
Spatio-temporal Talbot phenomenon using metamaterial composite
right/left-handed leaky-wave antennas

J. S. Gómez-Díaz,1,a� A. Alvarez-Melcon,1 S. Gupta,2 and C. Caloz2

1Technical University of Cartagena, Campus Muralla del Mar-Antiguones, Cartagena, Murcia, 30202 Spain
2École Polytechnique de Montréal, 2500, ch. de Polytechnique Montreal, Quebec, H3T 1J4, Canada

�Received 27 May 2008; accepted 22 September 2008; published online 17 November 2008�

A spatial-temporal Talbot phenomenon, based on metamaterial composite right/left-handed �CRLH�
leaky-wave antennas �LWAs�, is presented. This phenomenon, reported in the microwave domain,
is based on the combination of the conventional spatial monochromatic Talbot effect and the
transient �polychromatic� character of the pulse radiation phenomenon in the LWA structure. When
the elements of a periodic CRLH LWA array are fed simultaneously by an input pulse, the spatial
beams corresponding to different temporal frequencies constructively interfere in space so as to
form a self-imaged pattern constituted by narrow Talbot zones. This Talbot effect is spatial-temporal
since the Talbot zones are localized both in space and time. The phenomenon is analyzed
theoretically and validated numerically for the case of narrow-band pulses. © 2008 American
Institute of Physics. �DOI: 10.1063/1.3013905�

I. INTRODUCTION

The Talbot effect was discovered by Talbot1 in 1836 and
has been widely applied in different areas of research.2–4 It is
a constructive interference self-imaging effect occurring at
specific distances �Talbot planes� due to diffraction from a
periodic spatial object �for instance, a diffraction grating�
under monochromatic5 or polychromatic6 illumination. The
equations that describe this diffraction phenomenon, under
paraxial �Fresnel� approximation, are identical to those that
describe the temporal propagation �under first-order approxi-
mation� of pulses in a dispersive dielectric waveguide, lead-
ing to the temporal counterpart of the Talbot effect.7 This
phenomenon occurs when a signal, which is periodic in time,
propagates along a first-order dispersive medium �such as an
optical fiber�. In this case the input pulse train is replicated at
the Talbot distance.

The advent of electromagnetic metamaterials, such as
composite right/left-handed transmission lines �CRLH TL�
metamaterials, has paved the road for novel dispersive ef-
fects and devices in the microwave domain.8 Due to their
inherent broadband nature, CRLH TL metamaterials can be
used in the impulse regime. Initial reports in this field in-
clude a tunable pulse delay line,9 a temporal Talbot effect
transmission line pulse multiplier,10 and a real-time spectro-
gram analyzer based on CRLH leaky-wave antennas
�LWAs�.11

In this contribution, a spatial-temporal Talbot phenom-
enon is introduced. This phenomenon, reported in the micro-
wave domain, is based on the combination of the conven-
tional monochromatic spatial Talbot effect and the transient
�polychromatic� effect of pulse radiation by a LWA. To pro-
duce this phenomenon, an array of CRLH LWAs is fed si-
multaneously at all of its elements by a modulated pulse with
center frequency located at the transition frequency of the
LWAs.12 The beams radiated by the different elements gen-

erate an interference pattern that self-image the spatial pulse
distribution along the antennas at the Talbot distance. Fur-
thermore, an increase in the repetition rate of this spatial
distribution occurs at the fractional Talbot distances. The
CRLH LWA, which is sufficiently directive for a given pulse
bandwidth, generates a paraxial diffraction �i.e., radiation� of
the beams, leading to the spatial Talbot effect. This, com-
bined with the transient nature of the pulsed antenna radia-
tion, leads to the spatial-temporal Talbot phenomenon. In
addition, the self-imaging effect replicates the spatial varia-
tion of the pulses as a function of time at each Talbot zones
due to the pulses propagation along the CRLH LWAs.

The paper is organized as follows. Section II briefly re-
views the conventional spatial and temporal Talbot effects
and presents the fundamentals of the CRLH spatial-temporal
Talbot phenomenon. Section III derives the mathematical
calculation for the integer and fractional Talbot distances.
Section IV demonstrates and characterizes the spatial-
temporal Talbot phenomenon using an exact time-domain
Green’s function approach. Finally, conclusions are given in
Sec. V.

