

Análisis y mejora de la eficiencia energética de un centro de formación en Molina de Segura (Murcia)

Titulación: Ingeniería Industrial

Alumno/a: Antonio Enrique Gris Cárdenas

Director/a/s: Fernando Illán Gómez

Índice

1.	Intro	ducción y Objetivos	1
2.	Desc	ripción del Edificio de referencia	2
2	2.1. Situ	uación y emplazamiento del edificio	2
2	2.2. Des	sarrollo de actividad	3
2	2.3. Des	scripción del edificio	3
3.	Intro	ducción de datos en LIDER	3
3	8.1. Pes	taña Descripción	4
	3.1.1.	0	
	3.1.2.	Orientación del edificio	6
	3.1.3.	Tipo de edificio	
	3.1.4.	Clase de los espacios habitables	
	3.1.5.	Renovaciones/hora	
	3.1.6.	,	
		.1. Temperatura de consigna	
3	3.2. Bas	e de Datos	
	3.2.1.	Materiales opacos utilizados	
	3.2.2.	Composición de los cerramientos y particiones interiores	
	3.2.3.	Vidrios utilizados	
	3.2.4.	Marcos de los huecos	
	3.2.5.	Huecos	
	3.2.6.	Permeabilidad	
3	3.3. Op	ciones	
	3.3.1.		
		Puentes térmicos	
3	8.4. Pes	taña 3D	
	3.4.1.		
		Valor de Eficiencia Energética en Iluminación	
		isis de la demanda energética del edificio y propuestas de mejor	
		ultados iniciales del edificio objeto de la simulación	
4	I.2. Mo	dificación del espesor del aislante de los muros exteriores y cubierta	
	4.2.1.	Modificación del espesor del aislante de los muros exteriores	
		.1. Balance energético	
		.2. Balance económico	
		.3. Análisis balance energético-económico	
•		Modificación del espesor del aislante de la cubierta del edificio	
		.1. Balance energético	
		.2. Balance económico	
		Análisis balance energético-económico aumento espesores aislante	
		dificación de la permeabilidad de las ventanas	
		álisis y mejora de los puentes térmicos	
	111	Ralance energético	20

4.4.1.	1. Encuentro forjado-fachada	39
4.4.1.	2. Encuentro suelo exterior-fachada	42
4.4.1.	3. Encuentro cubierta-fachada	43
4.4.1.	4. Esquina saliente	44
4.4.1.	5. Esquina entrante	44
4.4.1.	.6. Hueco ventana	45
4.4.1.	7. Pilares	48
4.4.1.	8. Unión solera-pared exterior	50
4.4.2.	Balance económico	51
4.4.2	.1. Encuentro forjado-fachada	51
4.4.2	.2. Encuentro suelo exterior-fachada y cubierta-fachada	52
4.4.2	.3. Esquina saliente, entrante y puentes térmico en pilares	52
4.4.2	.4. Hueco ventana	52
4.5. Uso	de termoarcilla en la fachada exterior	53
4.6. Valo	ores de absorción de la radiación solar de los muros y techos exteriores	56
4.7. Con	trol de ventilación	56
4.7.1.	Balance energético	56
4.7.2.	Balance económico	67
4.8. Mo	dificación del factor solar del vidrio de las ventanas	69
4.9. Pro	puesta de mejora total del edificio	69
_	oción de los sistemas de climatización y ACS introducidos en CALENER GT	
5.1. Imp	ortación del edificio de LIDER del edificio BASE y MEJORADO	73
5.1.1.	Datos generales	74
5.1.2.		
5.1.3.	Horarios	
5.1.4.	Tipos de espacios y renovaciones	
5.1.5.	Iluminación	77
5.2. Obt	ención de las cargas demandadas por nuestro edificio	79
	lisis de los distintos sistemas de climatización y ventilación	
5.3.1.1	. CASO 1: Climatización por FANCOILS con ventilación independiente en el ed	
	BASE	
5.3.1.2	. CASO1: Climatización por FANCOILS con ventilación independiente en el ed	
	MEJORADO en LIDER	87
5.3.1.3	. CASO1: Comparativa de resultados ENERGETICOS Y ECONOMICOS entre el	
	edificio BASE y el MEJORADO en LIDER	
5.3.2.1	. CASO2: Climatización FRIO POR CONDUCTOS Y CALOR POR SUELO RADIANT	
	CON CALDERA DE CONDENSACIÓN en el edificio BASE	
5.3.2.2	. CASO2: Climatización FRIO POR CONDUCTOS Y CALOR POR SUELO RADIANT	
	CON CALDERA DE CONDENSACIÓN en el edificio MEJORADO en LIDER	97
5.3.2.3	. CASO2: Comparativa de resultados ENERGETICOS Y ECONOMICOS entre el	
	edificio BASE y el MEJORADO en LIDER	
5.3.3.1	. CASO3: Climatización FRIO POR CONDUCTOS Y CALOR POR RADIADORES AG	
	CALIENTE CON CALDERA CONVENCIONAL en el edificio BASE	102

5.3.3.2. CASO 3: Climatización FRIO POR CONDUCTOS Y CALOR POR RADIADORES DI	ᆫ
AGUA CALIENTE CON CALDERA CONVENCIONAL en el edificio	
MEJORADO	106
5.3.3.3. CASO 3: Comparativa de resultados ENERGETICOS Y ECONOMICOS entre el	
edificio BASE y el MEJORADO en LIDER	108
5.3.4.1. CASO4: Climatización FRIO POR CONDUCTOS Y CALOR POR SUELO RADIANT	E.
CON BOMBA DE CALOR en el edificio BASE	109
5.3.4.2. CASO4: Climatización FRIO POR CONDUCTOS Y CALOR POR SUELO RADIANT	E.
CON BOMBA DE CALOR en el edificio MEJORADO	110
5.3.4.3. CASO4: Comparativa de resultados ENERGETICOS Y ECONOMICOS entre el	
edificio BASE y el MEJORADO en LIDER	112
5.3.5.1. CASO5: Climatización FRIO POR CONDUCTOS Y CALOR POR RADIADORES	
ELECTRICOS en el edificio BASE	113
5.3.5.2. CASO5: Climatización FRIO POR CONDUCTOS Y CALOR POR RADIADORES	
ELECTRICOS en el edificio MEJORADO	115
5.3.5.3. CASO5: Comparativa de resultados ENERGETICOS Y ECONOMICOS entre el	
edificio BASE y el MEJORADO en LIDER	
5.3.6.1. CASO6: Climatización FRIO Y CALOR POR MULTISPLIT en el edificio BASE	118
5.3.6.2. CASO6: Climatización FRIO Y CALOR POR MULTISPLIT en el edificio	
MEJORAD	120
5.3.6.3. CASO6: Comparativa de resultados ENERGETICOS Y ECONOMICOS entre el	
edificio BASE y el MEJORADO en LIDER	
5.4. Análisis del consumo energético del edificio y propuestas de mejora	
6. Conclusiones	128
7. Bibliografía	130

ANEXO I Planos del edificio

ANEXO II Materiales utilizados en cerramientos

ANEXO III Composición de cerramientos y huecos del edificio

ANEXO IV Características técnicas aislante perimetral

ANEXO V Enumeración de espacios por plantas

ANEXO VI Composición de los muros de termoarcilla

ANEXO VII Perfiles de ocupación en los distintos tipos de espacios del edificio

ANEXO VIII Catalogo de equipos de climatización y ventilación

1. Introducción y Objetivos

Los edificios de uso terciario (administrativos, comerciales, hoteles, centros de educación, centros sanitarios, etc.) son los edificios con mayor gasto energético. La calefacción, refrigeración, agua caliente sanitaria, ventilación, iluminación, ofimática, etc., suponen un consumo importante de energía. Según el IDAE (Instituto para la Diversificación y Ahorro de la Energía) este sector se lleva el 20% del consumo de energía final en España.

Teniendo en cuenta el marco actual de crisis económica mundial y de concienciación sobre el impacto ambiental de la acción humana, se antoja vital reducir los costes asociados al suministro energético, mediante un óptimo uso de la energía y el uso de energías renovables.

El objetivo del presente proyecto fin de carrera es obtener nuevos datos sobre la relación existente entre las medidas que permiten mejorar la clase de eficiencia energética de un edificio de uso terciario y la repercusión de coste que supone su implantación, así como la reducción en emisiones a la atmosfera.

Para la realización de este análisis se va a tomar como base un centro de formación de la localidad murciana de Molina de Segura, en el que mediante los programas de simulación LIDER, CALENER VYP y CALENER GT se van a llevar a cabo las simulaciones propuestas.

LIDER es la aplicación informática que permite cumplir con la opción general de verificación de la exigencia de Limitación de Demanda Energética establecida en el Documento Básico de la Habitabilidad y Energía del Código Técnico de la Edificación (CTE-HE1) y está patrocinada por el Ministerio de Vivienda y por el Instituto para la Diversificación y Ahorro de la Energía (IDEA). Esta herramienta está diseñada para realizar la descripción geométrica, constructiva y operacional de los edificios, así como para llevar a cabo los cálculos recogidos en el CTE-HE1 y para la impresión de la documentación administrativa pertinente.

En este software llevaremos a cabo los siguientes análisis sobre nuestro edificio de referencia:

- Mejora del tipo de luminarias del edificio
- Modificar el espesor de aislamiento de los muros exteriores, analizando por separado las diferentes orientaciones de estos
- Modificar el espesor de aislante de la cubierta
- Modificar el nivel de estanqueidad de las ventanas
- Analizar y mejorar puentes térmicos
- Analizar la influencia de la ventilación
 - a. Sistema de ventilación de caudal constante sin control de presencia
 - b. Sistema de ventilación con control de presencia
 - c. Sistema de ventilación controlado por sensor de CO₂

El Programa informático Calener GT es una herramienta promovida por el Ministerio de Industria, Turismo y Comercio, a través del IDAE, y por el Ministerio de Vivienda, que permite determinar el nivel de eficiencia energética correspondiente a un edificio del sector terciario.

Mediante este programa informático analizaremos las emisiones y consumo del edificio ante diferentes sistemas de climatización y ventilación, además de ver la influencia de la iluminación natural en el gasto energético.

2. Descripción del Edificio de referencia

2.1. Situación y emplazamiento del edificio

Para la realización de dicho proyecto se ha tomado como edificio de referencia un centro de formación situado en la localidad murciana de Molina de Segura en la carretera nacional km373 en el polígono industrial "La Serreta" (**Ilustración 1,2 y 3**).

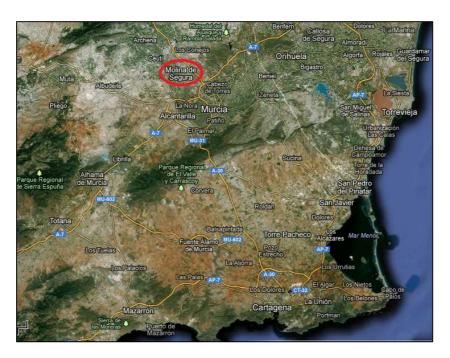


Ilustración 1 Situación del edificio

Ilustración 2 Situación del edificio

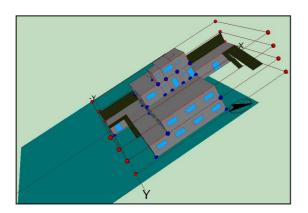
Ilustración 3 Emplazamiento del edificio

2.2. Desarrollo de actividad

El edificio está dedicado a la actividad docente con un horario de 12 horas diarias, repartido de 7 horas a 15 horas por las mañanas y de 17 horas a 21 horas por las tardes.

2.3. Descripción del edificio

El edificio está dividido en 4 plantas como se describe en el ANEXO I con una superficie total de 1052,4 m² construida. Las 4 plantas a su vez están divididas en 24 salas, que de aquí en adelante llamaremos espacios, en los que podemos encontrar: hall de entrada, aseos, aulas, talleres, despachos y almacenes. La descripción de los materiales de los cerramientos, así como materiales de puertas y ventanas utilizados en la construcción del edificio los recogemos en el ANEXO II y III.


3. Introducción de datos en LIDER.

En primer lugar utilizaremos la aplicación informática LIDER en el que intentaremos definir un modelo del edificio de referencia (**Ilustración 4**) tal y como está construido en la realidad (**Ilustración 5, 6, 7 y 8**).

Esta etapa de la representación de la realidad es quizá el centro de la simulación. El modelo debe corresponderse con los requerimientos y expectativas, cuyo principal criterio es obtener el máximo parecido con la realidad para dar respuesta a las preguntas del análisis y evaluar las condiciones límite.

Para la construcción del siguiente modelo se han reproducido las características básicas de la edificación en lo referente a elementos de construcción según las necesidades del estudio, todo ello siguiendo cada uno de los pasos, que nos solicita el software informático en forma de pestaña, que son:

- Descripción
- Base de Datos
- Opciones
- 3D

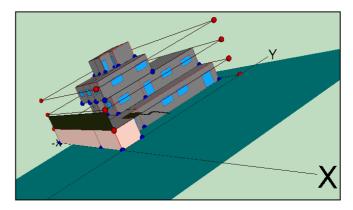


Ilustración 4 Edificio definido en LIDER

Ilustración 5 Orientación Sureste del edificio

Ilustración 6 Orientación Noreste del edificio

Ilustración 7 Orientación Noroeste del edificio

Ilustración 8 Orientación Suroeste del edificio

3.1. Pestaña Descripción

En esta accedemos a los datos generales del proyecto, donde definiremos la zona climática donde nos encontramos, el ángulo que forma el eje Y de nuestro edificio con el norte, el tipo de edificio que se trata y la ventilación dadas en renovaciones/hora.

Además de esto, daremos nombre al proyecto y datos del autor del mismo para que a la hora de darnos los informes finales aparezcan directamente.

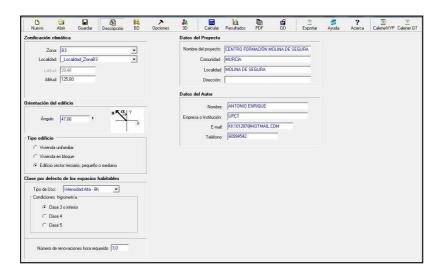


Ilustración 9 Pestaña Descripción del proyecto

3.1.1. Climatología

Las zonas climáticas se han adoptado en función del concepto de Severidad Climática para verano (refrigeración) y para invierno (calefacción), donde la Severidad Climática se define como el cociente entre la demanda energética de un edificio en una localidad dada, respecto a la demanda que produciría ese mismo edificio en Madrid, (tomando en Madrid la Severidad Climática, tanto en verano como invierno, valor la unidad).

Se han definido 5 zonas en calefacción (por letras de A a E, según su severidad climática de invierno) y en refrigeración se ha dividido 4 zonas climáticas (por números de 1 a 4, según su severidad climática de verano). En la **llustración 10** se especifican los intervalos correspondientes.

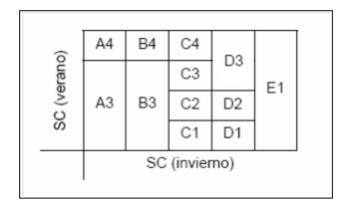


Ilustración 10 Zonas climáticas obtenidas de registros climáticos

Combinando las 5 divisiones de invierno con las 4 de verano se obtendrían 20 zonas distintas de las cuales en la realidad sólo existen 12 zonas climáticas reales, de acuerdo a las condiciones ambientales de la geografía española.

El programa LIDER posee en su base de datos la zona climática correspondiente a las capitales de provincia y para asignar la zona climática a cualquier otra localidad se debe hacer uso de la

tabla D.1 del CTE DB HE-1 (**Ilustración 11**) en función de la diferencia de altura que exista entre la localidad y la altura de referencia de la capital de su provincia.

Provincia	Capital	Altura de , referencia (m)			snivel entre la le capital de su pro		
			≥200 <400	≥400 <600	≥600 <800	≥800 <1000	≥1000
Albacete	D3	677	D2	E1	E1	E1	E1
Alicante	B4	7	- C3	C1	D1	D1	E1
Almería	A4	0	B3	B3	C1	C1	D1
Ávila	E1	1054	E1	E1	Ĕ1	Ě1	. E1
Badajoz	C4	168	C3	. D1	D1	E1	E1
Barcelona	C2 .	1	C1	D1	D1 -	E1	E1 ·
						E1	E1 .
Bilbao	C1	214	D1	D1	E1	E1	E1
Burgos	E1 .	861	E1	E1	E1	E1	E1
Cáceres	C4	385	D3	D1	E1	E1	E1
Cádiz	A3	0	B3	B3	C1	C1	D1
Castellón de la Plana	B3	18	C2	C1	D1	D1	E1
Ceuta	. B3	0	B3	C1	C1	D1	D1
Ciudad real	. D3	630	D2	E1	Ĕ1	E1	E1
Córdoba	B4	113	C3	C2	D1	D1	E1
Coruña (a)	C1	0	C1	D1	D1	E1	E1
Cuenca	D2	975	E1	E1	E1	E1	Ē1
Cuenca Donostia-San Sebastián	D2 C1	9/5 5	D1	D1	E1	E1	E1
Girona	C2	143	D1	D1	E1	E1	E1
Granada	C3	754	D2	D1	E1	E1	E1
Guadalajara	D3	708	D1	E1	E1	E1	E1
Huelva	B4	50	B3	C1	C1	D1	D1
Huesca	D2	432	E1	E1	E1	E1	E1
Jaén	C4	436	C3	D2	D1	E1	E1
León	E1	346	E1 .	E1	E1	E1	E1
Lleida	D3	131	D2	E1	E1	E1	E1
Logroño	D2	379	D1	Ē1	Ē1	Ēi	E1
Lugo	D1	412	E1	E1	E1	Ēi	E1
	D3		D1		E1	Ē1	E1
Madrid		589		E1	EI	E1	EI
Málaga	A3	. 0	B3	C1	C1 -	D1	D1
Malitla	Δ3	130	R3	R3	C1		D1
Murcia	B3	25	C2	C1	D1	D1	E1
Ourense	C2	327	D1	E1	E1	E1	E1
Oviedo	C1	214	D1	D1	E1	E1	E1
Palenda	- D1	722	E1	E1	E1	E1	E1
Palma de Mallorca	B3	1	B3	C1	C1	D1	D1
Palmas de gran canaria (las)	A3	114	. A3	A3	A3	B3	B3
Pampiona	D1	456	E1	E1	E1	E1	E1
Pontevedra	C1	77	C1	D1	D1	Ē1	E1
Salamanca	D2	770	E1	E1	E1	Ē1	E1
Santa cruz de Tenerife	A3	0	A3	A3	A3	B3	B3
	C1	1	C1	A3 D1	D1		E1
Santander						E1	
Segovia	D2	1013	E1	E1	E1	- E1	E1
Sevilla	B4	9	B3 .	C2	C1	D1	E1
Soria	E1	984	E1 .	E1	E1	E1	E1
Tarragona	B3	1	C2	C1	Ď1	D1	E1
Teruel	D2	995	E1	E1	E1	E1	E1
Toledo	C4	445	D3	D2	E1	E1	E1
Valencia	B3	8	C2	C1	D1	D1	. E1
Valladolid	. D2	704	E1	Ĕ1	E1	E1	E1
Valladolid Vitoria-Gasteiz	. D2	. 512	E1	Ēi	E1	E1	E1
Zamora	D2	617	E1	E1 .	E1	E1	E1
Zaragoza	D3	207	D2	E1	E1	E1	E1

Ilustración 11 Zonas climáticas. Tomadas del Apéndice D del documento Básico HE - Ahorro de Energía-

Nuestro edificio de referencia se encuentra situado a una altura de 90 metros sobre el nivel del mar, y dado que la capital de referencia (Murcia) se encuentra a 25 metros nos encontramos en la zona climática B3.

3.1.2. Orientación del edificio

Respecto a la orientación del edificio, debemos definir el ángulo que forma lo que nosotros hemos considerado el eje Y de nuestro edificio con la orientación norte de nuestro edificio.

En la siguiente imagen puede verse el eje Y que nosotros hemos elegido para la representación del edificio y el ángulo que forma con el norte que será de 47°.

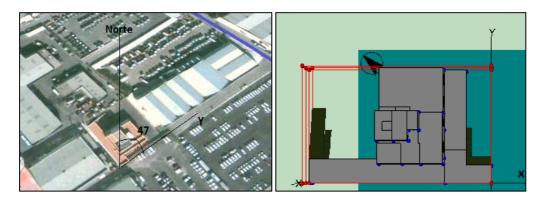


Ilustración 12 Orientación real del edificio

Ilustración 13 Orientación del edificio en LIDER

3.1.3. Tipo de edificio

Se trata de un centro dedicado a la enseñanza y por tanto es un edificio del sector terciario.

3.1.4. Clase de los espacios habitables

Se trata de un tipo de edificio del sector terciario y al tratarse de un centro dedicado principalmente a aulas se trata de una clase de higrometría 3, por ser un centro donde no se van a producir grandes cantidades de humedad.

En cuanto al tipo de uso de los espacios y el número de renovaciones hora lo trataremos en apartados siguientes.

3.1.5. Renovaciones/hora

El nivel de ventilación requerido por el edificio, en términos de renovaciones/hora, lo realizaríamos en el apartado de descripción si fuera un edificio residencial, pero al tratarse de un edificio del sector terciario, en lugar de colocar este valor medio de las renovaciones/hora del edificio posteriormente iremos editando cada uno de los espacios de nuestro edificio y colocando las renovaciones/hora calculadas reales.

Al tratarse de un edificio terciario este valor medio que hemos colocado en la pestaña de descripción (**Ilustración 14**) lo variaremos para todos los espacios excepto para los no habitables (en nuestro edificio el ascensor) que el programa asignara el valor de 3 renovaciones/hora.

Número de renovaciones hora requerido 1,67

Ilustración 14 Valor medio Renovaciones/hora caso inicial

Este cálculo real (tabla 1) lo realizaremos en función del perfil de ocupación de cada espacio que podríamos obtener en base a la ocupación máxima que da en el documento de seguridad en caso de incendio recogido en el documento SI. Aunque esto es correcto, es decir, nos da un valor límite, pero en la práctica normalmente la ocupación será mucho menor, lo que va a incidir mucho en las necesidades de ventilación.

Por lo tanto, siempre que sea posible estimaremos la ocupación en base a lo que tenemos en los planos (esta ocupación viene recogida en color amarillo en la **tabla 1**). En los casos en que no dispongamos de esa información por plano estimaremos una densidad de ocupación en función de la tabla del documento de SI como límite, aunque en algunos espacios como las entradas esta ocupación será puntual y podremos considerarla inferior (ocupación calculada en color verde).

Para obtener los caudales de ventilación en esta primera simulación, utilizaremos el método indirecto de caudal de aire exterior por persona, que según el RITE en la IT 1.1.4.2 aparecen las aulas de enseñanza entre los locales tipo para los que aplicar calidad IDA2, siendo los caudales de aire exterior de 12,5 dm³/s por persona.

A partir de estos perfiles de ocupación y de los caudales de aire necesario para esta ocupación obtenemos el caudal de ventilación necesario para los espacios considerados secos (tabla 1).

Ahora debemos comparar estos caudales obtenidos con los de los espacios húmedos que se trata de aire de extracción, que calculamos en lugar de estimar ocupación estimamos la ventilación usando los de la norma UNE 13779.

Tipo de uso	Unidad	Intervalo tipo	Valor por defecto para el diseño
Cocina			
uso simple (por ejemplo, cocinas donde se preparan bebidas calientes)	1/s	> 20	30
uso profesional	a	a	ā
Baño/aseos ^b			
- por urinario o inodoro	1/s	> 6,7	15
por superficie de suelo	$1/s \cdot m^2$	> 1,4	3

a El caudal de aire de extracción para la cocina se debe calcular en función de la situación específica.

Ilustración 15 Valores de diseño para los caudales de aire de extracción

Lo que hay que hacer es sumar todo el aire de entrada (ventilación en todos los locales "secos") y el aire de salida (ventilación en todos los locales "húmedos", en nuestro caso sólo baños al no disponer de cocina) que obtenemos de la **ilustración 15**. Comparándolos (las dos casillas en azul) al final la suma de caudal de ventilación en todos los locales "secos" es el mayor de los dos. Por lo tanto, el caudal total de ventilación a nuestro edificio en este caso de partida sin ningún control de la ventilación es de 7370,91 m³/h.

Repartiendo este caudal de ventilación entre el volumen de cada uno de los espacios de nuestro edificio obtenemos el número de renovaciones/hora para este punto de partida sin ningún tipo de control sobre la ocupación del edificio, es decir, la ventilación funcionara para esta ocupación de manera constante durante el horario de apertura del edificio.

b Cuando se utilizan como mínimo el 50% del tiempo. Con períodos de funcionamiento más cortos, se requieren caudales más elevados. Para el aire de extracción directo de una de las piezas, se pueden considerar valores inferiores (valor tipo de 3 a 6 13/s por urinario o inodoro).

Tabla 1: Calculo de las renovaciones/hora de cada uno de los espacios mediante el método indirecto de caudal de aire exterior por persona

planta	espacio	descripción	Densidad ocupación (m²/persona)	personas	volumen sala m³	Q aire entrada por persona IDA 2 (dm³/s)	aire exterior total m³/h	ren/hora	Inodoros	Q extracción m³/h
P1	E1	Entrada	15,00	7	365	12,50	323,70	0,89		0
P1	E2	ascensor	-		13	12,50	0,00	3,00		0
P1	E3	aulas	1,50	43	1038	12,50	1935,00	1,86		0
P1	E4	taller	5,00	32	547	12,50	1457,03	2,66		0
P2	E2	aula	1,50	10	107	12,50	450,00	4,22		0
P2	E3	aseo	3,00		26	12,50	0,00	0,00	3	162
P2	E4	aseo	3,00		7	12,50	0,00	0,00	1	54
P2	E5	aseo	3,00		15	12,50	0,00	0,00	1	54
P2	E6	entrada	15,00	3	156	12,50	138,60	0,89		0
P2	E7	ascensor	-		13	12,50	0,00	3,00		0
P2	E8	aseo	3,00		51	12,50	0,00	0,00	3	162
P2	E9	almacén	40,00	0	14	12,50	4,75	0,33		0
P2	E10	taller	5,00	30	517	12,50	1350,00	2,61		0
Р3	E1	aula informática	1,50	22	187	12,50	990,00	5,29		0
P3	E2	sala de juntas	5,00	10	75	12,50	450,00	6,00		0
Р3	E3	dirección	10,00	2	60	12,50	79,28	1,33		0
Р3	E4	entrada	15,00	3	151	12,50	134,00	0,89		0
Р3	E5	ascensor	-		13	12,50	0,00	3,00		0
Р3	E6	aseo	3,00		15	12,50	0,00	0,00	1	54
Р3	E7	aseo	3,00		20	12,50	0,00	0,00	1	54
P4	E1	Entrada	15,00	1	59	12,50	58,56	0,99		0
P4	E2	ascensor	-		11	12,50	0,00	3,00		0
P4	E3	cuadro de maquinas	0,00		56	12,50	0,00	0,00		0
P4	E4	cuarto instalaciones	0,00		26	12,50	0,00	0,00		0
		<u> </u>					7370,91	1,67		540

3.1.6. Coeficientes ocupacionales y funcionales

Para el cálculo y simulación de la demanda térmica y consumo energético del edificio debemos considerar una serie de cargas internas, horarios y controles que especificamos a continuación.

El programa simula hora a hora el comportamiento del edificio y para ello toma un calendario anual por defecto que no se puede modificar. Se asume entonces que el día 1 de enero es lunes, año no bisiesto y no se consideran las fiestas nacionales, regionales ni locales, distinguiéndose por tanto tres tipos de días: laborables, sábados y domingos.

Al tratarse nuestro edificio como terciario se proponen cuatro perfiles de uso: 8, 12, 16 ó 24 horas con tres tipos de intensidades de carga interna diferente, clasificada en baja, media y alta densidad. Nuestro edificio está abierto durante 12 horas al día, recogiéndose los valores umbrales para una ocupación de 12h/día vienen recogidos en la siguiente **tabla 2**.

 Baja
 Media
 Alta

 Ocup. Sensible
 2 W/m²
 6 W/m²
 10 W/m²

 Ocup. Latente
 1.26 W/m²
 3.79 W/m²
 6.31 W/m²

 Equipos
 1.5 W/m²
 5 W/m²
 7.5 W/m²

Tabla 2 Valores umbrales carga interna para un horario de apertura de 12h/día

Teniendo en cuenta que el calor emitido por una persona que realiza un trabajo de oficina es de 55 W latentes y 75 W sensibles y considerando la densidad de ocupación la misma que hemos obtenido anteriormente (**columna 4 de la tabla 1**), hemos calculado lo que realmente ocurriría y lo que el programa es capaz de aproximarse a la realidad, ya que LIDER solo permite la clasificación en tres intensidades.

En la **tabla 3** vemos como el valor real de calor latente 55 W/persona nos da un valor medio de 8,56 W/m, mientras que nosotros en LIDER introduciendo el valor de intensidad alta 6,31 W/m²(**tabla 2**) nos da un valor medio de 6,03 W/m², siendo este el valor posible más próximo al real.

En cuanto a calor sensible calculado en la **tabla 4**, ocurre lo mismo ya que para el valor real de calor sensible de 75 W/persona nos da un valor medio de 11,67 W/m², mientras que en LIDER introduciendo el valor de intensidad alta de 10 W/m² (**tabla 2**) nos da un valor medio de 9,56 W/m², siendo este el valor posible más próximo a la realidad.

Por lo tanto consideraremos nuestro edificio un edificio con una intensidad alta, ya que es el valor más próximo al real, para un horario de utilización de 12 horas, siendo el horario de 7-15h y de 17-21h:

Tabla 3 Cálculo del calor latente real medio y comparación con el simulado en LIDER para obtener la intensidad de ocupación de nuestro edificio

				densidad	REAL			LIDER	
			Área	ocupación	calor latente	intensidad ocupación	potencia	intensidad ocupación	potencia
planta	espacio	descripción	m²	personas/m²	W/persona	W/m ²	W	W/m ²	W
P1	E1	Entrada	107,90	0,07	55	3,67	395,63	6,31	680,85
P1	E2	ascensor	3,85	0,00	55	0,00	0,00	0,00	0,00
P1	E3	aulas	307,00	0,14	55	7,70	2365,00	6,31	1937,17
P1	E4	taller	161,89	0,20	55	11,00	1780,81	6,31	1021,54
P2	E2	aula	31,56	0,32	55	17,43	550,00	6,31	199,16
P2	E3	aseo	7,60	0,00	55	0,00	0,00	6,31	47,96
P2	E4	aseo	2,00	0,00	55	0,00	0,00	6,31	12,62
P2	E5	aseo	4,32	0,00	55	0,00	0,00	6,31	27,26
P2	E6	entrada	46,20	0,07	55	3,67	169,40	6,31	291,52
P2	E7	ascensor	3,70	0,00	55	0,00	0,00	0,00	0,00
P2	E8	aseo	15,22	0,00	55	0,00	0,00	6,31	96,06
P2	E9	almacén	4,22	0,03	55	1,38	5,81	0,00	0,00
P2	E10	taller	152,86	0,20	55	10,79	1650,00	6,31	964,55
P3	E1	aula informática	55,35	0,40	55	21,86	1210,00	6,31	349,23
Р3	E2	sala de juntas	22,19	0,45	55	24,79	550,00	6,31	139,99
Р3	E3	dirección	17,62	0,10	55	5,50	96,90	6,31	111,17
Р3	E4	entrada	44,67	0,07	55	3,67	163,77	6,31	281,84
Р3	E5	ascensor	3,70	0,00	55	0,00	0,00	0,00	0,00
Р3	E6	aseo	4,44	0,00	55	0,00	0,00	6,31	28,02
Р3	E7	aseo	6,05	0,00	55	0,00	0,00	6,31	38,16
P4	E1	Entrada	19,52	0,07	55	3,67	71,57	6,31	123,17
P4	E2	ascensor	3,70	0,00	55	0,00	0,00	0,00	0,00
P4	E3	cuadro de maquinas	18,26	0,00	55	0,00	0,00	0,00	0,00
P4	E4	cuarto instalaciones	8,58	0,00	55	0,00	0,00	0,00	0,00
			1052,39			MEDIA (W/m²)	8,56	MEDIA (W/m²)	6,03

Tabla 4 Cálculo del calor sensible real medio y comparación con el simulado en LIDER para obtener la intensidad de ocupación de nuestro edificio

				densidad	REAL			LIDER	
			Área	ocupación	calor sensible	intensidad ocupación	potencia	intensidad ocupación	potencia
planta	espacio	descripción	m²	personas/m²	W/persona	W/m ²	W	W/m ²	W
P1	E1	Entrada	107,90	0,07	75	5,00	539,50	10	1079
P1	E2	ascensor	3,85	0,00	75	0,00	0,00	0	0
P1	E3	aulas	307,00	0,14	75	10,50	3225,00	10	3070
P1	E4	taller	161,89	0,20	75	15,00	2428,38	10	1618,92
P2	E2	aula	31,56	0,32	75	23,76	750,00	10	315,625
P2	E3	aseo	7,60	0,00	75	0,00	0,00	10	76
P2	E4	aseo	2,00	0,00	75	0,00	0,00	10	20
P2	E5	aseo	4,32	0,00	75	0,00	0,00	10	43,2
P2	E6	entrada	46,20	0,07	75	5,00	231,00	10	462
P2	E7	ascensor	3,70	0,00	75	0,00	0,00	0	0
P2	E8	aseo	15,22	0,00	75	0,00	0,00	10	152,24
P2	E9	almacén	4,22	0,03	75	1,88	7,92	0	0
P2	E10	taller	152,86	0,20	75	14,72	2250,00	10	1528,6
Р3	E1	aula informática	55,35	0,40	75	29,81	1650,00	10	553,45
Р3	E2	sala de juntas	22,19	0,45	75	33,81	750,00	10	221,85
Р3	E3	dirección	17,62	0,10	75	7,50	132,13	10	176,175
Р3	E4	entrada	44,67	0,07	75	5,00	223,33	10	446,65
Р3	E5	ascensor	3,70	0,00	75	0,00	0,00	0	0
Р3	E6	aseo	4,44	0,00	75	0,00	0,00	10	44,4
Р3	E7	aseo	6,05	0,00	75	0,00	0,00	10	60,475
P4	E1	Entrada	19,52	0,07	75	5,00	97,60	10	195,2
P4	E2	ascensor	3,70	0,00	75	0,00	0,00	0	0
P4	E3	cuadro de maquinas	18,26	0,00	75	0,00	0,00	0	0
P4	E4	cuarto instalaciones	8,58	0,00	75	0,00	0,00	0	0
			1052,39			MEDIA (W/m²)	11,67	MEDIA (W/m²)	9,56

3.1.6.1. Temperatura de consigna

En cada instante de tiempo (hora) a lo largo del año, el espacio tendrá una temperatura de consigna alta y otra baja, que en nuestro caso vienen recogidos en la **tabla 5** y **tabla 6** respectivamente.

Tabla 5 Temperatura de consigna en verano

tª consigna alta (°C)	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
Laboral	-	-	-	-	-	-	-	25	25	25	25	25	25	25	25	-	-	25	25	25	25	-	-	-
Sábado	-	-	-	-	-	-	-	25	25	25	25	25	25	25	25	-	-	-	-	-	1	-	-	-
Festivo	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Tabla 6 Temperatura de consigna en invierno

tª consigna baja (°C)	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
Laboral	-	-	-	-	1	1	-	20	20	20	20	20	20	20	20	-		20	20	20	20	-	-	-
Sábado	-	-	-	-	-	-	-	20	20	20	20	20	20	20	20	-	-	-	-	-	-	-	-	-
Festivo	-	-	-	-	1	-	-	1	-	-	-	-	-	1	-	-	1	-	-	-	1	-	-	-

Estos dos cuadros nos indican, que en época de invierno, la temperatura de consigna nunca estará por debajo de 20°C, y en época de verano esta nunca superará los 25°C, siendo estas temperaturas tomadas por defecto por el programa y no pudiendo ser modificadas.

En cada hora el programa calcula la potencia (suponiendo el espacio isotermo y potencias del equipo acondicionador infinitas) requerida de calefacción o refrigeración necesaria para que la zona se mantenga a las temperaturas de consignas especificadas para dicho cálculo, pudiéndose darse:

- Que para el instante de cálculo la zona tenga especificadas las dos temperaturas de consigna, entonces el programa calculará la potencia requerida de calefacción o refrigeración para mantener la temperatura del local de consigna baja o alta respectivamente. Si el edificio alcanza espontáneamente (sin la existencia del equipo acondicionador) temperaturas dentro de la banda especificada, el programa calculará la temperatura resultante en la zona suponiendo que el equipo acondicionador no funciona.
- Si para el instante de cálculo considerado la zona no tiene especificada ninguna temperatura de consigna, se calculará la temperatura resultante en la zona suponiendo que el equipo acondicionador no funciona.

3.2. Base de Datos

Esta pestaña da acceso a la base de Datos de los materiales y elementos constructivos utilizados en la definición del edificio.

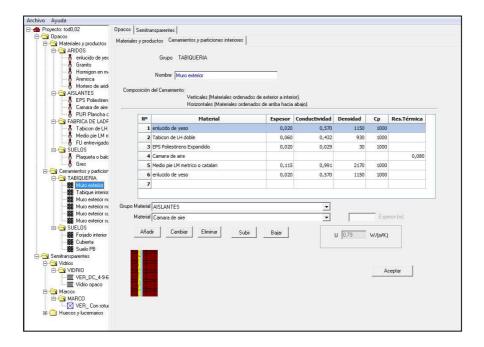


Ilustración 16 Pestaña Base de Datos del proyecto

3.2.1. Materiales opacos utilizados

En el ANEXO II vienen recogidos los materiales utilizados en la definición de nuestro edificio con una serie de características específicas de cada material necesarias a la hora de introducirlos en el programa de simulación LIDER.

Para todos los materiales que definen cerramientos opacos, se deben conocer su conductividad (λ), su calor específico (Cp) y su densidad (ρ), pues son necesarios para realizar la simulación térmica del edificio y consecuentemente tener en cuenta la inercia térmica de los cerramientos. Así mismo, y para estimar la posible condensación intersticial en los cerramientos es necesario conocer la resistencia a la difusión al vapor de agua (Z).

En consecuencia al añadir nuestros materiales al caso de estudio en el que nos encontramos hemos introducido las 4 propiedades de dicho material a parte de su espesor.

