 || S SIMATIC Manager - Project | Bbocumentt - Mirasoft ... |[B W Config - [STMATIC ... ¢ EBReLEME ST 0w

Picture 5.11. Eleventh picture in PROFIBUS netwookfiguration

12.The network is already configured like in the pretdbbelow. Find on the right side
the motor file (MACOO-FP) and select it.

[1w Config - [SIMATIC 300(1) (Configuration) - Project] 18 %
@l station Edit Insert PLC Wiew Options Window Help & x|

Dl %) & oo bl @]) el

SesS ——————1 1
Eind h:|= nj
CPU 3TICZ 0P Froffe: [Standard 2

PROFIBUS(1): DF master system (1]

D24 D07 E-48 PROFIEUS DF A
A5 ACE £ Additional Field Devices
Count =3 General

Position

P {21 WAGDHD-SYSTEM

~
4l | _.,—I .»E' CiR-Object

& (2] ClosecLoop Controller
{2 Configuied Stations
R 10 B [DP VO slaves
i (10 DPsASH
?\m Module | Gider nuber Fimware | MPladdress | | address | O addiess | Comment | it
7 |[FLCPU314CZ DP lEES? 3146CGO3-0AB0__[v20 B ;S E?gﬁgg”
el 2 T =
B (] ET 2000
22| ipaie 1A 12 ea e
23| Eans] eco
2 ([B ; B2 ET 2008
5 ;;t: (1 ET 200i5P
T = w03 ET 2000
[(] ET 200M
5 {0 ET 200po
3 -] ET 200R
7 B ET 2008
] B3 ET 2000
g [0 ET 2008 =
L i | o
i MACDDFFa £

Press F1 ta get Help,

\
Hstart|| (1] B) & 5 7|| SSMATIC Manager -Project | @pacumentt -Mizasoft W... | [Hw Conhig - [SIMATIC ... EEcLAMERT o
Picture 5.12.Twelveth picture in PROFIBUS netwookfiguration

-
7
E

-48 -

5-Motor-PLC connection via PFOFIBUS

13. Write the motor address which was selected in thiéckes inside the motor (for
more information, see the motor datasheet in thpefdix 4). In this case the first
and second switches are on, so it indicates theeasl@.

i =l8]x
W Options Window Help e x|

2l 9 &) el sl @) 2wl

Ml —oixd
Eindt n:l= #i
Profls: [Standed]

PROFIBUS(1): DF master system (1]

D4 o015

E-85 PROFIBLIS DF A
2z [asace B0 Additional Field Devices
24 Count =3 General
M Qoo

| g KUKA CPSET4 Slave
Benersl Pavameers | |5 MALOOFR
Qi
Address: EE £ Valves
£ Gateway

Tiansmission rate: 1.5 Mbps {3 Compatible PROFIELS DP Sk
Cif-Object
ClosectLoop Controller
Configuied Stations
PO slaves

PASH

PP Lirk.
NCODER

T 2008

12000

T 700eco

T 2005

T 20065F

T 2000

T 200M

T 200p0

T 200R

T 2008

T 2000

T 200

Subret

¢\:I @ UR — riok networked R
=
Stot| [Module | Gidter el Fiopetties

[l CPU 314C2 DP GES7 314 &I
oF

1
z

DLADTTE
AT
Loy
Fliian

i e e
i ind e e

MMM o mOm MMM Moo o9

Cancel Help

« |
=

a
@
@
a
@
@
@

B
B
Bl
=2
=2
B

=
=
&
2
2
b=
i

-
7
E

Insertion possible

I
Hstart|| 1] B) & 5 7|| HSMATIC Manager -Project | Bjacuments -Miasoft W... | [Hw Config - [SIMATIC .. JERLAMERT oo
Picture 5.13. Thirteenth picture in PROFIBUS netvoonfiguration

14.Finally, the connection is made, see the pictutevine

[1w Config - [SIMATIC 300(1) (Configuration) - Project] 18 %
@l station Edit Insert PLC Wiew Options Window Help & x|

D= (= 2 =

CPU 314C-2 DP
Je P

Eind n:l= i
Profls: [Standed]

j -_—

PROFIBUS(1): DF master system (1]

zz D24 D078 E-48 PROFIEUS DF A
2z [asace B0 Additional Field Devices
24 Count =3 General

| L] WAGDHD-SYSTEM
| fogg KUKACPS614 Slave
i g MACOOFP

£ 10

~
4l | _.,—I .»E' CiR-Object

Closed-Loop Controller
Configured Stations:
DP V0 slaves
DP/ASH

DP/PA Link.
ENCODER

ET 2008

ET 200C

ET 200eco

ET 2005

ET 200i5P

ET 200L

ET 200M

Addiess | Daddess | Comment |

AN N

BREEERE

-85 60

IERPEPEERPDEEERDDDE

i

MACOO-FPy

-
7
E

Insertion possible

\
Hstart|| (1] B) & 5 7|| SSMATIC Manager -Project | @jpacumentt -Mizasoft W... | I Hw Conhig - [SIMATIC ... ERLAMERT e
Picture 5.14. Fourteenth picture in PROFIBUS nekwmmfiguration

-49 -

5-Motor-PLC connection via PFOFIBUS

15.The main program has the next appearance.

Fle Edt Insert FLC View Options ‘indow Help

7| 3 [df [2 = er— =

= @ CPU 314CZ DR
-G §7 Progiami(1)
Sources

o
3 Blocks

Press F1 to get Help. CPEBLI{IPT)

hstart] | 1)) @ 51 | |[#SMATIC Manager - Pr... Ebocumenti - Micrasoft W... JERoLAME ST e
Picture 5.15. Fifteenth picture in PROFIBUS netwookfiguration

5.3. — Testing the motor variable values

To test the motor and to select the best valugbeivariables which provide a good
working of it. The program Simatic Step 7 offer®al to monitor and modify the parameters
of the motor. It is possible to use this tool witile motor datasheet and the different kind of
registers which the motor has programmed. All itisrmation is attached in Appendix 4.

To access in modifying/monitoring variables, clickthe toolbar “PLC” and then in
“Monitor/Modify Variables”. The window in the picta 5.16 appears. Afterwards introduce
the inputs and outputs defined in the motor. Irs ttse there are 9 outputs and 8 inputs
shown in the picture 5.17. After some tests it wlolbé clear which registers and values of
each parameter like velocity, acceleration, torae, are used. Those values will be initially
introduced in the motor.

Decisions about every value are detailed in thieiohg chapter. Also the problems
with the link between the motor and the conveyerdiscussed.

-50 -

5-Motor-PLC connection via PFOFIBUS

able Edit Insert PLC Warisble View Options ‘Window Help
| DllE| S| #[sle]-|o| x| 2 ¥
Syl6r | x| 5[] o

=10

Q‘ Address | symbol Display Format [Status value ModiFy value

1

ProjectiSIMATIC 300(1) < [RONTT (abs < 5.2
hstart||| () B) @ 51 || HSMATIC Manager - Project |)Document1 - Microsaft ... |[B var - Variable table1 GBS S S ME S E 2ot

Picture 5.16. Variable table

Table Edit Insert FLC Yarisble View Optiors Window Help

= Dlz@] ol &me]-l=] x| =]
Dfar]er| 7] o

Address | Symbol Displ | staus value: Wodiy vaiie

1| fee 0l DEC. 0

2| e 1 DEC 0

] o =2 DEC 0

4| e 3 DEC It

5| o 4 DEC 2

6 @ s DEC 2

7] ® &

g | o 7 BIN 2400001100
e | g

Press F1 for help.

hstert| | 14) & 7

2 prre [bsesz [
| #ysmatic Manoger - | (3 Profibus | A adobe Resder - fre...|[{R Var - motor i REe rDEABERYE o

Picture 5.17. Motor inputs and outputs

-51 -

6- Step 7 program for the conveyor

CHAPTER 6

Step 7 program for the conveyor

6.1. — Requirements

Firstly the motor is joined directly with the coryeg in one side. The motor is used for
applications of high velocity, so it may have sopneblems when it is connected directly to
the conveyor due to the velocity of this has tslog. To solve this problem in the test mode
explained in the previous chapter, many registeeviested to adjust the best values of each
one. After many tests these values were chosenhieumotor had a strange comportment
because it worked in low velocity and high torg8e. it's impossible to move the conveyor
itself. For this reason, afterwards the connectiilhbe modified adding a component which
reduces the velocity. The initials data will bewhan this chapter. Maybe these won'’t be the
latest data.

The program in Step 7 for the conveyor consista Btart/stop program controlled by
some switches connected in the PLC. The data #matd be included the first time in the
motor to control the velocity, acceleration...

The software of the motor has some registers tabe selected in order to choose one
of them depending on the application (see AppelliXhe used registers are:

- Register 2 (with value 1 to start the motor)
- Register 5 (to select the velocity)

- Register 6 (to select the acceleration)

- Register 7 (to select the torque)

- Register 13 (to select the inertia)

6.2. — Step 7 program

Subsequently is explained the program in Step Thvig used in the application for
moving the conveyor:

-52 -

6- Step 7 program for the conveyor

Open the OB1 and write the required inputs andwistp

5 =18l x|
3 File Edit Insert FLC Debug Wiew Options Window Help == x|
| olezlz-lm| @l o (mle] ol ol o 2als] 2] DE 2 JEbo]E o |- x |
| Contents Of: 'Environment) Interface’ IN'
=4 Interface [Hame Data Type [Comment
5] New network. | o a3 IN ‘= |Input_value Int Enter data in each register
=] Bit lagic = 5 ue '@ uwrite register |Byte Enter the selected register
j: :ﬂll ‘B write register |@ written Eool Writting completed
Qi —JNoT|-] B written h=]
o0 o4 oUT
< R W To_write
< (R} Lk IN OUT
< (5 & TEMP
£ rs [T3+ RETURN
T R
< --{N)-—-
< (P
< (SVE) FCZ : Title
T nes Comment
£ ros
{1 Comparatar
{2 Converter
¥4 Counter
{08 DB call
{E1 Jumps
[+ (1] Integer functi
{28 Floating-point
& Move -
{35 Program contr MOVE
(2] shift/Rotate EN ENO
{aif) Status bits
(@) Timers #Input_
& word \ng_':‘ value 4 IN OUT [~ QW2
K

»
ormally Closed ig]
tact
b Hetwork 2 : Title:

Proga.. |B=Calls "Mn_ve the written register to the "Read Register Selector” |

S

TAATFAl TEner & lnic /3 Crossieleences J, & Addwseifo. Ji G Modiy fi E:Dignostes 7. Comparon [

Press F1 to get Help, I 2 [cFfine [Abs <52 [Nw1 nsert |

| #SMATIC Manager - [Test... ||Hi LAD/STL/FBD - [FC2 --... B]Document1 - Microsoft W. .
Picture 6.1. Inputs

hstart| | 14 0) @ 51 ”

PU 314C-2 DP] =|=]x]
£} Flle Edit Insert PLC Debug Wiew Options Window Help -18]x]
| Dl2ls-(8| 3| i lsl@] o] cild| of == OB] Aol [=]=]]
———————zlx Contents Of: 'Enviromment) Interface)OQUT!
=4 Intertace [Hame Data Type [Comment
£ New network & | D IN @ [To_urite Bool Enable writting
-l (3] Bit logic B Input_value I=]

:: ":’II" B write_register

QN B written

© =0 -k oUT

O i) = To_write

< (R} £ IN_OUT

< (5] & TENP

£ rs 40 RETURN

I sr

<3 ==(N)=-

< ==(P)--

DA FCZ : Title

£ mes Conment

I ros

£ (%] Comparator

(55 Conwerter

(24 Counter

+- (B8] D6 call

£-(&] Jumps

£ (1] Integer functh
7.2 Floating-point
(3] Move yini
£ (3 Program contr
£).(34) Shift/Rotats EN ENO
(37 Status bits
(@) Timers #Input_
{5 Word ‘DD‘E_'LI value —IN OUT [~ QWiZ
| |

jormally Closed ig]
onkact

Hetwork 2 : Title:

B Froga Call s "Muva the written register to the "Read Register Selector” | [

A

|

TEIAIED, TEnor A 2info A 3 Crossieferences J % Addessifo. A 5 Modiy B Diegnostcs J, 7 Comparson [/

Press F1 to get Help, [2 offline lBbs <52 [Mw1 nsert |

iglstart H Tl 3] & & ”“ F SIMATIC Manager - [Test... | |HEELAD/STL/FBD - [FC2 .. B|Document1 - Micrasoft W BiReLe»2Za 2
Picture 6.2. Outputs

-B3 -

6- Step 7 program for the conveyor

2. Move each data to the correct input/output of tloéam

WLAD TL/FBD - [FC2 - TestMotor',SIMATIC 300({1

{3 Flle Edt Insert PLC Debug View Options Window Help

=18
=181 x|

Dl=le-@] 8l : (el =[] el =f 2o <[] TR 2 0T [2]=] K]
—n - —_————————

Contents Of:

' Enviromment’ Interface) IN'

=43 Interface
54k I

E5Y Mews network 4 |

Data Type [Comment

B written
A=

'@ write_register

Int Enter data in each register
Byte Enter the selected register
Bool Writting completed

-\ 4} Bt logic
- :: :ﬂll = write register
QU —NoT- @ written
-0 £k oUT
) | To write
(R}

(X1 Comparatar
{8 Converter
{4 Courker

(B8] DB cal

(&1 Jumps

{28 Integer Functi
{z8] Floating-point
(& Move

{3r Program contr
(2] ShiftiRotate
{aig] Status bits
(@) Timers

wordlogic ¥
K

5
%

jormally Closed

FCZ 1 Titles

Comment :

’Nnve the input data to the "Write Data 1 and O (32 bits)"

MOVE
EN ENO
#Input_
value—|IH OUT |- aWZ

tact
Calls Hetwork 2 : Title: El
A
T HIAIEIl, TEnor 2t A 3 Crossisferences & Addessiio J G:Modly), B Diagnostics i, 7 Comparson. 7

Press FL ko get Help,

start | (] 1) @ (5

[~ @ [offine

”H JLSMATIC Manager - [Test... | [LAD/STL/FBD - [FC2 ... BE]Document - Microsaft W,
Picture 6.3. Move data

pbs =52 w1 Insert |

BisRL e »28Ta

lB[x]
i3 Fle Edt Insert PLC Debug YView Options Window Help == x|
| Dlzlsm| 8| 4 || elen] = 2aler| 1o TOTE 2] ARHH-O1EH | 2] a2l|
i
|

P Mew network 4 |
--{3i] Bt logic

Al | |-
A==

Al - [WOT|-
0 -()

< —l#)-

<3 -R)

<3 -5}

I rs

sk

€ —(N)--

€ (P}

<3 —-{SAYE)
T nes

fl ros
(%] Comparatar
{8ig] Converter
{£4] Counter

{68) DB call

#-{g] Jumps

{21) Integer Furicti
Flaating-point
Move i
Pragram cantr
shift/Rotate
Status bits

() Word lagic _'LI

5
2

jormally Closed
ontack

" BiFega. [Ecas

Hetwork 23Rt

’Nnve the writken register to the "Read Register Selector”

MOVE
ENC

EN

fwrite_
register -|IN

OUT [—QE4

Hetwork 3 : Title:

[Enable the weitting to the input data and the register

mz0.0
#uritten =R #To write

s o————{

#uritten—(R

=l

>I|
T [A[<T*II_ T:Enor

3 Crossrelerences 4 Address o,

h Zlna

A 5 Modiy) B Disgnosics 7 Comparson._ 7

Prass F1 to get Help.

Hseert| | 11 &) @ 2

I @ [offiine

| #SIMATIC Manager - [Test... || LAD/STL/FBD - [FC2 --... BDocument - Micrasoft W..
Picture 6.4. Move data

-54 -

[fbs <52 |Wwz Tnsert |

BiRsLaroSTa =

6- Step 7 program for the conveyor

Introduce Function Blocks with the inputs and otgpmade. Include also their
equivalent switches which enable each one. Wrieectirrect values in each data,
means, with the switch 125.0 in low, in registethb value 50 is introduced (value
of speed) and after it is sent over the PLC tantlogor.

IESLAD/STL/FBD - [0B1 - TestMotor\SIMATIC 300{1)\CPU 314C-2 DP] —{&[x]
43 Fle Edt Inset PLC Debug WView Options Window Help =S

sl & alei) oLo) ola) o) el | VR) asoigle oL _H
.

£ Mew network The switch 125.0 ensbles the welocity of the transport belt when is in low ‘
(& Bt lagic

(%] Comparator

-5 Converter
@ counter 1125.0 m20.1
{58 DB cal rcl
&1 Jumps At Emof———————
{20 Integer function
Flaating-point Fct Input_
Move 50—fvalue To_writef-7.7
Frogram control
(&) shiftjratate rite_
(i) Status bits B#1E#5 —|register
[#-{@] Timers
+-{3) wiord Iogic 7.7
F-E FB blocks
[#-{gH FC blacks
{0 SFBblocks
{€H SFC blacks Hetwork 2 : Title:
Jil Multiple instances|
M Libraries

[
[
-
[
[

ritten

The switch 125.1 stops the transport belt

T1125.1

—t

_| 0—valus To_write Q7.7

<
B#1642 —{register

% E=cals I7.7—|written I

-|| BLOCK_FC
|| Hl il Dllll\ LB p 2 Info £ 3 Cross-references]\ 4: Address info. A5 Modily]\ G Diagnostics 7. Comparison _/
Press Fi to get Help, I D [cffine [Abs <52 w1 nsert |

i start |J] 3] & & ”“ L STMATIC Manager - [Test... ||H55 LAD/STL/FBD - [0B1 .. B]Document - Microsoft W B RL L e » 2T =
Picture 6.5. Two function blocks

IELAD,/STL/FBD - [0B1 -~ TestMotor\SIMATIC 300(1)\CPU 314C-2 DP] o (%]
i} Fle Edt Insert PLC Debug View Options Window Help |
| D258 3| &lmale] o] cild| of ==] O & H-0lEL =] M|
-~ Ir|«
Hetwork 3 : Title: H
B Wew network The switech 125.0 starts the motor in the velocity mode
{30 Bit Iogic
5.2 Comparator
533 Converter
= (8] Counter 1125.0 H20.3 Z
+).(B8] DB cal L
5 Jumps — b——p——En ENO——————————
£.(21) Inkeger function
Floating-point fct Input_
Move 1—value To_write Q7.7
Program contrl
(&) Shift/Rotats write_
Status bits B#16#2 —|register
(@) Timers
£ (3 Word logic 17.7—|uritten |
{23 FB blocks
(g3 FC blocks
{@ SFBblocks
{3 SFC blocks Hetwork 4 : Title:
Jill Muitiple instances
5 78 Ubraries The switch 125.7 introduces the initial parameters in the motor
DEZ
1125.7 T
b————En ENO
... —OFF_5Q S NOF...
K — 1125.7 MZO0. 4 - -
ESJ b——p——jmn1T S0 §_MORE[—. ..
—— — ... —|ACK_EF § ACTIVE[...
B Foga., |ESCals = s [

H[Frock ro

T[E[ATEET, TEnor p 2Info A 3 Croseisterences & Addwess o 5 Modly B Diegnostics 7 Companson /.

Press F1 to get Help, [T 2 [offiine [Abs <52 w1 msert|

iglstart H Tl 3] & & ”“ FSIMATIC Manager - [Test... | |HEELAD/STL/FBD - [0B1 - |Document1 - Micrasoft W BiRLeL e 2Za 1z
Picture 6.6. One function block and one functioapdr

-55 -

6- Step 7 program for the conveyor

The initial input data has to be made in a spedifitction of Step 7, this function is
the S7 Graph, in the way of the pictures belowoltsists in a “grafcet” that allows
to introduce the written value in each register.

857 Graph - [FB2,DB2 {Sequencer 1) - TestMotor\SIMATIC 300(1)\CPU 314C-2 DP..] o =181
I+ File Edit Insert PLC Debug View Options Window Help -]
D@ 8| = o | slelea] ol o] o] s] fux 5 [7 2= FE m-E sl
=l -]
=8 Em Initial input data I
G
==
[GE=)
=il
i 81§ [Reset
| Rezet || i |Q7 7
s r— e
Trans
1
82 Torque
Torque 51 CALL|FCZ
7.7 Ir2 Input value:=600 [INT) (IN)
‘—H—! """"""" = write register:=B#16#7 [BYTE) (IN) ||
i > written:=I7.7 (BOOL) [IN)
1k To write:=Q7.7 (BOOL) (OUT}
4
ER|
L
I
[53 Roceleration
ACC. .. 51 CALL|FCZ
7.7 3 Input value:=10 {INT) (IN)
‘—M—< """"""" e write_register:=E#l6#6 (BYTE) (IN)
5 9 written:=I7.7 {BOOL) [IN)
|F N B | - To write:=g7.7 [(BOOL) (0QUT) -
EE |y |
Prass F1 for help, 2 [offine [Tk [

M start H] 3]

»|| A SMATIC Manager - [T... | [IFLADISTLIFED - [OB1 - |@Ducumentl'Mlcmsuftmllms'lGraph-[FBZ,DB... BiReseraRa o
Picture 6.7. Graph of the data values

i§8i57 Graph - [FB2,DB2 (Sequencer 1) —- TestMotor)\SIMATIC 300(1)},CPUl 314C-2 DP\...] =12 x]
I File Edit Insert PLC Debug Wiew Options Window Help |8 x|
Dl 8 = | | slmle]s] ol o |1 x| fore <] [F 3= [=[FFE @ _I_@JELEJ\
o =2 | ‘ o
=8P Em 83 Acceleration
Lzt =8 AECh
a -5 51 CALL|FC2
T 5| 7.7 I3 Input value:=10 (INT) (IN)
72 &g ‘—“—‘ """"""" Trans wrlte_reg}ster:iE#m#G [BYTE) (IN)
= 2 1 written:=I7.7 {BOOL) (IN}
ﬂ_, - To_write:=07.7 (BOOL) (OUT)
=
=
o
i 54 Inertia
= e .. 51 CALL|FCZ
il 7.7 fra Input_wvalue:=440 {(INT) (IN)
= ‘—Hﬁ """"""" e write register:=B#16#D (BYTE) (IN)
| kgr written:=17.7 [BOOTL) (TN)
? - To write:=9Q7.7 (BOOL) (OUT)
It
i
Ly
2T
= 587 velocity
Ve lan 51 CALL|FCZ
7.7 s Input_vwalue:=0 (INT) (IN)
% """"""" ks write register:=B#l6#5 (BYTE) (IN)
5 3 written:=17.7 (BOOL) (IN)
a0l . To write:=¢7.7 (BOOL) (OUT)
EE |4 ool
Press F1 for help, 2 loffline [T ks [mns [

iglstart H Tl 3] & & ”“ F5IATIC Manager - [T... | P LADISTURBD - [061 -...] B)Documentt - Microsott...| [57 Graph - [rez,08... |1} S22 & 22 a) 1217
Picture 6.8. Graph of the data values

- 56 -

6- Step 7 program for the conveyor

I SIMATIC Manager - [TestMator - C:\Program Files\Siemens'Step 7is7proji TestMoto]
BP Fle Edit Insert PLC View Options Window Help

=18lx]
=18 x|
Dl B e dl [2af 7 |6 @ o 1| 2| mEm el
R " B B R W 2 B
-l LU 3102 DP System data il FEZ Foz Fovz DEZ Motor SFCE4
E-E8 .57 Piogram{1]
{8 Sources
{E3 Blocks
Fress F1 to get Help, I [CPEBLIMPT) I I
i#fstart H &) @ 5 ”||[#smaTic Manager - [T... B]Documentt - Microsoft ... BIREZ >3 e
Picture 6.9. Main program aspect

-57 -

7- Camera: location, lighting and calibration

CHAPTER 7

Camera: location, lighting and calibration

7.1. — Camera. Properties and location

The camera which is chosen is a camera of the @®pany (Imaging Development
Systems), specifically an uEye Ul-146xLE model, 3X@048x1536).

The uEye LE 146x models are equipped with a ligitsgtive 1/2". Sensor with rolling
shutter which acquires 11 frames per second ifrdnlle-mode.

Characteristics: max. 11 fps, 220 fps in AOI-modéhvB20x240 pixels 1/2" CMOS
sensor, rolling shutter, progressive scan Exposbirais - 1,75 s (freerun mode) Binning
horizontal and vertical Subsampling horizontal &adical AOI horizontal and vertical

Picture 7.1. Camera ukEye

This camera is perfect for the process becausedtices size and it has a high
resolution, as well as a progressive scan gralibiages.

Taking into account the maximum reach of the ramotvell as the tool length and the
camera lens length. The support of the camera waferm order to not to damage it. The
camera is situated on the top of the workspace, ijushe middle of the table and at an
altitude of 1160 mm. The camera is joined with sheport by a screw with two nuts, one to
fix in the support and another to fix the camerd aot let movements in the camera.

- B8 -

7- Camera: location, lighting and calibration

7.2. — Choosing the correct lens

The lens is as important as the illumination of pinecess. It defines the vision field of
the camera which will be the robot “eye”. To caltel the correct lens a program in Visual
Basic is used which includes the equation with tékations between the focus and the
dimensions on the surface of work.

The picture below shows the result of the prograuch the appropriate lens used in the
camera:

64 wl) g03zn |
1220 WL) 150 L

: width of object
: height of object

: width of format 1/2 format = 6.4mm, 1/3 format = 4.8mm,
1/4 format = 3.6mm

P h : height of format 1/2 format = 4.8mm, 1/3 format = 3.6mm,

i . 1/4 format = 2.7mm
W/H L wih : focal length
: object distance

-]

= IS

— —-

Example : Full image of 4.5m-high object on a TV monitor camera:
1/3format, Object distance : 10m

w _ h _f

w H L H=4.5m=4500mm L=10m = 10,000mm
h f 3.6 f
— = — = ——— = ———— = 8mm
H L 4,500 10,000

Picture 7.2. Calculating the focus

The data include in the equation are:

- Length from the table to the camera = 1150 mm
- Width of the table = 1120 mm

- Y% format = 6.4 mm

So, the focus is 6.0327 mm and then the cameraresga a6 mm lens

7.3. — Lighting the surface

Lighting is the most important paragraph when camere used. A good illumination
enable to recognize each object in an easier wayeSarameters like brightness, contrast...
need to be controlled.

The first step is to choose the best for the ptogex to check which location is the
best.

- 59 -

7- Camera: location, lighting and calibration

After some tests, the lighting selected is provitdgdwo fluorescent tubes located on
the support of the camera, far away from the robath. These fluorescent tubes have to run
with high frequency. The camera grabs more thafr&fies per second and because of this
some dimming parts can appear.

