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Abstract—A 2-D version of the generalized circuital analysis
(GCA) has been used along with the finite element method (FEM)
to estimate both the radiated perturbation produced by an arbi-
trary current distribution (represented by a set of linear current
sources) covered by a slotted enclosure, and the field coupled to a
slotted screen due to a radiated perturbation. The effect of a given
enclosure is modeled by means of a scattering matrix (which de-
pends only on its geometry) obtained by the FEM. On the other
hand, any arbitrary perturbating field can be expanded in a se-
ries of cylindrical harmonics, and then, the total field is computed
everywhere using the scattering matrices. This method has the ad-
vantage over conventional FEM approaches that FEM is applied
only once, and then a wide range of electromagnetic compatibility
(EMC) problems can be solved with almost no extra computational
effort. Two-dimensional models of relevant EMC problems involv-
ing both emission and immunity have been studied in order to
extract useful information for actual 3-D systems. In spite of the
2-D approach, very interesting conclusions can be derived from the
examples presented in this paper (like the effect of slot resonances
in the field distribution within slotted enclosures or the coupling
between two connected cavities).

Index Terms—Electromagnetic compatibility (EMC), general-
ized circuital analysis (GCA), intrasystem problems, radiated emis-
sions and susceptibility.

I. INTRODUCTION

E LECTRONIC circuits are often covered by some kind of
screen or enclosure in order to avoid their radiation and

to protect them from external electromagnetic interferences.
However, these enclosures are usually slotted in order to allow
the connection of the covered circuit to the exterior world (the
expansion slots in personal computers (PCs) are a very com-
mon example). Thus, electromagnetic fields radiated by some
apparatus can penetrate inside the enclosure of another devices
and affect their correct performance (intersystem perturbations).
Hence, the knowledge of the radiation characteristics and the
coupling properties of slotted enclosures, which depend on fre-
quency and polarization, can help to improve circuit design. On
the other hand, there are electronic subsystems being part of
more complex electronic systems. In this case, electromagnetic
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interferences coming from one part of the system can affect the
normal operation of the whole system itself (intrasystem pertur-
bation). In this case, the task of the design engineer, from the
point of view of electromagnetic compatibility (EMC), deals
with finding the best layout so that the spurious coupling be-
tween different parts of the system is kept as low as possible.

The analytical solution of EMC problems is seldom possible,
since it involves the solution of Maxwell’s equations in inho-
mogeneous, arbitrarily shaped, and often open regions; thus,
they must be numerically solved. Indeed, nowadays there are
many commercial packages based on different numerical meth-
ods readily available for being used in EMC-oriented design.
However, EMC problems are really so complex that even when
they are solved using well-established numerical methods, like
the finite-difference time-domain method (FDTD) or the finite
element method (FEM), the numerical models used for the anal-
ysis must be thoroughly designed and their results carefully con-
sidered. In the last few years, several studies of EMC problems
related with slotted enclosures have been published ([1]–[3] are
representative samples), most of them dealing with the compu-
tation of the shielding effectiveness (SE) at some fixed positions
inside the enclosure, or the radiated perturbations produced by
a coaxial probe somewhere within the shield.

In this paper, a hybrid method consisting of a combination
of FEM and modal analysis (MA), the so-called generalized
circuital analysis (GCA) [4] is used to study the 2-D slotted en-
closures of arbitrary geometry and composition, from the point
of view of EMC. The 2-D approach has been used in order to
reduce the complexity of the analysis, and to make it possible to
obtain estimates of the actual electromagnetic perturbations in
a reasonable time using single-processor computers. The GCA
method allows to characterize a given enclosure independently
of the perturbation field, so that any emission or immunity prob-
lem involving that shield can be studied without solving a FEM
problem for each particular excitation. Although the results
obtained are quantitatively approximate, they are qualitatively
meaningful, and provide a very interesting insight into what is
actually happening within the enclosure. The results presented
in this work can be used both by engineers dealing with EMC
problems to assess design guidelines and by researchers to help
them to define further 3-D models for future research works.