Aparte de poder introducir los materiales a utilizar de manera manual el programa LIDER incorpora por defecto una base de datos de materiales, los cuales ya introducen estas cuatro propiedades y solo sería necesario introducir el espesor de cada material.

En el caso de una cámara de aire en lugar de un material, está queda caracterizada por su resistencia térmica en función de su espesor y grado de ventilación, tratándose en nuestro caso una cámara de aire ligeramente ventilada vertical.

3.2.2. Composición de los cerramientos y particiones interiores

Una vez hemos definido los materiales, debemos describir la composición de los cerramientos a partir de estos materiales introduciéndolos desde el exterior al interior. El programa nos proporcionara un valor de transmitancia térmica (U) de la composición del mismo, considerándolo exterior. La composición de los cerramientos queda reflejada en el ANEXO III.

3.2.3. Vidrios utilizados

Los datos que el programa maneja para el tratamiento de los vidrios son el factor solar y su transmitancia térmica, donde el factor solar del vidrio es la relación entre la energía total que entra al local a través del acristalamiento y la energía que incide sobre la superficie exterior de dicho vidrio (de forma perpendicular al mismo). Esta energía es la suma de la entrante por transmisión más la entrante como consecuencia de la absorción de energía solar por el cristal y la posterior convección hacia el interior.

El vidrio que hemos seleccionado inicialmente para nuestro edificio para todas las superficies acristaladas queda recogido en la **tabla7**.

Tabla 7 Vidrio inicialmente utilizado en toda superficie acristalada

Nombre	U (W/m²K)	Factor solar	Just.
VER_DC_4-9-6	3,00	0,75	SI

La nomenclatura de los vidrios dobles utilizada, en su parte numérica, indica lo siguiente:

- Primer número indica el espesor del cristal exterior en milímetros.
- El segundo número indica el espesor de la cámara de separación en milímetros.
- El tercer número indica el espesor del cristal interior en milímetros.

3.2.4. Marcos de los huecos

Las dos propiedades que los caracterizan son su color exterior (α : absortividad) y la transmitancia del mismo (U). En nuestro caso hemos elegido el recogido en la **tabla 8.**

Tabla 8 Marco inicialmente utilizado

Nombre	U (W/m²K)	Just.
VER_ Con rotura de puente térmico entre 4 y 12 mm	4,00	

Para definir la absortividad consultamos los valores de la **Ilustración 17** y vemos que para un marco marrón oscuro, que es nuestro caso, tenemos un valor de 0,92.

Color	Claro	Medio	Oscuro
Blanco	0,20	0.30	347
Amarillo	0.30	0.50	0.70
Beige	0,36	0,55	0,76
Marron	0,50	0.75	0,92
Roja	0,65	0.80	0,90
Verde	0.40	0,70	0.88
Azul	0.50	0.80	0,85
Gris	0.40	0,65	(A++)
Negro	747	0,96	752

Ilustración 17 Absortividad del marco para radiación solar (CTE-HE1)

3.2.5. Huecos

La caracterización de los huecos la realizamos mediante la composición de un vidrio y un marco (especificando el porcentaje de hueco ocupado por el marco) que anteriormente hemos definido y finalmente una infiltración del conjunto.

Para ello debemos diferenciar entre los dos grandes tipos de huecos en los edificios, que son las puertas y ventanas, y no tienen una caracterización idéntica, no obstante las puertas acristaladas con más del 50% de superficie vidriada se consideran a todos efectos como ventanas.

En nuestro edificio tenemos definidos 4 tipos de ventanas en las que él % ocupado por el marco viene recogido en la **tabla 9.**

Tabla 9 Porcentaje ocupación del marco en ventanas

VENTANA	% CUBIERTO POR EL MARCO
V1	34,2
V2	43,84
V3	42,4
PB2	24,87

En cuanto a puertas tenemos 4 tipos distintos (**tabla 10**) donde la puerta de la cochera la hemos definido con un vidrio cualquiera y hemos dicho que el porcentaje cubierto por el marco es del 99%, siendo el marco el de la composición de las ventanas.

Tabla 10 Porcentaje ocupación del marco en puertas

PUERTA	% CUBIERTO POR EL MARCO
PZ1	10
PZ2	10
Puerta Cochera	99
PC	37,43

El tipo de ventana y medidas de estas quedan recogidas en el ANEXO III.

3.2.6. Permeabilidad

Se deben introducir en los huecos la permeabilidad de las carpinterías, las cuales están limitadas por el CTE en su Documento Básico HE 1 en función de la zona climática de invierno.

En la norma UNE-EN 12207 "Ventanas y puertas. Permeabilidad al aire. Clasificación" se establece la siguiente clasificación de las ventanas en función de su permeabilidad a 100 Pa de presión diferencial recogidas en la **tabla 11**.

Tabla 11 Permeabilidad al aire de referencia a 100 Pa y presiones máximas de ensayo, relacionadas con la superficie total, para las clases 1 a 4

Clase	Permeabilidad al aire de referencia a 100 Pa m³ / h · m²	Presión máxima de ensayo Pa
0	No ensay	yada
1	50	150
2	27	300
3	9	600
4	3	600

En nuestro caso tenemos definidas para nuestro edificio los valores para Clase 1, excepto en las puertas donde la permeabilidad por defecto toma el valor de 60 m³/h.m².

3.3. Opciones

En esta pestaña será donde asignemos a los cerramientos y particiones anteriormente definidas a cada uno de los espacios que vamos a dibujar en la siguiente pestaña.

Aquí también definiremos el tipo de puentes térmicos que vamos a encontrar en nuestro edificio.

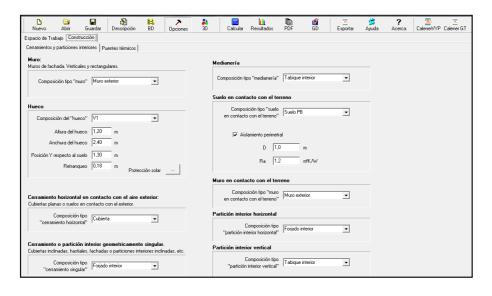


Ilustración 18 Pestaña Opciones

3.3.1. Aislamiento perimetral

Para evitar descompensaciones entre distintos espacios, los valores máximos de transmitancia térmica que deben cumplir cada uno de los cerramientos vienen indicados en la **tabla 12**, perteneciente al DB HE Ahorro de Energía, HE1 Limitación de demanda energética.

Uno de los valores que comprueba el programa para que no exista una descompensación térmica entre espacios, es la transmitancia térmica del primer metro de losa o solera y nunca debe superar el umbral recogido en la tabla 2.1 del CTE.

Tabla 12 Transmitancia térmica máxima de cerramientos y particiones interiores de la envolvente térmica U en W/m²K

Cerramientos y particiones interiores	ZONAS A	ZONAS B	ZONAS C	ZONAS D	ZONAS E
Muros de fachada, particiones interiores en contacto con espacios no habitables, primer metro del perimetro de suelos apoyados sobre el terreno ⁽¹⁾ y primer metro de muros en contacto con el terreno	1,22	1,07	0,95	0,86	0,74
Suelos ⁽²⁾	0,69	0,68	0,65	0,64	0,62
Cubiertas ⁽³⁾	0,65	0,59	0,53	0,49	0,46
Vidrios y marcos	5,70	5,70	4,40	3,50	3,10
Medianerías	1,22	1,07	1,00	1,00	1,00

⁽¹⁾ Se incluyen las losas o soleras enterradas a una profundidad no mayor de 0,5 m

En nuestro edificio hemos considerado una solera con aislamiento perimetral, para que nos cumpla, ya que el edificio sin este aislamiento no cumplía.

Para ello aislamos todo el perímetro del edificio con una capa de aislante que tenga una resistencia térmica del aislamiento perimetral "Ra", es decir, el espesor de aislante dividido entre su conductividad térmica y un ancho "D".

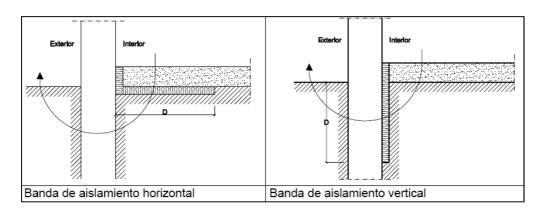


Ilustración 19 Soleras con aislamiento perimetral

El aislante seleccionado es *el Styrodur 3035 CS* cuyas características pueden verse en el ANEXO IV, para un espesor seleccionado de 40 mm y una anchura de aislamiento perimetral de 1 metro.

$$R_a = \frac{e}{\lambda_D} = \frac{0.04}{0.034} = 1.18m^2 K/W$$

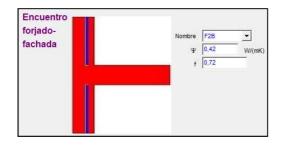
⁽²⁾ Las particiones interiores en contacto con espacios no habitables, como en el caso de cámaras sanitarias, se consideran como suelos

⁽³⁾ Las particiones interiores en contacto con espacios no habitables, como en el caso de desvanes no habitables, se consideran como cubiertas

3.3.2. Puentes térmicos

La existencia de puentes térmicos es identificada automáticamente por el programa a través de su geometría, excepto los pilares que tengamos presentes en la envolvente del edificio, que debemos indicarlos para cada espacio. Este número de pilares de la envolvente de nuestro edificio queda definido en la **tabla 13.**

Tabla 13 Número de pilares exteriores por espacio


PLANTA	ESPACIO	DESCRIPCIÓN	PILARES
P1	E1	Entrada	2
P1	E2	Ascensor	0
P1	E3	Aula	12
P1	E4	Taller	10
P2	E2	Aula	3
P2	E3	Aseo	1
P2	E4	Aseo	1
P2	E5	Aseo	0
P2	E6	Entrada	1
P2	E7	Ascensor	0
P2	E8	Aseo	1
P2	E9	Almacén	0
P2	E10	Taller	7
Р3	E1	Aula informática	4
Р3	E2	Sala de juntas	1
Р3	E3	Dirección	0
Р3	E4	Entrada	2
Р3	E5	Ascensor	0
Р3	E6	Aseo	1
Р3	E7	Aseo	0
P4	E1	Entrada	0
P4	E2	Ascensor	0
P4	E3	Cuadro de máquinas	3
P4	E4	Cuarto instalaciones	4

Los puentes térmicos quedan definidos tanto por su conductividad térmica lineal (Ψ), como su factor de temperatura superficial interior (f).

El tipo de puente térmico que debe utilizarse en cada unión de cerramientos, y que debe ser único para todo el edificio (uno por cada tipo) quedan recogidos en las **ilustraciones 20, 21, 22 23, 24, 25, 26 y 27**.

Forjados

Encuentro suelo exterior-fachada

Nombre R2EEB V 0.38 W/(mK) t 0.69

Ilustración 20 Encuentro forjado-fachada

Ilustración 21 Encuentro suelo exterior-fachada

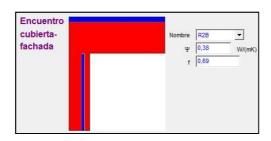


Ilustración 22 Encuentro cubierta-fachada

Cerramiento vertical

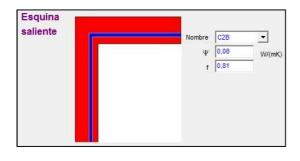


Ilustración 23 Esquina hacia el exterior

Ilustración 24 Esquina hacia el interior

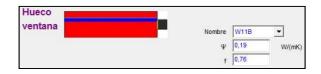


Ilustración 25 Pilar

Ilustración 26 Hueco de ventana

En contacto con el terreno

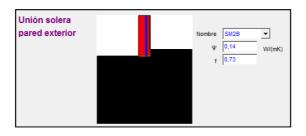


Ilustración 27 Unión solera- pared exterior

El comportamiento de estos puentes térmicos seleccionados será analizado posteriormente en las mejoras del edificio.

3.4. Pestaña 3D

3.4.1. Definición del edificio

En esta pestaña es donde damos forma al edificio que queremos realizar nuestro análisis. Para ello en primer lugar, cada una de las plantas las dividiremos en espacios los cuales detallamos en la **tabla 14**.

Tabla 14 Descripción de cada espació del edificio

planta	espacio	descripción
P1	E1	Entrada
P1	E2	ascensor
P1	E3	aulas
P1	E4	taller
P2	E2	aula
P2	E3	aseo
P2	E4	aseo
P2	E5	aseo
P2	E6	entrada
P2	E7	ascensor
P2	E8	aseo
P2	E9	almacén
P2	E10	taller
Р3	E1	aula informática
P3	E2	sala de juntas
P3	E3	dirección
Р3	E4	entrada
Р3	E5	ascensor
Р3	E6	aseo
Р3	E7	aseo
P4	E1	Entrada
P4	E2	ascensor
P4	E3	cuadro de maquinas
P4	E4	cuarto instalaciones

Esta enumeración de cada espacio por planta queda recogida en el ANEXO V.

3.4.2. Valor de Eficiencia Energética en Iluminación

Los tres valores de la **ilustración 28** son con los que definiremos el sistema de iluminación de nuestro edificio y solo hay que definirlos en espacios terciarios como es nuestro caso.

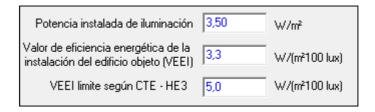


Ilustración 28 Valores lumínicos a definir

Tomaremos como datos de partida para calcular estos tres valores de la iluminancia media horizontal mantenida, los cuales nunca podrán ser inferiores a los que prescribe la norma UNE EN 12464-1 que recoge la **tabla 15.**

Tabla 15 Iluminancia media horizontal mantenida (UNE EN 12464-1)

Edificios educativos			
	Em (lux)	UGRL	Ra
Aulas, aulas de tutorias.	300	19	80
Aulas para clases nocturnas y educación de adultos	500	19	80
Sala de lectura	500	19	80
Zona de pizarras, mesas de demostraciones	500	19	80
Aulas de arte	500	19	80
Aulas de arte en escuelas de arte	750	19	90
Aulas de dibujo técnico	750	16	80
Aulas de prácticas, de manualidades	500	19	80
Aulas de prácticas de música, de informática	300	19	80
Halls de entrada	200	22	80
Áreas de circulación, pasillos	100	25	80
Escaleras	150	25	80
Salas de profesores	300	19	80

Obtenemos esta iluminancia usando el método de los lúmenes.

Para ello necesitamos en primer lugar conocer la altura entre el plano de trabajo y las luminarias (h), en nuestro caso 1,7 metros para todos los espacios.

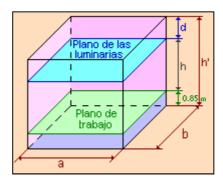


Ilustración 29 Distancias instalación luminarias

Ahora debemos obtener el índice del local (k) que será un valor comprendido entre 1 y 10 que obtendremos con la formula siguiente donde los valores a y b son las longitudes del espacio a estudiar (**Ilustración 29**).

$$k = \frac{a \cdot b}{h \cdot (a+b)}$$

Necesitamos conoce los coeficientes de reflexión de techo, paredes y suelo. Estos valores los sacamos de la **tabla 16.**

Tabla 16 Coeficientes de reflexión

	Color	Factor de reflexión (º)	
	Blanco o muy claro	0.7	
Techo	claro	0.5	
	medio	0.3	
	claro	0.5	
Paredes	medio	0.3	
	oscuro	0.1	
Suelo	claro	0.3	
	oscuro	0.1	

Considerando paredes y techo claros con un factor de corrección de 0,5 buscamos en la siguiente tabla el factor de utilización (η) , para el índice del local de cada espacio.

Tipo de	Índice		Factor de utilización (η)										
aparato	del		Factor de reflexión del techo										
de	local		0.8			0.7			0.5		0	.3	0
alumbrado	k			Fa	ctor	de re	flexió	in de	las p	oared	les		
alamoi ado	"	0.5	0.3	0.1	0.5	0.3	0.1	0.5	0.3	0.1	0.3	0.1	0
А	0.6	.66	.62	.60	.66	.62	.60	.65	.62	.59	.62	.59	.58
\triangle	0.8	.75	.71	.68	.75	.71	.68	.74	.71	.68	.70	.68	.67
	1.0	.80	.76	.73	.80	.76	.73	.79	.76	.73	.76	.73	.72
	1.25	.85	.81	.80	.85	.81	.80	.84	.81	.78	.80	.78	.77
10%	1.5	.88	.86	.82	.88	.85	.82	.88	.84	.82	.84	.82	.81
	2.0	.94	.90	.88	.93	.90	.88	.92	.89	.87	.88	.87	.85
	2.5	.96	.93	.92	.96	.93	.91	.94	.92	.90	.91	.89	.88
100 %	3.0	.99	.95	.94	.98	.95	.93	.96	.94	.92	.93	.91	.89
$D_{\text{max}} = 0.7 \text{ H}_{\text{m}}$	4.0	1.01	.99	.96	1.00	.98	.96	.98	.97	.95	.95	.94	.92
fm .70 .75 .80	5.0	1.02	1.01	.99	1.01	1.00	.98	1.00	.98	.97	.97	.96	.94
H _m : altura lumin	aria-pla	ano d	le tra	bajo									

Ilustración 30 Factor de utilización

El factor de mantenimiento (fm) o conservación de la instalación depende del grado de suciedad ambiental y de la frecuencia de limpieza del local. En nuestro caso según la **tabla 17** para un ambiente limpio tenemos un valor de 0,8.

Tabla 17 Factor de mantenimiento

Ambiente	Factor de mantenimiento (f _m)
Limpio	0.8
Sucio	0.6

Seleccionando unas luminarias lo más eficientes, como recogemos **en color amarillo en la tabla 19**, a las necesidades de cada espacio calculamos el flujo luminoso total necesario como:

$$\Phi_T = \frac{E \cdot S}{\eta \cdot f_m}$$

Donde:

 Φ_T es el flujo luminoso total

E es la iluminancia media deseada

S es la superficie del plano de trabajo

η es el factor de utilización

 f_m es el factor de mantenimiento

Una vez obtenemos el flujo luminoso total del espacio necesitamos conocer el número de lámparas necesarias para obtener dicho flujo, que redondeando por exceso, obtenemos de la siguiente expresión:

$$N = \frac{\Phi_T}{\Phi_L}$$

Donde:

N es el número de luminarias

 Φ_T es el flujo luminoso total

 Φ_L es el flujo luminoso por luminaria

Para este número de luminarias obtenido, al haber redondeado por exceso dicho valor obtendremos una iluminancia real sobre plano (E_r) mayor al valor exigido por norma, que nosotros hemos utilizado.

A partir del número de luminarias conocidas su potencia y los metros cuadrados del espacio obtenemos el primer valor a introducir en LIDER.

El segundo valor, el valor de eficiencia energética de la instalación del edificio objeto (VEEI), que es la potencia en watios instalada por cada metro cuadrado de superficie y por cada 100 lux los obtendremos de la siguiente expresión:

$$VEEI = \frac{P \cdot 100}{S \cdot E_r}$$

Donde la P es la potencia total instalada (W)

S la superficie iluminada (m²)

 E_r la iluminancia media horizontal mantenida real (lux)

Nuestro edificio lo englobaremos según el uso de la zona, dentro del grupo 1 o zona de no representación para obtener los valores de eficiencia energética límite en recintos interiores de un edificio (tabla 18).

Tabla 18 Valores límite de eficiencia energética de la instalación

Zonas de actividad diferenciada					
administrativo en general	3,5				
andenes de estaciones de transporte	3,5				
salas de diagnóstico ₍₄₎	3,5				
pabellones de exposición o ferias	3,5				
aulas y laboratorios (2)	4,0				
habitaciones de hospital (3)	4,5				
recintos interiores asimilables a grupo 1 no descritos en la lista anterior	4,5				
zonas comunes (1)	4,5				
almacenes, archivos, salas técnicas y cocinas	5				
aparcamientos	5				
espacios deportivos (5)	5				

Estos valores límite serán los valores máximos que podrá alcanzar el valor de eficiencia energética de la instalación del edificio objeto (VEEI).

La **tabla 19** recoge todos estos cálculos realizados para cada uno de los diferentes espacios de nuestro edificio.

Tabla 19 Cálculos de la instalación lumínica del edificio

			Área									luminaria seleccionada	E			DATOS A INTRODUCIR EN LIDER					
planta	espacio	descripción	m²	fm	fr techo	fr paredes	h	a	b	k	η	modelo	W	lúmenes	LUX	Φ_T	N	E_r	w/m²	VEEI	VEEI ref
P1	E1	Entrada	107,90	0,8	0,5	0,5	1,7	10,39	10,39	3,06	0,96	MASTER PL-T TOP 57W/840/4P 1C	57	4300	200	28066,28	7,00	214	3,70	1,72	4,5
P1	E3	aulas	307,00	0,8	0,5	0,5	1,7	16,29	18,85	5,14	1,00	MASTER TL5 HO 80W/865 1S	80	6650	500	191338,41	29,00	504	7,56	1,50	4
P1	E4	taller	161,89	0,8	0,5	0,5	1,7	29,98	5,4	2,69	0,95	MASTER TL5 HO 80W/865 1S	80	6650	500	106770,21	17,00	529	8,40	1,59	4
P2	E2	aula	31,56	0,8	0,5	0,5	1,7	6,25	5,05	1,64	0,89	MASTER TL5 HE Eco 32=35W/830 UN	32	3100	500	22128,82	8,00	560	8,11	1,45	4
P2	E3	aseo	7,60	0,8	0,5	0,5	1,7	2,58	2,95	0,81	0,74	MASTER PL-Electronic Polar 15W/827 E27 1C	15	875	200	2559,27	3,00	205	5,92	2,89	4,5
P2	E4	aseo	2,00	0,8	0,5	0,5	1,7	1,61	1,25	0,41	0,65	MASTER PL-Electronic Polar 15W/827 E27 1C	15	875	200	769,23	1,00	228	7,50	3,30	4,5
P2	E5	aseo	4,32	0,8	0,5	0,5	1,7	1,61	2,7	0,59	0,65	MASTER PL-Electronic Polar 15W/827 E27 1C	15	875	200	1661,54	2,00	211	6,94	3,30	4,5
P2	E6	entrada	46,20	0,8	0,5	0,5	1,7	6,29	7,35	1,99	0,92	MASTER PL-T TOP 57W/840/4P 1C	57	4300	200	12561,15	3,00	205	3,70	1,80	4,5
P2	E8	aseo	15,22	0,8	0,5	0,5	1,7	3,6	4,23	1,14	0,82	MASTER PL-Electronic Polar 15W/827 E27 1C	15	875	200	4648,25	6,00	226	5,91	2,62	4,5
P2	E9	almacén	4,22	0,8	0,5	0,5	1,7	1,32	3,2	0,55	0,65	MASTER PL-Electronic Polar 15W/827 E27 1C	15	875	100	812,31	1,00	108	3,55	3,30	5
P2	E10	taller	152,86	0,8	0,5	0,5	1,7	10,92	14	3,61	0,97	MASTER TL5 HO 80W/865 1S	80	6650	500	98271,97	15,00	508	7,85	1,55	4
Р3	E1	aula informática	55,35	0,8	0,5	0,5	1,7	11	5,03	2,03	0,96	MASTER TL5 HO 80W/865 1S	80	6650	500	35850,35	6,00	556	8,67	1,56	4
Р3	E2	sala de juntas	22,19	0,8	0,5	0,5	1,7	4,35	5,1	1,38	0,86	MASTER TL5 HO 80W/865 1S	80	6650	500	16104,98	3,00	619	10,82	1,75	4
Р3	E3	dirección	17,62	0,8	0,5	0,5	1,7	4,05	4,35	1,23	0,84	MASTER TL5 HO 80W/865 1S	80	6650	500	13159,27	2,00	505	9,08	1,80	4
Р3	E4	entrada	44,67	0,8	0,5	0,5	1,7	8,85	5,05	1,89	0,91	MASTER PL-T TOP 57W/840/4P 1C	57	4300	200	12253,00	3,00	211	3,83	1,82	4,5
Р3	E6	aseo	4,44	0,8	0,5	0,5	1,7	2	2,22	0,62	0,66	MASTER PL-Electronic Polar 15W/827 E27 1C	15	875	200	1685,63	2,00	208	6,76	3,25	4,5
Р3	E7	aseo	6,05	0,8	0,5	0,5	1,7	2,05	2,95	0,71	0,70	MASTER PL-Electronic Polar 15W/827 E27 1C	15	875	200	2159,32	3,00	243	7,44	3,06	4,5
P4	E1	Entrada	19,52	0,8	0,5	0,5	1,7	3,2	5,1	1,16	0,82	MASTER PL-T TOP 57W/840/4P 1C	57	4300	200	5941,62	2,00	289	5,84	2,02	4,5
P4	E3	cuadro de maquinas	18,26	0,8	0,5	0,5	1,7	6,1	3	1,18	0,83	MASTER PL-Electronic Polar 15W/827 E27 1C	15	875	100	2761,36	4,00	127	3,29	2,59	5
P4	E4	cuarto instalaciones	8,58	0,8	0,5	0,5	1,7	1,85	2	0,57	0,65	MASTER PL-Electronic Polar 15W/827 E27 1C	15	875	100	1650,00	2,00	106	3,50	3,30	5

4. Análisis de la demanda energética del edificio y propuestas de mejora.

4.1. Resultados iniciales del edificio objeto de la simulación

Una vez introducidos todos los datos del edificio que vamos a utilizar como base de cálculo para llevar a cabo las mejoras, procedemos a calcular para comprobar que cumple con la CTE-HE1 y obtener la demanda energética que nos solicita el edificio.

En LIDER, el edificio aparte de informarnos que cumple con la CTE-HE1, nos muestra la demanda que tendría este, todo ello comparándolo con un edificio de referencia que reúne las siguientes características:

- La misma forma y tamaño que el edificio a certificar, salvo que se suprimen los espacios no habitables, los cerramientos que los separan de espacios habitables se convierten en cerramientos exteriores con las soluciones de referencia para muros exteriores, cubiertas y suelos. Los muros en contacto con el terreno se convierten en muros al exterior. Se sustituye el forjado entre espacio no habitable y habitable inmediatamente inferior por la cubierta plana de referencia y además se considera suelo en contacto con el exterior en vez de en contacto con el terreno o con un espacio no habitable.
- La misma zonificación interior y el mismo uso (iguales condiciones operacionales: fuentes internas, ventilación e infiltración) de cada espacio que tenga el edificio a certificar.
- Los mismos obstáculos remotos del edificio a certificar. Los retranqueos se consideran como el edificio objeto.
- Unas calidades constructivas de los componentes de fachada, suelo y cubierta, por un lado y unos elementos de sombra, que garanticen el cumplimiento de los requisitos de demanda energética que figuran en el apartado 2.1 de la sección HE1 Limitación de Demanda Energética del Documento Básico de Ahorro de Energía del Código Técnico de la Edificación.
- En el caso de huecos si el porcentaje de huecos no supera el 60% en cada orientación el edificio de referencia se monta como el edificio objeto, si por el contrario el porcentaje de huecos supera el 60% en alguna orientación se modificarán las superficies de todos los huecos de dicha orientación hasta que el valor de ese porcentaje sea del 60% y la parte de hueco eliminada se sustituye por el muro de referencia que corresponda en función de la zona climática.
- El mismo nivel de iluminación que el edificio a certificar y un sistema de iluminación que cumpla con los requisitos mínimos de eficiencia energética que figuran en la sección HE 3- Eficiencia Energética de las instalaciones de iluminación del Documento Básico de Ahorro de Energía del Código Técnico de la Edificación.

LIDER nos informa de que <u>cumple</u>, es decir, ha calculado la demanda energética del edificio objeto y las ha comparado con las del edificio de referencia y como son menores (se deben cumplir ambas a la vez, calefacción y refrigeración, sino el edificio no cumpliría) nos muestra los resultados que recogemos en la **tabla 20**.

Tabla 20 Resultados iniciales LIDER

	Calefacción	Refrigeración
% de la demanda de Referencia	73,8	95,6
Proporción relativa calefacción refrigeración	65,3	34,7

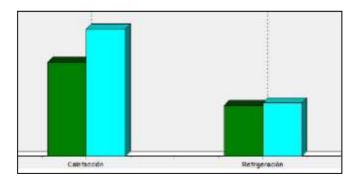


Ilustración 31 Grafico Resultados LIDER de demandas del edificio de partida respecto al edificio de referencia

En CALENER VYP solo conocemos las emisiones de CO2 por las luminarias ya que todavía no hemos introducido equipos de climatización ni ACS y por ello las emisiones que producen son nulas a excepción de las emisiones que producen nuestra iluminaria que al haberlas buscado de alta eficiencia estas son muy bajas consiguiendo una etiqueta de eficiencia energética A, pero sí obtenemos la demanda de calefacción y refrigeración que solicita nuestro edificio en función de las características definidas.

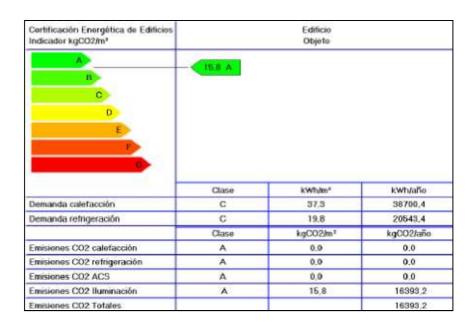


Ilustración 32 Etiqueta energética sin sistemas en el edificio base

Estos serán los datos que tomaremos como de partida para proceder al análisis de las mejoras energéticas. Los datos para la etiqueta de eficiencia energética serían:

Tabla 21 Datos para la etiqueta de eficiencia energética

	Edificio Objeto			
	Por metro cuadrado	Anual		
Consumo energía final (kwh)	24,4	25300,2		
Consumo energía primaria (kwh)	81,6	84679,6		
Emisiones CO2 (kgCO2)	23,9	24819,5		

Analizando estos primeros resultados obtenidos comprobamos que la demanda de calefacción de nuestro edificio es prácticamente el doble de la demanda de refrigeración y disminuir esta descompensación será el punto de partida de las mejoras a introducir.

4.2. Modificación del espesor del aislante de los muros exteriores y cubierta.

4.2.1. Modificación del espesor del aislante de los muros exteriores

Para realizar dicha mejora nombramos cada uno de los muros en función de su orientación, que dada la orientación del edificio respecto al norte los podremos definir más que por norte, sur, este y oeste, por suroeste, sureste, noroeste y noreste (ilustración 33). Para ello en la base de datos definiremos cuatro muros, uno para cada orientación, que serán idénticos pero en los que según queramos analizar variamos el espesor de aislante.

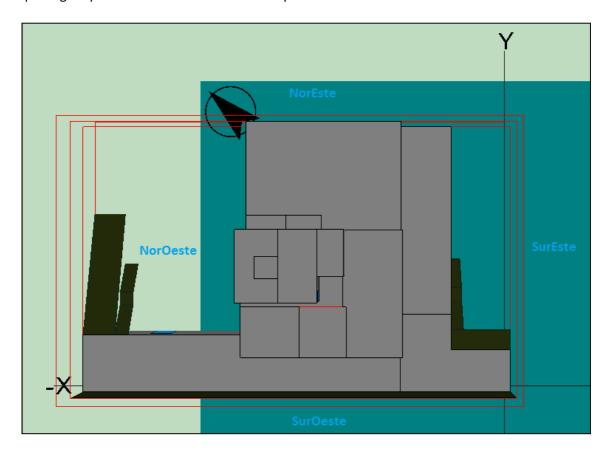


Ilustración 33 Orientaciones de los muros exteriores del edificio

En la pestaña "Base de Datos" buscamos la orientación de muro exterior que queremos modificar y volvemos a calcular.

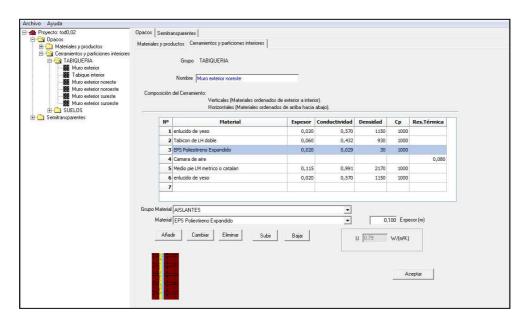


Ilustración 34 Modificación espesores de aislante en la Pestaña Base de Datos

4.2.1.1. Balance energético

En la **tabla 22** obtenemos las demandas de calefacción y refrigeración variando el espesor de Poliestireno Expandido (EPS) desde los 0,02 metros iniciales y en función de la orientación del muro exterior.

Para el análisis hemos considerado espesores con un valor intermedio de 4 cm y un espesor de aislante máximo de 10 cm y hemos calculado la variación de la demanda en función de cada una de las orientaciones para los siguientes casos:

- Por separado, variamos el espesor de cada orientación
- Para la combinación de las dos orientaciones que nos ofrecen un mayor descenso de la demanda de calefacción.
- Para todas las orientaciones excluyendo la que nos supone el menor descenso de la demanda de calefacción
- Todas las orientaciones con el aumento de espesor que queremos analizar.

Tabla 22 Demandas energéticas en función del espesor de aislante de los muros exteriores del edificio

		BALANCE ENERGÉTICO									
			MURO E	XTERIOR	RESULTADOS CALENER						
	Orientación	NOROESTE	SUROESTE	SURESTE	NORESTE	Demanda	calefacción	Demanda refrigeración			
	muros	e. aislante	e. aislante	e. aislante	e. aislante	kwh/m²	kwh/año	kwh/m²	kwh/año		
	TODO 0,02	0,02	0,02	0,02	0,02	37,30	38700,40	19,80	20543,40		
_	SurEste	0,02	0,02	0,04	0,02	36,80	38181,60	19,90	20647,10		
04 m	SurOeste	0,02	0,04	0,02	0,02	37,00	38389,10	19,90	20647,10		
te 0,	NorEste	0,02	0,02	0,02	0,04	36,40	37766,60	20,00	20750,90		
Espesor aislante 0,04 m	NorOeste	0,04	0,02	0,02	0,02	36,50 37870,30		20,00	20750,90		
or ai	NOyNE	0,04	0,02	0,02	0,04	35,60	36936,50	20,10	20958,40		
sbes	NO,NEySE	0,04	0,02	0,04	0,04	35,10	36417,80	20,20	20958,40		
Ш	TODOS	0,04	0,04	0,04	0,04	34,70	36002,80	20,30	21062,10		
	SurEste	0,02	0,02	0,10	0,02	36,30	37662,80	20,00	20750,90		
,1 m	SurOeste	0,02	0,10	0,02	0,02	36,60	37974,10	20,00	20750,90		
ite 0	NorEste	0,02	0,02	0,02	0,10	35,6	36936,5	20,1	20854,6		
Espesor aislante 0,1 m	NorOeste	0,10	0,02	0,02	0,02	35,7	37040,3	20,1	20958,4		
sor a	NOyNE	0,10	0,02	0,02	0,10	34	35276,5	20,4	21165,9		
Espe	NO,NEySE	0,10	0,02	0,10	0,10	33	34238,9	20,5	21269,6		
	TODOS	TODOS 0,10		0,10	0,10	32,00	33201,40	20,60	21373,40		

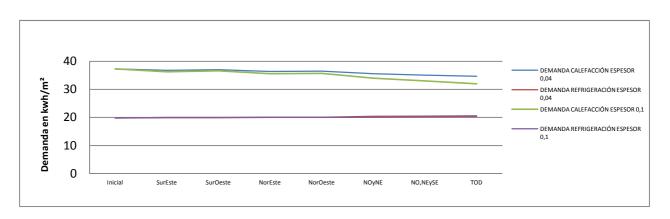


Ilustración 35 Evolución demanda (Kwh/m²)/espesor de aislante

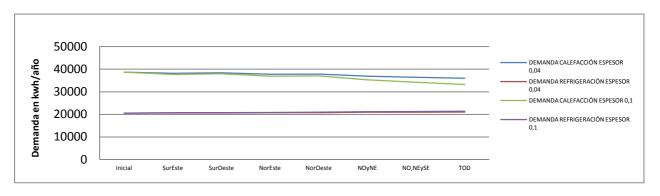


Ilustración 36 Evolución demanda (Kwh/año)/espesor de aislante

Lo primero que podemos ver es que la influencia de la composición de los cerramientos es relativamente baja (doblando el espesor de aislante en todas las orientaciones bajaríamos a 36000 kwh/año, es decir, reduciríamos un 7 % aproximadamente la demanda de calefacción, aunque aumentaríamos casi un 2.5 % la de refrigeración, en conjunto reduciríamos la demanda global menos de un 4 %).

La parte de la demanda de calefacción debida a los cerramientos se puede calcular a partir de la carga de calefacción que entra por cada cerramiento en cada instante "i".

$$\dot{Q}_{conv,i} = U \cdot A \cdot (T_{ext,i} - T_{int})$$

La ecuación anterior sólo tiene en cuenta la convección con el aire del exterior, pero no la radiación incidente. En el cálculo de cargas es muy frecuente evaluar el aporte de la radiación a través de lo que se llama la *Tª sol-aire*. La Tª del aire es la misma al sol que a la sombra, pero cuando nos ponemos al sol en un día de verano, además de estar en contacto con aire a una temperatura elevada (35 ºC por ejemplo), estamos recibiendo mucha radiación solar, de forma que es como si estuviésemos a la sombra, pero rodeados de aire a mayor temperatura aún (55 ºC por poner un número), eso sería la Tª sol-aire. La carga total que entra por el muro (olvidando el efecto de inercia térmica) sería por tanto:

$$\dot{Q}_{total,i} = U \cdot A \cdot (T_{sa,i} - T_{int})$$

Donde $T_{sa,i}$ es la Tª sol-aire en el instante "i" dependiente de la Tª ambiente y de la radiación incidente, por tanto, para el caso de un muro, depende de su orientación.

En nuestro caso, el promedio a lo largo de un día de la T_{sa} de los muros con orientación norte será bastante parecido. Por eso la bajada en la demanda de calefacción es mayor en el que tenemos más superficie (consideramos el resto de variable iguales).

Los muros Noroeste y Sureste tienen la misma superficie pero la T_{sa} del Sur es mayor que la del Norte (recibe más radiación), de forma que un aumento del espesor de aislante (una disminución de la U) provoca una mayor disminución de la carga de calefacción en el muro Norte (porcentualmente la bajada será la misma en ambas orientaciones, pero al ser mayor la carga en la orientación norte, en valor absoluto también será mayor la reducción de carga y por tanto la baja en la demanda de calefacción).

