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Resumen

En esta tesis de doctorado, hemos intentado diseñar algoritmos capaces de manejar datos discon-
tinuos. Hemos centrado nuestra atención en tres aplicaciones principales:

• Integración numérica más términos de corrección. En esta parte de la tesis, construimos y
analizamos una nueva técnica no lineal que permite obtener integraciones numéricas precisas
de cualquier orden utilizando datos que contienen discontinuidades, y cuando el integrando
solo se conoce en puntos de la malla. La novedad de la técnica consiste en la inclusión
de términos de corrección con una expresión cerrada que depende del tamaño de los saltos
de la función y sus derivadas en las discontinuidades, cuya posición se supone conocida. La
adición de estos términos permite recuperar la precisión de las fórmulas clásicas de integración
numérica cerca de las discontinuidades, ya que estos términos de corrección tienen en cuenta
el error que cometen las fórmulas clásicas de integración hasta su precisión en las zonas de
suavidad de los datos. Por lo tanto, los términos de corrección se pueden agregar durante la
integración o como un post-proceso, lo cual es útil si el cálculo principal de la integral ya se
ha realizado utilizando fórmulas clásicas. Durante nuestra investigación, logramos concluir
varios experimentos numéricos que confirmaron las conclusiones teóricas alcanzadas. Los
resultados de esta parte de la tesis se incluyeron en el art́ıculo [1], publicado en la revista
Mathematics and Computers in Simulation, una revista internacional que pertenece al primer
cuartil del Journal of Citation Reports.

• Interpolación de Hermite más términos de corrección. Esta técnica (sin términos de cor-
rección) se utiliza clásicamente para reconstruir datos suaves cuando la función y sus derivadas
de primer orden están disponibles en ciertos nodos. Si las derivadas de primer orden no están
disponibles, es fácil establecer un sistema de ecuaciones imponiendo algunas condiciones de
regularidad sobre los nodos. Este proceso conduce a la construcción de un spline de Hermite.
El problema del spline de Hermite descrito es que se pierde la precisión si los datos contienen
singularidades (nos centraremos fundamentalmente en discontinuidades en la función o en
la primera derivada, aunque también analizaremos qué ocurre cuando hay discontinuidades
en la segunda derivada). La consecuencia es la aparición de oscilaciones, si hay una discon-
tinuidad abrupta en la función, que afecta globalmente la precisión del spline, o el suavizado
de las singularidades, si las discontinuidades están en las derivadas de la función.
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Nuestro objetivo en esta parte de la tesis es la construcción y análisis de una nueva técnica
que permite el cálculo preciso de derivadas de primer orden de una función cerca de las
singularidades utilizando un spline cúbico de Hermite. La idea es corregir el sistema de
ecuaciones del spline para alcanzar la precisión deseada incluso cerca de las singularidades.
Una vez que hemos calculado las derivadas de primer orden con suficiente precisión, se
agrega un término de corrección al spline de Hermite en los intervalos que contienen una
singularidad. El objetivo es reconstruir funciones suaves a trozos con precisión O(h4) incluso
cerca de las singularidades. El proceso de adaptación requerirá algún conocimiento sobre la
posición del salto, aśı como del tamaño de los saltos en la función y algunas derivadas en
dicha posición. Esta técnica puede usarse como post-proceso, donde agregamos un término
de corrección al spline cúbico de Hermite clásico. Durante nuestra investigación, obtuvimos
pruebas para la precisión y regularidad del spline corregido y sus derivadas. También anal-
izamos el mecanismo que elimina el fenómeno Gibbs cerca del salto en la función. Además,
también realizamos varios experimentos numéricos que confirmaron los resultados teóricos
obtenidos. Los resultados de esta parte de la tesis se incluyeron en el art́ıculo [2], publicado
en la revista Journal of Scientific Computing, una revista internacional que pertenece al
primer cuartil del Journal of Citation Reports.