In Section II, the fundamentals of the GCA are briefly outlined
(for a deeper description, see [4]), and the circuital models for
both radiated intersystem and intrasystem EMC problems are
derived. For the sake of concision, only TMz polarized waves
are considered herein, being very similar to the analysis of TEz

waves [4]. In Section III, the proposed method is validated by
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Fig. 1. General representation of a one-port network and the equivalent cir-
cuital model.

comparing simulated results and measurements, and then sev-
eral numerical examples are solved in order to show how a 2-D
simulation tool provides useful qualitative results when properly
applied to relevant EMC problems. The conclusions of this work
are presented in Section IV. Time-harmonic electromagnetic
fields with ejωt time variation are used throughout this paper,
and they are represented by their complex amplitude or phasor.

II. THEORY

A. Circuital Characterization of One-Port Networks

The more general one-port network is formed by a 2-D region
contained in the XY plane and enclosed within a circumference
of radius R0, as can be seen in Fig. 1. This circumference is
called access or port, using the microwave network analysis
terminology. At the port, the incoming (represented by the su-
perscript +) and outgoing (represented by the superscript −)
electric field wave amplitudes can be expanded as [5]

E+
z =

N∑
n=−N

anH(1)
n (k0R0) ejnφ (1a)

E−
z =

N∑
n=−N

bnH(2)
n (k0R0) ejnφ (1b)

where k0 = ω
√

µ0ε0 is the free-space wavenumber, H
(1)
n (x)

and H
(2)
n (x) are the Hankel functions of the first and second

kind and order n, respectively, and the modal coefficients an

and bn are the elements of vectors {a} and {b} defined in Fig. 1.
The number of terms used in the modal expansion is N ∼= k0R0,
so that the electric field can be properly obtained in the region
ρ ≥ R0 [6], [7].

The modal coefficient vectors are related by means of a gen-
eralized scattering matrix [S] as

{b} = [S]{a}. (2)

The generalized admittance matrix (GAM) relating the to-
tal electric and magnetic fields tangential to the circumfer-

Fig. 2. General representation of a two-port network and the equivalent cir-
cuital model.

ence defining the access is the basis for the computation of
the generalized scattering matrix. The first step to construct the
GAM matrix is to compute the magnetic field Hφ,n |ρ=R0 using
the FEM with the boundary condition Ez,n |ρ=R0 = ejnφ for
− N ≤ n ≤ N .

The admittance parameters are then defined as

Hφ,n |ρ=R0 =
N∑

m=−N

Ym,nejmφ (3)

and they are computed by using the orthogonality property of
complex exponentials as

Ym,n =
1
2π

∫ 2π

0

Hφ,n |ρ=R0e
−jmφdφ, −N ≤ m,n ≤ N.

(4)

Finally, enforcing the continuity of both the total tangen-
tial electric and magnetic fields, the scattering matrix of (2) is
obtained [4].

B. Circuital Characterization of Two-Port Networks

A two-port network is considered to be formed by a 2-D re-
gion lying on the XY plane, and bounded by two circumferences
of radii R1 and R2, as shown in Fig. 2. The circumference of
radius R1 is also called port n◦ 1, and that of radius R2, port
n◦ 2. At both ports, the incoming and outgoing waves can be
expanded in terms of cylindrical harmonics, as in the case of
one-port networks. The number of modes used in these expan-
sions is N1

∼= k0R1 at port n◦ 1 and N2
∼= k0R2 at port n◦ 2,

in order to properly represent the electric fields at ρ ≥ R1 and
ρ = R2 [6], [7]. The modal coefficient vectors {a1}, {b1}, {a2},
and {b2} are defined in Fig. 2, and they are related by means of
a generalized scattering matrix{

{b1}
{b2}

}
=

[
[S11] [S12]
[S21] [S22]

]{
{a1}
{a2}

}
. (5)

This scattering matrix is derived from a GAM, as in the one-
port case described in Section II-A. The two-port GAM is also
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Fig. 3. Definition of the general radiated susceptibility problem.

computed following a very similar procedure than that used in
the one-port case [4].

C. Spectral Representation of Perturbating Fields

Two perturbation sources are considered in the EMC prob-
lems dealt with in this paper: plane wave incidence (radiated
susceptibility) and arbitrary currents (radiated emission and
intrasystem problems). The plain wave decomposition into
cylindrical harmonics is given by [5]

Ez =
∞∑

n=−∞
E0 e−jn( π

2 +ϕ0) Jn (k0ρ) ejnϕ (6)

where E0 is the electric field perturbations amplitude, Jn (x) is
the Bessel function of the first kind and order n, and ϕ = ϕ0 is
the angle of incidence, as defined in Fig. 3.