The two fluorescent tubes are 13 W each one witngth of 530 mm; they emit a
uniform lighting without too brightness in the centotherwise the white color of the surface
would reflex the light and the quality of the imageould be bad.

For the tubes it is necessary to use another gietding up these. In this case the
support will be made of wood. The measures anditotaf this are selected by the user but
these setting don’t need a high precision.

A Quicktronic Intelligent QTi dimmable is a deviadich ensures flicker-free operation
of the lamps throughout the entire dimming rangemfrl00 to 1%; specifically the device
Quicktronic Intelligent QTP 2x18/230-240 is utilzén the project. The picture below shows
the physical form of this, the next picture exposehe electric diagram to make the
connection between the lamps, the Quicktronic aedetectric network.

- : S GSRAM -)

p— Ll M

Picture 7.3. Quicktronic Intelligent QTP 2x18/23082

M —t—a

QTP 2x.../
230-240

[] L 8]
) L | Al

T'll le L

-~ M G R ==

Picture 7.4. Electric diagram

The cables have two colors, one for each lamp énduitd red) and they are hold in the
camera support by bridges. The Quicktronic is atsding up here too.

-60 -

7- Camera: location, lighting and calibration

7.4. — Calibrating the coordinates on the work area

When the lighting and the lens are correct and eciadl, the next step consists in adjust

the data of the camera in the program HALCON, myalgf some parameters to get the best
quality during the recording.

** Adjusting new parameters in uEye camera **

*kkkkkkkhhkk *

*kkkkkkk

close_all_framegrabbers ()

open_framegrabber (‘'uEye', 2, 2, 0, 0, O, O, 'default', 8, 'gray', -1, 'false’, 'UI146XxLE-C', 1, 0,
-1, AcqHandle)
set_framegrabber_param (AcgHandle, ‘contrast’, 256)
set_framegrabber_param (AcgHandle, 'exposure’, 10.3157)
set_framegrabber_param (AcgHandle, ‘frame_rate’, 27.542)
set_framegrabber_param (AcgHandle, 'gain_master’, 35)
grab_image_start (AcqHandle, -1)
while (true)
grab_image_async (Image, AcqHandle, -1)

* Do something
endwhile
close_framegrabber (AcqHandle)

The function set framegrabber_param modify somearpaters; in this case the
parameters changed are: contrast, exposure, frammeamd gain master. On the other hand, in
the function open_framegrabber the camera has $slented to record only half the pixels.
All this changes allows a faster image acquisitioih an optimal image quality.

Once parameters are adjusted, the calibrationteain $he calibration is done by a tool
like a calibration plate called “caltab” (see ittime picture below), it's a tool designed by
HALCON Company for calibrating surfaces in real mhoates. Therefore, a program is made
which takes pictures with the caltab in differensiions around the table.

j

Picture 7.5. Caltab

-61 -

7- Camera: location, lighting and calibration

The next program takes pictures and it recordsimage in the map “images2” with a
three number from 000. Then the program could lex@ed once, the caltab is situated in
another position and execute again following tm@cpss. The pictures would be a .tiff file:

** | ogging images for calibration **
kkkkhkkkkkhkkkkhhkkkkhhkkhkhkhkkhhkkkhkhkhkkhkhkhkxk
close_all_framegrabbers ()
dev_close_window ()
open_framegrabber ('uEye', 2, 2, 0, 0, 0, O, 'default’, 8, 'rgb', -1, 'false’, 'UI146xLE-C', '1', O, -1,
AcqHandle)
dev_open_window (0, 0, 512, 380, 'black’, WindowHandle)
set_framegrabber_param (AcgHandle, ‘contrast’, 256)
set_framegrabber_param (AcgHandle, 'exposure’, 10.3157)
set_framegrabber_param (AcgHandle, ‘frame_rate', 27.542)
set_framegrabber_param (AcgHandle, 'gain_master’, 30)
* set_framegrabber_param (AcqHandle, 'white_balance’, 'auto')
Counter :=0
while (true)
grab_image_start (AcqHandle, -1)
grab_image_async (Image, AcqHandle, -1)
write_image (Image, 'iff', 0, "./images2/' + (Counter$'03") + "tiff")
Counter := Counter + 1

stop ()
endwhile

Subsequently, one of the images taken during thibraaon are seen as well as the
caltab’s contour and dots that the program HALCQ@IN drawn.

Picture 7.6. Calibration picture

-62 -

7- Camera: location, lighting and calibration

The following program opens each picture and rezegrthe caltab in each position on
the table. Important data in the program which datlange for detecting the caltab are the
data the functions find_caltab and find_marks_aondep

The function camera_calibration is a powerful tooIHALCON and it computes the
final calibration and usually it takes several s@to be executed. In the last part of this
there are two functions which create two files with calculated parameters.

** Calibrating the surface of work **

*kkkkkkkhhkk

read_image (Image, './images2/000.tiff")
get_image_pointerl (Image, Pointer, Type, Width, Height)
dev_close_window ()
dev_open_window (0, 0, Width*0.60, Height*0.60, 'black’, WindowHandle)
dev_update_window (‘on’)
StartCampar ;= [0.006,0,0.0000032,0.0000032,512,384,1024,768]
* Calibration
Counter := 0
NRows =]
NCols ;=]
NStartpose ;=[]
caltab_points (‘caltab.descr’, X, Y, 2Z)
fori:=0to 26 by 1
read_image (Image, '/images2/' + (i$'03") + "tiff')
dev_set_draw (‘margin’)
dev_set_line_width (3)
find_caltab (Image, Caltab, 'caltab.descr’, 3, 90, 3)
find_marks_and_pose (Image, Caltab, 'caltab.descr’, StartCampar, 100, 10, 18, 0.5, 15, 100,
RCoord, CCoord, StartPose)
dev_set color ('red’)
disp_cross (WindowHandle, RCoord, CCoord, 6, 0)
tuple_concat (NRows, RCoord, NRows)
tuple_concat (NCols, CCoord, NCols)
tuple_concat (NStartpose, StartPose, NStartpose)
endfor
stop ()
dev_open_window (0, 0, 512, 512, 'black’, WindowHandle)
camera_calibration (X, Y, Z, NRows, NCols, StartCampar, NStartpose, ‘'all, CamParam,
NFinalPose, Errors)
write_cam_par (CamParam, 'campar.dat')
tuple_select_range (NFinalPose, 0, 6, Pose)
write_pose (Pose, 'campose.dat’)

After the calibration, the program necessary fa phoject can be made and with it
takes measures from a central point defined irptbgram and another object situated on the
work area.

- 63 -

7- Camera: location, lighting and calibration

To show this, in the next picture there is a m&emeasure the distance between the
center considered by the camera (red point) anccéiméer of the black ball. The program
shows the distance between this center and theobathe bottom. Can be checked than the
coordinates are exact because the center of theshailst in a distance of 40 mm and the
program returns this value.

1ol x]

Clear | Active |

0.346123275141
-0.104856194758

0.401602

Picture 7.7. First real coordinates

7.5. — HALCON program for the real process of the p roject

The process to implement consists in a black Haliqa everywhere on the table, the
ball has to be picked up by the robot and put dawaide the white box situated on the
conveyor. For this are going to be defined twoagagiin order to recognize easily each object
on each surface. In Chapter 3 the color of theetalilite was chosen to help and simplify the
iImages later collected. For this reason a black @&l a dark conveyor are used. So it is
easier to recognize the white box on the conveyatire 7.7)

The edges of the conveyor have a soft gray coldntaa problem to recognize just the
box. To solve this problem, these edges are coweitbdblack isolate tape.

-64 -

7- Camera: location, lighting and calibration

After that, HALCON program can confuse itself whers detecting the ball and this is
quite near to the conveyor. The best way to angiverproblem is leaving a small strip
without isolate tape in the side of the table, whis strip there isn’t problems with none
object.

For the last application will be necessary to ¢pet ¢oordinates of the central point of
the ball and the box. As each one has its own seitiabe placed, two regions are going to be
defined. The box region is defined like a rectanglech contains the conveyor and the ball
region like an ellipse which contains the areahaf tmaximum reach of the robot in correct
position to pick up objects. Additionally the pragr needs to be able to store the point where
the user wants to stop the conveyor.

So there are three steps, first to know if ball &odt are inside the area permitted,
second to know when box is in position defined hg user and third to get the real
coordinates (X axis and Y axis). The HALCON progrior all of these steps is:

Einal HALCON program (regions, positions and coordinates)

*kkkkkkkhhkk *kkkkkkkhhkk *%k%

dev_open_window (0, 0, 512, 512, 'black’, WindowHandle)

read_cam_par (‘camparOl.dat’, CamParam1)

read_pose (‘campose0l.dat', Posel)

set_origin_pose (Posel, 0, 0, 0, PoseNewOriginl)

close_all_framegrabbers ()

open_framegrabber ('ukye', 2, 2, 0, 0, 0, O, 'default’, 8, 'rgb', -1, ‘false’, 'UI146xLE-C', '1', O, -1,
AcqHandle)

set_framegrabber_param (AcgHandle, ‘frame_rate', 27.542)

set_framegrabber_param (AcgHandle, ‘contrast’, 256)

set_framegrabber_param (AcgHandle, 'exposure’, 10.3157)

set_framegrabber_param (AcgHandle, 'gain_master’, 35)

grab_image_start (AcqHandle, -1)

dev_update_window (‘off")

while (1)

** |ooking for the ball **

grab_image_async (Image, AcqHandle, -1)

set_origin_pose (Posel, 0.077595, 0.03263, 0, PoseNewOriginl)
dev_display (Image)

decompose3 (Image, red, green, blue)

rgb3_to_gray (red, green, blue, ImageGray)

disp_cross (WindowHandle, 350, 540, 6, 0)

gen_ellipse (Ellipse, 0, 510, -0.07, 480, 410)

reduce_domain (ImageGray, Ellipse, ImageReduced1)

threshold (ImageReducedl, Region, 0, 15)

connection (Region, ConnectedRegions)

select_shape (ConnectedRegions, SelectedRegions, 'area’, 'and’, 1200, 5000)
select_shape (SelectedRegions, SelectedRegions1, 'roundness’, ‘and’, 0.5, 1)

- 65 -

7- Camera: location, lighting and calibration

fill_up (SelectedRegionsl, RegionFillUp)

Ball := |RegionFillUp|
if (Ball =1)
area_center (RegionFillUp, Area, Row, Column)
image_points_to_world_plane (CamParaml, PoseNewOriginl, 350, 540, 'm', Xcenter,
Ycenter)
image_points_to_world_plane (CamParaml, PoseNewOriginl, Row, Column, 'm', Xball,
Yball)
distance_pp (Xcenter, Ycenter, Xball, Yball, DistanceBall)
disp_cross (WindowHandle, Row, Column, 6, 0)
else
** \When ball is not inside the robot reach, it shows a message **
dev_display (Ellipse)
dev_set_draw (‘margin’)
set_tposition (WindowHandle, 640, 640)
set_font (WindowHandle, '-Arial-14-*-*-*-*-1-")
dev_set_color (‘yellow")
write_string (WindowHandle, 'Ball out of the robot reach’)
endif

** |_ooking for the box **
gen_rectangle2 (Rectangle2, 110, 480, -0.05, 500, 70)
reduce_domain (red, Rectangle2, ImageReduced)
threshold (ImageReduced, Regionl, 45, 255)
connection (Regionl, ConnectedRegionsl)
select_shape (ConnectedRegions1, SelectedRegions?2, ‘area’, 'and’, 9000, 12000)
fill_up (SelectedRegions2, RegionFillUp1)
Box := |RegionFillUp1|
if (Box =1)
area_center (RegionFillup1, Areal, Rowl, Columnl)
image_points_to_world_plane (CamParaml, PoseNewOriginl, 350, 540, 'm', Xcenter,
Ycenter)
image_points_to_world_plane (CamParam1, PoseNewOriginl, Rowl, Columnl, 'm', Xbox,
Ybox)
disp_cross (WindowHandle, Xcenter, Ycenter, 6, 0)
disp_cross (WindowHandle, Row1, Columnl, 6, 0)
distance_pp (Xcenter, Ycenter, Xbox, Ybox, DistanceBox)
if (Column1>=370)
**\When box is in the column selected, a message appears **
set_tposition (WindowHandle, 640, 640)
set_font (WindowHandle, '-Arial-14-*-*-*-*-1-")
dev_set_color (‘'yellow')
write_string (WindowHandle, 'Box in correct position’)
endif
else
set_tposition (WindowHandle, 640, 640)
set_font (WindowHandle, '-Arial-14-*-*-*-*-1-")
dev_set_color (‘yellow")
write_string (WindowHandle, 'Box out of conveyor')

- 606 -

7- Camera: location, lighting and calibration

endif
endwhile

At the beginning of the program there are two newnmands read_cam_par and
read_pose, these are utilized to read the filestededuring the calibration. The central point
of the image is selected by the user, in this ¢Resv: 350, Column: 540); to adjust it in the
program, with set_origin_pose, the initial pointsBb defined as the central dot in the first
image acquired with the caltab can be changedlmsvi set_origin_pose (Posel, 0.077595,
0.03263, 0, PoseNewOriginl). Those values werentakth the program to prevent errors.

The following code has two parts clearly definedihe first one it is trying to detect if
ball is inside or outside of the robot reach. Wite command gen_ellipse and after with
reduce_domain the work area available by the rizbdefined, the program only works in this
specific area. After this with the select_shape mamd, it recognizes the ball and then it
takes the area_center. An important function isgengoints_to_world_plane because this
function transforms points in the image to realrdomates in the world. The second part is
similar, only changes the region (a rectangle) iamtludes the position where the box is in
the correct position.

- 67 -

8- OPC communication

CHAPTER 8

OPC communication

8.1. — OPC overview

OPC is open connectivity in industrial automatiomd ahe enterprise systems that
support industry. Interoperability is assured tiglouhe creation and maintenance of open
standards specifications. There are currently setandards specifications completed or in
development.

Based on fundamental standards and technologyeofi¢heral computing market, the
OPC Foundation adapts and creates specificati@adilhindustry-specific needs. OPC will
continue to create new standards as needs aris® auhpt existing standards to utilize new
technology.

OPC Server DP enables easy access to Profibus dPedeProfibus networks can
automatically be configured and diagnosed. Thisuesss extremely easy network
administration and enables flexible access to iddai components.

8.2. — OPC sever via Profibus connection

Standard OPC is utilized to make communicatiorwbeh the motor and a CP 5611
card (integrated on the PC). This card is usedotmect programming devices and PCs to
Profibus up to 12 Mbit/s and to the multipoint MRterface of Simatic S7.

OPC will connect with the PLC, the computer andri@or; that integration could be
commanded by Visual Basic later, following an ORGt@col in a Visual Basic program.

Next pictures show how to make the OPC connectiar &rofibus in order to get a

flexible access of each device as well as integearything in a final program made in
Visual Basic (remember that HALCON programs cam$ed in Visual Basic).

- 068 -

8- OPC communication

8.2.1. — Create an OPC connection

Open a new Simatic project, add a new PC statidnrasiude the OPC Server indicated
in Picture 8.2

HJSIMATIC Manager - [Miguelopc

=B
18l x|

EP Fle Edit Insert PLC Wiew Oplions Window Help

D 82| #]eei] af [2 2] o
Miguelope @‘g

< No Fiter » - 7| @ ElEJﬂﬁ”

MPIT) Sl
ut il
Copy Chrlse
Paste .
Dilete el
SIMATIC 400 Station
PLE ¥ SIMATIC 300 Station

o SMATICHStation
Object Propsrtiss.., Alt+Return

SIMATIC HMI Station
Other station
SIMATIC 55

PGIPC

SIMATIC OP

P

PROFIBLIS
Industrial Ethernet
FTP

57 Program
M7 Program

Inserts SIMATIC PC Station at the cursor position,
hstart|| () 5) & 5 || [z Configuratioschern | & opc scout - Hew Projectt [sTMATIC Manager -[.. [REeRe L e raMEZa o
Picture 8.1. First Step

[HwW Config - [shuttle1 (Configuration) - Miguelopc]

=18
=181 x|

@y Station Edit Inssrt PLC Wisw Options Window Hslp

Dlsls-® (%] &) 2| wlsl ol 3wl

il -_— T
Eind. nﬂ "
Pofier [Standed 7]
5 B¥ FROFIEUS OF
B PROFBUS-PA
-4 PROFINET 10
= Fl SIMATIC 300
=l SIMATIC 400
& SIMATIC HMI Station
[l SIMATIC PC Based Conral 3004400
=8, $IMATIC PC Station
- - Contraller
4| | _>|_| - CP Industrial Ethemet
=] CPPROFIBUS
-0 HMI
:Izl HhiEe B3 User Application
Index Module Oider num... | Fi.. | M... | Comment {3 Application
1 = £ OPC Server
2 @ . swyeosrd
3 | swveosps..
4 F
5 F
g d
7
8
El
10
1
12
13 o
T4
15
16
17
2 TP Server = 3
18 DOFC Server for the DP, FOL, FMS, 57 2
20 [between diferent subnets], 150/ TCP,
o | ||5HMP DF master class 2 PAOFINET =
Press Fi ko gat Help.

I =
| [Sconfiguratiesc... | & opC scout .., | #smaric Mana...| Bipocumentt - .. [[Mrw confi-I.. |4 BIER Bk G 7 S B8 04

Picture 8.2. Second step

Hstort| 1 &) @ 5 »

- 069 -

8- OPC communication

Insert the file corresponding to the CP card irdég in the computer, in this case
CP5611. Set an address for the new device (ircdss 6, remember that the PLC has address
2, the motor address 3)

onfig - [shuttlel {Configuration) -- Miguelopc] =18 x]
ﬁﬂ] Station Edit Insert PLC Wiew Options window Help & x|
SleB % 8 o] wlal[@ol el
B Bix
h :
T [OPCGewm R fnd | i
g J Brofle [Standsd 7]
% @ B¥ FROFIEUS DF
5 2 PROFIBUS-FA
E -4 PROFINET 10
7 q SIMATIC 300
] SIMATIC 400
3 = SIMATIC HMI Station
SIMATIC PC Based Contiol 3004400
SIMATIC PC Station
- {2 Cortroller
4] | > - CP Industial Ethernet
=-{3 CP PROFIBUS
= = CP 54T
Index Module Order run.. | Fi.. | M... | Comment
1 OFC Server [VEZ -
2
3 S/ VB, SP4
% 5
5
3 CP 561342
= CPEE13FO
a CPE614
3 1 CPEG14A2
0 ®-(3 CP 5614 FO
il B HHl
i 11 User dpplication
13 -
14
15
18
17
‘9 BEKT B61-1400 N
13 SIMATIC NET CF 5611 PROFIBUS, 57 i
20 connections, DP master, D1, DP
e | |[Save, PG funstions, DF master class 2. =l
Press F1 ta get Help. [cha

dstert || (4] &) & 2 7

| (A contiguratiesc. .| & 0PC Scout ... | SSMATIC Hana...| BYpocumenti <., |[ERAw Config [|4 BES o B € 7 oy B8 09
Picture 8.3. Third step

[Hw Config - [shuttlel {Configuration) —] el =
) Station Edit Incert PLC View Optiors Window Help =181 x|
DllE(® (%) & e sl Fo 2 el

T | find i

J Profile: Standard *

|L]'-,§'§l PROFIBUS DP

2 PROFIBUS-PA

#2 PROFINET 1D

SIMATIC 300

SIMATIC 400

SIMATIC HMI Station

SIMATIC PC Based Conirol 300/400

Address. 6 x -8 SIMATICPC Station

Properties - PROFIBUS interface CP 5611 (R0O/52)

Jad| Geveral | Poraneters |

@] oa|~a|m || fwfr

Contioller
< LR R CP Indlustisl Ethermet
Transmission 1ale: 1.5 Mbps CP PROFIBUS
{2 cPaaT
e Subnet
index | [Modue Ordler s ot networked — New...
1 |[{ OFCSewer 5
2 Propettes... =8 e e
3 i S V6.0 SP4
1 Delete 1 SwVB05PE
3 [CPE81E
3 1) CPE613A2
= 1) CPSB13FO0
g
] [crseiasz
0 £ CREE14FO
1 B0 HMl
7 0K Cancel Help - User Application
13
14
15
18
17
L EGK1 Ga1-1AA00 - 3
13 SIMATIC NET CP 5611 PROFIBUS. 57 i
20 connections, DP master, DPY1, DP
= =] |[Save, P functions, DF master class 2. =

Insertion possible cha

I
i start |J] 3] @ 5 || (= corfiguatiesc...| 5 opc Seout ... | MSATIC Mana.. | Epocument1 - .. |[Thnw config- [|4 IR E L & » B TE 0w
Picture 8.4. Fourth step

-70 -

8- OPC communication

In “object properties”, include the new network ddike it was explained in chapter 5.
The program has the following appearance (Pictugg 8

[Hw Config - [shuttle1 {Configuration) — Miguelopc] &) x]
@y Station Edit Insert PLC Wiew Cptions Window Help == x|
Dlele-R (% o] e bl mo) e el

= =

(0[] OFCserver = 2 nt{al
ENE :
oy i Brofile: | Standard &

M. e £ - W PRAFIELS OF
Replace Object... 2% PROFIBUSPA

3% PROFINET IO
Add Master System e
SIMATIC 400
SIMATIC HMI Station
il SIMATIC PC Based Control 300/400
B, SIMATIC FC Stalion

Disconinect aster System

Insert BROFINET 10 System
Discorifiett PROFINET 10 System
PROFINET 10 Manage Syne Domair
PROFINET 16 Topoloays .

Iscichrore Made

wmwmm‘bw

Specify fodule,

Delete: Del

GaTo 3
Flterssianed Modules

Mortor adiy,
Edit Symbo! >
alt+Return

Product Support Information ChrF2

FAQs CHHFT

Find Manual Cirb+Fe —

GGK1 561-TA4vE.0.
FROFIBUS-DP slaves for SIMATIC 57. M7, E¢
3 C7 [distributed rack] =
Displays properties of the selected object for editing,

g start |J o6 & 5 ”H) Confiquraties.. | & 0PC Scout -, | SASIMATIC Mana...| B Documentt - .. |[Mnw config-[.. | BISSS. L o SMETa 12
Picture 8.5. Fifth step

JLJSIMATIC Manager - [Miguelopc — i & x]
%F\}e Edit Insert PLC View Options Window Help -]

Ole| g2l7] || sl [= 2] [| @ [cene, 19| 86| ®/E(m| el
R ¥

-8, shuttel

QFC Server CPB&E11

Frass F1 to get Help,

Hstart| | 1 3) @ 5 >

|cPSa1 1{PROFIBUS) [[

[
| [Hconfigurati...| 2 opc scout.. || #stmaTic... Bpocument... | @B Corfig... [ERes a2l Ta o
Picture 8.6. Sixth step

-71 -

8- OPC communication

Until here, OPC configuration is almost done. Nows itime to make the network with
the motor and the PLC. These steps are shown ipteh& but there are some pictures to
explain the process followed in order to know timalfaddresses and remember again.

At first, add “Rail” and afterwards the PLC liketime picture 8.8.

IJSIMATIC Manager - [Miguelopc - C:\Program Files'Siemens\Step?\sproj\Miguelop] . =

EP Fle Edit Insert PLC Wiew Oplions Window Help B =8 x|
e =

Dl 22l o lmle] bl e 2 2 s
35gusewlr?i'::\cﬂc Eil = @E @m@

shutle] SIMATICTO0H] shuten MPI(T] PROFIBUS(1)

[aE

SIMATIC H Station
SIMATIC PC Station
SIMATIC HMI Station
Other station
SIMATIC 55
PGIPC
SIMATIC OP

Object Propsttiss... Alt+Return

MPI

PROFIEUS
Industrial Ethernat
PTP

57 Program
17 Program

Inserts SIMATIC 300 Station at the cursor position.