• Super resolución. Aunque se presenta en última posición, este tema marcó el comienzo de
esta tesis, donde centramos nuestra atención en algoritmos de multiresolución. La super
resolución busca mejorar la calidad de imágenes y videos con baja resolución agregando
detalles más finos, lo que resulta en una salida más ńıtida y clara. Esta parte de la tesis es
muy breve y solo trata de reflejar el trabajo que se realizó para obtener el D.E.A., ya que
poco después centramos nuestra atención en otras ĺıneas de investigación que aparentaban
ser algo más prometedoras para la elaboración de esta tesis.
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Abstract

In this PhD thesis we have tried to design algorithms capable of dealing with discontinuous data.
We have centred our attention in three main applications:

• Numerical integration plus correction terms. In this part of the thesis we constructed and
analyzed a new nonlinear technique that allows obtaining accurate numerical integrations of
any order using data that contains discontinuities, and when the integrand is only known at
grid points. The novelty of the technique consists in the inclusion of correction terms with
a closed expression that depends on the size of the jumps of the function and its derivatives
at the discontinuities, that are supposed to be known. The addition of these terms allows
recovering the accuracy of classical numerical integration formulas close to the discontinui-
ties, as these correction terms account for the error that the classical integration formulas
commit up to their accuracy at smooth zones. Thus, the correction terms can be added
during the integration or as post-processing, which is useful if the main calculation of the
integral has been already done using classical formulas. During our research, we managed to
conclude several numerical experiments that confirmed the theoretical conclusions reached.
The results of this part of the thesis were included in the article [1] published in the journal
Mathematics and Computers in Simulation, an international journal that belongs to the first
quartile of the Journal of Citation Reports.

• Hermite interpolation plus correction terms. This technique (without correction terms) is
classically used to reconstruct smooth data when the function and its first order derivatives
are available at certain nodes. If first order derivatives are not available, it is easy to set
a system of equations imposing some regularity conditions at the data nodes in order to
obtain them. This process leads to the construction of a Hermite spline. The problem of the
described Hermite splines is that the accuracy is lost if the data contains singularities (we
will center our attention on discontinuities in the function or in the first derivative, although
we will also analyze what happens when there are discontinuities in the second derivative).
The consequence is the appearance of oscillations, if there is a jump discontinuity in the
function, that globally a↵ects the accuracy of the spline, or the smearing of singularities, if
the discontinuities are in the derivatives of the function.

Our objective in this part of the thesis is devoted to the construction and analysis of a new
technique that allows for the computation of accurate first order derivatives of a function
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close to singularities using a cubic Hermite spline. The idea is to correct the system of
equations of the spline in order to attain the desired accuracy even close to the singularities.
Once we have computed the first order derivatives with enough accuracy, a correction term
is added to the Hermite spline in the intervals that contain a singularity. The aim is to
reconstruct piecewise smooth functions with O(h4) accuracy even close to the singularities.
The process of adaption will require some knowledge about the position of the singularity and
the jumps of the function and some of its derivatives at the singularity. The whole process
can be used as a post-processing, where a correction term is added to the classical cubic
Hermite spline. During our research, we obtained proofs for the accuracy and regularity of
the corrected spline and its derivatives. We also analysed the mechanism that eliminates
the Gibbs phenomenon close to jump discontinuities in the function. In addition, we also
performed several numerical experiments that confirmed the theoretical results obtained.
The results of this part of the thesis were included in the article [2] published in the Journal
of Scientific Computing, an international journal that belongs to the first quartile of the
Journal of Citation Reports.