On the other side, arbitrary currents are approximated by a
set of linear current sources. The electric field produced at an
arbitrary point �r by a linear current source centered at point �r ′

of cylindrical coordinates (ρ′, ϕ′) and radiating in the free-space
is given by

Ez (�r ) = −30πk0 I0H
(2)
0 (k0|�r − �r ′|) (7)

where I0 is the current amplitude. Using the addition theo-
rem of Hankel functions, it is possible to expand the perturbat-
ing field at point �r in terms of centered cylindrical harmonics
[8]

Ez (�r) = −30k0 I0

×
{∑∞

n=−∞ H
(2)
n (k0ρ

′)Jn (k0ρ) ejn(ϕ−ϕ ′) ρ ≤ ρ′∑∞
n=−∞ Jn (k0ρ

′)H
(2)
n (k0ρ) ejn(ϕ−ϕ ′) ρ ≥ ρ′.

(8)

D. Circuital Analysis of Radiated Susceptibility

If the perturbation source is far away from the victim system,
the perturbating electric field can be locally represented by a
plane wave. Fig. 3 shows the general geometry and the equiva-

Fig. 4. General radiated emission problem. Several linear current sources are
arbitrarily distributed inside a slotted envelope.

lent circuit for this case. Taking into account the definition of the
Hankel functions of the first and second kind [8] and the modal
expansion of a plane wave in terms of cylindrical harmonics (6)
the a1n coefficients are given by

a1n =
E0

2
e−jn( π

2 +ϕ0). (9)

This perturbation is included in the equivalent circuit of Fig. 3
as a matched current source, since the fields scattered by the en-
closure are not reflected back toward the origin (Sommerfeld
condition at ρ → ∞). On the other hand, the victim cylinder is
represented by a one-port network scattering matrix [SL ], used
to load the port n◦ 2 in the equivalent transmission line model
represented in Fig. 3. In this work, the radiated susceptibility
analysis has been focused on empty enclosures. In this particular
case, since there is nothing within the enclosure neither absorb-
ing nor reflecting incoming energy, {a2} = {b2}, i.e., the load
scattering matrix in the equivalent circuit of Fig. 3 is the identity
matrix. For the case of empty enclosures, the modal coefficient
vectors are, hence, given by

{b1} = [S11] {a1} + [S12] [[I] − [S22] ] [S21] {a1} (10a)

{a2} = {b2} = [[I] − [S22] ]
−1 [S21] {a1}. (10b)

Even in this simple case, the electrical field within the en-
closure must be computed using numerical methods. A FEM
solution can be easily obtained once the total electric field at
ρ = R1 and ρ = R2 has been computed [9].

E. Circuital Analysis of Radiated Emissions

The general case of radiated emissions considered in this
work is represented in Fig. 4, along with its circuital model. The
arbitrary perturbating current, represented by a set of NS linear
current sources of amplitude Ii and placed at (ρ′i , ϕ

′
i), is included

in the circuital model as a matched current source. Assuming
that R2 ≥ max{ρ′i} and from (8), the modal coefficients of the
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Fig. 5. General intrasystem EMC problem with an arbitrary set of linear
current sources inducing perturbating fields in other shielded parts of the circuit.

incoming waves at port n◦ 2 are given by

a2n = −30πk0

NS∑
i=1

Ii Jn (k0ρ
′
i) e−jnϕ ′

i . (11)

On the other side, since the Sommerfeld condition at ρ → ∞
states that a1n = 0 (there is no reflection from the “surface at
infinity”), port n◦ 2 is loaded with the free-space admittance
in the circuital model of Fig. 4. Finally, the arbitrarily shaped
slotted screen enclosing the currents is represented by a two-port
scattering matrix. Thus, from (5) we have

{b1} = [S12] {a2} (12a)

{b2} = [S22] {a2}. (12b)

If the victim circuit is outside the enclosure, the electric field
perturbation radiated by the shielded current is given by

Ez =
N1∑

n=−N1

b1nH(2)
n (k0ρ) ejnφ ρ ≥ R1 (13)

since the region ρ ≥ R1 is assumed to be homogeneous, and the
number of modes used in the circuital analysis (N1

∼= k0R1) is
big enough to guarantee that (13) converges to the actual field.

If the victim system is far away, (13) can be simplified using
the asymptotic form of the Hankel functions of the second order
for big arguments [8] as

Ez =

√
2j

πk0ρ
e−jk0ρ

N1∑
n=−N1

b1nejn(φ+ π
2 ), k0ρ 	 1.