R start |J 5] @ 5 ?|| mcofiquati.| 3 orc scout..|[#smatic . Eipocumert... | Brw corfia...| [REeRe L e r M Za os

Picture 8.7. Seventh step

[EiZHw Config - [SIMATIC 300(1) (Configuration) -- Miguelapc] -5 x|
) Station Edit Insert PLC View Oplions Window Help [|

D=5 % & dila| [=) 28] wel|

- oj x|
o
| IS - gng | ﬁ’lﬂl

FPrafile; Standard *

[CPU 314 -]
7) CRU 314 1FM
1) CPU 314C2DP
1) CRU 314C2 PP
1) CPU 315
1) CPU 3152 DP
1) CPU 3152 PN/DP
1) CRU 315F-2 DP
1) CPU 315F-2 PNJDP
1 CRU 216
_1 CPU 316-2 DP
1 CPU 3172
_1 CPU 317-2 PN/DP
1 CPU317F-2
_1 CPU 317F-2 PN/DP
] CPU 3182
_1 CPU 319-3 PN/DP
1 CPUE14

¥ {0 cPuM?
1l | _'l_l B FM-300

Gateway

[1

ooo || m|o]e | |r

i ! 300
== o um -0 MPEXTENSION
Siot Moduls Order number Fimwars | WPl 2 Corrient =24 5':;00
D FES7 07 ABADGGAAD &

=}

= RACK-300

| BB Ral =
5 -] SM-300

7 @ SMATIC 400

5 BES7 307-1BADD-08AD 3
i o Load supply voltage 120/230WAC: 24WVDT ——
0 o ||z

Press F1 to get Help. icha
R start |J 5] @ 5 ?|| mcofiquati.| 3 orc scout..| #amatic w...| Bipocumert... |[nw Confi.. |4 RsRL. L e » M Ta 1o

Picture 8.8. Eighth step

|ES

-72 -

8- OPC communication

Include the CPU for the PLC and create a new nétWior this case with address 7).
This network will connect the motor.

nfiguration) -- Miguelopc] N =3l
By Station Edit Insert PLC Wiew Options MWindow Help -]
Dce(2-(® % @ ®le| sl Do 8 x|

= =)}

Find | 1|
Bicfie: [Standard =

2z ||} Dewn Y S ¥ PROFIEUS DP -
23 [[f amac Gk 222 PROFEUSFA
24 || Gooal peplace Object... &4 PROFINET 10
?5 FoSH0h g Master System SIMATIL.300
i Einaster:System B L:I £2
T PROFINET g0 trai
Discoriect PROFIN e
PROFINET 10/ Manage Sync Domain.. 1 CRU 12 M
PROFINET 10 Topalomy, s 1 CPUAZC
Isuchrone Mods CPU 313
Spcaty ot iyl N
Delete Dl CPU 31302 PP
2 cPU 314
b k 11 CPU 14 1FM
Filier Assigned Modules CPU 31402 DP
Mot Mady [sEs7 aaecFonasen ||
~[d] ES7 314-60F01-04BD
P Edt Syrnbls _"lJ [l eEST 314 6CFO204B0
|l — ' {0 BEST 3146C603-04E0
:i:l o) UR Product Support Information Ctrl+F2 - EPU1YE2:§ [
FAQS CHri+F7 _ S CPU 35
Module Find Manual Ctl+Fs MPla. | 1. | 8. | Comment S CFU 4152 0P
PS 307 2 57307 TEROTIED - b b
CPU 314C-2 DP BES7 314-6CG03-0AB0 V2.0 2 e
i =
DEBIE EEE 3} EF'Z Fruee
iz;ﬂ CFU 3162 DF
ot 7 L

[BEST 314 6CED3-GABD

- £y
W ork memony SEKB: 0 1ms/1000 AJ

instnuctions: DI24/D016; AIB/A02
Sl e e =

Displays properties of the selected object for editing,

iglstart |J o 3] & & ”H () Confiqurati..| £y orC Scout.. | Msmatic m..| Bbocument... |[BBAw Conf..
Picture 8.9. Ninth step

mly seation Opti Help

Dl e85 &) o] sl B 2 nel

iew

Find:

Profile: [Standard ¥

x| P BF FROFIELS DF A
222 PROFIBUSPA

- PROFINET IO

SIMATIC 300

m-{ C7

[= Genersl | Parameters | -0 CP30

-3 CPU-300
Address, B If & gubnet is sefected, 3 cru 32
the nest availabls address is suggested
Highest addiess: 126

2 CRU 312 1FM
Transmission rate: 1.5 Mbps

B DH2ADOTE

Ha ASAGE
£4 annt
25 Fostion

@ cruE2C
{1 crPum3
] CPU33C
{1 CPU 313C-2DF
{11 CcPU M3C2 PP
11 CPU 314
Fropertis... (1 CPUB1AIFM
= (3 CPU 314C2DP
Delete [£ES7 3146CF00.04BD
[§ £ES7 3t46CF0-08R0 T
[8 6£57 3146cF0200R0
=+{_] BES7 314-5CG03-04B0
| -] ¥2.0
:IZI e & EFLI14E-2 PP
1 CPU 315
(3 CRUHIS2DP

Cancel Help L CFU 3152 FN/DF

1 CPU 315F-2DF

Subnet:

- ot networked - New...

o
B

[H CPU 314C-2 DP
OF

LHEETIE
S
Limpy
Fliiyy

{2 CPU 315F-2 PN/DP

1y

CPU 316
1 CFU 3162 DP

i3

RN

i vl ioo 7|

BES7 314-6CG03-04B0 HH

Wiork memary SBKE: 0. Tms/1000 -
instiuctions; DI24/DO1E; ABAA02

]| aaratent 4 pdes sk v e =l

e
Fy

Fress Fi b get Help.

hstort | 141) @ 1 >

[
#,5MaTic M| ®pocument. . |[BRAw Confi.. [ERssar
Picture 8.10. Tenth step

| @Cunﬁguratlml £ OPC Scout,

T o

-73-

8- OPC communication

OPC server via Profibus is already made. The fooalfiguration is shown in the next
picture.

IJSIMATIC Manager - [opc - C:\Program Files\Siemens'Step7\s?projiopc]

=18l x|
B9 Fle Edit Inssrt PLC Wisw Options Window Help

=151 x|
ol 2205 &% |=e ﬂ“?&“ﬁ < No Fiter > vﬁl%ﬁ'@ =3|m E”
- = R =
oy
Hardware CPLU 314C-20P
{5 57 Progiam(1)
=8 shuttis1
“[@ OPCServer
PressFi ko get Help. [|cPsa11{PROFIBUS) [[
i#fstart |J] B & 5 ”|| SEconfigurati.| 2 opc scout...|[[Esmaatic .. Bipocument... | Bhw config.. | [EREE o relEEa 10

Picture 8.11. Eleventh step

To download in the PLC is necessary to make sonamgds. To download the PC
Station (shuttlel): select options, set PG/PC faterand select PC internal (local).

IJSIMATIC Manager - [opc - C:\Program Files\Siemens'Step7\s?proj\opc]

=Bl x]
BpFle Edt Insert PLC View | options Window Help =151 x|
Ol 22(a| & |=|m| Customee.. Chri+AIL+E mﬁl =al gl = (=(m) E”

=20 o Text Libraries »

- y Display Language. .,
=-J8] CPU 31402 DP Manage Multiingusl Texts 3
-2 57 Progiam(1) T
=2 “tgﬂc — RUr-Time Properties...
Compare Blacks,..
Reference Data 3

Define Giohel Bata
Corfigure Ketwork

Simulate Modules
Configurs Process Diagnostics

Edit safety program

Frocesses interfaces and paramster sssignments for devices and assigns them o esch ather.
#start |J] 5 & 5 ”|| Econfigurati.| 2 opc scout...|[[Esmatic.. Eipocument... | Bhw config.. | [EREE 2@ Ea 1o
Picture 8.12. Twelfth step

-74 -

8- OPC communication

2 SIMATIC Manager - [ope — C:\Program Files\Siemens | StepTystpr ISETES
BB Fie Edit Inssit PLC Wiew Options Window Help =13 x|

D] 225 & |2 @[5 2[5 <NoFiter > -1 %| 2la) =Em ﬁ”
(ATIC 300(1]

LR 140200 Hardwaie CPU 31402 DF
{1 57 Proaram(1)

=]

=8, shuttlel
? T Set PG/PC Interface x|
Aosess Path |

Access Point of the Application;
[S7ONLINE [STEFT) —> PCintemal (lozal] =
(Standard for STEP 7)

Intertace Parameter Assignment Lised

|PCinternal (locall Froperies..

B2 150 Ind, Ethemet -> Frealtek RTLATA
PL intsmal flocal]

TCR/P -» IntellR) PRO/100VE Ne__| Copyy
------ - [

[Communication with SIMATIC campanents
in this PGAPC)

Add/Remove: Select.. ‘
Cancel Help

Press Fi ko get Help. [

dstart|| [) & 1 7

|cPSB11{PROFIBUS) [[

| [Fconfigurati...| | opc scout... | #smaric m...| Bpscumert... | B config... [[secpesecin. [(ISR S G S S Ba 107
Picture 8.13. Thirteenth step

To download Simatic 300: select options, set PGiR@€rface and select CP5611
(Profibus)

I STMATIC Manager - [opc — C:\Program Files'\Siem . (=1
89 Fle Edit Insert PLC View Options Window Help |8 x|
D[] 377 || b [= % [
5 opc
IMATIC 300(1) ﬁaﬂ]
CPU 314C-20P Hatdwars CPU 314C:2DP
(&0 57 Pragrami1)
E-8 shuttle]
HEL Belvey Set PG/PC Interface x|
Assess Path |
Aiceess Paint of the Applicatio;
[S7ONLINE (STER7] -+ CRS&1IIFROFIELS] =l
(Standard for STER.7)
Interface Parameter Assignment Usad)
|EPSE11(PROFIBUS) <Active> Propeities..
TPEET1IPPI Diagnostics
CPSETI[FROFIEVS -DF Shave) |
CPSET1(PAOFIBUS) <Actives Copy
B150 Ind. Ethermet » Intel[FI PRD/1 Dot
»
[User parameter assignment of your
communications processor CPSETT for
SOFTHET DP Master]
Addd/Remove: Select. ‘
Cancel Help
Fress Fl to get Help. [CPS61 1{PROFIBLS)

| I
Hstart|| (1] B) & 51 »|| (D confiouati..| 2 opC St | MMATICH..| BDocument.. | BRHw Corfig...|[setpepein. [EIEEE. L 0 S Ta 1o

Picture 8.14. Fourteenth step

-75-

8- OPC communication

Select network and configure a S7 connection intkgiuclicking on OPC server. The
window in the picture 8.16 appears.

E:NetPro - [opc (Netwark) — G| R =13
%ENatwnrk Edit Insert PLC Wiew Options Window Help -]
=% (% 5| o]l &8 o [@all] el

gl | WMFI(1) 3 =
Find nﬂ Etlz MPI

Sl e PROFIBLIS(1)

5 ¥ PROFIEUS OF PROFIBUS

B2 PROFIBUS-F
B2 PROFINET IO
(3 Stations
(3 Subrets

|SIMATIC 300(1)

l [cPu DR
31402 |
D !

[

2 2

e
PROFIBUS-DP slaves for SIMATIC 57, M7, and C7 : |
(distibuted rack] 4 | v
Ready |CPSe11{PROFIBLS) [x 130 ¥ 408 |)
Hstart ||| (71 B) & 51 »|| Ecarfiou...| 2 opcse... | #smiart.. | @ipocune. .| BaHw con..|[Bnetpro .. GERERE > BME T 1w

Picture 8.15. Fifth step

2% NetPro - [ope (Netwark) — C\Program Files\,.\Step7\s Tprojiopc] =181 %]
%@Natwm Edit Inssit PLC Wiew -Options wWindow Help == x|
2% (%] 3| (e bl 8 e @l]
| PI1) 3 i
Find atlail | VP

x

Selection of the network.
General | opC | Stats lnfomation |

=8¢ PROFIBUS DP

A2 PROFIBUS-PA - Local Connection End Poind Corpection idsntification
& PROFINET IO I™ Fived contioued dyrariic sonnsction IBealIDE
{2 Stations
£ Subrets ¥ reway [57 connestion_{
I# Estabiish mantive derrieation VFD Name:
[T Serid operatiin mode messanes [OPC Server

- Connection Path

Local Patner
; shutle1/ SIMATIC 3001)/
EndPaint 0BT Server crU314C20F
Interface: |cPse1t x| [cPu3nac-2op, DPIR/SE =l
Subnet FROFIELS(T] [FROFIEDS] FROFIBUS (1] [FROFIBUS]
Address [6 B

Address Details.

il

=
j
Cancel Hep |
e

PAOFIBUS-DP slaves for SIMATIC 57, M7, and C7 2 >

[distrbuted 1ack] 4] | i

Ready [CPSB11{FROFIBLS) [1 from 1 selected [Cha
#start |J] &) & 5 ”|| Hconfigu. | &orcse. | #emart... | Blpocume...| Bhrw con. | [ZBnetro .. G REER R 7 B &

Picture 8.16. Sixteenth step

-76 -

8- OPC communication

8.2.2. — Check OPC connection

OPC scout is a tool of Simatic which allows theruseknow in each moment the value,
format, and state of the variables that has beeluded. Next pictures show the way for
making this.

HEE]orc scout - New Project1 =1ol x|

. File ‘Wiew Server Group 7

= & & &

|Servers and groups ltems incl. status infarmation
E--ﬁ Server(s) | Item Names | Value | Format | Type \ Access | Quality IBS
1 - 2 Local Server(s] 1

& HanServer HartOpe:

Q- OPC. SimaticHMILHmiR T m
- OPC SimaticHMI PTPra
A OFC SimaticNET

ey, [New gioup] [l add Group x|
- OPC SimaticNET.DF

& PhoerisContact &%-Server.: . .
& ProfiDrive Profils erver Enter 3 Group Name'

Group Properties:

% Femate Server(s) ITESl
i ..\;) Add Remote Servers(s| X
Create new group active I
Requested update rate in me a0 h

I Extended oK I LCancel

Apply |

|Successfu|l}l connected to: 'OPC.SimaticHET | Ma. | Ma. v

Picture 8.17. OPC Scout

x
Modes I Leemzs | ltern Mames I g The listed Item[s] will be added to
&= Connections 4 MEBT00 ST[ST conrection_11.. STIS7 col
'M t?[:_ L bW 30 SF[ST connection_1)... S7:[57 col
ﬁ \FMS" 2 ME121 S7[57 connection_1]... 57[57 co
EI",J W57 w3 M126.0 SE[SF connection_1]... S7[57 col
4 57 cornection_1
E--{J abjects
Y [New Definition ~CiBJECTTYPE_57
|
Q Datatype Adress Bit No. Mo, Values
Pl
- Jx =l [z ; il . | 2
L to ta
-pE T 255 7 &
- DB
- block:
L blocks Itemalias: I
- scan
- aliases
- YSR Ok | LCaneel Apply |

‘l | _’I Filter | Ok I LCancel |

| New Definition] is selected |z2/08/2003[1855 4
Picture 8.18. Define new item

-77 -

8- OPC communication

RT=TEY

File VWiew Server Group Item 7

s | & [el H-|

|Servers and groups Items incl. status information
E--ﬂ Server(s) Item Names [Value [Format [Type [Access | Quality | Time Stamp {UTC)
E| Bl | ocal Server(s) 1 S7[ST connection_1]kw30 1] Qriginal uint16 R/ good 08/21/2003 23.53:26.108
: 48 HantServer HatOpe 2 |SF[S7 connection 1]Mx125.0 False Original bool R ood 08/21/2003 226326 108
- OPC SimaticHMLHmiR Trn . @ @0 0000]

& OPC SimaticHMI PTPro
28 OPC SimaticNET
L Test

gy [Mew group]

-&r OPC.SimaticNET.DP

& PhoerisContact A3-Server. 21
& ProfiDiive. ProfilS erver

E-\fa Remote Servers]
5----\!3 Add Remote Servers(s)

| S7.[S7 connection_1Mk125.0
Picture 8.19.ltems state

8.3. — New S7 program for the conveyor with OPC

The last S7 program was controlled by switches. ifitegrate everything in one
application with Visual Basic, all the inputs anatmuts which were commanded by switches,

are stored in a memory variable (M). The prograsiteen modified to not include the initial
data at the same time as the velocity is beinggdtn

At first, the initial data are introduced (NetwoHB) therefore the motor will start
(Network 4 and 2). The program changes from thet stgister to the velocity register. In the
Visual Basic program, speed has to be changedmey(Network 1). The belt can be stopped
at any time (Network 3). New S7 program is dispthyethe pictures below.

(1%
—lsix|
|
‘]
n
m25.0 5onr 20,6
5 Q
il 131 sstytoms—Tv BIf...
x
x J s
T
Brese. B | |
=
AR, 2 o T R T S 7

Press 1t g k.
Mstart || 1]) & 51 7| | #smanic vanager - R

Pictu e“8.20; I\Iew S7 progrém (1)

[ope /STL/F

-78 -

8- OPC communication

LAD/STL/F5D - [0B1 (5[]
43 Fle Edt Insert PLC Debug Wiew Options Window Help ETES|
| Disle{a| &l & (wlel | s of sl 0 TE) HolEs |l x|

L | |
S New netmork [Conment:
it g

0 Conparator

&l Converter

&4 Counter M125.1 M20.3 o

g e — e ExO

ops

& Integer function

{28 Floating-peint fet Input..

B 0—{value To_write[-07.7

@ Frogram control .

g3 Shift/Rotate pEarE,,

5 Staus bts B#1642 ~{register =

@ Tiners

& Word logic 17.7{uritten

& FB blocks

) FCblacks
(g FBblocks

& SCiods Hetwork 4 : Title:

£l mikele instances| ”

W Lbraries At

n125.0 w06 T
— A s
nput_
1-|value To_write Q7.7
kil | 2] -
2 write
B#16#2 ~[ragister

B Fioga.. [B=cals 17.7—{written =l
=
A O e N O N L T e
Press 1 o get e, [8 e bbs<sz fws finset chg
idstart ||| 1] 5) & (51 »|| 5maTIc Manaer - [opc . [LAD/STL/FBD - [0B1 —.. B]Document -ierosolt W [¢ Bt L L S 2. 1se

18|
£ Pl Edt It PLC Debug View Options Window Heb L8l x|

| Dlsle-ml &« oo cildn] o slo)| [£ AH-OlF(L | o]=] W]
EF
Network 5: Title:
B N netork [Conment
&) it logic.
(X1 Comparator
{89 Converter
&4 Counter B2
g ol M125.0 Mizs.2 752 0.3
2umps
(&) Integer function /1 8 Ewo—(}—
(&8 Floating-paint fet.
s forz_s0 5 1o}
@8 Program control
& SrtRotate m125.2- 01T S0 S _MoRE[-
{aB) Status bits
@) Timers —jack_ep 5_ACTIVEN
{33 Word logic
& FBblacks —s_PREV ERE_FLT|-
{g FCblocks
& FBblocks s _wmxr auTo_on-
g 5FC blocks
Al oltipls nstances _{sw avro TAP oNl
M Lbraries = =
s TaE A o
|
s man
s sew
s_om
T — |
e s _oer
—_pusk
BiPooa als
=
I!l!llllll TEmo) 2o A 30 7 & Addessiio) 5 Modly) 6 Diagnosics 7 Comparson]
Press F1 to get Help. [@ ffine Abs<5.2 w4 insert [chg
ifhstort ||| 1] (3] & (51 7|| #SATIC Monager - [ope .. | [LAD/STL/FED ~[0B1-...)Documents - Hlcrosoft W [e s s My = 155

Picture 8.22. New S7 program (3)

-79 -

9- Communication and Visual Basic programs

CHAPTER 9

Communication and Visual Basic programs

9.1. — Summary

At the moment all the components of the projectcamrenected and the elements which
take part in the project are done. Now it's timertake the final Visual Basic program which
will command everything. It's not easy to do at gitaneous because each part has to be
tested in order to check the errors in an easiagt w

For this reason, the current chapter will expldie tifferent programs made in this
project. The first is to control the conveyor, at@ next is to create the communication
between the computer and the robot.

After this, a flowchart will be necessary to makighwthe process to follow in order to
integrate these programs and to add the requiréel iwofinish it.

9.2. — Program that controls the belt over PROFIBUS

This program consists in a simple window which stidhe images acquired by the
camera in each moment as well as two buttons tot/stop the belt by the user. It even
allows adjusting the velocity of the motor displayithe speed in rev/seg. This program also
includes a menu bar with some options like intradtie initial data (acceleration, torque...)
in the motor.

Subsequently, in the picture 9.1 is displayed tivwedew created in Visual Basic, and
later is the code used in the program for contigllihe conveyor. Realize that this program
integrates OPC server and HALCON. To include a H@INCprogram is necessary to save
the program with .bas extension and add it in tieu& Basic project like a module. After
this, the code can be added in the main progranturi@i 9.1 shows the program made. The
programming code for this application is in Appendj paragraph A2.1.

-80 -

9- Communication and Visual Basic programs

. Form1 B = e

File Actions
rev/seq motor
True
1,159 Start

Picture 9.1. Program to control the conveyor

9.3. — Robot-PC Ethernet communication and VB progr ams

9.3.1. — General aspects

Until now, PROFIBUS has been used in the commuioicabut between the robot and

the main PC will be utilized an Ethernet connectienthe reason that this method has been

used successfully before in the department ansleven easier than PROFIBUS connection
to send data instead of the coordinates. This wal has the problem of a reduced speed
while data are being sent.

The cable used is a crossover cable. Ethernet comsation needs an IP address and a
remote port adjusted as the user wants. Thesestatdd be the same in each computer to
transfer information. The communications has besredvith the following data:

- IP address: 136.129.165.4
- Remote port: 10101

-81 -

9- Communication and Visual Basic programs

The KUKA robot has an own operating system (KUKA HMZ2) and it also has a
special version of Windows XP. Because of this cbexmunication between the robot and
the main computer needs two steps for the final mamcation. Due to this it will be
necessary to make a Visual Basic program in thepoden of the robot as well as in the main
computer. Communication between the robot and Wirsds called Crosscom.

/ Windows XP\ /

Windows 2000 \

KUKA .| VB server | .| VB main
HMI [7| program [~ "| program

N / N /

Crosscor

Picture 9.2. Communication scheme

9.3.2. — First version of the server program in the robot

The following program is the first version of thesWal Basic application made for
Windows XP of the robot computer. Two differenttgaare mentioned, on the left side there
are parameters needed for Ethernet connectionrrigriie a server, on the right side there is
the connection with the robot via Crosscom. In addj the program includes two state lights
and two texts where data sent and received arershdlien both connections are good, the
lights have a green color, if not they change i@d. Sometimes the state of the server is
listening when the application in the main compigerot correct. An example, the following
two pictures show a correct sending and reception.

+"= Client Settings for robot ACRO_R1 x|
askeetinaz "Cnn. State Server -‘ "Cnn. State Robat —
— Locale settings — Remate settings
Ip Addr, |135.129.165.4 Remote Part 1o
Connection state |Cnnnected ta host
— Server Connectiohs — Robaot Connections
[Carmest | [Fannest | Disconnect Send
~ Receive —Send
IHeIID Good

Picture 9.3. Server program in the robot

-82 -

9- Communication and Visual Basic programs

9.3.3. — Program in the main PC

The current section, like section 9.2, displaysrals program which will take part in
the final program. The aim of the program is cortgdledifferent. This application is just to
demonstrate that communication can be possibleé@obteck that data sent and received are
correct, without mistakes.

& winsock =lolx]

Send | IHeIIo
Disconnect | Connected

Ip address |1 36.129.165.4
Remate Port 10m

Received
Clear |

Good

Picture 9.4. Program to communicate with the robot

The programming code of both program used for timarounication is in Appendix 2
at the end of the current report, section A2.2 AB®B. These programs are not explained in
the current chapter because it will be added infitked program and it will be explained in
one of the last chapters of the project report.

-83 -

10-Robot settings: suction system and calibration.

CHAPTER 10

Robot settings: suction system and calibration

10.1. — Robot suction system

The next step is to include the robot suction systecessary to complete the project.
The object which would be picked up is a small blball with a diameter approx. 500 mm.
So the best tool to get the ball is a suction agb with a diameter smaller than the diameter
of the object; in this way, the power of suctiomigher.

Besides the cup tool, other components are needfrh more important than the tool
itself. These components are the following:

- Compressor

- Valve

- Vacuum sensor (Pneumatic Converter)
- Vacuum generator

- Suction cup tool

Each one has its own function. It's going to belaxy@d in the next section.

10.1.1. — Compressor (Panther - Werther Internation al)

One of the most important components in the sudystem is the compressor; the first
part in this system. A gas compressor is a mechhdavice that increases the pressure of gas
by reducing its volume, with this is obtained aithna high velocity. It is explained because
the pressure and after the vacuum generator dieasaiction in the final point, which means,
in the cup tool. The picture 10.1 shows the congmeshat takes part in the project
application.

-84 -

10-Robot settings: suction system and calibration.

Picture 10.1. Compressor

10.1.2. — Solenoid valve MFH-2-M5 - 4573

The valve is connected directly with the compressith a tube. This valve has the
function of start/stop the suction. It actuate®tigh an electrical signal and is connected to
the PLC to be commanded by OPC and to be supplied.

The address in the PLC for this device is the du@l5.0 and as can be seen in the
picture, the normal position is closed.

2|
L

[/ T":".I'-'
1

Picture 10.2. Valve

12

10.1.3. — PE converter PEN-M5 - 8625

This device is connected after the valve and iectstwhen there is vacuum or not. The
device uses 3 cables, all of them connected td°tl@, when vacuum is created, the device
sends an electrical signal to the PLC to the imlglress 1124.7; the others two are the power
and the ground.

Picture 10.3. Vacuum sensor

-85 -

10-Robot settings: suction system and calibration.

10.1.4. — Vacuum generator VAD-MS5 - 19293

As was mentioned in one of the previous sectioms,iacuum generator creates the
suction necessary for the application by the Verittfect. It is the drop in fluid pressure that
results when an incompressible fluid flows throwgleonstricted section of pipe. The fluid
velocity must increase through the constriction,ilevithe pressure decreases due to
conservation of energy. The gain in kinetic eneiggupplied by a drop in pressure or a
pressure gradient force.

In the picture below the component and the schendtawing are presented, the
pneumatic connection 1 is joined with the vacuumsee and connection 2 is joined with the
tool creating the needed vacuum for the suction.

Picture 10.4. Vacuum generator

10.1.5. — Suction cup tool

The suction cup is the last component in the saoistem and it has the shape showed
in the next picture.

Picture 10.5. Suction cup

- 86 -

10-Robot settings: suction system and calibration.

10.2. — Robot calibration

10.2.1. — Tool calibration

The method used for the tool calibration is TCRbeation: XYZ 4-Point method. The
TCP of the tool to be calibrated is moved to aneiee point from 4 different directions. The
reference point can be freely selected. The rolootroller calculates the TCP from the
different flange positions. The tool to be calilechis mounted on the mounting flange. The
operating mode has to be T1 or T2.

1. Select the menBetup > Measure> Tool > XYZ 4-Point.

2. Assign a number and a name for the tool to bbraged. Confirm withOK.

3. Move the TCP to a reference point. Confirm vaxK.

4. Move the TCP to the reference point from a déife direction. Confirm witlOK .
5. Repeat step 4 twice.

6. PressSave.

The name of the tool is “aspirate tool” and it bt@s number [1].

Picture 10.6. Tool calibration

- 87 -

10-Robot settings: suction system and calibration.

10.2.2. — Base calibration

The method used for the base calibration is 3-pwmiathod The robot moves to the
origin and 2 further points of the new base. THepeints define the new baske previously
calibrated tool is mounted on the mounting flarf@perating mode T1 or T2

. Select the menBetup > M easure > Base > ABC 3-Point.

. Assign a number and a name for the base. ComfithnOK.

. Enter the number of the mounted tool. Confirthv@K .

. Move the TCP to the origin of the new base. @onfvith OK.

. Move the TCP to a point on the positive X aXithe new base. Confirm witBK.

. Move the TCP to a point in the XY plane withasiive Y value. Confirm witfOK.
. Presssave.

~NOoO o WN R

The name of the base is “project” and it has thalmer [1].

To make a good calibration, the robot has to hdne dame axis than the camera
because the camera is the eyes of the robot. Buhight line in the camera is not the same as
in the robot. For this reason and to send to thetrthe real coordinates in the same plane, the
best way to solve this is drawing a straight linghe program Halcon (red line in the Picture
10.7) to know what are the real axis for the canaara then, to draw this line on the table.
This line is utilized after to calibrate the basetie robot as was explained before.

The code of this program is easy:

Straight line in the camera for the calibration

kkkkkkkkhkkkkkkkkkkkkkkkkkkhkhkhhhhkhkkkkkkkkkkhkhhhhkrkx

dev_open_window (0, 0, 512, 512, 'black’, WindowHandle)

read_cam_par (‘campar.dat’, CamParam1)

read_pose (‘campose.dat’, Posel)

set_origin_pose (Posel, 0, 0, 0, PoseNewOriginl)

close_all_framegrabbers ()

open_framegrabber (‘'uEye', 2, 2, 0, 0, O, O, 'default', 8, 'rgb’, -1, 'false’, 'UI146xLE-C', 1, 0,
-1, AcqHandle)

set_framegrabber_param (AcgHandle, ‘frame_rate', 27.542)

set_framegrabber_param (AcgHandle, ‘contrast’, 256)

set_framegrabber_param (AcgHandle, 'exposure’, 10.3157)

set_framegrabber_param (AcgHandle, 'gain_master’, 35)

grab_image_start (AcqHandle, -1)

dev_update_window (‘off")

while (1)

- 88 -

10-Robot settings: suction system and calibration.

dev_set_color (‘red’)

gen_region_line (RegionLines, 432, 300, 432, 800)

dev_display (RegionLines)

grab_image_async (Image, AcqHandle, -1)

set_origin_pose (Posel, 0, 0, 0, PoseNewOriginl)

dev_display (Image)

disp_cross (WindowHandle, 432, 540, 6, 0)
endwhile

In the next picture are displayed the real axis @&l central point used in the base
calibration.