• Super resolution. While it is presented in the last position, this marked the beginning of
this thesis, where we focused our attention on multiresolution algorithms. Super resolution
seeks to enhance the quality of low-resolution images and videos by adding finer details,
resulting in a sharper and clearer output. These algorithms operate by analyzing di↵erent
levels of image data and combining them to create a higher-resolution version. Applications
for these algorithms can be found across industries, including surveillance, medical imaging,
and media, to improve visual fidelity. Although the study of super resolution was the starting
point of the thesis, we soon shifted our focus to the study of other algorithms in the context
of numerical approximation. These alternative approaches proved to be more promising in
terms of results that could be published. Nevertheless, this first part of the research served
to obtain the D.E.A.
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Chapter 1

Introduction

In the context of numerical analysis, the approximation of data exhibiting discontinuities is a
challenge, and has lead to an extensive exploration and innovation in the field. This thesis is about
the design of some numerical methods that try to handle with such discontinuities. Through the
path of our investigation, we have explored two fundamental approaches: classical approximations
plus correction terms and multiresolution algorithms. Exploring these techniques, we had the
purpose of designing new tools that would allow us to achieve a more accurate approximation of
data with abrupt transitions or sharp discontinuities, which are prevalent in various real-world
scenarios.

In what follows, we present a brief summary of each part of the research, including the structure
of this document.

1.1 Numerical Integration

Classical integration formulas, such as the trapezoidal rule, the Simpson’s rule, or the Newton-
Cotes formulas, are based on the integration of interpolatory polynomials over an interval. The
classical problem that arises from using such interpolatory polynomials is the loss of accuracy
whenever the original data does not present enough regularity. In this chapter, we introduce a
new method inspired by the Immersed interface method (IIM) [3], created as a high-resolution
technique for the discretization of elliptic partial di↵erential equations with interfaces. Several
references can be found in the literature about the numerical integration of functions with pole
discontinuities [4, 5, 6, 7]. The problem of obtaining quadrature rules adapted to the presence
of finite discontinuities in this context can also be found in the literature [8, 9], but we have not
found many references about the subject. In this chapter, we pretend to obtain adapted integration
formulas that manage to take into account the presence of finite discontinuities in the function
or the derivatives through the addition of correction terms with closed explicit expressions. To
find these correction terms, we need to know the position of the singularities plus the jumps in
the function and its derivatives at the discontinuities. We are interested in the cases when the
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function that is to be integrated is given as discretised data points that do not coincide with the
position of the discontinuity, and we want to use these data in order to recover an approximation
of the definite integral of the function in an interval. In this case, the new technique can be used
as a post-processing that makes explicit use of the position of the discontinuity and the jumps in
the function and its derivatives at the discontinuity. Only with this information, we can compute
the correction terms that allow increasing the accuracy close to the discontinuity. Our aim is to
show that, through this new technique, it is possible to reach the maximum theoretical accuracy in
terms of the length of the stencil. We will present some numerical experiments and one application
of the formulas proposed.

This part of the thesis is included in Chapter 2, where the work is organized as follows: Section
2.2 describes how to obtain correction terms for the trapezoid rule and Simpson’s rule. Section
2.3 presents a generalization for Newton-Cotes formulas. Section 2.3.1 presents expressions of the
correction terms for commonly used Newton-Cotes Formulas. Section 2.4 presents some numerical
experiments that endorse the theoretical results. Finally, Section 2.5 presents the conclusions.

1.2 Hermite splines

In the classic literature, we can find that a spline can be constructed defining polynomial pieces
that join together under certain regularity or di↵erentiability requirements at these joints. Such
regularity properties are the reason why splines are used very often in computer aided geometric
design (CAGD) for industrial and professional design applications. Some examples are the repre-
sentation of geometrical objects in one or several dimensions [10, 11, 12, 13, 14], the solution of
PDEs or ODEs [15, 16, 17], image processing [18, 19, 20] and many others.

Sometimes the data used to construct the spline presents singularities. In the cases where the
discontinuity is in the function, some kinds of splines are known to introduce oscillations close to
the discontinuities [21, 22]. These oscillations classically appear when truncating the Fourier series
of a discontinuous function and have been widely studied [23, 24, 25, 26]. Global expansions, such
as Fourier series, are a↵ected by the presence of local discontinuities. The usual result is non-
uniform convergence and oscillations of the partial sums. D. Gottlieb and C.-W. Shu showed that
it is possible to recover high order information from these slowly and non-uniformly convergent
global approximations [27, 28, 29, 30, 31]. Some other interesting and related works are [25, 32, 33].
By splitting a function with singularities in two parts, a smooth one and another one containing
the information of the singularity, K. S. Eckho↵ [34, 35] presented a way of modifying the Fourier’s
method to obtain numerical techniques that allow us to compute derivatives and integrals with a
high order of accuracy.