(14)

F. Circuital Analysis of Intrasystem EMC Problems

Fig. 5 represents the general geometry used in this paper
to represent an EMC intrasystem problem and the correspond-
ing equivalent circuit. The cavity on the left contains the more
noisy elements of the circuit, represented by a set of linear cur-
rent sources (a matched current source in the equivalent circuit).

The cavity on the right holds the more electromagnetically sus-
ceptible elements of the circuit, represented by an arbitrarily
shaped cylinder included in the circuital model as a one-port
scattering matrix loading the port n◦ 2. The modal coefficients
representing the current perturbation in the transmission line
model of Fig. 5 are

a1n = −30πk0

NS∑
i=1

IiJn (k0ρ
′
i) e−jnϕ ′

i . (15)

If the scattering matrix representing the victim cylinder is
[SL ], the unknown coefficients can be identified as

{b1} = [S11] {a1} + [S12] [SL ] [[I] − [S22] [SL ]]−1 [S21] {a1}
(16a)

{a2} = [SL ] [[I] − [S22] [SL ]]−1 [S21] {a1} (16b)

{b2} = [[I] − [S22] [SL ]]−1 [S21] {a1}. (16c)

The particular case of a perfectly conducting centered cylin-
der of radius R is considered in the following section. In this
case, the one-port scattering matrix can be easily derived using
the MA technique [5], and it is given by

[SL ]n,n = −H
(1)
n (k0R)

H
(2)
n (k0R)

, −N2 ≤ n ≤ N2. (17)

Finally, the total electric field within the enclosure is numer-
ically computed as in the radiated susceptibility case described
in Sections II–IV.

III. NUMERICAL EXAMPLES

In this section, the proposed method is validated by comput-
ing the SE of a rectangular enclosure with the size of a typical
main unit of a PC with a slot having the dimensions of a CD-
ROM reader, which is a widely referred example. Then, three
examples of the most outstanding EMC problems are presented
in this section, covering both the radiated and intrasystem cases.
The first example deals with the emission problem. A squared
slotted enclosure is analyzed in order to explore the relation
between the SE and the slot length. The effect of the unshielded
electric field perturbation pattern is also considered. In the sec-
ond example, one system formed by two connected identical
squared cavities is studied, considering the victim cavity ei-
ther empty and containing a conducting cylinder. Both common
mode and differential mode perturbations are considered. Fi-
nally, a radiated susceptibility problem has been solved to show
the effect of finite electrical losses on the shield performance.

A. Validation

To validate the proposed 2-D method, the SE of the empty
enclosure of Fig. 6 was computed. The SE is defined as [10]

SE(dB) = −20 log

(
| �E0|
| �ES |

)
(18)

where �ES is the electric field somewhere within the enclosure
and �E0 is the electric field present at the same point when the
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Fig. 6. Geometry of the slotted rectangular box used to validate the 2-D
approach (a = 30 cm, b = 12 cm, c = 30 cm, l = 10 cm, and w = 0.5 cm).
The plane represents the cut where the 2-D computation is carried out.

Fig. 7. Position of the probes used to measure the field inside the enclosure
and where the SE is computed.

shield is removed. In this example, �E0 is a plane wave linearly
polarized in a direction orthogonal to the slot, as shown in Fig. 6,
and �ES was computed between 100 MHz and 2 GHz using a
2-D model of the structure in two locations within the enclosure
(see Fig. 7). Then, the 3-D SE can be obtained by using the
expression [11]

SE(dB) = SE2D(dB) + 10 log10

(
b

w

)
. (19)

The simulated SE is plotted in Figs. 8 and 9, along with the
corresponding measurements showing a very good agreement.
Regarding the computational effort, the SE was computed at
1000 frequency points in 20 min on a 2.66-GHz Pentium IV by
means of the 2-D approach using a FEM mesh of less than 1000
elements. Similar results can be obtained using a 3-D solver
(ANSYS). The model had more than 50 000 unknowns, and the
problem was solved in 650 min of CPU time on a COMPAQ
DS20 single-processor computer (and using only 400 frequency
points).

B. Radiated Emission

Fig. 10 shows a square enclosure of side W with a slot of
length a = 0.2W on the top, containing a 1-A linear elec-
tric current source along the Z-axis. The normalized electric

Fig. 8. Comparison between the SE computed using the 2-D approach and
that measured at position 1 (see Fig. 9).

