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Abstract

In this work, a neural network-based software sensor is proposed for determining the reflection coefficient from measurements

obtained by a six-port reflectometer. The proposed software sensor is able to cope with the nonlinearities and noise inherent to the

measurement electronics, without needing additional calibration. To extract data for the calibration, a new method that allows in situ

calibration is applied. Experimental evidence of the feasibility of the proposed method is given using a simulation testbench.

r 2006 Published by Elsevier B.V.
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1. Introduction

Techniques for scattering parameter measurements in
microwave structures are still being developed for applica-
tions such as drying, heating, modeling or circuit design.
Traditional methods for these techniques are based in
slotted lines or impedance bridges [16]. Other methods
consist on circuit designs based on directional couplers to
separate the incident and reflected wave power (reflect-

ometers) and to determine the amplitude (escalar) and
phase (vectorial) of the reflection coefficient. However, the
most extended methods for impedance measurement are
the so called six-port reflectometer [2] and the network

analyzers. On the one hand, the six-port, designed by
Engen in 1977, is an inexpensive solution that avoids the
use of network analyzers; on the other hand, it employs
simple power detectors (like diodes or thermistors) in
opposition to the mixers of the analyzers. It consists in a
simple circuit with six ports connected to the source (a
magnetron in this case), the unknown load and four power
detectors. From the outputs of the detectors, a numerical
81
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relationship can be obtained to determine the reflection
coefficient in the load. This numerical expression combines
the value of several parameters, very sensitive to measure-
ment noises, in order to determine the desired impedance
value given by S11 ¼ b2=a2, as Fig. 1 shows.
Besides the noise, the effect of nonlinearity in the

detectors for the considered frequencies implies the
calibration of both six-port and detectors to guarantee
the accuracy of the measurements. Several techniques have
been published for calibration of six-port parameters by
considering effects such as measurement dynamic range
and diode nonlinearity [8,12]. Six-port parameter calibra-
tion is based on finding the numerical solution for the
equation system given by (1), being Mi and Ni complex
constants, which must be obtained from the measured
values bi and ai:

b3 ¼M3 a2 þN3 b2,

b4 ¼M4 a2 þN4 b2,

b5 ¼M5 a2 þN5 b2,

b6 ¼M6 a2 þN6 b2. ð1Þ

The moduli of the {b3,b4,b5,b6} coefficients can be
estimated from the {v3,v4,v5,v6} values (usually voltages)
83
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Fig. 1. Six-port scheme. Incident and emergent scattering variables at the

ith-port are represented by ai and bi.
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Fig. 2. Variation of the reflection coefficient jS11j as the sample being

irradiated changes its distance from the magnetron. Data are extracted

from an experiment carried out with the experimental set-up described in

Section 2, using a sample with dielectric constant e0 ¼ 20 and loss factor

e00 ¼ 5j.
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given by the corresponding detectors (usually diodes, see
Fig. 1). The relationship S11 ¼ b2=a2 is obtained by means
of measurements of load impedance.

The most extended technique for determining the Mi and
Ni parameters is based on ending the six-port with at least
four standard loads [16], sliding terminations [3,12] or TRL
(thru-reflect-line) method [9] whose parameters are ob-
tained from the type of material and physical dimension of
the employed transmission lines. In Ref. [19] five loads with
the same module are used for the calibration, in order to
eliminate ill-conditioned configurations. In this way, the
numerical solution can be graphically represented in the
complex plane of impedances, by means of three circles,
whose intersection gives the desired solution for S11. Other
authors as Engen [3] or Wiedmann et al. [19] employ the
six-port to four-port technique by reducing the number of
parameters in Eq. (1) to three, by exploiting the circular
symmetries with respect to the complex axes.

In fact and due to measurement errors and noises, the
intersection is a small area and not only one point. In this
way, efforts have been made to numerically find the
solution in the presence of noise and software for online
calibration [17]. One example can be found in Ref. [4]
where a procedure based on least-squared methods is
developed, when Gaussian distributions for the mean
power errors are considered. In Ref. [20], a new calibration
method based on the closeness of the Fourier coefficients of
the six-port parameters and the port power ratios of each
standard load is presented.

