

ANÁLISIS DE LA SEGURIDAD DE UNA PRESA DE MATERIALES SUELOS EN EL RÍO YAQUE DEL NORTE, EN LAS PROVINCIAS DE SANTIAGO Y LA VEGA (REPÚBLICA DOMINICANA)

UNIVERSIDAD POLITÉCNICA DE CARTAGENA

MARZO 2024

Autor: LOUDMILLA FEZZANI LARROUM

Tutor: LUIS ALTAREJOS GARCÍA

DEPARTAMENTO DE INGENIERÍA CIVIL – ÁREA DE INGENIERÍA HIDRÁULICA

TRABAJO FINAL DE MÁSTER MÁSTER EN INGENIERÍA DE CAMINOS, CANALES Y PUERTOS

UNIVERSIDAD POLITÉCNICA DE CARTAGENA

ANÁLISIS DE LA SEGURIDAD DE UNA PRESA DE MATERIALES SUELOS EN EL RÍO YAQUE DEL NORTE, EN LAS PROVINCIAS DE SANTIAGO Y LA VEGA (REPÚBLICA DOMINICANA)

AUTOR: LOUDMILLA FEZZANI LARROUM

TUTOR: LUIS ALTAREJOS GARCÍA

DEPARTAMENTO DE INGENIERÍA CIVIL – ÁREA DE INGENIERÍA HIDRÁULICA

AGRADECIMIENTOS

Me gustaría agradecer a mi tutor por su cooperación, flexibilidad y facilidad que me ha brindado para hacer este trabajo.

A mi prometido por la paciencia, ayuda y apoyo que siempre me da.

Y a mis padres y a mi hermano por estar siempre.

RESUMEN

El peligro potencial de las grandes presas es evidente. Frente a una probabilidad de fallo muy reducida existe una gran acumulación de energía en los embalses y la violencia resultante de su puesta en libertad incontrolada puede ser catastrófica.

Se puede definir la seguridad como el margen que separa las condiciones reales de la presa de las que llevan a su deterioro o destrucción.

El presente trabajo final de máster consistirá en realizar un estudio acerca de la evaluación de la seguridad de una presa de materiales sueltos situada en el Rio Yaque del Norte, en las provincias de Santiago y la Vega, en República Dominicana.

Aunque la presa esté situada en la Republica Dominicana, se cree conveniente utilizar la legislación española vigente.

Por ello y siguiendo el Real Decreto 264/2021, de 13 de abril, sobre las normas técnicas de seguridad para las presas y sus embalses se realizará un análisis de la seguridad del sistema presa-embalse que comprenderá:

- Evaluación de la seguridad hidrológica, en el que se analizarán los niveles alcanzados en situaciones de avenida. También se comprobará que la presa tiene un resguardo suficiente para cumplir las acciones del viento, sismo, asientos anómalos y deslizamiento de las laderas.
- Evaluación de la seguridad estructural, mediante el programa "Plaxis", en el que se comprobará principalmente la estabilidad de los taludes.

El resultado de la evaluación sirve para informar la eventual propuesta de medidas de reducción del riesgo, si procede.

Tabla de contenido

CAPÍTULO	O I INTRODUCCIÓN	1
1.1.	INTRODUCCIÓN	2
1.2.	OBJETIVOS	3
1.3.	NORMATIVA APLICABLE	3
1.4.	INFORMACIÓN UTILIZADA	4
1.5.	PRESA DE ESTUDIO	5
1.5.3	L. LOCALIZACIÓN Y CONSTRUCCIÓN	5
1.5.2	2. CARACTERISTICAS DE LA PRESA	6
1.5.3	3. TIPOLOGÍA DE LA PRESA	6
1.5.4	4. GEOLOGÍA Y MATERIALES	8
1.5.	5. DEFINICIÓN DEL VERTEDERO	8
1.5.0	5. SISMICIDAD	9
1.6.	METODOLOGÍA EMPLEADA	9
CAPÍTULO	O II SEGURIDAD HIDROLÓGICA	11
2.1	INTRODUCCIÓN	12
2.1.	EVALUACIÓN DE LA SEGURIDAD HIDROLÓGICA	14
2.1.	L. CURVA COTA-VOLUMEN DEL EMBALSE	15
2.1.2	2. CÁLCULO DE LA MÁXIMA CRECIDA PROBABLE	15
2.1.3	3. COMPROBACIÓN DE LA SEGURIDAD HIDROLÓGICA	18
2.1.4	4. CAPACIDAD DE VERTIDO EN FUNCIÓN DE LA APERTURA DE COMPUE	RTAS 19
2.2.	ANÁLISIS DE VOLÚMENES	20
2.2.	L. CASO DE MANTENIMIENTO DE COMPUERTAS ABIERTAS	22
2.3.	NIVELES DEL EMBALSE	26
2.4.	CORONACIÓN	26
2.5.	RESGUARDOS	27
2.5.	L. AVENIDAS	28
2.5.2	2. VIENTO	28
2.5.3	3. SISMO. RESGUARDO SISMICO	33
2.5.4	4. ASIENTOS ANÓMALOS	36
2.5.	5. DESLIZAMIENTO DE LAS LADERAS DEL EMBALSE	36
2.5.6	5. RESGUARDOS TOTALES	37
2.5.	7. ANÁLISIS DE RESGUARDOS TOTALES	38
CAPITULO	O III SEGURIDAD ESTRUCTURAL	40

3.1.	3.1. INTRODUCCIÓN A LA SEGURIDAD ESTRUCTURAL DE LA PRESA				
3.2.	CÁLCULOS ESTRUCTURALES	41			
3.2.	1. SITUACIONES DE PROYECTO	41			
3.2.	2. CONFIGURACIÓN GENERAL DEL PROGRAMA	43			
3.2.	3. MODELIZACIÓN DE LA PRESA	46			
3.2.	4. SEGURIDAD ESTRUCTURAL	53			
3.2.	5. ASIENTOS ANÓMALOS	58			
CAPÍTUL	O IV CONCLUSIONES	60			
BIBLIOGRAFÍA					
ANEJO DE CÁLCULO					

TABLA DE FIGURAS

Figura 1. Actual presa de Puentes	2
Figura 2. Cuenca rio Yaque del Norte	5
Figura 3. Sección de la presa	6
Figura 4. Tipología de presa	14
Figura 5. Relación curva cota y volumen del embalse	15
Figura 6. Relación del periodo de retorno y CMP	17
Figura 7. Hidrogramas de entrada para las 3 avenidas de estudio	17
Figura 8. Cálculo de volúmenes para las avenidas de estudio	19
Figura 9. Cálculo de volúmenes para las avenidas de estudio	
Figura 10. Curva Cota – Volumen del embalse	20
Figura 11. Curva cota-caudal aliviadero	23
Figura 12. Laminación para Tr= 1.000 años	25
Figura 13. Laminación para Tr= 10.000 años	25
Figura 14. Fetch	31
Figura 15. Mapa de isoaceleraciones para Ts= 500 años	33
Figura 16. Mapa de isoaceleraciones para Ts= 2.500 años	34
Figura 17. Posición de los nodos y puntos de tensión en elementos de suelo	43
Figura 18. Modelizado de la presa de estudio mediante Plaxis	46
Figura 19. Geometría de la presa y materiales asignados	49
Figura 20. Presa de estudio con mallado	49
Figura 21. Mallado de presa refinado	50
Figura 22. Condiciones de contorno aplicadas a la presa	50
Figura 23. Mallado	51
Figura 24. Nivel del embalse vacío	52
Figura 25. Presión de poro	52
Figura 26. Presa con presión hidrostática en NMN	53
Figura 27. Presa con NMN y presión de poro	53
Figura 28. Localización de los puntos de estudio del factor de seguridad	56

LISTADO DE TABLAS

Tabla 1. Avenidas de proyecto y extremas en función del periodo de retorno	13
Tabla 2. Relación del periodo de retorno y porcentaje de CMP	16
Tabla 3. Comprobación de la apertura de compuertas para los niveles de avenida	18
Tabla 4. Comprobación de la apertura de compuertas con un 25% cerradas y NAP	19
Tabla 5. Volumen total de cada avenida	21
Tabla 6. Niveles de la presa	21
Tabla 7. Volúmenes entre los niveles de la presa	21
Tabla 8. Sismicidad en función de la categoría de la presa	27
Tabla 9. Sumatorio del valor de los resguardos debidos a la acción sísmica	35
Tabla 10. Situaciones normales de proyecto	42
Tabla 11. Situaciones accidentales de proyecto	42
Tabla 12. Situaciones extremas de proyecto	42
Tabla 13. Materiales para el núcleo de la presa	47
Tabla 14. Materiales para el espaldón de la presa	47
Tabla 15. Material escollera	
Tabla 16. Material para cimiento	48
Tabla 17. Comprobación de estabilidad de taludes	57
Tabla 18. Comprobación de los factores de seguridad	58
Tabla 19. Desplazamiento de la presa	58

CAPÍTULO I INTRODUCCIÓN

1.1. INTRODUCCIÓN

El proyecto de construcción de una presa tradicionalmente ha tenido diversidad de objetivos, los cuales se podrían agrupar en los dos siguientes grupos:

- La satisfacción de necesidades a distintas escalas en un área determinada; entre las que se podrían destacar el abastecimiento energético, la cobertura de demanda agraria, el uso industrial o el abastecimiento urbano en el área, entre otras.
- La protección frente a potenciales inundaciones o desastres ambientales.

La solución aportada por este tipo de construcciones para las necesidades expuestas conlleva la alteración del cauce normal del agua; ya sea con el objetivo de desvío o con el objetivo de acumulación; lo que supone además de beneficios, unos potenciales riesgos para el ecosistema y para las poblaciones cercanas a la misma.

Por este motivo, las consecuencias de fallo de una presa son generalmente de una gravedad tal, que ha justificado el desarrollo normativo no solo en el ámbito estructural, sino también en el ámbito de seguridad constructiva, operacional y medioambiental. Este desarrollo normativo a nivel nacional, como es habitual en los diversos campos de la ingeniería, ha sido potenciado tras episodios de envergadura tales como la catástrofe de Ribadelago (1959) en Zamora o el desastre de Aznalcóllar (1998) en el Parque Natural de Doñana. Ésta última era una presa de residuos mineros, no considerada propiamente una presa de embalse clásica. Su ruptura produjo también un desastre a nivel ecológico, ya que hubo vertido de lodos tóxicos.

Otros de los episodios de catástrofe por rotura de presas fue la presa de Puentes (1802), rotura producida por sifonamiento debido al defectuoso sistema de cimentación.

Figura 1. Actual presa de Puentes

También mencionar la rotura de la presa de Tous (1982), en la cuenca del río Júcar debido a las lluvias torrenciales.

Estos avances normativos, que podríamos ver como una mejora en la comprensión y evaluación de los resultados logrados en las presas a lo largo de la historia reciente, conllevan la continua revisión de las condiciones de diseño de las presas con el objetivo de asegurar que no son necesarias actuaciones que permitan cumplir con las nuevas medidas de seguridad y comprobaciones aplicables.

Tomando este punto de partida, el enfoque del presente Trabajo Fin de Máster se centrará en el estudio tanto de la seguridad estructural de una presa de materiales sueltos, como de la seguridad hidrológica, teniendo presente que los pilares básicos de la seguridad de presas son:

- El correcto diseño y construcción.
- El mantenimiento y control del comportamiento durante la operación.
- La preparación para actuar eficientemente y a tiempo si es que se produce una emergencia.

1.2. OBJETIVOS

El objetivo de este proyecto, como se ha explicado en el punto anterior, consistirá en la evaluación de la seguridad de una presa de materiales sueltos situada en el Rio Yaque del Norte, en las provincias de Santiago y la Vega, en República Dominicana.

Se trata de realizar la aplicación de la normativa actualmente vigente en España en materia de seguridad de presas, que son las Normas Técnicas de Seguridad de presas aprobadas por el Real Decreto 264/2021 de 13 de abril a un caso de estudio. La presa se encuentra en República Dominicana, por lo que evidentemente no le aplica la normativa española. No obstante, el ejercicio tiene un interés formativo desde un punto de vista académico.

1.3. NORMATIVA APLICABLE

La implantación del "Reglamento Técnico sobre Seguridad de Presas y Embalses" mediante la Orden Ministerial del 12 de marzo de 1996 marcó un punto de inflexión en España al agrupar toda la normativa relacionada con la evaluación y estudio de las presas en un solo reglamento, viéndose motivado por la falta de unificación/agrupación a nivel internacional.

El avance tecnológico y la experiencia en este ámbito provocó la modificación y actualización de dicha normativa a través del Real Decreto 264/2021, de 13 de abril, sobre las normas técnicas de seguridad para las presas y sus embalses.

Aprovechando el sólido desarrollo normativo con el que contamos en España, consideramos apropiada su aplicación para una presa que está situada en República Dominicana, aun sabiendo que la normativa española no aplica. No obstante, al tratarse de un ejercicio académico, se

considera interesante aplicar las Normas Técnicas de Seguridad españolas para familiarizarse con su contenido.

1.4. INFORMACIÓN UTILIZADA

Para desarrollar este trabajo se facilita a través de la universidad la siguiente bibliografía relativa a la presa de estudio:

1- Datos generales:

- Plano con el esquema general de funcionamiento
- Proyecto múltiple de la presa. Realizado con la consultora alemana LAHMEYER
 INTERNATIONAL GMBH con sus anexos relacionados.

2- Geología

- Corte Geológico de la presa
- Geología General
- Mapa geológico de la zona
- Mapa geológico general
- Sondeos con barrena

3- Hidrología

- Manual de operaciones "Corporación Dominicana de Electricidad"
- CMP
- Hidrograma Presa

4- Batimetría

- Batimetría del Embalse 1993

5- Sismicidad

- Estudio de amenaza sísmica de la República Dominicana

6- Órganos de desagüe

Curvas de vertedero
 Manual de operación de desagüe

7- Instrumentación

- Piezómetros de la presa
- Comportamiento histórico de la presa
- 8- Manual de operación y mantenimiento
- 9- Planos de la presa
- 10- Informe del Board of consultants

1.5. PRESA DE ESTUDIO

1.5.1. LOCALIZACIÓN Y CONSTRUCCIÓN

La presa de estudio se encuentra situada en el Río Yaque del Norte, entre las provincias de Santiago y La Vega, en República Dominicana.

El nacimiento de este río se localiza en la Cordillera Central, en la loma La Pelona a 2.580 metros sobre el nivel del mar, desembocando al océano Atlántico en la bahía de Montecristi tras 296km de recorrido. La cuenca del río Yaque del Norte, con una extensión de 7.053 km2, tiene presencia en 6 provincias de las regiones Cibao Central y Cibao Noroeste, abasteciendo a 40 municipios y a una población cercana a los 1,8 millones de habitantes.

Además de proporcionar agua potable a los habitantes mencionados, genera hasta 488GW anuales y suministran agua a un creciente sector industrial de la zona.

Figura 2. Cuenca rio Yaque del Norte

La presa de estudio, ubicada en el municipio de Jánico ha permitido la generación eléctrica, el abastecimiento de agua para el cultivo y el suministro de agua potable a las regiones de Santiago y Moca.

El estudio y diseño del proyecto de construcción de la presa fueron iniciados en 1966 por la firma Alemana Lahmeyer International, comenzando la ejecución de las obras en el año 1969 por parte de la constructora empresa norteamericana Emkai, celebrando finalmente la inauguración en el año 1973.

1.5.2. CARACTERISTICAS DE LA PRESA

A continuación, se detallan los datos técnicos oficiales de la presa y embalse:

- Capacidad de almacenamiento: 170Hm³
- Cuenca hidrográfica: Yaque del Norte
- Río: Yaque del Norte.
- Tipo de presa: Materiales sueltos.
- Altura de la presa: 80,0 m
- Nivel de coronación: 332,5 msnm.
- Longitud de coronación: 320,0 m.
- Elevación cresta del vertedero: 315,5 msnm.
- Tipo del vertedero: Con compuertas (6 en total).
- Nivel máximo de operación: 327,5 msnm.
- Nivel mínimo de operación: 295,0 msnm.
- Capacidad de almacenamiento total: 173 Hm³.
- Área de embalse hasta nivel máximo normal: 6,30 Km².
- Área de cuenca regulada; 785 Km².
- Riego: 27,000 has.
- Capacidad de generación instalada: 96 MW.
- Energía anual generada: 180,0 GWh.

1.5.3. TIPOLOGÍA DE LA PRESA

La tipología de la presa de estudio es heterogénea con núcleo central impermeable, tal y como se muestras en la siguiente imagen de la sección normal de la presa:

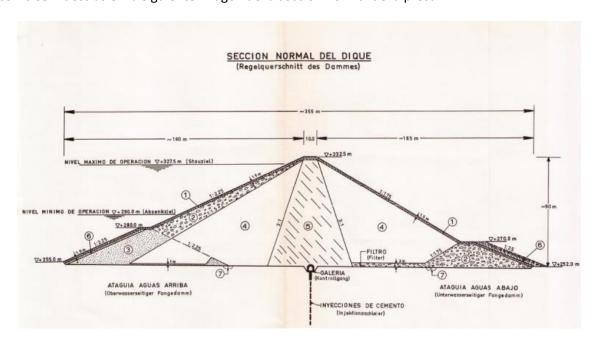


Figura 3. Sección de la presa

Siendo:

Zona 1: Escollera

Zona 2: Grava gruesa y piedras

Zona 3: Grava mediana

Zona 4: Conglomerado quebrado

Zona 5: Arena y arena limosa

Zona 6: Impermeabilización con material del núcleo

Zona 7: Drenaje

El esquema básico que presenta este tipo de presas consiste en núcleo, con una permeabilidad (K) menor que la de los espaldones, que divide la presa en dos partes:

- 1. El de aguas arriba (saturado)
- 2. El de aguas abajo (seco o con línea de saturación muy baja).

En el caso de la presa de estudio, se ha utilizado el mismo material para el dren y los espaldones, no siendo así para el caso del núcleo:

- Características del material empleado para el núcleo:
 - Peso Específico = 18 kN/m³.
 - Cohesión = 49 KPa.
 - Ángulo de Rozamiento = 22 grados.
- Para los espaldones, así como para el dren, se ha utilizado un material que presenta las siguientes características:
 - Peso Específico = 21 kN/m³.
 - Cohesión = 0 kPa.
 - Ángulo de Rozamiento = 40 grados.

Algunas de las ventajas que presenta el núcleo central con respecto al núcleo inclinado son las que, a continuación, se describen:

- ✓ La componente del peso en el contacto entre secciones horizontales es superior en el caso del núcleo vertical, conllevando una mayor compresión y por tanto una mejora en la impermeabilidad.
- ✓ Para igual sección de núcleo, el espesor en dirección normal al núcleo es menor en el caso de núcleo inclinado, lo que supone una pérdida de impermeabilidad.
- ✓ En bastantes casos, la profundidad del cimiento no se conoce suficientemente hasta realizar la excavación. Con núcleo vertical (central) basta con aumentar la profundidad, sin afectar a la posición, no siendo así en el caso del inclinado, que se va desplazando aguas arriba a medida que se profundiza conllevando una inexactitud de las posibles inyecciones previas.
- ✓ Facilidad para inyectar el núcleo o su contacto con el cimiento durante la vida útil de la presa (desde la coronación, sin necesidad de bajar el nivel de embalse).

En cuanto a los taludes de la presa, tanto los espaldones aguas arriba y aguas abajo utilizan un talud de 2H:1V.

1.5.4. GEOLOGÍA Y MATERIALES

La litología del macizo rocoso sobre el que se cimienta la presa está constituida por rocas sedimentarias, predominantemente conglomerado de excelentes propiedades con intercalaciones de pizarras y areniscas, pudiendo distinguir 3 zonas predominantes:

- 1. Zona superior, hasta 3 m de profundidad con módulo de Young de 150000 kN/m², permeabilidad de 10⁻² cm/s y ángulo de fricción de 37 grados.
- 2. Zona intermedia, de 3 a 10 m de profundidad con módulo de Young de 1000000 kN/m^2 , permeabilidad de 10^{-4} cm/s y ángulo de fricción de 25 grados en planos de junta.
- 3. Zona inferior, a partir de 10 m de profundidad (reconocido hasta 50 m), con módulo de Young de 5000000 kN/m^2 , permeabilidad de 10^{-6} cm/s .

Como se verá posteriormente, para simplificar la presa se escogerá una única zona para materializar el cimiento y se le asignará un Módulo de Young de 4000000 kN/m².

En cuanto a la geología del vertedero, éste se encuentra cimentado sobre los mismos conglomerados en que apoya la presa, con intercalaciones de areniscas y pizarras y con estratificaciones en dirección 150/180 NE, diagonales al eje del vertedero.

En general, la fracturación es baja, con aperturas máximas de 2 cm selladas por mineralización.

Los sistemas principales de falla son:

- K1 35 grados / 75 grados SE, 35/70 grados NW.
- K2 75 grados / 45 grados SE, 75/25 grados SE.

Los espaldones están constituidos por conglomerado quebrado, obtenido en la excavación del vertedero.

El núcleo está formado por arena limosa obtenida del vaso, cerca de la presa. Los materiales para filtros y áridos del hormigón se obtuvieron de una cantera de andesita localizada a orillas del río Guanajuma a 6 km de la presa.

1.5.5. DEFINICIÓN DEL VERTEDERO

El vertedero se diseñó para una avenida de diez mil años, con un caudal punta de 5.000 m³/s, con resguardo de 5m (disminuyendo el resguardo a 3m, se admitiría una avenida máxima probable de 6.900 m³/s).

El Canal de Descarga tiene forma de embudo, con anchos de 58,72 m en un extremo y 35 m en su parte recta, siendo su profundidad de 10 m y su longitud de 170,04 m. La base del mismo es de hormigón armado, con 53 losas de 0,35 m de espesor, y la pendiente es de 2,25 %. Los muros laterales van anclados a la roca con anclajes pretensados de 25m de longitud.

Al final del Canal de Descarga se encuentra el Trampolín, de hormigón armado, con 39 m de ancho, formado por 8 canales de 2,06 m de ancho y 3,21 m de alto. Los muros extremos del trampolín tienen altura variable de 9,50 a 12 m y ancho de 2 m.

La función del trampolín es la de restarle energía a las aguas lanzándolas aproximadamente a 120m de distancia para evitar socavamiento de los terrenos circundantes al final del canal.

En la excavación del Canal de Descarga y del Trampolín, el talud de construcción tiene una pendiente de 70 grados.

1.5.6. SISMICIDAD

Respecto a la sismicidad, se considera una aceleración horizontal de 0,2g paralela al eje de presa y de 0,1g perpendicular al mismo. Esto es debido al efecto de amplificación en sentido longitudinal por la presencia de una falla cercana, paralela al eje de la presa.

Sabemos de antemano, y más para esta tipología de presas que el análisis de la situación sísmica es relevante pero debido al alcance del proyecto y el carácter académico del mismo, no se realizará un análisis de la situación sísmica.

1.6. METODOLOGÍA EMPLEADA

En el presente trabajo fin de máster se realizará una revisión de la seguridad de la presa situada en el Río Yaque del norte.

Según las Normas Técnicas de Seguridad. Anexo III, para la explotación, revisiones de seguridad y puesta fuera de servicio de presas y sus embalses, en su artículo 32 éstas consisten en:

- b) Seguridad hidrológica: Que se basará, fundamentalmente, en el análisis de los niveles alcanzados en situaciones de avenida, de los resguardos y del comportamiento hidráulico de los órganos de desagüe y estructuras de restitución, teniendo en cuenta los registros hidrológicos actualizados y la forma de explotación del sistema presa-embalse. Se analizará también esa seguridad según lo establecido en la Norma Técnica de Seguridad para el proyecto, construcción y puesta en carga de presas y llenado de embalses. Complementariamente, y en la medida que el conocimiento científico y técnico lo permita, se tendrá en cuenta la posible variación futura de la distribución estacional de las avenidas como consecuencia del cambio climático, con objeto de prever la posibilidad de revisar los niveles a alcanzar y los resguardos a mantener en el embalse
- a) Seguridad estructural: Que se basará, fundamentalmente, en la valoración del comportamiento estructural de la presa, apoyándose en el historial de su comportamiento y en los reconocimientos específicos que se hayan realizado. Además, se analizará lo establecido en la Norma Técnica de Seguridad para el proyecto, construcción y puesta en carga de presas y llenado de embalses en lo relativo a los coeficientes de seguridad.

CAPÍTULO II SEGURIDAD HIDROLÓGICA

2.1 INTRODUCCIÓN

Este documento se desarrolla según el Real Decreto 264/2021, de 3 de abril que establece las exigencias mínimas de seguridad de las presas y sus embalses con la finalidad de proteger a las personas, al medio ambiente y a las propiedades.

Para ello se empleará el Anexo III. Norma técnica de seguridad para la explotación, revisiones de seguridad y puesta fuera de servicio de presas del citado reglamento y se realizará, según el artículo 32 que comprende:

"b) Seguridad hidrológica: Que se basará, fundamentalmente, en el análisis de los niveles alcanzados en situaciones de avenida, de los resguardos y del comportamiento hidráulico de los órganos de desagüe y estructuras de restitución, teniendo en cuenta los registros hidrológicos actualizados y la forma de explotación del sistema presa-embalse. Se analizará también esa seguridad según lo establecido en la Norma Técnica de Seguridad para el proyecto, construcción y puesta en carga de presas y llenado de embalses. Complementariamente, y en la medida que el conocimiento científico y técnico lo permita, se tendrá en cuenta la posible variación futura de la distribución estacional de las avenidas como consecuencia del cambio climático, con objeto de prever la posibilidad de revisar los niveles a alcanzar y los resguardos a mantener en el embalse."

Para ello previamente tenemos que hacer mención del artículo 358 del *Reglamento del Dominio Público Hidráulico*, en adelante RDPH:

Las presas se clasifican en función de sus dimensiones y en función del riesgo potencial que pueda derivarse de su posible rotura o funcionamiento incorrecto.

En función de sus dimensiones las presas se clasificarán como:

- Gran presa: presas cuya altura sea superior a 15 m o las que teniendo una altura comprendida entre 10 y 15 m tengan una capacidad de embalse superior a 1 hm³
- Pequeña presa: aquellas que no cumplen las condiciones anteriores.

La altura se justificará mediante planos de planta y sección de la estructura y de la zona de embocadura del aliviadero, y la capacidad por medio de la curva característica del embalse.

Por otro lado, en función del riesgo potencial que pueda derivarse de su rotura o funcionamiento incorrecto, las presas se clasifican en:

- Categoría A: presas cuya rotura o funcionamiento incorrecto puede afectar gravemente a núcleos urbanos o servicios esenciales, o producir daños materiales o medioambientales muy importantes.
- Categoría B: presas cuya rotura o funcionamiento incorrecto puede ocasionar daños materiales o medioambientales importantes o afectar a un reducido número de viviendas.
- Categoría C: presas cuya rotura o funcionamiento incorrecto puede producir daños materiales de moderada importancia y sólo incidentalmente pérdida de vidas

humanas. En todo caso a esta categoría pertenecerán todas las presas no incluidas en las Categorías A o B

	Nivel evenide	Nivel avenida extrema		
Categoría de la presa	Nivel avenida de proyecto	Presas de fábrica	Presas de materiales sueltos	
Α	1.000	5.000	10.000	
В	500	1.000	5.000	
С	100	500	1.000	

Tabla 1. Avenidas de proyecto y extremas en función del periodo de retorno

Nuestra presa de estudio se encuentra clasificada como categoría A, ya que su rotura o funcionamiento incorrecto puede afectar gravemente a núcleos urbanos o servicios esenciales.