Fig. 9. Comparison between the SE computed using the 2-D approach and
that measured at position 2.

field perturbation radiated along the positive Y-axis direction is
plotted versus the free-space wavenumber. As expected from
the slot antenna theory (see [12]), the maximum radiation is
achieved for the resonant slot (a = λ/2, k0 = 4π/a). Fig. 10
also shows the electric field pattern within the enclosure for reso-
nant and nonresonant enclosures. Special attention must be paid
to the strong modification of the electric field pattern within the
enclosure due to the slot resonance, since the perturbation field
can be up to 10 dB higher than the correspending nonresonant
values near the conducting walls.

In order to explore the effect of the unshielded perturbation
pattern on the perturbation strength, the same square slotted en-
closure has been analyzed, but now enclosing two linear current
sources. The amplitude of all the interfering current sources is
1 A, but different phases, separations, and emplacements have
been considered. The unshielded radiated electric field patterns
are shown in Fig. 11, along with the electric field perturbations
radiated by the shielded currents around the enclosure through
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Fig. 10. Normalized radiated electric field interference produced by a linear
current source line covered by a square slotted envelope and electric field patterns
(in volts per meter) within the envelope for the resonant and nonresonant slot
cases.

Fig. 11. Axial electric fields (in volts per meter) radiated by different current
distributions and radiated perturbations and the corresponding unshielded nor-
malized field patterns (in polar coordinates) for the different current distribution
discussed in Section III-A.

a resonant slot. Numbers 1and 2 correspond to two current lines
placed on the X-axis at x = ±λ/4 with relative phases (0◦, 0◦)
and (0◦, 180◦), respectively, whereas numbers 3 and 4 corre-
spond to two current lines placed on the Y-axis at y = ±λ/8 with
relative phases (0◦, 90◦) and (0◦, −90◦), respectively. From the
curves of radiated perturbation, it can be stated that no matter the
unshielded radiation pattern, the shielded current perturbation
is radiated in the direction of the slot (φ = 90◦). Nevertheless,
it can also be observed that perturbation strength is strongly de-
pendent on the unshielded perturbation pattern. When the free-
space radiation points toward the slot (cases 1 and 3), there is a
strong perturbation radiated by the slot but when the unshielded
perturbation vanishes in the slot direction, the perturbation pro-
duced by the whole shielded system is significantly reduced

Fig. 12. Common mode intrasystem interference between two connected
cavities of the same dimensions. The axial electric field (in volts per meter)
in the victim cavity is plotted for (a) W k0 = π

√
5/2, and (b) resonant slot

(a = W
√

2/4, W k0 = 2
√

2π).

(differences of near 20 dB can be observed in Fig. 11). It must
be pointed out that the unshielded radiation patterns shown in
Fig. 11 are far-field patterns, which can be easily measured
in an anechoic chamber. Nevertheless, the shielded perturbation
fields also plotted in Fig. 11 include the effect of the interaction
of the near field produced by the linear current sources with the
envelope; thus, the relationship between both the sets of field
patterns is not so obvious as it seems to be in principle.

C. Two Connected Cavity System

The intrasystem EMC problem consisting of two adjacent
square cavities of the same dimensions (W × W ) and con-
nected through a slot of length a is analyzed throughout this
section. Both common mode and differential mode currents are
considered, along with empty and loaded victim cavities. The
first intrasystem problem geometry is shown in Fig. 12: a 1-A
interfering linear source current is placed in the center of the
cavity on the left, and the electric field is computed in the empty
cavity on the right (the victim cavity). The electric field coupled
into the victim cavity depends on the interference frequency.
When this frequency matches with one of the resonance fre-
quencies of the equivalent 2-D closed resonant cavity, an inter-
fering electric field with the corresponding resonant field pattern
is coupled into this part of the enclosure. Otherwise, the cou-
pling is almost negligible. However, not all possible resonant
fields of the equivalent cavity are excited by the slot. For exam-
ple, the axial electric field within the victim cavity is plotted in
Fig. 12 for Wk0 = π

√
5/2; although there are two degenerate

modes sharing the same resonant frequency (the TM21 and the
TM12), only one of them (the TM21) is excited [field plot (a) in
Fig. 12], because the other one vanishes along the plane y = 0,
where the slot is placed. This behavior holds for all the res-
onant modes of the equivalent victim cavity. Additionally, the
slot resonances also produce relevant interferences that are not
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Fig. 13. Differential mode intrasystem interference analysis between two con-
nected cavities of the same dimensions (a = 0.2W ). The maximum axial elec-
tric field amplitude within the victim cavity for W k0 = π