Por otro lado, el que aumente la carga de refrigeración en todos los casos al aumentar el espesor de aislante implica que, de acuerdo con los cálculos que hace el software, en el cómputo global de un día, la T_{sa} es inferior a la T_{int} de forma que al aislar más los muros impedimos que salga el calor de la vivienda. Puede que sea algo discutible, pero fíjandonos de nuevo es coherente ya que los muros con orientación norte son los que reciben menos radiación, por tanto son los que tienen una T_{sa} más baja y por ellos puede escapar más calor desde el interior de la casa hacia el exterior; así aumentar el aislamiento de esos muros es más perjudicial (sube más la demanda de refrigeración) que en los muros con orientación sur.

4.2.1.2. Balance económico

Para este análisis en primer lugar necesitamos conocer los metros cuadrados que tiene cada uno de los muros exteriores descontando el espacio ocupados por los huecos, para saber la inversión que tendremos que hacer en aislante de nuestro edificio en función de la orientación.

Tabla 23 Calculo de los m² de aislante en muros exteriores de cada orientación

		perímetro del edificio (m)			(m)	m² hueco			m² aislante				
	altura												
planta	(m)	SurEste	SurOeste	NorEste	NorOeste	SurEste	SurOeste	NorEste	NorOeste	SurEste	SurOeste	NorEste	NorOeste
p1	3,00	25,05	40,40	40,40	25,05	11,80	0,00	11,52	0,00	63,35	121,20	109,68	75,15
p2	3,00	20,70	14,00	14,00	20,70	12,62	7,82	8,64	0,00	49,48	34,18	33,36	62,10
р3	3,00	11,00	14,00	14,00	11,00	5,76	8,64	9,86	0,00	27,24	33,36	32,14	33,00
p4	3,04	6,10	9,00	9,00	6,10	1,79	1,79	1,44	0,00	16,76	25,58	25,92	18,54
TOTAL	12,04	62,85	77,40	77,40	62,85	31,96	18,24	31,46	0,00	156,83	214,32	201,10	188,79

Los precios del m² de EPS nos lo ha proporcionado un suministrador de aislantes y dado que solo vamos a variar el espesor el desembolso adicional por materiales de fijación o mano de obra nos los contemplamos pues suponemos que serán los mismos que deberíamos de tener al poner el espesor inicial de 2cm.

Tabla 24 Precio aislante €/m²

	PRECIOS REFERENCIA						
	espesor						
precio	2cm	4cm	10cm				
euros/m²	1,59	3,18	7,95				

Este aumento en el espesor nos va a llevar a tener una disminución en el consumo de energía por parte de nuestro edificio y por consiguiente una disminución de la factura de la luz en forma de kwh.

Para analizar el beneficio del aumento de espesor y por consiguiente la disminución de kwh necesitamos el periodo de retorno de la inversión que hemos realizado en aislante, para ello necesitaremos conocer previamente cual será el precio de la luz, cosa que desconocemos pero a tenor de la tendencia de los últimos años podemos analizar y obtener una función aproximada (ilustración 37), para lo que hemos utilizado el precio del kwh desde el año 2009 hasta el primer trimestre de 2012.

Tabla 25 Evolución precio de la luz periodo 2009-2012

	Precio €/Kwh sin discriminación horaria									
Año	FECHA	PRECIO REAL (€/kwh)	PRECIO ESTIMADO (€/kwh) función polinómica	PRECIO ESTIMADO (€/kwh) función exponencial						
1	01/01/2009	0,11248	0,1114000	0,111699214						
2	01/01/2010	0,117759	0,1226000	0,121962019						
3	01/01/2011	0,140069	0,1338000	0,133167758						
4	01/01/2012	0,142319	0,1450000	0,145403069						

Para obtener el precio del kwh hemos utilizado una función lineal ya que aunque la función exponencial se aproximaba mas, nos daba un valor de R² de 0,9001 por 0,8979 que nos daba la lineal (ilustración 38), al extrapolar esa función a un número elevado de años (50 años) nos daba un precio del kwh demasiado elevado por lo que consideramos que la función lineal se deberá aproximar más en un futuro a la realidad.

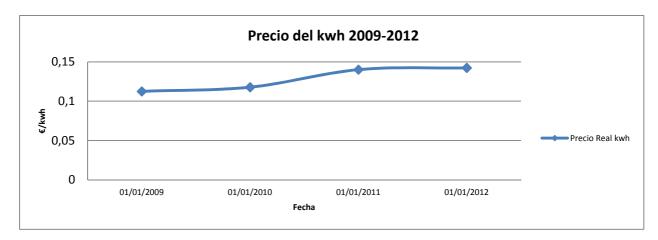


Ilustración 37 Evolución Real del precio de la luz

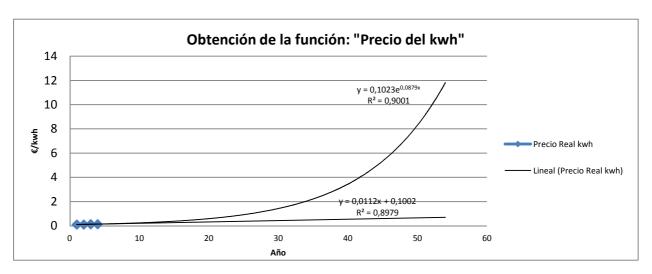


Ilustración 38 Función lineal y exponencial de la evolución del precio de la luz

Una vez tenemos una función en la que aproximar el precio del kwh podemos hacer un balance del tiempo que necesitamos para recuperar la inversión que hemos realizado en material aislante y aunque al variar el precio del kwh el ahorro que tenemos cada año no será el mismo, podemos sacar un valor medio que estamos teniendo de ahorro, por ejemplo para la vida útil del edificio que supondremos será de 50 años.

Al realizar la **tabla 26** estamos suponiendo que el caso inicial donde todos los muros exteriores tienen el espesor de 2cm de aislante, es con el que vamos a comparar el resto de casos y de ahí que todos sus valores sean 0 a excepción del coste de aislamiento que será el valor base para el resto de casos.

Tabla 26 Análisis económico en función del espesor de aislante de los muros exteriores del edificio

				BAL	ANCE ECO	NÓMICO			
	Valor	ahorro demanda calefacción kwh/año	aumento demanda refrigeración kwh/año	ahorro total climatización kwh/año	periodo retorno (años)	coste aislante (euros)	diferencia inversión aislante (euros)	media ahorro climatización euros/año	AHORRO EN LA VIDA UTIL DEL EDIFICIO (50 AÑOS)
	Inicial TODO	0		0	0	4 240 05 0	0.00.6	0.00.6	0.00.0
	0,02	0	0	0	0	1.210,05 €	0,00€	0,00€	0,00 €
	SurEste	518,8	-103,7	415,1	4,11	1.459,41 €	249,36 €	60,69 €	8.747,93 €
	SurOeste	311,3	-103,7	207,6	8,43	1.550,82 €	340,76 €	40,41 €	4.158,97 €
	NorEste	933,8	-207,5	726,3	3,23	1.529,80 €	319,75 €	99,04 €	15.422,80€
0,04	NorOeste	830,1	-207,5	622,6	3,47	1.510,24€	300,18€	86,57 €	13.194,67€
	NOyNE	1763,9	-415	1348,9	3,34	1.829,99 €	619,93 €	185,62 €	28.617,48 €
	NO,NEySE	2282,6	-415	1867,6	3,37	2.079,34 €	869,29€	257,69 €	39.610,94 €
	TOD	2697,6	-518,7	2178,9	3,87	2.420,11 €	1.210,05€	312,75 €	46.017,60€
	SurEste	1037,6	-207,5	830,1	6,81	2.207,49 €	997,44 €	146,48 €	16.994,98€
	SurOeste	726,3	-207,5	518,8	11,48	2.573,10€	1.363,05 €	118,70 €	9.881,94 €
	NorEste	1763,9	-311,2	1452,7	5,46	2.489,05€	1.279,00 €	234,35 €	30.208,28 €
0,1	NorOeste	1660,1	-415	1245,1	5,83	2.410,78€	1.200,73 €	206,03 €	25.786,81€
	NOyNE	3423,9	-622,5	2801,4	5,48	3.689,78€	2.479,73€	452,60€	58.240,62 €
	NO,NEySE	4461,5	-726,2	3735,3	5,68	4.687,22€	3.477,16 €	611,98 €	77.485,46 €
	TOD	5499	-830	4669	6,14	6.050,27 €	4.840,21€	788,73 €	96.360,36 €

4.2.1.3. Análisis balance energético-económico

En la **tabla 23** vemos los m² de aislante de los muros exteriores que tenemos en cada orientación con una diferencia del 26,82% entre la orientación con mas superficie (SO) y la menor (SE).

Si tomamos la orientación con menor m² de aislante (SE) como referencia vemos (**tabla 26**) como con una inversión adicional de 249,36€ conseguiremos un ahorro de 60,69€/año lo que nos llevará a recuperar la inversión en un periodo de 4,11 años.

Para la orientación SO, que tiene un 26,82 % más de superficie no acristalada, el ahorro es sin embargo menor (40.41 €/año, un 33,42% menor) probablemente debido a que es la que recibe mayor radiación solar y por tanto la que tiene los muros más calientes (o calientes durante más horas) en invierno.

Para la orientación NO, la superficie con aislante es un 16,93 % mayor que en la SE y el ahorro de 86,57 €/año (un 29,9% mayor), lo que puede ser debido a que la radiación solar recibida es muy baja y por tanto los muros están fríos en invierno y al aumentar la capa de aislante disminuimos las pérdidas de calor consiguiendo este mayor ahorro.

Por último la orientación NE es la que mayor ahorro produce el aumento de espesor de la capa de aislante 99,04€/año (un 38,72% mayor) pero este con una inversión en aislante un 22,01%

mayor que la SE, probablemente por ser en esta orientación donde menor radiación tenemos al cabo del día y por ello al tener los muros más fríos si aumentamos el espesor, las pérdidas de calor serán menores en invierno consiguiendo un mayor ahorro y el menor periodo de retorno de la inversión (3,23 años).

Una vez analizadas por separado cada una de las orientaciones del edificio, podemos ver la combinación de las que arrojaban mayores ahorros. La combinación NE y NO ofrecen dado que el ahorro en climatización es considerado lineal por LIDER al igual que el precio del aislante que nos ha suministrado el fabricante, ahorros económicos y energéticos igual a alas sumas por separado con un periodo de retorno similar (3,34 años) al de la orientación NE por separado.

4.2.2. Modificación del espesor del aislante de la cubierta del edificio 4.2.2.1. Balance energético

La variación de los espesores de aislante en la cubierta del edificio (**tabla 27**) arroja un ahorro el cuál no es demasiado influyente en la demanda global de nuestro edificio puesto que ya partimos de un espesor considerable de 10 cm de capa de aislante y duplicando dicho espesor, es decir hasta los 20cm solo conseguiríamos reducir en 933,8 kwh/año (2,4%) la demanda de calefacción sin afectar a la de refrigeración.

Tabla 27 Demandas de climatización en función espesores aislante de la cubierta

		RESULTADOS						
	demanda cale	demanda calefacción demanda refrigeración						
espesor (m)	kwh/m²	kwh/año	kwh/m²	kwh/año				
0,1	37,3	38700,4	19,8	20543,4				
0,15	36,70	38077,80	19,80	20543,40				
0,2	36,40	37766,60	19,80	20543,40				

4.2.2.2. Balance económico

Desde un punto de vista económico tampoco lo podemos considerar como una gran solución ya que necesitamos hacer una inversión del doble de dinero 9249,38€ para conseguir un ahorro de 271,63€/ año con lo que necesitamos más de 17 años para recuperar la inversión como muestra la **tabla 28**.

Tabla 28 Análisis económico en función del espesor de aislante de la cubierta

	BALANCE ECONÓMICO										
Espesor (m)	ahorro demanda calefacción kwh/año	aumento demanda refrigeración kwh/año	ahorro total climatización kwh/año	periodo retorno (años)	coste aislante (euros)	diferencia inversión aislante (euros)	media ahorro climatización euros/año	AHORRO EN LA VIDA UTIL DEL EDIFICIO (50 AÑOS)			
0,1	0	0	0	0	4.624,69	0,00€	0,00 €	0,00€			
0,15	622,6	0	622,6	14,28	6.937,03	2.312,34 €	161,95 €	11.182,51 €			
0,2	933,8	0	933,8	17,03	9.249,38	4.624,69 €	271,63 €	15.615,43 €			

4.2.3. Análisis balance energético-económico aumento espesores aislante

Haciendo un análisis económico-energético vemos que en el tema de la cubierta, el espesor que hemos considerado inicialmente no es necesario aumentarlo porque supondría una fuerte inversión debido a los 582 m² de cubierta y una mejora energética baja.

En cuanto al aumento de espesores por tanto es más interesante hacerlo en los muros exteriores aunque no todas las orientaciones ofrecen los mismos ahorros (tabla 29).

Descartando las orientaciones Sureste y Suroeste por el bajo ahorro que conseguimos y los altos periodos de amortización que suponen, una buena combinación podría ser en lugar de solo la orientación Noreste o Noroeste hacer un aumento conjunto en ambas, consiguiendo reducir la demanda de calefacción un 4,56% (lo que sería la suma de las dos orientaciones), pero en lugar de necesitar una inversión del 40,68% (lo que sería por separado), reducimos al hacerla conjunta la inversión en aislante al 33,82%.

Tabla 29 Porcentajes de ahorro en calefacción y aumento de inversión en función de espesores del aislante

				ahorro %	aumento %
		demanda calefacción	demanda refrigeración	demanda calefacción	inversión aislante
	Valor	kwh/año	kwh/año	%	%
	Inicial	38700,4	20543,4	0,00%	0,00%
	SurEste	38181,60	20647,10	1,34%	17,24%
	SurOeste	38389,10	20647,10	0,80%	21,92%
	NorEste	37766,60	20750,90	2,41%	20,96%
0,04	NorOeste	37870,30	20750,90	2,14%	19,72%
	NOyNE	36936,50	20958,40	4,56%	33,82%
	NO,NEySE	36417,80	20958,40	5,90%	41,84%
	TOD	36002,80	21062,10	6,97%	50,00%
	SurEste	37662,80	20750,90	2,68%	45,46%
	SurOeste	37974,10	20750,90	1,88%	52,89%
	NorEste	36936,5	20854,6	4,56%	51,48%
0,1	NorOeste	37040,3	20958,4	4,29%	49,57%
	NOyNE	35276,5	21165,9	8,85%	67,15%
	NO,NEySE	34238,9	21269,6	11,53%	74,21%
	TOD	33201,40	21373,40	14,21%	80,00%

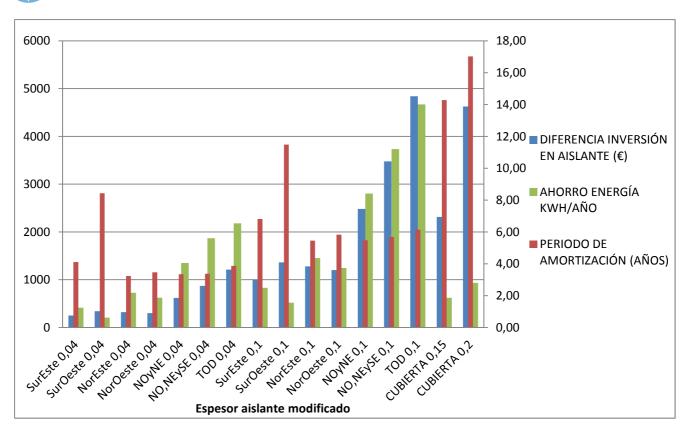


Ilustración 39 Comportamiento del edificio ante variaciones de espesor de aislante

4.3. Modificación de la permeabilidad de las ventanas

En la definición de nuestro edificio, dado que nos encontramos en la zona climática B, debemos asegurar un nivel de permeabilidad de clase 1. Ahora vamos a comparar el ahorro energético que supondría un aumento en la permeabilidad al aire, sin modificar el cristal del edificio que teníamos como referencia.

Tabla 30 Permeabilidad al aire de referencia a 100 Pa y presiones máximas de ensayo, relacionadas con la superficie total, para las clases 1 a 4

Clase	Permeabilidad al aire de referencia a 100 Pa m³ / h · m²	Presión máxima de ensayo Pa		
0	No ensay	yada		
1	50	150		
2	27	300		
3	9	600		
4	3	600		

Realizando las cuatro simulaciones en LIDER (**tabla 31**), vemos que variando la permeabilidad de las ventanas obtenemos para las distintas clases, que a partir de la permeabilidad de clase 2 no conseguimos ninguna mejora, siendo el porcentaje de mejora de clase1 a clase 2 de un 0,5% y por lo tanto no necesaria de tener en cuenta.

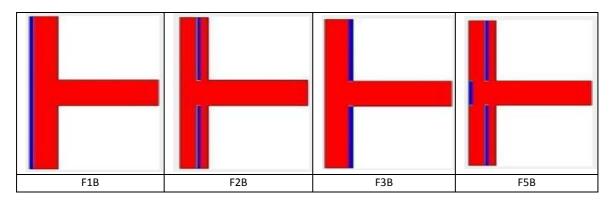
Tabla 31 Demanda climatización en función de la permeabilidad al aire de las ventanas

	demanda calet	facción	demanda refrigeración		
	kwh/m²	kwh/año	kwh/m²	kwh/año	
Clase 1	37,3	38700,4	19,8	20543,4	
Clase 2	37,1	38492,9	19,9	20647,1	
Clase 3	37,1	38492,9	19,9	20647,1	
Clase 4	37,1	38492,9	19,9	20647,1	

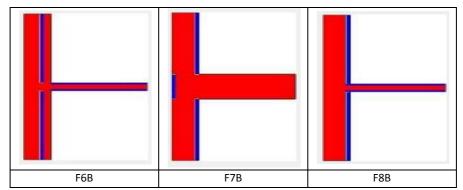
4.4. Análisis y mejora de los puentes térmicos

Los puentes térmicos del edificio los vamos a encontrar en los forjados, en cerramientos verticales y en contacto con el terreno, pudiendo dividirlos en función del encuentro que se trate en:

- Encuentro forjado-fachada
- Encuentro cubierta-fachada
- Encuentro suelo exterior-fachada
- Esquina saliente
- Esquina entrante
- Hueco ventana
- Pilar
- Unión solera-pared exterior


Partiendo del caso que nosotros habíamos elegido como inicial para nuestro edificio vamos a comprobar que mejoras podemos realizar y la rentabilidad de estas.

4.4.1. Balance energético


4.4.1.1. Encuentro forjado-fachada

Existen diversos tipos de puentes térmicos dentro de este encuentro forjado-fachada, que recogemos en la **tabla 32**.

Tabla 32 Tipos de puentes térmicos del encuentro forjado-fachada

El puente térmico que encontramos de este primer tipo en nuestro edificio (caso F2B), el forjado interior del edificio no está cubierto por aislante por lo que se produce un puente térmico que podrá ser solucionado con el caso F5B, que aún teniendo una discontinuidad en el forjado este es aislado desde el exterior por un espesor igual al del resto del edificio, o por el caso F6B que consiste en colocar aislante en el suelo de la planta superior y techo de la planta inferior dejando sin aislar el forjado interior como se recogen en la **tabla 33**, arrojando los resultados de la **tabla 34**.

F2B F5B F6B

Tabla 33 Caso inicial del encuentro forjado-fachada y posibles soluciones

Tabla 34 Demanda de climatización para el caso inicial considerado del encuentro forjado-fachada y sus posibles soluciones

FORJADOS	¥	f	demanda calefacción		demanda refrigeración			
	W/mK		kwh/m²	kwh/año	kwh/m²	kwh/año		
Encuentro forjado fa	Encuentro forjado fachada							
F2B	0,42	0,72	37,3	38700,4	19,8	20543,4		
F5B	0,14	0,79	37,1	38492,9	19,9	20647,1		
F6B	-0,05	0,75	36,9	38285,3	19,9	20647,1		

Podemos comprobar solucionando para el caso F5B, cómo se produce un descenso en la demanda de calefacción de 207,5 kwh/año por un aumento de 103,7 kwh/año de refrigeración lo que nos supone un ahorro de 103,8 kwh/año en climatización.

Si por el contrario solucionamos el puente térmico con el caso F6B el descenso de la demanda de calefacción será más importante, de 415,1 kwh/año con el mismo aumento de demanda de refrigeración 103,7 kwh/año dándonos un ahorro en climatización de 311,4 kwh/año.

Si suponemos que nuestro edificio en lugar de tener el espesor de aislante en medio de nuestro muro lo tenemos en la parte interior del edificio (**tabla 35**) tendremos los casos F3B para comparar con el de referencia y los casos F7B y F8B como análisis de mejoras respectivamente, ofreciéndonos los resultados que se recogen en la **tabla 36**.

F3B F7B F8B

Tabla 35 Tipos de encuentro forjado-fachada colocando internamente la capa de aislante

Tabla 36 Demanda de climatización los tipos de encuentro forjado-fachada colocando internamente la capa de aislante

<u>PUENTES TÉRMICOS</u>								
FORJADOS	¥	f	demanda cal	efacción	demanda re	frigeración		
	W/m.K		kwh/m²	kwh/año	kwh/m²	kwh/año		
Encuentro forjado fa	chada							
F3B	0,35	0,65	37,2	38596,6	19,8	20543,4		
F7B	F7B 0,15 0,72 37,1 38492,9 19,9 20647,1							
F8B	-0,1	0,63	36,8	38181,6	19,8	20647,1		

En este caso vemos que para los mismos espesores de aislante en el caso F3B en comparación con el F2B conseguimos una disminución de 103,8 kwh/año sin incrementar nada la demanda de refrigeración, lo que conlleva una disminución de la demanda de climatización de 103,8 kwh/año.

Entre los casos F5B y F3B no supone ningún cambio el que coloquemos el aislante en medio de los muros o en la parte interna del edificio.

Con el caso F8B si conseguimos disminuir la demanda de calefacción del edificio sin aumentar la de refrigeración gracias a que eliminamos la discontinuidad de aislante, consiguiendo un ahorro de climatización de 103,7 kwh/año.

Como último caso de análisis sería el colocar la capa de aislante de manera continua (**tabla 37**), en toda la cara exterior de nuestro muro (F1B) llegando a conseguir la segunda mejor solución desde el punto de vista energético pero con una disminución considerable de los m² de aislante respecto al caso F8B que sería la mejor solución.

Tabla 37 Tipos de encuentro forjado-fachada colocando de manera continua la capa de aislante

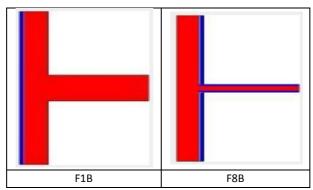


Tabla 38 Demanda de climatización para los tipos de encuentro forjado-fachada colocando de manera continua la capa de aislante

	<u>PUENTES TÉRMICOS</u>								
FORJADOS ¥ f demanda calefacción demanda refrigeración									
	W/mK		kwh/m²	kwh/año	kwh/m²	kwh/año			
Encuentro forjado	fachada								
F1B	F1B -0,04 0,87 36,9 38285,3 19,9 20647,1								
F8B	-0,1	0,63	36,8	38181,6	19,8	20647,1			

4.4.1.2. Encuentro suelo exterior-fachada

Los tipos de puentes térmicos dentro de este encuentro, los recogemos en la tabla 39.

Tabla 39 Tipos de puentes térmicos del encuentro suelo exterior-fachada

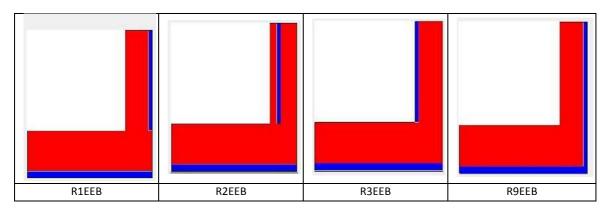


Tabla 40 Demanda de climatización para el caso inicial considerado del encuentro suelo exterior-fachada y sus posibles soluciones

<u>PUENTES TÉRMICOS</u>									
FORJADOS	¥	f	demanda calefacción		demanda refrige	eración			
	W/mK		kwh/m² kwh/año		kwh/m²	kwh/año			
Encuentro suelo exterior-fachada									
R1EEB	0,43	0,71	37,3	38700,4	19,8	20543,4			
R2EEB	0,38	0,69	37,3	38700,4	19,8	20543,4			
R3EEB	0,34	0,61	37,3	38700,4	19,8	20543,4			
R9EEB	0,19	0,81	37,1	38492,9	19,8	20543,4			

En nuestro edificio el encuentro suelo exterior-fachada esta realizado como el caso R2EEB, es decir, tiene una capa de aislante interior que no llega hasta el suelo. Este nos ofrece las mismas demandas de calefacción y refrigeración que si colocáramos la capa de aislante en la parte interior o exterior del edificio.

Lo que si nos ofrece un ahorro en la demanda de calefacción (207,5 kwh/año) sin aumento de refrigeración del edificio, sería colocar el aislante por la parte externa llegando hasta el suelo como queda recogido en la **tabla 40**.

4.4.1.3. Encuentro cubierta-fachada

Existen diversos tipos de puentes térmicos dentro de este encuentro cubierta-fachada, que recogemos en la **tabla 41**.

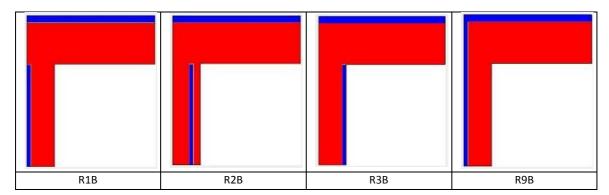


Tabla 41 Tipos de puentes térmicos del encuentro cubierta-fachada

Tabla 42 Demanda de climatización para el caso inicial considerado del encuentro cubierta-fachada y sus posibles soluciones

PUENTES TÉRMIC	cos							
FORJADOS	¥	f	demanda calefacción		demanda re	frigeración		
	W/mK		kwh/m²	kwh/año	kwh/m²	kwh/año		
Encuentro cubierta-fachada								
R1B	0,43	0,71	37,4	38804,1	19,9	20647,1		
R2B	0,38	0,69	37,3	38700,4	19,8	20543,4		
R3B	0,34	0,61	37,2	38596,6	19,8	20543,4		
R9B	0,19	0,81	36,9	38285,3	19,8	20543,4		

En nuestro edificio el encuentro cubierta-fachada esta realizado como el caso R2B, es decir tiene una capa de aislante interior que no llega hasta el final de la cubierta. Este nos ofrece una demanda de calefacción intermedia entre el colocar la capa de aislante exteriormente e interiormente, siendo mejor esta última ya que conseguimos una disminución en la demanda de 103,8 kwh/año con el caso inicial (R2B) y de 207,5 kwh/año con el caso R1B. Además con este caso R3B no aumentamos la demanda de refrigeración respecto al inicial R2B mientras que la disminuimos en 103,7 kwh/año respecto a si la colocáramos en la parte exterior del edificio.

Lo que si nos ofrece un ahorro muy importante en la demanda de calefacción (415,1 kwh/año) sin aumento de refrigeración del edificio, sería colocar el aislante por la parte externa llegando hasta la cubierta, como queda recogido en la **tabla 42**.

4.4.1.4. Esquina saliente

Existen 3 tipos de colocación de la capa de aislante en las esquinas salientes, que recogemos en la **tabla 43**.

C1B C2B C3B

Tabla 43 Lugar de colocación del aislante en las esquinas salientes

Tabla 44 Demanda de climatización para el caso inicial considerado del lugar de colocación del aislante en las esquinas salientes y sus posibles soluciones

<u>PUENTES TÉRMICOS</u>									
CERRAMIENTO ¥ f demanda calefacción demanda refrigeración						geración			
VERTICAL	W/mK		kwh/m²	kwh/año	kwh/m²	kwh/año			
Esquina saliente									
C1B	0,15	0,78	37,3	38804,1	19,8	20543,4			
C2B	0,08	0,81	37,3	38700,4	19,8	20543,4			
C3B	0,02	0,63	37,3	38700,4	19,8	20543,1			

Vemos que el caso inicial (C2B) es el mejor que podemos tener junto al de la colocación de la capa de aislante por la cara interna del muro (C3B) y que estos suponen un ahorro de la demanda de calefacción de 103,7 kwh/año respecto a colocarlo exteriormente, mientras que la demanda de refrigeración se mantiene igual en los tres casos (tabla 44).

4.4.1.5. Esquina entrante

Existen 3 tipos de colocación de la capa de aislante en las esquinas entrantes (tabla 45).

Tabla 45 Lugar de colocación del aislante en las esquinas entrantes

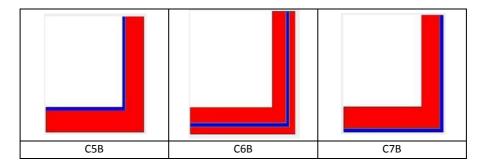


Tabla 46 Demanda de climatización para el caso inicial considerado del lugar de colocación del aislante en las esquinas entrantes y sus posibles soluciones

<u>PUENTES TÉRMICOS</u>									
CERRAMIENTO	¥	f	demanda calefacción demanda refrigeración						
VERTICAL	W/mK		kwh/m²	kwh/año	kwh/m²	kwh/año			
Esquina entrante									
C5B	-0,27	0,89	37,3	38700,4	19,8	20543,1			
C6B	-0,15	0,89	37,3	38700,4	19,8	20543,4			
C7B	-0,13	0,8	37,3	38700,4	19,8	20543,1			

Los tres casos ofrecen las mismas demandas tanto de calefacción como de refrigeración, por lo que no supondrá ningún cambio la situación de la capa de aislante (**tabla 46**).

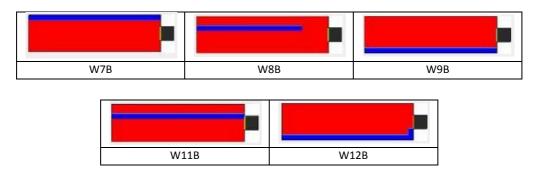
4.4.1.6. Hueco ventana

Existen diversos tipos de puentes térmicos referentes a la unión con una ventana, que recogemos en la **tabla 47**.

W1B W2B W3B

W5B W6B W7B

W8B W9B W11B


W12B W13B W14B

W15B W17B W18B

Tabla 47 Tipos de puentes térmicos en la unión muro-ventana

En nuestro edificio de referencia para el análisis hemos supuesto el caso W11B, en el cual el marco de la ventana se encuentra en el medio del muro y la capa de aislante llega hasta él por la parte externa del marco. Ante esta posición del marco con un retranqueo del marco hasta la mitad del muro tenemos otras cuatro posibilidades (W7B, W8B, W9B y W12B) como se recogen en la **tabla 48**.

Tabla 48 Caso inicial del puente térmico en la unión muro-ventana y posibles soluciones

De todas estas la peor sería la que presenta la misma posición intermedia de la capa de aislante pero con una discontinuidad hasta el marco de la ventana (W8B) ya que provocaría un aumento tanto en la demanda de calefacción como de refrigeración.

De elegir entre colocar la capa de aislante por la parte externa o interna del muro, W7B y W9B respectivamente, la opción interna es claramente mejor ya que bajaríamos la demanda de calefacción respecto a la colocación exterior 415 kwh/año y también estamos mejorando respecto a colocarlo en medio 311,3 7 kwh/año, manteniendo la demanda de refrigeración.

Por tanto una vez tenemos claro que la mejor opción es colocar la capa de aislante por el interior podemos completar el ahorro energético cerrando la capa de aislante desde la capa interna hasta el marco de la ventana consiguiendo un ahorro adicional de 207,5 kwh/año, manteniendo también la demanda de refrigeración como se recoge en la **tabla 49**.

Tabla 49 Demanda de climatización para el caso inicial del puente térmico en la unión muro-ventana y posibles soluciones

<u>PUENTES TÉRMICOS</u>									
CERRAMIENTO	¥	f	demanda calefacción		demanda re	frigeración			
VERTICAL	W/mK		kwh/m² kwh/año		kwh/m²	kwh/año			
Hueco ventana									
W7B	0,23	0,74	37,4	38804,1	19,8	20543,4			
W8B	0,4	0,7	37,9	39322,9	19,9	20647,1			
W9B	0,06	0,64	37	38389,1	19,8	20543,3			
W11B	0,19	0,76	37,3	38700,4	19,8	20543,4			
W12B	0,01	0,83	36,8	38181,6	19,8	20543,4			

Ante la posibilidad de que el marco de la ventana se encuentre a ras del muro, es decir, sin ningún retranqueo tenemos las 5 opciones de la **tabla 50**.

Los resultados que se obtienen (**tabla 51**) son similares a los que teníamos en el caso anterior, es decir, la peor solución es aislar internamente con una discontinuidad hasta el marco (W2B) y la mejor solución es aislar por la parte interna cerrando la capa de aislante desde la capa interna hasta el marco de la ventana (W6B).

Tabla 50 Colocación de la capa de aislante en la cara externa del muro en el puente térmico, en la unión muroventana

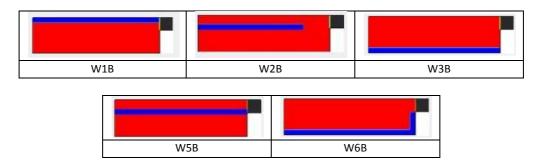


Tabla 51 Demanda de climatización para la colocación de la capa de aislante en la cara externa del muro del puente térmico, en la unión muro-ventana

<u>PUENTES TÉRMICOS</u>									
CERRAMIENTO	¥	f	demanda calefacción		demanda re	frigeración			
VERTICAL	W/mK		kwh/m²	kwh/año	kwh/m²	kwh/año			
Hueco ventana									
W1B	0,17	0,75	37,2	38700,4	19,8	20543,1			
W2B	0,4	0,67	37,9	39322,9	19,9	20647,1			
W3B	0,15	0,55	37,2	38596,6	19,8	20543,1			
W5B	0,14	0,75	37,2	38596,6	19,8	20543,4			
W6B	0,03	0,77	36,9	38285,3	19,8	20543,4			

Ante la posibilidad de que el marco de la ventana se encuentre en la parte interna del muro, es decir, con un retranqueo que ocupe toda la anchura del muro tenemos las 5 opciones de la **tabla 52**.

Los resultados que se obtienen (tabla 53) son similares a los que teníamos en los dos casos anteriores, es decir, la peor solución es aislar internamente con una discontinuidad hasta el marco (W14B) y la mejor solución es aislar por la parte interna hasta el marco de la ventana (W15B).

Tabla 52 Colocación de la capa de aislante en la cara interna del muro en el puente térmico, en la unión muroventana

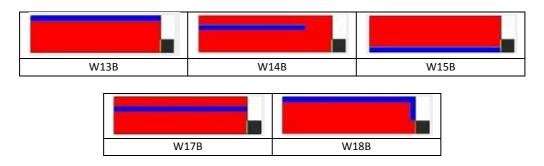
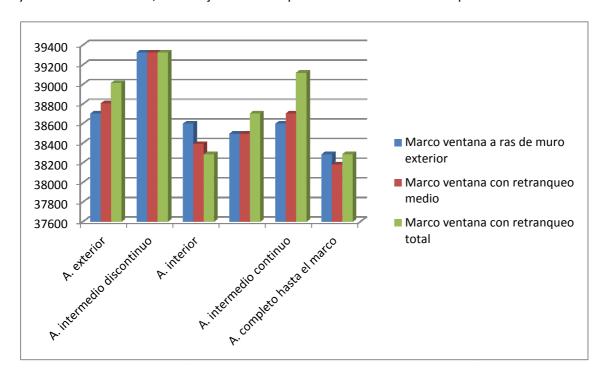
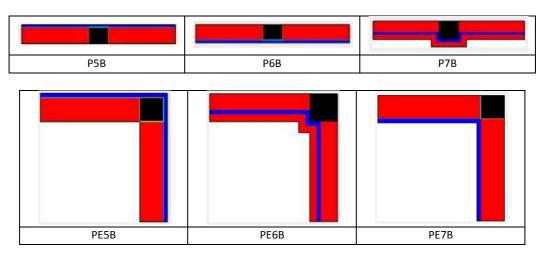


Tabla 53 Demanda de climatización para la colocación de la capa de aislante en la cara interna del muro del puente térmico, en la unión muro-ventana

<u>PUENTES TÉRMICOS</u>									
CERRAMIENTO	¥	f	demanda calefacción		demanda re	frigeración			
VERTICAL	W/mK		kwh/m² kwh/año		kwh/m²	kwh/año			
Hueco ventana									
W13B	0,29	0,6	37,6	39011,6	19,9	20647,1			
W14B	0,42	0,57	37,9	39322,9	19,9	20647,1			
W15B	0,02	0,76	36,8	38285,3	19,8	20543,4			
W17B	0,31	0,62	37,6	39115,4	19,9	20647,1			
W18B	0,24	0,63	37,4	38804,1	19,8	20543,4			

Por tanto ahora el estudio radica en conocer si es mejor hacer un retranqueo o no a la ventana y en caso de hacérselo, si es mejor un retranqueo intermedio o un retranqueo total.




Ilustración 40 Comparativa entre el lugar de la capa de aislante y el retranqueo de la ventana

Los mejores resultados en cuanto a ahorro de climatización los obtenemos colocando el aislamiento por la parte interna del muro cerrando la capa de aislante desde la capa interna hasta el marco de la ventana para el marco en la posición intermedia del muro como se muestra en la **ilustración 40**.

4.4.1.7. Pilares

Existen diversos tipos de hacer el aislamiento a través de los pilares del edificio, que recogemos en la **tabla 54**.

Tabla 54 Tipos de puentes térmicos en los pilares

En nuestro edificio los pilares los tenemos en medio de los muros (**tabla 55**), habiendo elegido la colocación del aislamiento por la parte interna de nuestro muro bordeando el contorno del pilar (P7B) pero cualquiera de las otras dos soluciones tanto colocando aislante en la cara tanto interna como externa del muro (P5B y P6B) supondrá una disminución en la demanda de calefacción de 103,8 kwh/año sin producir un aumento de demanda de refrigeración (**tabla 56**).