In this work, our approach is di↵erent from all previous techniques, although the philosophy
might be similar: to reconstruct piecewise smooth functions from discretized data, taking into
account the presence of singularities. In our case, we approach the problem using cubic Hermite
splines plus correction terms in order to attain adaption close to the singularities.

Recently, some papers have been published about the modification of cubic splines that aim
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to solve the problems caused by the oscillations that appear close to the discontinuities [36, 37].
In those previous papers the authors try to exploit the properties of a nonlinear mean in the
construction of the spline, through which we automatically adapt the interpolation to the presence
of discontinuities in the function, thus eliminating the Gibbs oscillations. One drawback is that this
technique cannot provide full accuracy close to the singularity, and it smears the discontinuities.

This part of the thesis is included in Chapter 3, and is organized as follows. First of all,
in Section 3.2 we introduce the classical way of constructing cubic Hermite splines. Section 3.3
explains how to obtain adapted first order derivatives using a Hermite spline. There, we present
the first main result of this chapter: a theorem about the accuracy of the adapted first order
derivatives. Section 3.4 presents a study about the elimination of the Gibbs phenomenon in the
classical spline when using the corrected first order derivatives. Section 3.5 introduces an adapted
Hermite spline and analyses theoretically the accuracy of the interpolation near singularities,
which is the second main result of this work. Section 3.6 exposes how the correction terms can be
used as a post-processing of the classical cubic Hermite spline. Section 3.7 presents some numerical
experiments which show how the new algorithm performs using univariate functions. In particular,
experiments about the accuracy and regularity of the function and the two first order derivatives
are presented, jointly with some tests that show the elimination of the Gibbs phenomenon close
to jump discontinuities in the function. Finally, Section 3.8 presents the conclusions.

1.3 Super resolution

Super resolution, in the context of Harten’s multiresolution algorithms, represents a powerful
concept for enhancing the detail and quality of images or data. Harten’s framework provides a very
suitable context for processing data at multiple scales, and super resolution uses this framework
to improve the resolution of images or data. The key idea is to enhance the level of detail and
precision in low-resolution data by incorporating information from other low resolution images or
from the interpolation of data at several scales of the multiresolution process. This is achieved
through the reconstruction operator, which plays a fundamental role in Harten’s framework. By
employing data-dependent reconstruction operators, super resolution methods can generate more
accurate and detailed representations of the underlying data, especially near singularities or areas
with abrupt changes. This enables better adaptability and more precise treatment of fine details in
images or data, leading to improved results in applications like image processing, signal analysis,
etc.

One of the main advantages of Harten’s multiresolution approach in the context of super re-
solution is its adaptability. Super resolution techniques can be created to fit the specific needs
of a given problem or dataset by adjusting the reconstruction operators. This adaptability is
particularly valuable when dealing with noisy or low-resolution data, common challenges in various
fields. By incorporating information from di↵erent resolution levels and using nonlinear prediction
schemes, super resolution techniques can e↵ectively mitigate the e↵ects of noise and improve the
overall quality of the reconstructed data. The ability to handle data-dependent reconstruction ope-
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rators, such as Essentially Non Oscillatory (ENO) techniques, enables more accurate and flexible
processing. In our case, we will use di↵erent data-dependent algorithm to create super resolution
algorithms. This part of the thesis was used to obtain the D.E.A., but was not eventually continued
as we found other lines of research that appeared more promising.

