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Abstract

This paper describes a novel architecture for the hard-
ware implementation of non-linear multi-layer cellular neu-
ral networks. This makes it feasible to design CNNs with
millions of neurons accommodated in low price FPGA de-
vices, being able to process standard video in real time.

1 Introduction

Since Chua and Yang proposed the cellular neural net-
work in 1988, a wide field of research has spread on its ap-
plications and implementation. A Cellular Neural Network
(CNN) is a bioinspired non-linear cellular processor array
suitable to be implemented on electronic circuits. These
nets are a powerful analogue computer, able to solve com-
plex array signal processing problems.

In this paper, a new architecture is proposed for the hard-
ware implementation of a Discrete-Time Cellular Neural
Network. It allows lower cost implementation of bioin-
spired models in a shorter design cycle.

2 DTCNN model for FPGA implementation

Our proposed equivalent Discrete-Time (DTCNN)
model is based in eq. (1) and (2), detailed in [1]:
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where I, U,Y and X denote bias, input, output and state
variable of each cell, respectively. B is the non-linear
weights template for the inputs and A is the correspond-
ing non-linear template for the outputs of the neighbouring
cells. Non-linearity means that templates can change over
time. Taking into account the typical target applications, the
size of the templates is 3 x3.
As the infinite feedback loop of eq. (1) and (2) is unfeasi-
ble, it must be constrained in a range. Clearly, the accuracy
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of the approximation depends on the number of iterations
considered. Looking for the worst case value in typical
video processing applications, simulations have been car-
ried out with different inputs and templates. These simula-
tions have consisted of several processing algorithms: edge
detections, blur, sharpness, gaussian, etc. The correlation
coefficient has been used as a measure of how closely the
output of original analogue and proposed discrete models
are related. The results reveal that 10 iterations or stages
are enough to obtain data practically identical to those of the
original model (correlation coefficients around 9.997¢—1).

The hardware implementation of the discretization arises
two difficulties: the network associates one cell to each data
input, which entails networks with a very large number of
neurons in typical CNN-based applications; and all of the
cells work in parallel, generating simultaneously their con-
tributions to the system output. For video processing ap-
plications, this means that using a CNN to process 8-bit
640x480-pixel images would require an FPGA with more
than 2,400,000 pins and a huge area to accommodate more
than 300,000 neurons. In practice, this is unfeasible with
present off-the-shelf FPGAs.

To break these area difficulties the solution is time-
multiplexing, using one functional unit to execute multiple
operations. So an N-cell CNN can be folded in just one-
cell CNN, keeping the area consumed to a minimum. With
this approach, the computation of a CNN is equivalent to a
single neuron which shifts along the input array.

However, two problems rise with this solution. On the
one hand, the reduction is at expense of increasing the com-
putation time by the same ratio /N. Once again,there exists
a limit for the size of the CNN, now fixed by the maximum
FPGA clock frequency and by the desired performance.
Following the same example of 640x480-pixel video, with
the folded structure and considering a 10-stage cell, it is
necesary to execute more than 3 million convolutions with
each template in the cell per image. Considering 40 ns for
each convolution (as stated in Section 2.1), it takes 120 ms
per image, hardly 8 frames per second. If a higher frame
rate is desired, the number of convolutions must be reduced,

IEEE
computer
® psouety

Authorized licensed use limited to: Universidad de Cartagena. Downloaded on May 11,2010 at 12:48:54 UTC from IEEE Xplore. Restrictions apply.



Figure 1. Stages pipeline and architecture.

at the expense of losing accuracy or making the CNN array
smaller.

On the other hand, the iterations that each cell must com-
pute demand the storage of the output of each stage. For
video applications, due to the size, it is not possible to store
each iteration output in the FPGA internal memory, so that
an external memory devices must be used. This compli-
cates the system design and adds new constraints, like the
memory timing specifications.

To overcome these problems a novel architecture is pro-
posed, where the CNN array is folded in just one cell, but
this cell is unfolded in as many stages as iterations are re-
quired. Instead of executing the N successive iterations
on the same hardware cell, N hardware cells have been
pipelined; the area consumed by the cell is IV times big-
ger than in the fully-folded version, but the computations
are N times faster. Besides, the problem of the data stor-
age between stages is overcome, since now the system can
work on data streaming. Instead of using external memory
to store the full output of each stage, internal buffers store
just the data required for the computations of each stage.

As shown in Fig. 1, the stage has two input ports and
two output ports: the input U;; and the output from previ-
ous stages Y;;[n—1]; and the output data Y;; [n] and the input
data, which is delayed as many cycles as the stage latency
requires in order to ensure the data synchronization. The
presence of the input data in an output port makes it possi-
ble the pipelining of stages all working with the same input
data, which allows the convergence of information and thus
to build networks where one output can be function of mul-
tiple inputs, far more than the 3 x3 template. In each stage,
the inputs can be adjusted by different templates A and B.
It allows designing powerful non-linear CNNs.

2.1 DTCNN cell implementation

The cell has been designed using low level RTL de-
scription and component placement tecnhiques.The Xilinx
Virtex-4 devices have been the hardware platform selected.
As shown in Fig. 1, two DSP48 slices perform the multi-
plication by the templates. The FIFOs, based on the Block-
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Table 1. Summary of timing and used re-

sources for a 10-stage cell.

Resources Units % Used
Area (slices) 1500 9.8
Flip flops 1720 5.7
DSP48 20 10.5
BlockRAM 20 10.5
Max. internal freq. (MHz) 410 -
Max. pixel Clk. (MHz) 24.11 -

RAM, manage the data stream between stages. The cell
works internally with 48-bit resolution, while the input and
output data are 9-bit resolution and the templates 18-bit. A
summary of timing information and the occupied resources
when implementing a 10-stage cell in a Xilinx XC4VSX35
is included in Table 1. The pixel clock frequency implies
that the cell can process 640x480 video data at 78 fps or
10241024 at 23 fps. The cell hardly occupies the 11% of
the XC4VSX35. Therefore a 9-layer CNN, making up an
almost 3 million neurons CNN, can be implemented with
nine of the proposed cells in the mentioned FPGA.

If the number of iterations is reduced, the length of the
cell pipeline is shortened and the number of layers of the
CNN can be increased in the same ratio. In the limit point,
when just one iteration is considered for approximating the
discrete model to the analogue neuron, the cell consists of
one stage and the number of layers can be increased by
10. This means a 95-layer CNN with 30 million neurons
implemented on a low price FPGA. With a bigger device,
the CNN can be even bigger. For example, an XC4VSX55
can accommodate a 50 million neurons CNN, which can
process 640x480 78 fps video in real time. If a bigger
CNN is still desired, the architecture proposed has been de-
signed regarding the interconnection with other FPGA de-
vices in pipeline. This greatly facilitates the implementation
of CNN with hundreds or thousands of millions of neurons
in a multi-FPGA system. These characteristics confer the
proposed architecture a great advantage against other im-
plementations in ASIC (e.g [2]) and FPGA (e.g. [3]), where
the number of cells is considerably smaller.
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