II. PRINCIPLE

This section briefly reviews the spatial and temporal Tal-
bot effects, which are based on spatial dispersion and tem-
poral frequency dispersion, respectively. The spatial-
temporal Talbot phenomenon, based on the impulse-regime
properties of the CRLH LWA, is presented and discussed.

A. Spatial and temporal Talbot phenomena

The spatial Talbot phenomenon is observed when a
monochromatic wave is transmitted through �or reflected
from� a periodically distributed spatial object. An exact im-
age of the original object appears at a specific distance called
the integer Talbot distance and denoted by zT. Also, addi-
tional images, with periods that are multiple of the originala�Electronic mail: juan-sebastian.gomez-diaz@polymtl.ca.
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object period, appear at fractional distances of zT, i.e., at
zT /m �m�N�. In general, the integer/fractional Talbot dis-
tances are given by

ds =
s

m

X2

�
, �1�

where X is the object spatial period, � is the wavelength, s,
m�N, and �s /m� is an integer number �for zT and its mul-
tiples� or an irreducible rational number �for the fractional
Talbot distances�. The spatial Talbot effect has been used in
various applications, such as array illumination,2 cavity and
phase locking for laser arrays,3 and holographic multiplexing
storage.4

The temporal counterpart of the spatial Talbot phenom-
enon occurs when a periodic temporal signal propagates
through a dispersive medium with first-order dispersion.7

This may be shown from the mathematical equivalence of
paraxial Fresnel diffraction in space and pulse propagation in
a first-order dispersive medium.7 In case of the temporal Tal-
bot effect, the input pulse train is exactly replicated along the
medium at the Talbot distance, while a multiplication of the
repetition rate of the periodic signal is obtained at fractional
Talbot distances. The integer/fractional Talbot distances are
given by

dt =
s

m

Tr
2

2���2�
, �2�

where Tr is the temporal repetition period, �2 is the group
velocity dispersion parameter of the medium s, m�N, and
�s /m� is an integer number �for zT and its multiples� or an
irreducible rational number �for the fractional Talbot dis-
tances�. In practical applications, such as multiplication of
the repetition rate of a periodic pulse train13 or pulse
compression,14 optical fibers or chirped fiber gratings may be
used. The temporal Talbot phenomenon was also theoreti-
cally demonstrated at microwave frequencies along a disper-
sive CRLH transmission line.10

B. Composite right/left-handed leaky-wave antennas

Recently, the introduction of novel metamaterial struc-
tures, and in particular CRLH TL metamaterials, has led to
novel and efficient LWAs.8 These antennas provide full-
space scanning capability, from backfire ��=−90°� to endfire
��=90°�, including broadside ��=0°�. The main beam angle
��� measured from the normal to the antenna is given by the
scanning law

sin � =
����

k0
, �3�

where k0 is the free-space wave number and ���� is the
propagation constant along �or dispersion relation of� the
CRLH structure, which in the infinitesimal limit is given by

���� =
�

�R�
−

�L�

�
, �4�

with

�R� =
1

�LR�CR�
and �L� =

1

�LL�CL�
, �5�

where LR� , CR� and LL�, CL� are the per-unit-length and times-
unit-length circuit parameters.8 They define the right-handed
and left-handed contributions of the CRLH structure. Defin-
ing the transition frequency as �0=��R��L�, we have ���
��0��0, which corresponds to the left-handed �or
backward-wave or negative refractive index� band, and pro-
vides negative radiation angles according to Eq. �3�. More-
over, �����0��0, which corresponds to the right-handed
�or forward-wave or positive refractive index� band, and pro-
vides positive radiation angles.

The scanning law of Eq. �3� reveals that each frequency
is mapped onto a specific radiation angle in space. When the
CRLH LWA is operated in the impulse regime, the different
spectral components of the broadband pulse at the input of
the LWA are separated in space following this scanning law.
Thus, a LWA performs a spatial-spectral decomposition11 of
the input signal. This may be interpreted as spatial disper-
sion, where the different frequencies are separated in space
due to frequency-dependent radiation angles.