1.4 Conclusions and future work

This part of the thesis is included in Chapter 5. In this section we outline the conclusions based on
the findings obtained throughout the thesis. Additionally, we show some paths to explore in the
future, opening a door for further research and refinement of the ideas and methods introduced in
this work.
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Chapter 2

Numerical integration rules with
improved accuracy close to
discontinuities

2.1 Introduction

In this chapter we explore the limitations of classical integration formulas like the trapezoidal
and Simpson’s rules when dealing with data that lacks regularity. We introduce a novel method
inspired by the Immersed Interface Method (IIM), initially designed for solving partial di↵erential
equations with interfaces [3]. This new approach aims to adapt integration formulas for functions
with finite discontinuities by incorporating correction terms with explicit expressions, knowing the
positions of singularities and jumps in the function and its derivatives. The technique becomes
particularly interesting when the function is represented as discrete data points that do not align
with the location of the discontinuity. We show that the algorithm can also be used as a post-
processing, where the knowledge about the discontinuity’s position and jumps allows to enhance
the accuracy near the points of discontinuity. Along the chapter we show how this technique can
allow achieving the highest possible accuracy in terms of the stencil’s length. Through numerical
experiments, we manage to support the theoretical results obtained.

2.2 Obtainment of adapted numerical integration formulas

We consider the space of finite sequences V and a uniform partition X of the interval [a, b] in J
subintervals,

X = {xi}Ji=0, x0 = a, h = xi � xi�1, xJ = b.

We will consider a piecewise smooth function f discretized through the point values,

fi = f(xi), f = {fi}Ji=0 , (2.1)
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that, therefore, conserves the information of f only at the xi nodes. We also assume that dis-
continuities are placed far enough from each other, that their position is known exactly, and that
xi 6= x⇤, where x⇤ denotes the location of the discontinuity. Figures 2.1, 2.2, and 2.3 present the
kind of discontinuities that we will be dealing with in this work. We will refer to these figures
along the chapter. From these considerations, we can directly proceed to obtain the correction
terms and error formulas for these cases. Let us start with the trapezoidal rule.

2.2.1 Error formula for the corrected trapezoid rule

· · ·

f�
j f+

j+1

· · ·xj x⇤ = xj + ↵ xj+1

d d
f+
j

f�
j+1

i� i+

Figure 2.1: An example of a function with discontinuities (solid line) placed at a position x⇤. We
have labeled the domain to the left of the discontinuity as � and the one to the right as +. We have
also represented with a dashed line the prolongation of the functions through Taylor expansions
at both sides of the discontinuity.

We can consider the situation presented in Figure 2.1. Let us denote by E(f) the error
committed by the classical trapezoidal rule and by E⇤(f) the error by the corrected rule. The
classical trapezoid rule for a uniform grid of mesh-size h and its error [38] at smooth zones reads,

I(f) =
h

2
(fj + fj+1) ,

E(f) = �h3

12
f 00(⌘), ⌘ 2 [xj , xj+1].

(2.2)

The position ⌘ appears here due to the use of the integral mean value theorem (see Theorem 1.3,
page 4 of [38]). We can see that the expression of the error of the integral is qualitative in the sense
that we know that it is O(h3) if the integrand is smooth, but we do not know the exact value of ⌘.
This is a classical result (it can be found, for example, before expression (5.1.4) in page 253 of [8]).
The approximation error is of order O(h2) if there is a jump in the first derivative in the interval
[xj , xj+1] or O (h) if there is a jump discontinuity in the function. One way of rising the order of
accuracy in the previous cases is to use the location of the discontinuity x⇤. Let us suppose that
x⇤ is known exactly. In order to obtain the area below the curve in the interval [xj , x⇤] (the area
in the interval [x⇤, xj+1] can be obtained in a similar way), we can just use the Taylor expansion
of the value f+

j+1 around x⇤ and then change the values from the + side in terms of the � side
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using the jump relations. Let us use the notation,