Por tanto, a efectos de verificar la seguridad hidrológica, consideraremos dos tipos de avenidas denominadas "de proyecto" y "extrema".

Para la presa de estudio tenemos que su Nivel de avenida de proyecto es de 1.000 años y el Nivel de avenida extrema para presas de materiales sueltos es de 10.000 años

2.1. EVALUACIÓN DE LA SEGURIDAD HIDROLÓGICA

La presa de estudio se trata de una presa que opera con compuertas, tal y como se detalla en la siguiente figura:

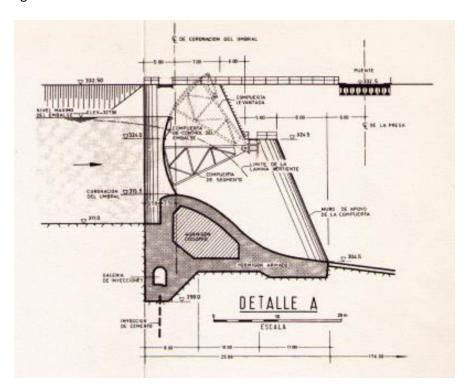


Figura 4. Tipología de presa

Como se puede ver en la imagen anterior, la cota inferior de las compuertas coincide con la elevación de la cresta del vertedero, por lo que los datos más representativos de las mismas son:

- Nivel de máximo normal (NMN) de operación de la presa es de 327,5msnm.
- Elevación de la cresta del vertedero es de 315,5 msnm.
- Longitud de las compuertas = 55,2m.*

*Dado el carácter académico del presente trabajo y la operación simultánea de las compuertas, se simplificará la presa suponiendo una única compuerta de longitud 55,2.

La particularidad de las presas con compuertas reside en el hecho de que el nivel máximo normal del embalse se mantiene constante durante la operación. Esto se logra mediante la modificación de la apertura de la compuerta, de modo que en todo momento se cumpla que el caudal de salida es igual al caudal de entrada.

Qentrada = Qsalida.

Esto nos obliga a dar un enfoque particular al estudio de esta tipología de presas frente a las que operan sin compuertas (en las que se realiza una laminación de avenidas para verificar que la capacidad del vertedero se ha dimensionado adecuadamente), tal y como se aborda a lo largo del presente apartado.

2.1.1. CURVA COTA-VOLUMEN DEL EMBALSE

Para realizar la comprobación hidrológica es interesante conocer la curva característica del embalse cota-volumen.

De la bibliografía facilitada se extrae la fórmula que determina la curva cota-volumen de la presa de estudio.

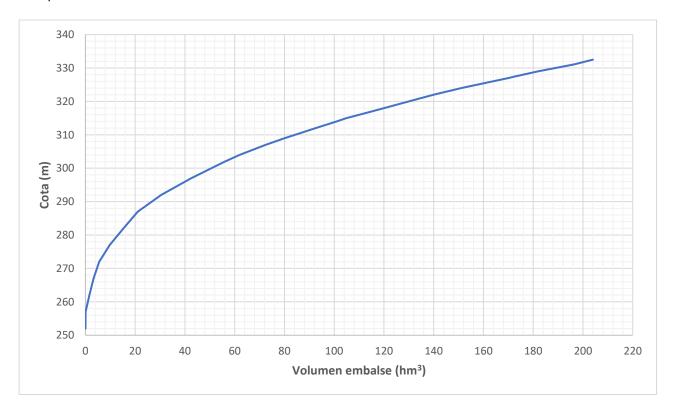


Figura 5. Relación curva cota y volumen del embalse

2.1.2. CÁLCULO DE LA MÁXIMA CRECIDA PROBABLE

En la información facilitada sobre esta presa, las avenidas de 1.000 y 10.000 años de periodo de retorno se definen a partir de un cierto escalado de la Crecida Máxima Probable (CMP), no siendo objeto de este trabajo académico realizar el estudio hidrológico para determinar las avenidas asociadas a un determinado periodo de retorno.

Por ello, en los siguientes párrafos se explica el concepto de CMP y simplemente se presentan las avenidas de proyecto y extrema tal y como como vienen definidas en la información disponible facilitada.

2.1.2.1. Definición de CMP

El riesgo aceptable de la rotura de una presa que produce consecuencias económicas y humanas debe de traducirse en una apropiada avenida de proyecto de una determinada probabilidad. Por ejemplo, en el caso de una área muy urbanizada o industrializada en el que la rotura de la presa pudiese producir pérdidas de vidas humanas y daños muy importantes.

Sin embargo, en zonas rurales donde la rotura de la presa tendría solamente como consecuencia la inundación de los cultivos, será razonable la elección de una avenida de proyecto que presenta una protección menor. Cuando las condiciones se encuentren entre estos dos extremos, las avenidas de proyecto con diferentes probabilidades deben de evaluarse en concordancia con cada situación.

De forma que, en relación a la máxima crecida probable y la dificultad de su obtención, es necesario recordar que los sucesos meteorológicos excepcionales no producen únicamente avenidas importantes, sino que son también causa de destrucciones y daños en la región próxima a la presa (enlaces telefónicos y comunicaciones cortadas, interrupciones en suministros de energía, bloque de compuertas, puesta en fuera de servicio de centrales y equipamientos, personal ocupado en tareas de salvamentos, etc.) que se traducen en un clima de alerta y tensión, y en una atmósfera de crisis y pánico.

De este modo podemos definir la CMP o máxima crecida probable como la crecida que puede esperarse tras aplicar las combinaciones de condiciones críticas meteorológicas e hidrológicas posibles en la cuenca de estudio.

2.1.2.2. Cálculo de las avenidas de estudio

Para calcular las avenidas de comprobación de la presa se emplea la relación entre el periodo de retorno (años) y la CMP en la República Dominicana que se muestra en las siguientes figuras, siendo característicos para la categoría de nuestra presa Tr= 1.000 años y Tr=10.000 años.

Periodo de Retorno (años)	Porcentaje de CMP	
10	0,2	
100	0,265	
500	0,308	
1000	0,33	
3000	0,37	
6000	0,42	
10000	0,486	
100000	1	

Tabla 2. Relación del periodo de retorno y porcentaje de CMP



Figura 6. Relación del periodo de retorno y CMP

Partiendo por tanto del dato de proyecto de CMP=8868 m³/s, estudiaríamos:

- Avenida de proyecto → Periodo de retorno 1.000 años → 33% de la CMP.
- Avenida de extrema → Periodo de retorno 10.000 años →48,6% de la CMP

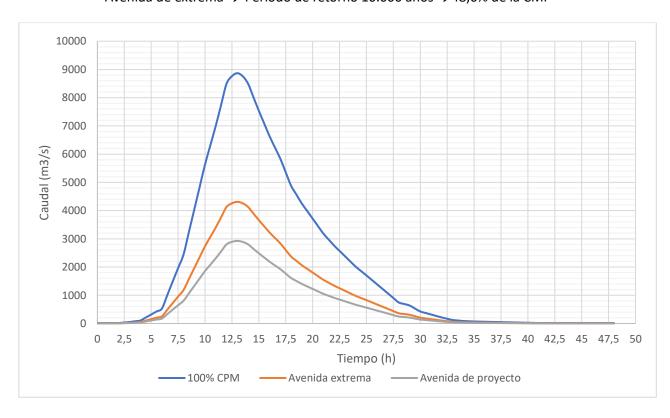


Figura 7. Hidrogramas de entrada para las 3 avenidas de estudio

Estas avenidas de estudio, tal y como se aprecia en la anterior gráfica, se traducen en un escalado del diagrama completo facilitado en la documentación (100% CMP), obteniendo los siguientes valores máximos de caudal para el caso de estudio:

Avenida de proyecto → Periodo de retorno 1.000 años → 33% de la CMP.

$$0.33 \cdot CMP = 2926.44 \, m^3/s$$

- Avenida de extrema → Periodo de retorno 10.000 años →48,6% de la CMP

$$0,486 \cdot CMP = 4309,84 \, m^3/s$$

2.1.3. COMPROBACIÓN DE LA SEGURIDAD HIDROLÓGICA

Tal y como se explica en la introducción de este punto, será necesario verificar que la presa de estudio puede cumplir el requisito de operación de las presas con compuertas ($\mathbf{Q}_{entrada} = \mathbf{Q}_{salida}$) para las avenidas de estudio.

De este modo, la comprobación hidrológica consistirá en evaluar que la apertura de compuertas necesaria para mantener el nivel del embalse es inferior a la apertura máxima de diseño (12m), sin llegar a operar como vertedero libre.

Tal y como se explica en el punto 6.4 de la Guía Técnica №5 de aliviaderos y desagües, el caudal de salida de una presa con compuertas se asemeja a la siguiente fórmula:

$$Q_{sal} = L K D \sqrt{2gh}$$

Siendo:

- L = Longitud de compuerta (para el caso de la presa de estudio es 55,2m).
- **K** = Coeficiente de desagüe, que se obtiene en función del ángulo de diseño de la compuerta y su posición respecto a la cresta del vertedero.
- **D** = Apertura de la compuerta
- **g** = Gravedad
- **h** = Diferencia entre la cota del NMN y la cota del punto medio de la abertura de la compuerta.

La siguiente tabla resume los valores y cálculos necesarios para la comprobación de la avenida de proyecto (NAP) y la avenida extrema (NAE):

	COMPROBACIÓN PARA NIVELES DE AVENIDA						
	Н	K	D	L	h	Q salida	Q entrada
	m		m	m	m	m3/s	m3/s
NAP	12	0,7	5,64	55,2	9,18	2926	2926
NAE	12	0,7	9,28	55,2	7,36	4310	4310

Tabla 3. Comprobación de la apertura de compuertas para los niveles de avenida

La apertura de compuertas necesaria para mantener el nivel máximo normal en caso de producirse la avenida de proyecto sería de 5,64m y en caso de la avenida extrema sería de 9,28m, pudiendo confirmar que el diseño de la presa cumple el criterio de seguridad hidrológica para estas avenidas ($Q_{entrada} = Q_{salida}$).

Una vez realizada la comprobación para los niveles de avenida, es conveniente comprobar si seguiríamos cumpliendo el criterio de seguridad con el funcionamiento del 75% de las compuertas. Este caso de estudio contemplaría un posible mantenimiento en 2 compuertas y la operativa de la presa con las otras 4 compuertas, por lo que la longitud en este caso se reduce a 36,8m.

COMPROBACIÓN PARA NIVEL AVENIDA DE PROYECTO						
Н	H K D L h Q salida Q AE					Q AE
m		m	m	m	m3/s	m3/s
12	0,7	9,54	36,8	7,23	2926	2926

Tabla 4. Comprobación de la apertura de compuertas con un 25% cerradas y NAP

Podríamos concluir que, para el caso de la avenida de proyecto, podríamos cumplir el criterio hidrológico ($\mathbf{Q}_{\text{entrada}} = \mathbf{Q}_{\text{salida}}$) operando con 4 puertas con una apertura de 9,54m.

2.1.4. CAPACIDAD DE VERTIDO EN FUNCIÓN DE LA APERTURA DE COMPUERTAS

Empleando la fórmula detallada en el punto anterior, se puede representar el caudal de salida del vertedero en función de la apertura de la presa.

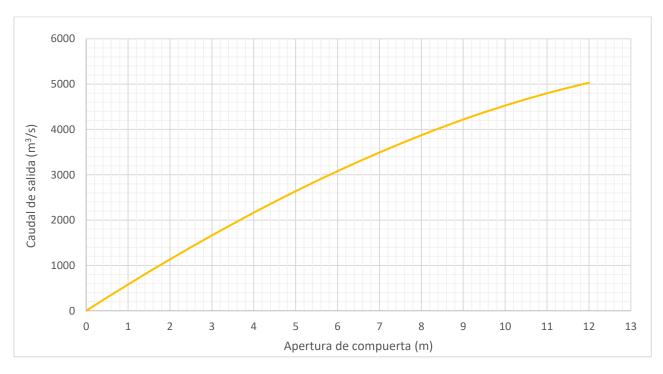


Figura 8. Cálculo de volúmenes para las avenidas de estudio

De la gráfica anterior, podemos determinar que el caudal de salida máximo para el diseño del vertedero de compuertas sería:

 Q_{salida} max = 5030,87 m3/s

2.2. ANÁLISIS DE VOLÚMENES

Para poder realizar este análisis para las 3 avenidas, sería necesario integrar los hidrogramas de estudio. De este modo, se obtiene el volumen de entrada al embalse en función del tiempo, tal y como se muestra en la siguiente gráfica:

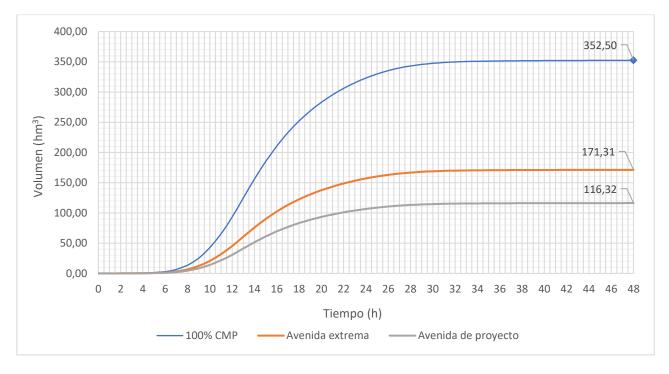


Figura 9. Cálculo de volúmenes para las avenidas de estudio

De la gráfica cota – volumen del apartado 2.2.1, podemos obtener:

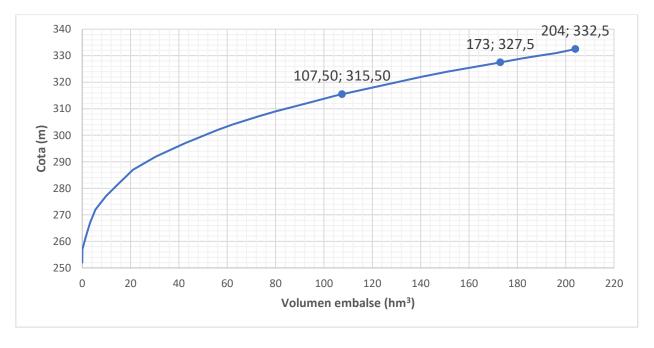


Figura 10. Curva Cota – Volumen del embalse

Las siguientes tablas agrupan los datos más significativos de las dos gráficas anteriores para el intervalo de tiempo de estudio:

	V Total (hm³)
100% CMP	352,50
Avenida extrema	171,31
Avenida de proyecto	116,36

	COTA (m)	V Embalse (hm³)
Nivel de coronación NC	332,5	204,0
Nivel de máximo normal NMN	327,5	173,0
Elevación cresta del vertedero	315,5	107,5

Tabla 5. Volumen total de cada avenida

Tabla 6. Niveles de la presa

De los datos anteriores, se puede concluir lo siguiente:

	Volumen
	(hm³)
Diferencia entre NMN y Coronación	29,00
(resguardo)	
Diferencia entre la cota de la elevación de la cresta del vertedero y el NMN	65,50
Diferencia entre la cota de la elevación de la cresta del vertedero y la coronación	96,50

Tabla 7. Volúmenes entre los niveles de la presa

Al superar los volúmenes de las 3 avenidas de estudio estos valores y, teniendo en cuenta el carácter académico del trabajo, resulta de interés realizar un análisis de la evolución del nivel de embalse para diferentes escenarios de operación, entre los que se podría considerar el mantenimiento de compuertas abiertas y operativa de la presa como presa sin compuertas

2.2.1. CASO DE MANTENIMIENTO DE COMPUERTAS ABIERTAS

Este caso de estudio contempla la posibilidad de ser necesaria la operación de la presa con las compuertas completamente abiertas mientras se realiza algún mantenimiento de envergadura importante.

Al asemejarse esta situación a una presa sin compuertas, para el estudio de este caso es interesante realiza la laminación de avenida utilizando el método de PULS.

2.2.1.1. Laminación de avenidas según método PULS

La laminación es un fenómeno natural que se produce en los ríos. Si no hay aportaciones o detracciones significativas de caudal en un tramo, se comprueba que las variaciones, tanto en sentido creciente como en decreciente, son menores en la sección aguas abajo que aguas arriba, es decir, se produce una atenuación en las desviaciones respecto al caudal medio.

Esto se traduce en una disminución de los caudales máximos y un incremento de los mínimos al pasar a través del recorrido del río. Así, una avenida con una única punta se convierte en otra con un caudal máximo menor, que se retrasa en el tiempo y como el volumen total del agua circulante es constante, tiene una mayor duración.

Físicamente, cuando los caudales son crecientes, parte del agua que entra sale por el otro extremo y parte se almacena en el ramal. El agua almacenada incrementará los caudales de salida cuando estos estén ya en disminución.

Si en el tramo hay un embalse, el efecto de la laminación suele ser mayor y depende de la superficie de espejo del agua. Algo similar sucede en las grandes llanuras de inundación en las que las áreas mojadas son mayores y el efecto de la laminación es más notable.

Si el embalse no está lleno, queda lo que se denomina un resguardo, y se puede almacenar en él la parte inicial de la avenida o hacerla desaparecer por completo si su volumen es inferior a este resguardo.

Trabajando con los embalses se pueden disminuir de forma importante los efectos de las avenidas:

- Aumentando los resguardos en función de las predicciones meteorológicas
- Desfasando las puntas de las avenidas (con lo que se evita su suma algebraica en las confluencias de varios cauces)
- Convirtiendo unos caudales perjudiciales por su elevada magnitud en un recurso utilizable cuando hay escasez.

a. Capacidad del aliviadero

Para este caso, al tener las compuertas abiertas, la curva obtenida del caudal de salida en función de la apertura de compuertas no sería aplicable. Para conocer el caudal de vertido para los distintos niveles del embalse sería necesaria la obtención de la curva de desagüe del aliviadero mediante la formulación empírica que se muestra a continuación.

$$Q = C_d \cdot L \cdot h^{3/2}$$

Siendo,

- $C_d \rightarrow$ Coeficiente de descarga. Adoptado un valor de 2,03.
- $L \rightarrow$ Longitud de cresta. Establecida en 55,2 m.
- $h \rightarrow$ Diferencia entre el nivel del embalse y la cota de cresta.
 - * Cota de cresta del aliviadero situada en 315,5 m.

Por tanto, obtenemos la curva cota-caudal para el aliviadero:

Figura 11. Curva cota-caudal aliviadero

b. Método de PULS

El método de PULS es el más empleado de los métodos denominados de laminación, en los que se supone que el caudal de salida del elemento considerado es exclusivamente función del volumen en él almacenado.

Conceptualmente, el método de PULS se basa en la aplicación de la ecuación de continuidad de Saint-Venant, adaptada a la situación de contorno del problema.

Se tiene la siguiente ecuación:

$$\frac{S_1 - S_2}{t} = \frac{I_1 + I_2}{2} - \frac{O_1 - O_2}{2}$$

Donde,

- S1 → Almacenamiento al comienzo del intervalo
- S2 → Almacenamiento al finalizar el intervalo
- I1 → Hidrograma de entrada al comienzo del intervalo
- 12 → Hidrograma de entrada al final del intervalo
- O1 → Hidrograma de salida al comienzo del intervalo
- O2 → Hidrograma de salida al final del intervalo

Por otro lado, el caudal de salida se evalúa por:

$$O(H) = C_v \cdot L \cdot (H)^{3/2}$$

Donde,

- C_v \rightarrow Coeficiente del vertedero, usualmente comprendido entre 1.7 y 2.16. Se ha usado 2.07
- L → Longitud efectiva del vertedero utilizada 55.2m

Como ya se ha comentado anteriormente, se considerarán las 6 compuertas abiertas y no se considerarán los desagües de fondo para estar del lado de la seguridad.

Así, el procedimiento de cálculo se puede materializar mediante un proceso iterativo que comprende las siguientes fases:

- 1. Cálculo de a₁.
- 2. En una primera aproximación se considera que H₂ = H₁
- 3. Se obtiene el caudal de salida mediante la ecuación correspondiente.
- 4. Se calcula el volumen almacenado mediante la ecuación:

$$S_2 = \left(a_1 - \frac{O_2}{2}\right) \cdot t$$

- 5. Se obtiene la altura H₂ correspondiente a dicho almacenamiento S₂
- 6. Se calcula el caudal de salida O2 correspondiente a H2
- 7. Se prosigue con la iteración desde el punto 4, hasta finalizar el periodo de estudio

Se obtiene de este modo las siguientes gráficas que representan la laminación para los dos períodos de retorno estudiados.

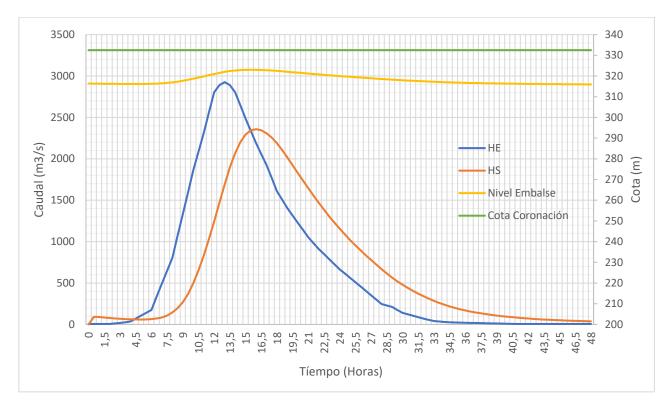


Figura 12. Laminación para Tr= 1.000 años

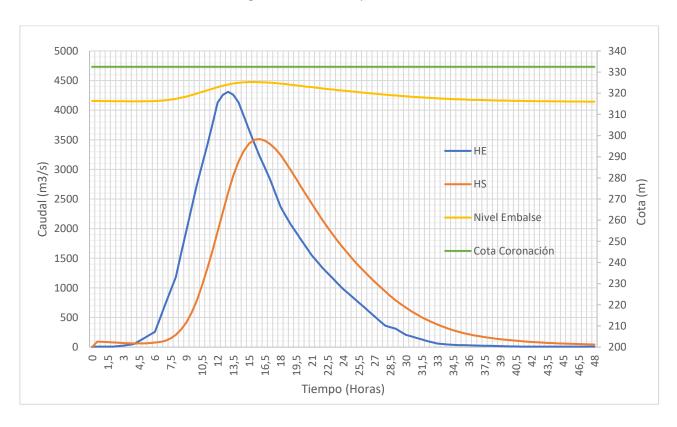


Figura 13. Laminación para Tr= 10.000 años

2.3. NIVELES DEL EMBALSE

Tras realizar el análisis del funcionamiento de la presa con compuertas tenemos que:

Nivel Máximo Normal:

$$NMN = 327,5 \, m. \, s. \, n. \, m.$$

• Nivel Avenida de Proyecto:

$$NAP = NMN = 327,5 \text{ m. s. n. m.}$$

• Nivel Avenida Extrema:

$$NAE = NAP = NMN = 327,5 \text{ m. s. n. m.}$$

En cambio, para el supuesto de operación con compuertas completamente abiertas, tendríamos los siguientes niveles obtenidos del método de PULS:

- Cuando llega la Avenida de Proyecto tendríamos que el nivel es:

$$NAP = 323,02 \text{ m.s.n.m.}$$

- Cuando llega la Avenida Extrema:

$$NAE = 325,31 \, m. \, s. \, n. \, m.$$

Con estos valores se comprueba que tanto el NAP como el NAE son inferiores al NMN.

2.4. CORONACIÓN

La anchura de coronación de una presa de tierra o escollera apenas tiene influencia en su estabilidad, responde mejor a propósitos de tipo funcional y constructivos. No obstante, es importante que satisfaga algún requerimiento de anchura mínima.

Según la normativa española, la anchura de coronación en zonas de baja sismicidad será la que resulte de aplicar la siguiente fórmula:

$$C \geq 3 + 1.5 \cdot \sqrt[3]{H - 15}$$

Siendo:

- C el ancho de coronación (m).
- H la altura de la presa (m).

En zonas con sismicidad media o alta, se aumentará la anchura resultante según se indica en la siguiente tabla.

CATEGORIA DE LA PRESA	SISMICIDAD		
	BAJA	MEDIA	ELEVADA
А	0	20%	40%
В	0	10%	20%
С	0	0	10%

Tabla 8. Sismicidad en función de la categoría de la presa

Siendo la presa en cuestión una presa de Categoría A, y suponiendo que la zona en la que está ubicada una zona con sismicidad baja, el cálculo de C aumentara su valor en un 20%.

De esta forma, el cálculo del ancho de coronación requerido por esta presa es:

$$C \ge (3+1.5 \cdot \sqrt[3]{H-15}) \cdot 1.40 = (3+1.5 \cdot \sqrt[3]{80-15}) = 9.03 \, m < 10 \, m \to 0 \, K!$$

2.5. RESGUARDOS

Las comprobaciones de este apartado se harán siguiendo la "Guía Técnica Nº2 de seguridad de presas. Criterios para proyectos de presas y sus obras anejas"

Los resguardos sirven para prever las sobreelevaciones producidas por las distintas causas que pueden provocar un aumento del nivel de agua en un embalse.

La causa principal de rotura de las presas de materiales sueltos es el desbordamiento, esto es, la ausencia de resguardo conveniente. De ahí la importancia de este detalle.

Al ser este tipo de presas mucho más vulnerables que las de fábrica, el resguardo deberá ser siempre considerablemente más amplio y asegurar, con un cierto margen de seguridad, la imposibilidad de que la presa pueda verse desbordada, incluso en las condiciones más desfavorables.

En la actualidad, ya se empiezan a contemplar algunas medidas de protección de la coronación y de los espaldones de aguas debajo de las presas de materiales sueltos contra el sobrevertido que, en el futuro, podrían rebajar las exigencias actuales de resguardo.

La determinación del resguardo no puede hacerse nunca de forma aislada, debe sopesarse siempre en conjunción con las incertidumbres asociadas a la determinación de las avenidas, con la capacidad de evacuación de los órganos de desagüe y con la de almacenamiento del embalse en los últimos metros.

Las sobreelevaciones del nivel del embalse o los descensos de la coronación de las presas de materiales sueltos pueden ser causadas por los siguientes agentes:

- Avenidas
- Viento
- Sismo
- Asientos anómalos
- Deslizamiento de laderas del embalse

2.5.1. AVENIDAS

Como se ha comentado anteriormente, para el caso de estudio de presa con compuertas, los niveles de avenida de proyecto (NAP) y avenida extrena (NAE), coinciden con el nivel máximo normal (NMN) de la presa, de 327,5 msnm.

2.5.2. VIENTO

2.5.2.1. VIENTO. Determinación del fetch

Fetch es un término procedente directamente del inglés usado en geografía física, meteorología y otras ciencias para designar a la longitud rectilínea máxima de una gran masa de agua superficial de mares u océanos que es uniformemente afectada en dirección y fuerza del viento, generando a su vez un determinado tipo de oleaje.