Tabla 55 Caso inicial del puente térmico en los pilares y posibles soluciones

Tabla 56 Demanda de climatización para el caso inicial del puente térmico en los pilares y posibles soluciones

<u>PUENTES TÉRMICOS</u>									
CERRAMIENTO	¥	f	demanda ca	frigeración					
VERTICAL	W/mK		kwh/m²	kwh/año	kwh/m²	kwh/año			
Pilar									
P5B	0,05	0,86	37,2	38596,6	19,8	20543,4			
P6B	0,05	0,77	37,2	38596,6	19,8	20543,4			
Р7В	0,09	0,85	37,3	38700,4	19,8	20543,4			

En caso de que nuestro edificio tuviera los pilares en las esquinas (tabla 57) podríamos obstar entre las tres soluciones siguientes para colocar el aislamiento siendo la más beneficiosa el colocarlo tanto en el interior del muro como por la parte interna de este consiguiendo un ahorro de 311,3 kwh/año (tabla 58).

Tabla 57 Casos de puentes térmicos en pilares esquinados

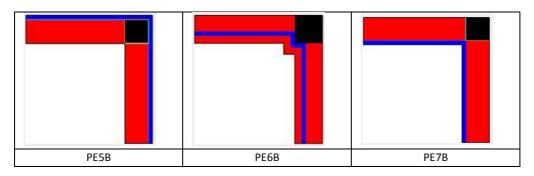


Tabla 58 Demanda de climatización para el caso de puentes térmicos en pilares esquinados

<u>PUENTES TÉRMICOS</u>									
CERRAMIENTO ¥ f demanda calefacción demanda refrigeración					frigeración				
VERTICAL	W/mK		kwh/m²	kwh/año	kwh/m²	kwh/año			
Pilar									
PE5B	0,19	0,72	37,5	38907,9	19,9	20647,1			
PE6B	0,06	0,83	37,2	38596,6	19,8	20543,4			
PE7B	0,03	0,62	37,2	38596,6	19,8	20543,4			

4.4.1.8. Unión solera-pared exterior

Existen 3 tipos de colocación de la capa de aislante en la unión solera-pared exterior (tabla 59) de la cuál nosotros hemos elegido inicialmente la colocación del aislante en la parte interior aunque aquí no influye en la demanda tanto si lo hacemos por la parte interna como por la externa (tabla 60).

Tabla 59 Caso inicial del puente térmico en la unión solera-pared exterior y posibles soluciones

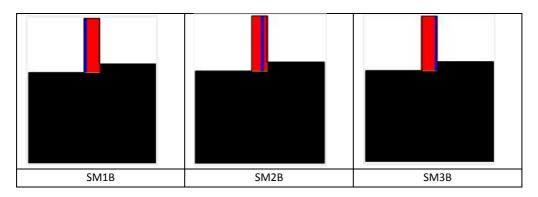


Tabla 60 Demanda de climatización para el caso inicial de la unión solera-pared exterior y posibles soluciones

<u>PUENTES TÉRMICOS</u>									
CONTACTO	¥	f	demanda calefacción		demanda refrig	eración			
TERRENO	W/mK		kwh/m²	kwh/año	kwh/m²	kwh/año			
Unión solera pared exte	Unión solera pared exterior								
SM1B	0,13	0,73	37,3	38700,4	19,8	20543,4			
SM2B	0,14	0,73	37,3	38700,4	19,8	20543,4			
SM3B	0,12	0,68	37,3	38700,4	19,8	20543,4			

4.4.2. Balance económico

Algunos formas de solucionar los puentes térmicos implican un cambio en la cantidad de m² de aislante a emplear y por tanto una repercusión en el precio inicial que teníamos del aislamiento. Vamos a analizar en cada tipo de puente térmico que tenemos el análisis económico de su mejora, a través de la inversión que supondría y el periodo de amortización que tendría.

4.4.2.1. Encuentro forjado-fachada

Para la mejora de este puente térmico de nuestro edificio en el que la capa de aislante esta en el interior del muro exterior (caso F2B) se habían propuesto el cubrir exteriormente con una capa de aislante el forjado interior (caso F5B) y cubrir tanto suelos como techos de los espacios consiguiendo aislar los forjados (casos F6B) siendo la propuesta desde un punto de vista energético mejor la F6B con un ahorro del 0,75%, pero la cantidad de aislante necesaria para realizarla y por tanto el desembolso económico lo hacen inviable ya que aumentaría un 457,59%, mientras que cubriendo con aislante exteriormente el forjado interior conseguiríamos ahorrar un 0,25% pero con un aumento de la inversión de un 36,08 % muy baja en comparación con la anterior.

Tabla 61 Análisis económico en función del puente térmico que tengamos en el encuentro forjado-fachada

		BALANCE ECONÓMICO											
		ahorro	aumento				diferencia		AHORRO EN LA				
		demanda	demanda	ahorro total	periodo	diferencia de	inversión	media ahorro	VIDA UTIL DEL				
		calefacción	refrigeración	climatización	retorno	m² de	aislante	climatización	EDIFICIO (50				
	Valor	kwh/año	kwh/año	kwh/año	(años)	aislante	(euros)	euros/año	AÑOS)				
	F1B	415,1	103,7	311,4	7,58	95,11	436,57 €	57,63 €	6.313,02 €				
forjado da	F2B	0	0	0	0,00	0,00	0,00€	0,00 €	0,00€				
	F5B	207,5	103,7	103,8	15,41	95,11	436,57 €	28,32 €	1.813,29 €				
entro fo fachada	F6B	415,1	103,7	311,4	35,62	1.206,34	5.537,10€	155,44 €	1.212,49 €				
Encuentro facha	F7B	207,5	103,7	103,8	15,41	95,11	436,57 €	28,32 €	1.813,29 €				
-	F8B	518,8	103,7	415,1	30,33	1.206,34	5.537,10€	182,58 €	3.460,19 €				

Si la capa de aislamiento se encontrara en el interior del edificio (caso F3B) cubriendo exteriormente conseguiríamos el mismo ahorro con la misma inversión pero si cubrimos tanto suelos como techos de los espacios (caso F8B) en este caso no produciríamos puentes térmico al aislar de manera continua consiguiendo un ahorro energético algo mayor 1,08% pero igual de inviable que en el caso F6B.

La mejor solución sería que utilizáramos desde el principio una capa continua exterior de aislante en el edificio evitando el puente térmico aunque aumentando la inversión en un 12,5%.

4.4.2.2. Encuentro suelo exterior-fachada y cubierta-fachada

Según podemos ver en la **tabla 62** desde un punto de vista económico respecto al caso inicial solo supone un aumento de inversión el continuar la capa de aislante hasta el suelo y hasta la capa de aislante de la cubierta respectivamente, y dado que los metros cuadrados son los mismos el desembolso inicial es el mismo, solo supondría un aumento del 15,89% en la inversión inicial pero el ahorro es distinto ya que es más importante energéticamente hablando el puente térmico que se produce en el encuentro entre fachada y cubierta y por tanto el periodo de amortización es inferior aquí.

Tabla 62 Análisis económico en función del puente térmico que tengamos en el encuentro suelo exterior-fachada y cubierta-fachada

		ahorro	aumento				diferencia		AHORRO EN LA
		demanda	demanda	ahorro total	periodo	diferencia de	inversión	media ahorro	VIDA UTIL DEL
		calefacción	refrigeración	climatización	retorno	m² de	aislante	climatización	EDIFICIO (50
	Valor	kwh/año	kwh/año	kwh/año	(años)	aislante	(euros)	euros/año	AÑOS)
Encuentro suelo exterior- fachada	R2EEB	0	0	0	0,00	0,00€	0,00€	0,00 €	0,00€
Encuent suelo exterior fachada	R9EEB	207,5	0	207,5	5,66	41,89 €	192,27 €	33,95 €	4.305,30 €
entro erta- ada	R2B	0	0	0	0,00	0,00€	0,00€	0,00 €	0,00€
Encuent cubierta fachada	R9B	415,1	0	415,1	3,36	41,888	192,27 €	57,22 €	8.805,03 €

4.4.2.3. Esquina saliente, entrante y puentes térmico en pilares

Desde un punto de vista económico supone la misma inversión el aplicar cualquiera de las soluciones posibles, aunque no energéticamente como hemos visto en el apartado anterior.

4.4.2.4. Hueco ventana

Después del análisis energético concluimos que para mejorar, energéticamente hablando, debíamos hacer el retranqueo del marco de la ventana hasta la posición media del muro exterior.

Como habíamos visto, la mejor solución energéticamente era colocar el espesor de aislante por la cara interna del muro y completar el aislamiento perpendicularmente hasta el marco de la ventana o puerta.

Dado que nosotros partíamos de una capa de aislante continua en la parte interna del muro hasta el marco (caso W11B), las soluciones de colocar esta capa tanto exterior como interiormente suponen la misma inversión y por tanto no las analizamos. Ahora bien si colocamos el aislamiento perpendicularmente hasta el marco de la ventana o puerta suponen una inversión que podemos considerar muy baja 1,8% para el mayor ahorro en climatización que conseguimos como queda recogido en la **tabla 63**.

Tabla 63 Análisis económico de colocar una capa de aislante perpendicular al marco de la ventana hasta la capa de aislante (externa o interna) del muro

	Valor	ahorro demanda calefacción kwh/año	aumento demanda refrigeración kwh/año	ahorro total climatización kwh/año	periodo retorno (años)	diferencia de m² de aislante	diferencia inversión aislante (euros)	media ahorro climatización euros/año	AHORRO EN LA VIDA UTIL DEL EDIFICIO (50 AÑOS)
ueco ntana	W11B	0	0	0	0,00	0	0,00€	0,00 €	0,00€
Hue	W12B	518,8	0	518,8	0,40	4,7538	21,82 €	54,33 €	11.223,17€

4.5. Uso de termoarcilla en la fachada exterior

Una termoarcilla es un bloque cerámico de baja densidad y mayor grosor que el ladrillo convencional, que se utiliza como alternativa a otros materiales de construcción más comunes, como los ladrillos o los bloques de hormigón.

En nuestro edificio vamos a analizar el edificio con unos muros exteriores de termoarcilla cuya composición se refleja en el ANEXO VI y donde además utilizaremos los puentes térmicos que recogemos en la **tabla 64**, para unos espesores de capa de aislante de 2cm como en el caso inicial y lo compararemos con espesores de 4cm y 10cm.

F4B R10B R10EEB C4B

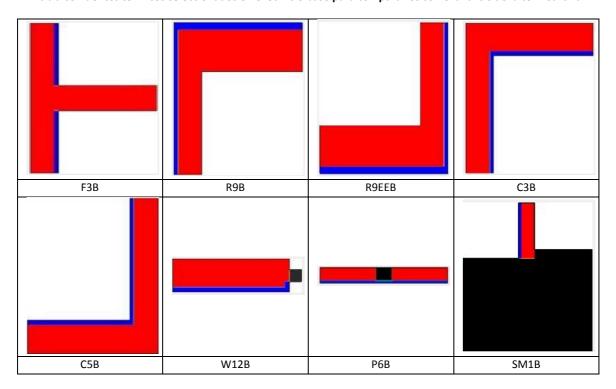

C8B W10B P4B SM4B

Tabla 64 Puentes térmicos seleccionados en el análisis de la termoarcilla

Estos puentes térmicos son considerados los mejores que podemos tener en nuestro edificio dado el análisis anterior y que vamos a comparar para la misma combinación (**tabla 65**) pero de muro convencional para los mismos espesores de aislante.

Tabla 65 Puentes térmicos seleccionados en el edificio base para compararlos con el análisis de la termoarcilla

Los bloques de termoarcilla aparte de ser más caros que los ladrillos convencionales, analizando la **tabla 66** para espesores bajos de aislante si son validos mientras que para espesores de aislante superiores no cumplen con la HE-1 ya que la demanda de refrigeración es mayor que la que el programa asigna como de referencia.

El ahorro que nos supone para el caso de espesores de 2cm de aislante es tan solo del 1,7% y dado el desembolso que supone no lo consideraremos una buena solución.

Tabla 66 Análisis energético del empleo de muros de termoarcilla en lugar de los muros del edificio pase con los mismos puentes térmicos

	PUENTES 1	TÉRMICOS					PUENTES TÉRMICOS					
			demanda						demanda			
		calefacción	refrigeraci	ón				calefacción	refrigeraci	ón		
	kwh/m²	kwh/año	kwh/m²	kwh/año			kwh/m²	kwh/año	kwh/m²	kwh/año		
0,02	37,3	38700,4	19,8	20543,4		0,02	37,3	38700,4	19,8	20543,4		
0,02 TERMOARCILLA	35,5	36832,8	20,6	21373,4		0,02 COMBINACIÓN PUENTES TÉRMICOS	36,1	37455,3	19,8	20543,4		
0,04 TERMOARCILLA	33,4	34653,9	20,9	21684,7	NO CUMPLE HE-1	0,04 COMBINACIÓN PUENTES TÉRMICOS	33,2	34446,4	20,2	20958,4		
0,1 TERMOARCILLA	31,5	32682,6	21,2	21995,9	NO CUMPLE HE-1	0,1 COMBINACIÓN PUENTES TÉRMICOS	30,1	31230,1	20,5	21269,6		

4.6. Valores de absorción de la radiación solar de los muros y techos exteriores

Dado que nuestro edificio tiene una demanda mayor de calefacción que refrigeración, una opción para disminuir está demanda sería usar pinturas con una absorción de radiación mayor que las que tenemos actualmente (tabla 67).

Si en lugar de utilizar una pintura con un factor de absorción de radiación solar de 0,6 como tenemos inicialmente utilizamos pinturas con un factor de 0,9 tendremos una disminución de la demanda de calefacción, aunque la demanda que tendremos de refrigeración será mayor que el ahorro que conseguimos por lo que no lo podemos considerar como una buena opción.

Si ahora probamos a bajar el factor de absorción de radiación solar a 0,3 vemos que conseguimos disminuir la demanda de refrigeración pero la demanda de calefacción aumenta de manera que el balance tampoco nos compensará.

Si llegamos hasta el extremo de bajar el factor de absorción de radiación solar hasta el 0,1 veremos que aunque nos calcula la demanda de calefacción y refrigeración el edificio NO CUMPLE con la HE-1 ya que la demanda de refrigeración es mayor que la que el software utiliza como referencia para su cálculo.

Tabla 67 Demandas de energía en climatización en función del factor de absorción de pinturas exteriores

factor	demanda calet	facción	demanda refrigeración			
absorción	kwh/m²	kwh/año	kwh/m²	kwh/año		
0,1	40,5	42020,5	16,7	17327		
0,3	39,2	40671,7	18	18675,8		
0,6	37,3	38700,4	19,8	20543,4		
0,9	35,4	36729	21,9	22722,2		

Tabla 68 Balance energético en kwh/año modificando el factor de absorción respecto al caso inicial

absorción	diferencia demanda calefacción kwh/año	diferencia demanda refrigeración kwh/año	diferencia total climatización kwh/año
0,1	3320,1	-3216,4	103,7
0,3	1971,3	-1867,6	103,7
0,6	0	0	0
0,9	-1971,4	2178,8	207,4

4.7. Control de ventilación

4.7.1. Balance energético

La normativa de aplicación a la ventilación viene recogida en el RITE y dado que nuestro edificio está dedicado a la enseñanza debemos tener un aire de buena calidad (IDA2). El caudal mínimo de aire exterior de ventilación, necesario para alcanzar esta categoría lo hemos calculado anteriormente por el método indirecto de caudal de aire exterior por persona, pero ahora aparte contaremos con unos sensores de presencia los cuales pondrán en

funcionamiento el sistema de ventilación si alguien entra en cada uno de los espacios, indistintamente del número de personas o un control por sondas de CO₂.

Para estas aproximaciones hemos supuesto una ocupación de cada uno de los espacios que se recoge en el ANEXO VII.

Nuestro sistema de ventilación es independiente del de climatización para poder asegurarnos el control, y lo vamos a repartir en dos equipos, uno para la planta baja capaz de impulsar 3715,73 m³/h en punta y otro que servirá para la planta primera, segunda y tercera que impulsara 3655,19 m³/h en punta.

Por lo tanto estos ventiladores son comunes para todos los casos que vamos a estudiar y la inversión no la tendremos en cuenta.

En el caso de los detectores de presencia el sistema se dimensiona en función de la demanda máxima posible que se puede requerir en caso de que todos los despachos estén ocupados, indicada anteriormente. Se determina la presión que se genera en el sistema con éste funcionando a régimen de ventilación máxima. Cada uno de los despachos mantendría un mínimo de ventilación para garantizar las condiciones ambientales. El sistema se pondría en funcionamiento mediante un "Timer" o de forma manual.

Cuando el Detector de Presencia identificase la entrada de una persona en un despacho, éste emitiría una orden a la Boca de Aspiración Bicaudal que se abriría totalmente. Esto generaría un desequilibrio en la presión consignada para el sistema, que sería detectado por el Sensor de Presión, que transmitiría una orden al Elemento de Regulación que a su vez actuaría sobre el Ventilador, adecuando la velocidad para restaurar la presión en el sistema. Cada entrada o salida de las diversas estancias sería identificada por los Detectores de Presencia que interactuarían en el sistema. Todos estos equipos necesarios en la instalación los podemos observar en la **ilustración 41**.

La mayor ventaja del sistema es que discriminaremos la ventilación en cada espacio y solamente utilizaremos la potencia máxima en cada uno en el caso de que esté ocupado. Esto generará un importante ahorro energético sobre un sistema de ventilación sin control de demanda.

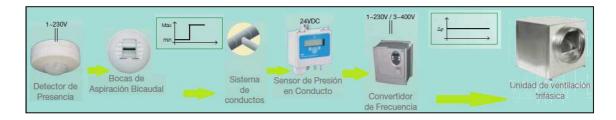


Ilustración 41 Esquema de los equipos del sistema de ventilación controlada mediante sensores de presencia

La otra opción que si nos permite tener en cuenta la ocupación que tenemos en cada uno de los espacios es la ventilación en función de la concentración de CO₂, la cual a través de unas sondas de CO₂ pondrán en marcha el sistema de ventilación cuando se superen unos valores

que en el caso que nos ocupa, IDA2, será cuando estemos 500 partes por millón en volumen por encima de la concentración de aire exterior.

El funcionamiento del sistema se hará mediante un "Timer" o de forma manual que pone en marcha el sistema que funcionará a régimen mínimo de ventilación en cada uno de las salas a ventilar.

Dado que se trata de salas de ocupación variable, el Sensor de CO2 constatará el grado de contaminación en función de la cantidad de personas y enviará la lectura a la Compuerta Motorizada que se abrirá más o menos, permitiendo el paso de aire necesario en cada momento. Esto hará variar la presión en la instalación, que será identificada por el Sensor de Presión que actuará sobre el Elemento de Regulación y éste, a su vez, sobre el Ventilador para equilibrar el sistema (ilustración 42).

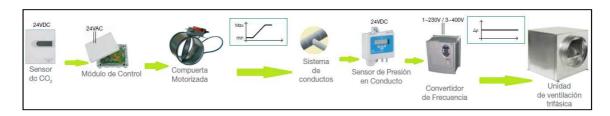


Ilustración 42 Esquema de los equipos del sistema de ventilación controlada mediante sondas de CO2

VENTAJAS DEL SISTEMA

La mayor ventaja del sistema es que en cada sala, a partir de una renovación ambiental mínima, solamente incrementaremos la ventilación en función del nivel de ocupación (determinada por el nivel de CO₂). Esto generará un importante ahorro energético sobre un sistema de ventilación total que analizamos a continuación.

Conocidas las emisiones de CO_2 por persona y sabiendo que para IDA 2 los niveles permitidos de CO_2 están en 500 ppm por encima del nivel del aire exterior, para una actividad metabólica de 1.3 Met, el caudal de ventilación lo podemos obtener como:

$$\dot{V} = 3.6 \cdot \frac{0.0042 \cdot 1.3}{0.0005} = 39.3 \, m^3 / (h \cdot persona)$$

Siendo este valor ligeramente inferior a los 45 que fija el RITE para IDA 2

Para evaluar el ahorro que puede suponer este sistema necesitamos plantearnos varios escenarios distintos. Partiendo de un horario de 12 horas (se ocupa de 7 a 15 y de 17 a 21 horas) analizaremos para este sistema tres posibles situaciones:

1. La ocupación se mantiene al 100 % durante todo el periodo de apertura, pero se instala un sistema de control de ventilación en base a niveles de CO₂ (el caudal de ventilación por persona sale menor que el fijado por el RITE)

Para este primer caso aunque la ocupación la hemos considerado igual que en el caso inicial (del 100% para todos los espacios), el solo hecho de calcular los caudales de aire a través del método directo por concentración de CO₂, nos ha supuesto bajar los caudales desde los 45 a los 39,3 m³/h/persona.

Esto nos supone un descenso en los caudales de ventilación y por consiguiente en las renovaciones/hora de nuestro edificio que será el valor a modificar en LIDER para cada uno de los espacios de nuestro edificio y así saber cómo afecta el sistema de ventilación a la demanda del edificio.

Haciendo una comparación media del edificio, conseguimos un descenso desde las 1,67 renovaciones/hora que calculamos inicialmente en la **tabla 1** a las 1,52 renovaciones/hora que calculamos a continuación en la **tabla 69**, consiguiendo un ahorro del 8,98 %.

.

Tabla 69 Calculo de las renovaciones/hora considerando que la ocupación se mantiene al 100 % durante todo el periodo de apertura, pero se instala un sistema de control de ventilación en base a niveles de CO₂

planta	espacio	descripción	Área (m²)	ocupación (m²/persona)	personas	% ocupación media/día	personas.% ocupación	volumen sala (m³)	caudal aire entrada por persona (m³/h/persona)	Q ventilación para total de personas (m³/h)	ren/hor	Inodoros o urinarios	Caudales de extracción (dm³/s)	Caudales de extracción (m³/h)
P1	E1	Entrada	107,90	2,00	7	100,00%	7	365	39,3	282,70	0,78		0	0
P1	E2	ascensor	3,85	-	0	0,00%		13	39,3	0,00	3,00		0	0
P1	E3	aulas	307,00	1,50	43	100,00%	43	1038	39,3	1689,90	1,63		0	0
P1	E4	taller	161,89	5,00	32	100,00%	32	547	39,3	1272,47	2,33		0	0
P2	E2	aula	31,56	1,50	10	100,00%	10	107	39,3	393,00	3,68		0	0
P2	E3	aseo	7,60	3,00	0	0,00%		26	39,3	0,00	0,00	3	45	162
P2	E4	aseo	2,00	3,00	0	0,00%		7	39,3	0,00	0,00	1	15	54
P2	E5	aseo	4,32	3,00	0	0,00%		15	39,3	0,00	0,00	1	15	54
P2	E6	entrada	46,20	2,00	3	100,00%	3	156	39,3	121,04	0,78		0	0
P2	E7	ascensor	3,70	-	0	0,00%		13	39,3	0,00	3,00		0	0
P2	E8	aseo	15,22	3,00	0	0,00%		51	39,3	0,00	0,00	3	45	162
P2	E9	almacén	4,22	40,00	0	100,00%	0	14	39,3	4,15	0,29		0	0
P2	E10	taller	152,86	5,00	30	100,00%	30	517	39,3	1179,00	2,28		0	0
Р3	E1	aula informática	55,35	1,50	22	100,00%	22	187	39,3	864,60	4,62		0	0
Р3	E2	sala de juntas	22,19	5,00	10	100,00%	10	75	39,3	393,00	5,24		0	0
Р3	E3	dirección	17,62	10,00	2	100,00%	2	60	39,3	69,24	1,16		0	0
Р3	E4	entrada	44,67	2,00	3	100,00%	3	151	39,3	117,02	0,78		0	0
Р3	E5	ascensor	3,70	-	0	0,00%		13	39,3	0,00	3,00		0	0
Р3	E6	aseo	4,44	3,00	0	0,00%		15	39,3	0,00	0,00	1	15	54
Р3	E7	aseo	6,05	3,00	0	0,00%		20	39,3	0,00	0,00	1	15	54
P4	E1	Entrada	19,52	2,00	1	100,00%	1	59	39,3	51,14	0,86		0	0
P4	E2	ascensor	3,70	-	0	0,00%		11	39,3	0,00	3,00		0	0
P4	E3	cuadro de maquinas	18,26	0,00	0	0,00%		56	39,3	0,00	0,00		0	0
P4	E4	cuarto instalaciones	8,58	0,00	0	0,00%		26	39,3	0,00	0,00		0	0
									Q. (m³/h)	6437,26	1,52		Q. (m³/h)	540

2. Sistema de control por nivel de CO₂ y perfil de ocupación medio (despachos se mantienen constantes al 100 % y espacios comunes, aulas y talleres oscilan entre el 70 y el 100 % de ocupación)

En este segundo caso los perfiles de ocupación siguen siendo altos, pero algunos de los espacios ya no se mantienen a los niveles máximos durante todo el día, para así poder comprobar la evolución de los caudales de ventilación y por consiguiente en el número de renovaciones/hora a introducir en LIDER.

Si realizamos una comparación media conseguimos un descenso desde las 1,67 renovaciones/hora que calculamos inicialmente en la **tabla 1** a las 1,39 que obtenemos en la **tabla 70** consiguiendo un descenso del 16,77%.

Respecto al caso anterior vemos como, solo considerando perfiles de ocupación algo inferiores en los espacios más grandes del edificio, conseguimos un ahorro de los caudales de ventilación de prácticamente el doble.

Tabla 70 Calculo de las renovaciones/hora considerando que la ocupación de despachos se mantienen constantes al 100 % mientras que espacios comunes, aulas y talleres oscilan entre el 70 y el 100 % de ocupación, con un sistema de control de ventilación en base a niveles de CO₂

planta	espacio	descripción	Área (m²)	ocupación (m²/persona)	personas	% ocupación media/día	personas.% ocupación	volumen sala (m³)	caudal aire entrada por persona (m³/h/persona)	Q ventilación para total de personas (m³/h)	ren /hora	Inodoros o urinarios	Caudales de extracción (dm³/s)	Caudales de extracción (m³/h)
P1	E1	Entrada	107,90	2,00	7	87,50%	6	365	39,3	247,36	0,68		0	0
P1	E2	ascensor	3,85	-	0	0,00%		13	39,3	0,00	3,00		0	0
P1	E3	aulas	307,00	1,50	43	87,50%	38	1038	39,3	1478,66	1,42		0	0
P1	E4	taller	161,89	5,00	32	87,50%	28	547	39,3	1113,41	2,03		0	0
P2	E2	aula	31,56	1,50	10	87,50%	9	107	39,3	343,88	3,22		0	0
P2	E3	aseo	7,60	3,00	0	0,00%		26	39,3	0,00	0,00	3	45	162
P2	E4	aseo	2,00	3,00	0	0,00%		7	39,3	0,00	0,00	1	15	54
P2	E5	aseo	4,32	3,00	0	0,00%		15	39,3	0,00	0,00	1	15	54
P2	E6	entrada	46,20	2,00	3	87,50%	3	156	39,3	105,91	0,68		0	0
P2	E7	ascensor	3,70	-	0	0,00%		13	39,3	0,00	3,00		0	0
P2	E8	aseo	15,22	3,00	0	0,00%		51	39,3	0,00	0,00	3	45	162
P2	E9	almacén	4,22	40,00	0	70,00%	0	14	39,3	2,91	0,20		0	0
P2	E10	taller	152,86	5,00	30	87,50%	26	517	39,3	1031,63	2,00		0	0
Р3	E1	aula informática	55,35	1,50	22	87,50%	19	187	39,3	756,53	4,04		0	0
Р3	E2	sala de juntas	22,19	5,00	10	87,50%	9	75	39,3	343,88	4,59		0	0
Р3	E3	dirección	17,62	10,00	2	100,00%	2	60	39,3	69,24	1,16		0	0
Р3	E4	entrada	44,67	2,00	3	87,50%	3	151	39,3	102,39	0,68		0	0
Р3	E5	ascensor	3,70	-	0	0,00%		13	39,3	0,00	3,00		0	0
Р3	E6	aseo	4,44	3,00	0	0,00%		15	39,3	0,00	0,00	1	15	54
Р3	E7	aseo	6,05	3,00	0	0,00%		20	39,3	0,00	0,00	1	15	54
P4	E1	Entrada	19,52	2,00	1	87,50%	1	59	39,3	44,75	0,75		0	0
P4	E2	ascensor	3,70	-	0	0,00%		11	39,3	0,00	3,00		0	0
P4	E3	cuadro de maquinas	18,26	0,00	0	0,00%		56	39,3	0,00	0,00		0	0
P4	E4	cuarto instalaciones	8,58	0,00	0	0,00%		26	39,3	0,00	0,00	_	0	0
			_				_		Q. (m³/h)	5640,53	1,39	_	Q. (m³/h)	540

3. Sistema de control por nivel de CO₂ y perfil de ocupación bajo (despachos se mantienen constantes al 100 % pero las aulas y talleres permanecen 2 horas desocupadas, 2 horas al 50 % de ocupación, 4 al 70 %, 2 al 85 % y 2 al 100 %)

Después de este perfil de ocupación intermedio analizado en el segundo caso vamos a considerar ahora un perfil de ocupación que más se podría adaptar a la realidad de nuestro edificio y obtener unos caudales de ventilación lo más reales posibles, transformándolos en las renovaciones/hora correspondiente para introducirlos y analizarlos en LIDER.

Ahora en estos espacios donde la ocupación es mayor tendremos horas con perfiles de ocupación desde el 0% al 100% y esto se traducirá en un descenso desde las 1,67 renovaciones/hora que calculamos inicialmente en la **tabla 1** a las 1,32 que obtenemos en la **tabla 71** consiguiendo un descenso del 20,91%.

Tabla 71 Calculo de las renovaciones/hora considerando que la ocupación de despachos se mantienen constantes al 100 % pero las aulas y talleres permanecen 2 horas desocupadas, 2 horas al 50 % de ocupación, 4 al 70 %, 2 al 85 % y 2 al 100 %, con un sistema de control de ventilación en base a niveles de CO₂

planta	espacio	descripción	Área (m²)	ocupación (m²/persona)	personas	% ocupación media/día	personas.% ocupación	volumen sala (m³)	caudal aire entrada por persona (m³/h/persona)	Q ventilación para total de personas (m³/h)	ren /hor	Inodoros o urinarios	Caudales de extracción (dm³/s)	Caudales de extracción (m³/h)
P1	E1	Entrada	107,90	2,00	7	62,50%	4	365	39,3	176,69	0,48		0	0
P1	E2	ascensor	3,85	-	0	0,00%		13	39,3	0,00	3,00		0	0
P1	E3	aulas	307,00	1,50	43	62,50%	27	1038	39,3	1056,19	1,02		0	0
P1	E4	taller	161,89	5,00	32	87,50%	28	547	39,3	1113,41	2,03		0	0
P2	E2	aula	31,56	1,50	10	62,50%	6	107	39,3	245,63	2,30		0	0
P2	E3	aseo	7,60	3,00	0	0,00%		26	39,3	0,00	0,00	3	45	162
P2	E4	aseo	2,00	3,00	0	0,00%		7	39,3	0,00	0,00	1	15	54
P2	E5	aseo	4,32	3,00	0	0,00%		15	39,3	0,00	0,00	1	15	54
P2	E6	entrada	46,20	2,00	3	62,50%	2	156	39,3	75,65	0,48		0	0
P2	E7	ascensor	3,70	-	0	0,00%		13	39,3	0,00	3,00		0	0
P2	E8	aseo	15,22	3,00	0	0,00%		51	39,3	0,00	0,00	3	45	162
P2	E9	almacén	4,22	40,00	0	20,00%	0	14	39,3	0,83	0,06		0	0
P2	E10	taller	152,86	5,00	30	87,50%	26	517	39,3	1031,63	2,00		0	0
Р3	E1	aula informática	55,35	1,50	22	62,50%	14	187	39,3	540,38	2,89		0	0
Р3	E2	sala de juntas	22,19	5,00	10	62,50%	6	75	39,3	245,63	3,28		0	0
Р3	E3	dirección	17,62	10,00	2	100,00%	2	60	39,3	69,24	1,16		0	0
Р3	E4	entrada	44,67	2,00	3	62,50%	2	151	39,3	73,14	0,48		0	0
Р3	E5	ascensor	3,70	-	0	0,00%		13	39,3	0,00	3,00		0	0
Р3	E6	aseo	4,44	3,00	0	0,00%		15	39,3	0,00	0,00	1	15	54
Р3	E7	aseo	6,05	3,00	0	0,00%		20	39,3	0,00	0,00	1	15	54
P4	E1	Entrada	19,52	2,00	1	62,50%	1	59	39,3	31,96	0,54		0	0
P4	E2	ascensor	3,70	-	0	0,00%		11	39,3	0,00	3,00		0	0
P4	E3	cuadro de maquinas	18,26	0,00	0	0,00%		56	39,3	0,00	0,00		0	0
P4	E4	cuarto instalaciones	8,58	0,00	0	0,00%		26	39,3	0,00	0,00		0	0
									Q. (m³/h)	4660,36	1,32		Q. (m³/h)	540

4. Sistema de control por detectores de presencia y perfil de ocupación bajo: hemos considerado los mismos porcentajes de ocupación que en el caso anterior pero en estos equipos no nos permiten la regulación del caudal en función de la ocupación, de manera que cuando un espacio es ocupado, independientemente del número de personas, el sistema de ventilación se pondrá en marcha para renovar el aire de dicho espacio y por tanto los perfiles de ocupación serán todo/nada siendo del 100% cuando hay alguien durante esa hora y 0% cuando no entra nadie.

Con estos equipos estamos consiguiendo disminuir los caudales de ventilación respecto al caso inicial (**tabla 1**), pero este sistema en verdad solo será efectivo durante las dos horas al día que los espacios se consideran con una ocupación nula, ya que el resto de horas estará impulsando el caudal de ventilación máximo.

Es por ello que el descenso en el número de renovaciones/hora, calculado en la **tabla 72**, es de 1,52, menor que el inicial calculado en la tabla 1 (1,67) pero ese descenso será solo del 8,98%.

Tabla 72 Calculo de las renovaciones/hora considerando que la ocupación de despachos se mantienen constantes al 100 % pero las aulas y talleres permanecen 2 horas desocupadas, 2 horas al 50 % de ocupación, 4 al 70 %, 2 al 85 % y 2 al 100 %, con un sistema de control de ventilación por detectores de presencia

planta	espacio	descripción	Área (m²)	ocupación (m²/persona)	personas	% ocupación media/día	personas.% ocupación	volumen sala (m³)	caudal aire entrada por persona (m³/h/persona)	Q ventilación para total de personas (m³/h)	ren/h or	Inodoros o urinarios	Caudales de extracción (dm³/s)	Caudales de extracción (m³/h)
P1	E1	Entrada	107,90	2,00	7	83,33%	6	365	45	269,75	0,74		0	0
P1	E2	ascensor	3,85	-	0	0,00%		13	45	0,00	3,00		0	0
P1	E3	aulas	307,00	1,50	43	83,33%	36	1038	45	1612,50	1,55		0	0
P1	E4	taller	161,89	5,00	32	100,00%	32	547	45	1457,03	2,66		0	0
P2	E2	aula	31,56	1,50	10	83,33%	8	107	45	375,00	3,52		0	0
P2	E3	aseo	7,60	3,00	0	0,00%		26	45	0,00	0,00	3	45	162
P2	E4	aseo	2,00	3,00	0	0,00%		7	45	0,00	0,00	1	15	54
P2	E5	aseo	4,32	3,00	0	0,00%		15	45	0,00	0,00	1	15	54
P2	E6	entrada	46,20	2,00	3	83,33%	3	156	45	115,50	0,74		0	0
P2	E7	ascensor	3,70	-	0	0,00%		13	45	0,00	3,00		0	0
P2	E8	aseo	15,22	3,00	0	0,00%		51	45	0,00	0,00	3	45	162
P2	E9	almacén	4,22	40,00	0	100,00%	0	14	45	4,75	0,33		0	0
P2	E10	taller	152,86	5,00	30	100,00%	30	517	45	1350,00	2,61		0	0
Р3	E1	aula informática	55,35	1,50	22	83,33%	18	187	45	825,00	4,41		0	0
Р3	E2	sala de juntas	22,19	5,00	10	83,33%	8	75	45	375,00	5,00		0	0
Р3	E3	dirección	17,62	10,00	2	100,00%	2	60	45	79,28	1,33		0	0
Р3	E4	entrada	44,67	2,00	3	83,33%	2	151	45	111,66	0,74		0	0
Р3	E5	ascensor	3,70	-	0	0,00%		13	45	0,00	3,00		0	0
Р3	E6	aseo	4,44	3,00	0	0,00%		15	45	0,00	0,00	1	15	54
Р3	E7	aseo	6,05	3,00	0	0,00%		20	45	0,00	0,00	1	15	54
P4	E1	Entrada	19,52	2,00	1	83,33%	1	59	45	48,80	0,82		0	0
P4	E2	ascensor	3,70	-	0	0,00%		11	45	0,00	3,00		0	0
P4	E3	cuadro de maquinas	18,26	0,00	0	0,00%		56	45	0,00	0,00		0	0
P4	E4	cuarto instalaciones	8,58	0,00	0	0,00%		26	45	0,00	0,00		0	0
										6624.27	1.52			540

Desde un punto de vista energético, con los equipos de control de CO₂ y sensores presencia al adaptarse a la ocupación de los espacios, si esta baja la demanda de calefacción disminuirá produciéndose un aumento en la demanda de refrigeración, siendo este aumento muy escaso en comparación con el descenso de la demanda de calefacción, produciéndose por tanto un ahorro en climatización.

Para el perfil de ocupación más bajo, el de los casos 3 y 4, vemos en la **tabla 73** que dista mucho la demanda de calefacción entre uno y otro ya que mientras el sensor de CO₂ se adapta al porcentaje de ocupación los sensores de presencia son todo/nada de manera que solo las horas en que no hay ocupación ninguna deja de producirse la renovación de aire del espacio.

Por tanto desde un punto de vista energético la solución de sondas de CO_2 es la mejor solución pudiendo a conseguir disminuir la demanda de calefacción hasta un 43 % con solo un aumento del 13,6% de la demanda de refrigeración consiguiendo un ahorro en climatización del 30 % aproximadamente para el perfil de ocupación más bajo considerado.