"@HDevelnp - Measures.dev - [Graphics Window] . =) ﬂ
fs Fle Edit Exscuts Visualization Procedures Operators Suggestions Window Help o =

Ol & (melo]] EaEEE EPalE 5] b s]
Clear Active E

|AcgHandle contains one integer. 277049958 [Line: 20
Eastarl”J m 3 &8 Gl ”H {Miguel % HDevelop - Measures.... @Ducumenti - Microsaft ... (ﬂém%%%(@ &ggﬂﬂ 0145

Picture 10.7. Axis in the camera for the base catlibn

-89 -

11-Flowchart and final programs

CHAPTER 11

Flowchart and final programs

11.1. — Flowchart

This chapter describes the final process exadityili has been programmed as well as
the code used to make it. The first part is a floavrt of the process. It describes all the steps
to implement but before it is necessary to expllagprocess in general.

The project consists of a conveyor and robot appta controlled by a camera. The
user can put a box wherever he wants on the convéye robot picks up a ball situated
somewhere on the surface of work and put the loalindinside the box. After this, the camera
checks if everything is perfect therefore the cquvewill start. When a new box appears on
the conveyor, the process will start again.

On the following is the whole flowchart with theggess. It is the structure of the main
program. The most difficult part is how to make tb@mmunication between the main
program, the server in the robot and the robot gamogtself. The data sent in the process will
be explained in the next paragraph in order to tstded it in an easiest way.

-90 -

11-Flowchart and final programs

Start transport
belt

Robot in ball
position?

N Vacuum
sensor ON?

Ball in robot
reach?

Robot in box
position?

Ball in robot
reach?

Coordinates
are the
same?

Is the ball
inside the
box?

Server
connected?

New box at
the beginning
of the belt?

Picture 11.1. Flowchart

-91 -

11-Flowchart and final programs

11.2. — Final programs

11.2.1. - General aspects in the communication

Firstly the data needed in the communication shd@ddeclared in the robot. These
data have to be declared as global because theydsbe changed by the main program but
even by the robot.

In the communication the data sent are stringsh\ihis kind of data there aren’t
problems during the communication, because in &erBet connection you select each one
by the name (see the picture below) followed bydtate (1 if true or O if false). So is very
easy to detect data arrival.

The process is the next: when coordinates has &emtn) the main program send also
‘“ROBOT_COORD 1". When the robot detects it, he tstarrunning. With
“ROBOT_BALL_POS 17, the main program enables thetism system if after some seconds
the vacuum sensor is “on” the program sends “VACUWMIf not the robot sends to the
main computer “ERROR_CODE 1" the process startdnagad the value of the strings
changes to 0. If the process follows normally, wkies robot is in the box position it sends
“ROBOT_BOX_ POS 1” and when it is in his initial ptisn sends “PROCESS_DONE 1".
The scheme of this process is shown in the follgvpitture.

ROBOT_COORD 1

A 4

COMPUTER ROBOT_BALL_POS 1 ROBOT

A

VACUUM 1

A 4

ROBOT_BOX_POS 1

A

PROCESS_DONE 1

A

ERROR_CODE 1

P
<«

\

Picture 11.2. Data exchange in the communication

-92 -

11-Flowchart and final programs

11.2.2. - Main program

The current section will try to explain some patshe programming code in order to
make it easier. The form load is one of the mogtartant parts; here is code from OPC
server, code to initialize the camera and to comoati@ with the robot.

- Code corresponding to OPC connection:

‘opc connection

Set ConnectOPCServer = New OPCServer

ConnectOPCServer.Connect "OPC.SimaticNet"

Set ConnectOPCGroups = ConnectOPCServer.OPCGroups

Set ConnectOPCGroup = ConnectOPCGroups.Add("connectie™)
ConnectOPCGroup.UpdateRate = 250

Set ConnectOPCIltems = ConnectOPCGroup.OPCltems
ConnectOPCltems.DefaultIsActive = True

Set bit_start = ConnectOPCltems.Addltem("S7:[S7 connection_1]MX125.0", 1)

- Code corresponding to the camera settings:

‘open framegrabber

Call Op.ReadCamPar("campar.dat”, hv_CamParam1)

Call Op.ReadPose("campose.dat”, hv_Posel)

Call Op.SetOriginPose(hv_Posel, 0.0326, -0.0776, 0, hv_PoseNewOriginl)
Call Op.CloseAllFramegrabbers

Call Op.OpenFramegrabber("uEye", 2, 2, 0, 0, 0, 0, "default", 8, "rgb", -1, "false", "UI146XxLE-C",
"1", 0, -1, hv_AcqgHandle)

Call Op.SetFramegrabberParam(hv_AcgHandle, "frame_rate", 27.542)

Call Op.SetFramegrabberParam(hv_AcgHandle, "contrast", 256)

Call Op.SetFramegrabberParam(hv_AcgHandle, "exposure"”, 10.3157)

Call Op.SetFramegrabberParam(hv_AcgHandle, "gain_master", 35)

Call Op.GrablmageStart(hv_AcgHandle, -1)

'start grabbing images and go to the steps menu
Timer4.Enabled = True

Code that makes the connection possible:

‘connection with PC from robot
Winsock1.Close

Winsockl.RemoteHost = "136.129.165.4"
Winsockl.RemotePort = "10101"
Winsock1.Connect

-903 -

11-Flowchart and final programs

This main program is made by steps programmedragifuns; each step is the same as
in the flowchart (Picture 11.1). It also takes tin@gages each moment that is executed.
Subsequently a small piece of code is shown; lbaektimer4 was initialized in the form load:

Private Sub Timer4_Timer()

main program wich calls each step in the process

tkkkkkkkkhkkkkhkkhkkhkkkkhhkkhkkkkkhhkkkhhkkkkkkkkkhkhkkkhkkkkkhkkkkk

Call Op.GrablmageAsync(ho_Image, hv_AcqHandle, -1)
Call Op.DispObj(ho_Image _

, hv_ExpDefaultWinHandle)
Timer4.Enabled = False

Select Case Step

Case "check_box"
If findbox = True Then Step = "check_box1"

Case "check_box1"
If findbox1 = True Then Step = "check_ball1"

When the application is looking for the box untiétprefix position, in the first function
(check_box) it stops the conveyor and after it sakenew image and gets the coordinates
(check box1). So the coordinates are more corezuse there are a little time until the belt
Is stopped. It is not important due to it grabsw mmage.

Another problem that can appear is when the bath@sving. This problem is solved
grabbing two images in two instants separated Hgé€|®s (250)” and after comparing the
coordinates of both. But coordinates are in milteng, these can be always different. For that
reason, when the coordinates are approximatelysainge; the program takes the condition
true. This comparison is made as follows:

BallX1 = Format(Round(hv_Xball, "000"))
BallY1 = Format(Round(hv_Yball, "000"))

BallX2 = Format(Round(hv_Xball, "000"))
BallY2 = Format(Round(hv_Yball, "000"))

If BallYl = BallY2 Then
If BallX1 = BallX2 Then
findball2 = True

Else
Step = "ball_moving"
End If
Else
Step = "ball_moving"
End If

After this, the coordinates are changed to miclm@sause in the communication can’t
be sent variables with a comma, and in this wayeitaetitude is higher.

-94 -

11-Flowchart and final programs

As was explained in the previous section the comaoation uses strings data. In these
strings the name of the variable and the valuerataded. The value of the coordinates have
to be without comma, otherwise the robot softwdrews error messages. And even the
communication gave another problem; the variablethe robot were declared as “real” and
from Halcon are declared as “variant”. These kiafidata are incompatible but, for example
an integer is not a good variable because it rotinelssalues and the coordinates would be
incorrect. After some test, the kind of data chosas “long”. For this, see the following
code:

longXball = CLng(hv_Xball)
CoordXball ="X_BALL" +" " + CStr(longXball)
Winsockl.SendData CoordXball

The protocol of communication when the coordinatesbeing sent is the next: the first
coordinate is the X axis of the ball, when the seprogram receives it will send “Xball” to
the main computer as the communication was suadbsshfter this, the main program start
sending the next coordinate and the server ansagai®. This process is followed until the
server sends “done”. In this way both programscamdinated.

An important function in the program is DataArrivahis function is called when data
Is coming in Ethernet communication. In the prograng code can be made a distinction
between the received data. The first part, when() s for the coordinates and the second
part is utilized during the robot running.

Private Sub Winsockl DataArrival(ByVal bytesTotal As Long)

Dim Strdata2() As String
Dim n As Integer

‘get data from the robot
Winsockl.GetData strData

Strdata2() = Split(strData, " ")
n = UBound(Strdata2)

If n=0Then
txtDone.Text = strData
End If

‘data during the robot movement
Ifn=1Then
Select Case Strdata2(0)
Case "ROBOT_BALL_POS"
robot_ball_pos = Strdata2(1)
Case "ROBOT_BOX_POS"
robot_box_pos = Strdata2(1)

-95 -

11-Flowchart and final programs

Case "PROCESS_DONE"
robot_process_done = Strdata2(1)

Case "ERROR_CODE"
error_robot = Strdata2(1)
txtBoxInPos.Text =™
txtXball. Text ="
txtYball. Text ="
txtXbox.Text ="
txtYbox.Text=""
txtDone.Text = ™

Case Else
MsgBox ("Error sending data")

End Select
End If

End Sub

In the main program the velocity of the belt and gosition where the box has to stop
in real time can be modified. To change the vejostvery simple with the scroll bar. It
changes the speed easily, but it causes a probidmnthe position of the box. When the user
leaves the box near to the robot, in the movememéach the box, the robot stops due to a
blockade. This can be solved by not allowing thatliox can be stopped in this area.

Private Sub hsbBoxPos_Change()

If (hsbBoxPos.Value >= 300 And hsbBoxPos.Value <= 670) Then
MsgBox "Value is not valid because of a possible blockade of robot, please select in the
permitted area"
hsbBoxPos.Value = box_position
Else
box_position = hshBoxPos.Value
End If

End Sub
Private Sub vsbVelocity Change()

velocity.Write vsbVelocity.Value
End Sub

The full programming code can be seen in the AppeBdsection A3.1. The window

created for this application is displayed in thetyme below while the program has been
running.

-96 -

11-Flowchart and final programs

18]

£ Robot Yisual-servoing

File Actions

i~ Main Settings
Process Status

l— acuum sensor state
l— True

Ball oot of the box
Autamatiscnings Contrnuwm Redecancih cn Opleiding

- Local connection
J I3

[igtontiect

Connection State [Connected
Ip Address 136.129.165.5

= Motor Setting:

Sta False

SHop False
rev/seq motor

3,906 =

- Coordinal

Ball 4 axiz W
Balad [Tooe
Bow ¥ axiz W
Box'y anis W

Diore
igljstart H m & & S] ”“ i Assembly | %,F!mjectl - Microsoft \u'lsuaL..lI;Ruhot Visual-servoing @Em%ﬁ@g&ﬁ%ﬂ 14:03

Picture 11.3. Main program

11.2.3. - Client sever program in the robot

This program is used to get and send data betwempwters and to send and receive
data from the robot. The way that the coordinateseais the same as in the main program,
but here these data are sent at the same times tooltot. It can be done by the command
“CrossCommands.SetVar()”. Next to this there isnalspiece of code:

Ifn=1Then

Select Case Strdata2(0)
Case "X_BALL"
booll = CrossCommands.SetVar("X_BALL", Strdata2(1))

TcpClient.SendData "Xball"

To display in the program some variables from tbbot, the command to use is
“CrossCommands.ShowVar()” like in the next pieceade:

Labell.Caption = CrossCommands.ShowVar("X_BALL", str_Xball)
Labell.Caption = str_Xball

-97 -

11-Flowchart and final programs

Ethernet connection in this program is the samia #ise main program, which means,
the code to include in the form load is just theneas in the previous paragraph.

To connect the program with the robot there is ec@iof code specific for that as
follows:

Public Sub ConnectRob()

‘Create object for the robot
Set CrossCommands = CreateObject("CrossCommEXE.CrossCommand")
CrossCommands.Init Me

CrossCommands.ConnectToCross vValue
Connected = True
StrBofVer = GetBOFVer

End Sub

These commands used to connect the server progitimtive robot are declared in
another file added in the Visual Basic project whis called “Module”. The code of this
program can be seen also in Appendix 3, sectio.A3.

When the robot is running, it is necessary to ereatkind of protocol in the
communication in order to have a good synchroromabetween the three programs. The
problem is that in this server it is impossiblertake a main program with steps because it is
an application that is receiving and sending dathiacan’t implement any process defined to
follow. For this reason, there is a part which ¢sethe variables when the robot is running to
know the state of the robot at each moment. Hettleei€ode where the steps are defined with
Boolean variables. When one step has finishedloiva the execution of the next. It can be
seen as follows:

Private Sub Timer2_Timer()
If boolBall = True Then

Dim str_RobotBallPos As String
Dim dataRobot1() As String
Dim sendBallPos As String

IblBallPos.Caption = CrossCommands.ShowVar("ROBOT_BALL_POS", str_RobotBallPos)
dataRobot1() = Split(str_RobotBallPos, " ")

IbiBallPos.Caption = dataRobot1(0) + " " + dataRobot1(2)

sendBallPos = "ROBOT_BALL_POS" +"" +"1"

-908 -

11-Flowchart and final programs

If dataRobot1(2) = 1 Then
TcpClient.SendData sendBallPos
boolError = True
boolBall = False

End If

End If

The picture below displays the window of this peogr On the top there are two
circular lights that show the state of the conmectith the main computer and the robot. On
the bottom are all the variables declared in th®t@nd the value of them in real time. As
was mentioned in other paragraph, the coordinategamicrons. These will be converted to
millimeters in the robot program. On the left sitethe bottom of the window are the
variables that show the state of the robot while running in real time.

The programming code of the current program casele@ in Appendix 3, section A3.2.

="z Client Settings for robot ACRO_R1 x|
—Main Settings

|'I:|:un. State Server —‘ |'I:|:un. State Fobaot —‘

whudssmatliondmgi Condnarm Relrannk cm Thinldlag

— Locale settings — Femaote zettings

Ip Addr. [136.129.165.4 Remate Port 1477111

Connection state IEn:nnnec:ted ba bt

— Server Connections — Robat Connections
Connesct | Lannest |
— FRobat Statuz — Coordinates in robot

[ROEOT_COORD 1
[ROBOT_BALL_POS 1
fiBCUUM T
[ROBOT_BO%_POS 1
[FROCESS_DOME 1

f< BALL =-144104.0
fv BALL =-153088.0
f< BOX = 203910.0

fv BOX =-282196.0

Picture 11.4. Server program in the robot computer

-99 -

11-Flowchart and final programs

11.2.4. - Robot program

The program of the robot is a short program. Toeustdnd it is better to look back to
Picture 11.2 and to see the direction of each bkrien the communication process while the
robot is running. In this program there are sorepst

- Firstly before than start making the program isessary to declare the global
variables. For this go to C:\KRC\ROBOTER\KRC\R1\®ys and access to
$config.dat. The variables that have been declaredhe next:

DECL REAL X_BALL

DECL REAL Y_BALL

DECL REAL X_BOX

DECL REAL Y_BOX

DECL INT ROBOT_COORD
DECL INT ROBOT_BALL_POS
DECL INT ROBOT_BOX_POS
DECL INT VACUUM

DECL INT ERROR_CODE

When these variables have been typed on the baifdire file and after saving, the
computer should be restarted in the program. Itnrméahut down” the computer to
configure the changes.

Now, in the program, can be declared another viesabnd positions. The variables
utilized to give the position to the robot should integer”. The coordinates are given
in microns and the robot works in millimeters. Eaahniable must be divided by 1000.
Realize that the entire program is a “loop” and tubot is always waiting
ROBOT_COORD =1 to start working.

When the robot receives this data from the maimgnanm, the first step to go to the
selected point P6 (it is like the home positionfteAthis point it needs another, if not
it shows an error, this is the reason because iseaaother: P4. Realize that every
point has the reference of the tool and the basel fi

Set all the axis of the point P4 on 0 is the besf % give after the exact value of the
coordinates, because the coordinates have theemeferof the camera. So in the
position “al” can be set the coordinates X and Yhef ball and the Z axis is given
manually because it is the same for the whole mcBhe movement is commanded
with lin al.

- 100 -

11-Flowchart and final programs

- ROBOT_BALL_POS is set on 1 before the movement bseain this way, the
suction system is faster and the process doesvét tzawait.

- When the robot is in the ball position, there wait time because the main program
has to send if the vacuum sensor is ON or nohdfrobot doesn’t receive this data,
after this half a second, the robot sends ERROR_EOD and goes to the initial
position. So when the main program detects thiecadakes again the coordinates
and sends again.

- If the sensor is set in ON, the main program samiSUUM 1 and the robot goes to
reach the box coordinates. When it is on the top tleé box, the data
ROBOT_BOX_POS 1 is sent and the main program disecis the suction system.
For this, the robot waits for 2 seconds to be saé the ball has been released inside
the box. After this, the robot goes to its initgdsition (out of the vision range) and
sends PROCESS_DONE 1. With this the main prograowknthat the robot has
finished and then the camera process start aga&iokity if the ball is really in the
box.

The robot program is executed in Automatic Mode.€kecute this mode it needs to
push the start button to run and even the firstionoguntil the point P6) has to be executed
manually by the user each time when the progranbbkas stopped. For this reason the user
is always sure that when the application is startteel robot is never going to crash with the
table or another object because it has to be mbyetie user manually and he takes visual
contact with this.

Note: Realize that before putting a new value @mable, there is a function “wait”, it
is because the robot follows executing the programil the next function while it is
executing a movement. Realize also that this “Waits for a little time.

DEF Test3()

decl int Xball
decl int Yball
decl int Xbox
decl int Ybox
pos al ;position of the ball
pos a2 ;position of the box

LOOP
;change coordinates to mm
Xball = X_BALL/1000
Yball = Y_BALL/1000

Xbox = X_BOX/1000
Ybox = Y_BOX/1000

- 101 -

11-Flowchart and final programs

IF ROBOT_COORD == 1 THEN
PROCESS_DONE =0
ERROR_CODE =0

PTP P6 Vel= 100 % PDAT6 Tool[1]:Aspirate tool Base[1]:Project
;give coordinates to the next point, robot needs initial point
Xp4.x = Xp6.x
xp4.y = xp6.y
Xp4.z = xp6.z

PTP P4 Vel= 100 % PDAT4 Tool[1]:Aspirate tool Base[1]:Project
;to situate center of tool in central point of the base
xp4.x =0
xpdy =0
xp4.z=0

;to take coordinates of the ball, z axis is given by the user
al=xp4

al.z=al.z+10

al.x =al.x + Xball

al.y=al.y + Yball

WAIT SEC 1/100 ;to add values robot needs wait function
ROBOT_BALL _POS=1

ROBOT_COORD =0

linal

WAIT SEC 1/5 ;short time to wait vacuum data

IF VACUUM == 1 THEN

al.z=al.z - 120 ;z axis position for the box
linal

a2 =xp4
xp4.x =0
xpd.y =0
xp4.z=0
a2.z=-120

;new point with box reference

a2.x = a2.x + Xbox + 20

a2.y =a2.y + Ybox + 20

lin a2

WAIT SEC 1/1000

ROBOT_BALL_POS =0

ROBOT_BOX_POS =1

WAIT SEC 2 ;wait suction off and go to first position

- 102 -

11-Flowchart and final programs

PTP P11 Vel=100 % PDAT11 Tool[1]:Aspirate tool Base[1]:Project
WAIT SEC 1/1000
VACUUM =0
PROCESS_DONE =1
ELSE

;when vacuum is off then go to first position and send error
PTP P10 Vel=100 % PDAT10 Tool[1]:Aspirate tool Base[1]:Project
WAIT SEC 1/1000
ERROR_CODE =1
ROBOT_COORD =0
ROBOT_BALL _POS =0
ENDIF
ENDIF

ENDLOOP
END

11.3. — Picture of the final process

Picture 11.5. Final process

- 103 -

12-Conclusions: improvements and future applications

CHAPTER 12

Conclusions: improvements and future applications

12.1. — Conclusions

At the beginning the project was a very big chakerbecause my knowledge in the
field of robotics and artificial vision were reduceWhen | accepted the project it was a risk,
but at the end it is finished.

The current project is considered as the first stejp/isual-servoing applications. It
implements a small but important application in fieéd of real-time vision and automation
processes. However implement new applications erb#sis of this project is an easy task.
Therefore is necessary to think about the new gsoaad to make some changes in the code
of the main program and the robot program. Butgi®ect, of course, can be improved in
some ways and it is open to possible extensions.nExt paragraph will try to explain some
improvements that can be taken into account, basd could be even more.

12.2. — Improvements and future applications

Subsequently are mentioned some possible extensitianodifications in order to
improve the current project.

One of the most important aspects in industryfisiehcy which means something like
more work in the same time. For this reason, &fficy could be equivalent to the speed of
the process. In this way most of the possible im@noents are going to follow this way:

- The motor which moves the conveyor is connectett RROFIBUS over OPC with
the PLC and both with the computer. OPC as wasaegd in previous chapter is a
standard of communication, it is a powerful toohutomation. But the velocity when
data are sent is not fast. Due to that a new extercould be make the connection
between the computer and the PLC over Etherneafiad with the other devices like
the motor, over PROFIBUS.

- 104 -

12-Conclusions: improvements and future applications

- Between the robot and the main computer there iEternet connection. This

connection during the working of the robot is notfast. When the main program is
sending the coordinates to the robot, it needs sti®@r 4 seconds. One option could
be send another kind of data, because the protdammmunication designed by me
uses “string” data and these data are longer thasthar. But this kind of
communication was chosen because of it didn’t maitakes by the way of creating a
safe communication.
Another option would be to make a PROFIBUS corinadbetween the PLC and the
robot, this option is the best. The KUKA robot BROFIBUS connection and it can
be made, but this subject takes part of anothephogect that can be developed in the
future in ACRO.

Leaving aside the improvement of the communicatioa,most important improvement
is the calibration of the surface of work. There some possible motives to explain this. One
of this is that the calibration was made with al tbom Halcon 8.0 and the project has
utilized Halcon 7.0 to make it. On the other hatitg problem is the quality of the lens
because it has some distortions, more on the $iue.error in the distances is higher when
the object is further from the center of the tatflaother option could be to choose a lens
with less focus distance to watch more field of kvand exclude from the application the side
area.

- 105 -

13-Bibliography

CHAPTER 13

Bibliography

* “A quick Access to the functionality of HALCON?”, version 7.0.1 (July 2004) —
MVTec Software GmbH, Minchen, Germany.

e “Operating and Programming Instructions for end uses for KUKA system
software 5.2, 5.3, 5.4”, version 1.1 (21/07/2006) KUKA Roboter GmbH,
Augsburg, Germany.

« “Safety Robot System EU”, version 0.2 (2/06/2006) KUKA Roboter GmbH,
Augsburg, Germany

« “Working with an agent from the KUKA Company from 2 0/11/2007 to
22/11/2007”, slides and documentation.

* “Programacion en Visual Basic. NET” — Luis Miguel Banco, 2002. Grupo
EIDOS Consultaria y Documentacién Informética, S.L,. 2002.

* ‘“Integrated Servo Motors, Technical Manual” - JVL Industri Elektronik A/S,
Denmark.

e “Using Visual Basic (VB) to communicate with the D00 and EM100” version:
2.0a - Tibbo Technology, Inc. 2001, 2002.