Para determinarlo se usará la herramienta "Gooogle Earth" para medir su longitud.

$$Fetch = 0.924 km$$

2.5.2.2. VIENTO. Velocidad de viento

En los documentos facilitados para llevar a cabo este trabajo no se dispone de información acerca de la velocidad del viento, por tanto, se usará la "Guía Técnica Nº2: Criterios para Proyectos de Presas y sus Obras Anejas".

Ésta establece (a falta de información específica) que la velocidad de cálculo de viento, para situaciones extremas y una presa de categoría A, un valor de 44,4 m/s

Del mismo modo, a falta de datos concretos, el valor del viento de proyecto será un 20% menor que el indicado para la situación extrema.

Para situaciones normales o frecuentes y también a falta de información específica se recomienda suponer que la velocidad de viento es de 15 m/s para presas de categoría A.

Por tanto, para desarrollar los siguientes apartados, se ha decidido que la velocidad de viento sea 44,4 m/s, reduciéndose un 20%:

$$44,4 \cdot 0,80 = 35,52 \, m/s$$

2.5.2.3. VIENTO. Tiempo para desarrollo del oleaje

Se necesita un cierto tiempo para que el oleaje del embalse se desarrolle. Siguiendo las recomendaciones del USBR (1992) el tiempo necesario para el desarrollo completo del viento viene dado por la expresión:

$$t = \frac{F^{2/3}}{v^{0,41}}$$

Siendo:

F: Fetch

t: Tiempo en horas

v: Velocidad del viento en m/s

Si el tiempo obtenido es menor que 1 hora, se puede suponer que el oleaje estará totalmente desarrollado. Por el contrario, si el tiempo es claramente superior a una hora se obtendrá el dato de velocidad del viento correspondiente a esa duración. A falta de datos estadísticos se podrá reducir el valor de la velocidad del viento un 5% por cada hora adicional que requiera el desarrollo completo del oleaje.

Para nuestro caso tenemos:

$$t = \frac{0.92^{2/3}}{35,52^{0.41}} = 0.218 \, h < 1h \to OK!$$

Por tanto, se cumple la condición, el tiempo es inferior a una hora y el oleaje está totalmente desarrollado.

2.5.2.4. VIENTO. Sobreelevación estacionaria creada por el viento

El viento no solo crea oleaje. Durante los temporales de viento se produce una sobreelevación del embalse que junto a la presa puede alcanzar cierta importancia. Esa sobreelevación debe ser estudiada.

La sobreelevación del embalse se puede estimar siguiendo las recomendaciones del USBR (1992), mediante la expresión siguiente:

$$S = \frac{v^2 \cdot F}{4850 \cdot D}$$

Donde:

V: Velocidad del viento en m/s,

F: Fetch, expresado en km

D: Calado medio del embalse, expresado en metros.

Este cálculo en nuestra presa no tiene trascendencia, ya que el fetch (0,92 km) y el calado la presa nos proporcionaría un valor teórico muy bajo, por tanto, se prescinde de este cálculo.

2.5.2.5. VIENTO. Altura de ola creada por el viento

Siguiendo las recomendaciones del USBR (1992) se considera aceptable estimar la altura de ola significante del embalse mediante la expresión:

$$H_S = \frac{v^{1,23} \cdot F^{1/2}}{87.3}$$

Donde:

V: Velocidad del viento (m/s)

F: Fetch, expresado en km

Por lo que el valor de la altura de ola significante, dada una situación de viento de proyecto, es:

Viento de proyecto
$$\rightarrow H_s = \frac{35,52^{1,23} \cdot 0,924^{1/2}}{87,3} = 0,8 \text{ m}$$

Para la situación de viento extremo y viento normal o frecuente, los valores son:

Viento extremo
$$\rightarrow H_s = \frac{44,4^{1,23} \cdot 0,924^{\frac{1}{2}}}{87.3} = 1,16 \text{ m}$$

Viento normal o frecuente
$$\to H_s = \frac{15^{1,23} \cdot 0.924^{1/2}}{87.3} = 0.3 \text{ m}$$

No obstante, la altura de ola significante a considerar en los cálculos del remonte del agua creado por el oleaje se considerará un 67% mayor.

Utilizando el valor anterior, los nuevos valores de alturas de ola significantes para cada situación son los siguientes:

Viento de provecto
$$\rightarrow$$
 H = 1.67 \cdot 0.8 = 1.481 *m*

Viento extremo
$$\rightarrow$$
 H = 1,67 · 1,16 = 1,937 *m*

Viento normal o frecuente
$$\rightarrow$$
 H = 1,67 · 0,3 = 0,512 *m*

2.5.2.6. VIENTO. Periodo característico del oleaje y longitud de onda

Cuando el ángulo (θ) correspondiente al cálculo del fetch máximo sea claramente distinto de cero, es conveniente corregir la altura de ola significante mediante la siguiente expresión:

$$H_s(corregida) = H_s \cdot \cos \frac{1}{2}\theta$$

El ángulo de cálculo del Fetch (obtenido con la herramienta "Google Earth) no difiere en gran medida de cero grados, por lo que este efecto es despreciable.

El ángulo (θ) es prácticamente cero porque la línea imaginaria de dirección normal al eje de la presa (1) coincide con la dirección de cálculo del fletch (2) tal y como se puede ver a continuación:

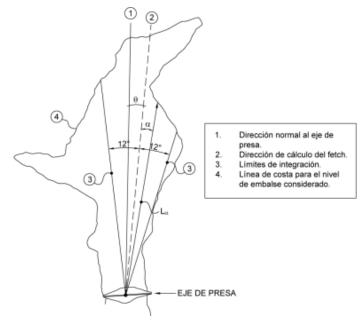


Figura 14. Fetch

El oleaje estacionario descrito por la altura de ola significante tiene un periodo (m/s) que sigue la siguiente expresión:

$$T = 0.556 \cdot v^{0.41} \cdot F^{1/3}$$

También se obtendrá la longitud de ola correspondiente a cada ola significante.

Por tanto, tenemos:

Viento de proyecto
$$\rightarrow T = 0.556 \cdot 35.52^{0.41} \cdot 0.924^{1/3} = 2.33 \text{ s}$$

Viento extremo
$$\rightarrow T = 0.556 \cdot 44.4^{0.41} \cdot 0.924^{1/3} = 2.56 \text{ s}$$

Viento normal o frecuente $\rightarrow T = 0.556 \cdot 15^{0.41} \cdot 0.924^{1/3} = 1.64 \text{ s}$

Viento de proyecto
$$\rightarrow L = \frac{9,81}{2\pi} \cdot 2,33^2 = 8,47 \text{ m}$$

Viento extremo
$$\rightarrow L = \frac{9,81}{2\pi} \cdot 2,56^2 = 10,23 \text{ m}$$

Viento normal o frecuente
$$\rightarrow L = \frac{9.81}{2\pi} \cdot 1.64^2 = 4.19 \text{ m}$$

2.5.2.7. VIENTO. Altura del remonte de ola por el paramento:

Cuando el oleaje interfiere con el paramento inclinado de una presa de materiales sueltos, la ola rompe y remonta por el talud hasta una altura que depende de la inclinación del paramento, de la rugosidad y de la permeabilidad de la protección del paramento y de las características del oleaje.

La altura de remonte es la diferencia de cotas de la máxima altura alcanzada por el agua en su remonte por el paramento y la cota del agua del embalse sin agitación.

Se puede suponer que, junto al paramento, el remonte de la ola creada por el viento, según indica el USBR (1992) está relacionada con la altura de ola, H mediante la expresión:

$$R = \frac{H}{0.4 + \left(\frac{H}{L}\right)^{0.5} \cdot \cot \alpha}$$

Siendo,

H: Altura de ola

L: Longitud de onda

- α : Ángulo con la horizontal del talud de aguas arriba de la presa

De modo que,

Viento de proyecto
$$\rightarrow R = \frac{1,481}{0,4 + \left(\frac{1,481}{8.47}\right)^{0,5} \cdot \cot 29,74} = 1,30 \text{ m}$$

Viento extremo
$$\rightarrow R = \frac{1,937}{0,4 + \left(\frac{1,937}{10.23}\right)^{0,5} \cdot \cot 29,74} = 1,66 \text{ m}$$

Viento normal o frecuente
$$\to R = \frac{0,512}{0,4 + \left(\frac{0,512}{4,19}\right)^{0,5} \cdot \cot 29,74} = 0,506 \text{ m}$$

Siendo,

$$\alpha = \tan^{-1}\left(\frac{1}{1,75}\right) = 29,74$$

Finalmente tenemos que el valor de las alturas de ola es:

- Situación normal: **0,506m**

- Situación de proyecto: **1,3 m**

- Situación extrema: **1,66 m**

2.5.3. SISMO. RESGUARDO SISMICO

Para el cálculo de la altura de ola que puede generar un sismo se usará la siguiente fórmula:

$$H(sismo) = \frac{k \cdot T \cdot \sqrt{g \cdot H_e}}{2\pi}$$

Donde,

K: Coeficiente sísmico

$$k = \frac{a_c}{g}$$

 a_c : Aceleración de cálculo

g: Aceleración de la gravedad

T: Periodo predominante del terremoto

 H_e : Profundidad máxima del embalse

Los datos referentes a la sismicidad se han obtenido de la documentación facilitada "Estudio de amenaza sísmica en República Dominicana, agosto 2004".

Los siguientes mapas de isoaceleraciones muestran las aceleraciones básicas que se podrían dar en las proximidades de la zona donde está ubicada la presa de estudio.

En este primer caso, el valor de la aceleración básica se encuentra en 0,34g, equivalente a un periodo de retorno de 500 años (10% excedencia en un periodo de 50 años)

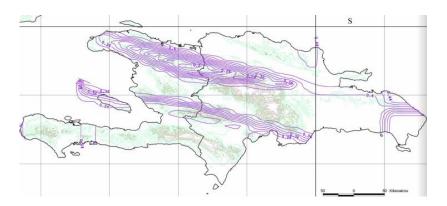


Figura 15. Mapa de isoaceleraciones para Ts= 500 años

En la figura26, en el mapa de isoaceleraciones considera la aceleración básica en 0,55g para la zona de la presa de estudio, equivalente, de la misma forma que se ha comentado antes, a un periodo de retorno de 2500 años (2% de excedencia en 50 años)

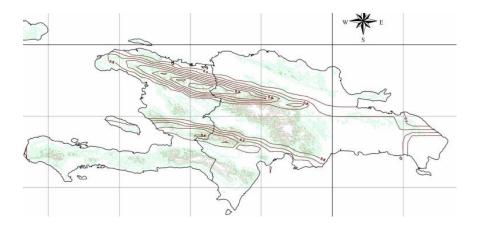


Figura 16. Mapa de isoaceleraciones para Ts= 2.500 años

La aceleración de cálculo sigue la siguiente formulación:

$$a_c = a_b \cdot \rho \cdot S$$

Donde,

 a_b : Aceleración sísmica básica

ho: Coeficiente adimensional de riesgo, función de la probabilidad aceptable de que se exceda a_c en el periodo de vida para el que se proyecta la construcción. Se ha considerado construcción de importancia especial 1,3.

S: Coeficiente de amplificación del terreno.

Como $0.4g \le a_b \cdot \rho$, el coeficiente de amplificación (S) adopta el valor de la unidad:

$$0.4g = 0.4 \le 0.34g \cdot 1.3 = 0.442$$

$$0.4g = 0.4 \le 0.55g \cdot 1.3 = 0.715$$

Por lo que las aceleraciones de cálculo obtenidas adoptan los siguientes resultados:

$$T = 500 \ a\tilde{n}os \rightarrow a_c = 0.34g \cdot 1.3 \cdot 1 = 0.442g$$

$$T = 2500 \ a \| os \rightarrow a_c = 0.55g \cdot 1.3 \cdot 1 = 0.715g$$

De esta manera, los valores de la altura de ola que puede generar el sismo para cada situación son:

$$H(sismo\ proyecto) = \frac{0.442 \cdot 1 \cdot \sqrt{9.81 \cdot 122}}{2\pi} = 2.43\ m$$

$$H(sismo\ extremo) = \frac{0.715 \cdot 1 \cdot \sqrt{9.81 \cdot 122}}{2\pi} = 3.93\ m$$

Para el cálculo de la altura de ola se ha establecido el valor del periodo predominante el terremoto (T) en un segundo debido al desconocimiento de este dato.

Por otro lado, se debe analizar los posibles asientos de la coronación que puedan provocar los terremotos. Este asiento es un resguardo adicional que debe añadirse al que se ha calculado en pasos anteriores.

Se pueden suponer los asientos siguientes:

Terremoto de proyecto
$$\rightarrow S_p = \frac{H_p}{25} \cdot \frac{a_c}{g}$$

Terremotos extremos
$$\rightarrow S_p = \frac{H_p}{15} \cdot \frac{a_c}{g}$$

Siendo,

 H_p : Altura de presa sobre cimientos.

 a_c : Aceleración de cálculo.

g: Aceleración de la gravedad

Por tanto:

Terremoto de proyecto
$$\rightarrow S_p = \frac{80}{25} \cdot \frac{a_c}{g} = \frac{80}{25} \cdot 0,442 = 1.414 \text{ m}$$

$$Terremotos\ extremos \rightarrow S_p = \frac{80}{15} \cdot \frac{a_c}{g} = \frac{80}{15} \cdot 0,715 = 3.813\ m$$

Por tanto, el valor de los resguardos respecto a la acción sísmica es:

SITUACION	Altura de ola (m)	Asiento (m)	Suma
Proyecto	2,43	1,414	3,844
Extrema	3,93	3,818	7,743

Tabla 9. Sumatorio del valor de los resguardos debidos a la acción sísmica

2.5.4. ASIENTOS ANÓMALOS

Los asientos postconstructivos deben estimarse. El proyecto de la presa debe disponer cierta contraflecha en coronación para evitar pérdidas de resguardo por este motivo. Una vez dispuesta en proyecto esta contraflecha, los asientos normales no suman cantidad adicional alguna para definir el resguardo.

Pueden existir asientos debidos a otras causas, entre ellos los debidos a la humectación del espaldón de aguas arriba, hecho que puede provocar asientos por una doble causa.

- 1) Disminución de volumen. Sería el conocido con el nombre de asiento de colapso.
- 2) Pérdida parcial de resistencia al corte como consecuencia de la humectación.

Para cubrir estos aspectos, conviene disponer, en presas homogéneas y zonadas y también las de núcleo, un resguardo adicional que sea igual l 1% de la altura de la presa. Por lo tanto, este resguardo es:

$$R = 0.01 \cdot 80 = 0.8 \ m$$

2.5.5. DESLIZAMIENTO DE LAS LADERAS DEL EMBALSE

Normalmente, las laderas de los embalses son suficientemente estables. De otra forma, se requerirá que se dispongan en proyecto medidas de contención específicas que garanticen la estabilidad.

En todo caso, siempre existe un riesgo natural relacionado con la inestabilidad de las laderas de los embalses.

La caída de masas deslizantes en las aguas de los embalses puede crear olas cuya altura depende de varios factores, pero dichas alturas de ola son especialmente sensibles a la velocidad de entrada de las tierras en el agua. Si esta es pequeña, los efectos son insignificantes y la altura de ola es prácticamente despreciable, pero para velocidades altas, la altura de ola puede ser importante.

Los procedimientos de análisis de este problema están hoy aún en fase de desarrollo, particularmente en lo que se refiere a la velocidad de deslizamiento. Por ese motivo, no se considerará resguardo adicional.

2.5.6. RESGUARDOS TOTALES

Para finalizar este apartado, se realizará una comprobación de la suma de todos los resguardos para cada situación:

- 1) Resguardo máximo ->
 - a. Viento Extremo (Sobreelevación + Remonte)

Viento extremo
$$\rightarrow$$
 1,66 *m*

$$Resguardo = NC - NMN = 332,5 - 327,5 = 5m$$

Como 1,66
$$m < 5 m \rightarrow Cumple$$

b. Sismo Extremo

Sismo extremo
$$\rightarrow$$
 7,743 m

Como 7,42
$$m < 5 m \rightarrow No Cumple$$

c. Asientos Anómalos

Asiento anómalo
$$\rightarrow$$
 0,8 m

Como 1,22
$$m < 5 m \rightarrow Cumple$$

<u>2)</u> Resguardo mínimo (extremo) → Viento Normal (Sobreelevación + Remonte)

Viento normal
$$\rightarrow$$
 0,506 m

$$Resguardo = NC - NAE = 332,5 - 327,5 = 5 m$$

Como 0,506
$$m < 5 m \rightarrow Cumple$$

- 3) Resguardo intermedio o de proyecto
 - a. Viento de proyecto (Sobreelevación + remonte)

$$Resguardo = NC - NAP = 332,5 - 327,5 = 5 m$$

Como 1,30
$$m < 5 m \rightarrow Cumple$$

b. Sismo de proyecto

Sismo de proyecto
$$\rightarrow$$
 3,844 m

$$Resguardo = NC - NAP = 332,5 - 327,5 = 5 m$$

Como 3,844
$$m < 5 m \rightarrow Cumple$$

2.5.7. ANÁLISIS DE RESGUARDOS TOTALES

El nivel de coronación que se debe disponer, según la Guía Técnica Nº2, debe proporcionar resguardo suficiente para todas las situaciones consideradas.

El resguardo se considera suficiente si el que resulta del cálculo procedente se añade un resguardo adicional para cumplir las imprecisiones inherentes a los detalles del proceso de estudio. Para nuestra presa de categoría A, el resguardo adicional es de 1m

Podemos ver, por tanto, que en el caso de "Sismo extremo", no se cumple la comprobación, ya que el sismo extremo genera una ola de 7,74m, que sumándole 1 metro por ser la presa de categoría A no se cumpliría la comprobación, ya que el resguardo de la presa es de 5m.

Por ello, para suplir este problema se proponen las siguientes soluciones:

- a) Bajar el Nivel Máximo Normal de la presa a un nivel de 323,76m $Nuevo\ nivel\ = (NMN-7,76-1m)=323,7m$
- b) Aumentar la coronación de la presa mediante un recrecido, por ejemplo, mediante un parapeto. Esta solución está sujeta a un análisis coste beneficio entre el valor de los GWH generados con el NMN en 327,5m y el caso de bajar el NMN a 323,76 m.

CAPITULO III SEGURIDAD ESTRUCTURAL

3.1. INTRODUCCIÓN A LA SEGURIDAD ESTRUCTURAL DE LA PRESA

En el presente documento se desarrolla la comprobación de la seguridad estructural de la presa de estudio.

3.2. CÁLCULOS ESTRUCTURALES

Para el estudio tensional de la presa se ha empleado un modelo de elementos finitos, que se ha realizado mediante el programa PLAXIS.

Dicho modelo no es más que un sistema de ecuaciones cuyas incógnitas representan magnitudes que permiten describir el comportamiento del objeto bajo análisis. El ingeniero debe resolver estas ecuaciones, pero debido a la gran dificultad para obtener soluciones la ingeniería ha recurrido al uso de modelos que tienen la capacidad de abordar por completo la complejidad del problema a tratar. Entre estas técnicas utilizadas se habla de los métodos de Elementos Finitos.

3.2.1. SITUACIONES DE PROYECTO

Para la definición de las situaciones de proyecto es preciso determinar los siguientes elementos:

- Geometría. Normalmente las evaluaciones de la seguridad se realizan sobre las secciones transversales representativas de la presa. Sólo en contadas ocasiones se requiere analizar la obra de manera tridimensional. En este caso se ha considerado la definición bidimensional únicamente.
- Acciones que actúan sobre la presa y estado de presiones intersticiales correspondientes.
- Resistencias de cada uno de los materiales que tengan relevancia en un eventual proceso de rotura

Atendiendo a la probabilidad de ocurrencia de una determinada situación de proyecto y teniendo en cuenta las posibles consecuencias del gallo correspondiente, las situaciones de proyecto se clasifican en los tres grandes grupos siguientes:

- a) Situaciones Normales. Son aquellas que tienen una probabilidad anual de excedencia notable; mayor que el 2%
- b) Situaciones Accidentales. Son aquellas que tienen una probabilidad de ocurrencia del orden del 2% anual, aproximadamente
- c) Situaciones Extremas. Son aquellas que ocurren con carácter extremo y cuya probabilidad de ocurrencia es ya del orden de 10-4 al año.

Las situaciones de proyecto que resultan más probables durante la construcción y explotación de una presa de materiales sueltos, según la "Guía Técnica Nº2: Criterios para Proyectos de Presas y sus Obras Anejas" son:

SITUACIONES NORMALES		
N1	Fin de construcción (sin empuje hidrostático)	
N2	Embalse lleno a nivel normal	

Tabla 10. Situaciones normales de proyecto

	SITUACIONES ACCIDENTALES
A1	Diferentes etapas de construcción de duración limitada
A2	Fin de construcción y sismo de proyecto
А3	Avenida de proyecto
Α4	Embalse a nivel normal y oleaje de proyecto
A5	Embalse lleno a nivel normal y sismo de proyecto
A6	Embalse lleno a nivel normal y fallo del sistema de drenaje del cimiento
А7	Desembalse rápido

Tabla 11. Situaciones accidentales de proyecto

	SITUACIONES EXTREMAS		
E1	Avenida extrema		
E2	Sismo extremo con el embalse a nivel normal		
E3	Viento extremo con el embalse a nivel normal		
E4	Diferentes etapas de construcción y sismo de proyecto		
E5	Desembalse rápido y sismo de proyecto		
E6	Fallo del sistema de drenaje, embalse a nivel normal y sismo de proyecto		

Tabla 12. Situaciones extremas de proyecto

No obstante, las combinaciones que resultan limitativas del proyecto, además de ser las únicas que se han calculado: Las dos combinaciones normales N1 y N2.

3.2.2. CONFIGURACIÓN GENERAL DEL PROGRAMA

3.2.2.1. Modelo

Se ha utilizado un programa de elementos finitos bidimensionales diseñado específicamente para la realización de análisis de deformación y estabilidad de problemas geotécnicos. Las situaciones modelizables corresponden a problemas de deformación plana o con axisimetría. El programa utiliza una interfaz gráfica que permite a los usuarios generar rápidamente un modelo geométrico y una malla de elementos finitos basada en una sección transversal vertical representativa del problema que se trate.

Se utiliza un modelo de deformación plana. En el caso de geometrías con una sección transversal uniforme para las que pueda suponerse que los correspondientes estados tensionales y de cargas son uniformes a lo largo de una determinada longitud perpendicular a la sección transversal (dirección z). Los desplazamientos y deformaciones en la dirección z se consideran nulos. Sin embargo, se tienen en cuenta los esfuerzos en la dirección z.

La selección de Plane strain o de Axisymmetric da como resultado un modelo de elementos finitos en dos dimensiones con sólo dos grados de libertad de desplazamiento por nodo (dirección x e y).

3.2.2.2. Discretización

El sólido continuo de estudio se discretiza en una malla de elementos finitos en la que se diferencian dos tipos de componentes: los elementos triangulares definidos por 6 nodos o 15 nodos.

En cada elemento se considera:

- Los nodos: son los puntos que definen un elemento, situados en su contorno, y donde se calculan los desplazamientos.
- Los puntos de tensión (o puntos de Gauss): son puntos en el interior del elemento, donde se pueden obtener las tensiones.

Los elementos con 6 nodos contienen 3 puntos de Gauss, mientras que los elementos con 15 nodos contienen 12 puntos de Gauss

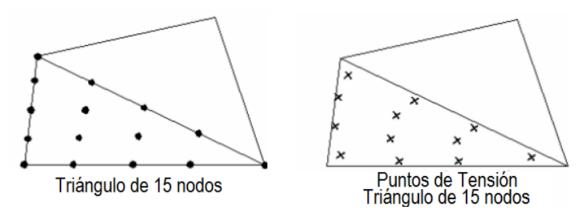


Figura 17. Posición de los nodos y puntos de tensión en elementos de suelo

3.2.2.3. Comportamiento del suelo

El modelo de elemento finitos admite diversos modelos constitutivos para simular el comportamiento del suelo y de otros medios continuos. A continuación, se facilita una breve descripción de los modelos disponibles:

Modelo elástico lineal:

Este modelo representa la ley de Hooke de elasticidad lineal isótropa. El modelo incluye dos parámetros de rigidez elástica, a saber: el módulo de Young (E), y el coeficiente de Poisson (v). El modelo elástico lineal tiene muchas limitaciones en relación a la simulación del comportamiento de los suelos. Se utiliza fundamentalmente para capas rígidas de suelo.

Modelo de Mohr-Coulomb:

Este bien conocido modelo se utiliza como una primera aproximación al comportamiento del suelo en general. El modelo incluye cinco parámetros, a saber: el módulo de Young, el coeficiente de Poisson (v), la cohesión(c), el ángulo de fricción (ϕ), y el ángulo de dilatancia (ψ). Éste es el modelo que se utiliza para la realización de los cálculos.

Modelo para Roca Fracturada (Jointed Rock model):

Se trata de un modelo elástico-plástico anisótropo en que la rotura por acción de las tensiones tangenciales sólo puede producirse en un número limitado de direcciones de deslizamiento. Este modelo puede ser utilizado para simular el comportamiento de roca estratificada o fracturada.

Modelo de Suelo con Endurecimiento (Hardening Soil model):

Se trata de una variante elastoplástica del modelo hiperbólico, formulado en el marco de la plasticidad de endurecimiento por fricción. Además, el modelo incluye el endurecimiento por compresión para simular la compactación irreversible del suelo bajo una compresión primaria. Este modelo de segundo orden puede ser utilizado para simular el comportamiento de arenas y gravas, así como de tipos de suelo más blandos, como arcillas y sedimentos.

Modelo para Suelo Blando (Soft Soil model):

Se trata de un modelo tipo CamClay que puede ser utilizado para simular el comportamiento de suelos blandos como arcillas normalmente consolidadas y turbas. El modelo proporciona buenos resultados en las situaciones de compresión primaria.

Modelo de Suelo Blando con fluencia (Soft Soil creep model):

Es éste un modelo de segundo orden formulado en el marco de la viscoplasticidad. El modelo puede ser utilizado para simular el comportamiento dependiente del tiempo de suelos blandos tales como arcillas normalmente consolidadas y turbas. El modelo incluye una ley logarítmica para la variación de rigidez con el cambio de volumen.