Tabla 73 Demandas de climatización en función de las renovaciones/hora consideradas en los diferentes casos analizados

		SIMULACIÓN CALENER						
		demanda ca	alefacción	demanda refrigeración				
CONTROL	DESCRIPCIÓN	kwh/m²	kwh/año	kwh/m²	kwh/año			
CASO BASE	renovaciones_sinsensorpres	37,3	38700,4	19,8	20543,4			
CASO1	renovaciones_consensor CO ₂	31,7	32890,1	20,5	21269,6			
CASO2	renovaciones_consensor CO ₂ (2)	26,6	27598,7	21,1	21892,2			
CASO3	renovaciones_consensor CO ₂ (3)	21,1	21892,2	22,5	23344,7			
CASO4	renovaciones_CONsensorpres	32,9	34135,2	20,4	21165,9			

4.7.2. Balance económico

La implantación de este sistema de control en base a niveles de CO₂ nos supondrá un desembolso inicial 13369,28€ como se recoge en la **tabla 74** entre los equipos de control necesarios y la mano de obra de los instaladores.

Tabla 74 Presupuesto de instalación de un sistema de control de ventilación en base a niveles de CO₂

EQUIPOS NECESARIOS										
					PRECIO					
DESCRIPCION	MODELO	POTENCIA (W)	PRECIO (€/U)	UNIDADES	TOTAL €					
Sensor de CO2	SCO2-A	5	590,50€	12	7.086 €					
Módulo de control electrónico	BEAS	1,5	152,49€	12	1.829 €					
Compuertas motorizadas proporcionales	REMP	1	458,56 €	4	1.834 €					
Transmisor de presión	TDP-S	4	369,87€	2	739€					
Convertidor de frecuencia	VFTM MONO 0,55	46	347,71€	2	695 €					
	Cuadrilla									
Mano de obra	climatización		29,60€	40	1.184 €					
	_	_		TOTAL	13.369 €					

Para el cuarto caso hemos utilizado el sistema de control mediante detectores de presencia y esto nos supondrá un desembolso inicial de 5241 € como se recoge en la **tabla 75** entre los equipos de control necesarios y la mano de obra de los instaladores.

Tabla 75 Presupuesto de instalación de un sistema de control de ventilación por detectores de presencia

EQUIPOS NECESARIOS										
DESCRIPCION	UNIDADES	PRECIO TOTAL €								
Detector de presencia	CPFL	1,2	143,84 €	12	1.726€					
Boca aspiración bicaudal	BM2D 10/100 D125	6,6	74,62 €	12	895 €					
Transmisor de presión	TDP-S	4	369,87 €	2	740 €					
Convertidor de frecuencia	VFTM MONO 0,55	46	347,71€	2	695 €					
Mano de obra	Cuadrilla climatización		29,60€	40	1.184 €					
				TOTAL	5.241 €					

Si consideramos la evolución del precio de la luz al igual que habíamos considerado para el cálculo del ahorro en los espesores de aislante y teniendo en cuenta que la vida útil de los equipos es de 10 años podemos hacer un balance económico para cada uno de los supuestos de ocupación analizados y para cada uno de los dos sistemas de control de la ventilación.

Tabla 76 Análisis económico de las distintas alternativas analizadas en los sistemas de control de ventilación

		ahorro total climatización	periodo retorno	coste equipos	media ahorro climatización	AHORRO EN LA VIDA UTIL DE EQUIPOS (10
CONTROL	DESCRIPCIÓN	kwh/año	(años)	(euros)	euros/año	AÑOS)
CASO BASE	ren_SINsensorPRES					
CASO1	ren_consensor CO ₂	5084,1	11,49	13.369,28 €	1.163,64 €	-3.434,95 €
CASO2	ren_consensor CO ₂ (2)	9752,9	7,46	13.369,28 €	1.792,12 €	5.687,89 €
CASO3	ren_consensor CO ₂ (3)	14006,9	5,78	13.369,28 €	2.311,03 €	14.000,20€
CASO4	ren_CONsensorPRES	3942,7	7,30	5.240,68 €	717,56 €	2.463,36 €

En la **tabla 76** vemos que aunque el sistema con sensor de CO₂ nos supone un desembolso un 61% mayor que para el sistema con sensor de presencia, si analizamos el rendimiento que obtenemos para la vida útil de los equipos, a partir de los casos 3 y 4 que trabajábamos con el mismo perfil de ocupación, vemos que aparte de recuperar la inversión en un periodo inferior 5,78 por 7,3 años respectivamente, conseguimos un ahorro casi seis veces mayor.

En el primer caso vemos que aunque estamos consiguiendo un ahorro de climatización importante, la inversión que nos suponen los equipos no conseguiremos recuperarlo en la vida útil de estos y no será viable por tanto instalarlos cuando consideremos perfiles de ocupación total del edificio.

Por el contrario, vemos que en el segundo caso con unos porcentajes de ocupación también bastante elevados, por encima del 70% de todos los espacios, vemos como ya conseguimos amortizar nuestros equipos dentro de la vida útil y aparte un ahorro de casi 6000€.

Por tanto siempre es recomendable el control de la ventilación, y siempre que sea posible realizar la inversión inicial, realizarla mediante sensores de CO₂.

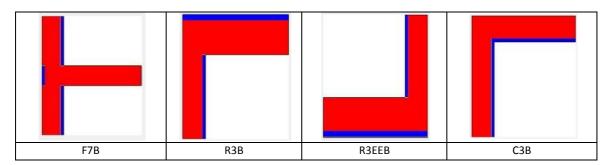
4.8. Modificación del factor solar del vidrio de las ventanas

Vamos a analizar cómo afecta para un mismo vidrio de partida que el de nuestro edificio de partida como afecta la modificación del factor solar de este.

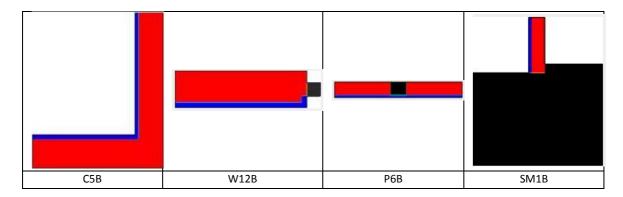
SIMULACIÓN CALENER ahorro total FACTOR SOLAR demanda calefacción demanda refrigeración climatización kwh/m² kwh/año kwh/m² kwh/año kwh/año 0.85 36,6 37974,1 20,7 21477,1 -207,4 0,75 37,3 38700,4 19,8 20543,4 0 0.55 38.9 40360.4 18.3 18987 -103.6 15,3 0,22 41,6 43161,8 15874,4 207,6

Tabla 77 Análisis energético del factor solar del vidrio de las ventanas

En la **tabla 77** vemos que dado que la superficie acristalada de nuestro edificio no es demasiado elevada, solo de 9,5% del edificio la modificación de este parámetro no tiene una relevancia importante en la demanda final de nuestro edificio.

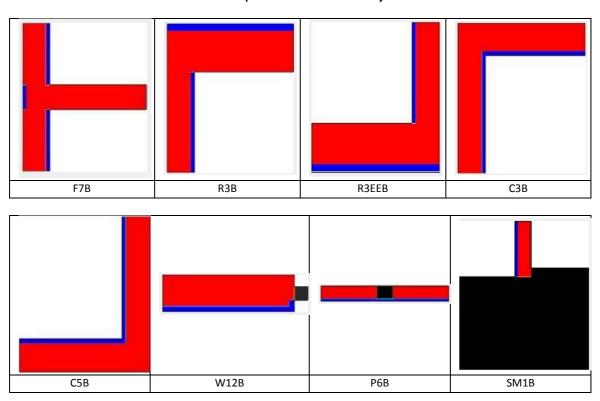

4.9. Propuesta de mejora total del edificio

Hasta ahora hemos analizado cada una de las mejoras del edificio efectuadas en LIDER de manera individual, y ahora vamos a analizar el comportamiento del edificio realizando una combinación de las mejoras energética-económica del edificio.


1ª combinación: inversión inicial baja

- Espesores de aislante muros exteriores: aumentamos los espesores de aislante desde los 2cm hasta los 4cm de las orientaciones Noroeste, noreste y sureste.
- Espesor de aislante en la cubierta: no lo modificamos pues con los 10cm de espesor, la mejora supone un importante desembolso que invertimos en mejorar el espesor de los muros exteriores, donde si reducimos la demanda de climatización.
- Permeabilidad de las ventanas: no lo modificamos pues la modificación de la demanda es ínfima
- Los puentes térmicos los vamos a modificar por estos que se recogen en la tabla 78.

Tabla 78 Puentes térmicos seleccionados para la combinación de mejoras con una inversión inicial baja

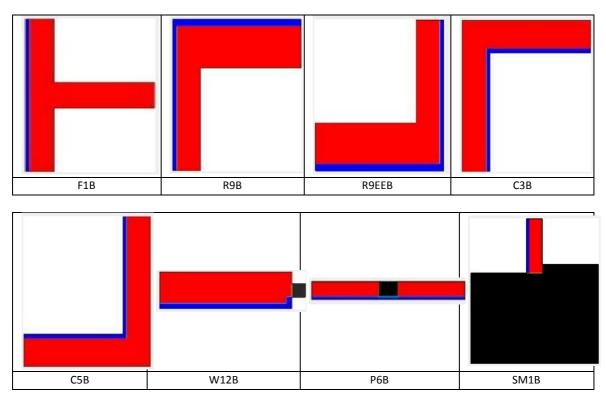


- Los valores de absorción de la fachada exterior no los vamos a modificar
- La ventilación no la vamos a controlar, por lo tanto será continua durante las 12hhoras de apertura del centro.

2ª combinación: inversión inicial media

- Espesores de aislante muros exteriores: aumentamos los espesores de aislante desde los 2cm hasta los 10cm de las orientaciones Noroeste, noreste y sureste.
- Espesor de aislante en la cubierta: no lo modificamos pues con los 10cm de espesor, la mejora supone un importante desembolso que invertimos en mejorar el espesor de los muros exteriores, donde si reducimos la demanda de climatización.
- Permeabilidad de las ventanas: no lo modificamos pues la modificación de la demanda es ínfima.
- Los puentes térmicos los vamos a modificar por estos que se recogen en la tabla 79.

Tabla 79 Puentes térmicos seleccionados para la combinación de mejoras con una inversión inicial media



- Los valores de absorción de la fachada exterior no los vamos a modificar
- La ventilación la vamos a controlar a través de sensores de presencia para el caso de perfiles de ocupación bajo ya que son los más próximos a la realidad.

3ª combinación: inversión inicial alta

- Espesores de aislante muros exteriores: aumentamos los espesores de aislante desde los 2cm hasta los 10cm de todas las orientaciones.
- Espesor de aislante en la cubierta: no lo modificamos pues con los 10cm de espesor, la mejora supone un importante desembolso que invertimos en mejorar el espesor de los muros exteriores, donde si reducimos la demanda de climatización.
- Permeabilidad de las ventanas: no lo modificamos pues la modificación de la demanda es ínfima.
- Los puentes térmicos los vamos a modificar por estos que se recogen en la tabla 80.

Tabla 80 Puentes térmicos seleccionados para la combinación de mejoras con una inversión inicial baja

- Los valores de absorción de la fachada exterior no los vamos a modificar
- La ventilación la vamos a controlar a través de sensores de de CO2, suponiendo un perfil de ocupación alto, medio y bajo.

Los que nos ofrece el programa de simulación LIDER se recoge en la **tabla 81**, en los que las dos últimas combinaciones para una inversión alta con un perfil de ocupación medio y bajo no nos cumple en LIDER debido a que superamos la demanda de refrigeración con respecto a la del edificio de referencia.

Tabla 81 Datos de la simulación en LIDER ante las distintas combinaciones de mejoras

	SIMULACIÓN	I CALENER		
	demanda ca	lefacción	demanda re	frigeración
INVERSIÓN	kwh/m²	kwh/año	kwh/m²	kwh/año
CASO BASE	37,3	38700,4	19,8	20543,4
BAJA	34	35380,2	20,2	20958,4
MEDIA (OCU BAJA)	26,8	27806,2	21,1	21892,2
ALTA (OCU ALTA)	24,3	25212,3	21,3	22099,7
ALTA (OCU MEDIA)	19,4	20128,3	22,4	23241
ALTA (OCU BAJA)	13,7	12214,3	24,3	25212,3

Dado que hemos considerado que el perfil de ocupación bajo es el que más se adapta a la realidad de nuestro edificio y con la combinación de mejoras anteriores no cumplimos la limitación de refrigeración por muy poco, vamos a disminuir el factor solar de los vidrios de nuestras ventanas de manera que la cantidad de radiación que entrara en nuestro edificio será menor y por tanto bajaremos la demanda de refrigeración, para conseguir adaptarlas al cumplimiento de la HE-1 como recogemos en la **tabla 82.**

Tabla 82 Análisis energéticos ante las distintas combinaciones de mejoras

					1	
		SIMULA	CIÓN CALENER		ahorro total	
INVERSIÓN	demanda ca	lefacción	demanda re	demanda refrigeración		
	kwh/m²	kwh/año	kwh/m²	kwh/año	kwh/año	
CASO BASE	37,3	38700,4	19,8	20543,4	0	
BAJA	34	35380,2	20,2	20958,4	2905,2	
MEDIA (OCU BAJA)	26,8	27806,2	21,1	21892,2	9545,4	
ALTA (OCU ALTA)	24,3	25212,3	21,3	22099,7	11931,8	
ALTA (OCU MEDIA)	19,4	20128,3	22,4	23241	15874,5	
ALTA (OCU BAJA)	13,7	12214,3	24,3	25212,3	21817,2	
ALTA fs 0,55(OCU BAJA)	14,8	15355,6	21,7	22514,7	21373,5	

Con este cambio del factor solar del vidrio hemos conseguido cumplir la HE-1 con el descenso de la refrigeración, aunque para ello hemos aumentado la demanda global de nuestro edificio un 2,04% respecto al caso con el factor solar inicial, pero esta combinación de mejoras nos ofrece un ahorro de 21373,5 kwh año.

Si realizamos el balance económico de esta combinación de mejoras observamos que cumpliendo la HE-1 y para el perfil de ocupación bajo, que hemos considerado como el más próximo a la realidad de nuestro edificio, vemos que el periodo de retorno de la inversión es prácticamente el mismo pero a partir de esta amortización estaremos ahorrando en energía más del doble cada año.

Tabla 83 Análisis económico ante la distinta combinación de mejoras

	BALANCE ECONÓMICO											
INVERSIÓN	ahorro total climatización kwh/año	periodo retorno (años)	inversión total (euros)	dif.inversión aislante paredes (euros)	dif. inversión ventilación (euros)	dif. inversión mejora p. termicos (euros)	media ahorro climatización euros/año					
CASO BASE	0		0	0	0	0						
BAJA	2905,2	2,58	969,16 €	869,29 €	0,00€	99,87 €	375,26 €					
MEDIA (OCU BAJA)	9545,4	5,65	8.817,71 €	3.477,16 €	5.240,68 €	99,87 €	1.560,56 €					
ALTA (OCU ALTA)	11931,8	8,19	18.767,08 €	4.840,21 €	13.369,28€	557,58 €	2.290,52 €					
ALTA (OCU MEDIA)	15874,5	6,73	18.767,08€	4.840,21€	13.369,28€	557,58 €	2.787,81 €					
ALTA (OCU BAJA)	21817,2	5,37	18.767,08€	4.840,21 €	13.369,28€	557,58 €	3.497,35 €					
ALTA fs 0,55(OCU BAJA)	21373,5	5,45	18.767,08€	4.840,21€	13.369,28€	557,58 €	3.445,54 €					

Por otra parte esta solución considerada como la mejor de nuestro edificio, nos muestra como en prácticamente todas las inversiones realizadas en la búsqueda de la eficiencia energética al realizarlas por separado nos ofrece periodos de amortización mayores que si la realizamos de forma continua por lo que deberemos llevarlas a cabo en conjunto.

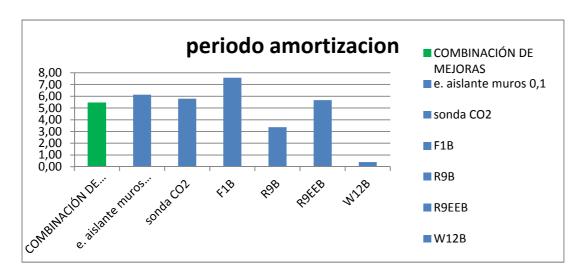


Ilustración 43 Periodos de amortización para las mejoras analizadas en LIDER de manera individual y colectiva

5. Descripción de los sistemas de climatización y ACS introducidos en CALENER GT.

En primer lugar trabajaremos con el edificio que teníamos de partida, en el cuál no hemos introducido las mejoras en LIDER, para después ir comparando cada uno de los sistemas de climatización propuestos con el del edificio que hemos considerado como la mejor solución propuesta en el análisis realizado en LIDER.

5.1. Importación del edificio de LIDER del edificio BASE y MEJORADO

Para la introducción de dichos sistemas utilizamos el programa de simulación CALENER GT partiendo del caso base que teníamos para las simulaciones en LIDER, así pues lo exportaremos y repasaremos los datos que no exporta de manera correcta.

5.1.1. Datos generales

Lo primero que definiremos serán los Datos generales en la que además de corroborar el tipo de edificio que vamos a certificar, en nuestro caso destinado a la enseñanza, introduciremos en cuanto a energías renovables la contribución solar mínima permitida según el CTE DB HE-4 que para este primer caso usaremos apoyo eléctrico y será del 70% como indicamos en la **ilustración 44**.

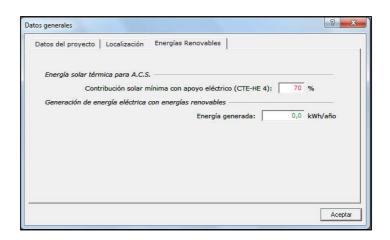


Ilustración 44 Contribución solar mínima según CTE-HE 4

5.1.2. Envolvente exterior

En cuanto a la composición de cerramientos, repasamos la localización de los mismos pues por defecto al exportar la envolvente del programa LIDER supone que están todos al exterior.

Todas las ventanas exportadas de la geometría, están ahora dadas por el alto y ancho del vidrio y cuanto es el ancho del marco. Toda esta transformación desde los datos introducidos en LIDER dados por la superficie total del hueco y el porcentaje de hueco ocupado por el marco lo realiza CALENER GT de manera automática.

Cuando en LIDER definimos las puertas la exportación al programa CALENER GT son considerados elementos tipo puerta cuya composición es la del marco cargado en LIDER y las dimensiones de la puerta son las del vidrio realizando la misma transformación que en el caso de las ventanas. Por tanto ahora repasamos las medidas de las puertas para que coincidan con las definidas en LIDER (ilustración 45).

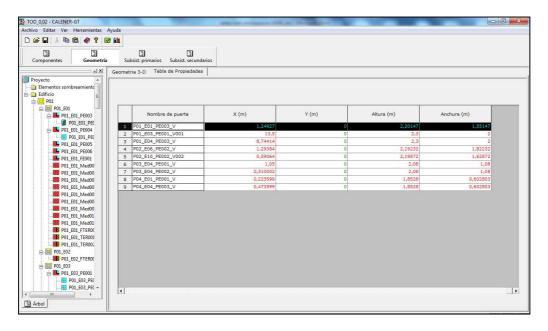


Ilustración 45 Definición de las medidas de puertas y ventanas en la pestaña "Geometría"

5.1.3. Horarios

Los horarios en CALENER GT se definen desde el horario diario, pasando por el semanal hasta el anual sea cual sea el tipo de horario que queramos introducir.

En nuestra instalación los definimos sabiendo que el horario de apertura es de 12 horas en horario de 7-15h y de 17-21h de lunes a viernes, con un periodo vacacional como se recoge en la **ilustración 46** y que en función de la variable que se quiera definir existen diversos tipos:

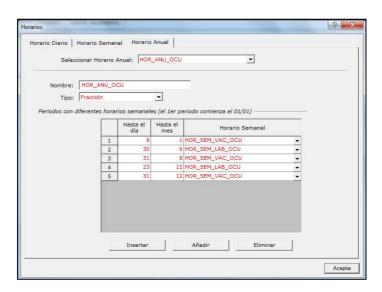


Ilustración 46 Periodos vacacionales del año

Horario de ocupación \rightarrow Tipo Fracción \rightarrow para este primer caso, será 1 en el horario de apertura del centro y 0 el resto de horas

Horario de infiltraciones \rightarrow Tipo Fracción \rightarrow al contrario que en el caso anterior, será 0 en el horario de apertura del centro y 1 el resto de horas

Horario de ocupación "mejorado" \rightarrow Tipo Fracción \rightarrow En el edificio mejorado, hemos considerado el perfil de ocupación bajo y por tanto los perfiles de ocupación serán los que utilizamos para cada espacio en LIDER anteriormente recogidos en el ANEXO VII.

Horario de infiltraciones "mejorado" → Tipo Fracción → En el edificio mejorado seguirá siendo 0 en el horario de apertura del centro y 1 el resto de horas

Horario de funcionamiento de los equipos \rightarrow Tipo Todo/Nada \rightarrow será 1 en el horario de apertura del centro y 0 el resto de horas para el caso de los fancoil. Para el caso de la bomba de calor, la cual puede trabajar en modo de calor o frio, le definiremos un horario la que trabajará en frio desde el 1 de Junio hasta el 30 de Septiembre y el resto de año se comportara como máquina calorífica, respetando en ambos casos las horas de apertura y los periodos vacacionales.

5.1.4. Tipos de espacios y renovaciones

Debemos comprobar cada uno de los espacios ya que el programa los importa todos como acondicionados, pero en realidad esto no es así como recoge la **tabla 84**.

Tabla 84 Tipos de espacios que tenemos en nuestro edificio

planta	espacio	descripción	tipo espacio		
P1	F1	Entrada	acondicionado		
P1	E2				
		ascensor	no acondicionado		
P1	E3	aulas	acondicionado		
P1	E4	taller	acondicionado		
P2	E2	aula	acondicionado		
P2	E3	aseo	no acondicionado		
P2	E4	aseo	no acondicionado		
P2	E5	aseo	no acondicionado		
P2	E6	entrada	acondicionado		
P2	E7	ascensor	no acondicionado		
P2	E8	aseo	no acondicionado		
P2	E9	almacén	acondicionado		
P2	E10	taller	acondicionado		
Р3	E1	aula informática	acondicionado		
Р3	E2	sala de juntas	acondicionado		
Р3	E3	dirección	acondicionado		
Р3	E4	entrada	acondicionado		
Р3	E5	ascensor	no acondicionado		
Р3	E6	aseo	no acondicionado		
Р3	E7	aseo	no acondicionado		
P4	E1	Entrada	acondicionado		
P4	E2	ascensor	no acondicionado		
P4	E3	cuadro de maquinas	no acondicionado		
P4	E4	cuarto instalaciones	no acondicionado		

La carga interna ya la habíamos calculado para el programa LIDER y es alta.

Las renovaciones/hora las importa de LIDER a excepción de los espacios no habitables, caso del ascensor, que coge por defecto el valor de 1 mientras que en LIDER era de 3 por lo que lo modificamos para partir de los mismos datos.

5.1.5. Iluminación

Dado que para LIDER ya habíamos colocado las luminarias con una relación eficiencia/precio muy elevada, vamos ahora a simular el aprovechamiento de la luz natural a través de fotosensores (puntos de referencia en el espacio para controlar el nivel de iluminación) pudiendo simular hasta dos fotosensores por espacio.

Los ubicaremos dentro del espacio a través de coordenadas (x,y,z respecto al sistema de coordenadas del espacio) detectando los niveles de iluminación existentes en el espacio, de manera que a medida que aumente la luz natural disminuirá la potencia eléctrica y por tanto la energía consumida.

Debemos prestar atención a donde colocamos el fotosensor, de manera que si lo situamos cerca de la ventana, los niveles de luz natural detectados serán relativamente más altos a los del resto del espacio, lo cual puede afectar al nivel de iluminación de parte del espacio alejado de las ventanas. De igual modo si el fotosensor se sitúa al fondo de la zona, lejos de las ventanas el nivel de iluminación detectado por el fotosensor será muy bajo y los niveles de iluminación serán más altos, con el consiguiente exceso de consumo eléctrico. Es por ello que se aconseja un punto de referencia situado aproximadamente a dos tercios de las ventanas.

Este campo lo utilizaremos para dar cumplimiento al Documento Básico de Ahorro de Energía en su sección 3 Eficiencia Energética de las Instalaciones de Iluminación el cual nos dice que "se instalarán sistemas de aprovechamiento de la luz natural que regulen el nivel de iluminación en función del aporte de luz natural en la primera línea paralela de luminarias situadas a una distancia inferior a 3 metros de la ventana".

Este control de la iluminación la vamos a llevar a cabo en los espacios que la iluminación es más importante y tenemos una iluminación natural importante, que recogemos en la **tabla 85**.

Para la instalación de estos equipos necesitamos conocer las coordenadas de instalación de los fotosensores. Además al realizar un control progresivo o también llamado continuo, donde la iluminación eléctrica y la potencia eléctrica consumida disminuyen linealmente a medida que aumenta el nivel de iluminación natural, las fracciones de potencia eléctrica y de iluminación van disminuyendo hasta alcanzar los correspondientes valores mínimos. Por debajo de este punto la potencia y la iluminación permanecen constantes a medida que aumenta la iluminación natural como recoge la **ilustración 47**.

La fracción de potencia eléctrica consumida representa el cociente de la potencia consumida y la potencia máxima que se podría consumir.

La fracción de iluminación representa a su vez, la iluminación obtenida frente a la máxima que se podría obtener.

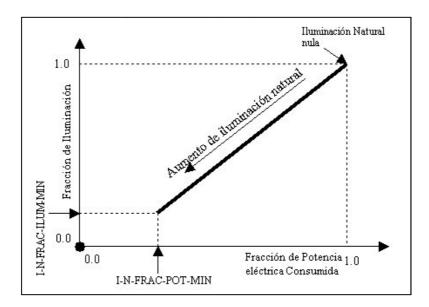


Ilustración 47 Control de iluminación artificial del tipo Progresivo

Tabla 85 Espacios donde aprovechamos la iluminación natural mediante la instalación de fotosensores

									FRACCION
							LUZ	FRACCION	ILUMINACION
			COORDEN	IADA	COORDE	NADA	NATURAL	POTENCIA	ARTIFICIAL
			FOTOSEN	SOR 1	FOTOSENSOR 2		MAX	MINIMA	MINIMA
planta	espacio	FOTOSENSORES	Х	Υ	х	Υ	LUX		_
P1	E3	2	5	10	10	12	400	0,3	0,2
P2	E2	2	2	4	1	2	400	0,3	0,2
P2	E10	2	4	8	12	4	400	0,3	0,2
Р3	E1	2	2,5	3	2,5	9	400	0,3	0,2
Р3	E2	1	2,5	2	-	-	400	0,3	0,2
Р3	E3	1	2	2	-	-	400	0,3	0,2

Para poder realizar el estudio económico necesitamos conocer también los precios de estos equipos que un suministrador nos ha proporcionado y que detallamos en la **tabla 86**.

Tabla 86 Precios suministrados por un suministrador de fotosensores

FOTOSENSORES	PRECIO/UNIDAD	UNIDADES	PRECIO TOTAL
MODELO	€		€
MTN550499	125,78	10	1257,8

Ahora comprobamos el ahorro que nos supone la implantación de estos equipos (**tabla 87**) y aunque la vida útil de los equipos se podría considerar baja (10 años), dado el ahorro anual que producen, recuperaríamos la inversión en un periodo muy corto (2,2 años) y por tanto serían muy rentables.

Tabla 87 Análisis energético-económico de la implantación de fotosensores en el edificio

C	CASO					AHORRO EN LA
SIN SENSORES DE LUZ	CON SENSORES DE LUZ	ahorro total	periodo	coste	media ahorro	VIDA UTIL DE
DEMANDA Kw/h	DEMANDA Kw/h	Iluminación kwh/año	retorno (años)	equipos (euros)	climatización euros/año	EQUIPOS (10 AÑOS)
17514,3	12904,1	4610,2	2,19	1257,8	574,99	7750,50

Dado el importante ahorro que supone la instalación de estos elementos en nuestro edificio, para cada uno de los sistemas de climatización y ventilación que vamos a estudiar los vamos a considerar como medida implementada.

Además, al combinarse con un sensor de presencia que apaga o enciende la iluminación al detectar o no la presencia de personas se podrían llega a conseguir ahorros aún más importantes, aunque el programa CALENER GT esto no lo permite simular.

5.2. Obtención de las cargas demandadas por nuestro edificio

Para la selección de los equipos de climatización necesitamos conocer la demanda de cargas que tiene cada uno de los espacios de nuestro edificio, que obtendremos del motor de cálculo de CALENER GT.

CALENER GT emplea como motor de cálculo el programa DOE2.2 realizado por el departamento de Energía y Laboratorio de Berkeley de EEUU.

- El DOE2.2 es uno de los programas de análisis energético de mayor prestigio mundial.
 Siendo un programa validado, cumple por tanto uno de los requisitos de fiabilidad autoimpuesto por CALENER GT.
- El módulo de cálculo tiene la posibilidad de ser ajustado en su potencia de cálculo; para ello hay que actuar sobre el programa fuente imponiendo valores por defecto a determinadas variables; al ser ajustable la potencia de cálculo es graduable asimismo la sencillez de manejo.
- El programa no nos muestra directamente lo que recoge la ilustración 48 donde vemos las cargas pico de cada espacio de nuestro edificio y en el momento que se registran, el sumatorio de todas ellas y la carga simultánea de nuestro edificio. Está información en principio esta oculta para el usuario, pero se puede acceder a ella gracias a los ficheros generados por DOE2.2

REPORT- LS-A Space Peal	C Loads Summary				WEATHER FILE- valencia.met						
SPACE NAME	MULTI SPACE		COOLING LOAD (KBTU/HR)	TI	ME OF PEAK	DRY- BULB	WET- BULB	HEATING LOAD (KBTU/HR)	TIME OF PEAK	DRY- BULB	WET- BULB
PO1_E01 PO1_E02 PO1_E03 PO1_E03 PO1_E03 PO1_E04 PO1_E04 PO1_E05 PO1_E05 PO1_E05 PO1_E05 PO1_E05 PO1_E06 PO1_E07 PO1_E08 PO1_E09 PO1_E10 PO1_E09 PO1_E10 PO1_E03 PO1_E05 PO1_E05 PO1_E05 PO1_E05 PO1_E09 PO1_E01	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	7. 279 0. 388 24. 175 14. 278 8. 200 1. 281 0. 381 0. 681 5. 782 2. 012 0. 497 28. 468 19. 589 8. 195 4. 308 5. 762 0. 881 3. 459 0. 530 2. 760 1. 588	SEP 4 SEP 18 SEP 4 AUG 13 AUG 13 SEP 4 SEP 11 SEP 11 SEP 11 SEP 11 JUN 29 SEP 4	9 PM 4 PM 5 PM 5 PM 8 PM 9 PM 9 PM 4 PM 4 PM 5 PM 4 PM 5 PM 4 PM 9 PM 4 PM 5 PM 7 PM 8 PM 8 PM 8 PM 8 PM 8 PM 8 PM 8 PM 8	80.F 86.F 93.F 93.F 78.F 78.F 86.F 76.F 93.F 86.F 76.F 86.F 86.F 86.F 86.F 86.F 86.F 86.F 8	69.F 70.F 70.F 73.F 73.F 69.F 68.F 69.F 70.F 71.F 73.F 73.F 70.F 66.F 70.F 70.F 70.F 70.F	-13. 933 -0. 837 -53. 043 -34. 766 -8. 660 -0. 0603 -0. 283 -0. 274 -3. 377 -0. 638 -0. 531 -0. 111 -28. 169 -19. 313 -8. 440 -1. 981 -4. 063 -0. 652 -0. 252 -0. 256 -0. 256 -0. 256 -0. 256 -0. 256 -0. 256 -0. 256 -0. 256 -0. 256 -0. 258 -0. 25	JAN 22 7 AM FEB 4 8 AM FEB 4 8 AM FEB 4 8 AM JAN 21 12 PM JAN 21 12 PM JAN 22 7 AM FEB 4 8 AM JAN 22 7 7 AM FEB 4 8 AM JAN 22 7 AM FEB 4 8 AM FEB 4 8 AM JAN 22 7 AM JAN 22 7 AM JAN 21 2 9 AM	39.F 37.F 37.F 37.F 52.F 54.F 54.F 39.F 37.F 37.F 37.F 37.F 37.F 37.F 37.F 37	39.FF 36.FF 36.FF 41.FF 45.FF 36.FF 36.FF 36.FF 39.FF 39.FF 39.FF 39.FF 39.FF 39.FF 39.FF
SUM			142.671					-184.960			
BUILDING PEAK			118.758	SEP 4	4 PM	86.F	71 F	-177,185	FEB 4 8 AM	37 E	36. Fr

Ilustración 48 Datos de cargas internas de refrigeración y calefacción demandas por el edificio

Las cargas a vencer que nos proporciona DOE2.2, no incluye las correspondientes a la ventilación que es vencida por el sistema de ventilación el cuál será en todos los casos independiente a la climatización para poder asegurarnos un control del mismo.

Para calcular las potencias de las baterías de los equipos de ventilación tanto de calefacción en invierno como de refrigeración en verano utilizaremos la norma UNE 100014 la cual corrige la temperatura externa en función de la hora y mes de año. Aunque nosotros nos encontramos en la localidad murciana de Molina de Segura (zona B3) el motor de cálculo DOE2.2 utiliza los datos relativos a Valencia ya que está es la ciudad que tiene como referencia para la zona climática B3 y por ello nosotros obtendremos estas temperaturas externas para esta misma ciudad.

Para obtener la temperatura seca exterior en invierno vamos a utilizar un nivel percentil anual del 99%, es decir solo estamos por debajo un 1% de las horas del año, y está temperatura la obtenemos de la norma 100014 y será considerada la misma para todos los días y meses de invierno, no teniendo que corregir la temperatura húmeda del aire.

En el caso de la temperatura exterior en verano son más las variables a considerar:

- La oscilación media anual (OMA) definida como diferencia entre las temperaturas secas de verano, al nivel percentil 1% y de invierno al nivel percentil del 99%
- La oscilación media diaria de temperatura seca (OMD) indicado por la norma UNE 100001 para cada localidad

La fórmula para aplicar las correcciones de las tablas es la siguiente:

 $T^{\underline{a}}$ corregida = $T^{\underline{a}}$ proyecto – corrección por hora – corrección por mes

Esta corrección de la temperatura deberá hacerse tanto para la temperatura seca (tabla 88) como húmeda exterior (tabla 89).

La temperatura del proyecto utilizaremos un nivel percentil de temperatura del 1% y aplicando las correcciones de la norma UNE 100014 obtenemos para las horas centrales del mes de

Agosto la máxima temperatura tanto húmeda como seca que será la que utilizaremos para el diseño de nuestras baterías.

Tabla 88 Corrección temperatura seca aire exterior según UNE 100014

					CORRECION Tª	CORRECION Tª	Tª
MES	HORA	OMDR (ºC)	OMA (ºC)	TS_1(ºC)	POR HORA	POR MES	CORREGIDA
AGOSTO	15	12,3	28,5	31,3	0	0	31,3

Tabla 89 Corrección temperatura húmeda aire exterior según UNE 100014

					CORRECION Tª	CORRECION Tª	Tª
MES	HORA	OMDR (ºC)	OMA (ºC)	TH_1(ºC)	POR HORA	POR MES	CORREGIDA
AGOSTO	14	12,3	28,5	25,5	0	0	25,5

Una vez tenemos las temperaturas, necesitamos conocer los caudales de aire necesarios, que serán los mismos que obtuvimos para el cálculo de las renovaciones/hora utilizadas en LIDER.

En el primer caso, aquel edificio del que partíamos sin introducir mejoras en la envolvente de nuestro edificio, los resultados que obtuvimos lo vamos a repartir en dos equipos, uno para la planta baja capaz de impulsar 3715,73 m³/h en punta y otro que servirá para la planta primera segunda y tercera que impulsara 3655,19 m³/h en punta.

Tomando entonces 25°C y 20°C las temperaturas de refrigeración y calefacción interiores respectivamente, una humedad relativa interior necesaria para alcanzar las condiciones de confort del 50% obtenemos las potencias totales necesarias en nuestros equipos.

La potencia de calefacción dado que solo es sensible la podemos calcular con la siguiente ecuación, de manera que obtendremos los datos de la **tabla 90.**

$$Q = m \cdot Cp_{aire} \cdot (T_{int} - T_{ext})$$

Tabla 90 Cálculo de la potencia de calefacción del edificio sin mejoras

			CAUDAL AIRE				
		TªINT	EXTERIOR	densidad	CAUDAL AIRE	Сар	
DIA	Tª EXTºC)	(ºC)	(m³/h)	(kg/m³)	EXTERIOR (kg/s)	(J/kgK)	Qcalefacc(Kw)
01/12/2011	5,5	20	3715,73	1,26725	1,31	1012	19,19

Para el cálculo de la potencia de refrigeración que es la suma de la potencia utilizaremos la siguiente ecuación de manera que obtendremos los datos de la **tabla 91.**

$$Q = m \cdot (h_{int} - h_{ext})$$

Tabla 91 Cálculo de la potencia de refrigeración del edificio sin mejoras

Tª ext seca	Tª ext húmeda					CAUDAL AIRE		CAUDAL AIRE	
CORREGIDA	CORREGIDA	h ext	TªINT	humedad	h int	EXTERIOR	densidad	EXTERIOR	
(ºC)	(ºC)	(Kj/Kg)	(ºC)	relativa int	(Kj/Kg)	(m³/h)	(kg/m³)	(kg/s)	Qref (kW)
31,3	25,5	78,5	25	50%	50,1	3715,73	1,15919	1,196	33,98

En el edificio que al final concluimos como mejor solución encontrada en LIDER para disminuir la demanda de nuestro edificio, tenemos que el perfil de ocupación es menor, las renovaciones/hora son menores y por tanto el equipo de la planta baja deberá ser capaz de impulsar 2346,29 m³/h en punta y otro que servirá para la planta primera, segunda y tercera que tendrá que impulsar 2314,07 m³/h en punta.

A partir del caudal necesario de ventilación y tomando al igual que en el caso base 25°C y 20°C las temperaturas de refrigeración y calefacción interiores respectivamente, una humedad relativa interior necesaria para alcanzar las condiciones de confort del 50% y trabajando con las mismas ecuaciones obtenemos las potencias totales necesarias en nuestros equipos. Estas potencias necesarias vienen recogidas en las **tablas 92 y 93**.