C. Spatio-temporal Talbot phenomenon

The spatial-temporal Talbot phenomenon occurs when
the CRLH LWA array elements �or possibly diffraction grat-
ing elements� are simultaneously fed with a �single� temporal
pulse. Due to the spatial-spectral decomposition property of
the antennas, the pulses are spectrally decomposed in space
following the CRLH beam-scanning law of Eq. �3�, as illus-
trated in Fig. 1. The spatial beams corresponding to each
temporal frequency interfere in space creating an interfer-
ence pattern �i.e., the spatial Talbot effect�. Due to the non-
zero bandwidth of the input pulse, the Talbot planes occur-
ring in the case of the monochromatic wave are replaced by
Talbot zones zT�	zT /2 corresponding to the bandwidth

FIG. 1. �Color online� Proposed CRLH LWA array configuration for the
investigation of the spatial-temporal Talbot effect. Each antenna radiates the
different frequency components of the input modulated pulse to different
angles of space. For the sake of simplicity, only the envelopes of the pulses
at one Talbot plane are shown.
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�0�	�0 /2 of the pulse. This Talbot effect is spatial tempo-
ral since the Talbot zones are localized both in space and
time.

In the case of narrow-band pulses, the Talbot zones may
be localized at their center zT related to the transition fre-
quency �0, corresponding to broadside ��=0°� radiation, of
the CRLH LWA. Furthermore, this interference at the Talbot
plane reproduces the spatial distribution of the pulses along
the CRLH lines, which are varying as a function of time, due
to their propagation. Thereby, instead of the regular space or
time domain, this phenomenon is observed in the combined
spatial-temporal domain, and the spatial images are recon-
structed at a specific position �zT� as a function of time.

III. DERIVATION OF THE TALBOT DISTANCE

This section presents the detailed mathematical analysis
of the spatial-temporal Talbot phenomenon, leading to a
close-form expression for the Talbot distance. Consider an
infinite array of CRLH LWAs, with antenna element spacing
b and element length �. All of the elements are fed simulta-
neously with the same input pulse, as illustrated in Fig. 1.
This pulse is modulated at the CRLH transition frequency �0

and, assuming the phasor time dependence e+j�t, it may be
expressed as


�t� = 
0�t�ej�0t, �6�

where 
0�t� is a slowly varying envelope and �0 is the
modulation frequency.

Since the elements of the array are all excited simulta-
neously by the same pulse and are all identical, the field
distribution along the overall array is necessarily periodic
with the spatial period 	x, which is independent of time.
Consequently, the Talbot distance zT will also be independent
of time. Rather, as the signals propagate along the CRLH
structures, the Talbot image will experience a continuous
shift along the x-axis following this propagation.

Due to this time-independence of the Talbot distance, the
spatial distribution of the field along each CRLH array ele-
ment, denoted by Ae�x ,z=0�, is considered at the fixed time
t= t�, which may be seen as a “snapshot” of the pulse along
the element. Taking all the elements of the array into ac-
count, the spatial distribution of the field along the overall
array takes the periodic form

Aa�x,z = 0� = �
p=−�

+�

Ae�x,z = 0� � ��x − p	x� , �7�

where the symbol “�” represents the convolution operation.
Taking the Fourier transform of this expression yields

Ãa�kx,z = 0� = 	kx �
p=−�

+�

Ãe�kx = p	kx���kx − p	kx� , �8�

where 	kx=2� /	x, with 	x=b+�, is the repetition fre-
quency.

On the other hand, the transfer function of the CRLH
LWA, assuming plane-wave propagation,15 is given by16

H̃�kx,z� = e−jkzz = e−j�k0
2−kx

2z = e−jk0
�1−kx

2/k0
2z, �9�

where the Helmoltz equation implies that k0
2=kz

2+kx
2. This

relation may be simplified as follows. First the CRLH LWA
scanning law �Eq. �3�� implies � /k0=kx /k0=sin �. Here we
assumed that the propagation constant along the CRLH in
Fig. 1 is �=kx. Second, the modulation frequency has been
chosen as the transition frequency �0, corresponding to
���0�=0°, so that kx /k0��0�=0°. Third, we assume that the
antennas are designed such that the variation in the radiation
angle is relatively small over the frequency bandwidth of the
pulse �i.e., 	� /	�
1 /k0�, so that ��kx /k0. Equation �9�
may then be rewritten as

H̃�kx,z� = e−jk0
�1−�2z. �10�

The square root in the exponential function of Eq. �10� and
the propagation constant in free space k0 can be expressed by
a Taylor series �around the modulation frequency �0�

�1 − �2 � 1 −
�2

2
, �11�

k0��� =
�0

c
+

� − �0

c
, �12�

where c is the speed of light in free space. In addition, the
CRLH LWA angle � may be linearized around the modula-
tion frequency �0,

� = ��� − �0� , �13�

where ��R is the linearization constant parameter. This pa-
rameter may be computed as the frequency derivative of the
angle at the transition frequency