[f ] = f+(x⇤)� f�(x⇤),
⇥
f 0⇤ = f+

x (x⇤)� f�
x (x⇤),

⇥
f 00⇤ = f+

xx(x
⇤)� f�

xx(x
⇤),

⇥
f 000⇤ = f+

xxx(x
⇤)� f�

xxx(x
⇤), · · ·

(2.3)

for the jumps in the function and its derivatives at x⇤. Then, using Taylor expansions at both
sides of the discontinuity, the expressions for f�

j , f+
j , f�

j+1 and f+
j+1 can be written as,

f�(xj) = f�
j = f�(x⇤)� f�

x (x⇤)↵+O(h2),

f+(xj) = f+
j = f+(x⇤)� f+

x (x⇤)↵+O(h2),

f�(xj+1) = f�
j+1 = f�(x⇤) + f�

x (x⇤)(h� ↵) +O(h2),

f+(xj+1) = f+
j+1 = f+(x⇤) + f+

x (x⇤)(h� ↵) +O(h2),

(2.4)

and subtracting we obtain,

f+
j = f�

j + [f ]� [f 0]↵+O(h2),

f+
j+1 = f�

j+1 + [f ] + [f 0](h� ↵) +O(h2).
(2.5)

Now, let us try to analyze the error formula for the corrected trapezoid rule. We will use the
following lemma, which proof is a classical result and can be found, for example, on page 143 of
[38],

Lemma 1 Let t be a real number, di↵erent from the nodes x0, x1, · · · , xn. Being n the degree, the
polynomial interpolation error to f(x) at t is f(t) � pn(t) = (t � x0) · · · (t � xn)f [x0, · · · , xn, t],
where f [x0, · · · , xn, t] denotes the (n+ 1)-th order divided di↵erence.

If we denote by E[a,b](f) the error of integration in the interval [a, b], now we can state the following
theorem:

Theorem 1 Let f(x) 2 C2([x0, x⇤] [ [x⇤, xn]) except at a point x⇤ 2 (xj , xj+1). We denote the
function to the left of x⇤ by f�(x) and to the right of x⇤ as f+(x). If we know the following
jumps in the function and its derivatives at x⇤ and they are finite, [f ] = f+(x⇤) � f�(x⇤), [f 0] =
f 0+(x⇤)� f 0�(x⇤), then the subtraction of the correction term,

C =
(�h+ 2↵)

2
[f ] +

�
h↵� ↵2

�

2
[f 0], (2.6)

to the trapezoid numerical integration formula in the interval [xj , xj+1] that contains the disconti-
nuity assures that the error is equal to,

E⇤(f) + C = E[xj ,x⇤](f) + E[x⇤,xj+1](f) +O(h4), (2.7)
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with

E[xj ,x⇤](f) = � 1

12

�
↵3f�

xx(⌘
�)
�
+O(h4),

and

E[x⇤,xj+1](f) = � 1

12

�
(h� ↵)3f+

xx(⌘
+)
�
+O(h4),

and ⌘� 2 [xj , x⇤], ⌘+ 2 [x⇤, xj+1].

At the � part of the interval we will denote

E(f)[xj ,x⇤] =

Z xj+↵

xj

(f�(x)� p(x)) dx,

where p(x) is the polynomial of degree 1 taking the values f�
j and f+

j+1 at the interval endpoints
xj and xj+1, respectively. We write this error using the Lagrange’s form of the polynomial and
take into account that there is a discontinuity at x⇤ = xj + ↵, so we can use the expressions in
(3.17),

p(x) =
x� xj+1

xj � xj+1
f�
j +

x� xj
xj+1 � xj

f+
j+1

=
x� xj+1

xj � xj+1
f�
j +

x� xj
xj+1 � xj

f�
j+1 +

x� xj
xj+1 � xj

�
[f ] +

⇥
f 0⇤ (h� ↵) +O(h2)

�

= p�(x) +
x� xj

xj+1 � xj

✓
[f ] +

⇥
f 0⇤ (h� ↵) +

[f 00]

2
(h� ↵)2 +O(h3)

◆
.