Tabla 92 Cálculo de la potencia de calefacción del edificio con mejoras

			CAUDAL AIRE				
		TªINT	EXTERIOR	densidad	CAUDAL AIRE	Сар	
DIA	Tª EXTºC)	(ºC)	(m³/h)	(kg/m³)	EXTERIOR (kg/s)	(J/kgK)	Qcalefacc(kW)
01/12/2011	5,5	20	2346,29	1,26725	0,82593	1012	12,12

Tabla 93 Cálculo de la potencia de refrigeración del edificio con mejoras

								CAUDAL	
Tª ext seca	Tª ext húmeda					CAUDAL AIRE		AIRE	
CORREGIDA	CORREGIDA	h ext	TªINT	humedad	h int	EXTERIOR	densidad	EXTERIOR	
(ºC)	(ºC)	(Kj/Kg)	(ºC)	relativa int	(Kj/Kg)	(m³/h)	(kg/m³)	(kg/s)	Qref (kW)
31,3	25,5	78,5	25	50%	50,1	2346,29	1,164	0,75863	21,55

5.3. Análisis de los distintos sistemas de climatización y ventilación

En este apartado se van a comparar varios casos que representan distintas soluciones técnicas para la climatización del edificio. En concreto se van a modelar 6 soluciones diferentes y para cada una de ellas se van a comparar los resultados obtenidos para el edificio base y para el edificio optimizado según las conclusiones obtenidas en el capítulo 4.9.

Las 6 soluciones técnicas que se van a modelar son las siguientes para conseguir satisfacer las demandas de climatización serán:

- Frio por conductos y radiadores eléctricos
- Frio por conductos y radiadores de agua caliente mediante caldera de condensación
- Frio por conductos y suelo radiante mediante caldera de condensación
- Frio por conductos y suelo radiante mediante bomba de calor
- Fancoil
- Equipos multisplit

Para satisfacer las necesidades de ventilación se conseguirá mediante la instalación de dos UTA con recuperador de calor estático.

La descripción más detallada de todos los equipos necesarios en la implantación de estos 6 casos de estudio que se van a analizar a continuación se hace en el ANEXO VIII.

5.3.1.1. CASO 1: Climatización por FANCOILS con ventilación independiente en el edificio BASE

Una vez repasada la envolvente de nuestro edificio y la iluminación, vamos a introducir los sistemas de climatización y ventilación, que en este primer caso estará dividido en los siguientes equipos como muestra la **ilustración 49**.

- 2 UTA para la ventilación
- Circuito de dos tubos con bomba de calor y bomba hidráulica para el circuito primario.
- Circuito de ACS con su correspondiente aportación solar
- Fancoil necesarios en cada espacio acondicionado para climatizar dichas zonas

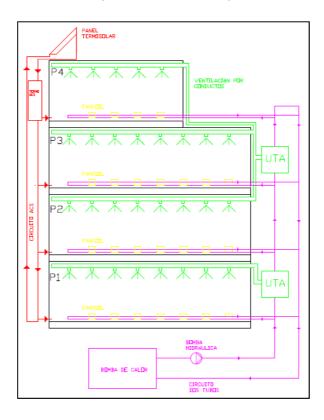


Ilustración 49 Esquema CASO 1: Climatización por Fancoils con ventilación independiente

Ventilación

Nuestro sistema de ventilación es independiente del de climatización para poder asegurarnos su control, donde el caudal de ventilación y la potencia de las baterías necesarias ya las hemos obtenido en el apartado 5.2.

Para dar este nivel de ventilación vamos a seleccionar dos UTA cuyo caudal de impulsión es de 4000 m³/h y cuyas características principales se recogen en la **tabla 94.**

Tabla 94 Climatizadora aire primario seleccionada para el CASO 1 sin mejoras del edificio

	EQUIPO INSTALADO	UTA AIRE PRIMARIO							
PRIMARIO	MODELO	PERDIDA DE CARGA AIRE (PA)	CAUDAL DE AGUA (I/h)	PERDIDA DE PRESION (MCA)	CAUDAL AIRE DE DISEÑO (m³/h)	CAUDAL AIRE MAQUINA (m³/h)	POT. VENT. KW	POT. CAL. KW	POT. REF TOTAL KW
AIRE F	CL07063 6+3R	237	3239	0,00897	3715,73	4000	3	28,36	54,54
	HUMECTADOR	35							
TIZADORA	RECUPERADOR ESTATICO IMP	207							
127	FILTRO 1ª ETAPA IMP G4	150							

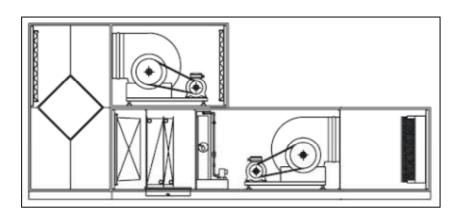


Ilustración 50 Esquema de la climatizadora de aire primario utilizada

Ventiloconvectores (Fancoil)

FILTRO 2ª ETAPA IMP F7

FILTRO 3º ETAPA IMP H13
TOTAL PERDIDA CARGA IMP

VENTILADOR IMP CL07813

250500

1272

Los encargados de cubrir la demanda de cargas de climatización de los distintos espacios serán los Fancoil, los cuáles en función de la demanda de cada espacio serán de distinta potencia. Por las características de nuestro edificio, en este caso, elegiremos entre los modelos de la **tabla 95** los cuales trabajan con un salto térmico de 5°C.

Tabla 95 Fancoil seleccionados para el CASO 1 sin mejoras del edificio

EQUIPO INSTALADO	FANCOIL						
MODELOS	POT. CALORIFICA (KW)	POT. REF TOTAL (KW)	POT. VENT (KW)	POT. REF. SENSIBLE (KW)	CUADAL AIRE DISEÑO (I/s)	CUADAL AGUA DISEÑO (I/h)	CAIDA DE PRESION (Kpa)
42N 25	2,84	2,18	0,032	1,82	131	375	14,3
42N 33	3,93	3,14	0,044	2,52	158	540	13,2
42N 16	1,88	1,43	0,032	1,11	90	246	21,7

Ilustración 51 Equipo Fancoil utilizado en el edificio

El desglose de las cargas solicitadas por los espacios y los equipos instalados para vencerlas vienen recogidas en la **tabla 96**.

Tabla 96 Cargas de climatización demandadas por cada uno de los espacios y Fancoil utilizado para vencerlas para el CASO 1 sin mejoras del edificio

nlanta	ospasio	CARGA FRIO	CARGA CALOR	nº	EQUIPO	POT. REF.	POT. REF	POT. CALORIFICA	CUADAL AIRE
planta	espacio	PICO (KW)	PICO (KW)	EQUIPOS	INSTALADO	SENSIBLE (KW)	INSTALADA (KW)	INSTALADA (KW)	DISEÑO (m³/s)
P1	E1	2,17	4,07	2	42N 25	3,64	4,36	5,68	943,2
P1	E3	7,15	15,52	6	42N 25	10,92	13,08	17,04	2829,6
P1	E4	4,21	10,19	4	42N 25	7,28	8,72	11,36	1886,4
P2	E2	2,57	2,53	1	42N 33	2,52	3,14	3,93	568,8
P2	E6	1,70	0,99	1	42N 25	1,82	2,18	2,84	471,6
P2	E9	0,15	0,03	1	42N 25	1,82	2,18	2,84	471,6
P2	E10	8,41	8,23	4	42N 25	7,28	8,72	11,36	1886,4
Р3	E1	5,79	5,64	2	42N 25	3,64	4,36	5,68	943,2
Р3	E2	2,42	2,47	1	42N 33	2,52	3,14	3,93	568,8
Р3	E3	1,27	0,58	1	42N 16	1,11	1,43	1,88	324
Р3	E4	1,70	1,19	2	42N 16	2,22	2,86	3,76	648
P4	E1	1,03	0,63	1	42N 16	1,11	1,43	1,88	324

Bomba de Calor

La bomba de calor seleccionada será la fuente de calor y de frio tanto de la UTA como del circuito hidráulico de dos tubos que suministrará a los fancoil y por tanto deberá aportar las cargas de refrigeración, calefacción y ventilación simultáneamente. Los datos que quedan recogidos en la **tabla 97** han sido calculados como:

$$Q_{calefTotal} = Q_{simulcalef} + 2 \cdot Q_{calfUTA}$$

$$Q_{refTotal} = Q_{simulref} + 2 \cdot Q_{refUTA}$$

Tabla 97 Suma de cargas y selección de la Bomba de calor para el CASO 1 sin mejoras del edificio

		POTENCIA	POTENCIA	CAPACIDAD	CAPACIDAD					
BOMBA [DE	CALORIFICA	FRIGORIFICA	CALORIFICA	FRIGORIFICA	CAUDAL	PRESIÓN			
CALOR		DEMANDADA	DEMANDADA	EQUIPO	EQUIPO	DE AGUA	ESTATICA	СОР	EER	SALTO Tª
MODELO		KW	KW	KW	KW	L/H	MCA			
30RQSY120		90,19	103,09	116	113	22320	6,48	3,23	2,94	5

La bomba de calor está seleccionada para una capacidad frigorífica la cual la temperatura de salida del agua es de 7ºC y la temperatura de entrada del aire al condensador es de 35ºC

La bomba de calor está seleccionada para una capacidad calorífica la cual la temperatura de salida del agua es de 45°C y la temperatura de entrada del aire al condensador es de 7°C

Ilustración 52 Bomba de calor utilizada en el edificio

Bomba hidráulica

La bomba por tanto del circuito hidráulico deberá ser capaz de trasegar los 22320 I/h de la bomba de calor, los 6478 I/h de las dos UTA y los 9564 I/h de los fancoil instalados, y a su vez capaz de vencer la perdida de presión de 80kpa en el evaporador de la bomba de calor y los 399,2 kpa de todos los fancoil. Además de estas pérdidas de presión tendrá que vencer las propias del circuito en sí (codos, válvulas...) que según el proyecto del edificio son de 96,04 kpa.

Tabla 98 Características de la bomba hidráulica seleccionada

ВОМВА	CAUDAL	ALTURA		ALTURA PT	0.
HIDRÁULICA	NECESARIO	NECESARIA	CAUDAL PTO. FUNC	FUNC	
MODELO	L/H	MCA	L/H	MCA	
EBARA ELINE 50-					
250-15B	38362	56,88	40000	60	

Ilustración 53 Modelo de bomba seleccionado

ACS

Al producir el agua caliente sanitaria por efecto Joule la contribución solar mínima para la zona B3 donde nos encontramos es del 70%, lo que conseguimos con un panel solar con una Área total de 1,87 m². El consumo de ACS en los centros de docencia es de 0,125 l/h según el CTE-HE-4.

La potencia eléctrica del termo eléctrico seleccionado es de 1,6 Kw con un rendimiento que podemos considerar del 100%.

Ilustración 54 Panel termosolar y termo eléctrico seleccionado para todos los casos de estudio

5.3.1.2. CASO1: Climatización por FANCOILS con ventilación independiente en el edificio MEJORADO en LIDER

Ahora para la mejor solución que obtuvimos anteriormente con el programa LIDER le vamos a implantar los mismos sistemas de ventilación y climatización que en el apartado anterior, adaptados a las necesidades que este edificio demanda ahora, para poder compararlos.

Ventilación

Para dar el caudal de ventilación demandado vamos a seleccionar dos UTA cuyo caudal de impulsión es de 3000 m³/h y cuyas características vienen recogidas en la **tabla 99**.

Tabla 99 Climatizadora aire primario seleccionada para el CASO 1 con mejoras del edificio

		UTA AIRE							
	EQUIPO INSTALADO	PRIMARIO							
				PERDIDA	CAUDAL	CAUDAL		POT.	POT.
PRIMARIO		PERDIDA	CAUDAL	DE	AIRE DE	AIRE	POT.	VENT.	REF
Ž		DE CARGA	DE AGUA	PRESION	DISEÑO	MAQUINA	CALORIFICA	KW	TOTAL
	MODELO	(PA)	(l/h)	(MCA)	(m³/h)	(m³/h)	KW		KW
AIRE	CL07062 6+3R	218	2429	0,00897	2346,3	3000	21,27	2,2	40,91
	HUMECTADOR	30							_
CLIMATIZADORA	RECUPERADOR ESTATICO IMP	161							
ATIZ	FILTRO 1ª ETAPA IMP G4	150							
Ì	FILTRO 2ª ETAPA IMP F7	250							
Ō	FILTRO 3ª ETAPA IMP H13	500							
	TOTAL PERDIDA CARGA IMP	1221							
	VENTILADOR IMP CL07813		•						

Ventiloconvectores (Fancoil)

En este caso la demanda de cargas que tiene cada uno de los espacios de nuestro edificio variara puesto que hemos modificado la envolvente del edificio.

Dado que las demandas disminuyen la potencia de los equipos también lo harán, de manera que serán los dos modelos de equipos de la **tabla 100** los encargados de vencerlas en cada uno de los espacios acondicionados de nuestro edificio.

Tabla 100 Fancoil seleccionados para el CASO 1 con mejoras del edificio

EQUIPO							
INSTALADO	FANCOIL						
MODELOS	POT. CALORIFICA (KW)	POT. REF TOTAL (KW)	POT. VENT (KW)	POT. REF. SENSIBLE (KW)	CUADAL AIRE DISEÑO (I/s)	CUADAL AGUA DISEÑO (I/h)	CAIDA DE PRESION (Kpa)
42N 25	2,84	2,18	0,032	1,82	131	375	14,3
42N 16	1,88	1,43	0,032	1,11	90	246	21,7

El desglose de las cargas solicitadas por los espacios y los equipos instalados para vencerlas vienen recogidas en la **tabla 101**.

Tabla 101 Cargas de climatización demandadas por cada uno de los espacios y Fancoil utilizado para vencerlas para el CASO 1 con mejoras del edificio

nlanta	ocnacio	CARGA FRIO	CARGA CALOR	nº	EQUIPO	POT. REF.	POT. REF	POT. CALORIFICA	CUADAL AIRE
planta	espacio	PICO (KW)	PICO (KW)	EQUIPOS	INSTALADO	SENSIBLE (KW)	INSTALADA (KW)	INSTALADA (KW)	DISEÑO (m³/s)
P1	E1	1,66	3,20	2	42N 16	2,22	2,86	3,76	648
P1	E3	5,04	10,52	4	42N 25	7,28	8,72	11,36	1886,4
					42N 25 +				
P1	E4	3,53	8,18	2+2	42N 16	5,86	7,22	9,44	1591,2
P2	E2	1,49	1,40	1	42N 16	1,11	1,43	1,88	324
P2	E6	1,37	0,59	1	42N 16	1,11	1,43	1,88	324
P2	E9	0,04	0,02	1	42N 16	1,11	1,43	1,88	324
P2	E10	6,57	6,25	3	42N 25	5,46	6,54	8,52	1414,8
Р3	E1	3,49	3,23	2	42N 25	3,64	4,36	5,68	943,2
Р3	E2	1,44	1,37	1	42N 16	1,11	1,43	1,88	324
Р3	E3	1,22	0,49	1	42N 16	1,11	1,43	1,88	324
Р3	E4	1,38	0,70	1	42N 16	1,11	1,43	1,88	324
P4	E1	0,84	0,41	1	42N 16	1,11	1,43	1,88	324

Bomba de Calor

La bomba de calor seleccionada deberá de ser capaz de suministrar las potencias de las dos UTA y la carga de refrigeración y la de calefacción demanda por el edificio.

Tabla 102 Suma de cargas y selección de la Bomba de calor para el CASO 1 con mejoras del edificio

BOMBA DE CALOR	POTENCIA CALORIFICA DEMANDADA	POTENCIA FRIGORIFICA DEMANDADA	CAPACIDAD CALORIFICA EQUIPO	CAPACIDAD FRIGORIFICA EQUIPO	CAUDAL DE AGUA	PRESIÓN ESTATICA	СОР	EER	SALTO Tª
MODELO	KW	KW	KW	KW	L/H	MCA			
30RQSY078	59,99	66,62	77,4	72,8	13464	5,78	3,12	2,72	5

La bomba de calor está seleccionada para una capacidad frigorífica la cual la temperatura de salida del agua es de 7°C y la temperatura de entrada del aire al condensador es de 35°C

La bomba de calor está seleccionada para una capacidad calorífica la cual la temperatura de salida del agua es de 45°C y la temperatura de entrada del aire al condensador es de 7°C

Bomba hidráulica

La bomba por tanto del circuito hidráulico deberá ser capaz de suministrar los 13464 l/h de la bomba de calor, los 2429 l/h de cada UTA y los 6831 l/h de los fancoil instalados, y a su vez capaz de vencer la perdida de presión de 56,8 kpa en el evaporador de la bomba de calor y los 396 kpa de todos los fancoil. Además de estas pérdidas de presión tendrá que vencer las propias del circuito en sí (codos, válvulas...) que según el proyecto del edificio son de 96,04 kpa

BOMBA HIDRÁULICA	CAUDAL NECESARIO	ALTURA NECESARIA	CAUDAL PTO. FUNC	ALTURA PTO. FUNC
MODELO	L/H	MCA	L/H	MCA
EBARA ELINE 50- 200-9,2B	25153	54,85	30000	55

ACS

El circuito de ACS será por completo igual que en el edificio sin mejoras.

5.3.1.3. <u>CASO1: Comparativa de resultados ENERGETICOS Y ECONOMICOS entre el</u> edificio BASE y el MEJORADO en LIDER

Para realizar la comparativa entre el edificio base y el edificio mejorado en LIDER realizamos una primera comparativa de las emisiones en Kg CO₂/año entre ambos, después comparamos energéticamente, para finalmente evaluarlo económicamente y obtener su calificación energética.

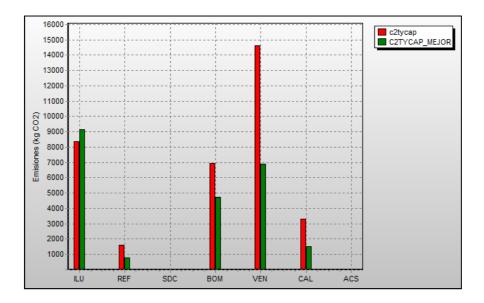


Ilustración 55 Comparativa de las emisiones (Kg CO₂/año) para el CASO 1 entre el edificio mejorado y sin mejorar

Si realizamos una comparativa de las emisiones entre ambos edificios (**ilustración 55**)vemos que en cuanto a iluminación son prácticamente las mismas emisiones, a diferencia de que en el edificio mejorado cambiamos el índice de reflexión de los vidrios en las ventanas y por ello al pasar de 0,75 a 0,55 dejamos pasar menos luz solar y necesitamos más iluminación artificial.

Las emisiones de refrigeración y calefacción al utilizar equipos de menores potencia en nuestro edificio disminuyen, consiguiendo con ello que el caudal de agua trasegado por el circuito hidráulico sea menor.

Por considerar un perfil de ocupación menor en el edificio mejorado, disminuimos las renovaciones/hora y con ello las potencias de los equipos instalados encargados de la ventilación.

Dado que el consumo de ACS es ínfimo las emisiones que producen también lo son.

Estos datos representados en el gráfico a grandes rasgos, pueden compararse cuantitativamente en la **tabla 103**.

Tabla 103 Emisiones por sistemas (Kg CO₂/año) para el CASO 1 entre el edificio mejorado y sin mejorar

Kg CO₂/año	SISTEMA FANC	SISTEMA FANCOIL						
kg CO2/ano	BASE	MEJORADO	REDUCCIÓN(%)					
Iluminación	8374,7	9152,2	-9,28%					
Refrigeración	1671,5	907,2	45,73%					
Bombas	7266	5071,3	30,21%					
Ventiladores	14622,4	6885,5	52,91%					
Calefacción	2914,3	1270,4	56,41%					
ACS	3,1	1,5	51,61%					
TOTAL	34852	23288,1	33,18%					

Si realizamos un análisis de la energía consumida en nuestro edificio vemos (**ilustración 56**) que los consumos que obtenemos son proporcionales a las emisiones de CO₂

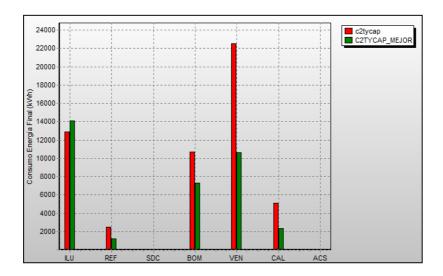


Ilustración 56 Comparativa de la energía consumida (Kwh) para el CASO 1 entre el edificio mejorado y sin mejorar

Si este análisis energético lo asociamos a un balance económico, cogiendo la misma línea de tendencia en cuanto al precio de la luz que utilizamos en el análisis económico en LIDER (ilustración 38) ya que todos los equipos utilizados utilizan esta, y además pormenorizaremos la inversión en cada tipo de equipos que tenemos los datos que se recogen en la tabla 104.

La diferencia de potencia entre los equipos a instalar no nos supondrá una gran diferencia de inversión inicial aunque si conseguiremos, una vez amorticemos dichos equipos, una reducción de un tercio del consumo energético en nuestro edificio.

Tabla 104 Análisis energético-económico de los distintos sistemas utilizados en el edificio

							media ahorro	AHORRO EN LA
SISTEMA FANCOIL			periodo		periodo	VIDA UTIL DE		
Kwh/año			ahorro total	retorno dif. inversión		amortización	LOS EQUIPOS (15	
	BASE	MEJORADO	REDUCCIÓN(%)	(kwh/año)	(años)	clima. total (€)	(€/año)	AÑOS)
Iluminación	12904,1	14102	-9,28%	-1197,9	0,00	0,00€	0,00 €	-4.014,16 €
Refrigeración	2575,5	1397,8	45,73%	1177,7	20,67	8.077,00 €	390,70 €	-4.130,53 €
Bombas	11195,7	7814	30,21%	3381,7	1,97	813,00 €	413,37 €	10.519,08 €
Ventiladores	22530,7	10609,4	52,91%	11921,3	0,18	224,00 €	1.219,35 €	39.724,28 €
Calefacción	4490,4	1957,5	56,41%	2532,9	12,98	8.077,00 €	622,13 €	410,75 €
ACS	4,7	2,4	48,94%	2,3	0,00	0,00€	0,00€	7,71 €
TOTAL	53701,1	35883,1	<mark>33,18%</mark>	17818	5,83	17.191,00€	2.948,92 €	42.517,12 €

Vemos que aunque la inversión en equipos de calefacción y refrigeración es la misma ya que es la misma máquina con los mismos elementos terminales en el mismo circuito, al haber mejorado la envolvente de nuestro edificio con vistas a mejorar la demanda de calefacción el ahorro de energía que conseguimos es un 53,5% mayor que el de refrigeración.

Si el equipo utilizado para la refrigeración fuera utilizado solo en esto, no sería rentable pues necesitaríamos un periodo de amortización superior a la vida útil de los equipos. Pero dado que es el mismo equipo que el utilizado para la calefacción y combinándolo con los descensos en los consumos de ventiladores y bombas nos ofrecen un periodo de amortización total menor de 6 años, con un ahorro en los 15 años de vida de los equipos de 42517,12€.

5.3.2.1. CASO2: Climatización FRIO POR CONDUCTOS Y CALOR POR SUELO RADIANTE CON CALDERA DE CONDENSACIÓN en el edificio BASE

Una vez repasada la envolvente de nuestro edificio y la iluminación, vamos a introducir los sistemas de climatización y ventilación, que en este segundo caso estará dividido en los equipos que se describen a continuación y pueden verse en la **ilustración 57.**

- 2 UTA para la ventilación
- Circuito de dos tubos con bomba de calor y bomba hidráulica para el circuito primario de ventilación y refrigeración.
- Circuito de agua caliente con caldera de condensación y bomba hidráulica para la calefacción.
- Circuito de ACS con su correspondiente aportación solar
- 3 UTA encargadas de la refrigeración de los espacios acondicionados.

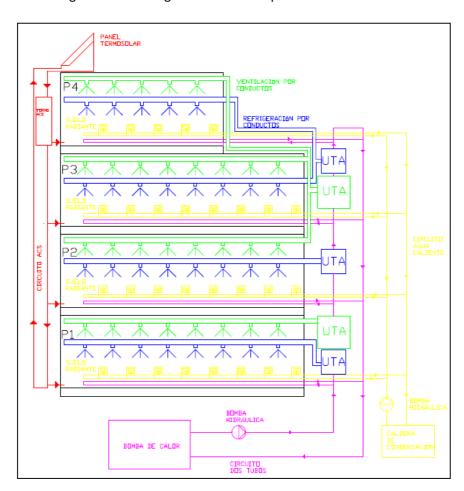


Ilustración 57 Esquema CASO 2: Frio por conductos y calor por suelo radiante con caldera de condensación, con ventilación independiente

Ventilación

Nuestro sistema de ventilación es exactamente el mismo que en el CASO 1 sin mejoras ya que las renovaciones/hora son las mismas y las temperaturas de consigna también.

Suelo radiante

Se denomina suelo radiante o losa radiante al sistema que emite el calor por la superficie del suelo, ya sea por calefacción eléctrica, de calefacción por agua caliente o calefacción por hilos de fibra de carbono. Nosotros elegiremos el agua caliente como fluido caloportador debida a que es una sustancia barata, común en todas las edificaciones y, sobre todo, su calor específico es el mayor entre todas las sustancias conocidas, por lo que requiere un caudal menor que cualquier otra sustancia para transportar la misma cantidad de calor

Para el cálculo del suelo radiante debemos conocer las cargas internas de cada espacio que serán las mismas que anteriormente, al partir del mismo edificio, fijar una temperatura de consigna que será también de 20° C y conocer una serie de parámetros que recogemos en la **tabla 105** para así poder conocer la perdida de carga y el caudal necesario que necesitaremos salvar en el circuito.

$$t_{int} = 20^{\circ}C$$

coeficiente transmision suelo $\alpha = 20W/m^2K$

$$m_{agua} = \frac{Q}{C_p \cdot (t^{\underline{a}}_{imp} - t^{\underline{a}}_{ret})} = Kg/s$$

 $perdida\ de\ carga\ tuberia=0,03Kpa/m$

Tabla 105 Cálculo de las cargas térmicas por espacio acondicionado del edificio sin mejoras

		longitud	del		l(distancia entre el	CARGA				
		circuito	L=	e(distancia	colector y el área a	térmica	tª impulsión	t₫	Caudal	perdida de
planta	espacio	A/e +2.I		entre tubo)	calefactar)	espacio (KW)	agua	retorno	(l/h)	carga (kpa)
P1	E1	541,50		0,2	1,00	4,07	45	35	350,81	16,245
P1	E3	1541,66		0,2	3,33	15,52	45	35	1336,91	46,249
P1	E4	809,45		0,2	0,00	10,19	45	35	877,23	24,284
P2	E2	171,40		0,2	6,80	2,53	45	35	217,74	5,142
P2	E6	237,10		0,2	3,05	0,99	45	35	85,08	7,113
P2	E9	40,50		0,2	9,70	0,03	45	35	2,80	1,215
P2	E10	786,30		0,2	11,00	8,23	45	35	708,99	23,589
Р3	E1	278,75		0,2	1,00	5,64	45	35	485,62	8,363
Р3	E2	118,95		0,2	4,00	2,47	45	35	212,34	3,569
Р3	E3	88,10		0,2	0,00	0,58	45	35	49,76	2,643
Р3	E4	231,95		0,2	4,30	1,19	45	35	102,33	6,959
P4	E1	97,60		0,2	6,25	0,63	45	35	54,01	2,928
	TOTAL	4943,26							4483,63	148,298

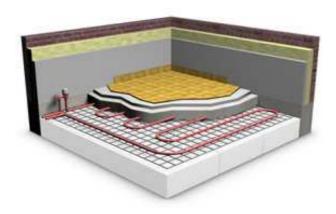


Ilustración 58 Esquema de suelo radiante a instalar en el CASO 2

Caldera de condensación

El calor que necesitamos dar al agua lo producimos en este caso en una caldera de condensación, es decir, un artefacto que produce agua caliente a baja temperatura (entre 45-35°C), con un alto rendimiento (110%)y bajas emisiones de CO2 y NOx, justamente lo que demandamos en este caso.

Debemos seleccionar aquella caldera (tabla 106) que nos asegure las cargas térmicas de los espacios con un coeficiente de simultaneidad que nos proporciona el motor de cálculo DOE2.2.

Tabla 106 Caldera de condensación seleccionada para el CASO 2 sin mejoras del edificio

CALDERA DE CONDENSACIÓN	POTENCIA CALORIFICA DEMANDADA	CAPACIDAD CALORIFICA EQUIPO	CAUDAL DE AGUA	PÉRDIDA PRESIÓN ESTATICA	RENDIMIENTO	SALTO Tª	COMBUSTIBLE
MODELO	KW	KW	L/H	КРА			
CGB-68/75	51,8019	71	4000	8,04	100	10	GAS NATURAL

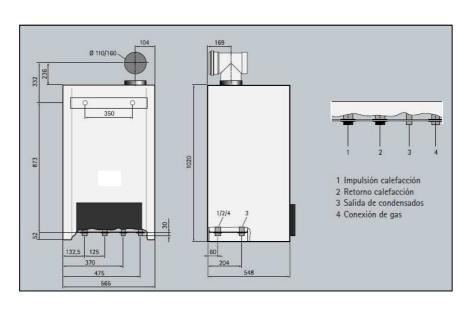


Ilustración 59 Esquema de la caldera de condensación a instalar en el CASO 2

Bomba hidráulica circuito agua caliente

La bomba por tanto del circuito hidráulico deberá ser capaz de suministrar los 4484 l/h del circuito de suelo radiante, y a su vez capaz de vencer la pérdida de presión de 8,04 kpa en la caldera y los 148,3 kpa del circuito de suelo radiante. Además de estas pérdidas de presión tendrá que vencer las propias del circuito en sí (codos, válvulas...) que según el proyecto del edificio son de 96,04 kpa, como queda recogido en la **tabla 107**.

Tabla 107 Bomba hidráulica del circuito de agua caliente seleccionada para el CASO 2 sin mejoras del edificio

ВОМВА	CAUDAL	ALTURA		ALTURA PTO
HIDRÁULICA	NECESARIO	NECESARIA	CAUDAL PTO. FUNC	FUNC
MODELO	L/H	MCA	L/H	MCA
EBARA ELINE 40-				
160-3B	4483,63	25,63	7000	30

UTA encargada de la refrigeración

Las cargas de refrigeración que tiene que vencer el sistema quedan recogidas en la **tabla 108** y serán 3 equipos (UTA) con solo batería de frio, con una potencia similar en cuanto a cargas y por tanto con tres UTA de igual tamaño.

Tabla 108 Cargas de refrigeración por espacios para el CASO 2 sin mejoras del edificio

				CARGA FRIO PICO PLANTA
Z O	planta	espacio	CARGA FRIO PICO (KW)	(KW)
ACIC	P1	E1	2,17	
IGER	P1	E3	7,15	
REFRI	P1	E4	4,21	13,54
SLE R	P2	E2	2,57	
RIAE	P2	E6	1,70	
L VA	P2	E9	0,15	
UDA	P2	E10	8,41	12,83
SISTEMA AIRE CAUDAL VARIABLE REFRIGERACION	Р3	E1	5,79	
AIR	Р3	E2	2,42	
EMA	Р3	E3	1,27	
SIST	Р3	E4	1,70	
	P4	E1	1,03	12,21
		TOTAL	38,58	

Las UTA encargadas de contrarrestar dichas cargas serán las del modelo de la tabla 109.

Tabla 109 Modelo de UTA encargada de la refrigeración seleccionada para el CASO 2 sin mejoras del edificio

		UTA					
	EQUIPO INSTALADO	REFRIGERACION					
z				PERDIDA			POT.
Ç			CAUDAL	DE	CAUDAL AIRE	POT.	REF
ERA		PERDIDA DE	DE AGUA	PRESION	MAQUINA	VENT.	TOTAL
REFRIGERACIÓN	MODELO	CARGA (PA)	(l/h)	(MCA)	(m³/h)	(KW)	KW
	CL07002 5R	88	2429	0,00897	3000	2,2	14,12
AIRE	HUMECTADOR	30					
ORA	RECUPERADOR ESTATICO IMP	161					
CLIMATIZADORA	FILTRO 1ª ETAPA IMP G4	150					
1ATI;	FILTRO 2ª ETAPA IMP F7	250					
U U U	FILTRO 3ª ETAPA IMP H13	500					
	TOTAL PERDIDA CARGA IMP	1179					
	VENTILADOR IMP CL07813						

Bomba de calor para ventilación y refrigeración

El equipo seleccionado deberá ser capaz de vencer la carga de ventilación y la de refrigeración de tal forma que instalaremos una bomba de calor con las características de la **tabla 110**.

Tabla 110 Bomba de calor seleccionada para el CASO 2 sin mejoras del edificio

TERIOR FRIO ILACIÓN	BOMBA DE CALOR	POTENCIA FRIGORIFICA DEMANDADA	CAPACIDAD FRIGORIFICA EQUIPO	POTENCIA CALORIFICA DEMANDADA	CAPACIDAD CALORIFICA EQUIPO	CAUDAL DE AGUA	PRESIÓN ESTATICA			
O EXTEI	MODELO	KW	KW	KW	KW	L/H	MCA	СОР	EER	SALTO Tª
UNIDAI Y V	30RQSY120	103,8	38,4	116	113	22320	6,48	3,23	2,94	5º

Bomba hidráulica circuito de refrigeración y ventilación

El modelo seleccionado deberá de ser capaz de abastecer el caudal de la bomba de calor, así como las 3 UTA dedicada a la refrigeración de los espacios y las 2 UTA que tenemos para la ventilación de los mismos y las pérdidas de presión que se producen en los mismos.

Tabla 111 Bomba hidráulica del circuito de dos tubos seleccionada para el CASO 2 sin mejoras del edificio

	+		CAUDAL	ALTURA	CAUDAL PTO.	ALTURA	PTO.
	ON ON	ВОМВА	NECESARIO	NECESARIA	FUNC	FUNC	
⊨ (LACI	MODELO	L/H	MCA	L/H	MCA	
CIRCU	HIDRAULI	EBARA ELINE 65- 250-4A	36085	16,22	40000	18	

<u>ACS</u>

El circuito de ACS será por completo igual que en el caso anterior.

5.3.2.2. CASO2: Climatización FRIO POR CONDUCTOS Y CALOR POR SUELO RADIANTE CON CALDERA DE CONDENSACIÓN en el edificio MEJORADO en LIDER

Ahora para la mejor solución que obtuvimos anteriormente con el programa LIDER le vamos a implantar los mismos sistemas de ventilación y climatización que en el apartado anterior, adaptados a las necesidades que este edificio demanda ahora, para poder compararlos.

<u>Ventilación</u>

Nuestro sistema de ventilación es exactamente el mismo que en el caso anterior (FANCOIL-EDIFICIO MEJORADO) ya que las renovaciones/hora son las mismas y las temperaturas de consigna también.

Suelo radiante

Para el cálculo del suelo las variables a considerar serán las mismas pero las cargas internas a salvar serán las del edificio mejorado de tal forma que los caudales y pérdidas de carga serán inferiores, quedando recogidos en la **tabla 112**.

Tabla 112 Cálculo de las cargas térmicas por espacio acondicionado del edificio con mejoras

planta	espacio	longitud del circuito L= A/e +2.l	e(distancia entre tubo)	l(distancia entre el colector y el área a calefactar)	CARGA térmica espacio (KW)	tª impulsión agua	tª retorno	Caudal (I/h)	perdida de carga (kpa)
P1	E1	541,5	0,2	1	3,2	45	35	275,79	16,25
P1	E3	1541,66	0,2	3,33	10,52	45	35	905,95	46,25
P1	E4	809,45	0,2	0	8,18	45	35	704,35	24,28
P2	E2	171,4	0,2	6,8	1,4	45	35	120,67	5,14
P2	E6	237,1	0,2	3,05	0,59	45	35	51,13	7,11
P2	E9	40,5	0,2	9,7	0,02	45	35	1,49	1,22
P2	E10	786,3	0,2	11	6,25	45	35	538,19	23,59
Р3	E1	278,75	0,2	1	3,23	45	35	277,91	8,36
Р3	E2	118,95	0,2	4	1,37	45	35	117,89	3,57
Р3	E3	88,1	0,2	0	0,49	45	35	41,86	2,64
Р3	E4	231,95	0,2	4,3	0,70	45	35	60,70	6,96
P4	E1	97,6	0,2	7,1	0,41	45	35	35,04	2,93
	TOTAL	4943,26						3130,96	148,30

Caldera de condensación

Debemos seleccionar aquella caldera que nos asegure las cargas térmicas de los espacios con un coeficiente de simultaneidad como recogemos en la **tabla 113**.

Tabla 113 Caldera de condensación seleccionada para el CASO 2 sin mejoras del edificio

CALDERA DE CONDENSACIÓN	POTENCIA CALORIFICA DEMANDADA	CAPACIDAD CALORIFICA EQUIPO	CAUDAL DE AGUA	PRESIÓN ESTATICA	RENDIMIENTO	SALTO Tª	COMBUSTIBLE
MODELO	KW	KW	L/H	KPA			
CGB-50	35,75	47	4000	8,04	100	10	GAS NATURAL

Bomba hidráulica circuito agua caliente

La bomba por tanto del circuito hidráulico deberá ser capaz de suministrar los 3131 l/h del circuito de suelo radiante, y a su vez capaz de vencer la pérdida de presión de 8,04 kpa en la caldera y los 148,3 kpa del circuito de suelo radiante. Además de estas pérdidas de presión tendrá que vencer las propias del circuito en sí (codos, válvulas...) que según el proyecto del edificio son de 96,04 kpa, seleccionando para ello la bomba de la **tabla 114**.

Tabla 114 Bomba hidráulica del circuito de agua caliente seleccionada para el CASO 2 con mejoras del edificio

BOMBA HIDRÁULICA	CAUDAL NECESARIO	ALTURA NECESARIA	CAUDAL PTO. FUNC	ALTURA PTO. FUNC
MODELO	L/H	MCA	L/H	MCA
EBARA ELINE 40- 160-3B	3130,96	24,81	7000	30

UTA encargada de la refrigeración

Las cargas que tiene que vencer el sistema las recogemos en la **tabla 115** y las repartiremos en 3 equipos con una potencia similar en cuanto a cargas y por tanto con tres UTA de igual potencia (**tabla 116**).