Modelo de Suelo definido por el usuario:

Esta opción permite la utilización de otros modelos constitutivos aparte de los modelos estándar:

3.2.2.4. Descripción de parámetros básicos

- MODULO DE YOUNG (E) [kN/m²]: rigidez elástica del material
- **COEFICIENTE DE POISSON (v):** deformación transversal producida ante un incremento unitario de la deformación longitudinal
- COHESIÓN [kN/m²]: para suelos no cohesivos, PLAXIS recomienda no emplear valores nulos de este parámetro para evitar fallos de convergencia, sino valores de c>0,2 kPa, teniendo en cuenta que puede dar lugar a tracciones no realistas.
- ANGULO DE ROZAMIENTO INTERNO [°]: tiempo computacional se incrementa casi exponencialmente con el valor de este parámetro, siendo especialmente importante a partir de 35°
- **ANGULO DE DILATACIÓN** [°]: un valor positivo de este parámetro implica que, ante condiciones drenadas, el suelo seguirá mostrando dilatancia indefinidamente mientras sigan existiendo deformaciones de corte. Esto es claramente irreal, puesto que la mayoría de suelos alcanzan el estado crítico en algún punto y a partir de entonces la deformación tangencial tendrá lugar sin cambios volumétricos. En condiciones sin drenaje, un valor positivo del ángulo de dilatancia, combinado con la restricción de los cambios volumétricos, genera presiones de poros de tracción. De esta forma, en suelos no drenados el análisis en tensiones efectivas puede dar lugar a resistencias de pico superiores a las reales.
- MODULO DE CIZALLADURA [kN/m²]: obtenido a partir de su relación con el módulo de Young. En caso de introducir un valor para este módulo, se modificará el valor de E.

$$G = \frac{E}{2(1+V)}$$

 MÓDULO EDOMÉTRICO [kN/m²]: obtenido a partir de su relación con el módulo de Young. En caso de introducir un valor para este módulo, se modificará el valor de E, permaneciendo constante v.

$$E_{OED} = \frac{(1 - V)E}{(1 - 2V)(1 + V)}$$

- ANGULO DE LA RIGIDEZ [kN/m²/m]: en el suelo real, su rigidez depende sensiblemente de las presiones, lo que significa que la rigidez aumenta con la profundidad. Al usar el modelo Mohr-Coulomb la rigidez tiene un valor constante. Para conseguir este aumento de la rigidez en profundidad se emplea este parámetro. Para el nivel dado por la profundidad de referencia yref y superiores, la rigidez es la dada por el módulo de Young de referencia Eref. Hacia niveles inferiores, la rigidez queda determinada por la siguiente expresión:

$$E(Y) = E_{REF} + (Y_{REF} - Y)E_{INC} \qquad (Y < Y_{REF})$$

- TRACCIÓN MÁXIMA [kN/m²]: permite definir la tensión de tracción máxima permitida en el suelo, de forma que la cohesión no dé lugar a valores irreales de las tensiones en el suelo.

3.2.3. MODELIZACIÓN DE LA PRESA.

3.2.3.1. Geometría de la presa

La geometría de la presa se ha obtenido a partir de los planos facilitados. Estos han servido para llevar a cabo la modelización de la estructura.

Inicialmente, la presa presenta una pantalla. Al modelizar la presa con un programa educacional presenta unas limitaciones y no permite incluir ciertas zonas, por tanto, se ha considerado conveniente sustituir el efecto de la pantalla proporcionándole al cimiento una permeabilidad más baja de la real. De este modo se consigue contrarrestar el efecto de la pantalla con el cimiento.

Los resultados a nivel red de filtración, con esta sustitución no serían válidos para un análisis profesional, pero los resultados a nivel de estabilidad de taludes sí que dan una idea de cómo funciona la presa.

La presa de la Figura 7 ha sido modelizada bidimensionalmente (2D) mediante la herramienta informática, introduciendo además un modelo de deformación plana.

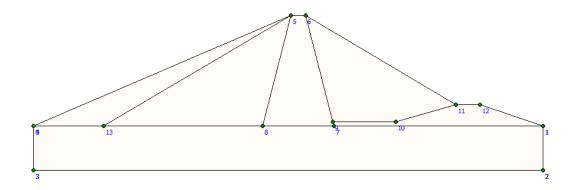


Figura 18. Modelizado de la presa de estudio mediante Plaxis

3.2.3.2. Materiales de la presa:

En cuanto a las características de los materiales, se han obtenido los parámetros a partir de la información disponible.

Todos los materiales se han considerado isótropos, por lo que no se diferencia entre permeabilidad vertical y horizontal. Por tanto, en las siguientes tablas tenemos:

MATERIAL DEL NUCLEO (rosa)		
γ (kN/m3)	18	
φ (°)	22	
Cohesión (kN/m2)	49	
Módulo de Young (kN/m2)	15000	
Coeficiente de Poisson	0,35	
Ángulo de dilatancia (°)	0	
Módulo de elasticidad transversal (kN/m2)	5555,56	
Coeficiente de permeabilidad (m/dia)	0,001	

Tabla 13. Materiales para el núcleo de la presa

ESPALDÓN AGUAS ARRIBA Y ABAJO (morado)		
γ (kN/m3)	21	
φ (°)	40	
Cohesión (t/m2)	0	
Módulo de Young (kN/m2)	100000	
Coeficiente de Poisson	0,3	
Ángulo de dilatancia (°)	0	
Módulo de elasticidad transversal (kN/m2)	38461,54	
Coeficiente de permeabilidad (m/dia)	0,1	

Tabla 14. Materiales para el espaldón de la presa

MATERIAL ESCOLLERA (verde)		
γ (kN/m3)	20	
φ (°)	37	
Cohesión (t/m2)	0	
Módulo de Young (kN/m2)	10000	
Coeficiente de Poisson	0,3	
Ángulo de dilatancia (°)	0	
Módulo de elasticidad transversal (kN/m2)	3846,15	
Coeficiente de permeabilidad (m/dia)	5	

Tabla 15. Material escollera

MATERIAL DEL CIMIENTO (amarillo)		
γ (kN/m3)	29	
φ (°)	60	
Cohesión (t/m2)	0	
Módulo de Young (kN/m2)	4000000	
Coeficiente de Poisson	0,25	
Ángulo de dilatancia (°)	0	
Módulo de elasticidad transversal (kN/m2)	280000,00	
Coeficiente de permeabilidad (m/dia)	0,00001	

Tabla 16. Material para cimiento

Todo ello se plasma en la Figura 8, en la que se observa la geometría final de la presa de estudio:

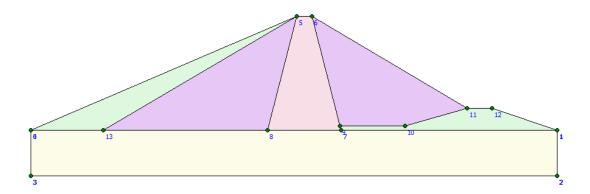


Figura 19. Geometría de la presa y materiales asignados

En la anterior figura podemos observar las distintas partes de la presa:

- El núcleo de la presa de estudio de color rosa
- De color verde aguas arriba es escollera de protección del talud
- De color verde aguas abajo, en el pie de la presa es un dren de pie
- De color morado los espaldones aguas arriba y aguas abajo
- De color amarillo el cimiento de la presa

3.2.3.3. Mallado de la presa

Tras asignar los materiales a la presa como se ha comentado en el apartado anterior, procedemos a generar el mallazo de la presa de estudio.

Se ha realizado un mallado básico con elementos triangulares de 6 nodos, tal y como se muestra en la Figura 9

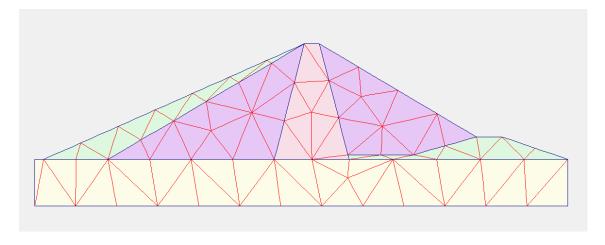


Figura 20. Presa de estudio con mallado

Tras observar el mallado, se ha visto conveniente refinar en el cuerpo principal de la presa y en el contacto presa-cimiento para evaluar de manera más precisa el comportamiento tras las cargas existentes.

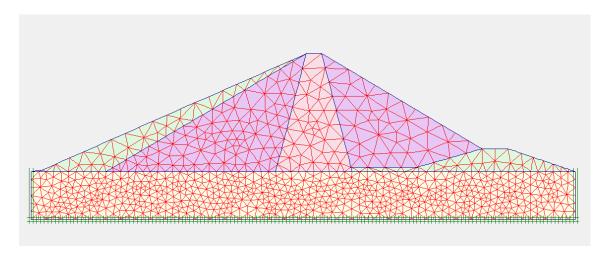


Figura 21. Mallado de presa refinado

3.2.3.4. Condiciones de contorno

Como condiciones de contorno, se han impedido los movimientos vertical y horizontal en el borde inferior, y el horizontal en el borde derecho e izquierdo del terreno sobre el que se sustenta la presa.

En el contacto de dos elementos diferentes, los nodos son comunes entre ambos elementos y por lo tanto los movimientos son iguales. Para poder simular cierto desplazamiento relativo entre el contacto se utilizan los elementos tipo interfaz. Para ello definimos la interfaz de los distintos materiales del interior de la presa para que simule correctamente la rugosidad y la transmisión de esfuerzos entre ellos, tal y como se muestra en la Figura 11:

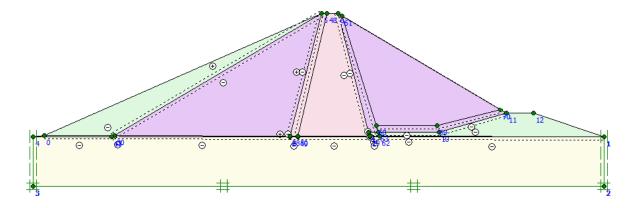


Figura 22. Condiciones de contorno aplicadas a la presa

Tras establecer las condiciones de contorno tenemos el mallado de la Figura 14. Una vez realizado esto, se densifica en el contacto de los distintos materiales debido a la transmisión de esfuerzos.

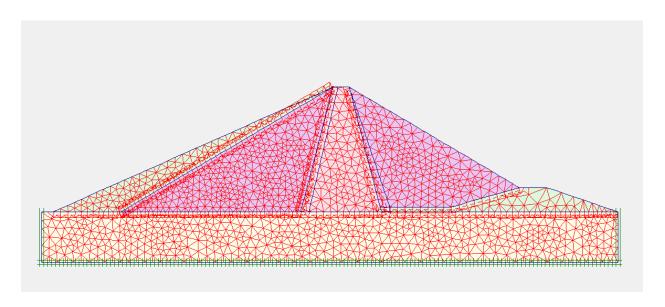


Figura 23. Mallado

3.2.3.5. Acciones a considerar

a. Peso propio

A efectos de los cálculos de verificación de la seguridad se deberá conocer el peso específico de cada material involucrado en el proceso de evaluación. El peso específico a usar será el que corresponda a la situación de proyecto correspondiente ya sea saturado o aparente con la posible humedad que corresponda a la situación en cuestión que puede llegar a ser seca en algunos elementos granulares del espaldón de aguas abajo.

Normalmente los suelos que se usan en la construcción de las presas de materiales sueltos cambian su peso específico seco en la medida que avanza el proceso constructivo. Aumentan generalmente durante la construcción y pueden disminuir durante el llenado. Estos cambios, en general, son de menor importancia y no es necesario modificar las acciones correspondientes por este motivo. Únicamente es conveniente tener en cuenta los cambios de peso debidos a la variación correspondiente al grado de saturación.

Se considera el peso propio correspondiente a la densidad de los materiales definidos en la presa. A efectos de cálculo de asientos, para el cimiento no se considera su peso propio porque sus asientos ya han tenido lugar.

A continuación, se mostrará la presión de poro para las situaciones con el embalse vacío (a nivel de cimiento) y con el embalse a Nivel Máximo Normal (327,5 msnm).

b. Análisis embalse vacío

Para el análisis en situación de embalse vacío, tenemos que la línea de saturación se encuentra en el nivel de cimiento, tal y como se muestra en la siguiente figura:

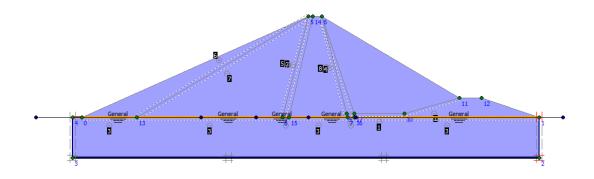


Figura 24. Nivel del embalse vacío

En cuanto a la presión de poro, el modelo nos proporciona la siguiente figura:

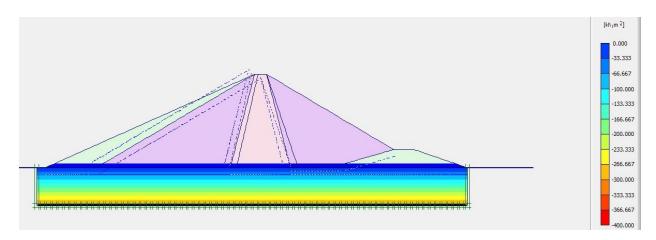


Figura 25. Presión de poro

c. Análisis embalse lleno. Presión hidrostática a Nivel Máximo Normal

La presión hidrostática se ha introducido como una presión en el paramento de aguas arriba correspondiente al nivel máximo normal (NMN 327,5 msnm) correspondiente a la situación pésima estacional, es decir, al más elevado.

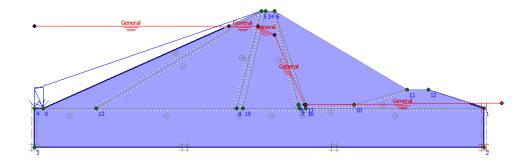


Figura 26. Presa con presión hidrostática en NMN

A NMN, la presión de poro que se produce en el modelo se puede observar en la figura siguiente:

Figura 27. Presa con NMN y presión de poro

3.2.4. SEGURIDAD ESTRUCTURAL

En este apartado se lleva a cabo el análisis de seguridad estructural. Como se ha definido anteriormente, PLAXIS es un programa de elementos finitos bidimensionales diseñado específicamente para la realización de análisis de deformación y estabilidad de problemas geotécnicos. Plaxis permite avaluar la estabilidad de taludes y ayuda a estimar asientos máximos esperados, así como la estabilidad interna.

- Estabilidad de taludes:
- Asientos máximos:
- Estabilidad interna:

3.2.4.1. Estabilidad de taludes

Se puede realizar un análisis de seguridad en PLAXIS reduciendo los parámetros de resistencia del suelo. Este proceso se denomina Phi-c reduction y se encuentra disponible como un tipo separado de cálculo.

El cálculo de Phi-c reduction deberá ser seleccionado cuando se desee calcular un factor de seguridad global para la situación de que se trate. Se puede llevar a cabo un análisis de seguridad después de cada fase de cálculo individual y, por lo tanto, para cada etapa de construcción. Sin embargo, no se puede utilizar una fase de Phi-c reduction como fase de referencia para otra fase de cálculo, dado que siempre terminará en un estado de rotura.

El procedimiento Phi-c reduction consiste en reducir progresivamente los parámetros de resistencia tanφ y c del suelo hasta que se produce la rotura de la estructura.

El multiplicador total ΣMsf se utiliza para definir el valor de los parámetros de resistencia del suelo en una etapa dada del análisis:

$$\sum Msf = \frac{\tan \varphi_{input}}{\tan \varphi_{reduced}} = \frac{c_{input}}{c_{reduced}}$$

En este caso, los parámetros de resistencia con el subíndice 'input' hacen referencia a las propiedades introducidas en los conjuntos de datos de los materiales y los parámetros con el subíndice 'reduced' se refieren a los valores reducidos utilizados en el análisis.

El criterio de rotura del talud para el cálculo de los coeficientes de seguridad se establece en un desplazamiento horizontal máximo de 500 mm.

3.2.4.2. Asientos máximos

El control de la evolución de los asientos de coronación es siempre un objetivo importante en la seguridad de presas. En el caso de que el ritmo de estos asientos crezca con el tiempo, puede constituir una evidencia de un proceso de inestabilidad. Sin embargo, si este ritmo de asientos es decreciente, tampoco podemos garantizar que estemos frente a un proceso estable. Sólo cuando el producto entre este ritmo (o velocidad) y el tiempo permanece por debajo de un valor constante, el proceso será realmente estable.

De esta forma, se estima la magnitud de los asientos máximos esperables, que sirven de referencia o línea base con la que comparar los asientos reales medidos en la presa.

3.2.4.3. Estabilidad interna

La filtración a través de la cimentación, estribos y cuerpo de presa debe ser controlable en todo momento, tanto su cuantía como turbidez, para garantizar que se encuentra dentro de unos márgenes aceptables. En este sentido, el proyecto debe definir medidas preventivas como son impermeabilización y drenaje.

Se estudia el proceso de filtración de agua a través del cuerpo de presa y cimentación para la determinación de caudales filtrados, presiones intersticiales, gradientes, posibilidad de fracturación hidráulica o erosión interna.

Son tres los mecanismos que, en distintos puntos de la sección tipo, pueden provocar la inestabilidad interna de las presas de materiales sueltos. Los tres se manifiestan mediante filtraciones que aparecen en la zona de aguas abajo y los tres pueden conducir a la rotura de la obra. No obstante, se trata de procesos físicos claramente diferentes.

Estos son:

LEVANTAMIENTO DEL FONDO (SIFONAMIENTO):

Es el fenómeno por el cual, cuando existe un flujo ascensional importante, como podría ser el que se origina en el pie de aguas abajo de alguna presa, la presión total del terreno y la del agua intersticial se igualan. Entonces, al ser nula la presión efectiva, el terreno se rompe y la situación podría resultar inestable. También se le conoce como levantamiento del fondo.

Cuando el terreno donde se produce esa condición de presión efectiva nula es arenoso, la rotura se traduce en la licuefacción de las arenas, dando lugar a las denominadas "arenas movedizas".

Este proceso puede concluir con la perdida de estabilidad del espaldón de aguas abajo y la consecuente ruina de la obra.

EROSIÓN INTERNA:

La fuerza de arrastre que el agua de filtración produce sobre los suelos que atraviesa puede mover sus partículas, arrastrarlas a favor de la corriente y generar un proceso erosivo.

La consecuencia de la erosión interna es la formación de conductos o tubos individuales, y por eso este fenómeno se denomina también tubificación. Es habitual que se trate de un proceso remontante que comienza aguas abajo, en el punto de salida del agua al exterior, y que se va desplazando hacia aguas arriba.

El gradiente con el que puede empezar un proceso de erosión interna depende del tipo de terreno en el que se produzca el proceso de filtración.

Además, para que el proceso de erosión se desarrolle, es necesario que el material en el que se produce erosión tenga suficiente resistencia al corte para formar conductos estables de ciertas dimensiones.

En su fase final, el proceso puede producir la formación de un cráter de hundimiento (sinkhole) en la propia presa, que puede progresar y degenerar hasta ocasionar la rotura de la presa.

SUFUSIÓN:

Es una forma particular de la erosión interna. El fenómeno es también conocido como arrastre o migración de finos. Bajo esta denominación se conoce a la falta de estabilidad interna de un suelo sometido a un gradiente hidráulico por no ser capaz, la estructura granulométrica de los tamaños más gruesos, de retener la fracción más fina.

El proceso puede concluir con un asiento importante por colapso progresivo de la estructura granular al migrar la parte fina. Puede conducir a la ruina de la obra.

3.2.4.4. Estabilidad de taludes

Para este apartado lo que se hace es calcular el factor de seguridad que se alcanza respecto a las diferentes situaciones de proyecto. Para obtener estos valores el criterio de rotura se ha establecido en 500mm en desplazamiento horizontal por considerarse una norma de buena práctica.

Los cálculos se han realizado con el programa PLAXIS, la manera más exacta de realizarlo sería monitorizar el desplazamiento de todos los puntos de la coronación y del talud aguas abajo, y luego identificar qué punto es el primero que alcanza el desplazamiento horizontal de 500mm. En ese momento se habrá identificado el factor de seguridad. En este caso, se ha decidido elegir 3 puntos para abarcar toda la presa y realizar comprobación de su coeficiente, por tanto, tenemos:

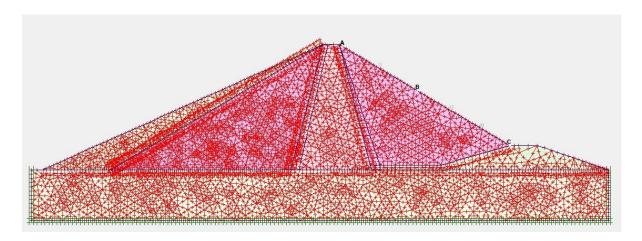
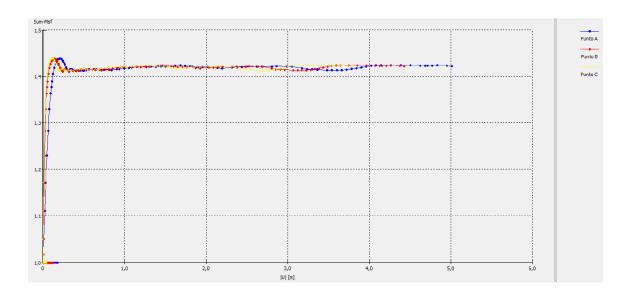


Figura 28. Localización de los puntos de estudio del factor de seguridad


- Nivel máximo normal

Establecido el Nivel Máximo Normal, el siguiente paso es obtener los valores de las tensiones totales debidas a las cargas, los desplazamientos de rotura del talud y los resultados del coeficiente de seguridad para cada punto y caso. Se toma como criterio de rotura del talud, un desplazamiento máximo de 500 mm.

Para el criterio de rotura, la Gráfica 8 muestra los siguientes puntos críticos de estudio:

- Punto A: Desplazamiento de 0,513 m → Factor de Seguridad (FS) de 1,415. (Curva azul)

- Punto B: Desplazamiento de 0,522 m → Factor de Seguridad (FS) de 1,412. (Curva roja)
- Punto C: Desplazamiento de 0,511 → Factor de Seguridad (FS) de 1,411. (Curva amarilla)

Gráfica 1. Desplazamientos

- Nivel Avenida de Proyecto

Como el Nivel Avenida de proyecto es el mismo que el Nivel Máximo Normal, tendríamos los mismos desplazamientos que la gráfica anterior.

- Nivel Avenida Extrema

Para concluir, se comprueba el factor de seguridad alcanzado para el Nivel de Avenida Extrema en el embalse. Sabiendo que el Nivel de Avenida Extrema es el mismo que el Nivel Máximo Normal, utilizamos los valores de la gráfica anterior.

3.2.4.5. Comprobación de estabilidad de taludes

Una vez calculados los factores de seguridad para cada una de las situaciones de proyecto consideradas, solo queda comprobar su validez comparándolos con los coeficientes de seguridad mínimos exigibles, que se muestran en la siguiente tabla:

TIPO DE COMBINACION	CATEGORIA A	CATEGORIA B	CATEGORIA C
NORMAL	1,4	1,4	1,3
ACCIDENTAL	1,3	1,2	1,1
EXTREMO	>1,0	>1,0	>1,0

Tabla 17. Comprobación de estabilidad de taludes

Toda la información acerca de los distintos factores de seguridad y su validez o no, se muestra en la siguiente tabla.

SITUACION PROYECTO	NIVEL EMBALSE	PUNTOS DE ESTUDIO	FS exigido	CUMPLIMIENTO
		A →1,415		CUMPLE
NORMAL DE PROYECTO	NMN	B →1,412	1,4	CUMPLE
		C→ 1,411		CUMPLE
		A →1,415		CUMPLE
ACCIDENTAL NA DE PROYECTO	NAP=NMN	B → 1,412	1,3	CUMPLE
		C→ 1,411		CUMPLE
		A → 1,415		CUMPLE
EXTREMA DE PROYECTO	NAE= NMN	B → 1,412	>1	CUMPLE
		C→ 1,411		CUMPLE

Tabla 18. Comprobación de los factores de seguridad

3.2.5. ASIENTOS ANÓMALOS

A continuación, se muestra una tabla donde se pueden apreciar los asientos máximos estimados, que servirán de línea base para comparar con las mediciones de campo.

SITUACIÓN DE	DESPLAZAMIENTO	PORCENTAJE
PROYECTO	VERTICAL	ALTURA PRESA
Nivel Máximo Normal= Nivel Avenida de Proyecto= Nivel Avenida Extrema	13,675 cm	0,17%

Tabla 19. Desplazamiento de la presa

CAPÍTULO IV CONCLUSIONES

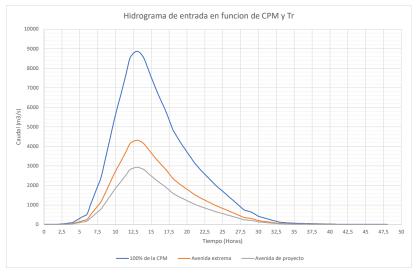
Analizando el comportamiento de la presa y teniendo en cuenta la legislación española que se ha decidido aplicar para comprobar la presa, se puede concluir que la presa de estudio presenta ciertas situaciones en las que no cumple la normativa española.

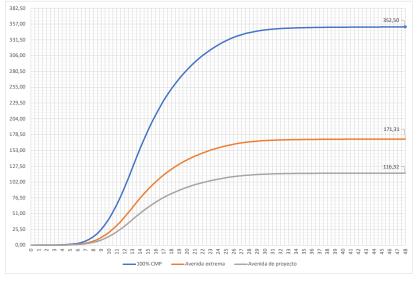
Para llevar a cabo estas comprobaciones se han usado las Normas Técnicas de Seguridad incluidas en el Real Decreto 264/2021, de 13 de abril, entendiendo que por tratarse de un trabajo académico el alcance es adecuado.

Para evaluar la seguridad hidrológica, se compararon los NMN, NAP y NAE (Mismo valor establecido en 327,5 msnm para las tres situaciones al tratarse de una presa con compuertas) con los resguardos de la presa tras tener en cuenta el viento, sismo, asientos anómalos en la presa y deslizamiento de las laderas del embalse utilizando la Guía Técnica Nº2. En ellos se pudo observar que para la situación de sismo extremo no se cumple la comprobación, ya que el resguardo disponible es insuficiente. Para solventar este problema se propusieron una serie de medidas para cumplir con el sismo extremo que consistían en:

- a) Bajar el Nivel Máximo Normal de la presa a un nivel de 323,76m $Nuevo\ nivel\ = (NMN-7,76-1m)=323,7m$
- b) Aumentar la coronación de la presa mediante un recrecido, por ejemplo, mediante un parapeto. Esta solución está sujeta a un análisis coste beneficio entre el valor de los GWH generados con el NMN en 327,5m y el caso de bajar el NMN a 323,76 m.

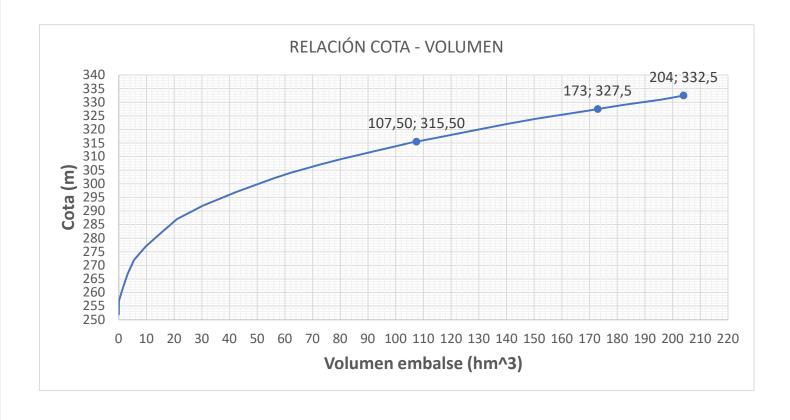
En cuanto a la evaluación de la seguridad estructural, se obtuvo mediante el programa Plaxis los factores de seguridad de la presa. Dichos valores se compararon con los coeficientes de seguridad del Anexo II Norma técnica de seguridad para el proyecto, construcción y puesta en carga de presas y llenado de embalses del Real Decreto 264/2021, de 13 de abril relativos a las distintas situaciones de proyecto contempladas.