Web bibliography:

www.opcfundation.org
www.profibus.com
www.catal 0g.myosram.com
www.jvl.dk
www.kuka.com

WWW.Usa.Sl emens.com
www.microsoft.com
www.msdn2.microsoft.com
www.mvtec.com/halcon
WWWw.ueye.com
www.festo.com

- 106 -

13-Bibliography

- 107 -

Al- Visual Basic learning programs

APPENDIX 1

Visual Basic learning programs

First program

59 Canversor de Temperaturas =]
File
Celsius Fahrenheit
=]
Exit
IR e =
L E

Cption Explicit

Private Sub gff Click()
End Sub

Private Sub cmdExit Click()
End
End Sub

Private Sub mnuFileExit Click()
End
End Sub

Private Sub wvsbTemp Change ()
txtCelsius.Text = vabTemp.Value
txtFahr.Text = vsbTlemp.Value * 1.8 + 32
IEnd Sub

- 108 -

Al- Visual Basic learning programs

Second program

5. Colours =|El| & J

— Colours-
i« Blue

" Hed
7 Yellow

(" Green

— Pozition
" Top
" Bottom

Private Sub Optionl Click()
End Sub
Cption Explicit

Private Sub Form Load()
txtBox.Top = 0
End Sub

Private Sub optBottom Clicki)
txtBox.Top = frmColours.S5caleHeight - txtBox.Height
End Sub

Private Sub optYellow Click()
txtBox.BackColor = vbYellow
End Sub

Private Sub optTop Click()
txtBox.Top = 0
End Sub

Private Sub optBlue Click()
txtBox.BackColor = vbElue
End Sub

Private Sub optRed Click()
txtBox.BackColor = vbERed
End Sub

Private Sub optGreen Click()
txtBox.BackColor = vbGreen
End Sub

- 109 -

Al- Visual Basic learning programs

Third program

[5 MsgBox = [=] & |

Hello

Insert

Question bﬁ@ir

@ Are you sure adding text to the list?
Si | MNo l Cancelar

Const Yes = &
Const Ho = 7
Option Explicit

Frivate Sub cmdInsert Clickl)
Dim Answer As Integer
Answer = MsgBox ("Lre vyou sure adding text to the 1list?", 291, "Question™)
If Answer = Yes Then
List.RddItem txtText.Text
End If
If Answer = No Then MsgBox "The text isn't added to the list™, 0, "Message™
End Sub

Fourth program

[& Dado ==

- 110 -

Al- Visual Basic learning programs

Cption Explicit

Private Sub NumTiradas KeyPress (Keyhscii A= Integer)
If (Keylhscii < 48 Or EKeyAscii »> 57) Then
If (EeyAscii <> 8) Then EKeyAscii = 0
End If
End Sub

Private Sub Tirada Click()
Dim Contador As Integer
Dado.Clear
For Contador = 1 To NumTiradas.Text
Dado.hddItem (Int(& * Rnd) + 1)
'"Formula: Int({[Valor superior]-[Valeor inferior]+1)Bnd+4[Valor inferior]
'Resolviendo: tipo integer--> Int (6-1+1*End)+1
Hext Contador
End Sub

Fifth program

. Minicalculadora Em

[T -2

ull

Cption Explicit

Frivate Sub cmdDiv Clicki)

txtResult.Text = Val (cxtOperl.Textc) / Val(cxtOper?.Text)
1bl0Op.Caption = "/"

End Sub

Private Sulb cmdMult Click()

cxtResult.Text = Val (cxtOperl.Text) * Val(cxtOperZ.Text)
1b10p.Caption = "="

End Sub

Private Sub cmdResta Click()

cxtResult.Text = Val (cxtOperl.Text) - Val(cxtOperZ.Text)
1b1Cp.Caption = "-"
End Sub

Private Sub cmdSuma Click()

txtResult.Text = Val (txtOperl.Text) + Val(txtOperZ.Text)
1blCp.Caption = "4+"

End Sub

-111 -

Al- Visual Basic learning programs

Sixth program

[Texto = |:E
Hello HELLO
¥ Megiita (% MaYUSCULAS
[T i 7 Minusculas

Cption Explicit

Frivate Sub cmdCopliar Click()
1blEtiqueta.Caption = txtTexto.Text

If chbHegrita.Value = 1 Then
1blEtiqueta.FontBold = True

Else
1blEtiqueta.FontBold = False
End If
If chbCursiva.Value = 1 Then
1blEtiqueta.FontItalic = True
Else
1blEtiqueta.FontItalic = False
End If

If optMavusc.Value = True Then

1blEtiqueta.Caption = UCase (lblEtigqueta.Caption)
Else

1blEtiqueta.Caption = LCase (lblEtigqueta.Caption)
End If
End Sub

-112 -

Al- Visual Basic learning programs

Seventh program

F -
'S Fomi E=NER)
Tomates =
Patatasz [~ Frame]
B & Con Vi
e £ Sin v
348
hogtrar Precio

Cprtion Explicit

Private Sub MostrarPrecio Click()
Dim Precios Ls Integer
Select Case Listalbjetos.ListIndex

Case 0O
Frecios = 1
Case 1
Precios = 2
Case 2
Precios = 3
Case 3
Precio=s = 4
Case 4
Precios = 5
End Select

If =inIVA.Value = True Then

Precio.Caption = Precios

Els=e

Precio.Caption = Precios * 0.16 + Precios
End If
End Sub

- 113 -

Al- Visual Basic learning programs

Eigth program

5. Forml

= | [E]

Mombre Lista

'F'acd

kiguel
Raguel
Alex
Agus
Angel
Salva

Option Explicit

Private 5Sub ListaBorrarElem Click|
If ListaMombres.ListIndex
MzgBox "Dekes seleccionar algin elemento™

Else

ListaNombres.Removeltem

End If
End Sub

-1 Then

(ListaNombres.ListIndex)

Priwvate Sub ListaNombres MouseUp (Button As Integer, Shift As Integer, X As Single, ¥ As Single)

If Button = 2 Then PopupMenu Lista

End Sub

Priwvate Sub Nomhreﬁﬁadir_Clicktj

ListaNombres.hddItem

Lista.Enabled =
End Sub

{txtNombre.Text)

Frivate Sub NombreBorrar Click()

txtNombre.Text =
End Sub

Private Sub ListaBorrar Click()

Dim Respuesta As Integer

REespuesta = M=sgBox(";Estas seguro?”,

If Respuesta = wbYes Then
ListaNombres.Clear
Lista.Enabled =

End If
End Sub

"Pregunta™)

Private Sub ListaProteger_ Click()

ListaNombres.Enabled = Not
Li=taProteger.Checked = Not
NombreAfiadir.Enabled = Not
ListaBorrar.Enabled = Not
ListaBorrarElem.Enabled = Not
LisztaTamafic.Enakbled = Not

End Sub

(Li=ztalombres.Enabled)

(ListaProteger.Checked)

(Nombrelfiadir.Enakled)
(Li=staBorrar.Enabled)
({ListaBorrarElem.Enabled)
(ListaTamafio.Enabled)

- 114 -

Al- Visual Basic learning programs

Friwvate Sub ListaTamaﬁolE_Clickt]
ListaTamafio8.Checked = False
Li=ztaTamaficl?.Checked = True
ListaTamafiol8.Checked = False
ListaNombres.FontSize = 12

End Sub

Friwvate Sub ListaTamaﬁolS_Clickt]
ListaTamafiod.Checked = False
Li=ztaTamaficl?.Checked = False
ListaTamafiol8.Checked = True
ListaNombres.FontSize = 18

End Sub

Friwvate Sub ListaTamaﬁoS_Click[]
ListaTamafios.Checked = True
Li=ztaTamaficl?.Checked = False
ListaTamafiol8.Checked = False
ListaNombres.FontSize = 8

End Sub

Friwvate Sub txtNombre Change ()
If Len[txtNpore.Textﬁ <> 0 Then
Nombre.Enabled = True
Else
Hombre.Enabled = False
End If
End Sub

-115-

Al- Visual Basic learning programs

Ninth program

[=~ Formi e |5

Muewva

000) O O O L D

Ordenar

Const Elementos = 8

Dim Contador &= Integer

Dim Tabla({l To Elementos) As Integer
Option Explicit

Private Sub Form Load()

Randomize

Crear 'Llamamo=s a la rutina Private Sub Crear /()
End Sub

Frivate Sub Nueva_Click()

Lista.Clear

For Contador = 1 To Elementos
Takbla (Contador) = Int((9 * Rnd) + 1)
Lista.AddItem Takla (Contador)

Next Contador

End Sub

Frivate Sub Ordenar Click()
Dim I As Integer
Dim J A= Integer
Dim Cambio &s Integer
I=1
Do
For Jd = 1 To Elementos - I
If Takla(J} »>= Takla(J + 1) Then
Cambioc = Tabla(J)

Tabla(J) = Tabla(J + 1)

Takla(J + 1) = Cambio
End If

Hext J

I=1I+1

Loop Until I > (Elementos - 1)
Lizta.Clear
For Contador = 1 To Elementos
Lista.AddItem Tabla (Contador)
Hext Contador
End Sub

Private Sub Crear/()

For Contador = 1 To Elementos
Tabla (Contador) = Int(({9 * BEnd) + 1)
Li=ta.bddTItem Takla (Contador)

Hext Contador

End Sub

- 116 -

A2- Visual Basic communication programs

APPENDIX 2

Visual Basic communication programs

A2.1 — Code of program to control the belt

opc variables

Lkkkhkkkhkhkkkhhkkhhkhkkk

Public ConnectOPCServer As OPCServer
Public ConnectOPCGroup As OPCGroup
Public ConnectOPCGroups As OPCGroups
Public ConnectOPCltems As OPCltems
Public bit_start As OPCltem

Public bit_stop As OPCltem

Public velocity As OPCltem

Public initial_data As OPCltem

"**same for all programs**
Lkkhkkkhhhkkhkhhkkhhhkkhhhkkhhrrxd

Dim Op As New HOperatorSetX

Dim Tuple As New HTupleX

Dim hv_ExpDefaultWinHandle As Variant

Dim Window1 As HWindowX
Dim WindowHandlel As Variant

“**more variables for bigger programs**
kkkkkkkhhhhhkhhkhkhkkkkkkhhkhhkhhhhhhhhhkkkxkkrkxkx

Dim hv_AcgHandle As Variant

Dim ho_Image As HUntypedObjectX, ho_Region As HUntypedObjectX

Private Sub Command1_Click()
bit_start.Write 1

bit_stop.Write O
initial_data.Write 0

End Sub

-117 -

A2- Visual Basic communication programs

Private Sub Command3_Click()
bit_stop.Write 1

bit_start.Write 0

End Sub

Private Sub Exit_Click()
bit_stop.Write 1

End

End Sub

Private Sub Form_Load()

"**window declaration**
Ihkkkhkhkhhkhhhhkhhkkhhhkikhx

Set Windowl = HWindowXCtrl1.HalconWindow
hv_ExpDefaultWinHandle = Window1.HalconID

0pc connection

Set ConnectOPCServer = New OPCServer

ConnectOPCServer.Connect "OPC.SimaticNet"

Set ConnectOPCGroups = ConnectOPCServer.OPCGroups

Set ConnectOPCGroup = ConnectOPCGroups.Add("connectie™)
ConnectOPCGroup.UpdateRate = 250

Set ConnectOPCltems = ConnectOPCGroup.OPCltems
ConnectOPCltems.DefaultlsActive = True

Set bit_start = ConnectOPCltems.AddIltem("S7:[S7 connection_1]MX125.0", 1)
Set bit_stop = ConnectOPCltems.Addltem("S7:[S7 connection_1]MX125.1", 1)
Set velocity = ConnectOPCltems.AddItem("S7:[S7 connection_1]MW30", 1)
Set initial_data = ConnectOPCltems.Addltem("S7:[S7 connection_1]MX125.2", 1)

open framegrabber

kkkkkkkhhkhhhhhkhhkhkkkkkkrkix

Call Op.CloseAllFramegrabbers

Call Op.OpenFramegrabber("uEye", 2, 2, 0, 0, 0, 0, "default", 8, "rgb", -1, "false", "UI146xLE-C", "1", O,
-1, hv_AcgHandle)

Call Op.SetFramegrabberParam(hv_AcgHandle, "contrast”, 256)

Call Op.SetFramegrabberParam(hv_AcgHandle, "exposure”, 10.3157)

Call Op.SetFramegrabberParam(hv_AcgHandle, "frame_rate", 27.542)

Call Op.SetFramegrabberParam(hv_AcgHandle, "gain_master", 35)

Call Op.GrablmageStart(hv_AcgHandle, -1)

start grabbing images
tkkkkkkkhhhhhhhhkkkkkkkkihkhrrkx

Timer2.Enabled = True

- 118 -

A2- Visual Basic communication programs

End Sub

Private Sub Form_Unload(Cancel As Integer)
Call Op.CloseAllFramegrabbers
End Sub

Private Sub Initialvalues_Click()
initial_data.Write 1
End Sub

Private Sub Startbelt_Click()
bit_start.Write 1
bit_stop.Write O

End Sub

Private Sub Stopbelt_Click()
bit_stop.Write 1
bit_start.Write O

End Sub
Private Sub Timerl_Timer()
reading opc items from plc

thkkkkkkkhkkkhkkkkkhkhkkkhkkkhkkkkkkhkkkk

bit_start.Read (1)
Labell.Caption = bit_start

bit_stop.Read (1)
Label2.Caption = bit_stop

velocity.Read (1)
Label3.Caption = Format(Round(1600 / 60 * velocity / 4096, 3), "0.000")
End Sub

Private Sub Timer2_Timer()

grabbing images, make the halcon program

*kkkkk *kkkkk *kkkkkhkkk

Call Op.GrablmageAsync(ho_Image, hv_AcqHandle, -1)
Call Op.DispObj(ho_Image, hv_ExpDefaultWinHandle)
End Sub

Private Sub VScroll1_Change()

velocity.Write VScroll1.Value
End Sub

- 119 -

A2- Visual Basic communication programs

A2.2 — Code of server program in the robot

Option Explicit

Private Sub CmdConRob_Click()
“**Connect with robot**
kkkkkkkkkhkkkkkkkkkkkkkkkhkikkx

ConnectRob

End Sub

Private Sub CmdDisconRob_Click()
"**Disconnect from robot**
*kkkkkkkkhkkkhhhkhhhhhhhhhrhhik
DisconnectRob

End Sub

Private Sub cmdSend_ Click()

“**Send data over Ethernet**

*kkkkkkkhhkk *

TcpClient.SendData txtSendData. Text

End Sub

Private Sub Form_Load()

Setup Form

*kkkkkkkkkkkkkkkkk
TxtGate.Enabled = False
TxtPoort.Enabled = False
txtconnectstat.Enabled = False
txtSendData.Enabled = True
txtOutput.Enabled = False
TxtPoort.Text ="10101"
TxtGate.Text = TcpClient.LocallP

ConStateRobot.Visible = False
ConStateServer.Visible = False

"**Read out robot name and set as form title**

*kkkkkkkhhkk * *kkkk

QueryValue HKEY_LOCAL_MACHINE,

"System\CurrentControlSet\ControNComputerName\ComputerName", "ComputerName"

frmClient.Caption = "Client Settings for robot" &

End Sub

- 120 -

& vValue

A2- Visual Basic communication programs

Private Sub cmdConnect_Click()

“**Connect with the main computer**
'‘Declare Variables
Dim Answer As String

TxtGate.Enabled = False
TxtPoort.Enabled = False

Answer = MsgBox("Are these settings correct ?", vbQuestion + vbYesNo, "Connect")
If Answer = vbYes Then

Copy Port number data

*kkkkkkkkkkhhkx *%

If TcpClient.State = sckClosed Then
TcpClient.LocalPort = TxtPoort. Text
Else
MsgBox ("The connection state is not ‘closed™)
End If

'‘Copy server data
If TcpClient.State <> sckError Then
If TcpClient.State = sckConnected Then
MsgBox ("Not possible while connected to server")
Else
'Nothing
End If
Else
MsgBox ("Not possible while error on port")
End If

"**Invoke the Connect method to initiate a connection**
*kkkkkhkkkkkhkkhkhhhhkkhhhhhhhhhhhhhhhhhhhkhhhhhhhhhhrhhhhhhkhhhhiix

If TcpClient.State <> sckError Then
TcpClient.Listen
Else
MsgBox ("Connecting not possible while error on socket!")
End If
End If

End Sub

Private Sub Form_Unload(Cancel As Integer)

End

End Sub

Private Sub TcpClient_ConnectionRequest(ByVal requestiD As Long)
"**Accept connection**

kkkkkkkkkkkkkkhkkkkhkkkhkkkk

TcpClient.Close
TcpClient.Accept requestiD

End Sub

- 121 -

A2- Visual Basic communication programs

Private Sub TcpClient_SendComplete()

Clear sended message

*kkkkkkkhhkk *

txtSendData.Text = ™

End Sub

Private Sub Timerl_Timer()

Do connection test and show message in taskbar
kkkkkkkkhkkkkkkkkkkkkkhhkhhhhhkhkkkkkkhkkkhkhhhhhhhkkkikkiikkx
connectiontest

End Sub

Private Sub tcpClient_DataArrival(ByVal bytesTotal As Long)
'‘Declare Variables

Dim n As Integer

Check for arriving data
kkkkkkkkkhkkkkkkkkkkkkkkhkhkhkhhkhkx

TcpClient.GetData Strdata

txtOutput. Text = Strdata

Only empty data when variable has been read
kkkkkkkkhkkkkkkkkkkkkkkkhkkkhhkhhhkkkkkkkkkkkkkhkhhhhhhhkkkx

Strdata = Empty

End Sub

Private Sub connectiontest()

Do a connection test and fire message

*kkkkkkkhhkx * *%

Select Case TcpClient.State

Case sckClosed
txtconnectstat. Text = "Socket closed"
ConStateServer.Visible = True
ConStateServer.FillColor = vbRed
Case sckListening
txtconnectstat. Text = "Listening"
ConStateServer.Visible = True
ConStateServer.FillColor = vbYellow
Case sckConnectionPending
txtconnectstat. Text = "Connection pending"
ConStateServer.Visible = True
ConStateServer.FillColor = vbRed
Case sckResolvingHost
txtconnectstat. Text = "Resolving host"
ConStateServer.Visible = True

- 122 -

A2- Visual Basic communication programs

ConStateServer.FillColor = vbRed
Case sckHostResolved
txtconnectstat. Text = "Host resolved"
ConStateServer.Visible = True
ConStateServer.FillColor = vbRed
Case sckConnecting
txtconnectstat. Text = "Connecting host"
ConStateServer.Visible = True
ConStateServer.FillColor = vbRed
Case sckConnected
txtconnectstat. Text = "Connected to host"
cmdConnect.Enabled = False
ConStateServer.Visible = True
ConStateServer.FillColor = vbGreen
Case sckClosing
txtconnectstat. Text = "Closing socket"
ConStateServer.Visible = True
ConStateServer.FillColor = vbRed
TcpClient.Close
TcpClient.Listen
Case sckError
txtconnectstat. Text = "Error on socket"
ConStateServer.Visible = True
ConStateServer.FillColor = vbRed

End Select

"**Check connection with the robot**
If Connected = False Then
CmdConRob.Enabled = True
CmdDisconRob.Enabled = False
ConStateRobot.Visible = True
ConStateRobot.FillColor = vbRed
Else
If Connected = True Then
CmdConRob.Enabled = False
CmdDisconRob.Enabled = True
ConStateRobot.Visible = True
ConStateRobot.FillColor = vbGreen
End If
End If

End Sub
Public Sub ConnectRob()

“**Connect the robot**

*kkkkkkkhhkk *

Set CrossCommands = CreateObject("CrossCommEXE.CrossCommand")

CrossCommands.Init Me
CrossCommands.ConnectToCross vValue
Connected = True
StrBofVer = GetBOFVer

End Sub

- 123 -

A2- Visual Basic communication programs

A2.3 — Code for Ethernet communication in the main PC

Dim strData As String

Private Sub cmdClear_Click()

txtReceive.Text =
End Sub
Private Sub cmdConnect_Click()

"**connect/disconnect with server**
If Winsock1.State = 0 Then
Winsock1.Connect
Else
Winsock1.Close
End If

End Sub
Private Sub cmdSend_ Click()
“**send data to the server**

*kkkkkkkhhkk *

Winsockl.SendData txtSend.Text

End Sub
Private Sub Form_Load()

“**Setup form**

*hkkkkkkkkkkkkkkkkk

Winsock1.Close

Winsockl.RemoteHost = "136.129.165.4"
Winsockl.RemotePort = "10101"
Winsock1.Connect

End Sub
Private Sub Timerl_Timer()

connection state

Select Case Winsockl.State
Case 0: IblState.Caption = "Closed"
Case 1: IblState.Caption = "Open"
Case 2: IblState.Caption = "Listening"
Case 3: IbIState.Caption = "Connection pending"
Case 4: IblState.Caption = "Resolving host"
Case 5: IblState.Caption = "Host resolved"
Case 6: IblState.Caption = "Connecting"
Case 7: IblState.Caption = "Connected"
Case 8: IblState.Caption = "Peer closing"
Case Else: IblState.Caption = "Error"

End Select

- 124 -

A2- Visual Basic communication programs

set caption of "connect” button
If Winsock1.State = 0 Then
cmdConnect.Caption = "Connect"
Else
cmdConnect.Caption = "Disconnect"
End If

“**enable/disable "send" button**

kkkkkkkkkkkkkkkhkkkkhkkkhkkkkkkkkkkhkkkkkkx

If Winsock1.State = 7 Then
cmdSend.Enabled = True
Else
cmdSend.Enabled = False
End If

End Sub
Private Sub Winsock1_DataArrival(ByVal bytesTotal As Long)
get data and write in the text box

kkkkkkkkkkkkkkkhkkkhkkkhkkkhkkkhkkkhkkkkkkhkkkx

Winsockl.GetData strData
txtReceive.Text = txtReceive.Text + strData

End Sub

- 125 -

A3- Visual Basic final programs

APPENDIX 3

Visual Basic final programs

A3.1 — Code of the main progam

"**opc variables**

€3 3k 3k 5k 3k ok 3k 3k 3k 3k sk kok ok

Public ConnectOPCServer As OPCServer
Public ConnectOPCGroup As OPCGroup
Public ConnectOPCGroups As OPCGroups
Public ConnectOPCltems As OPCltems
Public bit_start As OPCltem

Public bit_stop As OPCltem

Public velocity As OPCltem

Public initial_data As OPCltem

Public suction As OPCltem

Public vacuum As OPCltem

"**halcon variables**

43 3k 3k 3k 3k 3k 3k %k 3k 3k kosk sk ok k ok k

Dim hv_WindowHandle As Variant, hv_CamParam1 As Variant

Dim hv_Posel As Variant, hv_PoseNewOriginl As Variant

Dim hv_AcqHandle As Variant, hv_Ball As Variant

Dim hv_Area As Variant, hv_Row As Variant

Dim hv_Column As Variant, hv_Xcenter As Variant

Dim hv_Ycenter As Variant, hv_Xball As Variant

Dim hv_Yball As Variant, hv_DistanceBall As Variant

Dim hv_Box As Variant, hv_Areal As Variant

Dim hv_Row1 As Variant, hv_Column1 As Variant

Dim hv_Xbox As Variant, hv_Ybox As Variant

Dim ho_Ilmage As HUntypedObjectX, ho_red As HUntypedObjectX

Dim ho_green As HUntypedObjectX, ho_blue As HUntypedObjectX

Dim ho_ImageGray As HUntypedObjectX, ho_Circle As HUntypedObjectX

Dim ho_ImageReducedl As HUntypedObjectX, ho_Region As HUntypedObjectX

Dim ho_ConnectedRegions As HUntypedObjectX, ho_SelectedRegions As HUntypedObjectX
Dim ho_SelectedRegions1 As HUntypedObjectX, ho_RegionFillUp As HUntypedObjectX
Dim ho_Rectangle2 As HUntypedObjectX, ho_ImageReduced As HUntypedObjectX
Dim ho_Regionl As HUntypedObjectX, ho_ConnectedRegionsl As HUntypedObjectX
Dim ho_SelectedRegions2 As HUntypedObjectX, ho_RegionFillUpl As HUntypedObjectX

- 126 -

A3- Visual Basic final programs

Dim ho_Ellipse As HUntypedObjectX

"**same for all programs**

€3 3k 3k 5k 3k 3k 3k 3k 3k 3k sk sk sk ok ok ok sk sk k sk k

Dim Op As New HOperatorSetX

Dim Tuple As New HTupleX

Dim hv_ExpDefaultWinHandle As Variant
Dim Window1 As HWindowX

Dim WindowHandlel As Variant

"**program variables**

€3 3k 3k 3k 3k 3k 3k 3k 3k 3k ok skook ok ok k sk k k

Dim Answer As Integer

Dim n As Integer

Dim strData As String

Dim Step As String

Dim BallX1 As Long

Dim BallY1 As Long

Dim BallX2 As Long

Dim BallY2 As Long

Dim robot_ball_pos As Integer

Dim robot_box_pos As Integer

Dim robot_process_done As Integer
Dim error_robot As Integer

Dim box_position As Integer

Private Declare Sub Sleep Lib "Kernel32" (ByVal dwMilliseconds As Long)

Private Sub cmdConnect_Click()

"**connect/disconnect ethernet connection**
3k 3k sk 3k sk 3k 3k sk sk sk 3k sk ok sk sk sk sk sk sk ok sk sk sk ok skosk sk ok sk sk sk skosk sksk sk k.