Tabla 115 Cargas de refrigeración por espacios para el CASO 2 con mejoras del edificio

	planta	aspasia	CARCA ERIO RICO (IVAI)	CARGA FRIO PICO PLANTA	
Z O	planta	espacio	CARGA FRIO PICO (KW)	(KW)	
ACI	P1	E1	1,66		
IGER	P1	E3	5,04		
E F R	P1	E4	3,53	10,24	
SLE R	P2	E2	1,49		
RIAE	P2	E6	1,37		
	P2	E9	0,04		
N DA	P2	E10	6,57	9,47	
SISTEMA AIRE CAUDAL VARIABLE REFRIGERACION	Р3	E1	3,49		
	Р3	E2	1,44		
EMA	Р3	E3	1,22		
SIST	Р3	E4	1,38		
	P4	E1	0,84	8,37	
		TOTAL	28,07		

Tabla 116 Modelo de UTA encargada de la refrigeración seleccionada para el CASO 2 con mejoras del edificio

	EQUIPO INSTALADO	UTA REFRIGERACION					
REFRIGERACIÓN	MODELO	PERDIDA DE CARGA (PA)	CAUDAL DE AGUA (I/h)	PERDIDA DE PRESION (MCA)	CAUDAL AIRE MAQUINA (m³/h)	POT. VENT. (KW)	POT. REF TOTAL KW
REFR	CL07002 5R	88	2429	0,00897	3000	2,2	14,12
	HUMECTADOR	30					
ΑA	RECUPERADOR ESTATICO						
NO.	IMP	161					
CLIMATIZADORA AIRE	FILTRO 1ª ETAPA IMP G4	150					
MA	FILTRO 2ª ETAPA IMP F7	250					
CL	FILTRO 3ª ETAPA IMP H13	500					
	TOTAL PERDIDA CARGA IMP	1179					
	VENTILADOR IMP CL07813						

Bomba de calor para ventilación y refrigeración

El equipo seleccionado deberá ser capaz de vencer la carga de ventilación, que es la misma del edificio mejorado en el caso de los FANCOIL, y la de refrigeración de tal forma que suministre la potencia de las tres UTA de refrigeración y las dos encargadas de la ventilación de los espacios.

Tabla 117 Bomba de calor seleccionada para el CASO 2 con mejoras del edificio

OR FRIO	BOMBA DE CALOR	POTENCIA FRIGORIFICA DEMANDADA	CAPACIDAD FRIGORIFICA EQUIPO	POTENCIA CALORIFICA DEMANDADA	CAPACIDAD CALORIFICA EQUIPO	CAUDAL DE AGUA	PRESIÓN ESTATICA			
EXTERIO	MODELO	KW	KW	KW	KW	L/H	MCA	СОР	EER	SALTO Tª
UNIDAD	30RQSY078	66,62	72,8	24,24	77,4	13464	5,78	3,12	2,72	5º

Bomba hidráulica circuito de refrigeración y ventilación

El modelo seleccionado deberá de ser capaz de abastecer el caudal de la bomba de calor así como las 3UTA dedicadas a la refrigeración de los espacios y las 2 UTA que tenemos para la ventilación de los mismos y las pérdidas de presión que se producen en los mismos.

Tabla 118 Bomba hidráulica del circuito de dos tubos seleccionada para el CASO 2 sin mejoras del edificio

+ 0	ВОМВА	CAUDAL	ALTURA	CAUDAL PTO.	ALTURA PTO.
O FRIO	HIDRÁULICA	NECESARIO	NECESARIA	FUNC	FUNC
- N	MODELO	L/H	MCA	L/H	MCA
CIRC ORÁULI	EBARA ELINE 65-				
	250-3B	25609	15,51	25000	16

ACS

El circuito de ACS será por completo igual que en el caso anterior.

5.3.2.3. CASO2: Comparativa de resultados ENERGETICOS Y ECONOMICOS entre el edificio BASE y el MEJORADO en LIDER

En este caso para poder realizar una comparativa, dado que interviene otra fuente de energía aparte de la eléctrica como es el gas natural, necesitaremos para poder realizar un estudio económico conocer el precio del kwh y hacer una aproximación de su evolución en el tiempo. Nuestro edificio tendrá un consumo en kwh/año de gas natural entre los 3000 y 6000 kwh/año en función de las mejoras que introduzcamos en el edificio, pero dado que las tarifas cambian a partir de los 5000 kwh/año de la T1 a la T2 deberemos calcular la evolución de ambas y utilizar la T2 para el edificio sin mejoras ya que el consumo es superior a 5000 kwh/año, mientras que una vez introduzcamos las mejoras la T1 nos proporcionara un precio algo mayor del kwh.

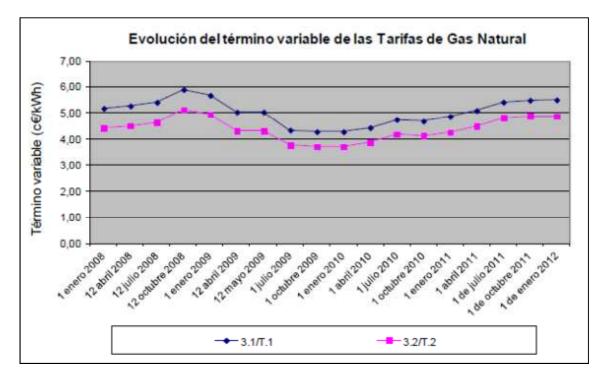


Ilustración 60 Evolución del precio del kwh de gas natural para las dos tarifas de último recurso T1 y T2

Si realizamos una comparativa entre ambos edificios (**ilustración 60**) vemos que en cuanto a iluminación son prácticamente las mismas emisiones, a diferencia de que en el edificio mejorado habíamos cambiado el factor solar de los vidrios en las ventanas y por ello aumentan un 9,28% las emisiones al dejar pasar menos luz natural el cristal y por tanto demandar más luz artificial.

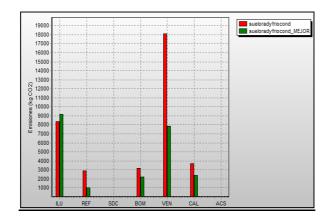


Ilustración 61 Comparativa de las emisiones (Kg CO₂/año) para el CASO 2 entre el edificio mejorado y sin mejorar

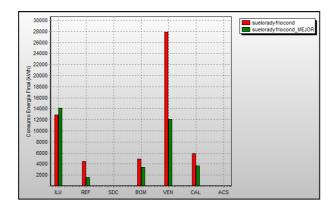


Ilustración 62 Comparativa de la energía consumida (Kwh) para el CASO 2 entre el edificio mejorado y sin mejorar

Si realizamos un análisis de la energía consumida en nuestro edificio (**ilustración 61**) vemos que los consumos que obtenemos son proporcionales a las emisiones de CO₂ al igual que en el caso anterior.

El balance energético-económico que se recoge en la **tabla 119** nos muestra como el mayor ahorro energético que conseguimos se producirá en ventilación (56,5%) al igual que ocurrirá económicamente ya que con una diferencia de inversión muy pequeña conseguimos un ahorro muy importante.

Tabla 119 Análisis energético-económico de los distintos sistemas utilizados en el edificio

							media ahorro	AHORRO EN LA
	SISTEMA SUELO RAD CALD COND Y UTA				periodo		periodo	VIDA UTIL DE
Kwh/año				ahorro total	retorno	dif. inversión	amortización	LOS EQUIPOS (15
	BASE	MEJORADO	REDUCCIÓN(%)	(kwh/año)	(años)	clima. total (€)	(€/año)	AÑOS)
Iluminación	12904,1	14102	-9,28%	-1197,9	0,00	0,00€	0,00€	-4.014,16 €
Refrigeración	4457,9	1582,2	64,51%	2875,7	11,98	8.077,00€	674,09 €	1.559,47 €
Bombas	4912,1	3382,4	31,14%	1529,7	2,44	477,00 €	195,16 €	4.649,02 €
Ventiladores	27911,4	12141,3	56,50%	15770,1	0,28	460,00 €	1.630,22 €	52.385,61€
Calefacción	5854,9	3715,4	36,54%	2139,5	9,37	1.813,00€	193,52 €	5.356,46 €
ACS	4,7	2,4	48,94%	2,3	0,00	0,00€	0,00€	7,71 €
TOTAL	56045,1	34925,7	37,68%	21119,4	3,74	10.827,00€	2.891,56 €	59.944,11€

5.3.3.1. CASO3: Climatización FRIO POR CONDUCTOS Y CALOR POR RADIADORES AGUA CALIENTE CON CALDERA CONVENCIONAL en el edificio BASE

Este caso presenta los mismos equipos que en el caso anterior pero la diferencia estará en los elementos terminales de calefacción, los cuales serán radiadores de agua caliente que trabajan con una temperatura de consigna de 80°, mientras que la caldera como va a trabajar siempre a temperatura alta, no se aprovecha la capacidad de condensación, por lo que usaremos una caldera convencional que es más barata aunque con un rendimiento peor, por tanto tendremos:

- 2 UTA para la ventilación
- Circuito de dos tubos con bomba de calor y bomba hidráulica para el circuito primario de ventilación y refrigeración.
- Circuito de agua caliente con caldera convencional y bomba hidráulica para la calefacción.
- Circuito de ACS con su correspondiente aportación solar
- 3 UTA encargadas de la refrigeración de los espacios acondicionados.

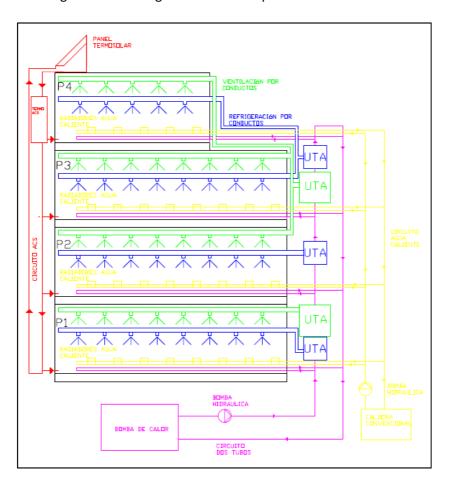


Ilustración 63 Esquema CASO 3: Frio por conductos y calor por radiadores agua caliente con caldera convencional, y ventilación independiente

Ventilación

Nuestro sistema de ventilación es exactamente el mismo que en el caso 1 y 2 del edificio sin mejorar ya que las renovaciones/hora son las mismas y las temperaturas de consigna también.

Radiadores de agua caliente

Los equipos instalados elegiremos entre los dos tipos de la **tabla 120**, configurando cada uno en función de los elementos que colocamos en la composición del radiador para llegar a las potencias requeridas.

Tabla 120 Radiadores de agua caliente seleccionados para el CASO 3 sin mejoras del edificio

N.	EQUIPO INSTALADO	RADIADORES ALTA Tª		
l Si		80-60⁰		
E E	RADIADORES DE ALUMINIO	POTENCIA ELEMENTO		
UNIDAD INTERIOR CALOR	EUROPA	(Kw)		
	800C	0,158		
5	600C	0,1198		

Ilustración 64 Radiadores de agua caliente seleccionados para el CASO 3

Para el cálculo de los radiadores a colocar debemos conocer las cargas internas de cada espacio que serán las mismas que anteriormente, al partir del mismo edificio, fijar una temperatura interior de consigna que será también de 20°C y conocer una serie de parámetros que recogemos en la **tabla 121** para así poder conocer la perdida de carga y el caudal necesario que necesitaremos salvar en el circuito.

Tabla 121 Cargas térmicas por espacio y características de los equipos utilizados para el CASO 3 sin mejoras del edificio

planta	espacio	CARGA térmica REQUERIDA (KW)	RADIADOR INSTALADO	UNIDADES	POTENCIA x RADIADOR (Kw)	RADIADORES	CARGA térmica INSTALADA (KW)	caudal másico agua (Kg/s)	caudal agua (I/h)	perdida de carga (pa)
P1	E1	4,07	800C	9,00	1,42	3	4,266	0,051	183,73	25
P1	E3	15,52	800C	11,00	1,74	9	15,642	0,187	673,57	220
P1	E4	10,19	800C	11,00	1,74	6	10,428	0,125	449,05	0,13
P2	E2	2,53	600C	6,00	0,72	4	2,8752	0,0344	123,81	20
P2	E6	0,99	600C	3,00	0,36	3	1,0782	0,013	46,43	15
P2	E9	0,03	600C	2,00	0,24	1	0,2396	0,003	10,32	10
P2	E10	8,23	800C	11,00	1,74	5	8,69	0,104	374,21	100
Р3	E1	5,64	800C	9,00	1,42	4	5,688	0,068	244,94	25
Р3	E2	2,47	600C	6,00	0,72	4	2,8752	0,034	123,81	20
Р3	E3	0,58	600C	3,00	0,36	2	0,7188	0,009	30,95	10
Р3	E4	1,19	600C	4,00	0,48	3	1,4376	0,017	61,91	15
P4	E1	0,63	600C	3,00	0,36	2	0,7188	0,009	30,95	10
	TOTAL	52,06						TOTAL	2353,67	470,13

Los radiadores utilizados trabajan con temperaturas comprendidas entre los 80° y los 60° de manera que como conocemos la potencia de cada radiador en función de las unidades acopladas en serie, podemos obtener los caudales de agua necesarios con la siguiente formula con un rendimiento para el modelo seleccionado del 90%.

$$m_{agua} = \frac{Q_{espacio}}{Cp_{agua} \cdot (T_{imv} - T_{ret})}$$

Una vez tengamos los caudales de agua a partir de la grafica de la **ilustración 64** podemos obtener las pérdidas de carga (última columna de la **tabla 121**) que se producen en cada radiador. Esta gráfica fue obtenida por la Universidad Politécnica de Milán en la que obtenemos la perdida de carga en función del caudal que circula.

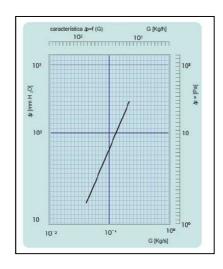
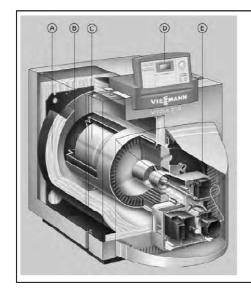


Ilustración 65 Pérdida de carga en función del caudal circundante de agua en los radiadores



Caldera convencional

La caldera seleccionada no será de condensación puesto que al trabajar a alta temperatura no aprovecharíamos esta propiedad, siendo más cara que una convencional y por tanto eligiendo una como hemos seleccionado en la **tabla 122**.

Tabla 122 Caldera convencional seleccionada para el CASO 3 sin mejoras del edificio

CALDERA CONVENCIONAL	POTENCIA CALORIFICA DEMANDADA	CAPACIDAD CALORIFICA EQUIPO	CAUDAL DE AGUA	PRESIÓN ESTATICA	RENDIMIENTO	ENDIMIENTO SALTO Tª	
MODELO	KW	KW	L/H	KPA			
VITOLA 200 VB2A	51,80	63	2000	35,02	90	20	GAS NATURAL

- (A) Aislamiento térmico de alta eficacia
- B Superficie de transmisión biferral de doble pared, de fundición y acero, que proporciona una alta flabilidad y una larga vida útil
- © Cámara de combustión de acero inoxidable; extraíble
- Regulación Vitotronic: inteligente y fácil de montar, manejar y mantener
- Quemador a gasóleo Vitoflame 100: comprobado en caliente con un programa informático y adaptado a la potencia total de la caldera

Ilustración 66 Esquema de la caldera convencional seleccionada para el CASO 3

Bomba hidráulica circuito agua caliente

La bomba por tanto del circuito hidráulico deberá ser capaz de suministrar los 2354 l/h del circuito de radiadores, y a su vez capaz de vencer la pérdida de presión de 35,02 kpa en la caldera y los 0,47kpa del circuito de radiadores. Además de estas pérdidas de presión tendrá que vencer las propias del circuito en sí (codos, válvulas...) que según el proyecto del edificio son de 96,04 kpa

Tabla 123 Bomba hidráulica del circuito de agua caliente seleccionada para el CASO 3 sin mejoras del edificio

BOMBA	CAUDAL	ALTURA	CAUDAL PTO. FUNC	ALTURA PTO.
HIDRÁULICA	NECESARIO	NECESARIA	CAUDAL PTO. FUNC	FUNC
MODELO	L/H	MCA	L/H	MCA
EBARA ELINE 50-				
200-1,5	2353,67	13,31	8000	14

Bomba de calor encargada de la ventilación y refrigeración

Dado que las cargas no varían y el equipo tampoco serán exactamente los mismos equipos que anteriormente.

Bomba hidráulica circuito de refrigeración y ventilación

Al tratarse del mismo circuito que en el CASO 2 la bomba seleccionada será la misma.

ACS

El circuito de ACS será por completo igual que en el caso anterior.

5.3.3.2. CASO 3: Climatización FRIO POR CONDUCTOS Y CALOR POR RADIADORES DE AGUA CALIENTE CON CALDERA CONVENCIONAL en el edificio MEJORADO

Este caso presenta los mismos equipos que en el caso que en el edificio sin mejoras pero adaptando estos a las nuevas demandas, de manera que presentaremos:

- 2 UTA para la ventilación
- Circuito de dos tubos con bomba de calor y bomba hidráulica para el circuito primario de ventilación y refrigeración.
- Circuito de agua caliente con caldera de condensación y bomba hidráulica para la calefacción.
- Circuito de ACS con su correspondiente aportación solar
- 3 UTA encargadas de la refrigeración de los espacios acondicionados.

Ventilación

Nuestro sistema de ventilación es exactamente el mismo que en el caso 2 ya que las renovaciones/hora son las mismas y las temperaturas de consigna también.

Radiadores de agua caliente

Los equipos instalados elegiremos entre los dos tipos de la **tabla 120** igual que para el edificio sin mejoras, configurando cada uno en función de los elementos que colocamos para llegar a las potencias requeridas que tenemos en la **tabla 124** Y que hemos obtenido igual que en el edificio base.

Tabla 124 Cargas térmicas por espacio y características de los equipos utilizados para el CASO 3 con mejoras del edificio

planta	espacio	CARGA térmica REQUERIDA (KW)	RADIADOR INSTALADO	UNIDADES	POTENCIA x RADIADOR (Kw)	RADIADORES	CARGA térmica INSTALADA (KW)	caudal másico de agua (Kg/s)	caudal agua (I/h)	perdida de carga (pa)
P1	E1	3,20	800C	7,00	1,11	3	3,318	0,04	142,88	25,00
P1	E3	10,52	800C	10,00	1,58	7	11,06	0,13	476,27	25,00
P1	E4	8,18	800C	9,00	1,42	6	8,532	0,10	367,41	25,00
P2	E2	1,40	600C	6,00	0,72	2	1,4376	0,02	61,91	25,00
P2	E6	0,59	600C	3,00	0,36	2	0,7188	0,01	30,95	25,00
P2	E9	0,02	600C	2,00	0,24	1	0,2396	0,00	10,32	25,00
P2	E10	6,25	800C	10,00	1,58	4	6,32	0,08	272,15	25,00
Р3	E1	3,23	800C	7,00	1,11	3	3,318	0,04	142,88	25,00
Р3	E2	1,37	600C	6,00	0,72	2	1,4376	0,02	61,91	25,00
Р3	E3	0,49	600C	3,00	0,36	2	0,7188	0,01	30,95	25,00
Р3	E4	0,70	600C	3,00	0,36	2	0,7188	0,01	30,95	25,00
P4	E1	0,41	600C	2,00	0,24	2	0,4792	0,01	20,64	25,00
	TOTAL	36,35						TOTAL	1649,21	300,00

Caldera convencional

Debemos seleccionar aquella caldera que nos asegure las cargas térmicas de los espacios con un coeficiente de simultaneidad.

Tabla 125 Caldera convencional seleccionada para el CASO 3 con mejoras del edificio

CALDERA CONVENCIONAL	POTENCIA CALORIFICA DEMANDADA	CAPACIDAD CALORIFICA EQUIPO	CAUDAL DE AGUA	PRESIÓN ESTATICA	RENDIMIENTO	SALTO Tª	COMBUSTIBLE
MODELO	KW	W KW L/H KPA		KPA		1-	
VITOLA 200 VB2A	35,75	40	1500	26	90%	20	GAS NATURAL

Bomba hidráulica circuito agua caliente

La bomba por tanto del circuito hidráulico deberá ser capaz de suministrar los 1650 l/h del circuito de agua caliente de los radiadores, y a su vez capaz de vencer la pérdida de presión de 26 kpa en la caldera y los 0,3 kpa del circuito de radiadores. Además de estas pérdidas de presión tendrá que vencer las propias del circuito en sí (codos, válvulas...) que según el proyecto del edificio son de 96,04 kpa.

Tabla 126 Bomba hidráulica del circuito de agua caliente seleccionada para el CASO 3 sin mejoras del edificio

BOMBA	CAUDAL	ALTURA	CAUDAL PTO. FUNC	ALTURA PTO.
HIDRÁULICA	NECESARIO	NECESARIA	CAUDAL PTO. FUNC	FUNC
MODELO	L/H	MCA	L/H	MCA
EBARA ELINE 50-				
200-1,5A	1649,21	10,44	6000	13

Bomba de calor encargada de la ventilación y refrigeración

Dado que las cargas no varían y el equipo tampoco serán exactamente los mismos equipos que anteriormente.

Bomba hidráulica circuito de refrigeración y ventilación

Al tratarse del mismo circuito que en el CASO 2 la bomba seleccionada será la misma.

ACS

El circuito de ACS será por completo igual que en el caso anterior.

5.3.3.3. Comparativa de resultados ENERGETICOS Y ECONOMICOS entre el edificio BASE y el MEJORADO en LIDER

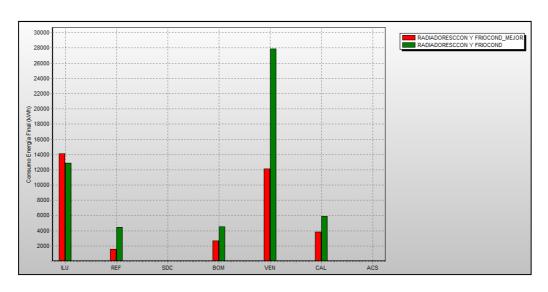


Ilustración 67 Comparativa de la energía consumida (Kwh) para el CASO 4 entre el edificio mejorado y sin mejorar

Si realizamos una comparativa entre ambos edificios vemos que el mayor ahorro respecto al caso anterior radica en los bombeos ya que mientras en casos anteriores el ahorro estaba en torno a un 30% aquí conseguimos aumentarlo hasta por encima del 40%.

Tabla 127 Análisis energético-económico de los distintos sistemas utilizados en el edificio

Kwh/año	SISTEMA BASE	RADIADORES CA	ALD CONV Y UTA REDUCCIÓN(%)	ahorro total (kwh/año)	periodo retorno (años)	dif. inversión clima. total (€)	media ahorro periodo amortización (€/año)	AHORRO EN LA VIDA UTIL DE LOS EQUIPOS (15 AÑOS)
Iluminación	12904,1	14102	-9,28%	-1197,9	0,00	0,00 €	0,00€	-4.014,16 €
Refrigeración	4459,1	1545,5	65,34%	2913,6	11,88	8.077,00€	679,73 €	1.686,47 €
Bombas	4546	2692,8	40,77%	1853,2	0,92	188,00€	204,77 €	6.022,07 €
Ventiladores	27911,4	12141,3	56,50%	15770,1	0,28	460,00€	1.630,37 €	52.385,61€
Calefacción	5864,4	3823,1	34,81%	2041,3	4,82	617,00€	128,00 €	6.223,40 €
ACS	4,7	2,4	48,94%	2,3	0,00	0,00€	0,00€	7,71 €
TOTAL	55689,7	34307,1	38,40%	21382,6	3,35	9.342,00€	2.791,41 €	62.311,09€

5.3.4.1. CASO4: Climatización FRIO POR CONDUCTOS Y CALOR POR SUELO RADIANTE CON BOMBA DE CALOR en el edificio BASE

Este sistema será igual que en el caso de suelo radiante obtenido anteriormente, pero en lugar de suministrar el calor a través de una caldera de condensación lo vamos a hacer a través de una bomba de calor, de esta manera ahorramos un equipo, aunque incrementaremos la potencia del otro. Por tanto los equipos que necesitamos son:

- 2 UTA para la ventilación
- Circuito de dos tubos con bomba de calor y bomba hidráulica para el circuito primario de ventilación, calefacción y refrigeración.
- Circuito de ACS con su correspondiente aportación solar
- 3 UTA encargadas de la refrigeración de los espacios acondicionados.

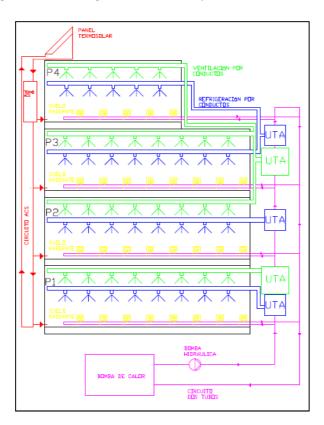


Ilustración 68 Esquema CASO 4: Frio por conductos y calor por suelo radiante con bomba de calor, con ventilación independiente

Ventilación

Nuestro sistema de ventilación es exactamente el mismo que en los CASOS 1,2 y 3 ya que las renovaciones/hora son las mismas y las temperaturas de consigna también.

Suelo radiante

Las cargas térmicas del edificio base son las mismas que en el CASO 2 y por tanto los caudales de agua y perdidas de carga siguen siendo iguales.

UTA encargada de la refrigeración

Son las mismas puesto que las cargas de refrigeración son las mismas que en el caso 2.

Bomba de calor para ventilación y climatización

El equipo seleccionado deberá ser capaz de vencer la carga de ventilación y climatización de tal forma que elegiremos la misma bomba de calor que en el caso de fancoil, donde todas las cargas eran cubiertas por el mismo equipo

Tabla 128 Bomba de Calor seleccionada para el CASO 4 sin mejoras en el edificio

BOMBA DE CALOR	POTENCIA CALORIFICA DEMANDADA	POTENCIA FRIGORIFICA DEMANDADA	CAPACIDAD CALORIFICA EQUIPO	CAPACIDAD FRIGORIFICA EQUIPO	CAUDAL DE AGUA	PRESIÓN ESTATICA	СОР	EER	SALTO Tª
MODELO	KW	KW	KW	KW	L/H	MCA			
30RQSY120	90,2	103,8	116	113	22320	6,48	3,23	2,94	5

Bomba hidráulica circuito de dos tubos

El modelo seleccionado deberá de ser capaz de abastecer el caudal del suelo radiante, así como las 3 UTA dedicadas a la refrigeración de los espacios y las 2 UTA que tenemos para la ventilación de los mismos.

Tabla 129 Bomba hidráulica seleccionada para el CASO 4 sin mejoras en el edificio

O FRIO +	вомва	CAUDAL NECESARIO	ALTURA NECESARIA	CAUDAL PTO. FUNC	ALTURA P FUNC	TO.
0 4 9	MODELO	L/H	MCA	L/H	MCA	
CIRCUIT HIDRÁULICO VENTILAC	EBARA ELINE 40- 160-4A	18248,63	31,7	20000	35	

ACS

El circuito de ACS será por completo igual que en los casos anteriores.

5.3.4.2. CASO4: Climatización FRIO POR CONDUCTOS Y CALOR POR SUELO RADIANTE CON BOMBA DE CALOR en el edificio MEJORADO

Al igual que en el caso anterior, para el edificio mejorado tenemos los mismos sistemas.

- 2 UTA para la ventilación
- Circuito de dos tubos con bomba de calor y bomba hidráulica para el circuito primario de ventilación, calefacción y refrigeración.
- Circuito de ACS con su correspondiente aportación solar
- 3 UTA encargadas de la refrigeración de los espacios acondicionados.

Ventilación

Nuestro sistema de ventilación es exactamente el mismo que en los casos 1,2 y 3 para el edificio mejorado ya que las renovaciones/hora son las mismas y las temperaturas de consigna también.

Suelo radiante

Las cargas térmicas del edificio base son las mismas que en caso 2 y por tanto los caudales de agua y perdidas de carga siguen siendo iguales.

Bomba de calor para ventilación y climatización

La bomba de calor para el edificio mejorado será de una potencia menor ya que las cargas tanto de ventilación como de climatización son inferiores.

Tabla 130 Bomba de Calor seleccionada para el CASO 4 con mejoras en el edificio

<u> </u>	BOMBA DE	POTENCIA	CAPACIDAD	POTENCIA	CAPACIDAD	CAUDAL	PRESIÓN			
R FR ACIO	CALOR	FRIGORIFICA	FRIGORIFICA	CALORIFICA	CALORIFICA	DE AGUA	ESTATICA			
RIOF	CALOR	DEMANDADA	EQUIPO	DEMANDADA	EQUIPO	DE AGUA	ESTATICA			
CTEF TENJ										SALTO
<u> </u>	MODELO	KW	KW	KW	KW	L/H	MCA	COP	EER	T₫
₹ ₩										
UNID	30RQSY078	66,62	72,8	59,99	77,4	13464	5,78	3,12	2,72	5º

Bomba hidráulica circuito de dos tubos

El modelo seleccionado deberá de ser capaz de abastecer el caudal del suelo radiante, así como las 3utas dedicadas a la refrigeración de los espacios y las 2 utas que tenemos para la ventilación de los mismos, pero al ser equipos de menor potencia los caudales que circulan también lo son menores

Tabla 131 Bomba hidráulica seleccionada para el CASO 4 sin mejoras en el edificio

+		CAUDAL	ALTURA	CAUDAL PTO.	ALTURA PTO.
O FRIO ION	ВОМВА	NECESARIO	NECESARIA	FUNC	FUNC
	MODELO	L/H	MCA	L/H	MCA
CIRCUIT HIDRÁULICO VENTILAC	EBARA ELINE 40- 160-4A	15275,96	30,35	20000	30

ACS

El circuito de ACS será por completo igual que en el caso anterior.

5.3.4.3. CASO4: Comparativa de resultados ENERGETICOS Y ECONOMICOS entre el edificio BASE y el MEJORADO en LIDER

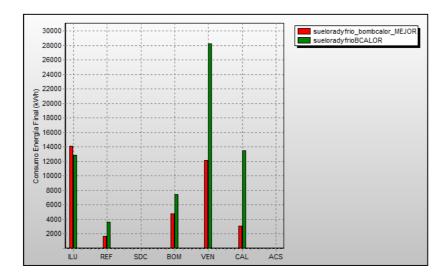


Ilustración 69 Comparativa de la energía consumida (Kwh) para el CASO 4 entre el edificio mejorado y sin mejorar

Si realizamos una comparativa entre ambos edificios vemos que en cuanto a iluminación son prácticamente los mismos consumos, a diferencia de que en el edificio mejorado cambiamos el índice de reflexión de los vidrios en las ventanas como en el resto de casos.

Por considerar un perfil de ocupación menor en el edificio mejorado, disminuimos las renovaciones/hora y aquí con un ventilador de una potencia menor es donde conseguimos el mayor ahorro de energía.

Para realizar el balance económico cogeremos la misma línea de tendencia en cuanto al precio de la luz y además de pormenorizaremos la inversión en cada tipo de equipos que tenemos.

La diferencia de potencia entre los equipos a instalar no nos supondrá una gran diferencia de inversión inicial aunque si conseguiremos una vez amorticemos dichos equipos una reducción de un 38% del consumo energético en nuestro edificio.

Tabla 132 Análisis energético-económico de los distintos sistemas utilizados en el edificio

Kwh/año	SISTEM	SISTEMA SUELO RAD Y UTA BOMBA DE CALOR BASE MEJORADO REDUCCIÓN(%)		ahorro total (kwh/año)	periodo retorno (años)	dif. inversión clima. total (€)	media anorro periodo amortización (€/año)	VIDA UTIL DE LOS EQUIPOS (15 AÑOS)
Iluminación	12904,1	14102	-9,28%	-1197,9	0,00	0,00€	0,00€	-4.014,16 €
Refrigeración	3644,7	1712,2	53,02%	1932,5	15,36	8.077,00€	526,01€	-1.601,19 €
Bombas	7472,3	4790,3	35,89%	2682	0,00	0,00€	0,00€	8.987,38 €
Ventiladores	28255	12141,3	57,03%	16113,7	0,09	140,00 €	1.593,80 €	53.857,01 €
Calefacción	5329,3	3147,4	40,94%	2181,9	14,25	8.077,00€	566,85 €	-765,45 €
ACS	4,7	2,4	48,94%	2,3	0,00	0,00€	0,00€	7,71 €
TOTAL	57610,1	35895,6	37,69%	21714,5	4,94	16.294,00€	3.299,89€	56.471,29€

5.3.5.1. CASO5: Climatización FRIO POR CONDUCTOS Y CALOR POR RADIADORES ELECTRICOS en el edificio BASE

En este caso la refrigeración y ventilación de nuestro edificio se llevara a cabo de la misma forma que en el caso anterior, mientras que la calefacción la conseguiremos por medio de radiadores eléctricos, de manera que necesitaremos los siguientes equipos:

- 2 UTA para la ventilación
- Circuito de dos tubos con bomba de calor y bomba hidráulica para el circuito primario de ventilación y refrigeración.
- Circuito de ACS con su correspondiente aportación solar
- 3 UTA encargadas de la refrigeración de los espacios acondicionados.
- Radiadores eléctricos a colocar en los espacios acondicionados de nuestro edificio

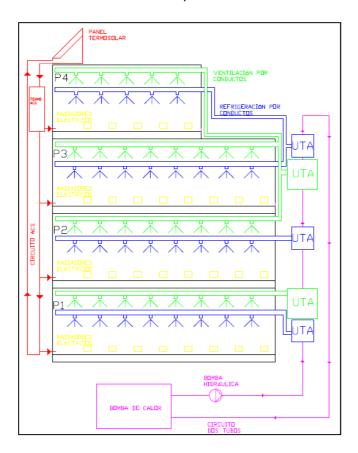


Ilustración 70 Esquema CASO 5: Frio por conductos y calor por radiadores eléctricos, con ventilación independiente

Ventilación

Nuestro sistema de ventilación es exactamente el mismo que en los casos 1, 2, 3 y 4 ya que las renovaciones/hora son las mismas y las temperaturas de consigna también.

UTA encargada de la refrigeración

Las cargas son las mismas que en caso anteriores para el edificio base e igualmente las repartiremos en 3 UTA de igual tamaño.

Radiadores eléctricos

Los equipos instalados son seleccionados entre los 5 modelos de la tabla en función de las cargas internas solicitadas por el espacio del edificio.

Tabla 133 Modelos de radiadores eléctricos seleccionados para el CASO 5 sin mejoras en el edificio

κ	EQUIPO INSTALADO	RADIADORES ELECTRICOS
CALOR	MODELO	POTENCIA (Kw)
	CALIMA 15 AV 570	1,875
INTERIOR	CALIMA 9 AV 570	1,125
	CALIMA 7 AV 570	0,875
UNIDAD	CALIMA 5 AV 570	0,625
5	CALIMA 3 AV 570	0,375

A tenor de las cargas demandadas por nuestro edificio elegiremos uno u otro o combinaciones de ellos para satisfacerlas, como recoge la **tabla 134**.

Tabla 134 Cargas térmicas por espacio y características de los equipos utilizados para el CASO 4 sin mejoras del edificio

planta	espacio	CARGA térmica espacio (KW)	EQUIPO INSTALADO	POTENCIA EQUIPO INSTALADO (KW)
P1	E1	4,07	2 CALIMA 15 AV 570+ CALIMA 3 AV 570	4,125
P1	E3	15,52	8 CALIMA 15 AV 570+ CALIMA 5 AV 570	15,625
P1	E4	10,19	5 CALIMA 15 AV 570+CALIMA 5 AV 570	10,25
P2	E2	2,53	CALIMA 15 AV 570 + CALIMA 7 AV 570	2,75
P2	E6	0,99	CALIMA 9 AV 570	1,125
P2	E9	0,03	CALIMA 3 AV 570	0,375
P2	E10	8,23	4 CALIMA 15 AV 570 + CALIMA 7 AV 570	8,375
Р3	E1	5,64	3 CALIMA 15 AV 570	5,625
Р3	E2	2,47	CALIMA 15 AV 570 + CALIMA 7 AV 570	2,5
Р3	E3	0,58	CALIMA 5 AV 570	0,625
Р3	E4	1,19	2 CALIMA 5 AV 570	1,25
P4	E1	0,63	CALIMA 5 AV 570	0,625
	TOTAL	52,06		53,25

Bomba de calor para ventilación y refrigeración

El equipo seleccionado deberá ser capaz de vencer la carga de ventilación y refrigeración de tal forma que elegiremos la siguiente bomba de calor de la **tabla 135**.

Tabla 135 Bomba de Calor seleccionada para el CASO 5 sin mejoras en el edificio

	IDA ILAC CATOR	ROMBA DE	POTENCIA	CAPACIDAD	POTENCIA	CAPACIDAD	CAUDAL DE PRESIÓN					
وا			FRIGORIFICA	FRIGORIFICA	CALORIFICA	CALORIFICA		ESTATICA				
		CALOR	DEMANDADA	EQUIPO	DEMANDADA	EQUIPO	AGOA LSTAT	LSTATICA				
3	돌	ENT	MODELO	KW	KW	KW	KW	L/H	MCA	СОР	EER	SALTO Tª
	EX	>	30RQSY120	103,09	113	38,39	116	22320	6,48	3,23	2,94	5º

Bomba hidráulica del circuito de dos tubos

El modelo seleccionado deberá de ser capaz de abastecer el caudal de las 3utas dedicadas a la refrigeración de los espacios y las 2 utas que tenemos para la ventilación de los mismos.

Tabla 136 Bomba hidráulica seleccionada para el CASO 5 sin mejoras en el edificio

0 -	ВОМВА	CAUDAL	ALTURA	CAUDAL PTO.	ALTURA PTO
CION	HIDRÁULICA	NECESARIO	NECESARIA	FUNC	FUNC
HIDRÁ ENTILA	MODELO	L/H	MCA	L/H	MCA
CIRCUITO FRIO + VI	EBARA ELINE 50- 250-2,2B	13765	14,46	14000	16

<u>ACS</u>

El circuito de ACS será por completo igual que en el caso anterior.