√
5/2 is plotted versus

the current line separation.

related at all with those produced due to the cavity resonances.
Consider, for instance, the TM22 mode of the victim cavity, that
cannot be excited because its field pattern vanishes for y = 0
(the slot position); indeed, the electric field induced within the
victim cavity for Wk0 = 2

√
2π (the TM22 resonant wavenum-

ber) through a nonresonant slot (a = 0.2W ) drops more than
30 dB below the field coupled at the TM21 resonant frequency.
Nevertheless, if the slot length is modified in order to make it
resonant (a = W

√
2/4), the electric field coupled within the

victim cavity raises more than 30 dB with respect to the nonres-
onant case (thereby, producing an interference level equivalent
to that produced by the TM21 resonant mode).

The differential mode perturbation case is shown in Fig. 13.
The same two connected square cavities system is considered,
but now the interfering cavity on the left contains two 1-A
linear current sources with opposite phases and separated by a
distance d. The maximum electric field coupled into the victim
cavity through a nonresonant slot (a = 0.2W ) is plotted versus
the separation d for Wk0 = π

√
2, which is the resonant fre-

quency of the TM11 mode of the equivalent 2-D square victim
cavity (hence, the maximum interference field corresponds to
the center of the cavity). If the effect of the shield was neglected
and the interference sources were radiating in the free-space,
the field along the X-axis would be maximum for d = 0.5λ,
and it would vanish for d = λ. Thus, from the results shown in
Fig. 13 and discussed earlier, the perturbation within the enclo-
sure should be maximum for d = 0.5λ and minimum for d = λ.
However, the enclosure introduces some near-field effects, and
the interference coupled into the victim cavity is maximum for
d = 0.6λ and it vanishes for d = 1.2λ.

Finally, the interference coupled into a nonempty enclosure
is described in Fig. 14. In this case, the victim cavity on the
right contains a centered perfectly conducting circular cylin-
der of radius R = 0.1W . The interference is produced by a
1-A linear current source parallel to the Z-axis in the center
of the cavity on the left, and it is coupled to the victim cav-
ity through a slot of length a = 0.2W , as shown in Fig. 14.

Fig. 14. Common-mode intrasystem interference analysis between two con-
nected cavities of the same dimensions. The induced current in a perfectly
conducting cylinder of radius R = 0.1W placed in the center of the victim
cavity is plotted versus the normalized wavenumber.

TABLE I
COMPARISON BETWEEN THE RESONANCE NORMALIZED WAVENUMBERS

W kr , FOR THE FIRST TMz RESONANT MODES OF THE 2-D CAVITY

ASSOCIATED TO THE VICTIM ENVELOPE OF THE STRUCTURE IN

FIG. 8, AND THE NORMALIZED WAVENUMBERS OF THE CURRENT

PEAKS INDUCED BY THE LINEAR CURRENT SOURCE W kp

The common-mode current perturbation induced on the cylin-
der is computed, and plotted in Fig. 14 versus the interfering
current frequency. The graphic of the induced current presents
several peaks that are somehow related with resonance phe-
nomena. The resonant frequencies of the 2-D equivalent cav-
ity problem associated to the victim part of the enclosure are
listed in Table I, along with the frequencies corresponding to
the current peaks in Fig. 14. The frequency at which the first
current peak arises, Wk0 = 6.12, and the resonant wavenum-
ber of the first TM mode agree to within less than 1.3%. The
electric field coupled into the victim cavity at this frequency,
plotted in Fig. 15(a), also matches the first resonant TM-mode
electric-field pattern. However, when the second TM mode cou-
pling is explored, any significantly induced current is found on
the cylinder surface at Wk0 = 7.33, which is the corresponding
resonant wavenumber, although the electric field perturbation
within the cavity at this frequency indeed corresponds to the
second TM-mode electric-field pattern, as shown in Fig. 15(b).
Moreover, two additional peaks arise in the current graphic
of Fig. 14 at Wk0 = 6.42 and Wk0 = 6.87. They are not
associated to any resonant mode of the equivalent cavity. The
origin of this apparently surprising result is found in the field
symmetry. The second TM-mode field presents an even symmet-
ric amplitude pattern but an odd phase distribution around the
cylinder, thus, the electric current induced on part of the cylin-
der surface cancels out with the current induced on the other
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Fig. 15. Axial electric field induced in the victim cavity depicted in Fig. 14 for
(a) W k0 = 6.12, (b) W k0 = 7.33, (c) W k0 = 6.42, and (d) W k0 = 6.87.