If Winsock1.State =0 Then
Winsock1.Connect

Else
Winsock1.Close

End If

End Sub

Private Sub cmdStart_Click()
bit_start.Write 1
bit_stop.Write 0

initial_data.Write O

End Sub

- 127 -

A3- Visual Basic final programs

Private Sub cmdStop_Click()

bit_stop.Write 1
bit_start.Write O

End Sub
Private Sub Exit_Click()

bit_stop.Write 1
bit_start.Write O
velocity.Write 0

End

End Sub
Private Sub Form_Load()

"**window declaration**
O3k % % 5k % %k % % ok %k ok %k %k ok k& k k ok k
Set Window1 = HWindowXCtrl1.HalconWindow
hv_ExpDefaultWinHandle = Window1.HalconlID

"**opc connection**
43 3k 3k 3k 3k 3k 3k 3k 3k sk koskosk ok ok k k

Set ConnectOPCServer = New OPCServer
ConnectOPCServer.Connect "OPC.SimaticNet"

Set ConnectOPCGroups = ConnectOPCServer.OPCGroups
Set ConnectOPCGroup = ConnectOPCGroups.Add("connectie")

ConnectOPCGroup.UpdateRate = 250

Set ConnectOPCltems = ConnectOPCGroup.OPCltems

ConnectOPCltems.DefaultlsActive = True

Set bit_start = ConnectOPCltems.Addltem("S7:[S7 connection_1]MX125.0", 1)
Set bit_stop = ConnectOPCltems.Addltem("S7:[S7 connection_1]MX125.1", 1)
Set velocity = ConnectOPCltems.AddItem("S7:[S7 connection_1]MW30", 1)

Set initial_data = ConnectOPCltems.AddItem("S7:[S7 connection_1]MX125.2", 1)
Set suction = ConnectOPCltems.Addltem("S7:[S7 connection_1]QX125.0", 1)

Set vacuum = ConnectOPCltems.Addltem("S7:[S7 connection_1]1X124.7", 1)

"**open framegrabber**
O3k % % ok % %k % %k ok % ok %k %k ok k& k ok k

Call Op.ReadCamPar("campar.dat", hv_CamParam1)

Call Op.ReadPose("campose.dat", hv_Posel)

Call Op.SetOriginPose(hv_Posel, 0.0326, -0.0776, 0, hv_PoseNewOrigin1)

Call Op.CloseAllFramegrabbers

Call Op.OpenFramegrabber("ukye", 2, 2, 0, 0, 0, O, "default", 8, "rgbh", -1, "false", "Ul146xLE-C", "1", O,

-1, hv_AcqHandle)

Call Op.SetFramegrabberParam(hv_AcqHandle, "frame_rate", 27.542)
Call Op.SetFramegrabberParam(hv_AcgHandle, "contrast", 256)

- 128 -

A3- Visual Basic final programs

Call Op.SetFramegrabberParam(hv_AcqgHandle, "exposure", 10.3157)
Call Op.SetFramegrabberParam(hv_AcqHandle, "gain_master", 35)
Call Op.GrablmageStart(hv_AcqHandle, -1)

"**start grabbing images and go to the steps menu**
€3 3k 3k 3k 3k 3k 3k 3k 3k sk sk sk ok ok 3k 3k sk sk sk sk 3k 3k 3k sk sk sk sk ok 3k 3k sk sk sk ok sk ok sk %k sk sk sk kok

Timer4.Enabled = True

"**connection with PC from robot**
€3k 3k %k sk 3k 3k sk %k %k 5k %k sk sk 3k %k sk sk sk ok ok sk sk k ok ok k sk k ok

Winsock1.Close

Winsockl.RemoteHost = "136.129.165.4"
Winsock1l.RemotePort = "10101"
Winsock1.Connect

IblIP.Caption = Winsock1.LocallP

Step = "check_box"
box_position = 200

End Sub

Private Sub Form_Unload(Cancel As Integer)
Call Op.CloseAllFramegrabbers
bit_stop.Write 1

bit_start.Write O

velocity.Write 0

suction.Write O

End Sub

Private Sub hsbBoxPos_Change()

If (hsbBoxPos.Value >= 300 And hsbBoxPos.Value <= 670) Then

MsgBox "Value is not valid because of a possible blockade of robot, please select in the permitted

area"

hsbBoxPos.Value = box_position
Else

box_position = hsbBoxPos.Value
End If
End Sub
Private Sub Initialvalues_Click()

initial_data.Write 1

End Sub

- 129 -

A3- Visual Basic final programs

Private Sub Startbelt_Click()

bit_start.Write 1
bit_stop.Write 0

End Sub
Private Sub Stopbelt_Click()

bit_stop.Write 1
bit_start.Write O

End Sub
Private Sub Timerl_Timer()

"**reading opc items from plc**
O3k % % ok % 5k % ok ok % ok % ok ok % ok %k %k ok k %k k kK k
bit_start.Read (1)
Labell.Caption = bit_start

bit_stop.Read (1)
Label2.Caption = bit_stop

velocity.Read (1)
Label3.Caption = Format(Round(1600 / 60 * velocity / 4096, 3), "0.000")

vacuum.Read (1)
IblVacuum.Caption = vacuum

End Sub
Private Sub Timer3_Timer()

"**display connect state**

O3k % % ok % %k % %k ok % ok %k %k ok % & k k ok k%

Select Case Winsock1.State
Case 0: IblState.Caption = "Closed"
Case 1: IblState.Caption = "Open"
Case 2: IblState.Caption = "Listening"
Case 3: IblState.Caption = "Connection pending"
Case 4: IblState.Caption = "Resolving host"
Case 5: IblState.Caption = "Host resolved"
Case 6: IblState.Caption = "Connecting"
Case 7: IblState.Caption = "Connected"
Case 8: IblState.Caption = "Peer closing"
Case Else: IblState.Caption = "Error"

End Select

- 130 -

A3- Visual Basic final programs

"**set caption of "connect" button**
O3k % % 5k % 5k % ok ok % ok %k ok 5k % ok %k % ok % %k %k %k k sk ok ok k ok k
If Winsock1.State =0 Then
cmdConnect.Caption = "Connect"
Else
cmdConnect.Caption = "Disconnect"
End If

End Sub

Public Function findbox() As Boolean

cmdConnect.Enabled = True
hsbBoxPos.Enabled = True

"**follow central point of the box**

O3k % 5k ok %k 5k % ok ok % ok % ok 5k % ok %k % ok % %k %k %k Kk Kk ok k ok

Call Op.Decompose3(ho_Image, ho_red, ho_green, ho_blue)

Call Op.Rgb3ToGray(ho_red, ho_green, ho_blue, ho_ImageGray)
Call Op.SetColor(hv_ExpDefaultWinHandle, "yellow")

Call Op.DispCross(hv_ExpDefaultWinHandle, 350, 540, 6, 0)

Call Op.GenRectangle2(ho_Rectangle2, 100, 480, -0.05, 500, 70)
Call Op.ReduceDomain(ho_red, ho_Rectangle2, ho_ImageReduced)
Call Op.Threshold(ho_ImageReduced, ho_Region1, 45, 255)

Call Op.Connection(ho_Region1, ho_ConnectedRegions1)

Call Op.SelectShape(ho_ConnectedRegions1, ho_SelectedRegions2, "area", "and", 9000, 12000)

Call Op.Fillup(ho_SelectedRegions2, ho_RegionFillUp1)
Call Op.CountObj(ho_RegionFillUp1, hv_Box)

"**detect if the box is in the transport belt and stop this in a specific region**
€3 3k 3k 5k 3k 3k 3k 3k 3k sk sk sk ok ok 3k 3k sk sk sk sk 3k sk 3k sk sk sk sk ok ok 3k sk 3k sk sk sk ok 3k 3k 3k 3k sk sk sk sk ok 3k sk 3k ko sk sk ok sk sk sk sk k sk sk sk ok k k

If Tuple.TupleEqual(hv_Box, 1) Then
txtBoxOut.Text =""

Call Op.AreaCenter(ho_RegionFillUpl, hv_Areal, hv_Row1, hv_Columnl)

Call Op.DispCross(hv_ExpDefaultWinHandle, 350, 540, 6, 0)

Call Op.DispCross(hv_ExpDefaultWinHandle, hv_Row1, hv_Columnl, 6, 0)

If hv_Columnl >= 300 Then
hsbBoxPos.Enabled = False 'prevent robot blockade
End If

If Tuple.TupleGreaterEqual(hv_Column1, box_position) Then
bit_stop.Write 1
bit_start.Write O
txtAgain.Text = ""
'disable some options
cmdStart.Enabled = False
cmdStop.Enabled = False
Stopbelt.Enabled = False

- 131 -

A3- Visual Basic final programs

Startbelt.Enabled = False

txtBoxInPos.Text = "Box in correct position"
Sleep (50)

findbox = True

Else
txtBoxInPos.Text =""
End If
Else
txtBoxOut.Text = "Box out of transport belt"
End If

End Function
Public Function findbox1() As Boolean

"**take the coordinates after belt stopped**

O3k % 5k 5k % 5k % ok ok % ok % ok 5k % ok %k %k ok % ok %k %k ok sk ok ok kK k ok ok ok kk ok

Call Op.Decompose3(ho_Image, ho_red, ho_green, ho_blue)

Call Op.Rgb3ToGray(ho_red, ho_green, ho_blue, ho_ImageGray)
Call Op.DispCross(hv_ExpDefaultWinHandle, 350, 540, 6, 0)

Call Op.ReduceDomain(ho_red, ho_Rectangle2, ho_ImageReduced)
Call Op.Threshold(ho_ImageReduced, ho_Region1, 40, 255)

Call Op.Connection(ho_Region1, ho_ConnectedRegions1)

Call Op.SelectShape(ho_ConnectedRegions1, ho_SelectedRegions2, "area", "and", 8000, 12000)

Call Op.Fillup(ho_SelectedRegions2, ho_RegionFillUp1)
Call Op.CountObj(ho_RegionFillUp1, hv_Box)

Call Op.ImagePointsToWorldPlane(hv_CamParam1, hv_PoseNewOrigin1, 350, 540, "microns",

hv_Xcenter, hv_Ycenter)

Call Op.ImagePointsToWorldPlane(hv_CamParam1, hv_PoseNewOrigin1l, hv_Row1, hv_Column1,

"microns", hv_Xbox, hv_Ybox)

Call Op.DispCross(hv_ExpDefaultWinHandle, hv_Row1, hv_Columnl, 6, 0)

findbox1 = True
End Function
Public Function findball1() As Boolean

"**reset data from the robot**
O3k % % ok % 5k % ok ok % ok % ok ok % ok %k %k ok k ok k ok Kk
robot_ball pos=0
robot_box_pos=0
robot_process_done =0
error_robot=0

cmdConnect.Enabled = True

cmdStart.Enabled = False
cmdStop.Enabled = False

- 132 -

A3- Visual Basic final programs

Stopbelt.Enabled = False
Startbelt.Enabled = False
hsbBoxPos.Enabled = False

"**|ook for the ball and detect if is inside or outside of the robot range**
3 3k 3k 5k 3k 3k 3k 3k 3k sk 3k sk sk ok 3k 3k sk sk sk sk ok ok 3k sk 3k sk sk ok ok 3k sk 3k sk sk sk ok 3k 3k 3k 3k sk sk sk sk ok ok 3k 3k sk sk sk sk ko k k sk sk k
Call Op.DispObj(ho_Image _
, hv_ExpDefaultWinHandle)
Call Op.Decompose3(ho_Image, ho_red, ho_green, ho_blue)
Call Op.Rgb3ToGray(ho_red, ho_green, ho_blue, ho_ImageGray)
Call Op.DispCross(hv_ExpDefaultWinHandle, 350, 540, 6, 0)
Call Op.GeneEllipse(ho_Ellipse, 0, 510, -0.07, 480, 410)
Call Op.ReduceDomain(ho_ImageGray, ho_Ellipse, ho_ImageReduced1)
Call Op.Threshold(ho_ImageReduced1, ho_Region, 0, 18)
Call Op.Connection(ho_Region, ho_ConnectedRegions)
Call Op.SelectShape(ho_ConnectedRegions, ho_SelectedRegions, "area", "and", 1200, 5000)
Call Op.SelectShape(ho_SelectedRegions, ho_SelectedRegions1, "roundness", "and", 0.5, 1)
Call Op.FillUp(ho_SelectedRegions1, ho_RegionFillUp)
Call Op.CountObj(ho_RegionFillUp, hv_Ball)

"**take the first coordinates of the ball**
O3k % 5k 5k % 5k % ok 5k % 5k % ok 5k % ok sk % ok %k %k sk %k k sk k ok k ok kkok ok

If Tuple.TupleEqual(hv_Ball, 1) Then
txtBallOut.Text =""
Call Op.AreaCenter(ho_RegionFillUp, hv_Area, hv_Row, hv_Column)
Call Op.ImagePointsToWorldPlane(hv_CamParam1, hv_PoseNewOrigin1, 350, 540, "mm",

hv_Xcenter, hv_Ycenter)
Call Op.ImagePointsToWorldPlane(hv_CamParam1, hv_PoseNewOrigin1, hv_Row, hv_Column,
"mm", hv_Xball, hv_Yball)

Call Op.DispCross(hv_ExpDefaultWinHandle, hv_Row, hv_Column, 6, 0)
BallX1 = Format(Round(hv_Xball, "000"))
BallY1 = Format(Round(hv_Yball, "000"))
Sleep (250)
findballl = True

Else
Call Op.SetDraw(hv_ExpDefaultWinHandle, "margin")
Call Op.DispObj(ho_Ellipse _

, hv_ExpDefaultWinHandle)

Call Op.SetColor(hv_ExpDefaultWinHandle, "yellow")
txtBallOut.Text = "Ball out of the robot reach"
MsgBox ("Put the ball within the range of the robot to follow")

End If

End Function

- 133 -

A3- Visual Basic final programs

Public Function findball2() As Boolean

"**take the second coordinates of the ball**
€3 3k 3k 5k 3k 3k 3k 3k 3k 3k sk sk ok ok 3k 3k sk sk sk sk ok ok 3k sk ok sk ok ok ok 3k sk sk ksk sk ok
Call Op.DispObj(ho_Image _
, hv_ExpDefaultWinHandle)
Call Op.Decompose3(ho_Image, ho_red, ho_green, ho_blue)
Call Op.Rgb3ToGray(ho_red, ho_green, ho_blue, ho_ImageGray)
Call Op.DispCross(hv_ExpDefaultWinHandle, 350, 540, 6, 0)
Call Op.ReduceDomain(ho_ImageGray, ho_Ellipse, ho_ImageReduced1)
Call Op.Threshold(ho_ImageReduced1, ho_Region, 0, 18)
Call Op.Connection(ho_Region, ho_ConnectedRegions)
Call Op.SelectShape(ho_ConnectedRegions, ho_SelectedRegions, "area",

"and", 1200, 5000)

Call Op.SelectShape(ho_SelectedRegions, ho_SelectedRegions1, "roundness", "and", 0.5, 1)

Call Op.FillUp(ho_SelectedRegions1, ho_RegionFillUp)
Call Op.CountObj(ho_RegionFillUp, hv_Ball)

If Tuple.TupleEqual(hv_Ball, 1) Then
txtBallOut.Text =""
Call Op.AreaCenter(ho_RegionFillUp, hv_Area, hv_Row, hv_Column)
Call Op.ImagePointsToWorldPlane(hv_CamParam1, hv_PoseNewOri
hv_Xcenter, hv_Ycenter)
Call Op.ImagePointsToWorldPlane(hv_CamParam1, hv_PoseNewOri
"mm", hv_Xball, hv_Yball)
Call Op.DispCross(hv_ExpDefaultWinHandle, hv_Row, hv_Column, 6
BallX2 = Format(Round(hv_Xball, "000"))
BallY2 = Format(Round(hv_Yball, "000"))
Else
Call Op.SetDraw(hv_ExpDefaultWinHandle, "margin")
Call Op.DispObj(ho_Ellipse _
, hv_ExpDefaultWinHandle)
Call Op.SetColor(hv_ExpDefaultWinHandle, "yellow")
txtBallOut.Text = "Ball out of the robot reach"
MsgBox ("Put the ball within the range of the robot to follow")
End If

"**Check if the coordinates in two different moments are the same**
O3k % 5k 5k % 5k % ok ok % 5k %k ok 5k % 5k sk %k 5k % ok sk %k ok sk ok 5k % 5k sk %k 5k % %k sk %k ok %k ok sk %k ok %k ok %k %k Kk Kk k ok kkokokk
If BallYl = BallY2 Then
If BallX1 = BallX2 Then
findball2 = True

Else
Step = "ball_moving"
End If
Else
Step = "ball_moving"
End If

- 134 -

ginl, 350, 540, "mm",
ginl, hv_Row, hv_Column,

IO)

A3- Visual Basic final programs

"**take the real coordinates in "microns" for sending to the robot**

O3k % 5k 5k % 5k % ok 5k % 5k % ok 5k % ok sk %k 5k % ok sk %k ok 3k ok 5k % ok 3k %k 5k % ok sk %k ok % ok %k %k ok %k ok %k %k ok k %k ok ok Kk ok k

Call Op.AreaCenter(ho_RegionFillUp, hv_Area, hv_Row, hv_Column)

Call Op.ImagePointsToWorldPlane(hv_CamParam1, hv_PoseNewOrigin1, 350, 540, "microns",
hv_Xcenter, hv_Ycenter)

Call Op.ImagePointsToWorldPlane(hv_CamParam1, hv_PoseNewOrigin1, hv_Row, hv_Column,
"microns", hv_Xball, hv_Yball)

Call Op.DispCross(hv_ExpDefaultWinHandle, hv_Row, hv_Column, 6, 0)

End Function
Public Function moving() As Boolean

"**function called when the ball is moving for taking the coordinates again**
O3k % 5k 5k % 5k % ok ok %k ok % ok 5k % 5k sk %k 5k % ok sk %k ok 3k ok 5k % ok %k %k 5k % ok sk %k ok %k %k 3k %k ok %k ok %k %k ok %k %k ok %k k sk ok ok k Kk kkokk ok

moving = True
End Function
Public Function XballSent() As Boolean

"**sending X coordinate of the ball**
5 % %k ok % ok 5k % 5k % %k 5k % ok % %k 5k % >k %k %k ok %k k sk k ok k k%
Dim CoordXball As String

Dim longXball As Long

longXball = CLng(hv_Xball)
CoordXball ="X_BALL" +" " + CStr(longXball)

"**checking ethernet connection**
€3 3k 3k 5k 3k 3k 3k 3k 3k 3k sk sk ok ok 3k 3k sk ok sk ok ok ok 3k sk ki ki sk ok k.
If Winsock1.State =7 Then
If txtDone.Text ="" Then
Winsock1.SendData CoordXball
txtXball.Text = Format(hv_Xball / 1000, "000.000")
XballSent = True
End If
Else
Answer = MsgBox("Server not connected, do you want to connect it?", 36, "Question")
If Answer = vbYes Then
MsgBox "Please restart the robot server, and then click ok"
Winsock1.Close
Winsock1.Connect
Step = "check_box"
Else
MsgBox "Please restart the robot server, and click 'yes' to follow"
Step = "check_box"
End If
End If
End Function

- 135 -

A3- Visual Basic final programs

Public Function YballSent() As Boolean

"**sending Y coordinate of the ball**
3 3k 3k 3k 3k 3k 3k 3k 3k sk sk ok ok ok sk 3k sk sk ok ok ok ok sk sk sksk sk ok k k
Dim CoordYball As String

Dim longYball As Long

cmdConnect.Enabled = False

longYball = CLng(hv_Yball)
CoordYball ="Y_BALL" +" " + CStr(longYball)

‘checking ethernet connection
If Winsock1.State =7 Then
If strData = "Xball" Then
Winsock1.SendData CoordYball
txtYball.Text = Format(hv_Yball / 1000, "000.000")
YballSent = True
End If
Else
‘Nothing
End If

End Function
Public Function XboxSent() As Boolean

"**sending X coordinate of the box**
€3 3k 3k 3k 3k 3k 3k 3k 3k sk sk sk ok ok 3k 3k sk sk sk ok ok ok 3k sk ki k sk sk k
Dim CoordXbox As String

Dim longXbox As Long

longXbox = CLng(hv_Xbox)
CoordXbox = "X_BOX" +" " + CStr(longXbox)

‘checking ethernet connection
If Winsock1.State =7 Then
If strData = "Yball" Then
Winsock1.SendData CoordXbox
txtXbox.Text = Format(hv_Xbox / 1000, "000.000")
XboxSent = True
End If
Else
'Nothing
End If
End Function

- 136 -

A3- Visual Basic final programs

Public Function YboxSent() As Boolean

"**sending Y coordinate of the box**
3 3k 3k 3k 3k 3k 3k 3k 3k sk sk ok ok ok sk 3k sk sk ok ok ok ok sk sk sksk sk ok k k

Dim CoordYbox As String
Dim longYbox As Long

longYbox = CLng(hv_Ybox)
CoordYbox ="Y_BOX" + " " + CStr(longYbox)

"**checking ethernet connection**
3k 3k sk 3k sk 3k 3k sk sk sk 3k sk sk sk sk sk sk sk sk ok sk sk skosk sksk sk sk
If Winsock1.State =7 Then
If strData = "Xbox" Then
Winsock1.SendData CoordYbox
txtYbox.Text = Format(hv_Ybox / 1000, "000.000")
txtDone.Text = "Ybox"
YboxSent = True
End If
Else
‘Nothing
End If

End Function
Public Function ball_pos() As Boolean

'"**ROBOT_COORD allows starting the robot when is in 1**

43k 3k 3k 3k 3k 3k 3k 3k 3k 3k sk 3k 3k 3k 5k 3k sk sk 5k 3k 5k 3k sk sk 3k 5k 5k 3k 3k sk 3k 3k 5k 3k sk k sk 5k 5k %k %k %k %k %k %k %k k

Dim robot_coord As String
Call Op.GrablmageAsync(ho_Image, hv_AcqHandle, -1)

robot_coord = IIROBOT_COORDII + nn + lllll
Winsock1.SendData robot_coord
ball_pos = True

End Function

Public Function ball_aspirated() As Boolean
"**start aspirating when robot is in position**
O3k % 5k 5k % 5k % ok 5k % 5k % ok 5k % ok %k %k 5k % ok sk %k ok %k %k ok % ok k %k ok k Kk ok

Dim vacuum_on As String

vacuum.Read (1)
IblVacuum.Caption = vacuum

If robot_ball_pos =1 Then

suction.Write 1 'OPC item
End If

- 137 -

A3- Visual Basic final programs

"*if vacuum sensor is "on", the process follows**
O3k % 5k 5k % 5k % ok 5k % ok % ok 5k % 5k %k %k 5k % ok sk %k ok %k ok ok % ok sk %k ok k Kk k ok ok k ok k
If IblVacuum.Caption = "True" Then
vacuum_on ="VACUUM" +" " + "1"
Winsock1.SendData vacuum_on
ball_aspirated = True
Else
If error_robot =1 Then
suction.Write 0
Step ="check_ball1"
End If
End If

End Function
Public Function ball_in_box() As Boolean

'"**to leave the ball in the box**
O3k % % 5k % 5 % %k ok % ok % %k ok % ok %k %k ok k Kk k ok Kk k%
If robot_box_pos =1 Then
suction.Write 0
vacuum.Read (1)
IblVacuum.Caption = vacuum
ball_in_box = True
End If

End Function
Public Function check_ball_in_box() As Boolean

"**check if the ball is inside the box and then start the belt**
O3k % 5k 5k % 5k % ok ok % 5k % ok 5k % 5k sk %k 5k % ok sk %k ok sk ok 5k % ok %k %k ok %k %k %k %k ok ok %k sk ok Kk ok k ok kK
If robot_process_done =1 Then
bit_stop.Write 0
cmdStart.Enabled = True
cmdStop.Enabled = True
Startbelt.Enabled = True
Stopbelt.Enabled = True
Call Op.DispObj(ho_Image _
, hv_ExpDefaultWinHandle)
Call Op.Decompose3(ho_Image, ho_red, ho_green, ho_blue)
Call Op.Rgb3ToGray(ho_red, ho_green, ho_blue, ho_ImageGray)
Call Op.ReduceDomain(ho_red, ho_Rectangle2, ho_ImageReduced)
Call Op.Threshold(ho_ImageReduced, ho_Region1, 45, 255)
Call Op.Connection(ho_Region1, ho_ConnectedRegions1)

Call Op.SelectShape(ho_ConnectedRegions1, ho_SelectedRegions2, "area", "and", 4000, 9000)

Call Op.Fillup(ho_SelectedRegions2, ho_RegionFillUp1)
Call Op.CountObj(ho_RegionFillUp1, hv_Box)

- 138 -

A3- Visual Basic final programs

If Tuple.TupleEqual(hv_Box, 1) Then
txtBoxInPos.Text =""
txtBalllnBox.Text = "Ball inside the box"
bit_start.Write 1
hv_Columnl =0
check_ball_in_box = True

Else

'if ball is not in box, take the coordinates again

txtBoxInPos.Text =
txtBallinBox.Text = "Ball out of the box"
txtXball.Text =""

txtYball.Text =""

txtXbox.Text =""

txtYbox.Text =""

txtDone.Text = ""

Step = "check_ball1"

End If

End If
End Function
Public Function process_again() As Boolean

txtDone.Text =""
hsbBoxPos.Enabled = True

"**when another box is detected in the first part of the belt, process start again**
3k 3k 3k 3k 3k 3k 3k sk sk ok 3k 3k 3k 3k sk sk sk ok ok 3k sk 3k 3k sk sk ok 5k 3k 3k 3k sk sk sk ok 3k 3k 3k sk sk sk sk ok 3k 3k 3k 3k sk sk sk sk 3k 3k 3k sk sk sk ok ok ok k %k sk sk sk ok k

If Tuple.TupleGreaterEqual(hv_Column1, 55) Then

txtBalllnBox.Text = ""
txtAgain.Text = "New process"
process_again = True

Else
Call Op.DispObj(ho_Image _
, hv_ExpDefaultWinHandle)

Call Op.Decompose3(ho_Image, ho_red, ho_green, ho_blue)

Call Op.Rgb3ToGray(ho_red, ho_green, ho_blue, ho_ImageGray)
Call Op.SetColor(hv_ExpDefaultWinHandle, "yellow")

Call Op.DispCross(hv_ExpDefaultWinHandle, 350, 540, 6, 0)

Call Op.GenRectangle2(ho_Rectangle2, 100, 0, -0.05, 200, 70)

Call Op.ReduceDomain(ho_red, ho_Rectangle2, ho_ImageReduced)
Call Op.Threshold(ho_ImageReduced, ho_Regionl, 40, 255)

Call Op.Connection(ho_Region1, ho_ConnectedRegions1)

Call Op.SelectShape(ho_ConnectedRegions1, ho_SelectedRegions2, "area", "and", 9000, 12000)

Call Op.Fillup(ho_SelectedRegions2, ho_RegionFillUp1)

Call Op.CountObj(ho_RegionFillUp1, hv_Box)

Call Op.AreaCenter(ho_RegionFillUp1, hv_Areal, hv_Row1, hv_Column1)

End If

End Function

- 139 -

A3- Visual Basic final programs

Private Sub Timer4_Timer()
"**main program wich calls each step in the process**

43k 3k 3k 3k 3k 3k 3k 3k 3k 3k sk 3k 3k 3k 5k 3k sk 3k 3k 3k 5k 3k sk sk 3k 5k 3k 3k 3k sk sk 5k 3k 5k %k %k %k ok %k %k k kokk

Call Op.GrablmageAsync(ho_Image, hv_AcqHandle, -1)
Call Op.DispObj(ho_Image _

, hv_ExpDefaultWinHandle)
Timer4.Enabled = False

Select Case Step

Case "check_box"
If findbox = True Then Step = "check_box1"

Case "check_box1"
If findbox1 = True Then Step = "check_ball1"

Case "check_ball1"
If findballl = True Then Step = "check_ball2"

Case "check_ball2"
If findball2 = True Then Step = "coord_Xball"

Case "ball_moving"
If moving = True Then Step = "check_ball1"

Case "coord_Xball"
If XballSent = True Then Step = "coord_Yball"

Case "coord_Yball"
If YballSent = True Then Step = "coord_Xbox"

Case "coord_Xbox"
If XboxSent = True Then Step = "coord_Ybox"

Case "coord_Ybox"
If YboxSent = True Then Step = "reach_ball"

Case "reach_ball"
If ball_pos = True Then Step = "aspirate"

Case "aspirate"
If ball_aspirated = True Then Step = "reach_box"

Case "reach_box"
If ball_in_box = True Then Step = "ball_inside_box"

Case "ball_inside_box"
If check_ball_in_box = True Then Step = "process_ended"

- 140 -

A3- Visual Basic final programs

Case "process_ended"
If process_again = True Then Step = "check_box"

End Select

Timer4.Enabled = True

End Sub

Private Sub vsbVelocity_Change()

"**change the velocity of the trasnport belt**
O3k % % 5k % 5k % 5k ok % ok % ok 5k % ok % %k 5k % ok %k % ok %k %k ok % ok k %k ok k Kk ok

velocity.Write vsbVelocity.Value

End Sub

Private Sub Winsockl_DataArrival(ByVal bytesTotal As Long)

Dim Strdata2() As String
Dim n As Integer

'"**get data from the robot**
3 3k 3k 3k 3k 3k 3k 3k 3k sk sk ok ok 3k 3k 3k sk sksk sk ok k k

Winsockl.GetData strData

Strdata2() = Split(strData, " ")
n = UBound(Strdata2)

If n=0Then
txtDone.Text = strData
End If

'"**data during the robot movement**
O3k % %k 5k % 5k % ok ok % ok %k ok ok % ok %k %k ok %k ok sk %k Kk k ok ok k ok ok k
If n=1Then
Select Case Strdata2(0)
Case "ROBOT_BALL_POS"
robot_ball_pos = Strdata2(1)
Case "ROBOT_BOX_POS"
robot_box_pos = Strdata2(1)
Case "PROCESS_DONE"
robot_process_done = Strdata2(1)
Case "ERROR_CODE"
error_robot = Strdata2(1)
txtBoxInPos.Text =""

- 141 -

A3- Visual Basic final programs

txtXball.Text =""
txtYball.Text = ""
txtXbox.Text =""
txtYbox.Text = ""
txtDone.Text =""
Case Else
MsgBox ("Error sending data")
End Select
End If