� = 	 �����
��

	
�=�0

= c	 ������/��
��

	
�=�0

=
c

�0

 1

vg��0�
−

1

vp��0��
=

c

�0

1

vg��0�
, �14�

where vg��0� is the group velocity at �0 and vp��0� is the
phase velocity at �0 �vp��0�=� according to Eq. �4��.8 From
the definition of the group velocity, we have

vg��0� = 
 ����0�
��0

�−1

= lim
�→�0


���� − ���0�
� − �0

�−1

, �15�

which, using the narrow angle range assumption made above
�and �=kx�, leads to

vg��0��kx − kx0
� � �� − �0� , �16�

where kx0
=kx��0�. Inserting this relation into Eq. �13� and

then using Eq. �14� yields

� = �vg��0��kx − kx0� =
c

�0
�kx − kx0

� . �17�

It is important to emphasize the actual conditions under
which the paraxial approximation �
1 �or 	� /	�
1 /k0�
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used in Eq. �10� holds. Each temporal frequency component
�x of the input pulse diffracts a discrete �due to periodicity�
set of spatial frequencies �or plane waves� under the direc-
tions �x,n with amplitudes proportional to the Fourier coeffi-
cients �related to each antenna� of the input spatial distribu-
tion. Denoting the diffraction pattern of each �x component
�=�x+	�x, where 	�x is the diffraction beam width consti-
tuted by the �x,n spatial frequencies, the condition �
1 re-
quires that the bandwidth of the pulse is narrow enough or
the directivity of the antennas is large enough so that �max

+	�max /2
1.
Inserting Eqs. �11�, �12�, and �17� into Eq. �10� finally

yields the simplified transfer function

H̃�kx,z� � e−j��0/c�ze−j�vg��0�/c��kx−kx0
�zej�c/2�0��kx − kx0

�2z,

�18�

where the �kx−kx0�3 term has been dropped to the first-order
approximation. This equation may be rewritten as

H̃�kx,z� � e−j�0ze−j�1�kx−kx0
�zej�2/2�kx − kx0

�2z, �19�

where �0=�0 /c, �1=vg��0� /c, and �2=c /�0 are the equiva-
lent Taylor expansion coefficients around the modulation fre-
quency corresponding to �0, �1, and �2 in case of a disper-
sive medium.7

To simplify the derivation of the Talbot distance, the
following considerations are made.7 The first exponential in
Eq. �18� may be dropped, since it is related to the modulation
frequency of the pulse and does not carry any information
about the envelope. The second exponential in Eq. �18� may
also be dropped, since it represents a kx-linear phase factor,
equivalent in the spatial-temporal domain to the retarded
frame in the time domain.

With the above simplifications and considerations, the
transfer function of the system may be rewritten around kx0
as

H̃�kx�,z� = H̃�kx = kx0
+ kx�,z� = ej�c/2�0�kx�

2z. �20�

Combining Eqs. �8� and �20�, the output signal radiated at
the distance z is expressed in the transformed domain as

Ãr�kx�,z� = Ãa�kx�,z = 0�H̃�kx�,z�

= 	kx �
p=−�

+�

Ãe�p	kx���kx� − p	kx�H̃�kx�,z�

= 	kx �
p=−�

+�

Ãe�p	kx���kx� − p	kx�ejp2�, �21�

where

� =
c

2�0
	kx

2z . �22�

If the condition

p2� = 2�q� = 2�qp2, �23�

with q ,q��N �q� varies with p but q is constant�, is satis-
fied, the phase factor in Eq. �21� reduces to 1, so that

Ãr�kx� ,z�� Ãa�kx� ,z=0� according to Eq. �8�, i.e., the field dis-

tribution at z �output� is an exact replica of the field distri-
bution at z=0 �input�. The corresponding position z is there-
fore, by definition, the sought for spatial-temporal integer
Talbot distance, which, combining Eqs. �22� and �23� and
using 	kx=2� /	x, reads

zT =
2	x2q

�0
, �24�

where �0=2�c /�0. The inverted �	x /2-shifted Talbot im-
age, obtained by using � instead of 2� in Eq. �22�� and
fractional spatial-temporal Talbot distances may then be
straightforwardly obtained, following the mathematical pro-
cedure presented in �Ref. 7� as

dst =
s

m

	x2

�0
, �25�

where s ,m�N. Specifically, we have s /m�N for the integer
Talbot distance and its multiples, while s /m is an irreducible
rational number for fractional Talbot distances. At fractional
Talbot distances, the periodic field distribution along the an-
tenna array �Eq. �8�� is reproduced with a repetition rate of m
times that of the original distribution. The maximum value of
m depends on the spatial width of the pulse distribution
along a single antenna 	xp �i.e., the width of Ae�x ,z=0��,
which is typically slightly larger than the spatial width of the
input pulse due to CRLH dispersion, and on the spatial rep-
etition frequency 	x, following the relation7

m �
	x

	xp
. �26�

If m�	x /	xp, the imaged pulses overlap in space �spatial
aliasing�, preventing the capability of increase in the repeti-
tion rate of the original pattern.