part, and the overall common current vanishes. However, both
the amplitude and phase patterns of the first TM mode are even
symmetric, and therefore, a nonvanishing common mode cur-
rent is induced at the corresponding resonant frequency. On the
other hand, the peaks at Wk0 = 6.42 and Wk0 = 6.87 appear
due to some particular field distributions produced within the
victim cavity, the so-called banana modes [13]. Banana modes
are formed in this structure because the symmetry of the field
pattern is lost due the effect of the slot, and a maximum appears
on the opposite side, as shown in Fig. 15(c) and (d). These modes
do not appear in the equivalent resonant cavity analysis because
they are specifically produced by the effect of the slot equivalent
reactance, which is removed when the resonant wavenumbers
are computed. Since banana modes always present an unsym-
metrical field pattern, nonvanishing common mode currents are
associated to them. Banana modes are usually excited in loaded
enclosures when the free space within the cavity is electrically
small. Therefore, at frequencies Wk0 > 7 only the highly sym-
metric TM modes are supported and the total common mode
current induced on the cylinder surface vanishes. However, just
below Wk0 = 14, a TM mode with even symmetric amplitude
and phase patterns is excited, producing a small peak in the
current plot. Additionally, other nonvanishing induced current
peaks appear whenever the field distribution is sufficiently un-
symmetrical, like that at Wk0 = 15.7 produced by the slot res-
onance. Anyway, the behavior of the banana modes is strongly
dependent on geometric issues [14], and therefore, their effect
must be assessed for any particular layout.

D. Effect of Finite Electrical Losses on the
Envelope Resonances

The discussions on the results of the previous examples
clearly show that coupling phenomena are mainly due to res-
onances. These resonances severely affect the envelope perfor-

TABLE II
COMPARISON BETWEEN THE SE PROVIDED BY AN EMPTY SLOTTED ENVELOPE

WITH PERFECTLY CONDUCTING WALLS AND THAT OBTAINED FROM AN

ENVELOPE WITH THE SAME DIMENSIONS BUT MADE OF A DIELECTRIC

MATERIAL WITH εr = 2.56 AND σ = 100 S/m

mance, and can reduce its SE below 0 dB. The SE as low as
−20 dB is reported in [3] for perfectly conducting boxes, and
this means that the electric field amplitude within the envelope
is ten times bigger than the field that would be if the shield were
removed. This behavior can be explained as the effect of the con-
structive superposition of multiple reflections on the conducting
walls at the resonant frequency.

The resonant circuit quality factor Q is the magnitude most
widely used to represent the strength of a resonance. The en-
velope quality factor can be defined, in terms of stored energy
and lost power, as Q = 2πfrUT /WL , where fr is the reso-
nant frequency, UT is the total energy (electric and magnetic)
stored within the envelope, and WL is the overall lost power
due to electric and magnetic losses. If the cavity walls are made
of a lossy dielectric material, it can be expected that the Q
will diminish, and therefore, the effect of the resonance will be
also weakened. A 2-D radiated susceptibility problem has been
studied in order to explore the effects of reducing the walls con-
ductivity. The envelope used in the simulation was as shown in
Fig. 10, but now empty and with 0.05W -width walls; a plane
wave perturbation propagating along the Y-axis toward the ori-
gin was considered. The minimum SE was computed within the
envelope using the definition of (18) at several frequencies, and
the results are shown in Table II. At Wk =