5.3.5.2. CASO5: Climatización FRIO POR CONDUCTOS Y CALOR POR RADIADORES ELECTRICOS en el edificio MEJORADO

Los equipos instalados serán los mismos que en el edificio base pero adaptadas a las demandas inferiores debido a la mejora de nuestro edificio.

Ventilación

Nuestro sistema de ventilación es exactamente el mismo que en el caso anterior ya que las renovaciones/hora son las mismas y las temperaturas de consigna también.

UTA encargada de la refrigeración

Las cargas son las mismas que en caso anteriores para el edificio mejorado e igualmente las repartiremos en 3 UTA de igual tamaño.

Radiadores eléctricos

Los equipos instalados son seleccionados entre los mismos 5 modelos del caso sin mejoras recogidos en la **tabla 133**, en función de las cargas internas solicitadas por el espacio del edificio.

Aquí al disminuir la demanda de carga térmica los aparatos a utilizar en cada espacio serán menores o se instalarán menor número de aparatos según convenga, todo ello recogido en la **tabla 137**.

Tabla 137 Cargas térmicas por espacio y características de los equipos utilizados para el CASO 5 con mejoras del edificio

		CARGA térmica		POTENCIA EQUIPO
planta	espacio	espacio (KW)	EQUIPO INSTALADO	INSTALADO (KW)
P1	E1	3,20	3 CALIMA 9 AV 570	3,375
P1	E3	10,52	5 CALIMA 15 AV 570+ CALIMA 9 AV 570	10,5
P1	E4	8,18	4 CALIMA 15 AV 570+CALIMA 5 AV 570	8,375
P2	E2	1,40	CALIMA 5 AV 570 + CALIMA 7 AV 570	1,5
P2	E6	0,59	CALIMA 5 AV 570	0,625
P2	E9	0,02	CALIMA 3 AV 570	0,375
P2	E10	6,25	3 CALIMA 15 AV 570 + CALIMA 5 AV 570	6,25
			CALIMA 15 AV 570 + CALIMA 9 AV 570 + CALIMA	
Р3	E1	3,23	3 AV 570	3,375
Р3	E2	1,37	CALIMA 5 AV 570 + CALIMA 7 AV 570	1,5
Р3	E3	0,49	CALIMA 5 AV 570	0,625
Р3	E4	0,70	CALIMA 7 AV 570	0,875
P4	E1	0,41	CALIMA 5 AV 570	0,625
	TOTAL	36,35		38

Bomba de calor para ventilación y refrigeración

El equipo seleccionado deberá ser capaz de vencer la carga de ventilación y refrigeración de tal forma que elegiremos la siguiente bomba de calor:

Tabla 138 Bomba de Calor seleccionada para el CASO 5 con mejoras en el edificio

0 -	BOMBA DE	POTENCIA	CAPACIDAD	POTENCIA	CAPACIDAD	CAUDAL	PRESIÓN			
FRIO	CALOR	FRIGORIFICA	FRIGORIFICA	CALORIFICA	CALORIFICA	DE AGUA	ESTATICA			
RIOR	CALOR	DEMANDADA	EQUIPO	DEMANDADA	EQUIPO	DE AGOA ESTATICA				
<u> </u>										SALTO
Y VE	MODELO	KW	KW	KW	KW	L/H	MCA	COP	EER	Τ <u>a</u>
DAD										
UNID	200000070	66.63	72.0	24.24	77.4	12471 2	F 70	2 12	2 72	5º
	30RQSY078	66,62	72,8	24,24	77,4	13471,2	5,78	3,12	2,72	J=

Bomba hidráulica circuito de dos tubos

El modelo seleccionado deberá de ser capaz de abastecer el caudal de las 3utas dedicadas a la refrigeración de los espacios y las 2 utas que tenemos para la ventilación de los mismos.

Tabla 139 Bomba hidráulica seleccionada para el CASO 5 con mejoras en el edificio

+	BOMBA	CAUDAL	ALTURA	CAUDAL PTO.	ALTURA PTO.
O FRIO	HIDRÁULICA	NECESARIO	NECESARIA	FUNC	FUNC
	MODELO	L/H	MCA	L/H	MCA
CIRCU DRÁULIC	EBARA ELINE 50-				
HIDR	250-2,2B	12145	15,52	14000	16

ACS

El circuito de ACS será por completo igual que en el caso anterior.

5.3.5.3. CASO5: Comparativa de resultados ENERGETICOS Y ECONOMICOS entre el edificio BASE y el MEJORADO en LIDER

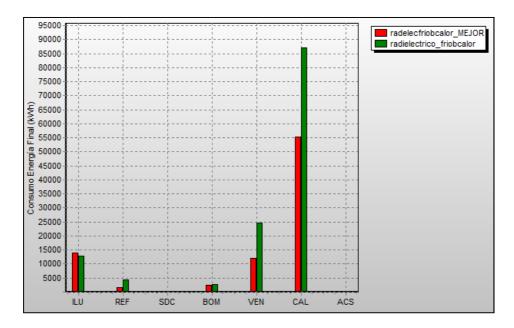


Ilustración 71 Comparativa de la energía consumida (Kwh) para el CASO 4 entre el edificio mejorado y sin mejorar

Si realizamos una comparativa entre ambos edificios vemos que en cuanto a iluminación son prácticamente los mismos consumos, a diferencia de que en el edificio mejorado cambiamos el índice de reflexión de los vidrios en las ventanas y por ello aumentan un poco las emisiones al ser más reflexivo el cristal.

Las demandas de refrigeración y calefacción al estar mejorada la envolvente de nuestro edificio disminuyen consiguiendo con ello que el caudal trasegado por el circuito hidráulico sea menor.

Al introducir radiadores eléctricos vemos como el consumo de electricidad es de casi 20 veces superior al de refrigeración con una bomba de calor.

Por considerar un perfil de ocupación menor en el edificio mejorado, disminuimos las renovaciones/hora y aquí con un ventilador de una potencia menor es donde conseguimos el mayor ahorro de energía.

Para realizar el balance económico cogeremos la misma línea de tendencia en cuanto al precio de la luz y además de pormenorizaremos la inversión en cada tipo de equipos que tenemos.

La diferencia de potencia entre los equipos a instalar no nos supondrá una gran diferencia de inversión inicial aunque si conseguiremos una vez amorticemos dichos equipos una reducción de un 35% del consumo energético en nuestro edificio.

Tabla 140 Análisis energético-económico de los distintos sistemas utilizados en el edificio

Kwh/año		SISTEMA RAD ELECTRICOS Y UTA BOMBA DE CALOR			periodo retorno	dif. inversión	media ahorro periodo	AHORRO EN LA VIDA UTIL DE LOS
KWII, GIIG	BASE	MEJORADO	REDUCCIÓN(%)	(kwh/año)	(años)	clima. total (€)	amortización (€/año)	EQUIPOS (15 AÑOS)
Iluminación	12904,1	14102	-9,28%	-1197,9	0,00	0,00€	0,00 €	-4.014,16 €
Refrigeración	4392,8	1549	64,74%	2843,8	12,07	8.077,00 €	669,33 €	1.452,57 €
Bombas	2781,5	2499,6	10,13%	281,9	0,00	0,00€	0,00€	944,65 €
Ventiladores	24680,9	12141,3	50,81%	12539,6	0,11	140,00 €	1.268,51€	41.880,20 €
Calefacción	87142,6	55446,7	36,37%	31695,9	1,34	4.914,00 €	3.653,69 €	101.298,96 €
ACS	4,7	2,4	48,94%	2,3	0,00	0,00€	0,00€	7,71 €
TOTAL	131906,6	85741	35,00%	46165,6	2,26	13.131,00€	5.798,68 €	141.569,93 €

5.3.6.1. CASO6: Climatización FRIO Y CALOR POR MULTISPLIT en el edificio BASE

Este último sistema está basado en equipos multisplit para la climatización del edificio mientras que seguimos usando 2 utas para la ventilación, de manera que está formado por:

- 2 UTA para la ventilación
- Circuito de dos tubos con bomba de calor y bomba hidráulica para el circuito primario de ventilación
- Circuito de ACS con su correspondiente aportación solar
- Equipos multisplit para las distintas zonas, elegidos en función de la demanda del espacio

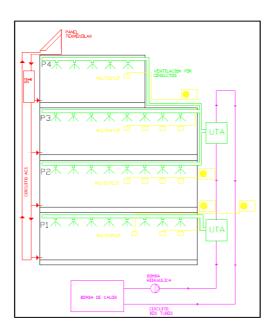


Ilustración 72 Esquema CASO 6: Frio y calor por multisplit, con ventilación independiente

Ventilación

Nuestro sistema de ventilación es exactamente el mismo que en los cinco casos anteriores ya que las renovaciones/hora son las mismas y las temperaturas de consigna también.

Equipos multisplit

Los equipos interiores los hemos seleccionado entre los modelos de la **tabla 141**. Dado que el fabricante no nos entrega las potencias de los ventiladores de estos equipos hemos supuesto para realizar nuestro análisis que es similar a la potencia de los ventiladores de los fancoil ya que las cargas y las pérdidas de carga son las mismas.

Tabla 141 Unidades internas de los equipos multisplit seleccionados para el CASO 6 sin mejoras en el edificio

	DESCRIPCIÓN EQUIPO	CARGA FRIO (Kw)	CARGA CALOR (Kw)
AS ≺	PLA-RP71BA	7	8
INTERNAS RACIÓN Y ACCIÓN	SLZ-KA35VA	3,5	4
111 .	MSZ-GE22VA	2,2	3,3
JNIDAD REFRIGE CALEF	SLZ-KA50VA	4,6	5
A B O	MSZ-SF20VA	2	2,2
	MSZ-SF15VA	1,5	1,7

Mientras que las unidades internas las hemos seleccionado distintos tamaños el equipo exterior hemos seleccionado un mismo modelo (tabla 142) que nos puede dar una combinación desde 2x1 hasta una combinación de 8x1.

Tabla 142 Unidad externa de los equipos multisplit seleccionados para el CASO 6 sin mejoras en el edificio

EQUIPO EXTERIOR	CARGA FRIO (Kw)	CARGA CALOR (Kw)	CAUDAL DE AIRE (m³/h)
MXZ-8A14VA	14	16	6000

Combinándolos para satisfacer las cargas llegamos a la combinación de la tabla 143.

Tabla 143 Cargas de climatización por espacio y características de los equipos utilizados para el CASO 6 sin mejoras del edificio

EXTERNA REFRIGERACIÓN Y CALEFACCIÓN	planta	espacio	CARGA FRIO PICO (KW)	CARGA TERMICA PICO (KW)	DESCRIPCIÓN EQUIPO INTERIOR SELECCIONADO	CARGA FRIO EQUIPO INT SELECCIONADO (Kw)	CARGA CALOR EQUIPO INT SELECCIONADO (Kw)	DESCRIPCIÓN EQUIPO EXTERIOR SELECCIONADO
۱ ۲	P1	E3	7,15	15,52	PLA-RP71BA	2X7	2X8	MXZ-8A14VA
CIÓN	P1	E1	2,17	4,07	SLZ-KA35VA	1X3,5	1X4	
ERA	P1	E4	4,21	10,19	SLZ-KA35VA	3X3,5	3X4	MXZ-8A14VA
FRIG	P2	E2	2,57	2,53	SLZ-KA35VA	1X3,5	1X4	
A RE	P2	E6	1,70	0,99	MSZ-GE2250VA	1X2,2	1X3,3	
ERN	P2	E9	0,15	0,03	MSZ-GE2250VA	1X2,2	1X3,3	
	P2	E10	8,41	8,23	SLZ-KA35VA //// SLZ-KA50VA	1X3,5 /// 1X4,6	1X4 /// 1X5	MXZ-8A14VA
AS Y	Р3	E1	5,79	5,64	SLZ-KA35VA //// SLZ-KA25VA	1X3,5 /// 1X2,5	1X4 /// 1X3	
ERN	Р3	E2	2,42	2,47	MSZ-GE2550VA	1X2,5	1X3,2	
	Р3	E3	1,27	0,58	MSZ-SF15VA	1X1,5	1X1,7	
UNIDAD INTERNAS Y	Р3	E4	1,70	1,19	MSZ-SF20VA	1X2	1X2,2	
N N	P4	E1	1,03	0,63	MSZ-SF15VA	1X1,5	1X1,7	MXZ-8A14VA
		TOTAL	31.42	36.54				

Bomba de calor para ventilación

El equipo seleccionado deberá ser capaz de vencer la carga de ventilación de tal forma que elegiremos la siguiente bomba de calor:

Tabla 144 Bomba de Calor seleccionada para el CASO 6 sin mejoras en el edificio

	BOMBA DE	POTENCIA	CAPACIDAD	POTENCIA	CAPACIDAD	CAUDAL	PRESIÓN			
N N	CALOR	FRIGORIFICA	FRIGORIFICA	CALORIFICA	CALORIFICA	DE AGUA	ESTATICA			
TER	CALOR	DEMANDADA	EQUIPO	DEMANDADA	EQUIPO	DL AGUA	LSTATICA			
EX										SALTO
DAD	MODELO	KW	KW	KW	KW	L/H	MCA	COP	EER	T₫
 = >										
	30RQSY078	68	72,8	38,4	77,4	13464	5,78	3,12	2,72	5º

Bomba hidráulica circuito de dos tubos

El modelo seleccionado deberá de ser capaz de abastecer el caudal de las 2 UTA dedicadas a la ventilación de los espacios.

Tabla 145 Bomba hidráulica seleccionada para el CASO 6 sin mejoras en el edificio

		BOMBA	CAUDAL	ALTURA	CAUDAL PTO.	ALTURA PTO.
0 8 0		HIDRÁULICA	NECESARIO	NECESARIA	FUNC	FUNC
l ⊨ ⊒	Ä	MODELO	L/H	MCA	L/H	MCA
1 % X	VENTII	EBARA ELINE 50- 250-3A	6478	15,49	8000	16

<u>ACS</u>

El circuito de ACS será por completo igual que en el caso anterior.

5.3.6.2. CASO6: Climatización FRIO Y CALOR POR MULTISPLIT en el edificio MEJORADO

Una vez repasada la envolvente de nuestro edificio y la iluminación, vamos a introducir los sistemas de climatización y ventilación, que en este primer caso estará dividido en:

- 2 UTA para la ventilación
- Circuito de dos tubos con bomba de calor y bomba hidráulica para el circuito primario de ventilación
- Circuito de ACS con su correspondiente aportación solar
- Equipos multisplit para las distintas zonas, elegidos en función de la demanda del espacio

<u>Ventilación</u>

Nuestro sistema de ventilación es exactamente el mismo que en casos anteriores para el edificio mejorado ya que las renovaciones/hora son las mismas y las temperaturas de consigna también.

Equipos multisplit

Los equipos interiores los hemos seleccionado entre los modelos de la tabla 146.

Tabla 146 Unidades internas de los equipos multisplit seleccionados para el CASO 6 sin mejoras en el edificio

10	DESCRIPCIÓN EQUIPO	CARGA FRIO (Kw)	CARGA CALOR (Kw)
RNAS SN Y SN	PLA-RP71BA	7	8
INTERN/ RACIÓN ACCIÓN	SLZ-KA35VA	3,5	4
_ 111 17	MSZ-GE22VA	2,2	3,3
UNIDAD REFRIGI CALEF	SLZ-KA50VA	4,6	5
	MSZ-SF15VA	1,5	1,7

Mientras que las unidades internas las hemos seleccionado distintos tamaños el equipo exterior hemos seleccionado un mismo modelo (tabla 147) que nos puede dar una combinación desde 2x1 hasta una combinación de 5x1.

Tabla 147 Unidad externa de los equipos multisplit seleccionados para el CASO 6 sin mejoras en el edificio

EQUIPO EXTERIOR	CARGA FRIO (Kw)	CARGA CALOR (Kw)	POTENCIA VENTILADOR (Kw)	CAUDAL DE AIRE (m³/h)
MXZ-5A100VA	10	12	2,93	3558

Combinándolos para satisfacer las cargas llegamos a la combinación de la tabla 148.

Tabla 148 Cargas de climatización por espacio y características de los equipos utilizados para el CASO 6 con mejoras del edificio

	-							
Z			CARGA	CARGA		CARGA FRIO	CARGA CALOR	DESCRIPCIÓN
<u> </u>	planta	espacio	FRIO	TERMICA	DESCRIPCIÓN EQUIPO INTERIOR	EQUIPO INT	EQUIPO INT	EQUIPO
AC.	pianta	espacio	PICO	PICO (KW)	SELECCIONADO	SELECCIONADO	SELECCIONADO	EXTERIOR
=			(KW)	PICO (KW)		(Kw)	(Kw)	SELECCIONADO
\ \	P1	E3	5,04	10,52	PLA-RP71BA//// MSZ-GE2250VA	1X7/// 1X2,2	1X8/// 1X3,3	MXZ-5A100VA
ión	P1	E1	1,66	3,20	MSZ-GE2250VA	1X2,2	1X3,3	
ERAC	P1	E4	3,53	8,18	MSZ-GE2250VA //// SLZ-KA50VA	1X2,2/// 1X4,6	1X3,3/// 1X5	MXZ-5A100VA
RIGI	P2	E2	1,49	1,40	MSZ-SF15VA	1X1,5	1X1,7	
A REF	P2	E6	1,37	0,59	MSZ-SF15VA	1X1,5	1X1,7	
EXTERNA REFRIGERACIÓN Y CALEFACCIÓN	P2	E9	0,04	0,02	MSZ-SF15VA	1X1,5	1X1,7	
	P2	E10	6,57	6,25	SLZ-KA35VA	2X3,5	2X4	MXZ-5A100VA
AS Y	Р3	E1	3,49	3,23	SLZ-KA35VA	1X3,5	1X4	
LERN	Р3	E2	1,44	1,37	MSZ-SF15VA	1X1,5	1X1,7	
	Р3	E3	1,22	0,49	MSZ-SF15VA	1X1,5	1X1,7	
UNIDAD INTERNAS Y	Р3	E4	1,38	0,70	MSZ-SF15VA	1X1,5	1X1,7	
5	P4	E1	0,84	0,41	MSZ-SF15VA	1X1,5	1X1,7	MXZ-5A100VA
		TOTAL	28.07	36.35				

Bomba de calor para ventilación

El equipo seleccionado deberá ser capaz de vencer la carga de ventilación de tal forma que elegiremos la siguiente bomba de calor:

Tabla 149 Bomba de Calor seleccionada para el CASO 6 con mejoras en el edificio

~	BOMBA DE	POTENCIA	CAPACIDAD	POTENCIA	CAPACIDAD	CAUDAL	PRESIÓN			
8 Z	CALOR	FRIGORIFICA	FRIGORIFICA	CALORIFICA	CALORIFICA	DE	ESTATICA			
T번 등	CALOR	DEMANDADA	EQUIPO	DEMANDADA	EQUIPO	AGUA	ESTATICA			
AD EX	MODELO	KW	KW	KW	KW	L/H	MCA	СОР	EER	SALTO Tª
N P										
⊃	30RQSY045	43,1	43,7	24,24	46,4	8064	5,03	3,31	3,04	5º

Bomba hidráulica circuito de dos tubos

El modelo seleccionado deberá de ser capaz de abastecer el caudal de las 2 UT A dedicadas a la ventilación de los espacios.

Tabla 150 Bomba hidráulica seleccionada para el CASO 6 con mejoras en el edificio

	BOMBA	CAUDAL	ALTURA	CAUDAL PTO.	ALTURA PTO.
0 0 <u>N</u>	HIDRÁULICA	NECESARIO	NECESARIA	FUNC	FUNC
UITC VULIC	MODELO	L/H	MCA	L/H	MCA
CIRCUITO HIDRÁULICO VENTILACIO	EBARA ELINE 50-				
	250-2,2B	4858	14,73	6000	16

ACS

El circuito de ACS será por completo igual que en el caso anterior.

5.3.6.3. CASO6: Comparativa de resultados ENERGETICOS Y ECONOMICOS entre el edificio BASE y el MEJORADO en LIDER

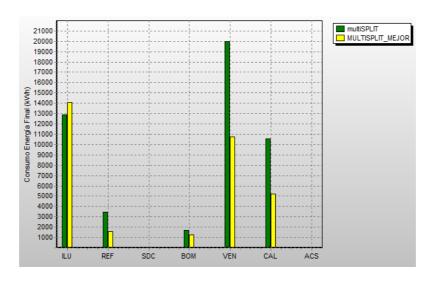


Ilustración 73 Comparativa de la energía consumida (Kwh) para el CASO 6 entre el edificio mejorado y sin mejorar

Si realizamos una comparativa entre ambos edificios vemos que en este sistema de climatización el consumo en bombeos es donde es menor debido a que el caudal trasegado de agua solo es el necesario para alimentar a las UTA encargadas de la ventilación.

Mientras que el consumo en ventiladores sigue la misma reducción que en el caso de los fancoil, la reducción en refrigeración si se hace más significativa debido a que los consumos en este sistema son más elevados.

Tabla 151 Análisis energético-económico de los distintos sistemas utilizados en el edificio

Kwh/año	SISTEMA MULTISPLIT Y VENTILACIÓN BOMBA DE CALOR BASE MEJORADO REDUCCIÓN(%)			ahorro total (kwh/año)	periodo retorno (años)	dif. inversión clima. total (€)	media ahorro periodo amortización (€/año)	AHORRO EN LA VIDA UTIL DE LOS EQUIPOS (15 AÑOS)
Iluminación	12904,1	14102	-9,28%	-1197,9	0,00	0,00€	0,00 €	-4.014,16 €
Refrigeración	3478,6	1598,5	54,05%	1880,1	9,44	3.655,00 €	387,18 €	2.645,22 €
Bombas	1679,6	1259,9	24,99%	419,7	0,00	0,00€	0,00€	1.406,41 €
Ventiladores	19996,4	10729,9	46,34%	9266,5	0,12	140,00€	1.204,84 €	30.912,04 €
Calefacción	10557,1	5209,2	50,66%	5347,9	4,53	3.655,00 €	807,14 €	14.265,81 €
ACS	4,7	2,4	48,94%	2,3	0,00	0,00€	0,00€	7,71€
TOTAL	48620,5	32901,9	32,33%	15718,6	3,42	7.450,00€	2.177,49 €	45.223,03€

5.4. Análisis del consumo energético del edificio y propuestas de mejora.

Una vez comparados lo que nos supondría el instalar los equipos con el edificio mejorado y el edificio sin mejorar vamos a analizar para el edificio que realizamos las mejoras, dado que esta consideramos que era la mejor solución, cuál sería la instalación de equipos más conveniente para satisfacer las demandas de climatización y ventilación.

Tabla 152 Energía consumida (Kwh/año) en el edificio mejorado para los 6 distintos casos analizados

	COMPARATIVA DISTINTOS SISTEMAS EN EL EDIFICIO MEJORADO							
Kwh/año	MULTISPLIT	RAD AGUA	SUELO RADIANTE	FANCOIL	SUELO RAD BC	RAD ELECTRICOS		
	WIOLITSPETT	CAL CONV	CALD COND	ВС	SOLLO RAD BC	KAD ELECTRICOS		
Iluminación	14102	14102	14102	14102	14102	14102		
Refrigeración	1598,5	1545,5	1582,2	1397,8	1712,2	1549		
Bombas	1259,9	2692,8	3382,4	7814	4790,3	2499,6		
Ventiladores	10729,9	12141,3	12141,3	10609,4	12141,3	12141,3		
Calefacción	5209,2	3823,1	3715,4	1957,5	3147,4	55446,7		
ACS	2,4	2,4	2,4	2,4	2,4	2,4		
TOTAL	32901,9	34307,1	34925,7	35883,1	35895,6	85741		

De las seis posibles soluciones estudiadas recogidas en la **tabla 152** podemos descartar del análisis que se va a plantear el sistema de Radiadores eléctricos por el alto consumo de potencia en calefacción al cabo del año respecto al resto de casos.

Las cinco alternativas restantes utilizan el mismo sistema de iluminación artificial y las mismas ventanas y por tanto los consumos son idénticos en iluminación.

En cuanto al consumo de refrigeración de los seis sistemas, a excepción de los multisplit que cada unidad tiene su propio circuito de refrigeración, de los otros cinco sistemas cuatro lo hacen por medio de bomba de calor los cuales llevan el frio producido a 3 UTA, todas ellas de igual potencia, que son las encargadas de compensar la carga de refrigeración en los espacios. El otro sistema que utiliza bomba de calor pero que en lugar de utilizar UTA para distribuir la carga por los espacios lo hace a través de fancoil es el que menor consumo de energía necesita ya que es el equipo que mejor se adapta a las necesidades de cada espacio. Aún así vemos que las diferencias de consumos de energía no distan más de un 10,2% entre el que más y el que menos potencia consume.

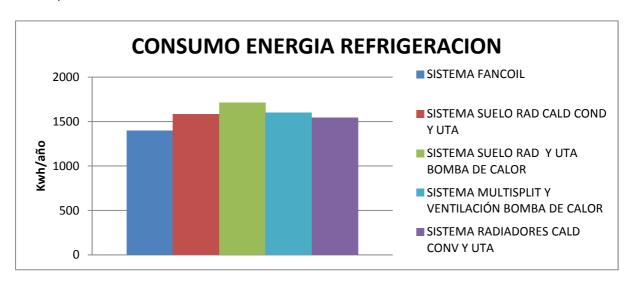


Ilustración 74 Consumo de energía (Kwh/año) en Refrigeración para los distintos sistemas analizados

En cuanto a los consumos de calefacción como puede verse en la **ilustración 75**, los sistemas de Fancoil son los que mejor se adaptan a la demanda de calefacción en cada espacio y por tanto los que con la misma bomba de calor que para el suelo radiante nos da un menor consumo de calefacción.

El consumo de calefacción produciéndolo con una caldera de condensación (η del 110%) debería de ser menor que el consumo en calefacción de la caldera convencional (η del 90%) para radiadores de agua caliente, ya que las temperaturas de consigna son de 45° y 80°, con unos saltos de temperatura de 10° y 20° respectivamente, pero el programa de simulación CALENER GT no tiene en cuenta estos datos y da prácticamente los mismos consumos de calefacción.

El sistema multisplit será el que mayor potencia de calefacción demandará ya que utiliza un refrigerante que tiene un poder calorífico inferior al agua.

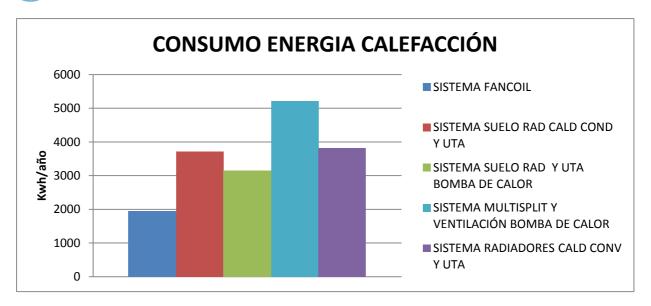


Ilustración 75 Consumo de energía (Kwh/año) en Calefacción para los distintos sistemas analizados

En cuanto al consumo de bombas es donde tenemos el mayor inconveniente en los sistemas de fancoil porque aunque teníamos los menores consumos en calefacción y refrigeración, al tener un salto de temperaturas inferior (5°) al del suelo radiante (10°), para compensar las mismas cargas necesitamos un mayor caudal y por tanto tendremos más perdidas en los equipos lo que se traduce en un mayor consumo de energía hidráulica.

El consumo se reduce en los radiadores de agua caliente porque las pérdidas en estos equipos son menores al trabajar con saltos de temperatura mayores (20°) y por tanto caudales menores.

El sistema multisplit al no tener circuito hidráulico de refrigeración ni de calefacción, solo consumirá respecto al consumo del circuito de ventilación que es el mismo que en el resto de casos.

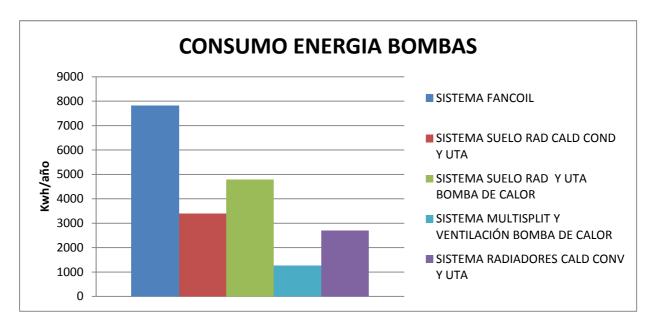


Ilustración 76 Consumo de energía (Kwh/año) en Bombas para los distintos sistemas analizados

El consumo de los ventiladores es idéntico en los tres casos que utilizan UTA tanto para la refrigeración como para la ventilación puesto que son las mismas cargas.

Los sistemas que solo utilizan UTA para la ventilación el consumo de ventilación se reduce considerablemente puesto que aunque sus equipos tienen pequeños ventiladores estos son de mucha menor potencia pues no tienen que compensar las pérdidas de carga por filtros en las UTA de refrigeración ni las pérdidas de carga en conductos.

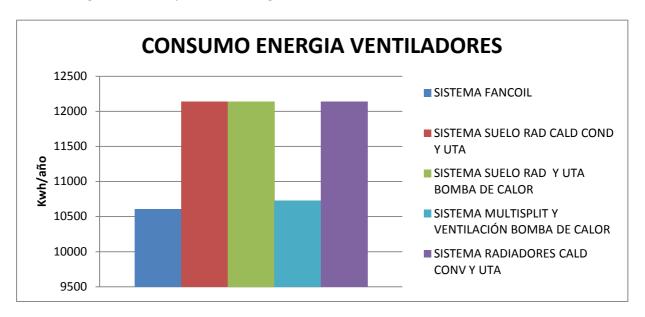


Ilustración 77 Consumo de energía (Kwh/año) en Ventiladores para los distintos sistemas analizados

Si sumamos el desglose de los consumos de energía hechos al final vemos que la mejor solución energéticamente son los equipos MULTISPLIT ya que aunque el consumo de refrigeración era de los más elevados y el más elevado de calefacción, compensamos estos con el consumo de energía en bombeos y ventiladores más bajo.

El sistema de Fancoil que era el mejor a la hora del consumo de energía en calefacción y refrigeración al tener un elevado consumo de la bomba al final obtenemos el mayor consumo energético.

De los otros tres sistemas que nos quedan tenemos que el consumo por ventiladores es el mismo, y las diferencias principales radican en la calefacción y bombeos, pero sin grandes diferencias.

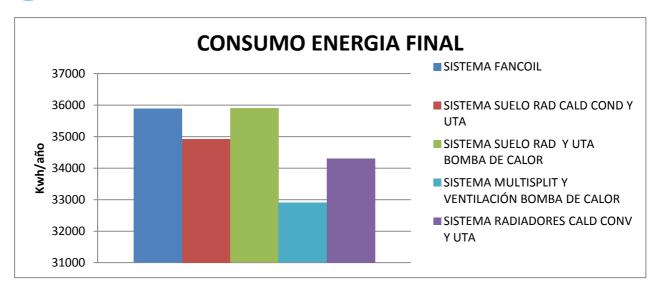


Ilustración 78 Consumo de energía (Kwh/año) Total para los distintos sistemas analizados

Desde un punto de vista de calificación energética tenemos que la mejor calificación la obtenemos con el equipo MULTISPLIT ya que obtenemos una calificación energética A

sistema instalado	índice global	calificación energética
Fancoil	0,61	В
Suelo radiante C.cond.	0,47	В
Radiadores C.cond	0,47	В
Suelo radiante B.calor	0,49	В
Radiadores eléctricos	0,82	С
Multisplit	0,35	А

Tabla 153 Calificaciones energéticas ante los distintos sistemas analizados

Desde un punto de vista de inversión inicial a realizar el sistema multisplit será en el que deberemos de realizar una menor inversión comparándolo con el sistema de radiadores de agua caliente ,el cuál necesitamos 18675 € mas para llevar a cabo la instalación.



Ilustración 79 Inversión realizada en los equipos de los distintos sistemas de climatización del edificio

Por tanto desde un punto de vista energético, obtenemos una calificación A y desde un punto de vista económico es el que menos inversión supone y es el que más ahorro de energía al año produce, y por tanto se convierte en la mejor solución a la hora de climatizar nuestro edificio.

6. Conclusiones.

Comenzaremos haciendo alusión a la parte que primero analizamos. En LIDER vimos como modificando los espesores de la capa de aislante nos modificaba la demanda de cargas del edificio. La solución que adoptamos fue por cambiar todos los muros de una capa de 2cm de aislante que teníamos inicialmente a una de 10cm por considerarla como la más idónea solución consiguiendo con ello un descenso en la demanda de 4.669 Kwh/año y un ahorro suponiendo la vida útil del edificio de 50 años, de 96.360,36€ con solo una diferencia de inversión de 4.820€.

Otro de los aspectos que tenía una gran influencia en la demanda del edificio eran los puentes térmicos que se producían en la envolvente del edificio, provocando con ello grandes pérdidas. Con la solución que adoptamos para corregirlos conseguimos un descenso en la demanda de 1556,5 Kwh/año y un ahorro de 30.647€ con solo una diferencia de inversión de 843€ respecto al caso inicial del que partíamos.

Pero la mayor demanda de energía la conseguimos con el control de ventilación con sondas de CO2 reduciendo 14.006,9 Kwh/año con una inversión inicial de 13.369,3 €, consiguiendo en los 10 años de vida útil de los equipos un ahorro total, es decir, recuperada la inversión, de 14.000€.

Por tanto de esta primera parte cabe destacar la importancia en el ahorro que hemos comprobado nos supone el aislar la envolvente de nuestro edificio con una capa de aislante con el suficiente espesor y el intentar mitigar los puentes térmicos por el ahorro que nos suponen sin apenas inversión.

Respecto a la ventilación, dado la fuerte exigencia que impone el RITE, hemos comprobado que se hace necesaria la instalación de equipos que permitan su control siendo los más recomendables las sondas de CO2 en comparación con la instalación de sensores de presencia.

En LIDER nos aseguramos la instalación de las luminarias lo más eficientes posibles para poder cumplir con los valores de de eficiencia energética límite en recintos interiores de un edificio que nos exige el RITE. En CALENER GT fue donde analizamos la implantación de fotosensores para poder ayudarnos de la luz natural en los espacios que eran posibles y conseguir con ello un ahorro de 4.610,2 Kwh/año lo que se traducía en un ahorro de 7750,5€ para una vida útil de los equipos de 10 años con solo una inversión uncial de 1257,8€ incluida en el ahorro.

De esta ultima parte analizada, los consumos más importantes de nuestro edificio en el caso de la solución adoptada (CASO 6) no son los referentes a calefacción o refrigeración como en un primer momento cabria pensar. Como se recoge en la **ilustración 80**, la iluminación después de introducir luminarias de bajo consumo e introducir fotosensores para controlar la iluminación sigue siendo el mayor consumo de energía que tenemos en nuestro edificio.

El consumo de energía en el caso de los ventiladores , en este caso solo hay instalados los necesarios para cumplir con las exigencias del RITE en cuanto a ventilación y los propios de los equipos multisplit, pese a ver introducido sistemas de control mediante sondas de CO2 sigue siendo el segundo mayor porcentaje de energía.

Ilustración 80 Porcentajes de consumo de de energía en las instalaciones en el edificio en el CASO 6

Estos consumos se acentúan si como muestra la **ilustración 81** la climatización conlleva la instalación de circuitos hidráulicos y el consumo de energía por parte de las bombas.

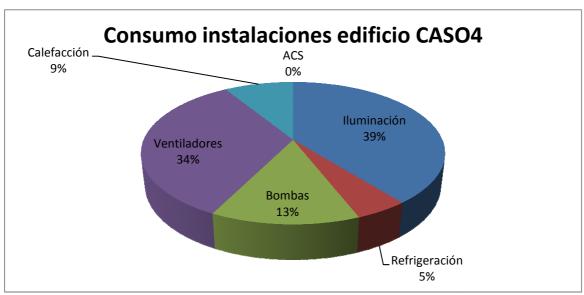


Ilustración 81 Porcentajes de consumo de energía en las instalaciones en el edificio en el CASO 4

Por tanto podemos concluir que aun siendo una parte importante en el consumo energético de un edificio del sector terciario los consumos referentes a refrigeración y calefacción, son mucho menores en comparación con el consumo en iluminación y equipos de ventilación.

Para todos estos análisis hemos utilizado los programas de simulación LIDER y CALENER GT, los cuales son los reconocidos por el Ministerio de Industria Turismo y Comercio para la certificación energética de edificios de nueva construcción, pero tienen restricciones como en el caso de LIDER en cuanto al horario o temperaturas de consigna. En CALENER GT hemos comprobado que en el caso de utilizar caldera de condensación en lugar de caldera convencional con su consiguiente mejora de rendimiento no se ve reflejada en los consumos de energía en calefacción que nos ofrece el programa.

Por tanto estos programas de simulación nos ofrecen unos resultados que podemos aceptar como validos, pero debemos analizar estos resultados aplicando nuestros conocimientos teóricos y teniendo en cuenta las simplificaciones que los software realizan.

7. Bibliografía

- RITE
- DTIE 7.03 Entrada de datos a los programas LIDER y CALENER VYP
- DTIE 7.04 Entrada de datos al programa CALENER GT
- Manual de Usuario de LIDER
- Manual de Usuario, Referencia, Técnico y Curvas de CALENER GT
- Documento básico HE
- Guía técnica: Condiciones climáticas exteriores de proyecto
- Guía técnica: Aprovechamiento de la luz natural en la iluminación de edificios
- Guía técnica: Ahorro y recuperación de energía en instalaciones de climatización
- Guía técnica: Rehabilitación de la Envolvente Térmica de los Edificios
- Guía técnica: Procedimientos y aspectos de la simulación de instalaciones térmicas en edificios
- Guía técnica: Iluminación Eficiente
- UNE 12464.1 Norma Europea sobre Iluminación para Interiores
- UNE-EN 13779 Ventilación de los edificios no residenciales
- UNE-EN 12207 Puertas y ventanas. Permeabilidad al aire. Clasificación
- UNE 100014 IN Climatización. Bases para el proyecto. Condiciones exteriores de cálculo
- Listado de precios de los materiales de construcción obtenidos de: http://www.lacasadelaconstruccion.es/listado.php?ref=86

- Listado de precios de los equipos multisplit obtenidos de: http://www.aire-acondicionado-mitsubishi-electric.com/aire%20acondicionado%20multi%20split%20MSZ-FD25VA%20BLANCA.htm