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ABSTRACT: A 1-D Koch fractal electromagnetic bandgap (KFEBG) microstrip structure is

proposed. It is conceived by replacing the conventional holes etched in the ground plane of a

microstrip line by level-1 Koch fractal cell geometries, which have been obtained from a

hexagonal shape. In the case of the conventional 1-D EBG microstrip structure with periodic

hole pattern, the design is limited to ar /  ratios lower than 0.45, while the proposed pattern

allows achieving ar /  ratios higher than 0.5. It is shown the conventional EBG and KFEBG

microstrip structures behave as a stopband filter as 45.0/ ≤ar . However, for 55.0/ =ar ,

the measurements have confirmed that the 1-D KFEBG microstrip structure presents a ultra-

wide stopband and, therefore, the proposed structure with 5.0/ >ar  can be useful for the

design of low-pass filters.
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1. INTRODUCTION

The concept of photonic bandgap (PBG) structures was first introduced in Optics [1]. Later, it

was scaled to microwave and millimeter-wave frequencies and the structures were designated

as electromagnetic bandgap (EBG) [2]. The EBG structures are periodic structures, which

exhibit a band of frequencies in which the electromagnetic propagation is not allowed. These

structures can be used in numerous applications [3].

In microstrip technology, two-dimensional (2-D) structures with a periodic pattern

etched in the ground plane were first proposed [4, 5]. The periodic pattern was composed by

holes, which created a stopband of the microwave signal transmission at the resonance

frequency of the structure. The 2-D structure was then reduced to one-dimensional (1-D)

structure, because the field levels are confined around the strip conductor and negligible

outside of it [6-8]. In addition of the structure reduction to one-dimension, different periodic

patterns with square, circular, triangular and sinusoidal shapes were used. All the designs with

these different periodic patterns are limited to ar /  ratios lower than 0.5 and the frequency

responses for ar /  ratios higher than 0.5 are unknown.

To solve this limitation, it is necessary to use a geometrical shape different from the

above periodic patterns. Recently, fractal techniques have been used for the design of

antennas and filters [9-15]. These fractal structures have a self-similar shape, which can be

useful for the development of new patterns. Among these fractal techniques, no previous

work has presented a frequency response with a ar /  ratio higher than 0.5.

The aim of this work consists in the design of a 1-D EBG microstrip structure, which

allows a periodic pattern in the ground plane with ar /  ratios higher than 0.5. This kind of 1-

D EBG microstrip structure is achieved by considering a periodic pattern based on level-1

Koch fractal element geometries, which have been obtained from a hexagonal shape. Two

Koch fractal cell geometries were generated by using a method similar to the method of
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construction of fractal curves. By combining the two Koch fractal cells, several 1-D Koch

fractal EBG microstrip structures with different ar /  ratio values were made. The simulated

and measured results are compared with conventional EBG microstrip structures for ar /

ratios lower than 0.5. Then, the simulation and experimental results of the 1-D Koch fractal

EBG microstrip structure with ar /  = 0.55 are discussed.

2. KOCH FRACTAL EBG MICROSTRIP STRUCTURE

The conventional 1-D EBG microstrip structure is realized by etching a conductor microstrip

line having a width of 50 Ω on the top plane and several holes on the ground plane, as shown

in Figure 1. The radius r of all the holes and the distance a between the centre of the holes are

constant. The conventional 1-D EBG microstrip structure exhibits a bandgap when the Bragg

reflection condition is satisfied [5-8]. The center frequency ( 0f ) of the stopband is obtained

from the distance a between the centre of the holes. At 0f , the guided wavelength ( gλ ) is

twice the period a. The design of conventional 1-D EBG microstrip structures is limited to

ar /  ratios lower than 0.45 [8].

In order to have ar /  ratios higher than 0.5, we have developed a new pattern based on

Koch fractal curves. Figure 2 shows the construction process of the Koch curves up to the

second iteration. The first curve, called 0I , is a straight line. The next fractal iteration 1I  is

obtained by applying a scale factor of 1/3. Thus, the initial straight line is partitioned into

three equal parts. The segment at the middle is replaced with two others of the same length.

The next fractal iterations are obtained iteratively. In each case, the overall length of the curve

is d, while the total length of the wire is ( )ndl 3/4⋅= , where n is the nth fractal iteration [9,

13].

The first Koch fractal iteration with a scale factor of 1/3 was applied to a hexagonal
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shape. Two possible level-1 Koch fractal cell geometries were obtained. The two cells are

shown in Figure 3 (the circles in dashed lines are a fictitious representation). Both Koch

fractal cells present the same radius r. Thus, by combining and by etching the Koch fractal

cells on the ground plane instead of the holes as in Figure 4, it is possible to achieve 1-D

Koch fractal electromagnetic bandgap (KFEBG) microstrip structures with ar /  ratios lower

and higher than 0.5. The top view of the KFEBG microstrip structure is the same than the

Figure 1(a).