Most advanced techniques, including online computa-
tion, have been designed to improve the last calibration
techniques. Thus, in Ref. [14] Rangel et al. present a
method based on numerical relationships from the
measurement of signals with different frequencies, which
are inputs to the reflectometer and one application
software. In order to avoid the complex manufacturing
of sliding loads, Yakabe et al. propose in Ref. [21] a
calibration method based on active load synthesis by
computer, by autonomously adjusting one phase shifter
and one attenuator.

The methods above have been designed without taking
into account the nonlinearity effect of the diodes in the six-
port. This nonlinearity exacerbates when high input level is
considered. A square-law characteristic is normally con-
sidered for the relationship between the detected power and
the output voltage in each diode. Indeed, effects such as
 P
ROOF

quality of connectors and transmission lines or instability
and bad resolution in the diodes produce increments in the
final calibration error. In order to improve the accuracy of
the calibration, some techniques are being proposed by
incorporating the diode effects in the calibration proce-
dure. Thus, linear approximation of the diode response
around the work frequency is developed in Refs. [8,18,19]
or in Ref. [6], where a temperature dependent corrector
factor is added for minimizing the error for a wide
bandwidth. Moreau et al. [12] employed a sliding termina-
tion for the simultaneous calibration of both the diode and
the six-port, doubling the number of parameters to be
estimated. Other alternatives [7] have been proposed by
using thermistors as power detectors instead of semicon-
ductor diodes, increasing the measurement accuracy. More
complex diode characteristics are considered in Ref. [1],
where a precise variable attenuator at the input of the six-
port is used for the calibration. Finally a method based on
artificial neural networks is described in Ref. [10] for both
the six-port and diode calibration.
Until now, all the described methods rely on the use of

specially designed devices, such as variable loads and
attenuators/phase-shifters. Recently, some empirical results
have shown that the reflection coefficient varies as the
distance of the load from the magnetron is varied [13,15].
This variation is mainly due to interference among the
source waves coming from the magnetron, and the ones
reflected from the load. When represented against the
distance of the load from the magnetron, the reflection
coefficient shows a clear periodic pattern, as can be seen in
Fig. 2. These variations appear wherever the dielectric
constant of the load is different from the one of the
material inside the cavity (usually air), so that almost any
material can be used.
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In this paper, this fact is exploited to propose a new
calibration method for the six-port. As in Ref. [10], a
neural network architecture is used to cope with nonlinea-
rities appearing in the diodes, and to find the relation
between the measured quantities and the reflection
coefficient. Because the six-port reflectometer is only
designed to measure jS11j as a ratio of the real values for
the incident and reflected power, the phase of S11 has not
been considered. The estimation for the phase needs other
measurement schemes such as vectorial network analyzers.

As a difference, both training and validation data are
extracted without using especial devices, simply irradiating
a sample of any material at different distances from the
magnetron.

The viability of the proposed calibration method is
studied in simulation, as a prior step to implementation. To
achieve a realistic test bench, different parameters have
been considered for each diode, and all the measurements
have been contaminated with noise. The results obtained
show that the proposed method could be a feasible
alternative for on-site calibration of six-port reflectometers.

2. Experimental set-up

The proposed identification scheme is based in the fact
that the reflection coefficient S11 changes with the distance
of the sample from the magnetron. This fact, reported in
Ref. [15], allows obtaining the examples to train the
network by using only one kind of material sample, which
is simply placed in several different positions along the
cavity. For each position of the sample, low-intensity
irradiation is carried out. The measurements {v3,v4,v5,v6}
obtained from the six-port diodes and the corresponding
jS11j coefficient constitute the input and output sides of one
training example for the neural network. This method
allows the use of only one sample of any material, instead
of requiring several loads as in Ref. [10], thus notably
simplifying the calibration process.