BIBLIOGRAFÍA


- **Real Decreto 264/2021**, de 13 de abril, por el que se aprueban las normas técnicas de seguridad para las presas y sus embalses.
- García Jiménez, C (2016). Evaluación de la seguridad de una presa de materiales sueltos en el río Yuna, en la provincia de Sánchez-Ramírez (República Dominicana). Universidad Politécnica de Cartagena.
- **Pedreño Moreno, A (2016).** Revisión seguridad de una presa en río Mao (República Dominicana). Universidad Politécnica de Cartagena.
- **Robredo Sánchez, J. C. (2010).** Cálculo de Caudales de Avenida. Escuela Técnica Superior de Ingeniería de Montes, España.
- Clasificación de grandes presas según su riesgo potencial. Dirección General de Obras Hidráulicas y Calidad de aguas. Ministerio de Medio Ambiente.
- **INDRHI (2006).** Instituto Nacional de Recursos Hídricos. Características de las Obras de Descarga de las Presas en la República Dominicana.
- **ICOLD (2005).** Bulletin 130: Risk Assessment In Dam Safety Management: A reconnaissance of benefits, methods and current applications. International Commission on Large Dams Committee on Dam Safety, Francia.
- SPANCOLD. Guía Técnica No 2: Criterios para proyectos de presas y sus obras anejas
- **Revista ARQHYS. 2012, 12.** Presas de Republica Dominicana. Equipo de colaboradores y profesionales de la revista ARQHYS.com. Obtenido 10, 2017, de http://www.arqhys.com/construccion/dominicanas-presas.html.
- Raymundo, A.J (2012). ¿Qué es la laminación de avenidas? Newsletter de la C.H. Ebro: iagua. https://www.iagua.es/blogs/raimundo-lafuente/%C2%BFque-es-la-laminacion-de-avenidas
- **Bellver Manrique, A (1996).** Reglamento técnico sobre seguridad de presas y embalses. Mapama: http://www.mapama.gob.es/es/agua/temas/seguridad-de-presas-y-embalses/09047122800062e1 tcm7-28838.pdf
- Vallarino Cánovas del Castillo, E (1998), Tratado Básico de Presas (Tomo II). Colegio de Ingeniero de Caminos, Canales y Puertos, España.
- Vallarino Cánovas del Castillo, E (1998), Tratado Básico de Presas (Tomo I). Colegio de Ingeniero de Caminos, Canales y Puertos, España.
- Orellana Piedra, H. D. (2013). Modelación y diseño de soluciones para la estabilidad de talud en los predios de la Universidad Técnica Particular de Loja. Universidad Técnica Particular de Loja, Ecuador.
- **ARGÜELLES, A; FERNÁNDEZ, M.A (2002).** Consideraciones relativas a las balsas en orden a su tramitación, construcción y explotación. Confederación Hidrográfica del Guadalquivir. Comisaría de Aguas. Mayo 2002.
- **Fernando Delgado Ramos, (2005).** Seguridad de presas y embalses. Normativa y recomendaciones
- Comité Nacional Español de Grandes presas. Guía técnica de Seguridad de Presas №2.
 Criterios para proyectos de presas y sus obras anejas.
- Comité Nacional Español de Grandes presas. Guía técnica de Seguridad de Presas №5
 Aliviaderos y desagües.
- **Alonso Franco M. (1993**). Patología de presas españolas de materiales sueltos. Sociedad española de mecánica del suelo y cimentaciones.

ANEJO DE CÁLCULO

HIDROGRAMA DE ENTRADA SEGÚN TR


		CPM		0.000		1.000
0	Q (m3/s)	V (hm^3)	Q (m3/s)	V (hm^3)	Q (m3/s)	V (hm^3)
0,5	18 18	0,02	9	0,01	6	0,01
1	18	0,08	9	0,04	6	0,03
1,5	18	0,11	9	0,05	6	0,04
2	18	0,14	9	0,07	6	0,05
2,5	35 53	0,19	17 26	0,09	12 18	0,06
3,5	80	0,39	39	0,19	26	0,13
4	106	0,56	52	0,27	35	0,18
4,5	213	0,85	103	0,41	70	0,28
5	319	1,32	155	0,64	105	0,44
5,5 6	426 532	2,00 2,86	207 259	0,97 1,39	140 176	0,66
6,5	1011	4,25	491	2,06	334	1,40
7	1490	6,50	724	3,16	492	2,14
7,5	1964	9,61	955	4,67	648	3,17
8	2439	13,57	1185	6,59	805	4,48
8,5 9	3237 4035	18,68 25,22	1573 1961	9,08 12,26	1068 1332	6,16 8,32
9,5	4833	33,20	2349	16,14	1595	10,96
10	5631	42,62	2737	20,71	1858	14,06
10,5	6318	53,37	3071	25,94	2085	17,61
11	7006	65,37	3405	31,77	2312	21,57
11,5 12	7751 8496	78,65 93,27	3767 4129	38,22 45,33	2558 2804	25,95 30,78
12,5	8762	108,80	4258	52,88	2804	35,90
13	8868	124,67	4310	60,59	2926	41,14
13,5	8762	140,53	4258	68,30	2891	46,38
14	8496	156,06	4129	75,85	2804	51,50
14,5 15	8017 7538	170,93 184,92	3896 3663	83,07 89,87	2646 2487	56,41 61,03
15,5	7086	198,09	3444	96,27	2338	65,37
16	6633	210,43	3224	102,27	2189	69,44
16,5	6234	222,01	3030	107,90	2057	73,26
17	5835	232,88	2836	113,18	1926	76,85
17,5 18	5356 4877	242,95 252,16	2603 2370	118,07	1768 1610	80,17 83,21
18,5	4563	260,65	2217	122,55 126,68	1506	83,21 86,02
19	4248	268,58	2064	130,53	1402	88,63
19,5	3982	275,99	1935	134,13	1314	91,08
20	3716	282,92	1806	137,50	1226	93,36
20,5	3450 3184	289,37 295,34	1677 1547	140,63	1138	95,49 97,46
21,5	2971	300,88	1444	143,53 146,23	1051 980	99,29
22	2758	306,03	1340	148,73	910	100,99
22,5	2572	310,83	1250	151,06	849	102,57
23	2385	315,29	1159	153,23	787	104,05
23,5	2199	319,42	1069 978	155,24	726 664	105,41
24,5	2013 1858	323,21 326,69	903	157,08 158,77	613	106,66 107,81
25	1703	329,89	827	160,33	562	108,87
25,5	1543	332,82	750	161,75	509	109,83
26	1383	335,45	672	163,03	457	110,70
26,5 27	1224 1064	337,80 339,86	595 517	164,17	404 351	111,47 112,15
27,5	905	341,63	440	165,17 166,03	298	112,13
28	745	343,11	362	166,75	246	113,23
28,5	692	344,40	336	167,38	228	113,65
29	638	345,60	310	167,96	211	114,05
29,5 30	532 426	346,66	259 207	168,47 168,89	176 140	114,40 114,68
30,5	372	347,52 348,24	181	169,24	123	114,08
31	319	348,86	155	169,55	105	115,12
31,5	266	349,39	129	169,80	88	115,30
32	213	349,82	103	170,01	70	115,44
32,5	168	350,16	82 60	170,18	56	115,55
33,5	124 106	350,42 350,63	60 52	170,31 170,41	41 35	115,64 115,71
34	89	350,81	43	170,49	29	115,77
34,5	80	350,96	39	170,57	26	115,82
35	71	351,09	34	170,63	23	115,86
35,5 36	67 62	351,22 351,33	32 30	170,69 170,75	22	115,90 115,94
36,5	58	351,33	28	170,73	19	115,94
37	53	351,54	26	170,85	18	116,01
37,5	49	351,63	24	170,89	16	116,04
38	44	351,72	22	170,93	15	116,07
38,5 39	40 35	351,79 351,86	19 17	170,97	13 12	116,09
39,5	35	351,86	15	171,00 171,03	10	116,11 116,13
40	27	351,97	13	171,06	9	116,15
40,5	22	352,01	11	171,08	7	116,16
41	18	352,05	9	171,10	6	116,18
41,5 42	18	352,08 352,11	9	171,11	6	116,19
42,5	18 18	352,11 352,15	9	171,13 171,14	6	116,20 116,21
43	18	352,13	9	171,14	6	116,22
43,5	18	352,21	9	171,17	6	116,23
44	18	352,24	9	171,19	6	116,24
44,5	18	352,27	9	171,21	6	116,25
45 45,5	18 18	352,31 352,34	9	171,22 171,24	6	116,26 116,27
45,5	18	352,34 352,37	9	171,24	6	116,27
46,5	18	352,40	9	171,27	6	116,29
47	18	352,43	9	171,28	6	116,30
47,5	18	352,47	9	171,30	6	116,31

RELACIÓN COTA-VOLUMEN

V (hm3)	Cota (m)
0,02	252
0,06	257
1,57	262
3,25	267
5,51	272
9,8	277
15,32	282
21	287
30,5	292
42,5	297
56	302
62	304
72,5	307
80	309
92,5	312
101	314
105	315
107,5	315,5
115	317
125	319
140	322
151	324
170	327
173	327,5
182	329
189	330
196	331
204	332,5

PRESA DE ESTUDIO. LAMINACIÓN DE AVENIDAS (PULS)

CORONACION
Cota 332,5 m
Longitud 320 m

EMBALSE
Nivel Inicial 315,5 m m

DISPOSITIVO DE DESCARGA

Cota cresta 315,5 m
Longitud cresta 55,2 m
Coef. Descarga 2,07

 VOLUMEN EMBALSE

 Inicial
 109,80775
 Hm3

 Máximo
 202,70
 Hm3

CRECIDA

CPM 8868 m3/s
% de CPM 100
Cca Total 785 km2
Cca Regul 0 km
Cca Interm 785 km2
Q máx cca 8868 m3/s

| DESCARGAS MÁXIMAS | Q Vertedero | 6718 m3/s | Q des. fondo | 155 m3/s | Q Total | 6873 m3/s |