3. ANALYSIS OF THE KFEBG MICROSTRIP STRUCTURE

Electromagnetic (EM) simulations and measurements have been carried out in order to

compare the performance of the 1-D KFEBG microstrip structure with the conventional 1-D

EBG (periodic holes) microstrip structure for different ar /  ratios lower than 0.5. In order to

not overload the figures, only EM simulation results of the conventional 1-D EBG microstrip

structure are presented, since the measurements of such structure with different ar /  ratios

have already been measured in previous works [6, 7]. Then, the simulated and measured

results of the 1-D KFEBG microstrip structure with 55.0/ =ar  have been analyzed. The

RO3010 material of Rogers with a dielectric constant 2.10=rε  ( 0023.0tg =δ  at 10 GHz),

substrate thickness h = 0.635 mm, and copper thickness t = 17.5 µm has been used as

substrate for all KFEBG structures. The size of the microstrip was 40 mm wide and 147 mm

long. The different structures have been designed with the purpose to have an operation

frequency of 4.2 GHz with the periodic value 1.14=a  mm ( ag 2=λ , where gλ  is the guided

wavelength in the unperturbed microstrip line) [6-8]. The total number of etched cells (holes

or Koch fractal elements) has been set to N = 9 as in [6, 7]. At the top plane, the width of the

conductor line was 594.0=W  mm, and it corresponds to a Ù 50  conventional microstrip

line. The prototypes have been fabricated by means of a numerical milling machine. EM
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simulations and measurements have been obtained by using a commercially finite element

simulator (HFSS) and a vector network analyzer (Agilent E5071B, 300 kHz – 8.5 GHz),

respectively.

The simulated and measured results of the conventional 1-D EBG and 1-D KFEBG

microstrip structures are shown in Figure 5 for two ar /  ratios: 25.0/ =ar  and 45.0/ =ar .

As can be seen in Figure 5(a), the simulated conventional 1-D EBG microstrip structure with

25.0/ =ar  exhibits the characteristic of multi-stopband. The first stopband is centered at 4.2

GHz with a bandwidth of 2.1 GHz (below 20 dB), and the center frequency of the second

stopband is twice as much of the center frequency of the first stopband. As the radius of the

hole is increased ( 45.0/ =ar ), the stopband becomes larger (Figure 5(b)). The results

obtained from the proposed 1-D KFEBG microstrip structure present a similar behavior with

a smaller stopband. It seems that the tendency as increases the ar / ratio is to suppress the

passband between both stopbands and to achieve a wider stopband. The simulated and

measured results of the 1-D KFEBG microstrip structures ( 25.0/ =ar  and 45.0/ =ar ) are in

good agreement, except for the attenuation depth of the stopband with 45.0/ =ar  (Figure

5(b)). The difference is due to the substrate and metallic losses (they were considered lossless

during the simulations), the performance of the connectors, the repeatability errors due to the

assemblage of the different 1-D KFEBG microstrip structures and the limitation of the S-

parameter measurements with the vector network analyzer.

Figure 6 shows the simulated and measured insertion losses 21S  of the 1-D KFEBG

microstrip structure for 55.0/ =ar . In this design, the passband involved between both

stopbands in the results with the previous structures ( 25.0/ =ar  and 45.0/ =ar ) is

suppressed. Moreover, it achieves a wide stopband and a high attenuation, which can be

useful for the design of low-pass filter. The simulated and measured results are similar, except



6

for the attenuation depth of the stopband. The discrepancy is due to the same causes that for

the measurements of the 1-D KFEBG microstrip structure with 45.0/ =ar .

4. CONCLUSION

In this paper, a periodic pattern based on Koch fractal has been applied to a 1-D

electromagnetic bandgap (EBG) microstrip structure. This periodic Koch fractal pattern,

etched in the ground plane of the microstrip line, allows ar /  ratios higher than 0.45, which is

the upper limit for the conventional 1-D EBG microstrip structure with holes etched in the

ground plane. It is shown that the 1-D Koch fractal EBG (KFEBG) microstrip structures with

ar /  ratios lower than 0.45 present similar bandstop filter responses as the conventional 1-D

EBG microstrip structures. However, as the ar /  ratios are increased above 0.5, the 1-D

KFEBG microstrip structures achieve low-pass filter responses of wide stopband.
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Figure captions:

Figure 1 Conventional 1-D EBG microstrip structure with six holes etched in the ground

plane. (a) Top view and (b) Bottom view.

Figure 2 Koch fractal curves: iterations 0I  through 2I .

Figure 3 Two level-1 Koch fractal cell geometries (E1 and E2)

Figure 4 Bottom view of the 1-D KFEBG microstrip structure with nine Koch fractal

cells etched in the ground plane.

Figure 5 Simulated and measured 21S  parameters of the conventional 1-D EBG

(periodic holes) and 1-D KFEBG microstrip structures. (a) 25.0/ =ar  and (b) 45.0/ =ar .

Figure 6 Simulated and measured 21S  parameters for the 1-D KFEBG microstrip

structure with 55.0/ =ar .



10

Figure 1

(a)
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Figure 1

(b)
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Figure 2
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Figure 3
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Figure 4
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Figure 5

(a)
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Figure 5

(b)
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Figure 6