End Sub

A3.2 — Code of server program in the robot

Option Explicit

Dim boolBall As Boolean
Dim boolError As Boolean
Dim boolBox As Boolean
Dim boolDone As Boolean

Private Sub CmdConRob_Click()
ConnectRob

End Sub

Private Sub Form_Load()

"**Setup Form**
€3k %k %k %k 5k %k %k %k %k ok %k sk k ok

TxtGate.Enabled = False
TxtPoort.Enabled = False
txtconnectstat.Enabled = False
TxtPoort.Text ="10101"
TxtGate.Text = TcpClient.LocallP

ConStateRobot.Visible = False
ConStateServer.Visible = False

'"**Read out robot name and set as form title**
O3k % 5k 5k % 5k % ok ok % ok % ok 5k % ok %k %k ok % ok sk %k ok %k ok ok k k k ok ok ok kk ok ok k

QueryValue HKEY_LOCAL_MACHINE,
"System\CurrentControlSet\Control\ComputerName\ComputerName", "ComputerName"
frmClient.Caption = "Client Settings for robot" & " " & vValue

End Sub

- 142 -

A3- Visual Basic final programs

Private Sub cmdConnect_Click()

'Declare Variables
Dim Answer As String

TxtGate.Enabled = False
TxtPoort.Enabled = False

Answer = MsgBox("Are these settings correct ?", vbQuestion + vbYesNo, "Connect")
If Answer = vbYes Then

'Copy Port number data
If TcpClient.State = sckClosed Then
TcpClient.LocalPort = TxtPoort.Text
Else
MsgBox ("The connection state is not 'closed")
End If

'Copy server data
If TcpClient.State <> sckError Then
If TcpClient.State = sckConnected Then
MsgBox ("Not possible while connected to server")
Else
'Nothing
End If
Else
MsgBox ("Not possible while error on port")
End If

'Invoke the Connect method to initiate a connection.
If TcpClient.State <> sckError Then
TcpClient.Listen
Else
MsgBox ("Connecting not possible while error on socket!")
End If

Else
‘Nothing
End If
End Sub
Private Sub Form_Unload(Cancel As Integer)
"**End program**
€3 3k 3k 5k 3k ok 3k 3k 3k 3k sk kok ok

End

End Sub

-143 -

A3- Visual Basic final programs

Private Sub TcpClient_ConnectionRequest(ByVal requestID As Long)

"**Accept connection**

3 3k 3k 3k 3k 3k 3k 3k sk sk ok sk ok ok %k sk sk kk ok
TcpClient.Close
TcpClient.Accept requestID

End Sub
Private Sub Timer1_Timer()

'"**Do connection test and show message in taskbar**
O3k % % 5k % 5k % ok 5k % 5k % ok 5k % 5k sk %k 5k % ok %k %k ok sk %k ok % ok %k %k ok %k %k k ok Kk kk ok kK

connectiontest
End Sub
Private Sub tcpClient_DataArrival(ByVal bytesTotal As Long)

"**Declare Variables**
O3k % % 5k % % % %k ok %k k %k ok ok k Kk k k
Dim booll As Boolean
Dim bool2 As Boolean
Dim bool3 As Boolean
Dim bool4 As Boolean
Dim bool5 As Boolean
Dim bool6 As Boolean
Dim bool_resetl As Boolean
Dim bool_reset2 As Boolean
Dim bool_reset3 As Boolean
Dim bool_reset4 As Boolean

Dim Strdata2() As String
Dim n As Integer
Dim xball As Integer

'‘Check for arriving data
TcpClient.GetData Strdata
Strdata2() = Split(Strdata, " ")
n = UBound(Strdata2)

If n=0Then

MsgBox ("Incorrect data")
End If

-144 -

A3- Visual Basic final programs

If n=1Then

Select Case Strdata2(0)

Case "X_BALL"
booll = CrossCommands.SetVar("X_BALL", Strdata2(1))
bool_resetl = CrossCommands.SetVar("ROBOT_COORD", "0")
TcpClient.SendData "Xball"
boolBall = False
boolError = False
boolBox = False
boolDone = False
IbIDone.Caption =
IblVacuum.Caption =
IblCoord.Caption =""
IbIBallPos.Caption =""
IbIBoxPos.Caption =""

Case "Y_BALL"
bool2 = CrossCommands.SetVar("Y_BALL", Strdata2(1))
bool_reset2 = CrossCommands.SetVar("ROBOT_BALL_POS", "0")
TcpClient.SendData "Yball"

Case "X_BOX"
bool3 = CrossCommands.SetVar("X_BOX", Strdata2(1))
bool_reset3 = CrossCommands.SetVar("ERROR_CODE", "0")
TcpClient.SendData "Xbox"

Case "Y_BOX"
bool4 = CrossCommands.SetVar("Y_BOX", Strdata2(1))
bool_reset4 = CrossCommands.SetVar("ROBOT_BOX_POS", "0")
TcpClient.SendData "Done"
boolBall = True

Case "ROBOT_COORD"
bool5 = CrossCommands.SetVar("ROBOT_COORD", Strdata2(1))
IblCoord.Caption = Strdata2(0) + " " + Strdata2(1)

Case "VACUUM"
bool6 = CrossCommands.SetVar("VACUUM", Strdata2(1))
IblVacuum.Caption = Strdata2(0) + " " + Strdata2(1)

Case Else
MsgBox ("Error")

End Select

End If

"**0Only empty data when variable has been read**
3 3k 3k 3k 3k 3k 3k 3k sk sk sk sk ok ok 3k 3k sk sk sk sk ok 3k 3k sk sk sk sk ok 3k 3k sk sk sk ok sk ok k %k sk sk k

Strdata = Empty

"**coordinates in the robot**
€3k %k %k sk 3k 3k sk sk %k 5k %k sk %k ok %k sk sk %k k ok ko k ok

Dim str_Xball As String
Dim str_Yball As String

- 145 -

A3- Visual Basic final programs

Dim str_Xbox As String
Dim str_Ybox As String

Labell.Caption = CrossCommands.ShowVar("X_BALL", str_Xball)
Labell.Caption = str_Xball

Label2.Caption = CrossCommands.ShowVar("Y_BALL", str_Yball)
Label2.Caption = str_Yball

Label3.Caption = CrossCommands.ShowVar("X_BOX", str_Xbox)
Label3.Caption = str_Xbox

Label4.Caption = CrossCommands.ShowVar("Y_BOX", str_Ybox)
Label4.Caption = str_Ybox

End Sub
Private Sub connectiontest()

"**Do a connection test and fire message**
O3k % 5k 5k % 5k % ok 5k % ok % ok 5k % ok sk % ok % ok %k %k ok %k ok ok kK k ok ok kK k

Select Case TcpClient.State

Case sckClosed
txtconnectstat.Text = "Socket closed"
ConStateServer.Visible = True
ConStateServer.FillColor = vbRed

Case sckListening
txtconnectstat.Text = "Listening"
ConStateServer.Visible = True
ConStateServer.FillColor = vbYellow
cmdConnect.Enabled = False
IblCoord.Caption =""
IbIBallPos.Caption = ""
IbIBoxPos.Caption = ""
IblVacuum.Caption =
IblIDone.Caption =""

Case sckConnectionPending
txtconnectstat.Text = "Connection pending"
ConStateServer.Visible = True
ConStateServer.FillColor = vbRed

Case sckResolvingHost
txtconnectstat.Text = "Resolving host"
ConStateServer.Visible = True
ConStateServer.FillColor = vbRed

Case sckHostResolved
txtconnectstat.Text = "Host resolved”
ConStateServer.Visible = True
ConStateServer.FillColor = vbRed

- 146 -

A3- Visual Basic final programs

Case sckConnecting
txtconnectstat.Text = "Connecting host"
ConStateServer.Visible = True
ConStateServer.FillColor = vbRed

Case sckConnected
txtconnectstat.Text = "Connected to host"
cmdConnect.Enabled = False
ConStateServer.Visible = True
ConStateServer.FillColor = vbGreen

Case sckClosing
txtconnectstat.Text = "Closing socket"
ConStateServer.Visible = True
ConStateServer.FillColor = vbRed
TcpClient.Close
TcpClient.Listen

Case sckError
txtconnectstat.Text = "Error on socket
ConStateServer.Visible = True
ConStateServer.FillColor = vbRed

End Select

"**Check connection with the robot**
3k 3k sk 3k sk 3k 3k sk sk sk 3k sk sk sk sk sk sk sk sk ok skosk skosk skk sk skok sk
If Connected = False Then
CmdConRob.Enabled = True
'CmdDisconRob.Enabled = False
ConStateRobot.Visible = True
ConStateRobot.FillColor = vbRed
Else
If Connected = True Then
CmdConRob.Enabled = False
'CmdDisconRob.Enabled = True
ConStateRobot.Visible = True
ConStateRobot.FillColor = vbGreen
End If
End If

End Sub
Public Sub ConnectRob()

"**Create object for the robot**
3 3k 3k 3k 3k 3k 3k 3k 3k sk 3k sk ok ok 3k 3k sk sk sk sk ok ok ok sk k k
Set CrossCommands = CreateObject("CrossCommEXE.CrossCommand")
CrossCommands.Init Me
CrossCommands.ConnectToCross vValue
Connected = True
StrBofVer = GetBOFVer
End Sub

- 147 -

A3- Visual Basic final programs

Private Sub Timer2_Timer()

“**making the steps while the robot is running**
3 3k 3k 5k 3k 3k 3k 3k 3k sk sk sk ok 3k 3k 3k sk sk sk ok ok 3k 3k sk sk sk ok ok ok sk sk sk sk sk sk sk k k k

If boolBall = True Then

Dim str_RobotBallPos As String
Dim dataRobot1() As String
Dim sendBallPos As String

IbIBallPos.Caption = CrossCommands.ShowVar("ROBOT_BALL POS", str_RobotBallPos)
dataRobot1() = Split(str_RobotBallPos, " ")

IbIBallPos.Caption = dataRobot1(0) + " " + dataRobot1(2)

sendBallPos = "ROBOT_BALL_POS" +" " +"1"

If dataRobot1(2) =1 Then
TcpClient.SendData sendBallPos
boolError = True
boolBall = False

End If

End If

If boolError = True Then

Dim str_Error As String
Dim dataRobot2() As String
Dim sendError As String

IbIDone.Caption = CrossCommands.ShowVar("ERROR_CODE", str_Error)
dataRobot2() = Split(str_Error, " ")
IblIDone.Caption = dataRobot2(0) + " " + dataRobot2(2)
sendError = "ERROR_CODE" +" " + "1"
If dataRobot2(2) =1 Then
TcpClient.SendData sendError
IblCoord.Caption =""
IbIBallPos.Caption =""
IbIBoxPos.Caption = ""
IblVacuum.Caption =
boolError = False
End If

If IblVacuum.Caption = "VACUUM 1" Then
boolBox = True
boolError = False

End If

End If

- 148 -

A3- Visual Basic final programs

If boolBox = True Then

Dim str_RobotBoxPos As String
Dim dataRobot3() As String
Dim sendBoxPos As String

IbIBoxPos.Caption = CrossCommands.ShowVar("ROBOT_BOX_POS", str_RobotBoxPos)
dataRobot3() = Split(str_RobotBoxPos, " ")

IbIBoxPos.Caption = dataRobot3(0) + " " + dataRobot3(2)

sendBoxPos = "ROBOT_BOX_POS" +"" +"1"

If dataRobot3(2) =1 Then
TcpClient.SendData sendBoxPos
boolDone = True
boolBox = False

End If

End If

If boolDone = True Then

Dim str_RobotDone As String
Dim dataRobot4() As String
Dim sendDone As String

IbIDone.Caption = CrossCommands.ShowVar("PROCESS_DONE", str_RobotDone)
dataRobot4() = Split(str_RobotDone, " ")

IbIDone.Caption = dataRobot4(0) + " " + dataRobot4(2)

sendDone = "PROCESS DONE" +"" +"1"

If dataRobot4(2) =1 Then
TcpClient.SendData sendDone
boolDone = False

End If

End If

End Sub

- 149 -

A3- Visual Basic final programs

A3.3 — Code of Module added in server program

'‘Declare variables to connect with the robot
Public CrossCommands As Object
Public KRC1 As Boolean

Public KRC2 As Boolean

Public Connected As Boolean
Public Strresult As String

Public strtest As String

Public Strdata As String

Public StrBofVer As String

Public LogInfo As String

Public Fs

'‘Declare variables to read out robot name
Public Const REG_SZ AsLong =1
Public Const REG_DWORD As Long =4

Public Const HKEY_CLASSES_ROOT = &H80000000
Public Const HKEY_CURRENT_USER = &H80000001
Public Const HKEY_LOCAL_MACHINE = &H80000002
Public Const HKEY_USERS = &H80000003

Public Const ERROR_NONE =0

Public Const ERROR_BADDB =1

Public Const ERROR_BADKEY =2

Public Const ERROR_CANTOPEN =3

Public Const ERROR_CANTREAD =4

Public Const ERROR_CANTWRITE =5

Public Const ERROR_OUTOFMEMORY = 6
Public Const ERROR_ARENA TRASHED =7
Public Const ERROR_ACCESS DENIED =8
Public Const ERROR_INVALID_PARAMETERS = 87
Public Const ERROR_NO_MORE_ITEMS = 259

Public Const KEY_QUERY_VALUE = &H1
Public Const KEY_SET_VALUE = &H2
Public Const KEY_ALL_ACCESS = &H3F

Public Const REG_OPTION_NON_VOLATILE =0
Public vValue As Variant

Declare Function RegCloseKey Lib "advapi32.dil* (ByVal hKey As Long) As Long

Declare Function RegCreateKeyEx Lib "advapi32.dil" Alias "RegCreateKeyExA" (ByVal hKey As Long,
ByVal IpSubKey As String, ByVal Reserved As Long, ByVal IpClass As String, ByVal dwOptions As
Long, ByVal samDesired As Long, ByVal IpSecurityAttributes As Long, phkResult As Long,
IpdwDisposition As Long) As Long

Declare Function RegOpenKeyEXx Lib "advapi32.dil" Alias "RegOpenKeyExA" (ByVal hKey As Long,
ByVal IpSubKey As String, ByVal ulOptions As Long, ByVal samDesired As Long, phkResult As Long)
As Long

Declare Function RegQueryValueExString Lib "advapi32.dll" Alias "RegQueryValueExA" (ByVal hKey
As Long, ByVal IpValueName As String, ByVal IpReserved As Long, IpType As Long, ByVal IpData As
String, IpcbData As Long) As Long

Declare Function RegQueryValueExLong Lib "advapi32.dll" Alias "RegQueryValueExA" (ByVal hKey
As Long, ByVal IpValueName As String, ByVal IpReserved As Long, IpType As Long, IpData As Long,
IpcbData As Long) As Long

- 150 -

A3- Visual Basic final programs

Declare Function RegQueryValueEXNULL Lib "advapi32.dil" Alias "RegQueryValueExA" (ByVal hKey
As Long, ByVal IpValueName As String, ByVal IpReserved As Long, IpType As Long, ByVal IpData As
Long, IpcbData As Long) As Long

Declare Function RegSetValueExString Lib "advapi32.dll" Alias "RegSetValueExA" (ByVal hKey As
Long, ByVal IpValueName As String, ByVal Reserved As Long, ByVal dwType As Long, ByVal
IpValue As String, ByVal cbData As Long) As Long

Declare Function RegSetValueExLong Lib "advapi32.dll" Alias "RegSetValueExA" (ByVal hKey As
Long, ByVal IpValueName As String, ByVal Reserved As Long, ByVal dwType As Long, IpValue As
Long, ByVal cbData As Long) As Long

'Read out bof version used
Public Function GetBOFVer()

'Declare Variables
Dim TempVar As String

Set Fs = CreateObject("Scripting.FileSystemObject")
TempVar = Fs.GetFileVersion("c:\KRC\HMI\Kuka_HMI.exe")
Set Fs = Nothing

GetBOFVer = TempVar

End Function

‘Deconnect from Kuka cross KRC2

Public Sub DisconnectRob()
Connected = False
CrossCommands.CrossComm.ServerOff
Set CrossCommands = Nothing

End Sub

‘To read a vaiable in the Kuka KRC2
Public Function getVar(varName)

getVar = CrossCommands.CrossComm.getVarValue(varName)
End Function

"To make communication with the kuka cross

Public Function ConnectToCross(ByVal sConnectName As String, Optional nC_Mode As Integer) As
Boolean

End Function

‘To read a variable in the Kuka KRC1

Public Function ShowVar(ByVal sVariableName As String, ByRef sResult As String, Optional
vTimeOut) As Boolean

End Function

'To set a variable in the Kuka KRC1

Public Function SetVar(ByVal sVariableName As String, ByVal sNewValue As String, Optional
vTimeOut) As Boolean

End Function

'‘Deconnect from Kuka cross KRC1
Public Sub ServerOff()
End Sub

'‘Check Connection with Kuka Cross KRC1

Public Property Get CrossisConnected() As Boolean
End Property

- 151 -

A3- Visual Basic final programs

Public Function SetValueEx(ByVal hKey As Long, sValueName As String, IType As Long, vValue As
Variant) As Long

'Declare Variables
Dim IValue As Long
Dim sValue As String

Select Case IType
Case REG_SZ
sValue = vWalue & Chr$(0)
SetValueEx = RegSetValueExString(hKey, sValueName, 0&, IType, sValue, Len(sValue))
Case REG_DWORD
IValue = vValue
SetValueEx = RegSetValueExLong(hKey, sValueName, 0&, IType, IValue, 4)
End Select

End Function
Function QueryValueEx(ByVal IhKey As Long, ByVal szValueName As String, vValue As Variant) As
Long

'‘Declare Variables
Dim cch As Long
Dim Irc As Long

Dim IType As Long
Dim IValue As Long
Dim sValue As String

On Error GoTo QueryValueExError

' Determine the size and type of data to be read
Irc = RegQueryValueEXxNULL(IhKey, szValueName, 0&, IType, 0&, cch)
If rc <> ERROR_NONE Then Error 5

Select Case IType
' For strings
Case REG_SZ:
sValue = String(cch, 0)
Irc = RegQueryValueExString(lhKey, szValueName, 0&, IType, sValue, cch)
If 'c = ERROR_NONE Then
vValue = Left$(sValue, cch - 1)
Else
vValue = Empty
End If
' For DWORDS
Case REG_DWORD:
Irc = RegQueryValueExLong(lhKey, szValueName, 0&, IType, IValue, cch)
If rc = ERROR_NONE Then vValue = [Value
Case Else
‘all other data types not supported
Irc=-1
End Select

QueryValueEXxEXxit:
QueryValueEx = Irc
Exit Function

QueryValueExError:
Resume QueryValueExExit

- 152 -

A3- Visual Basic final programs

End Function
Public Sub QueryValue(Where As Long, sKkeyName As String, sValueName As String)

'Declare Variables
Dim IRetVal As Long
Dim hKey As Long

IRetVal = RegOpenKeyEx(Where, skeyName, 0, KEY_QUERY_VALUE, hKey)
IRetVal = QueryValueEx(hKey, sValueName, vValue)
RegCloseKey (hKey)

End Sub

- 153 -

A4- Datasheet of the motor

APPENDIX 4

Datasheet of the motor

- 154 -

4.5

Expansion Module MACOO-FP2/FP4

MACO00-FP2

With cable glands

MACO00-FP4

With M12 connectors TT1010GB

4.5.1

LDO0077-01GB

Profibus module MACOO-FP2 and FP4 Introduction

The MACO00-FP2 and FP4 are Profibus-DP slaves. They are capable of running at baud
rates up to |2Mbit.

All the registersI of the MAC motor can be read and written.

The modules include 6 inputs, 2 of which are end-limit inputs. These can be read from
the Profibus-DP. The end-limit inputs can automatically halt the motor. The other inputs
can be used to activate different movements.

The MAC motor is controlled by writing to the input data (9 bytes).

The expansion modules MACO00-FP2 and FP4 can be mounted on standard MAC motors
MACS50, MAC95, MACI140, MACI41, MAC400 and MACB800.

Both modules offer the same functions but with the following hardware differences:

Type Protection Connectors
class
1/0 and interface Power supply Bus interface
Cable glands Cable glands Cable glands x 2
MACO00-FP2 IP67 (Mini crimp con- (Screw terminals | (Screw terminals
nectors internally internally) internally)
MACO00-FP4 IP67 M12 M12 M12 B-coded (x2)

Both modules are delivered without any cables as standard.

Optionally the MACO00-FP2 module can be delivered with cable in selected lengths. Also
cables for the MACO00-FP4 with M2 connectors are available.

The first part of this section deals with the common features of both modules. Please see
the latter pages for specific information about each module, such as example connection
diagrams.

' A list of the typically used registers can be found in Serial Quick Guide (MacTalk proto-
col), page 167.
2 The FlexMac commands are described in FlexMac commands, page |1 1.

104

JVL Industri Elektronik A/S - User Manual - Integrated Servo Motors MACO050 - 800

jvj
LD0077-01GB

4.5

Expansion Module MACOO-FP2/FP4

4.5.2

MACOO-FP2 and FP4 Address and Termination setup

Each unit connected to the Profibus must be set up with a unique address.
The illustration below shows how the address and termination can be set on the internal
dip switch. The dip switch is located on the internal circuit board.

MACO00-FP2 and FP4 Dip switch settings

Rear side of the MAC00-FP2 or FP4

Mini dip-switch expansion module
OFF «<—» ON
=t
20|
Dip -7 - Address setting =
(address range 0-127) =)
6L
. 7w
Dip 8 - Address set by software gCm
Dip 9-10 - Line termination SE
Both set to ON = =2
Term. enabled N g
Both set to OFF = E
Term. disabled =

Notes.

SWI default setting: All switches set to “ON”

except 9+ 10 which are “OFF” which corresponds to
- Address is set by software / - Termination disabled

“Address set by software” (DIP8) means that
the profibus address will automatically be set
to the same value as the motor address

Dip switch location on the
MACO00-FP2 Expansion module

Cableglands
Basic MAC motor
housing
Internal circuit boards
{pmtaatutpuiut wputulll
Profibus and I/O Dip Switch placed
connectors. on the rear side of the TT0946GB

module

JVL Industri Elektronik A/S - User Manual - Integrated Servo Motors MACO050 - 800 105

4.5 Expansion Module MACOO-FP2/FP4

4.5.3 Output data (Master->Slave)
The MACO00-FP2/FP4 module contains 9 bytes of output data.

Address | Name Description
0 Write data 3 (MSB) Data to write to register
1 Write data 2 —— e
2 Write data 1 -
3 Write data 0 (LSB) e
4 Write register selector The register to write
5 Read register selector The register to read
6 Direct register Direct FlexMac command
7 Command Bits for commanding reads/write
8 Input setup Bits for input setup
Write data

For |6 bit registers, the data must be placed in Write data 0 and Write data |.
For 32 bit registers, the data must be placed in Write data 0-3.

Write register selector

The number of the register to write to should be placed here. The register must be in
the range 1-255.

Read register selector

The number of the register to read from should be placed here. The register must be in
the range [-255.

Direct register

This register can be used to execute a FlexMac? command. When writing to this
Register, the command will be executed immediately. The bit 0-6 is the command, and
bit 7 is not used. If the same command is to be executed twice, bit 7 can be toggled.
The command is accepted when the “Last direct register”, in the output data, has the
same value as this register-.

106 JVL Industri Elektronik A/S - User Manual - Integrated Servo Motors MACO050 - 800

4.5 Expansion Module MACOO-FP2/FP4

Command

Bit 7 6 5 4 3 2 1 0

Function Write Read Write Read Auto Auto Reserved | Reserved
Toggle Toggle 32 bit 32 bit write read

Bit 7 (Write toggle) is used for writing data to the selected register (Write register se-

Bit 6

Bit 5

Bit 4

Bit 3

Bit 2

lector). When this bit is toggled, writing is executed. The write command is ac-
cepted when Bit 7 in the command status (output data byte 7) is equal to this bit.

(Read toggle) is used for reading data from the selected register (Read register se-
lector). When this bit is toggled, reading is executed. The read command is accept-
ed when Bit 6 in the command status (output data byte 7) is equal to this bit.

(Write 32 bit) Set this to | if writing to a 32 bit register and 0 if writing to a 16 bit
register.

(Read 32 bit) Set this to | if reading from a 32 bit register and 0 if reading from a
|6 bit register.

(Auto write) When this bit is |, the data written in write data 0-3, is transferred to
the MAC motor immediately, regardless of the write toggle bit.

(Auto read) When this bit is |, the data in read data 0-3 is updated all the time, re-
gardless of the read toggle bit.

Bit 1and Bit 0 should be 0.

Input setup

Bit 7 6 5 4 3| 2|1]0

Function - Reset end limit PL Enable NL Enable Input mode

Bit 6 (Reset end-limit) When this bit is |, the end limit condition is reset, if no end
limits are activated.

Bit 5 (PL Enable) When this bit is |, the positive end-limit is enabled.

Bit 4 (NL Enable) When this bit is |, the negative end-limit is enabled.

Bit 3-0 (Input mode) these bits select the current input mode. See section Input modes,

page 109 for details.

JVL Industri Elektronik A/S - User Manual - Integrated Servo Motors MACO050 - 800 107

4.5 Expansion Module MACOO-FP2/FP4

4.5.4 Input data (Slave->Master)
The MACO00-FP2/4 contains 8 bytes of input data.
Address | Name Description
0 Read data 3 (MSB) Data read from register register
1 Readdata2 ~ [-=fe
2 Readdatat1 |-
3 ReaddataO |-fee
4 Motor status Status bits for the motor
5 Input status Status of inputs
6 Last direct register Last accepted direct FlexMac command
7 Command Status Status bits for commands
Read Data
For |6 bit registers, the read value will be placed in Read data 0 and Read data |.
For 32 bit registers, the read value will be placed in Read data 0-3.
Motor status
Bit 7 6 5 4 3 2 1 0
Function |- Decelerating | Accelerating | In position | - - - Error
Bit 6 (Decelerating) this bit is | when the motor is decelerating.
Bit 5 (Accelerating) this bit is | when the motor is accelerating.
Bit 4 (In position) this bit is | when the motor has reached its commanded position.
Bit O (Error) this bit is | when a motor error has occurred.
Input status
Bit 7 6 5 4 3 2 1 0
Function |- - PL NL IN4 IN3 IN2 IN1
Bit 5 (PL) Positive limit input.
Bit 4 (NL) Negative limit input.
Bit 3-0 (INx) user inputs.
Last direct register
See Direct register, page 106 for details.
108 JVL Industri Elektronik A/S - User Manual - Integrated Servo Motors MACO050 - 800

4.5 Expansion Module MACOO-FP2/FP4

Command status
Bit 7 6 5 4 3 2 1 0

Status

Function | Write Toggle | Read Toggle

Bit 7 (Write Toggle) this bit indicates when writing is completed. See Command, page
107 for details.