NAP (Tr=10.000 años) 327,50 m

0,0018

	Prof. Prof		HIDRO	GRAMA DE E	NTRADA				DESCARGA		
O	C	Tiempo				Nivel Embalse Inicial	Volumen Embalse	Coeficiente a1	Vertedero	Volumen Almacenado	Nivel Final Embalse
1.5	Color	(Horas)	(m3/seg)	(m3/seg)	(m3/seg)	(m)	(Hm3/s)		(m3/s)	(Hm3)	(m)
1.5	Color										
1.5	Color	0	0	18	18	315.50	109.81	61022.04	0	109.84	316.37
1	1										
2	2	1	0	18	18		109,79		91	109,65	
1.5	1.5	1,5				316,32	109,65	60891,66	86	109,53	316,29
1	1										
1.5	1-30										
4 0 156 106 106 106 106 106 106 106 106 106 10	1.										
A.	1.5										
1.0	1.0										
1.5	1.5										
Color	R										
7	To 1, 1956		0	532			110,31	61718,62	112	110,99	316,65
1.5	1.0	6,5		1011	1011	316,65	110,99	62378,09	142	112,15	316,94
S	B										
1.0	S										
9 0 4992 4895 133269 124,23 7222,268 979 122,181 325,767 136,165 136,165 127,165 136,1	2										
1.5	1										
1	10										
10	10										
11	11 1 7956 7956 234,98 248,42 87984.11 3926 115,09 375,03 375,0		1								
12.5	12		1								
13.	13.1 1. 157.2 157.6 157.6 157.6 177.2 137.4 137.7 137.4 137.7 137.4 131.3 13.5 150.6 157.6 137.5 13.5 13.5 15.5 15.5 13.5 13.5 15.5 13.5 13.5 15.5 13	11,5	1	7751	7751	325,53	155,50	92255,95	3631	162,79	326,61
13	13										
13.5 1 8762 8762 379.38 139.45 300811.92 5782 139.30 329.71	13.5										
14.6	14										
15	15.5										
15	15										
155 1 7966 7966 380.52 200.07 11574.00 6652 202.77 336.67 336.	15.5										
16	15.5										
16.5 1	16.5 1										
17.5 1 5586 5586 330,51 200,98 11990,40 6477 199,04 330,39 185,51 1 4677 4677 330,29 199,04 112373,46 6563 199,15 229,55 185,5	17.5	16,5		6234							
18	18										
18.5	19. 0. 4268 4561 4562 390.00 196.37 110750.02 6478 199.16 229.95 19. 0. 4248 4248 329.95 199.16 1008480.00 6478 189.65 229.66 19. 0. 300.00 300.00 300.00 300.00 329.00										
19	19										
195	195. 0 3882 3982 329,66 189,65 106315,14 6088 185,92 329,312 329										
200	20										
20.5 0	20.5 0 3450 3450 322,95 182,09 101806,18 5634 178,18 323,53 221,5 0 32971 2271 322,09 174,24 97188,47 5327 174,24 322,09 174,24 97188,47 5327 170,25 327,61 322,09 174,24 97188,47 5327 170,25 327,61 322,09 322,63 34951,15 4818 166,58 327,13 322,53 32										
17.1 0	21.5 0 3184 3184 32253 178,38 9948847 5107 174,24 328,09 221,51 0 2271 170,35 327,61 170,35 327,61 170,35 327,61 170,35 327,61 170,35 327,61 170,35 327,61 170,35 327,61 170,35 327,61 170,35 327,61 170,35 327,61 170,35 327,61 170,35 327,61 170,35 327,61 170,35 327,61 170,35 327,61 170,35 170										
22.5 0 2778 2778 327,61 170,35 34951,15 4818 165,58 327,61 327,61 327,61 326,63 326,63 326,64 327,63 326,64 327,65 326,64 327,65 326,64 327,65 328,66 327,65 328,66 327,65 328,66 328	22.5 0 2778 2778 327.61 170.35 94951,15 4818 116.38 327,13 22.5 0 2285 2385 326,63 162,96 90746,96 4245 1159,52 326,16 23.5 0 2285 2385 326,63 162,96 89745,9 3866 156,26 325,66 24 0 2013 2013 255,65 156,26 8894,85 3695 153,16 325,16 24.5 0 1878 1858 325,16 153,16 8515,22 3433 150,23 322,69 25.5 0 1703 1703 244,69 150,23 8352,69 3182 147,48 322,71 25.5 0 1703 1703 344,48 323,71 333 150,23 344,48 335,50 344,48 323,71 27 0 1104 1104 1104 322,48 142,42 17965,58 2506 144,48 322,48	21	0	3184	3184	328,53	178,18	99488,47	5377	174,24	328,09
22.5 0 2372 2572 337,13 166,58 92786,48 4530 162,96 326,61	22.5 0 2572 2572 237,13 166,58 9278,43 4330 162,56 326,61 2326,12 23.5 0 2299 2299 326,64 159,52 3879,49 3966 115,26 225,61 225,65 225,65 38794,59 3966 115,16 232,61 225,16 225,16 185,16 185,16 123,16 225,16 225,16 185,15 88794,59 3433 150,23 322,16 225,16 153,16 8157,22 3433 150,23 322,27 255 0 1543 1543 324,22 147,48 81863,52 2945 144,88 232,77 144,88 8080,20 12720 144,24 232,33 142,42 147,48 81863,52 296 140,96 322,33 255 0 1224 1224 223,33 142,42 17965,86 296 140,96 322,48 232,42 232,42 232,42 232,42 232,42 232,42 232,42 232,42 232,42 232,42 232,42 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>170,35</td> <td></td>									170,35	
23 0 2385 2385 336,63 162,96 90746,96 4245 1395,52 326,14 23,5 0 2199 2199 336,14 1595,2 3878,459 3966 155,66 335,65 24 0 2013 2013 325,65 153,16 38517,28 3433 150,23 332,469 25 0 1793 1703 324,69 150,23 88322,69 3182 147,48 324,22 25 0 1733 1533 323,277 144,88 80642,01 270 144,42 323,33 16,5 0 1224 1224 323,33 142,42 7965,86 2566 140,06 322,29 27 0 1064 1024 323,33 134,42 7965,86 2566 140,06 322,28 27,5 0 1064 302,28 137,80 7858,62 2301 137,89 222,88 27,5 0 1658 368	23										
23.5 0 2199 2199 336,14 159,52 88794,95 3966 156,66 325,16 24.5 0 2013 2013 325,16 153,16 85175,28 3433 150,23 325,16 25.5 0 1703 1703 324,69 150,23 83822,69 3182 147,48 324,22 25.5 0 1543 1543 324,22 147,48 81852,29 3182 147,48 332,77 26 0 1383 1383 323,77 144,88 8082,01 2720 142,42 323,33 2.5 0 1224 1224 223,33 142,42 7905,58 2506 140,06 322,28 2.7 0 1064 1064 322,20 140,06 77770,28 2391 137,90 322,48 2.75 0 905 905 322,48 137,80 76387,62 2105 135,60 322,31 322,60 322,31 323,77	23.5 0 2199 2199 336,14 159,52 88794,59 3966 156,26 325,65 24.5 0 2013 2013 325,65 155,62 86934,85 3695 153,16 325,16 325,16 153,16 85175,28 3433 150,23 322,69 120 147,48 324,22 25,5 0 1583 1543 1543 324,22 147,48 81852,27 2945 144,88 322,77 144,88 3682,01 2720 142,42 232,33 265 0 1224 1224 323,33 142,42 7965,86 2506 140,06 322,28 22,33 22,75 0 1964 1064 322,28 137,60 77704,28 2391 137,80 322,48 22,28 23,28										
24 0 2013 2013 232,565 156,26 8693,485 3695 153,16 325,16 25 0 1703 1703 324,69 150,23 8332,269 3182 147,48 324,22 25,5 0 1543 1543 324,22 147,48 8196,52 245 144,88 323,77 26 0 1383 1383 323,77 144,88 80482,01 2720 142,42 323,33 26,5 0 1064 1064 322,90 140,06 77704,8 2301 137,80 322,48 27,5 0 905 905 322,48 137,80 76387,62 2301 137,80 322,48 27,5 0 905 905 322,48 137,80 793,70,32 1917 133,47 321,63 28,5 0 662 692 231,63 133,47 7390,52 191 131,47 323,14 29,5 0 532	24 0 2013 2013 335,65 156,26 86934,85 3699 153,16 325,16 25 0 1703 1703 324,69 150,23 83517,28 3433 150,23 324,69 225 0 1703 1703 324,69 150,23 8352,69 3182 147,48 322,77 26 0 1383 1383 323,77 144,88 3042,01 2720 142,42 323,33 162,42 7905,86 2506 140,06 322,30 140,06 77704,88 2506 140,06 322,30 170,06 77704,88 2301 137,80 322,08 22,05 29 250 151,50 322,05 22,05 28 0 7745 745 322,05 313,47 7350,52 29 153,50 322,48 137,80 763,72 1917 133,47 322,68 137,80 322,48 137,73 29 10 6.88 688 321,23 131,47 7238,79 150,82 122,24 <td></td>										
24.5	24,5 0 1858 1858 323,16 153,16 8317,28 343 150,23 334,69 25 0 1703 1703 324,69 150,23 8352,26 3182 147,48 332,27 26 0 1383 1383 323,77 144,88 8196,51 270 144,42 323,33 26,5 0 1224 1224 323,33 142,42 7966,56 2506 140,06 322,90 27 0 1064 1064 322,90 140,06 7776,28 2301 137,80 322,25 28 0 745 745 322,05 135,60 735,60 132,05 28.5 0 762 692 321,63 133,47 7390,92 1735 131,47 322,23 28.5 0 762 692 321,63 133,47 7390,92 1735 131,47 322,23 29.5 0 632 522 320,67 129										
25 0 1703 1703 32469 15023 8352,69 3182 147,48 324,422 25 0 1543 1543 1242 147,48 8196,52 2945 144,88 323,77 26 0 1383 1833 1833,77 144,88 8048,01 270 142,42 323,33 26 0 1064 1064 322,90 140,06 7770,48 2301 137,80 322,48 27.5 0 905 905 322,48 137,80 76887,62 2301 137,80 322,48 28.5 0 745 745 322,05 135,60 75107,32 1917 133,47 321,63 28.5 0 668 638 321,23 131,47 7288,87 1568 129,70 30,87 29.5 0 532 532 230,87 129,70 7386,18 1421 128,66 320,53 30.5 0 372 372	25										
25.5	25.5 0										
26 0 1383 332,77 144,88 8048201 2720 142,42 323,33 142,42 323,33 142,42 7906,56 2506 140,06 322,29 27 0 1064 1064 332,29 140,06 77704,78 2301 137,80 322,48 27.5 0 905 905 322,48 137,80 7538762 2105 135,60 322,05 28 0 745 745 332,05 135,60 7510,732 1917 133,47 321,63 28,5 0 6638 638 321,23 131,47 7308,82 179,0 133,47 321,23 29.5 0 638 638 321,23 131,47 72888,79 1558 129,70 300,87 30.5 0 512 532 320,67 129,70 7185,618 149,10 1288 126,69 300,53 30.5 0 372 372 322,13 330,51 126,	26 0 1383 1383 233,77 144,88 8082,01 2720 142,42 323,33 26,5 0 124 1224 223,33 142,42 7906,86 2506 140,06 322,90 27,5 0 1064 1064 322,99 140,06 7704,8 2301 135,80 322,48 28 0 745 745 322,05 135,60 7510,32 1917 133,47 321,63 28,5 0 692 692 321,63 133,47 7390,92 1775 134,47 321,23 29,5 0 638 638 2321,23 131,47 7288,89 1568 129,70 320,87 29,5 0 532 532 320,87 129,70 7185,618 1421 128,06 320,53 30,5 0 372 372 320,19 126,49 7002,517 1162 125,00 330,93 31,5 0 266 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>										
27 0 1064 1064 322,90 140,06 77704,28 2301 137,80 322,48 27,5 0 905 905 322,48 137,80 7587,62 2105 135,60 75107,32 1917 133,47 321,63 28,5 0 652 622 632 321,63 133,47 7308,92 1735 131,47 321,23 29,5 0 638 638 321,23 131,47 77888,79 1568 1129,06 320,53 30 0 426 426 320,53 128,06 70914,01 1288 126,99 320,19 31 0 319 319 31987 125,00 662,06 1046 112,64 319,87 31,5 0 266 266 319,58 123,64 68456,11 941 112,24 319,30 32,5 0 138 168 319,90 122,37 66754,61 1941 112,24 318,24	277 0 1064 312,96 322,48 137,80 322,86 322,86 28 0 745 745 322,05 135,60 75307,32 1917 133,47 322,65 28 0 745 745 322,05 135,60 75107,32 1917 133,47 321,63 28 0 638 638 321,23 131,47 73908,92 1755 131,47 321,63 295 0 638 638 321,23 131,47 72888,79 11568 112970 320,87 295 0 426 446 330,53 128,06 7991401 1128 105,49 30,07 30 0 426 446 330,53 128,06 7991401 1128 105,49 30,19 315 0 232 313 319 319,87 125,00 69209,06 1046 123,64 315,81 31,5 0 216 206 315,58 <td></td>										
275 0 905 905 905 322,48 137,80 75387,62 2105 135,60 322,05	27,5	26,5	0	1224	1224	323,33	142,42	79065,86	2506	140,06	322,90
28 0 745 745 32,205 135,60 75,207,32 1917 133,47 321,63 28,5 0 692 692 321,63 133,47 73009,92 1735 131,47 321,23 29 0 688 638 321,23 131,47 72838,79 1568 129,70 320,87 29,5 0 532 532 320,33 128,06 70914,01 1288 126,49 320,19 30,5 0 372 372 320,19 126,49 70025,17 1162 125,00 319,48 31,0 0 372 372 320,19 126,49 70025,17 1162 125,00 319,57 31,5 0 266 266 319,58 123,64 68456,11 941 122,37 319,30 32,5 0 168 168 319,04 121,20 6708,39 761 120,09 318,79 33,5 0 168 <td< td=""><td>28 0 745 745 322.05 135,60 7510732 1917 133.47 321,63 28 0 62 62 62 321,63 133.47 73908.92 1735 131.47 321,23 29 0 638 638 321,23 131.47 72838.79 11588 129.70 320.87 30 0 426 426 320.53 128.06 709140.1 1288 126.49 320.53 30 0 426 426 320.53 128.06 709140.1 1288 126.49 320.53 31 0 319 319 319.87 125.00 6920.06 1046 123.64 319.58 31,5 0 266 266 319.58 123.64 684-66.11 941 122.77 319.30 32,7 0 213 213 319.30 122.37 319.01 122.37 319.50 32,5 0 168 188.94</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	28 0 745 745 322.05 135,60 7510732 1917 133.47 321,63 28 0 62 62 62 321,63 133.47 73908.92 1735 131.47 321,23 29 0 638 638 321,23 131.47 72838.79 11588 129.70 320.87 30 0 426 426 320.53 128.06 709140.1 1288 126.49 320.53 30 0 426 426 320.53 128.06 709140.1 1288 126.49 320.53 31 0 319 319 319.87 125.00 6920.06 1046 123.64 319.58 31,5 0 266 266 319.58 123.64 684-66.11 941 122.77 319.30 32,7 0 213 213 319.30 122.37 319.01 122.37 319.50 32,5 0 168 188.94										
28,5 0 692 692 331,63 133,47 73908,92 1735 131,47 321,23 29 0 638 638 321,23 131,47 72838,79 1588 1129,70 320,87 129,70 71856,18 1421 1128,06 320,53 30 0 426 426 320,53 128,06 70014,01 1288 1156,89 320,19 126,69 370,21 1156,99 320,19 126,69 370,051,11 116,69 370,051,11 116,69 331,93 319 319 319,38 139,58 123,64 68456,11 941 122,37 319,30 312,36 68456,11 941 122,37 319,30 312,37 67754,44 847 121,20 319,34 32,5 0 168 168 319,36 122,37 67754,44 847 121,20 319,34 32,5 0 168 168 318,37 120,09 66848,03 682,41 118,00 318,54 32,6 32,7	285										
29 0 638 638 321,23 131,47 7238,79 1568 129,70 320,87 29,5 0 532 532 320,33 129,70 71856,18 1411 118,06 320,53 30 0 426 426 320,53 128,06 70012,17 1162 125,00 331,93 31,0 319 319 319,87 125,00 69209,06 1046 123,64 319,83 31,5 0 266 266 319,58 123,64 68456,11 941 122,37 319,30 32 0 213 213 319,30 122,37 6754,44 847 121,20 319,00 32,5 0 168 168 319,04 121,20 6708,39 761 120,09 318,79 33 0 124 124 318,36 119,06 65917,16 610 118,10 318,34 34 0 89 89 318,34 <td>29 0 638 638 321,23 131,47 72838,79 1558 129,70 320,87 295 0 532 532 332 332 332 3128,06 70914,01 1288 126,49 320,19 30,5 0 372 372 320,19 126,49 70025,17 1162 125,00 319,87 31,5 0 372 372 320,19 126,49 70025,17 1162 125,00 319,87 31,5 0 266 266 319,58 123,64 68456,11 941 122,37 319,30 32,0 0 213 213 319,30 122,37 6775,44 847 121,20 319,93 32,5 0 168 168 319,04 121,20 67098,39 761 120,09 318,79 33,5 0 106 106 318,56 119,06 65917,16 610 118,10 318,34 34 0<!--</td--><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td>	29 0 638 638 321,23 131,47 72838,79 1558 129,70 320,87 295 0 532 532 332 332 332 3128,06 70914,01 1288 126,49 320,19 30,5 0 372 372 320,19 126,49 70025,17 1162 125,00 319,87 31,5 0 372 372 320,19 126,49 70025,17 1162 125,00 319,87 31,5 0 266 266 319,58 123,64 68456,11 941 122,37 319,30 32,0 0 213 213 319,30 122,37 6775,44 847 121,20 319,93 32,5 0 168 168 319,04 121,20 67098,39 761 120,09 318,79 33,5 0 106 106 318,56 119,06 65917,16 610 118,10 318,34 34 0 </td <td></td>										
295	195										
30	30										
30,5 0 372 372 320,19 126,49 70025,17 1162 112,00 319,87 31 0 319 319 319,87 125,00 69209,06 1046 122,64 319,58 31,5 0 266 266 319,58 123,64 68456,11 941 112,27 319,20 32 0 213 213 319,30 122,37 67754,44 847 121,20 319,04 32,5 0 168 168 319,04 121,20 67098,39 761 120,09 318,79 33 0 124 124 318,79 120,09 66484,03 682 119,06 318,56 33,5 0 106 106 0318,56 119,06 65917,16 610 119,10 318,34 34 0 89 89 318,34 118,10 65404,26 546 117,24 318,14 34,5 0 80 80 80 318,14 117,24 6492,40 490 116,46 317,96 35,5 0 71 71 317,96 116,46 64528,27 440 115,75 317,79 36 0 62 62 317,64 115,13 63824,73 339 114,56 317,51 36 0 62 62 317,64 115,13 63824,73 339 114,56 317,31 37,5 0 49 49 317,28 113,59 63009,16 272 115,59 317,28 37,5 0 40 40 317,18 113,79 62577,44 229 112,43 317,09 38,5 0 44 44 41,71,18 113,17 625784,19 249 112,79 317,28 37,5 0 49 49 317,28 113,59 63009,16 272 115,17 317,18 38 0 44 44 317,18 113,17 62577,44 229 112,43 317,09 39,5 0 31 31 316,92 112,11 62209,24 194 111,80 316,55 40,5 0 12 12 12 12 12 12 12	30.5 0 372 372 320.19 126.49 70025.17 1162 125.00 319.87 311.87 311.87 125.00 69209.06 1046 123.64 319.58 31.5 0 266 266 319.58 123.64 68456.11 941 122.37 319.30 32 0 213 213 319.30 122.37 67754.44 847 121.20 319.04 319.55 315.50 168 168 319.04 121.20 67058.39 761 120.09 318.79 33 0 124 124 318.79 120.09 66484.03 682 119.06 318.54 319.34 318.										
31 0 319 319 319,887 125,00 69209,06 1046 123,64 319,58 319,58 123,64 68456,11 941 112,37 319,30 32 0 213 213 319,30 122,37 67754,44 847 121,20 319,04 32,5 0 168 168 319,04 121,20 6708,39 761 120,09 318,79 33 0 124 124 318,79 120,09 66840,30 682 119,06 318,56 33,5 0 106 106 318,56 119,06 65917,16 610 115,10 318,34 34 0 89 89 318,34 118,10 65640,46 546 117,24 318,34 34,5 0 80 80 318,14 117,24 6492,40 490 116,46 317,79 35 0 71 71 71 317,99 115,75 64157,08 397 11	31 0 319 319 31987 125,00 69209,06 1046 123,64 319,58 319,58 319,58 319,58 319,58 319,58 319,30 122,37 67754,44 847 121,20 319,90 32,5 0 168 168 319,04 121,20 6798,89 761 120,09 318,79 33 0 124 124 318,79 120,09 6684,03 682 119,06 318,56 33,5 0 106 106 318,56 119,06 65917,16 610 118,10 318,34 34 0 89 89 318,34 118,10 6564,26 546 117,24 318,14 34,5 0 80 80 318,14 117,24 64942,40 490 116,46 317,92 35,5 0 67 67 317,79 115,75 64157,08 397 115,13 317,91 36,5 0 58 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>										
33,5 0 266 266 319,58 123,64 68456,11 941 122,37 319,30 32 0 213 213 319,30 122,37 67754,44 847 121,20 319,04 32,5 0 168 168 319,04 121,20 67098,39 761 120,09 318,75 33 0 124 124 318,79 120,09 66484,03 682 119,06 318,56 33,5 0 106 106 318,56 119,06 65917,16 610 118,10 318,34 34 0 89 89 318,34 118,10 65404,26 546 117,24 318,14 34,5 0 80 0 71 71 317,96 116,46 64528,27 440 115,75 317,79 35,5 0 67 67 317,91 115,75 64157,08 397 115,13 317,54 36 0 <	31,5 0 266 266 319,58 123,64 6848,611 941 122,37 319,30 32 0 213 213 319,30 122,37 67754,44 847 121,10 319,04 32,5 0 168 168 319,04 121,20 67088,39 761 120,09 318,79 33 0 124 124 318,79 120,09 66484,03 682 119,06 318,54 34 0 89 89 318,34 118,10 65404,26 546 117,24 318,43 34,5 0 80 80 318,14 117,24 64942,40 490 115,75 317,96 35,5 0 71 71 317,96 116,46 64528,27 440 115,75 317,94 36,5 0 67 67 317,79 115,75 361,73 359 114,56 317,51 36,5 0 58 58 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>										
32.5 0 168 168 319.04 121.20 67098.39 761 120.09 318.79 33 0 124 124 318.79 120.09 66484.03 682 119.06 318.56 33.5 0 106 106 318.56 119.06 65917.16 610 118.10 318.34 34 0 89 89 318.34 118.10 65404.26 546 117.24 318.14 34,5 0 80 80 318.14 117.24 6492.40 490 116.46 317.96 35 0 71 71 71 317.96 116.46 64528.27 440 115.75 317.79 35.5 0 67 67 67 317.79 115.75 64157.08 397 115.13 317.64 36 0 62 62 317.64 115.13 63824.73 359 114.56 317.51 36,5 0 58 58 317.51 114.56 63525.70 297 113.59 317.28 37.9 0 53 33 317.39 114.05 63255.70 297 113.59 317.28 37.9 0 49 49 317.28 113.59 63009.16 272 113.17 317.18 38.0 0 44 44 44 317.18 113.17 62784.19 249 112.79 317.09 38.5 0 40 40 40 317.09 112.79 62577.44 229 112.79 317.09 38.5 0 40 40 40 317.09 112.79 62577.44 229 112.79 317.09 38.5 0 40 40 40 317.09 112.79 62577.44 229 112.79 317.09 39.5 0 35 35 31 31 31.59 63009.16 272 113.17 317.18 40 0 0 27 27 316.85 111.80 62043.96 179 111.50 316.62 40 0 0 27 27 316.65 111.55 6135.50 110.55 61370.02 112.41 62009.44 111.00 316.65 40 0 18 18 18 316.60 111.07 61683.74 131 110.05 110.05 316.55 40 0 18 18 18 316.60 111.07 6168.74 131 110.05 10.06 316.44 40 0 18 18 18 316.60 111.07 6168.74 131 110.05 10.06 316.44 44 0 18 18 18 316.65 110.08 6009.07 93 110.91 110.91 316.44 44 0 18 18 18 316.65 110.08 6009.07 93 109.71 316.44 44 0 18 18 18 316.65 110.08 6009.07 93 109.71 316.44 44 0 18 18 18 316.65 110.08 6009.07 93 109.71 316.44 45 0 18 18 18 316.41 110.01 61680.90 100 109.86 316.54 45 0 18 18 18 316.41 110.01 61680.90 100 109.86 316.54 45 0 18 18 18 316.41 110.01 61680.90 79 93 10.97.1 316.44 45 0 18 18 18 316.42 110.95 6009.07 93 10.97.1 316.44	32,5 0 168 168 319,04 121,20 6708,39 761 120,09 318,79 33 0 124 124 318,79 120,09 66484,03 682 119,06 318,56 33,5 0 106 105 318,56 119,06 65917,16 610 118,10 318,43 34 0 89 89 318,34 118,10 65404,26 546 117,24 318,14 34,5 0 80 80 318,14 117,24 64942,40 490 116,46 317,95 35 0 71 71 317,99 115,75 64157,08 397 115,13 317,64 36 0 62 62 317,64 115,13 63824,73 359 114,56 317,79 36,5 0 58 58 317,51 114,56 63525,71 326 114,05 317,39 37,5 0 49 49 3		0	266	266	319,58	123,64	68456,11	941	122,37	319,30
33 0 124 124 318,79 120,09 66484,03 682 119,06 318,56 33,5 0 106 106 318,56 119,06 65917,16 610 118,10 318,34 34 0 89 89 318,34 118,10 65404,26 546 117,24 318,14 34,5 0 80 80 318,14 117,24 64942,40 490 116,46 317,95 35 0 71 71 317,96 116,46 64528,27 440 115,75 317,79 35,5 0 67 67 317,79 115,75 64157,08 397 115,13 317,64 36 0 62 62 317,64 115,13 63824,73 359 114,56 317,51 37 0 53 53 317,39 114,05 63255,71 326 114,05 317,39 37 0 53 53 317,29	33 0 124 124 318,79 120,09 66484,03 682 119,06 318,56 33,5 0 106 106 318,56 119,06 65917,16 610 118,10 318,34 34 0 89 89 318,14 118,10 5540,26 546 117,24 318,14 34,5 0 80 80 318,14 117,24 6492,40 490 116,46 317,79 35 0 71 71 317,79 115,75 64157,08 397 115,13 317,79 35,5 0 67 67 317,79 115,75 64157,08 397 115,13 317,51 36,5 0 58 58 317,51 114,56 63525,71 326 114,05 317,39 37 0 53 53 317,39 114,05 63255,20 297 113,59 317,28 37,5 0 49 49 317,					319,30	122,37	67754,44		121,20	319,04
33.5 0 106 106 318,56 119,06 65917,16 610 118,10 318,34 34 0 89 89 318,34 118,10 65404,26 546 117,24 315,14 34,5 0 80 80 318,14 117,24 6494,240 490 116,66 317,96 35 0 71 71 317,96 116,46 64528,27 440 115,75 317,79 35,5 0 67 67 317,79 115,75 64157,08 397 115,13 317,64 36 0 62 62 317,64 115,13 63224,73 359 114,56 317,51 36,5 0 58 58 317,51 114,56 63255,71 326 114,05 317,39 37 0 53 53 317,28 113,59 6309,16 272 113,17 317,18 38,5 0 49 49 317,2	33,5 0 106 106 318,56 119,06 65917,16 610 118,10 318,34 34 0 89 89 318,34 118,10 65404,26 546 117,24 318,14 34,5 0 80 80 318,14 117,24 6494,240 490 116,46 317,95 35 0 71 71 317,96 116,46 64528,27 440 115,75 317,79 36 0 62 62 317,64 115,13 63824,73 359 114,55 317,51 36,5 0 58 58 317,51 114,56 63255,71 326 114,05 317,39 37,5 0 49 49 317,28 113,59 63255,71 326 114,05 317,28 38,5 0 49 49 317,28 113,59 63255,10 297 113,17 317,09 38,5 0 40 40 31										
34 0 89 89 318,34 118,10 65404,26 546 117,24 318,14 34,5 0 80 80 318,14 117,24 64942,40 490 116,46 317,96 35 0 71 71 317,79 115,75 64157,08 397 115,13 317,79 35,5 0 67 67 317,79 115,75 64157,08 397 115,13 317,51 36,5 0 58 58 317,51 114,56 63525,71 326 114,05 317,39 37 0 53 53 317,39 114,05 63255,00 297 113,59 317,28 37,5 0 49 49 317,28 113,59 63009,16 272 113,17 317,18 38,5 0 40 40 317,09 112,79 62577,44 229 112,43 317,00 39,5 0 31 31 316,	34 0 89 89 318,34 118,10 65404,26 546 117,24 318,14 34,5 0 80 80 318,14 117,24 64942,40 490 116,46 317,96 35 0 71 71 317,96 116,46 64528,27 440 115,75 337,79 35,5 0 67 67 317,79 115,75 64157,08 397 115,13 317,64 36,5 0 52 62 317,64 115,13 63824,73 359 114,55 317,51 36,5 0 58 58 317,51 114,05 63255,71 326 114,05 317,39 37 0 53 53 317,39 114,05 63255,71 326 114,05 317,39 37,5 0 49 49 317,28 113,59 63009,16 272 113,17 317,18 38 0 44 44 317,18										
34,5 0 80 80 318,14 117,24 64942,40 490 116,46 317,96 35 0 71 71 317,96 116,46 64528,27 440 115,75 317,79 35,5 0 67 67 317,79 115,13 397 115,13 317,64 36 0 62 62 317,64 115,13 63824,73 359 114,56 317,59 36,5 0 58 58 317,51 114,05 63255,71 326 114,05 317,39 37,5 0 49 49 317,28 113,59 6305,16 272 113,17 317,18 38 0 44 44 317,18 113,17 62784,19 249 112,43 317,09 38,5 0 40 40 317,09 112,79 62577,44 229 112,43 317,09 39,5 0 31 31 316,92 112,11<	34,5 0 80 80 318,14 117,24 64942,40 490 116,46 317,95 35 0 71 71 317,96 116,46 64528,27 440 115,75 317,79 35,5 0 67 67 317,79 115,13 63824,73 359 114,95 317,54 36,5 0 58 58 317,51 114,05 63255,71 326 114,05 337,39 37 0 53 53 317,39 114,05 63255,20 297 113,59 317,28 37,5 0 49 49 317,28 113,59 63009,16 272 113,17 317,08 38 0 44 44 317,18 113,17 62784,19 249 112,43 317,09 38,5 0 40 40 317,09 112,79 62577,44 229 112,43 317,09 39 0 35 35 317,00										
35 0 71 71 317,96 116,46 64528,27 440 115,75 317,79 35,5 0 67 67 317,79 115,75 64157,08 397 115,13 317,64 36 0 62 62 317,64 115,13 63824,73 359 114,66 317,51 36,5 0 58 58 317,51 114,56 63255,71 326 114,05 317,39 37 0 53 53 317,39 114,05 63255,20 297 113,59 317,28 37,5 0 49 49 317,28 113,59 63005,16 272 113,17 317,18 38 0 44 44 317,18 113,17 62874,94 249 112,79 317,09 39 0 35 35 317,00 112,43 62386,48 210 112,11 316,92 395,5 0 31 31 316,92<	35 0 71 71 317,96 116,46 64528,27 440 115,75 317,79 35,5 0 67 67 317,79 115,75 64157,08 397 115,13 317,64 36 0 62 62 317,64 115,13 63824,73 359 114,65 317,51 36,5 0 58 58 317,51 114,65 63525,71 326 114,05 317,39 37 0 53 53 317,39 114,05 63255,20 297 113,59 317,28 37,5 0 49 49 317,28 113,59 63009,16 272 113,17 317,18 38 0 44 44 317,18 113,17 62577,44 229 112,79 317,09 39 0 35 35 317,00 112,43 62386,48 210 112,11 316,85 40 0 27 27 316,85 <td></td>										
35,5 0 67 67 317,79 115,75 64157,08 397 115,13 317,64 36 0 62 62 317,64 115,13 63824,73 359 114,56 317,51 36,5 0 58 58 317,51 114,05 63255,71 326 114,05 317,39 37 0 53 53 317,39 114,05 63255,20 297 113,59 317,18 37,5 0 49 49 317,28 113,59 63009,16 272 113,17 317,18 38 0 44 44 317,18 113,17 62784,19 249 112,79 317,09 38,5 0 40 40 317,09 112,79 6237,74 229 112,43 317,09 39,5 0 31 31 316,69 112,11 62209,24 194 111,80 316,82 40,5 0 27 27 316,8	35,5 0 67 67 317,79 115,75 64157,08 397 115,13 317,64 36 0 62 62 317,64 115,13 63824,73 359 114,56 317,51 36,5 0 58 58 58 317,51 114,05 63255,71 326 114,05 317,39 37 0 53 53 317,28 113,59 63009,16 272 113,59 317,28 38 0 44 44 317,18 113,59 62009,16 272 113,17 317,18 38 0 44 44 317,18 113,17 62784,19 249 112,79 317,09 38,5 0 40 40 317,09 112,79 62577,44 229 112,43 317,09 39 0 35 35 317,00 112,43 6236,648 210 112,11 316,92 39,5 0 31 31										
36 0 62 62 317,64 115,13 63824,73 359 114,56 317,51 36,5 0 58 58 317,51 114,56 63525,71 326 114,05 317,39 37 0 53 53 317,39 114,05 63255,20 297 113,59 317,28 37,5 0 49 49 317,28 113,59 63009,16 272 113,17 317,19 38 0 44 44 317,18 113,17 62784,19 249 112,79 317,09 38,5 0 40 40 317,09 112,74 62577,44 229 112,43 317,00 39 0 35 35 317,00 112,43 62386,48 210 112,11 316,92 40 0 27 27 316,85 111,80 62043,96 179 111,52 316,78 40,5 0 22 22 316,78 </td <td>36 0 62 62 317,64 115,13 63824,73 359 114,56 317,51 36,5 0 58 58 317,51 114,56 63525,71 326 114,05 317,39 37 0 53 53 317,39 114,05 63255,20 297 113,59 317,28 37,5 0 49 49 317,28 113,59 6309,16 272 113,17 317,18 38 0 44 44 317,18 113,17 62784,19 249 112,29 337,09 38,5 0 40 40 317,09 112,79 62577,44 229 112,43 317,09 39 0 35 35 317,00 112,43 62386,48 210 112,11 316,92 40 0 27 27 316,85 111,80 62043,96 19 111,50 316,85 40,5 0 22 22 2</td> <td></td>	36 0 62 62 317,64 115,13 63824,73 359 114,56 317,51 36,5 0 58 58 317,51 114,56 63525,71 326 114,05 317,39 37 0 53 53 317,39 114,05 63255,20 297 113,59 317,28 37,5 0 49 49 317,28 113,59 6309,16 272 113,17 317,18 38 0 44 44 317,18 113,17 62784,19 249 112,29 337,09 38,5 0 40 40 317,09 112,79 62577,44 229 112,43 317,09 39 0 35 35 317,00 112,43 62386,48 210 112,11 316,92 40 0 27 27 316,85 111,80 62043,96 19 111,50 316,85 40,5 0 22 22 2										
37 0 53 53 317,39 114,05 63255,20 297 113,59 317,28 37,5 0 49 49 317,28 113,59 63009,16 272 113,17 317,18 38 0 44 44 317,18 113,17 62784,19 249 112,79 317,09 38,5 0 40 40 317,00 112,79 62787,74 229 112,43 317,00 39 0 35 35 317,00 112,43 62386,88 210 112,11 316,92 39,5 0 31 31 316,92 112,11 62209,24 194 111,80 316,85 40 0 27 27 316,85 111,80 62043,96 179 111,52 316,78 41 0 18 18 316,72 111,25 6188,911 166 111,25 316,72 41 0 18 18 316,60 <td>37 0 53 53 317,39 114,05 63255,20 297 113,59 317,28 37,5 0 49 49 317,28 113,59 63009,16 272 113,17 317,18 38 0 44 44 317,18 113,17 62784,19 249 112,79 337,09 38,5 0 40 40 317,09 112,79 62577,44 229 112,43 317,09 39 0 35 35 317,00 112,43 62386,48 210 112,11 316,92 40 0 27 27 316,85 111,80 62043,96 179 111,52 316,72 40,5 0 22 22 316,78 111,52 6189,911 166 111,52 316,72 41 0 18 18 316,62 111,25 61743,38 153 111,00 316,56 41,5 0 18 18 316,66<!--</td--><td>36</td><td>0</td><td></td><td>62</td><td>317,64</td><td>115,13</td><td>63824,73</td><td></td><td>114,56</td><td>317,51</td></td>	37 0 53 53 317,39 114,05 63255,20 297 113,59 317,28 37,5 0 49 49 317,28 113,59 63009,16 272 113,17 317,18 38 0 44 44 317,18 113,17 62784,19 249 112,79 337,09 38,5 0 40 40 317,09 112,79 62577,44 229 112,43 317,09 39 0 35 35 317,00 112,43 62386,48 210 112,11 316,92 40 0 27 27 316,85 111,80 62043,96 179 111,52 316,72 40,5 0 22 22 316,78 111,52 6189,911 166 111,52 316,72 41 0 18 18 316,62 111,25 61743,38 153 111,00 316,56 41,5 0 18 18 316,66 </td <td>36</td> <td>0</td> <td></td> <td>62</td> <td>317,64</td> <td>115,13</td> <td>63824,73</td> <td></td> <td>114,56</td> <td>317,51</td>	36	0		62	317,64	115,13	63824,73		114,56	317,51
37.5 0 49 49 317.28 113.59 63009.16 272 113.17 317.18 38 0 44 44 317,18 113,17 62784,19 249 112,79 317,09 38,5 0 40 40 317,09 112,79 62577,74 229 112,43 317,00 39 0 35 35 317,00 112,43 62386,48 210 112,11 316,92 40 0 27 27 316,85 111,11 62209,24 194 111,80 316,85 40,5 0 27 27 316,85 111,52 61889,11 166 111,25 316,78 40,5 0 22 22 316,78 111,52 61889,11 166 111,25 316,78 41,5 0 18 18 316,66 111,00 61607,85 142 110,77 316,60 42,5 0 18 18 316,	37,5 0 49 49 317,28 113,59 63009,16 272 113,17 317,18 38 0 44 44 317,18 113,17 62784,19 249 112,79 317,09 38,5 0 40 40 317,09 112,79 62577,44 229 112,43 317,00 39 0 35 35 317,00 112,43 62386,48 210 112,11 316,92 40 0 27 27 316,85 111,10 62043,96 179 111,52 316,78 40,5 0 27 27 316,85 111,52 61889,11 166 111,25 316,78 41 0 18 18 316,672 111,25 61843,18 153 111,00 316,66 41,5 0 18 18 316,66 111,00 61607,85 142 110,77 316,50 42 0 18 18 316,50<										
38 0 44 44 317,18 113,17 62784,19 249 112,79 317,09 38,5 0 40 40 317,09 112,79 62577,44 229 112,43 317,00 39 0 35 35 317,00 112,43 62386,48 210 112,11 316,92 39,5 0 31 31 316,92 112,11 62209,24 194 111,80 316,78 40,5 0 27 27 316,85 111,80 62043,96 179 111,25 316,72 41 0 18 18 316,72 111,25 61889,11 166 111,25 316,72 41 0 18 18 316,66 111,05 6169,38 153 111,00 316,60 42 0 18 18 316,60 110,77 61483,74 131 110,55 316,50 42,5 0 18 18 316,60 <td>38 0 44 44 317,18 113,17 62784,19 249 112,79 317,09 38,5 0 40 40 317,09 112,79 62577,44 229 112,43 317,00 39 0 35 35 317,00 112,43 62866.48 210 112,11 316,92 39,5 0 31 31 316,92 112,11 62209,24 194 111,80 316,78 40,5 0 27 27 316,85 111,80 62043,96 179 111,52 316,78 41 0 18 18 316,72 111,25 61889,11 166 111,25 316,72 41 0 18 18 316,66 111,05 61743,38 153 111,00 316,69 42 0 18 18 316,60 110,77 61483,74 131 110,55 316,55 42,5 0 18 18 316,55<!--</td--><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td>	38 0 44 44 317,18 113,17 62784,19 249 112,79 317,09 38,5 0 40 40 317,09 112,79 62577,44 229 112,43 317,00 39 0 35 35 317,00 112,43 62866.48 210 112,11 316,92 39,5 0 31 31 316,92 112,11 62209,24 194 111,80 316,78 40,5 0 27 27 316,85 111,80 62043,96 179 111,52 316,78 41 0 18 18 316,72 111,25 61889,11 166 111,25 316,72 41 0 18 18 316,66 111,05 61743,38 153 111,00 316,69 42 0 18 18 316,60 110,77 61483,74 131 110,55 316,55 42,5 0 18 18 316,55 </td <td></td>										
38,5 0 40 40 317,09 112,79 62577,44 229 112,43 317,00 39 0 35 35 317,00 112,43 62386,48 210 112,11 316,92 39,5 0 31 31 316,92 112,11 62209,24 194 111,80 316,85 40 0 27 27 316,85 111,80 62043,96 179 111,52 316,78 40,5 0 22 22 316,78 111,52 61889,11 166 111,25 316,78 41 0 18 18 316,62 111,25 61743,38 153 111,00 316,66 41,5 0 18 18 316,66 111,00 61607,85 142 110,77 316,69 42 0 18 18 316,60 110,77 61483,74 131 110,55 316,55 42,5 0 18 18 316,50	33,5 0 40 40 317,09 112,79 62577,44 229 112,43 317,00 39 0 35 35 317,00 112,43 62386,48 210 112,11 316,92 39,5 0 31 31 316,92 112,11 62209,24 194 111,80 316,85 40 0 27 27 316,85 111,80 62043,96 179 111,52 316,72 41 0 18 18 316,72 111,25 61743,38 153 111,00 316,66 41,5 0 18 18 316,66 111,00 61607,85 142 110,77 316,66 41,5 0 18 18 316,60 110,00 61607,85 142 110,77 316,55 42,5 0 18 18 316,55 110,55 61370,02 122 110,36 316,55 42,5 0 18 18 316,										
39 0 35 35 317,00 112,43 62386,48 210 112,11 316,92 39,5 0 31 31 316,92 112,11 62209,24 194 111,80 316,85 40 0 27 27 316,85 111,80 62043,96 179 111,52 316,78 40,5 0 22 22 316,78 111,52 61889,11 166 111,25 316,72 41 0 18 18 316,72 111,25 61743,38 153 111,00 316,66 41,5 0 18 18 316,66 111,07 6169,85 142 110,77 316,60 42 0 18 18 316,60 110,77 61483,74 131 110,55 316,50 42,5 0 18 18 316,50 110,36 61265,59 114 110,18 316,50 43 0 18 18 316,45 <td>39 0 35 35 317,00 112,43 62386,48 210 112,11 316,92 39,5 0 31 31 316,92 112,11 62209,24 194 111,80 316,78 40 0 27 27 316,85 111,80 62043,96 179 111,52 316,78 40,5 0 22 22 316,78 111,25 61889,11 166 111,25 316,72 41 0 18 18 316,66 111,25 61889,11 166 111,27 316,66 41,5 0 18 18 316,66 111,07 61607,85 142 110,77 316,60 42 0 18 18 316,50 110,77 61483,74 131 110,55 316,50 42,5 0 18 18 316,55 110,55 61370,02 122 110,36 316,50 43 0 18 18 316,55<!--</td--><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td>	39 0 35 35 317,00 112,43 62386,48 210 112,11 316,92 39,5 0 31 31 316,92 112,11 62209,24 194 111,80 316,78 40 0 27 27 316,85 111,80 62043,96 179 111,52 316,78 40,5 0 22 22 316,78 111,25 61889,11 166 111,25 316,72 41 0 18 18 316,66 111,25 61889,11 166 111,27 316,66 41,5 0 18 18 316,66 111,07 61607,85 142 110,77 316,60 42 0 18 18 316,50 110,77 61483,74 131 110,55 316,50 42,5 0 18 18 316,55 110,55 61370,02 122 110,36 316,50 43 0 18 18 316,55 </td <td></td>										
39,5 0 31 31 316,92 112,11 62,209,24 194 111,80 316,85 40 0 27 27 316,85 111,80 62043,96 179 111,52 316,78 40,5 0 22 22 316,78 111,52 61889,11 166 111,25 316,72 41 0 18 18 316,62 111,25 61743,38 153 111,00 316,60 41,5 0 18 18 316,60 110,77 61483,74 131 110,55 316,55 42,5 0 18 18 316,50 110,77 61483,74 131 110,36 316,55 42,5 0 18 18 316,55 110,55 61370,02 122 110,36 316,55 43,0 18 18 316,45 110,18 61265,59 114 110,18 316,41 44,5 0 18 18 316,41	39,5 0 31 31 316,92 112,11 62209,24 194 111,80 316,85 40 0 27 27 316,85 111,80 62043,96 179 111,52 316,78 40,5 0 22 22 316,78 111,52 61889,11 166 111,25 316,72 41 0 18 18 316,66 111,00 61607,85 142 110,77 316,60 41,5 0 18 18 316,66 111,00 61607,85 142 110,77 316,60 42 0 18 18 316,50 110,75 61483,74 131 110,55 316,55 42,5 0 18 18 316,55 110,55 61370,02 122 110,36 316,55 43 0 18 18 316,45 110,18 61169,50 106 110,01 316,41 43,5 0 18 18 316,41										
40 0 27 27 316,85 111,80 62043,96 179 111,52 316,78 40,5 0 22 22 316,78 111,52 61889,11 166 111,25 316,78 41 0 18 18 316,72 111,25 61743,38 153 111,00 316,60 41,5 0 18 18 316,66 111,00 61607,85 142 110,77 316,60 42 0 18 18 316,50 110,77 61483,74 131 110,55 316,55 42,5 0 18 18 316,55 110,36 6137,002 122 110,36 316,50 43 0 18 18 316,50 110,36 61265,59 114 110,18 316,41 43,5 0 18 18 316,45 110,18 61169,50 106 110,01 316,41 44,5 0 18 18 316,41	40 0 27 27 316,85 111,80 62043,96 179 111,52 316,72 40,5 0 22 22 316,78 111,52 61889,11 166 111,15 316,72 41 0 18 18 316,62 111,00 61607,85 142 110,77 316,60 41,5 0 18 18 316,60 111,00 61607,85 142 110,77 316,50 42 0 18 18 316,50 110,75 61483,74 131 110,77 316,50 42,5 0 18 18 316,55 110,55 61370,02 122 110,36 316,50 43 0 18 18 316,50 110,36 61265,59 114 110,18 316,41 44,4 0 18 18 316,45 110,18 6169,50 106 110,01 316,41 44,5 0 18 18 316,37<										
40,5 0 22 22 316,78 111,52 61889,11 166 111,25 316,72 41 0 18 18 336,72 111,25 61743,38 153 111,00 316,66 41,5 0 18 18 316,66 111,07 61483,74 131 110,55 316,50 42 0 18 18 316,50 110,77 61483,74 131 110,55 316,50 42,5 0 18 18 316,55 110,55 61370,02 122 110,36 316,50 43 0 18 18 316,55 110,36 61265,59 114 110,18 316,45 43,5 0 18 18 316,45 110,18 61169,50 106 110,01 316,44 44 0 18 18 316,41 110,01 6189,00 100 109,86 316,37 44,5 0 18 18 316,34<	40,5 0 22 22 316,78 111,52 61889,11 166 111,25 316,72 41 0 18 18 316,62 111,25 61743,38 153 111,00 316,66 41,5 0 18 18 316,66 111,07 61483,74 131 110,55 316,50 42 0 18 18 316,60 110,77 61483,74 131 110,55 316,50 42,5 0 18 18 316,55 110,55 61370,02 122 110,36 316,50 43 0 18 18 316,50 110,36 61265,59 114 110,18 316,45 43,5 0 18 18 316,45 110,18 61169,50 106 110,01 316,41 44,5 0 18 18 316,41 110,01 61080,90 100 109,86 316,37 45,5 0 18 18 316,										
41 0 18 18 316,72 111,25 61743,38 153 111,00 316,66 41,5 0 18 18 316,66 111,00 61697,85 142 110,77 316,60 42 0 18 18 316,60 110,77 61483,74 131 110,55 336,55 42,5 0 18 18 316,55 110,55 61370,02 122 110,36 316,50 43 0 18 18 316,50 110,36 61265,59 114 110,18 316,41 43,5 0 18 18 316,45 110,18 61169,50 106 110,01 316,41 44 0 18 18 316,41 110,01 61080,90 100 109,86 316,37 44,5 0 18 18 316,37 109,86 60999,07 93 109,71 316,34 45 0 18 18 316,31 <td>41 0 18 18 316,72 111,25 61,743,38 153 111,00 316,66 41,5 0 18 18 316,66 111,00 61607,85 142 110,77 316,60 42 0 18 18 316,50 110,77 61483,74 131 110,55 336,55 42,5 0 18 18 316,55 110,55 61370,02 122 110,36 316,55 43 0 18 18 316,50 110,36 61265,59 114 110,18 316,45 43,5 0 18 18 316,45 110,18 6169,50 106 110,01 316,41 44 0 18 18 316,41 110,01 6180,90 100 109,86 316,34 45,5 0 18 18 316,34 109,71 60923,35 88 109,58 316,34 45 0 18 18 316,34<td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td>	41 0 18 18 316,72 111,25 61,743,38 153 111,00 316,66 41,5 0 18 18 316,66 111,00 61607,85 142 110,77 316,60 42 0 18 18 316,50 110,77 61483,74 131 110,55 336,55 42,5 0 18 18 316,55 110,55 61370,02 122 110,36 316,55 43 0 18 18 316,50 110,36 61265,59 114 110,18 316,45 43,5 0 18 18 316,45 110,18 6169,50 106 110,01 316,41 44 0 18 18 316,41 110,01 6180,90 100 109,86 316,34 45,5 0 18 18 316,34 109,71 60923,35 88 109,58 316,34 45 0 18 18 316,34 <td></td>										
41,5 0 18 18 316,66 111,00 61607,85 142 110,77 316,60 42 0 18 18 316,60 110,77 61483,74 131 110,55 316,55 43,5 0 18 18 316,55 110,36 61370,02 122 110,36 316,50 43,5 0 18 18 316,45 110,18 61169,50 106 110,01 316,41 44 0 18 18 316,41 110,18 6189,90 100 109,86 316,37 44,5 0 18 18 316,34 109,71 60923,35 88 109,71 316,34 45 0 18 18 316,34 109,71 60923,35 88 109,58 316,31 45,5 0 18 18 316,34 109,71 60923,35 88 109,58 316,28 46 0 18 18 316,28 <td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td> <td>41</td> <td>0</td> <td>18</td> <td>18</td> <td>316,72</td> <td>111,25</td> <td></td> <td>153</td> <td>111,00</td> <td></td>	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	41	0	18	18	316,72	111,25		153	111,00	
42,5 0 18 18 316,55 110,55 61370,02 122 110,36 316,50 43 0 18 18 316,50 110,36 61265,59 114 110,18 316,41 43,5 0 18 18 316,41 110,11 61080,90 106 110,01 316,41 44 0 18 18 316,41 110,01 61080,90 100 109,86 316,37 44,5 0 18 18 316,34 109,71 60923,35 88 109,58 316,31 45 0 18 18 316,34 109,71 60923,35 88 109,58 316,31 45,5 0 18 18 316,31 109,58 60853,18 83 109,46 316,28 46 0 18 18 316,28 109,46 60788,04 78 109,35 316,22 46 0 18 18 316,25	42,5 0 18 18 316,55 110,55 61370,02 122 110,36 316,50 43 0 18 18 316,50 110,36 61265,59 114 110,18 316,45 43,5 0 18 18 316,41 110,01 6169,50 106 110,01 316,41 44 0 18 18 316,41 110,01 61080,90 100 109,86 316,37 44,5 0 18 18 316,34 109,71 60923,35 88 109,58 316,31 45,5 0 18 18 316,34 109,71 60923,35 88 109,58 316,31 45,5 0 18 18 316,21 109,58 60853,18 83 109,46 316,22 46,5 0 18 18 316,28 109,46 60788,04 78 109,35 316,25 47 0 18 18 316,22 <td></td> <td></td> <td></td> <td></td> <td>316,66</td> <td></td> <td>61607,85</td> <td></td> <td></td> <td>316,60</td>					316,66		61607,85			316,60
43 0 18 18 316,50 110,36 61,265,59 114 110,18 316,45 43,5 0 18 18 316,45 110,18 61169,50 106 110,01 316,41 44 0 18 18 316,41 110,01 61089,90 100 109,86 316,37 44,5 0 18 18 316,37 109,86 60999,07 93 109,71 316,34 45 0 18 18 316,34 109,71 60923,35 88 109,58 316,31 45,5 0 18 18 316,23 109,58 60853,18 83 109,46 316,28 46 0 18 18 316,28 109,46 60788,04 78 109,35 316,22 46,5 0 18 18 316,22 109,35 60727,50 74 109,24 316,22 47 0 18 18 316,22	43 0 18 18 316,50 110,36 61265,59 114 110,18 316,45 43,5 0 18 18 316,41 110,18 61169,50 106 110,01 316,41 44 0 18 18 316,41 110,01 61089,00 100 109,86 316,33 44,5 0 18 18 316,37 109,86 60999,07 93 109,71 316,34 45 0 18 18 316,34 109,71 60923,35 88 109,58 316,31 45,5 0 18 18 316,23 109,58 60853,18 83 109,46 316,28 46 0 18 18 316,28 109,46 60788,04 78 109,35 316,25 46,5 0 18 18 316,25 109,35 60727,50 74 109,24 316,22 47 0 18 18 316,22										
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	43,5 0 18 18 316,45 110,18 61169,50 106 110,01 316,41 44 0 18 18 316,41 110,01 61080,90 100 109,86 316,37 44,5 0 18 18 316,34 19,71 60923,35 88 109,58 316,31 45,5 0 18 18 316,31 109,58 60853,18 83 109,46 316,28 46 0 18 18 316,28 109,46 60788,04 78 109,35 316,25 45,5 0 18 18 316,28 109,46 60788,04 78 109,35 316,22 45,5 0 18 18 316,28 109,46 60788,04 78 109,35 316,22 45,5 0 18 18 316,22 109,24 60671,14 70 109,14 316,22 47 0 18 18 316,20										
44 0 18 18 316,41 110,01 61080,90 100 109,86 316,37 44,5 0 18 18 316,37 109,86 60999,07 93 109,71 316,34 45 0 18 18 316,34 109,71 60923,35 88 109,58 316,31 45,5 0 18 18 316,31 109,58 60853,18 83 109,46 316,28 46 0 18 18 316,28 109,46 60788,04 78 109,35 316,25 46,5 0 18 18 316,25 109,35 60727,50 74 109,24 316,22 47 0 18 18 316,22 109,24 60671,14 70 109,14 316,20	44 0 18 18 316,41 110,01 61080,90 100 109,86 316,37 44,5 0 18 18 316,37 109,86 60999,07 93 109,71 316,34 45 0 18 18 316,34 109,71 60923,35 88 109,58 316,31 45,5 0 18 18 316,31 109,58 60853,18 83 109,46 316,28 46 0 18 18 316,28 109,46 60788,04 78 109,35 316,25 46,5 0 18 18 316,25 109,35 60727,50 74 109,24 316,22 47 0 18 18 316,22 109,24 60671,14 70 109,14 316,20 47,5 0 18 18 316,20 109,14 60618,60 67 109,05 316,18										
44,5 0 18 18 316,37 109,86 60999,07 93 109,71 316,34 45 0 18 18 316,34 109,71 60923,35 88 109,58 316,31 45,5 0 18 18 316,31 109,58 60853,18 83 109,46 316,28 46 0 18 18 316,28 109,46 60788,04 78 109,35 316,25 46,5 0 18 18 316,25 109,35 60727,50 74 109,24 316,22 47 0 18 18 316,22 109,24 60671,14 70 109,14 316,20	44,5 0 18 18 316,37 109,86 60999,07 93 109,71 316,34 45 0 18 18 316,34 109,71 60923,35 88 109,58 316,31 45,5 0 18 18 316,23 109,36 316,28 316,28 316,28 109,46 60788,04 78 109,35 316,25 46,5 0 18 18 316,25 109,35 60727,50 74 109,24 316,22 47 0 18 18 316,22 109,24 60671,14 70 109,14 316,20 47,5 0 18 18 316,20 109,14 60618,60 67 109,05 316,18										
45 0 18 18 316,34 109,71 60923,35 88 109,58 316,31 45,5 0 18 18 316,31 109,58 60883,18 83 109,46 316,28 46 0 18 18 316,28 109,46 60788,04 78 109,35 316,25 46,5 0 18 18 316,25 109,35 60727,50 74 109,24 316,22 47 0 18 18 316,22 109,24 60671,14 70 109,14 316,20	45 0 18 18 316,34 109,71 60923,35 88 109,58 316,31 45,5 0 18 18 316,31 109,58 60853,18 83 109,46 316,28 46 0 18 18 316,28 109,46 60788,04 78 109,35 316,25 45,5 0 18 18 316,25 109,35 60727,50 74 109,24 316,22 47 0 18 18 316,22 109,24 60671,14 70 109,14 316,20 47,5 0 18 18 316,20 109,14 60618,60 67 109,05 316,18										
45,5 0 18 18 316,31 109,58 60853,18 83 109,46 316,28 46 0 18 18 316,28 109,46 60788,04 78 109,35 316,25 46,5 0 18 18 316,25 109,35 60727,50 74 109,24 316,22 47 0 18 18 316,22 109,24 60671,14 70 109,14 316,20	45,5 0 18 18 316,31 109,58 60853,18 83 109,46 316,28 46 0 18 18 316,28 109,46 60788,04 78 109,35 316,25 46,5 0 18 18 316,25 109,35 60727,50 74 109,24 316,22 47 0 18 18 316,22 109,24 60671,14 70 109,14 316,20 47,5 0 18 18 316,20 109,14 60618,60 67 109,05 316,18										
46 0 18 18 316,28 109,46 60788,04 78 109,35 316,25 46,5 0 18 18 316,25 109,35 60727,50 74 109,24 316,22 47 0 18 18 316,22 109,24 60671,14 70 109,14 316,20 316,22 109,24 60671,14 70 109,14 316,20	46 0 18 18 316,28 109,46 60788,04 78 109,35 316,25 46,5 0 18 18 316,25 109,35 60727,50 74 109,24 316,22 47 0 18 18 316,22 109,24 66671,14 70 109,14 316,20 47,5 0 18 18 316,20 109,14 60618,60 67 109,05 316,18										
46,5 0 18 18 316,25 109,35 60727,50 74 109,24 316,22 47 0 18 18 316,22 109,24 60671,14 70 109,14 316,20	46,5 0 18 18 316,25 109,35 60727,50 74 109,24 316,22 47 0 18 18 316,22 109,24 60671,14 70 109,14 316,20 47,5 0 18 18 316,20 109,14 60618,60 67 109,05 316,18 316,20 109,14 60618,60 67 109,05 316,18										
	47,5 0 18 18 316,20 109,14 60618,60 67 109,05 316,18		0								
<u>47,5</u> 0 18 18 316,20 109,14 60618,60 67 109,05 316,18											
	48 0 18 18 316,18 109,05 60569,58 64 108,97 316,16										