√
2π (the resonant

frequency of TM11 mode), the SE increases nearly by 7 dB
when a shield made of a dielectric material with εr = 2.56 and
σ = 100 S/m is used instead of a perfectly conducting one. At
nonresonant frequencies (e.g., Wk = π and Wk = 2π) there is
still a high SE (the SE effectiveness reduction being comparable
to the improvement achieved at the resonant frequency). Based
on these results, the SE effectiveness of the box shown in Fig. 6
has been computed for frequencies ranging from 0 to 1.5 GHz
using one commercial simulator based on the FEM (ANSYS).
Fig. 16 shows the ANSYS solid model of the envelope along
with the SE for a zero-width perfectly conducting box and for
dielectric boxes of 4- and 2-mm-width walls made of a plastic
with ε = 2.56 and σ = 100 S/m. In order to validate the FEM
model, the SE computed for the perfectly conducting box is also
compared with the experimental values reported in [3], showing
a very good agreement. The metallic box has two resonant fre-
quencies below 1.5 GHz (fr = 707.1 MHz for the TM110 and
fr = 1.18 GHz for the TM210). As expected from the 2-D anal-
ysis, in both cases, the SE provided by the plastic envelope at the
resonant frequencies is nearly 20 dB better than that obtained
from the perfectly conducting one (no matter the wall width).
Indeed, the SE of the plastic enclosure at frequencies above the
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Fig. 16. SE of a slotted box for different materials. The shield dimensions are
30 cm × 30 cm × 12 cm; the slot dimensions are 10 cm × 0.5 cm, and it is
placed on one of the narrow sides of the box.

first resonance is, in general, better than that of the conduct-
ing shield. At frequencies below the first resonance, although
the SE obtained from the conducting screen is higher than that
provided by the dielectric enclosure, the figures corresponding
to the plastic box (SE > 40 dB for 4-mm-width walls) are still
valid, depending on the specific application.

IV. CONCLUSION

A hybrid GCA-FEM tool for 2-D electromagnetic analysis
has been introduced, validated by comparing simulations and
measurements, and then applied to different intersystem (ra-
diated emission and susceptibility) and intrasystem (near field
coupling) problems. As such, the examples considered in this
work are simplified 2-D models of actual EMC problems; they
provide a meaningful physical insight on several coupling and
near-field phenomena produced within slotted enclosures that
can hardly be studied using more realistic 3-D models due to
the computational effort required to solve them. Although some
acceleration techniques have been described in the recent liter-
ature, these improvements are being slowly incorporated into
commercial simulators used by engineers dealing with EMC-
oriented design. Practical EMC design is often based on the
designer’s experience, but 2-D simulation tools, like the GCA
used in this paper, can help to roughly test design strategies or
circuit layouts prior to apply them to more rigorous 3-D models.
The design of a plastic enclosure presented here is a good exam-
ple of how 2-D simulations can help to address a complex EMC
problem: a set of fast (less than 24.4 s per frequency point on a
COMPAQ DS20 single-processor workstation) simulations are
performed in order to check the feasibility of the solution (the
use of lossy dielectric enclosures improves SE at the resonant
frequencies without a dramatic SE reduction at other frequen-
cies), and to find a range of conductivities and wall widths that
are then used in a time-consuming full-wave 3-D analysis ori-
ented to assess the actual SE provided by a slotted plastic box

(the average computation time in Fig. 16 was 490 s per frequency
point also on a COMPAQ DS20 single-processor workstation).

In addition to the effect of losses on SE, the other results pre-
sented in this paper also show some physical phenomena that
can arise within a slotted enclosure and that can produce EMC
problems. Concerning the emission problem, slot resonances
must be considered not only to reduce the radiated perturba-
tions, but also to avoid intrasystem EMC problems, due to the
strong field modification within the enclosure at the slot reso-
nant frequency. Additionally, the radiation patterns of the noisy
elements that are going to be shielded must be numerically or
experimentally assessed before the slot emplacement is decided,
since variations of nearly 20 dB can be found due to a wrong
choice. These remarks are also valid for near-field intraystem
problems, although in this case some results can slightly vary
due to near-field effects. Near-field perturbations can also ex-
cite banana modes producing interferences at frequencies other
than the resonant frequencies of the associated 2-D cavity, due
to the effect of the slot equivalent circuit. Therefore, when ba-
nana modes were expected, the slot must be included into the
model used to determine the frequencies where EMC problems
are more likely. Additionally, it must be pointed out that not
only SE values at single frequencies but also detailed field plots
at potentially critical frequencies are needed in order to deter-
mine the best circuit layout within a slotted enclosure when
dealing with actual EMC problems. Although all the examples
shown in this work mainly involve squared envelopes, the pro-
posed method can be extended to any rectangular enclosure just
by increasing the number of ports (i.e., by using more cylin-
ders). Obviously, the higher the number of ports, the higher
the computation time needed to derive the scattering matri-
ces, but this increment is still compensated by the fact that
the scattering matrix is computed only once for a particular
enclosure.
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