Bit6 (Read Toggle) this bit indicates when reading is completed. See Command, page
107 for details.

Bit 3-0 (Status) These bits indicate the status of the MACO00-FP2/FP4. The following sta-
tus codes are possible:

Code | Description

0 OK —Idle

1 Executing Input

2 Executing Output

3 Limit switch active

4 Profi error

5 Connecting to MAC motor
455 Input modes

The 4 user inputs can be used to execute different move commands.
The following input modes can be selected:

Mode | Description

0 Passive

1 Absolute+Relative
2-14 Reserved

15 Custom

Passive mode (0O)

When this mode is selected, the user inputs are ignored.
The inputs can be read in output data 5 for other purposes.

Absolute + Relative mode (1)
When this mode is selected. the inputs have the following functions:

INI: Selects the absolute position in position register |.
IN2: Selects the absolute position in position register 2.
IN3: Moves relative the distance in position register 3.
IN4: Moves relative the distance in position register 4.

The action is executed when an inactive-to-active transition is detected on the input.

Custom mode (15)

When this mode is selected, the action of each input can be selected with the slave pa-
rameters. See “Slave parameters” on page | 10.

JVL Industri Elektronik A/S - User Manual - Integrated Servo Motors MACO050 - 800 109

4.5

Expansion Module MACOO-FP2/FP4

4.5.6 Slave parameters
When configuring the profibus, it is possible to set some parameters for the slave. These
parameters are setup during startup and cannot be changed during operation.
XX Input level
Using these parameters, the input level of the inputs IN |, IN2, IN3, IN4, NL and PL can
be selected.
Possible values:
Active high : The input will be active, when a signal is applied.
Active low : The input will be active, when no signal is applied.
End-limit action
Using this parameter, the action taken when an end limit is activated can be selected.
Possible values:

Velocity = 0: When the end-limit is activated, the velocity will be set to 0 and the
motor will decelerate and stop. If the motor should run again, the
user must manually set a new velocity.

Passive mode : When the end-limit is activated, the actual mode will be changed to
passive. In passive mode the motor is short-circuited and can be ro-
tated.

In firmware version 1.4 or higher, the “end-limit action" is also active if the Profibus is
going off-line but it needs to be online before it goes off line before the feature is enabled.
Input debounce

Using this parameter, an input filter can be activated.

Possible values:

Disabled No filtering will be done on the inputs.

Enabled The inputs are filtered, resulting in better noise immunity but slower
response. When the filter is enabled, there will be a delay at the input
of about 5ms.

Input x action
Using these parameters, up to 3 actions can be assigned to each input.
These actions are used when the custom input mode is selected. See “Input modes” on
page 109.
The action is defined by a FlexMac command. See “FlexMac commands” on page || 1.
Possible values are 0-127, where O represents no action.

110 JVL Industri Elektronik A/S - User Manual - Integrated Servo Motors MACO050 - 800

4.5

Expansion Module MACOO-FP2/FP4

4.5.7

FlexMac commands

Using the FlexMac commands, it is possible to activate a set of registers and set the mode
of the motor using a single command. The command is composed of two parts. The first
part is the mode that the motor will use.
The following 4 modes can be selected:

Value | Motor mode after command | Format

0 Passive Command = 0 + Register N

32 Velocity Command = 32 + Register N

64 Position Command = 64 + Register N

96 <No change> Command = 96 + Sub-command N

The second part of the command is a register number or sub-command number.

The following table shows the register numbers:

N | Register N | Register N | Register N | Register
0 | P1 8 V1 16 | A1 24 | L1
1 | P2 9 V2 17 | A2 25 | L2
2 | P3 10 | V3 18 | A3 26 | L3
3 | P4 1 | v4 19 | A4 27 | L4
4 | P5 12 | V5 20 | T1 28 | Z1
5 | P6 13 | V6 21 | T2 29 | 22
6 | P7 14 | v7 2 | T3 30 | z3
7 | P8 15 | v8 23 | T4 31 | z4

The following table shows the sub-commands:

N | Command N | Command

0 No operation 16 | Start search zero

1 Reset error 17 | No operation

2 P_SOLL=0 18 | No operation

3 P_IST=0 19 | Reserved

4 P_FNC=0 20 | Select absolute position mode

5 V_SOLL=0 21 | Select relative position mode using P_SOLL
6 T SOLL=0 22 | Select relative position mode using P_FNC
7 Reset IN_POS, ACC,DEC 23 | No operation

8 P_FNC =(FLWERR-P7)*16 | 24 | No operation

9 P_FNC =(FLWERR-P8)*16 | 25 | No operation

10 | Reserved 26 | No operation

11 | Reserved 27 | No operation

12 | Activate P0,V0,A0,T0,L0,Z0 28 | No operation

13 | Activate P1,V1,A1,T1,L1,21 29 | No operation

14 | Activate P2,V2,A2,T2,L2,Z2 30 | Reserved

15 | Activate P3,V3,A3,T3,L3,Z3 31 | Reserved

JVL Industri Elektronik A/S - User Manual - Integrated Servo Motors MACO050 - 800

4.5 Expansion Module MACOO-FP2/FP4

Examples of FlexMac commands

Change velocity mode and activate register VI :
32 + 8= FlexMac command 40

Activate register P5 and change to position mode
64 + 4 = FlexMac command 68

Activate register T3 and change to position mode
64 + 22 = FlexMac command 86

Activate PO,V0,A0,TO,LO and Z0 without changing the mode:
96 + 12 = FlexMac command 108

112 JVL Industri Elektronik A/S - User Manual - Integrated Servo Motors MACO050 - 800

4.5 Expansion Module MACOO-FP2/FP4

scription of connections

The following pages describe the different aspects of connecting the modules MACO0-

4.5.8 MACOO-FP2 and FP4 de
FP2 and FP4.
4.5.9 MACOO-FP2 Connectors

MACO00-FP2 rear plate layout:

The illustration below shows all the internal connectors in the module. The profibus and
power connectors are easy-to-use screw terminals. If the I/Os are used, they require a
JVL cable type WG0402 (2m), WG04 10 (10m) or WG0420 (20m). See also the appendix
for cable and connector accessories.

| Overview MACO00-FP2 connectors | TT0965GB

Interface connector

See table for connection details q

Output connector
See table for connection details
/

“Profibus-In” and “Profibus-Out”
Please note that these two connectors are

| ® 0+
Mounting hole used LLX ?Q - e 812]
to fit the connector o RKij= | D\& Power connection
<TGND| | 2 O \¢ to the basic motor
board to the rear plate Lo ANE g — X
5 GND SNe i
NC 1
— o |
- N
Input connector INPUTS Fuse TIOA | | Mounting hole used
s P ble f) 2 [to fit the connector
d:atii @ for connection smsEsmmnms F1 board to the rear plate
sSzElocm u| |
T [EE
q @ DGND | =l DOND @ b Profibus output connector
ISl A- ern|| © ‘& oo || [(signal to next node in the chain)
IS || B+ red|=—=0T ol
‘0 @ 5VDC @ @ B+ ReD @0\
i o197
Proﬁbus input connecFor A PCB type : P+ | P- svoc @ Connect power supply to these
(signal from last node in the chain) PB0062-13 BUS-OUT 2 terminals (+ 12-48VDC)

Profibus signal definitions

internally hardwired (no electronics added in between).

Terminal description: MACO00-FP2 | Standard Name at modules
GND Signal ground can optionally be used for the cable screen name wire colour | with SN<30000
A- Negative profibus signal line (Green) B+ Red xA/xP

B+ Positive profibus signal line (Red) A G BN

5vDC +5VDC output to be used for external termination (optional) - reen e

JVL Industri Elektronik A/S - User Manual - Integrated Servo Motors MACO050 - 800

13

4.5

Expansion Module MACOO-FP2/FP4

4.5.10 MACOO-FP2 option with cables (optional)
The MACO00-FP2 type number only covers the basic module, i.e. without any cables.
If a number is added after the basic type number, for example MACO00-B2- 10, this suffix
indicates that the module is fitted with 10 m of cable in the I/O. The I/O cable covers all
the signal lines, i.e. RS232, Digital input |-4, Limit inputs NL and PL and the Digital out-
puts |-4.
Please note the WG0420 table below is not valid for cables delivered before 1.10.2002.
See WG0420 (old versions delivered before 1.10.2002), page 176
Digital Inputs - Internal connector J2
Signal name | Pin no. | Description Wire colour
IN1 1 Digital input 1 Red/black
IN2 2 Digital input 2 Green/black
IN3 3 Digital input 3 Violet
IN4 4 Digital input 4 Violet/white
NL 5 Negative limit input - If not used, do not connect. Grey
PL 6 Positive limit input - If not used, do not connect. Grey/black
10- 7 1/0 ground. Shared with the output ground (O-) Pink/black
NC 8 (Reserved) Black/white
CV 9 Secondary supply. Used during emergency stop * Light green **
CV 10 Secondary supply. Used during emergency stop * White
Digital Outputs - Internal connector J4
Signal name | Pin no. | Description Wire colour
O+ 1 Supply for outputs - Must be connected to an ext. Red/white
supply.
o1 2 Digital output 1 - PNP output - Max. 25mA Green/white
02 3 Digital output 2 - PNP output - Max. 25mA Yellow/black
NC 4 (Reserved) Blue/white
NC 5 (Reserved) Orange/white
NC 6 (Reserved) Brown/white
NC 7 (Reserved) Pink
1O- 8 1/0 ground. This ground is shared with the input Black
ground
Interface - including analogue input - Internal connector J1
Signal name | Pin no. | Description Wire colour
TXPD 1 Transmit pull-down (Connect to TX if addr. not used) | Red
TX 2 RS232 Transmit (Connect to TXPD if addr. not used). | Green **
RX 3 RS232 Receive (connect to GND if not used). Yellow
GND 4 Ground for RS232 Blue
AIN 5 Analogue input +/-10V or Zero sensor input Orange
GND 6 Ground for AIN Brown
Cable Screen
The cable-screen is internally connected to motor housing. Externally it must be connected to earth.
Unused wire
Orange/Black - is not used internally. It must be left unconnected.
*: The VC terminals are only available on modules with serial number >25000
** : The light green wire (CV) can be difficult to distinguish from the green wire (TX) on some cables.
Important: Please note that the cables are a standard type. They are not recommend-
ed for use in cable chains or where the cable is repeatedly bent. If this is
required, use a special robot cable (2D or 3D cable).
114 JVL Industri Elektronik A/S - User Manual - Integrated Servo Motors MACO050 - 800

4.5

Expansion Module MACOO-FP2/FP4

4.5.11

Assembly instructions for profi cables

Remove the insulation from the cable, as shown in the ac-
companying picture.

Fit the plastic part of the gland on the cable, and fold the
screen around it. Remember to first feed the cable
through the nut.

Feed the cables through the cable glands in the rear plate
of the module and tighten the nuts.

Screw the wires into the module. The red wire must go
into the B+terminal, and the green must go into the A-
terminal.

The input and output terminals can be swapped if re-
quired. The is no difference between input and output on
the board which means that it is purely hard-wired.

Attach the circuit board to the rear plate with the two
screws. REMEMBER to use the spring washers included.

The table below shows the difference between Siemens

naming conventions and the naming on the MACO00-FPx.

MACO00-FPx | Siemens | Standard
name name wire colour
B+ B Red

A- A Green

All values in millimetres

IMPORTANT:
use spring washer

JVL Industri Elektronik A/S - User Manual - Integrated Servo Motors MACO050 - 800

15

4.5

Expansion Module MACOO-FP2/FP4

4.5.12

4.5.13

MACOO-FP2 - How to connect the RS232 interface

The illustration below shows how to connect the MAC00-FP2 directly to a PC COM
port. The drawing is based on standard cables from JVL, type WG0402, WG0410 or
WGO0420. See also Accessories, page |74 for a complete list of cables and connectors.

If the MAC motor is connected to the same RS232 line as other motors, the terminal TX-
PD should only be connected at one of the motors. If one of VL'’s standard RS232 cables
(RS232-9-1 or -n) is used between the DSUB connector shown and the PC com port,
the RX and TX pins must be swapped since they cross in these standard cables.

| How to connect the MACO00-FP2 RS232 interface |

Remember to connect TX-PD (Red)
to TX (Green) in order to achieve
stable communication

Interface connector
(incl. analogue input)

JVL cable WG04xx
standard I/O
cable (24 wire)

PC RS232
COMport Screen terminated

to the GND terminal
/ Red

J_ Green Screen

| (soreen] Yellow
e Blue

<

If the RS232 lines are extended
through another cable this cable
must also be screened

Screen must be
connected to
main ground
at rear cover.

Connector:
Cable = Female 9pin DSUB
At PC = Male 9pin DSUB

MACO00-FP2 internal
! connector bard TT0966GB
If JVLs standard programming cable type R§232-9-1 or -n is
used between the shown connector and the PC the RX
and TX signal must be swapped. Tx to pin 2 and Rx to pin 3.

Operation with dual supply for emergency situations

In many applications it is intended that positional data and other setup information is re-
tained during an emergency situation. It is however also required by law in many coun-
tries that the main power for energizing the motor is removed in such a situation.

To meet both of these requirements, the MAC motor equipped with a MAC00-FPx
module offers a secondary supply input called “VC”. If the main supply at the P+ terminal
is removed, the internal control circuitry can be kept “alive” by maintaining a supply at
the “VC” terminal.

MAC motor with module

Expansion module Basic MAC motor

From main supply r

(12-48VDC) L P+] e

» To motordriver

Optional *

Secondary suppy ———— VC
(12-48VDC)

Power supply
and control <
circuitry

. Internal supply voltages
> N
and communication

TT0976GB

* The “VC” terminal can be left open if not used.

116

JVL Industri Elektronik A/S - User Manual - Integrated Servo Motors MACO050 - 800

Expansion Module MACOO-FP2/FP4

Expansion module MAC00-FP4 front plate

BUS1

Primary Profibus-DP
connector.

MI2 - 5pin male
connector including:
Profibus-DP interface

BUS2

Secondary Profibus-DP

connector:

M2 - 5pin female
connector including:
Profibus-DP interface

TT1008GB

PWR

Power

MI2 - 5pin male
connector including:
P+, P- and secondary
supply (optional).

I/O

M12 - 8pin female
connector including:
RS232 Interface
Selectable 1/O’s such
as analogue input, Ol,
02, INI, NL, PL.

4.5.14

Expansion MACOO-FP4 hardware description

The MACO00-FP4 offers IP67 protection and M2 connectors which make it ideal for au-
tomation applications where no additional protection is desired. The M2 connectors of-
fer solid mechanical protection and are easy to unplug compared to the FP2 module

which has cable glands. The signals available are restricted compared to the FP2 module
since only 4 |/O terminals are available. The I/Os connected to these 4 terminals must be

selected by a small dip-switch.

The connector layout:

“PWR” - Power input. M12 - 5-pin male connector

JVL Cable

WI1000M12 | Isolation
Signal name | Description Pin no. F5A05N group
P+ Main supply +12-48VDC. Connect withpin2* | 1 Brown 1
P+ Main supply +12-48VDC. Connect with pin1* | 2 White 1
P- Main supply ground. Connect with pin 5 * 3 Blue 1
CcVv Control voltage +12-48VDC. 4 Black 1
P- Main supply ground. Connect with pin 3 * 5 Grey 1

* Note: P+ and P- are each available at 2 terminals. Make sure that both terminals are connected in order
to split the supply current in 2 terminals and thereby avoid an overload of the connector.

“BUS1” - Profibus-DP interface. M12 - 5-pin male connector

Cable: user | Isolation
Signal name | Description Pin no. supplied group
- Reserved for future purpose - do not connect | 1 - 2
A- Terminal A (Siemens syntax) for the Profibus-DP 2 _ 2
interface
DGND Profibus-DP interface ground 3 - 2
Terminal A (Siemens syntax) for the Profibus-DP _
B+ interface 4 2
SHIELD Cable shield. Internally conn. to the motor housing. 5 - 2

(Continued next page)

JVL Industri Elektronik A/S - User Manual - Integrated Servo Motors MACO050 - 800

117

4.5

Expansion Module MACOO-FP2/FP4

“BUS2” - Profibus-DP Interface. M12 - 5-pin female connector

DIP 6 =ON:
(output supply)

Cable: user Isolation
Signal name | Description Pin no. | supplied group
5vDC 5V output. Can be used for ext. termination (Max 40mA) | 1 - 2
A- Terminal A (Siemens syntax) for the Profibus interface 2 - 2
DGND Profibus-DP interface ground 3 - 2
B+ Terminal B (Siemens syntex) for the Profibus interface. 4 - 2
SHIELD Cable shield. Internally connected to the motor housing. | 5 - 2
“l0” - 1/0s and RS232 interface. M12 - 8-pin female connector.
JVL Cable
WI1000-M12 | Isolation
Signal name | Description Function Pin no. | M8AO5N group
; DIP 5 = OFF : PL input .
10C 1/0 terminal C. DIP 5=0N : O1 (PNP 25mA) 1 White 3
RS232 interface - transmit output
Important !: DIP1 must be turned ON. If addressing is
i used it must be turned ON at minimum one 2 Brown 1
of the connected motors.
Rx RS232 interface - receive input Green 1
GND RS232 Ground - also used with analogue input Yellow 1
DIP 2 = ON and DIP3 = OFF
1 AIN
(Analogue input) 3 (1 when
I0A 1/0 terminal A. DIP2=0OFF andDIP3=0ON | 5 Grey used as
: 02 (output 2 / PNP 25mA) AIN)
(AIN is the analogue input.
Remember to use the GND
terminal with AIN !).
DIP 4 = OFF : IN1
f (input 1) :
10B 1/O terminal B. DIP 4 =ON : O (PNP 25mA) 6 Pink 3
(output 1)
10- 1/0 ground to be used with IN1, NL, PL, O1, O2 7 Blue 3
DIP 6 = OFF : NL
10D 1O terminal D. (negative timit input) 8 Red 3

Cable Screen
Some standard cables with M12 connector offer a screen around the cable. This screen on some cables is
fitted to the outer metal at the M12 connector. When fitted to the MACO00-FP4 module, this means that the
screen will have contact with the complete motor housing and thereby also the power ground (main ground).

Isolation groups
The MACO0-FP4 offers optical isolation at the digital inputs and outputs (IN1, NL, PL and O1-2). The table
shows a number for each pin. This number refers to the isolation group to which the pin is connected.
Isolation group 1 means that the terminal refers to the main ground (P-, GND and the motor housing).
Isolation group 2 means that the terminal refers to the Profibus-DP interface ground (DGND).

Isolation group 3 means that the terminal refers to the I/O ground (1O0-)

118

JVL Industri Elektronik A/S - User Manual - Integrated Servo Motors MACO050 - 800

4.5

Expansion Module MACOO-FP2/FP4

4.5.15

Cables for the MACOO-FP4

The following cables equipped with M12 connector can be supplied by JVL.

MACO00-FP4 Connectors

“BUS1 ”
5-pin
Male

B-coded

“BUS2”
5-pin
Female
B-coded

HIIO!!
8-pin
Female

“PWR”
5-pin
Male

Description

JVL Order no.

Photo

RS232 Interface cable. Connects
directly from MACQ0-FP4 to PC
Length: 5m (197 inch)

RS232-M12-1-5-8

Cable (5.5mm) with M12 female 5
pin 90 degree connector loose ends
0.35mm? (22AWG) and foil screen.
Length: 5m (197 inch)

WI1000-M12F5A05N

Same as above but 20m (787 inch)

WI1000-M12F5A20N

Cable with M12 male 8-pin 90
degree connector loose ends
0.22mm? (24AWG) and foil screen.
Length: 5m (197 inch)

WI1000-M12M8AO5N

Same as above but 20m (787 inch)

WI1000-M12M8A20N

Profibus DP cable with M12 male 5-
pin connector B-coded, loose ends
and screen.

Length: 5m (197 inch).

WI1026-M12M5S05R

Same as above but 15m (591 inch)

WI1026-M12M5S15R

Profibus DP cable with M12 female
5-pin connector B-coded, loose
ends and screen.

Length: 5m (197 inch)

WI1026-M12F5S05R

Same as above but 15m (591 inch)

WI1026-M12F5S15R

Loose

connectors and termination resistor

Loose Profibus DP male M12
connector. B-coded.
Internal screw terminals.

Wi1028-M12M5VC1

»

Loose Profibus DP female M12
connector. B-coded.
Internal screw terminals.

Wi1028-M12F5VC1

Profibus DP male M12 termination
resistor. B-coded.

Wi1028-M12M4STR3

Protection caps. Optional if connector is not used, to pro

tect from dust / liquids.

X

X

IP67 protection cap for M12
female connector.

WI1000-M12FCAP1

IP67 protection cap for M12
male connector.

WIi1000-M12MCAP1

Important: Please note that the cables are a standard type. They are not recommended for use in ca-
ble chains or where the cable is repeatedly bent. If this is required, use a special robot cable (2D or 3D
cable). See also Accessories, page |74 where additional M 12 connectors are shown.

JVL Industri Elektronik A/S - User Manual - Integrated Servo Motors MACO050 - 800

119

4.5 Expansion Module MACOO-FP2/FP4

4.5.16 GSD file for the MACOO-FP2 and FP4

The GSD file must be used to configure the PLC or master controller used for the Profi-
bus communication. The file is shown here but is also available on disc. Please contact
your nearest JVL representative.

GSD file:

; COM PROFIBUS V 3.3, GSD'-Xport
; Time Stamp: 01/31/00, 12:36:39
#Profibus_DP

; <Unit-Definition-List>
GSD_Revision=|
Vendor_Name="JVL IND EL"
Model_Name="MACO00-FP"
Revision="0.0"
Ident_Number=0x06BC
Protocol_Ident=0
Station_Type=0

Hardware Release="1.1"
Software Release="1.2"

9.6 _supp=1

19.2_supp=1

93.75 supp=1

187.5 supp=1

500 supp=1I

1.5M supp=1

3M supp=1

6M _supp=1

12M_supp=|
MaxTsdr_9.6=60
MaxTsdr_19.2=60
MaxTsdr_93.75=60
MaxTsdr_187.5=60
MaxTsdr_500=100
MaxTsdr_1.5M=150
MaxTsdr_3M=250
MaxTsdr_6M=450
MaxTsdr_12M=800
Implementation_Type="VPC3"
Bitmap_ Device="DPLINK "

; Slave-Specification:
Freeze Mode supp=0
Sync_Mode_supp=0
Auto_Baud supp=1
Min_Slave_Intervall=1
Max_Diag Data Len=8
Modul_Offset=0
Slave_Family=0
OrderNumber="MACO00-FPx"

120 JVL Industri Elektronik A/S - User Manual - Integrated Servo Motors MACO050 - 800

4.5 Expansion Module

MACOO-FP2/FP4

; UserPrmData: Length and Preset:
PrmText=1

Text(0)="Active low"
Text(1)="Active high"
EndPrmText

PrmText=2
Text(0)="Velocity = 0"
Text(l)="Passive mode"
EndPrmText

PrmText=3
Text(0)="Disabled"
Text(l)="Enabled"
EndPrmText

ExtUserPrmData=1 "INI Input level"
Bit(0) | O-1

Prm_Text Ref=|
EndExtUserPrmData

ExtUserPrmData=2 "IN2 Input level"
Bit(1) I O-1

Prm_Text Ref=|
EndExtUserPrmData

ExtUserPrmData=3 "IN3 Input level"
Bit(2) | O-1

Prm_Text Ref=|
EndExtUserPrmData

ExtUserPrmData=4 "IN4 Input level"
Bit(3) | O-1

Prm_Text Ref=|
EndExtUserPrmData

ExtUserPrmData=5 "NL Input level"
Bit(4) | O-1

Prm_Text Ref=|
EndExtUserPrmData

ExtUserPrmData=6 "PL Input level"
Bit(5) | O-1

Prm_Text Ref=|
EndExtUserPrmData

ExtUserPrmData=7 "Endlimit action"

Bit(0) 0 O-1
Prm_Text Ref=2
EndExtUserPrmData

ExtUserPrmData=8 "Input | Action"
UnSigned8 0 0-255
EndExtUserPrmData

JVL Industri Elektronik A/S - User Manual - Integrated Servo Motors MACO050 - 800

121

4.5 Expansion Module MACOO-FP2/FP4

ExtUserPrmData=9 "Input 2 Action"
UnSigned8 0 0-255
EndExtUserPrmData

ExtUserPrmData=10 "Input 3 Action"
UnSigned8 0 0-255
EndExtUserPrmData

ExtUserPrmData= 1| "Input 4 Action"
UnSigned8 0 0-255
EndExtUserPrmData

ExtUserPrmData=12 "Input debounce"
Bit(1) 0 O-1

Prm_Text Ref=3

EndExtUserPrmData

ExtUserPrmData= | 3 "Input noise filter"
Bit(2) 0 O-|

Prm_Text Ref=3

EndExtUserPrmData

Max_User Prm_Data Len=15
User Prm_Data_Len=15
User_Prm_Data=0x0,0x3F,0x0,0,0,0,0,0,0,0,0,0,0,0,0

Ext_User_Prm_Data_Const(0) = 0x0,0x3F,0x0,0,0,0,0,0,0,0,0,0,0,0,0
Ext_User Prm_Data Ref(l)=1
Ext User Prm Data_Ref(1)=2
Ext User Prm Data_Ref(1)=3
Ext User Prm Data_Ref(1)=4
Ext User Prm Data_Ref(1)=5
Ext User Prm Data_Ref(1)=6
Ext User Prm Data_Ref(2)=7
Ext User Prm Data Ref(2)=12
Ext User Prm Data Ref(2)=13
Ext User Prm Data_Ref(3)=8
Ext User Prm Data_Ref(4)=8
Ext User Prm Data_Ref(5)=8
Ext User Prm Data_Ref(6)=9
Ext User Prm Data_Ref(7)=9
Ext User Prm Data_Ref(8)=9
Ext User Prm Data Ref(9)=10
Ext User Prm Data_Ref(10)=10
Ext User Prm Data Ref(I1)=10
Ext User Prm Data Ref(12)=11
Ext User Prm Data Ref(13)=11
Ext User Prm Data Ref(14)=11

; <Module-Definition-List>
Module="MACO00-FP" 0x13,0x10,0x10,0x10,0x10,0x23,0x20,0x20,0x20,0x20,0x20
EndModule

122 JVL Industri Elektronik A/S - User Manual - Integrated Servo Motors MACO050 - 800