PRESA DE ESTUDIO. LAMINACIÓN DE AVENIDAS (PULS)

CORONACION

Cota 332,5 m

Longitud 320 m

320 m Longi Coef.

DISPOSITIVO DE DESCARGA
Cota cresta 315,5 m
Longitud cresta 55,2 m
Coef. Descarga 2,07

 Coef. Descarga
 2,07
 Cca Total

 VOLUMEN EMBALSE

 Inicial
 109,80775
 Hm3
 Q máx cca

 Máximo
 154,09
 Hm3

CRECIDA

CPM 8868 m3/s
% de CPM 48,6
Cca Total 785 km2
Cca Regul 0 km
Cca Interm 785
Q máx cca 4310 m3/s

| DESCARGAS MÁXIMAS | Q Vertedero | 3512 m3/s | Q des. fondo | 155 m3/s | Q Total | 3667 m3/s |

NAP (Tr=10.000 años) 327,50 m

0,0018

Tiomno	HIDR Forma	OGRAMA DE Cuenca	ENTRADA Q total	Nivel Embalse Inicial	Volumen Embalse	Coeficiente a1	DESCARGA Vertedero	Volumen Almacenado	Nivel Final Embal
Tiempo (Horas)	(m3/seg)	(m3/seg)	(m3/seg)	(m)	(Hm3/s)	Coefficiente a1	(m3/s)	(Hm3)	(m)
0	0	9	9	315,50	109,81	61012,93	0	109,82	316,37
0,5	0	9	9	316,37	109,82	61021,54	92	109,76	316,35
1	0	9	9	316,35	109,76	60938,00	90	109,61	316,31
1,5 2	0	9	9	316,31 316,28	109,61 109,47	60857,10 60781,90	84 79	109,47 109,34	316,28 316,25
2,5	0	17	17	316,25	109,34	60716,31	74	109,22	316,22
3	0	26	26	316,22	109,22	60664,18	70	109,13	316,20
3,5	0	39	39	316,20	109,13	60626,95	66	109,07	316,18
4,5	0	52 103	52 103	316,18 316,17	109,07 109,03	60605,86 60619,36	64	109,03 109,06	316,17 316,18
5	0	155	155	316,18	109,06	60685,83	64	109,18	316,21
5,5	0	207	207	316,21	109,18	60803,13	68	109,38	316,26
6	0	259	259	316,26	109,38	60967,95	75	109,67	316,33
6,5	0	491 724	491 724	316,33	109,67	61267,46 61788,78	86 107	110,20	316,46
7,5	0	955	955	316,46 316,69	110,20 111,12	62520.64	147	111,12 112,40	316,69 317,00
8	0	1185	1185	317,00	112,40	63443,16	209	114,01	317,38
8,5	0	1573	1573	317,38	114,01	64613,29	295	116,04	317,86
9	0	1961	1961	317,86	116,04	66085,72	414	118,58	318,45
9,5	1	2349 2737	2349 2737	318,45 319,12	118,58 121,57	67826,62 69791,23	578 788	121,57 124,92	319,12 319,86
10,5	1	3071	3071	319,86	124,92	71907,41	1039	128,50	320,62
11	1	3405	3405	320,62	128,50	74106,10	1323	132,20	321,38
11,5	1	3767	3767	321,38	132,20	76368,75	1629	136,00	322,13
12	1	4129	4129	322,13	136,00	78688,04	1950	139,88	322,87
12,5	1	4258 4310	4258 4310	322,87 323,55	139,88 143,62	80931,04 82929,67	2285 2610	143,62 146,92	323,55 324,13
13,5	1	4258	4258	324,13	146,92	84603,86	2897	149,68	324,60
14	1	4129	4129	324,60	149,68	85900,48	3135	151,80	324,95
14,5	1	3896	3896	324,95	151,80	86777,95	3317	153,22	325,17
15 5	1	3663 3444	3663 3444	325,17 325,29	153,22	87240,69 87356.41	3438 3499	153,94	325,29
15,5 16	1	3444	3444	325,29 325,31	153,94 154,09	87356,41 87190,81	3499 3512	154,09 153,78	325,31 325,26
16,5	1	3030	3030	325,26	153,78	86805,37	3486	153,11	325,16
17	1	2836	2836	325,16	153,11	86252,26	3429	152,17	325,01
17,5	1	2603	2603	325,01	152,17	85542,76	3348	150,96	324,81
18,5	1	2370 2217	2370 2217	324,81 324,57	150,96 149,51	84681,04 83729,60	3245 3120	149,51 147,91	324,57 324,30
19	0	2064	2064	324,30	147,91	82750,57	2982	146,27	324,02
19,5	0	1935	1935	324,02	146,27	81768,54	2840	144,63	323,73
20	0	1806	1806	323,73	144,63	80799,15	2697	143,01	323,44
20,5	0	1677	1677	323,44	143,01	79842,88	2557	141,42	323,15
21,5	0	1547 1444	1547 1444	323,15 322,86	141,42 139,84	78897,84 77975,02	2418 2282	139,84 138,30	322,86 322,57
22	0	1340	1340	322,57	138,30	77085,50	2149	136,82	322,29
22,5	0	1250	1250	322,29	136,82	76232,04	2021	135,40	322,01
23	0	1159	1159	322,01	135,40	75415,65	1899	134,04	321,75
23,5	0	1069 978	1069 978	321,75 321,48	134,04 132,73	74630,50 73870,56	1784 1673	132,73 131,46	321,48 321,23
24,5	0	903	903	321,23	131,46	73138,20	1567	130,24	320,98
25	0	827	827	320,98	130,24	72436,59	1465	129,07	320,74
25,5	0	750	750	320,74	129,07	71759,84	1369	127,94	320,50
26	0	672 595	672 595	320,50 320,27	127,94	71101,58	1278 1189	126,83	320,27 320,04
26,5 27	0	517	517	320,04	126,83 125,75	70457,47 69823,97	1104	125,75 124,69	319,81
27,5	0	440	440	319,81	124,69	69198,10	1022	123,64	319,58
28	0	362	362	319,58	123,64	68577,29	941	122,59	319,35
28,5	0	336	336	319,35	122,59	67985,14	863	121,60	319,13
29 29,5	0	310 259	310 259	319,13 318,93	121,60 120,69	67445,52 66940,26	790 725	120,69 119,84	318,93 318,73
30	0	207	207	318,73	119,84	66448,49	665	119,01	318,55
30,5	0	181	181	318,55	119,01	65977,93	607	118,21	318,36
31	0	155	155	318,36	118,21	65538,84	554	117,47	318,19
31,5 32	0	129 103	129	318,19	117,47 116,78	65127,49	505 460	116,78	318,03
32,5	0	103 82	103 82	318,03 317,88	116,78 116,12	64739,11 64371,73	460	116,12 115,49	317,88 317,73
33	0	60	60	317,73	115,49	64024,04	381	114,90	317,59
33,5	0	52	52	317,59	114,90	63699,32	346	114,35	317,46
34	0	43	43	317,46	114,35	63401,11	314	113,84	317,34
34,5 35	0	39 34	39 34	317,34 317,23	113,84 113,37	63128,36 62879,84	285 260	113,37 112,95	317,23 317,13
35,5	0	32	32	317,13	112,95	62653,53	237	112,56	317,13
36	0	30	30	317,03	112,56	62447,65	217	112,21	316,95
36,5	0	28	28	316,95	112,21	62259,66	199	111,89	316,87
37	0	26	26	316,87	111,89	62087,32	183	111,59	316,80
37,5 38	0	24 22	24	316,80 316,73	111,59 111,32	61928,70 61782,13	169 156	111,32 111,07	316,73 316,67
38,5	0	19	19	316,67	111,07	61646,19	145	110,83	316,61
39	0	17	17	316,61	110,83	61519,65	134	110,61	316,56
39,5	0	15	15	316,56	110,61	61401,43	125	110,41	316,51
40,5	0	13 11	13 11	316,51 316,46	110,41 110,22	61290,60 61186,34	116 108	110,22 110,04	316,46 316,42
40,5	0	9	9	316,46	110,22	61186,34	108	110,04	316,42 316,38
41,5	0	9	9	316,38	109,87	60995,83	94	109,71	316,34
42	0	9	9	316,34	109,71	60910,54	88	109,56	316,30
42,5	0	9	9	316,30	109,56	60831,49	82	109,42	316,27
43	0	9	9	316,27	109,42	60758,11	77	109,30	316,24
43,5 44	0	9	9	316,24 316,21	109,30 109,18	60689,87 60626,31	72 68	109,18 109,07	316,21 316,18
44,5	0	9	9	316,18	109,18	60567,03	64	109,07	316,18
45	0	9	9	316,15	108,96	60511,66	60	108,87	316,13
45,5	0	9	9	316,13	108,87	60459,87	57	108,78	316,11
46	0	9	9	316,11	108,78	60411,36	54	108,69	316,09
46,5 47	0	9	9	316,09 316,07	108,69 108,61	60365,88 60323,18	51 49	108,61 108,54	316,07 316,05
	0	9	9	316,05	108,54	60283,05	49	108,54	316,05
47,5				,	,- :		44	108,40	316,01

PRESA DE ESTUDIO. LAMINACIÓN DE AVENIDAS (PULS)

CORONACION
Cota 332,5 m
Longitud 320 m

Nivel Inicial 315,5 n

DISPOSITIVO DE DESCARGA
Cota cresta 315,5 m
Longitud cresta 55,2 m
Coef. Descarga 2,07

 VOLUMEN EMBALSE

 Inicial
 109,80775
 Hm3

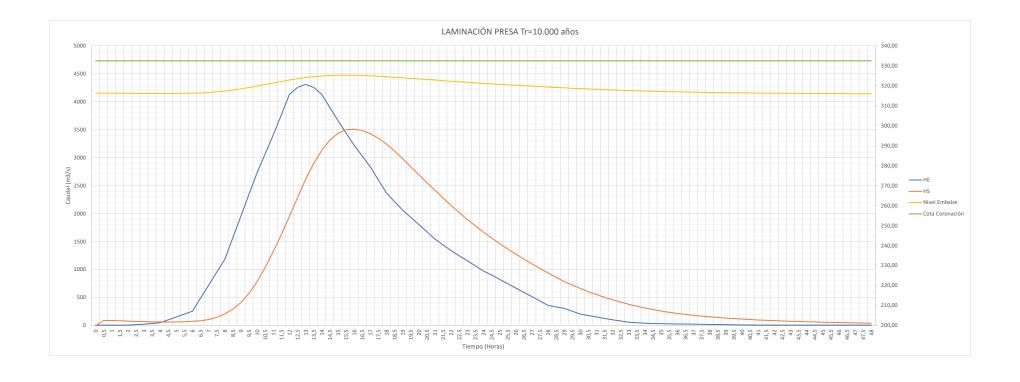
 Máximo
 140,73
 Hm3

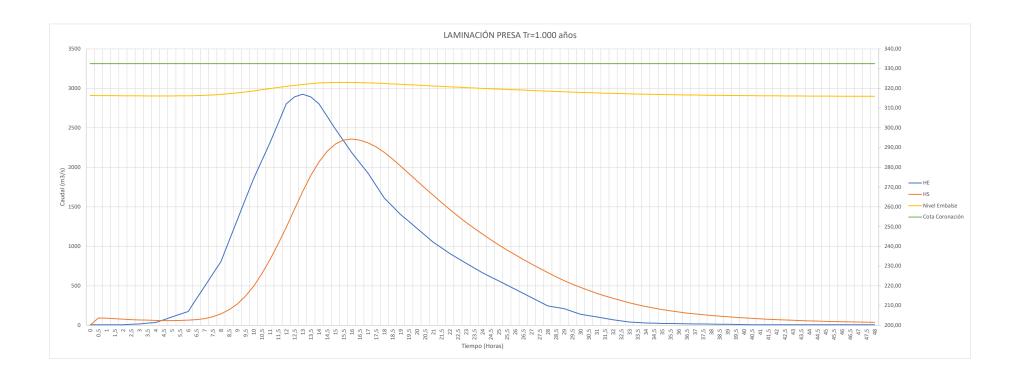
CRECIDA

CPM 8868 m3/s
% de CPM 33
Cca Total 785 km2
Cca Regul 0 km
Cca Interm 785 km2
Q máx cca 2926 m3/s