It is important to note that the used narrow band assump-
tion of the input pulse leads to the interpreting of the spatial-
temporal Talbot effect as a combination of the conventional
monochromatic spatial Talbot effect and the impulse nature
of the signal, leading to Talbot zones with time-varying pat-
terns as opposed to Talbot planes with time-invariant pat-
terns. It should also be noted that since the energy of the
pulse is decreasing around its maximum occurring located at
the frequency �0, the Talbot zones exhibit a Gaussian-like
distribution around the maximum at the corresponding cen-
ters zT of the Talbot zones.

The Talbot images reproduce the propagating pulse dis-
tribution along the CRLH structures as a function of time.
Moreover, a given spatial distribution is imaged at different
times at the different Talbot distances dst �as it will appear
clearly from the results presented later in this paper�. The
different integer and fractional Talbot distances are known
from Eq. �25�. However, the image formation at each Talbot
distance occurs only during a limited time duration, which
corresponds to the propagation time of each pulse across
each antenna element. To determine the center point of this
time duration, we define a reference time td as the time re-
quired for the pulse to reach the imaging distance from the
generator, when it is located at the center of each antenna
element. Specifically, this time reads
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td = t0 +
FWHM

2
+

�

2vg��0�
+

dst

c
, �27�

where t0 is the generator switch-on time, FWHM is the full
width at half maximum of the pulse �at t0+FWHM /2, the
maximum of the pulse is at the input of the element�, � is the
CRLH antenna element length, vg��0� is the group velocity
at the modulation frequency �at t0+FWHM /2+� / �2vg��0��
the pulse is at the center of the element�, c is the speed of
light, and dst is the integer or fractional Talbot distance
where imaging is considered.

IV. NUMERICAL RESULTS

The results presented in this section, to demonstrate the
CRLH LWA spatial-temporal Talbot phenomenon, are ob-
tained by an exact time-domain Green’s function
approach.12,17 The CRLH LWA considered is composed of
N=16 unit cells of length p=1.50 cm ��=Np�, with the cir-
cuital parameters CR=4.5 pF, CL=2.5 pf, LR=4.5 nH, and
LL=2.5 nH, corresponding to a transition frequency of f0

=1.50 GHz.8 The antenna is excited by an f0-modulated
Gaussian pulse with a FWHM of 1.178 ns.

For this particular antenna, the scanning angle versus
frequency relation is plotted in Fig. 2. Following Eq. �13�,
this curve is linearized at the transition frequency �f = f0�.
The linearization parameter is found with Eq. �14� to be �
=0.453 ns.

The spatial-temporal Talbot distance with antenna ele-
ment spacing of b=0.5 m, following this linearization, is
computed by Eq. �25� as zT=2.738 m, for an infinite array.
In order to validate the proposed analytical approach, Fig. 3
presents the magnitude of the field radiated by an array of 20
LWAs at the zT, zT /2, and zT /3 distances as a function of the
radiation direction �z-axis� of the position of the LWAs
�x-axis� and of time. For the sake of clarity, only the region
of the ten central antennas is shown. As expected, complete
reconstruction of the input spatial periodic distribution is ob-
tained at the integer Talbot distance zT, and this same distri-

bution with a multiplication rate of 2 and 3 is completely
reconstructed at the fractional Talbot distances zt /2 and zt /3,
respectively.

In order to assess the effect of array truncation, Fig. 4
presents the field radiated by an array of seven antenna ele-
ments as a function of position �x-axis� and time, at a given
distance z from the array. Figure 4�a� shows the field magni-
tude obtained at the Talbot distance, where the expected
seven pulses are recovered from the initial spatial pulse dis-
tribution. This reconstruction is imperfect. First, distortions
occur near the edges of the array, because less frequency
components contribute to imaging at the edges. Second, in
contrast with the assumption made in Eq. �18�, the CRLH
structure is not perfectly first-order in nature, and therefore
includes spurious higher-order dispersive terms that alter the
image. Figure 4�b� presents the radiated field at the fractional
distance zT /2. In this case, a double number of pulses �14�
appears, validating the pulse multiplication phenomenon dis-
cussed above. Finally, Fig. 4�c� shows the radiated field at
the fractional distance zT /3, with the expected threefold mul-
tiplication effect.