In order to accurately reproduce real conditions, the four
diodes have been considered as having different behavior.
This is simulated by using different constants in the
equations of the diodes, as shown in Table 1. As the
diodes are used in over a large power range, the following
UNCO
Table 1

Equation of the diode and values of the constants considered for

simulation

A (V) B (m/V) C (m/V)2

Diode #1 0.1153 0.4306 0.0593

Diode #2 0.0877 0.3185 0.0667

Diode #3 0.1450 0.3753 0.0479

Diode #4 0.0972 0.4364 0.0607

Equation of the diode v ¼ 10A log(1+BE+CE2)

In the equation, E corresponds to the electric field normalized by 5000V/

m.
ROOF

equation has been considered to give their output voltage
[12]:

v ¼ 10 A log 1þ BE þ CE2
� �

, (2)

where E is the modulus of the electrical field detected by the
diode and A, B and C are constants, which may vary from
one diode to the other.
To test the method, a bidimensional cavity has been

considered. This cavity, depicted in Fig. 3, is a 0.6� 0.6
square in which a standard 0.12� 0.08 WR-340 wave guide
is placed. Inside the cavity, a 0.18� 0.16 sample, with
dielectric constant e0 and loss factor e00 is placed, at a
distance x from the opposite wall from the magnetron. All
the measurements are given in meters.
The sample is then irradiated. To this purpose, the

fundamental TE10 mode was excited in the wave guide at
2.45GHz and the module of the complex electric field has
been calculated along the X-axis for each simulation.
The electromagnetic problem has been solved in the

frequency domain with the aid of the vector wave Eq. (3):

r2~E þ o2me~E ¼ 0, (3)

~E being the vector electric field in the multimode cavity, o
the angular frequency, m the permeability and e the
permittivity of the medium. In this study, we consider
non-magnetic materials characterized by its complex
relative permittivity:

e ¼ e0 � je00, (4)

where e0 is the dielectric constant and e00 the loss factor.
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Fig. 3. Schematic representation of the microwave cavity considered in

the experiments. All measures are in meters.
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The FEM has been used to solve this equation for each
electric field component, by using the variational formula-
tion as indicated in Ref. [22]. Matlab 6.0TM PDE Toolbox
has been used to mesh the two-dimensional (2D) domain
and to obtain the reflection coefficient for this partially
filled multimode cavity. The Partial Differential Equation
(PDE) Toolbox provides a MatlabTM integrated environ-
ment for the study and solution of PDEs in 2D domains
and time. The PDE Toolbox supplies several tools so that
the user can define a PDE problem (definition of 2D
regions, boundary conditions and PDE coefficients),
numerically discretize and solve the PDE equations,
produce an approximation to the solution and, finally,
visualize the results. Validation of this simulation tool has
been previously carried out in Ref. [11].

The neural network structure has been selected to be a
feedforward backpropagation-type net with two layers
(Fig. 4). The first one, composed of 12 hyperbolic tangents,
receives four inputs from the output voltages of the diodes
on the six-port. The output layer is a linear neuron that
combines the outputs of the previous layer to give the
reflection coefficient.

As mentioned above, the training examples have been
extracted by irradiating a material sample at different
distances from the magnetron. For each position, both the
measures obtained from the diodes and the reflection
coefficient jS11j are recorded. To further reproduce the real
scenario, the output of the diodes has been contaminated
with white noise, whose amplitude was of a 5% of the
maximum sensor range. Following this procedure, 881
samples have been extracted displacing the material at
evenly spaced steps from the bottom of the cavity to the
closest position to the magnetron. From these samples, 80
have been used as training examples, the rest being the
validation data.
113
3. Results

For training, 100 learning epochs of the second-order
Levenberg–Mardquardt algorithm [5] have been applied.
The obtained results can be observed in Figs. 5 and 6. In
Fig. 5, the measured values for jS11j are represented against
the corresponding estimations from the neural sensor. It
can be seen that the relationship is almost linear. The slight
deviations from linearity can be attributed to the noise in
the diodes.
The accuracy achieved by the software sensor can be

observed in Fig. 5. In this figure, both the real and
estimated values of jS11j are represented against the
distance from the magnetron of the sample being
irradiated. It can be seen that the estimations from the
neural net fit almost perfectly the measured values.
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4. Conclusions

In this paper, a methodology for in situ calibration of
six-port reflectometers is presented. The proposed metho-
dology uses a neural network acting like a software sensor
that infers the values of the jS11j reflection coefficient
directly from the outputs of the diodes of the six-port. The
samples employed to train the network are extracted by
placing a sample of material in the microwave cavity at
different distances from the magnetron, thus allowing in
situ calibration, as neither especial loads nor phase shifters
are needed. The results obtained in the simulation test
bench corroborate the viability of the proposed method,
making promising its implementation in real devices.
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