 DESCARGAS MÁXIMAS

 Q Vertedero
 2358
 m3/s

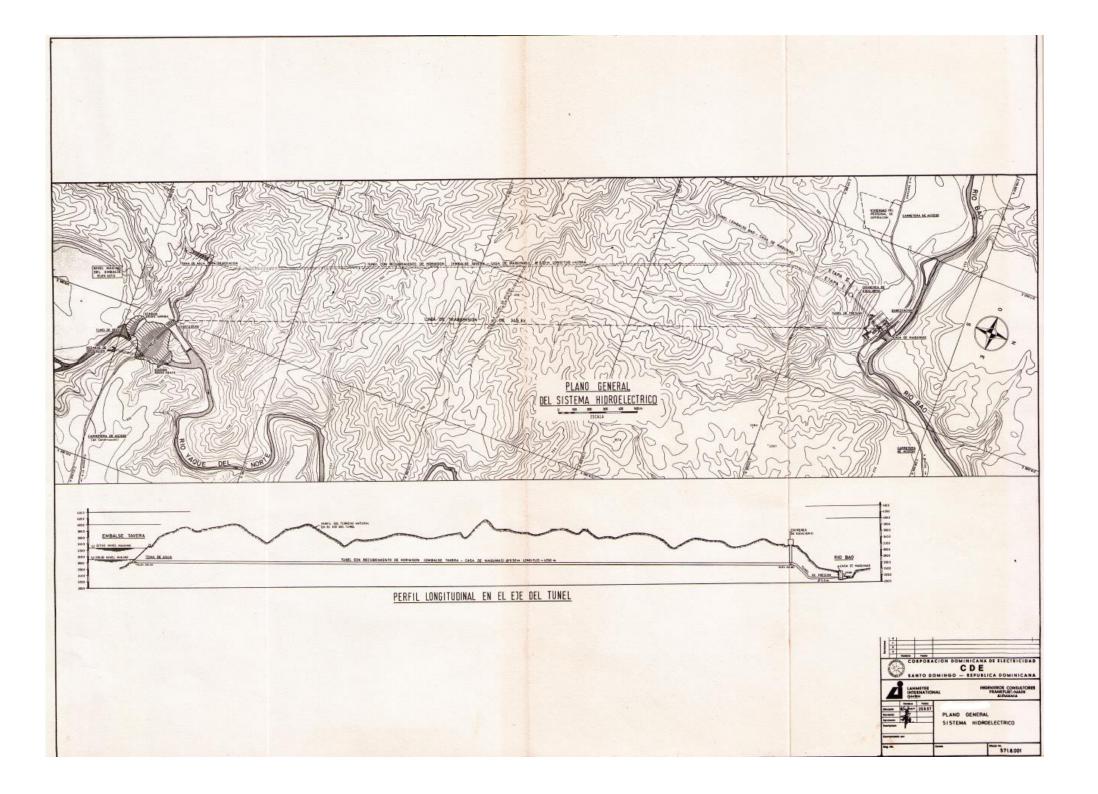

 Q des. fondo
 155
 m3/s

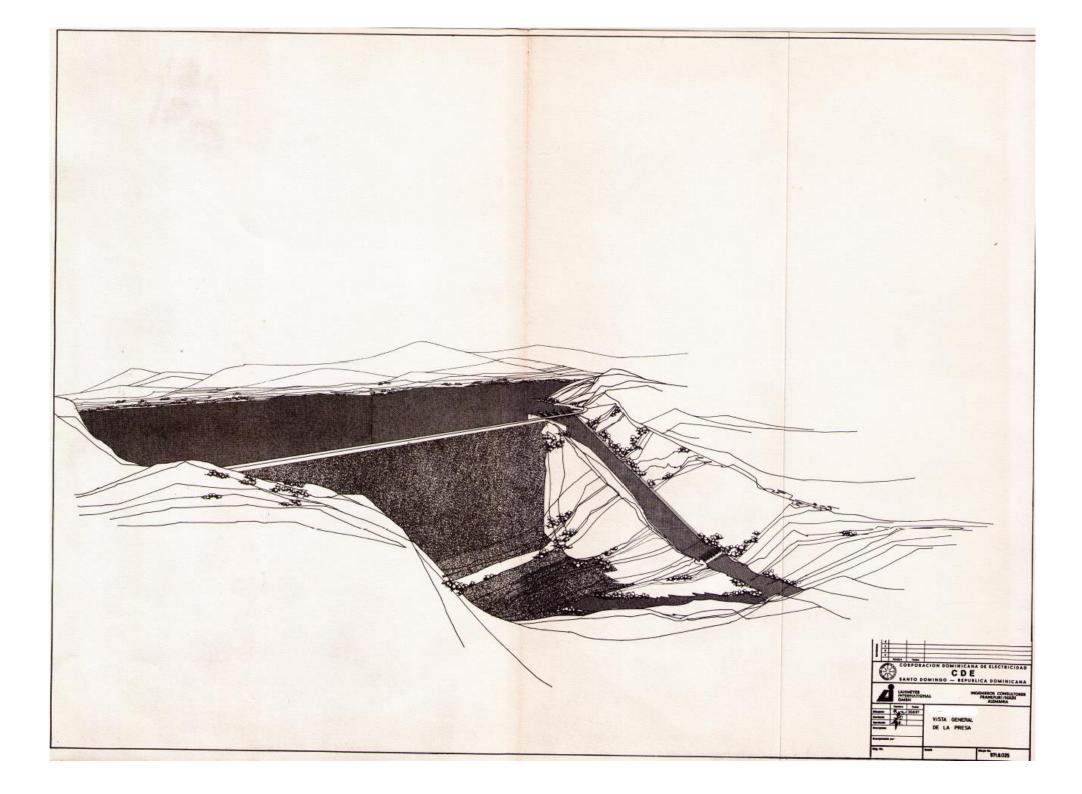

 Q Total
 2513
 m3/s

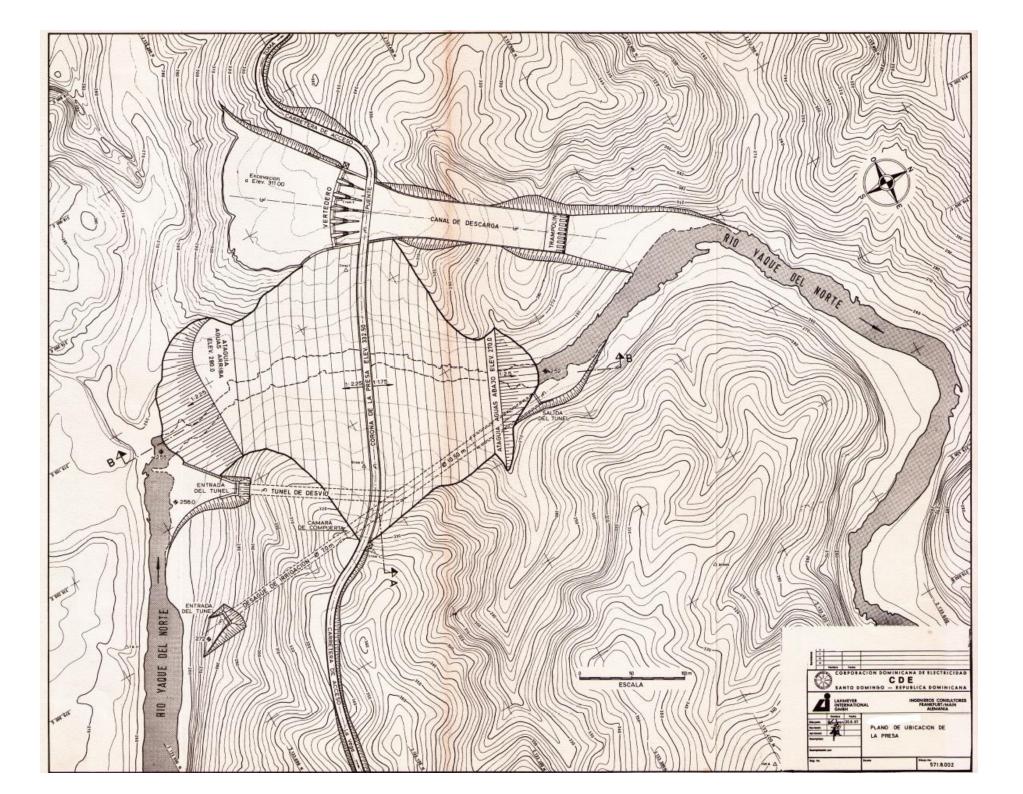
NAP (Tr=10.000 años) 327,50 m

0,0018

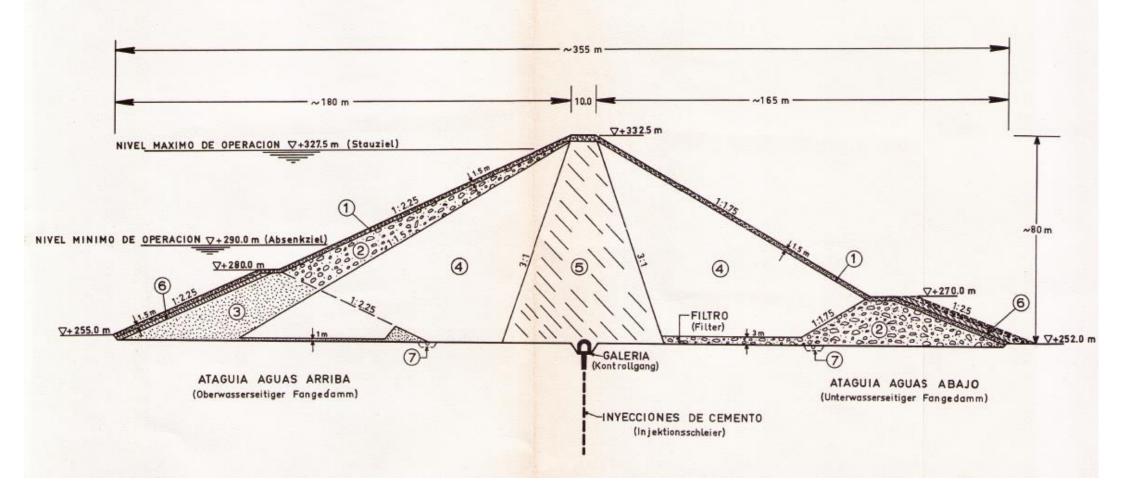
	HIDR	OGRAMA DE	ENTRADA				DESCARGA		
Tiempo	Forma	Cuenca	Q total	Nivel Embalse Inicial	Volumen Embalse	Coeficiente a1	Vertedero	Volumen Almacenado	Nivel Final Embals
(Horas)	(m3/seg)	(m3/seg)	(m3/seg)	(m)	(Hm3/s)		(m3/s)	(Hm3)	(m)
0	0	6	6	315,50	109,81	61010,16	0	109,82	316,37
0,5	0	6	6	316,37	109,82	61016,01	92	109,75	316,35
1	0	6	6	316,35	109,75	60929,90	89	109,59	316,31
1,5	0	6	6	316,31	109,59	60846,61	83	109,45	316,27
2,5	0	6 12	6 12	316,27 316,24	109,45 109,31	60769,18 60700,13	78 73	109,31 109,19	316,24 316,21
3	0	18	18	316,21	109,19	60641,90	69	109,09	316,19
3,5	0	26	26	316,19	109,09	60595,31	65	109,01	316,17
4	0	35	35	316,17	109,01	60561,08	62	108,95	316,15
4,5	0	70	70	316,15	108,95	60551,62	60	108,94	316,15
5	0	105	105	316,15	108,94	60579,31	60	108,99	316,16
5,5	0	140	140	316,16	108,99	60642,64	61	109,10	316,19
6,5	0	176 334	176 334	316,19 316,23	109,10 109,27	60739,36 60928,73	65 71	109,27 109,61	316,23 316,31
7	0	492	492	316,31	109,61	61270,03	84	110,21	316,46
7,5	0	648	648	316,46	110,21	61756,14	108	111,06	316,67
8	0	805	805	316,67	111,06	62374,86	145	112,14	316,93
8,5	0	1068	1068	316,93	112,14	63166,60	196	113,52	317,26
9	0	1332	1332	317,26	113,52	64170,44	268	115,27	317,68
9,5	1	1595	1595	317,68	115,27	65365,87	367	117,33	318,16
10	1	1858	1858	318,16	117,33	66725,28	495	119,66	318,69
10,5 11	1	2085 2312	2085 2312	318,69 319,26	119,66 122,18	68201,53 69748,09	652 832	122,18 124,80	319,26 319,83
11,5	1	2558	2558	319,83	124,80	71350,78	1030	127,50	320,41
12	1	2804	2804	320,41	127,50	73001,42	1243	130,28	320,99
12,5	1	2891	2891	320,99	130,28	74605,79	1469	132,97	321,53
13	1	2926	2926	321,53	132,97	76045,49	1693	135,36	322,01
13,5	1	2891	2891	322,01	135,36	77261,32	1896	137,36	322,39
14	1	2804	2804	322,39	137,36	78212,97	2068	138,92	322,69
14,5	1	2646	2646	322,69	138,92	78869,72	2202	139,98	322,89
15 5	1	2487	2487	322,89	139,98	79234,00	2294	140,56	322,99
15,5 16	1	2338 2189	2338 2189	322,99 323,02	140,56	79352,79 79272,64	2344 2358	140,73 140,57	323,02 323,00
16,5	1	2057	2189	323,02	140,73 140,57	79272,64	2358	140,57	323,00
17	1	1926	1926	322,92	140,16	78684,04	2309	139,55	322,81
17,5	1	1768	1768	322,81	139,55	78221,52	2257	138,77	322,66
18	1	1610	1610	322,66	138,77	77653,30	2189	137,81	322,48
18,5	1	1506	1506	322,48	137,81	77022,07	2106	136,74	322,27
19	0	1402	1402	322,27	136,74	76369,96	2014	135,65	322,06
19,5	0	1314	1314	322,06	135,65	75713,33	1921	134,56	321,85
20,5	0	1226 1138	1226 1138	321,85 321,63	134,56 133.47	75062,45 74417,37	1827 1735	133,47 132.39	321,63
20,5	0	1051	1051	321,42	132,39	73776,66	1644	131,32	321,42 321,20
21,5	0	980	980	321,20	131,32	73147,72	1555	130,27	320,98
22	0	910	910	320,98	130,27	72538,09	1468	129,25	320,77
22,5	0	849	849	320,77	129,25	71949,72	1384	128,26	320,57
23	0	787	787	320,57	128,26	71383,55	1304	127,32	320,37
23,5	0	726	726	320,37	127,32	70835,86	1228	126,40	320,18
24	0	664	664	320,18	126,40	70302,87	1155	125,51	319,98
24,5 25	0	613 562	613	319,98	125,51 124,64	69786,45	1085 1018	124,64	319,80
25,5	0	509	562 509	319,80 319,62	123,80	69289,01 68806,78	954	123,80 122,99	319,62 319,44
26	0	457	457	319,44	122,99	68335,73	893	122,20	319,26
26,5	0	404	404	319,26	122,20	67873,11	834	121,42	319,09
27	0	351	351	319,09	121,42	67416,69	777	120,65	318,92
27,5	0	298	298	318,92	120,65	66964,57	722	119,89	318,74
28	0	246	246	318,74	119,89	66515,11	668	119,13	318,57
28,5	0	228	228	318,57	119,13	66084,40	615	118,40	318,41
29	0	211 176	211 176	318,41	118,40	65688,72 65315,98	566 522	117,73	318,25 318,11
29,5 30	0	1/6	140	318,25 318,11	117,73 117,10	64952,38	481	117,10 116,48	318,11
30,5	0	123	123	317,96	116,48	64603,36	442	115,89	317,82
31	0	105	105	317,82	115,89	64275,96	405	115,33	317,69
31,5	0	88	88	317,69	115,33	63967,73	371	114,81	317,57
32	0	70	70	317,57	114,81	63675,57	340	114,31	317,45
32,5	0	56	56	317,45	114,31	63398,29	312	113,84	317,34
33	0	41	41	317,34	113,84	63135,03	285	113,39	317,23
33,5	0	35	35	317,23	113,39	62888,10	260	112,96	317,13
34 34,5	0	29 26	29 26	317,13 317,04	112,96 112,57	62659,92 62449,84	238 218	112,57 112,21	317,04 316,95
35	0	23	23	316,95	112,21	62257,09	199	111,88	316,87
35,5	0	22	22	316,87	111,88	62080,32	183	111,58	316,80
36	0	20	20	316,80	111,58	61918,36	169	111,30	316,73
36,5	0	19	19	316,73	111,30	61769,51	156	111,05	316,67
37	0	18	18	316,67	111,05	61632,23	144	110,81	316,61
37,5	0	16	16	316,61	110,81	61505,19	133	110,59	316,55
38	0	15	15	316,55	110,59	61387,24	124	110,39	316,50
38,5 39	0	13 12	13 12	316,50 316,46	110,39 110,20	61277,39 61174,75	115 107	110,20 110,02	316,46 316,41
39,5	0	10	10	316,46 316,41	110,20	611/4,/5	107	110,02	316,41 316,37
40	0	9	9	316,37	109,85	60988,16	93	109,69	316,33
40,5	0	7	7	316,33	109,69	60902,93	87	109,55	316,30
41	0	6	6	316,30	109,55	60822,36	82	109,41	316,26
41,5	0	6	6	316,26	109,41	60746,71	76	109,28	316,23
42	0	6	6	316,23	109,28	60676,30	71	109,15	316,20
42,5	0	6	6	316,20	109,15	60610,70	67	109,04	316,17
43	0	6	6	316,17	109,04	60549,50	63	108,93	316,15
43,5	0	6	6	316,15	108,93	60492,32	59	108,83	316,12
44	0	6	6	316,12	108,83	60438,81	56	108,74	316,10
44,5 45	0	6	6	316,10 316,08	108,74 108,65	60388,68 60341,65	53	108,65 108,57	316,08 316,06
45,5	0	6	6	316,06	108,57	60297,48	47	108,49	316,04
46	0	6	6	316,04	108,49	60255,94	45	108,42	316,02
46,5	0	6	6	316,02	108,42	60216,83	43	108,35	316,00
47	0	6	6	316,00	108,35	60179,97	41	108,29	315,99
	0	6	6	315,99	108,29	60145,21	39	108,23	315,97
47,5 48	0	6	6	315,97	108,23	60112,37	37	108,17	315,96

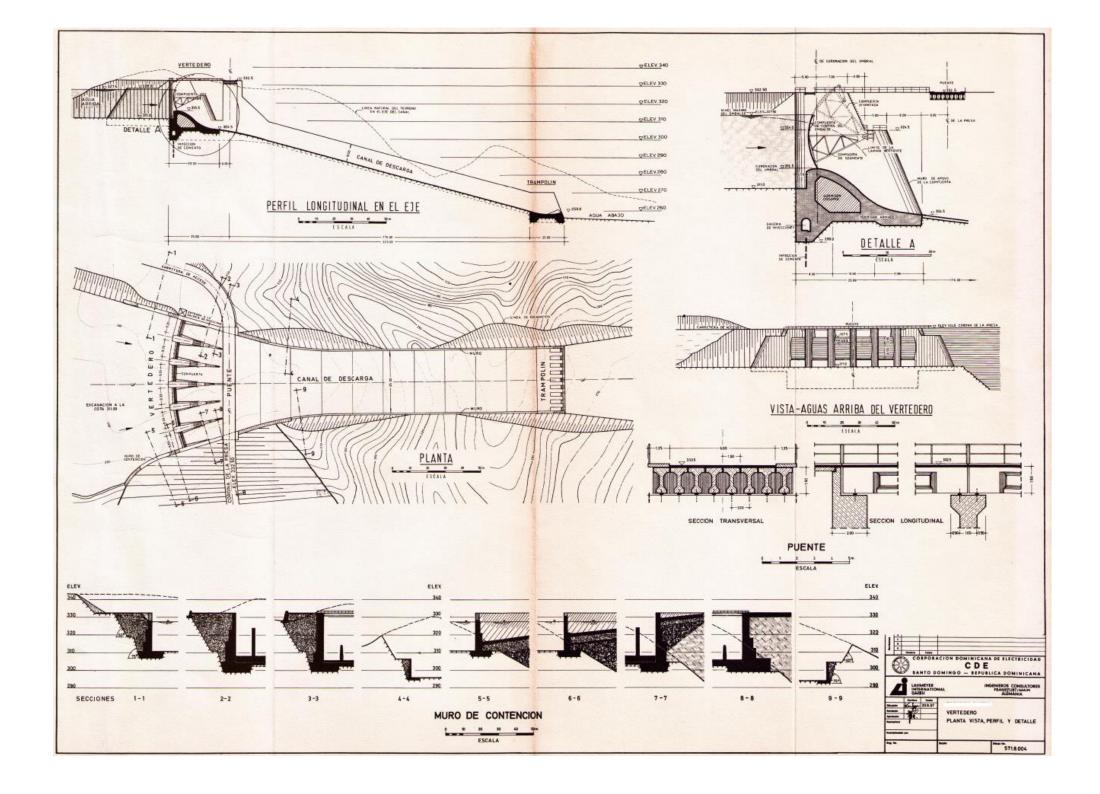






PLANOS





SECCION NORMAL DEL DIQUE

(Regelquerschnitt des Dammes)

INFORME PLAXIS

Table of Contents

1. General Information	3
2. Geometry	4
3. Structures	6
4. Mesh data	8
5. Material data	. 9

1. General Information

Table [1] Units

Туре	Unit
Length	m
Force	kN
Time	day

Table [2] Model dimensions

	min.	max.
Х	0,000	356,000
Υ	224,000	332,000

Table [3] Model

Model	Plane strain

2. Geometry

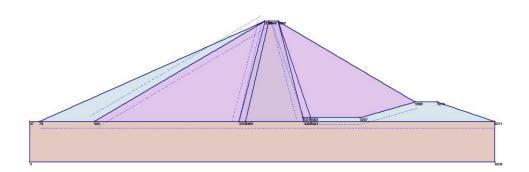


Fig. 1 Plot of geometry model with significant nodes

Table [4] Table of significant nodes

Node no.	x-coord.	y-coord.	Node no.	x-coord.	y-coord.
79	7,000	255,000	4327	209,000	258,000
6211	356,000	255,000	5207	253,000	258,000
6036	356,000	224,000	5590	295,000	270,000
4	0,000	224,000	5819	312,000	270,000
47	0,000	255,000	505	49,000	255,000
3368	180,000	332,000	3549	183,000	332,000
3804	190,000	332,000	3465	165,000	255,000
4357	210,000	255,000	4521	215,000	255,000
3310	160,000	255,000	4503	215,000	258,000

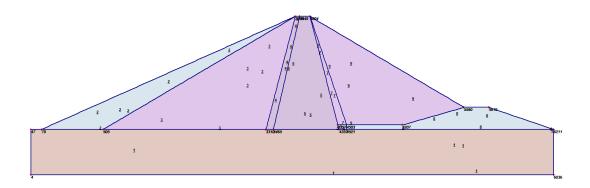


Fig. 2 Plot of geometry model with cluster numbers

Table [5] Table of clusters

Cluster no.	Nodes
1	79, 6211, 6036, 4, 47, 4357, 3310, 505, 3465, 4521.
2	79, 3368, 505.
3	3368, 3310, 505.
4	3368, 3310, 3549, 3465.
5	3804, 4357, 4327, 3549, 3465.
6	4357, 4327, 4521, 4503.
7	3804, 4327, 4503.
8	6211, 5207, 5590, 5819, 4521, 4503.
9	3804, 5207, 5590, 4503.

3. Structures

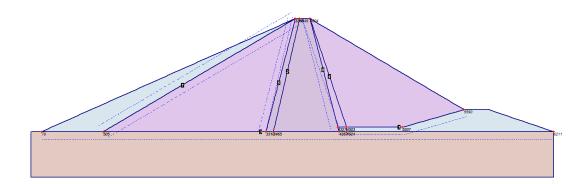


Fig. 3 Plot of geometry model with structures

Table [6] Interfaces

Interface	Data set	Nodes
no.		
1	material 2	4327.
	material 2	5590, 5207, 5207, 4503.
2	Material 5	3465, 3549.
3	Cimiento	6211, 4521, 3310, 4357, 3465, 4357, 79.
4	material 2	4521.

Interface	Data set	Nodes
no.		
	material 4	4503, 3804.
5	material 4	3310, 3368.
6	material 2	505, 3368.
7	material 4	3368, 505.
8	Material 5	4327.

4. Mesh data

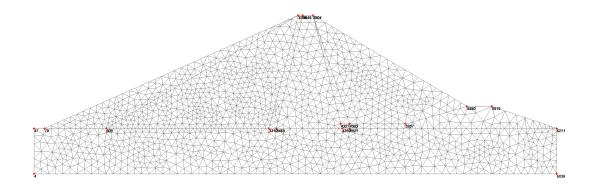


Fig. 4 Plot of the mesh with significant nodes

Table [7] Numbers, type of elements, integrations

Туре	Type of element	Type of integration	Total
			no.
Soil	6-node triangle	3-point Gauss	2734
Interface	3-node line	3-point Newton-Cotes	287

5. Material data

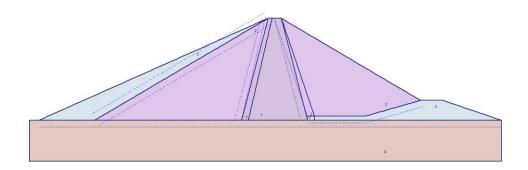


Fig. 5 Plot of geometry with material data sets

Table [8] Soil data sets parameters

Mohr-Coulomb		1	2	3	4
		Material 5	material 4	material 2	cimiento
Туре		Undrained	Drained	Drained	Drained
γunsat	[kN/m ³]	0,00	0,00	0,00	0,00
γsat	[kN/m³]	18,00	21,00	20,00	29
$\mathbf{k}_{\mathbf{x}}$	[m/day]	0,000	0,000	0,000	0,000
\mathbf{k}_{y}	[m/day]	0,000	0,000	0,000	0,000
Cinit	[-]	0,500	0,500	0,500	0,500
Ck	[-]	0,000	0,000	0,010	0,000
$\mathbf{E}_{\mathbf{ref}}$	[kN/m²]	15000,000	100000,000	10000,000	400000,000
ν	[-]	0,350	0,300	0,300	0,250
\mathbf{G}_{ref}	[kN/m²]	5555,556	38461,538	3846,154	280000,000
$\mathbf{E}_{\mathbf{oed}}$	[kN/m²]	24074,074	134615,385	13461,538	840000,000

Mohr-Coulomb		1	2	3	4
		Material 5	material 4	material 2	cimiento
Cref	[kN/m²]	49,00	0,00	0,00	0,00
φ	[°]	22,00	40,00	37,00	60,00
Ψ	[°]	0,00	0,00	0,00	0,00
Einc	[kN/m²/m]	0,00	0,00	0,00	0,00
y ref	[m]	0,000	0,000	0,000	0,000
Cincrement	[kN/m²/m]	0,00	0,00	0,00	0,00
Tstr.	[kN/m²]	0,00	0,00	0,00	0,00
Rinter.	[-]	1,00	1,00	1,00	1,00