Figure 5 shows that when the number of antenna ele-
ments in the array is increased to 20, the quality of the image
reconstruction is enhanced. This is because more antennas
provide more frequency contributions to each spatial point.
However, small distortion effects, due to the truncation of the
array �especially at the array edges� and to the high-order
dispersive modes, are still visible. Figure 5�a�, zoomed at the
same observation region �x-axis� as in the previous example,
presents the radiated field at the Talbot distance, while Figs.
5�b� and 5�c� present the field at the fractionary Talbot dis-
tances zT /2 and zT /3, respectively. In all cases, the 20-
antenna array achieves superior image reconstruction/
multiplication as compared to the 7-antenna array.

The Talbot patterns observed in Figs. 4�a� and 5�a� are
slightly titled in the x-time plane, with a negative slope. This
effect is due neither to a numerical artifact nor to the influ-
ence of higher-order dispersion. It is due to the propagation
of the pulses along the antenna elements: the energy contrib-
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1
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Linear approximation

f
0

FIG. 2. �Color online� CRLH leaky-wave antenna frequency-space mapping
obtained with the beam scanning relation �Eq. �3��. This relationship is
linearized around the transition frequency �f0=1.5 GHz�, using Eqs. �13�
and �14�.

FIG. 3. �Color online� Field �magnitude� radiated by the CRLH LWA array
shown in Fig. 1 �placed at z=0 along the x-axis�, for antenna element spac-
ing of b=0.5 m and modulated Gaussian pulse excitation as a function of
the position x and time at the propagation distances z=zT=2.738 m, z
=zT /2=1.369 m, and z=zT /3=0.9127 m.
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uted by the part of the antenna elements closer to the gen-
erator is radiated earlier than the energy contributed by the
part far from the generator, and therefore reaches the Talbot
distance earlier. As it may be observed in Figs. 4�a� and 5�a�,

this tilting effect becomes more and more pronounced as the
Talbot distances get close to the array, because this repre-
sents an increase in the ratio between the antenna element
lengths and the radiation distance.
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FIG. 4. �Color online� Field �magnitude� radiated by a CRLH LWA array
composed of seven antenna elements �placed at z=0, centered at x=0, and
fed by a modulated Gaussian pulse� at different propagation distances
�z-axis�. �a� z=zT=2.738 m. �b� z=zT /2=1.369 m. �c� z=zT /3=0.9127 m.
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FIG. 5. �Color online� Field �magnitude� radiated by a CRLH LWA array
composed of 20 antenna elements �placed at z=0, centered at x=0, and fed
by a modulated Gaussian pulse� at different propagation distances �z-axis�.
�a� z=zT=2.738 m. �b� z=zT /2=1.369 m. �c� z=zT /3=0.9127 m.
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To further characterize the CRLH spatial-temporal Tal-
bot phenomenon, let us increase to b=0.76 m the antennas
element spacing in the array of Fig. 5�a�. The new Talbot
distance is zT=5.0 m. Figure 6 presents the radiated field at
the distances zT, zT /2, and zT /3 evaluated at their associated
reference times td �Eq. �27��. This graph reveals two impor-
tant facts. First, the repetition rates are in perfect harmonic
ratios �1, 2, and 3� and perfectly synchronized at td. Second,
the amplitude of the Talbot pattern decreases for larger dis-
tances �from zt /3 to zt /2, zt, and beyond for multiples�, due
to free space attenuation, like in the spatial Talbot effect, but
unlike in the temporal effect.

V. CONCLUSIONS

A spatial-temporal Talbot phenomenon, based on
metamaterial CRLH leaky-wave antennas, has been pre-
sented. This phenomenon is based on the combination of the

conventional monochromatic spatial Talbot effect and the
transient character of the radiated pulse, which results into
transient Talbot zones. This effect has been achieved in the
microwave domain using the radiation properties of CRLH
LWA array. A complete analytical formulation of this Talbot
phenomenon has been presented and numerically verified us-
ing an exact time-domain Green’s function approach.
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