(2.8)

Then, using (2.8) and denoting by p�(x) to the piecewise polynomial to the left of the discontinuity,
the error can be expressed as,

E⇤�(f) =

Z xj+↵

xj

(f�(x)� p�(x)) dx = � 1

12
↵3f�

xx(⌘
�)

=

Z xj+↵

xj

(f�(x)� p(x)) dx

+

Z xj+↵

xj

x� xj
xj+1 � xj

✓
[f ] +

⇥
f 0⇤ (h� ↵) +

[f 00]

2
(h� ↵)2

◆
dx+O(h4)

=

Z xj+↵

xj

(f�(x)� p(x)) dx+
1

2h

✓
↵2[f ] + ↵2(h� ↵)[f 0] +

↵2

2
(h� ↵)2[f 00]

◆

+O(h4)

= E(f)[xj ,x⇤] + C� +
↵2

4h
(h� ↵)2[f 00] +O(h4),

(2.9)
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with ⌘� 2 [xj , x⇤], where we have used the error for the classical trapezoid rule. So we have that
in the interval [xj , x⇤] the error is,

E⇤�(f) = E(f)[xj ,x⇤] + C� +
↵2

4h
(h� ↵)2[f 00] +O(h4) = � 1

12
↵3f�

xx(⌘
�), (2.10)

with ⌘� 2 [xj , x⇤],

C� =
↵2

2h
[f ] +

↵2(h� ↵)

2h
[f 0].

Replicating the process for the interval [x⇤, xj+1], but this time expressing the quantities from the
� side in terms of the + side (or just by symmetry), we obtain that,

E⇤+(f) = E(f)[x⇤,xj+1] + C+ � ↵2

4h
(h� ↵)2[f 00] +O(h4) = � 1

12
(h� ↵)3f+

xx(⌘
+), (2.11)

with ⌘+ 2 [x⇤, xj+1],

C+ = �
 
(h� ↵)2

2h
[f ]� (h� ↵)2 ↵

2h
[f 0]

!
.

Adding the errors obtained in both intervals, as expressed in (2.10) and (2.11), it is easy to
check that the terms of the error that are O(h3) disappear and we get,

E⇤(f) = E⇤�(f) + E⇤+(f) = E(f)[x⇤,xj+1] + C� + E(f)[xj ,x⇤] + C+

= E(f)[x⇤,xj+1] + E(f)[xj ,x⇤] + C +O(h4),

where,

C = C+ + C� =
(�h+ 2↵)

2
[f ] +

�
h↵� ↵2

�

2
[f 0],

that allows us finishing the proof.

2.2.2 Correction terms and error formula for the corrected Simpson’s 1
3 rule

In this section we will proceed to analyze how to adapt Simpon’s rule following the same process
that we used to adapt the trapezoidal rule in the previous Subsection. Simpson’s rule is obtained
by integrating a parabola in the corresponding interval. In this case we need to enlarge the stencil
and we will need to use the three data values (fj�1, fj , fj+1), placed at the positions (xj�1, xj , xj+1)
in order to build the parabola. In this occasion we must consider two cases: when the discontinuity
is in the interval [xj�1, xj ] or in the interval [xj , xj+1], as shown in the plots of Figure 2.2. The
classical Simpson’s 1

3 rule for a uniform grid of mesh-size h and its error [38] at smooth zones
reads,

I(f) =
h

3
(fj + 4fj+1 + fj+2) ,

E(f) = �h5

90
f (4)(⌘), ⌘ 2 [xj , xj+2].

(2.12)

Now we can state the following theorem.
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· · ·

f�
j�1 f+

j
f+
j+1

· · ·xj�1

x⇤ = xj�1 + ↵

xj xj+1

d d d
f�
j+1f�

j
f+
j�1

i� i+

· · ·

f�
j�1

f�
j f+

j+1

· · ·xj�1 xj

x⇤ = xj+1 � ↵

xj+1

d
d d

f�
j+1f+

j

f+
j�1

i� i+

Figure 2.2: Two examples of functions with discontinuities (solid line) placed in di↵erent intervals
at a position x⇤. We have labeled the domain to the left of the discontinuity as � and the one
to the right as +. We have also represented with a dashed line the prolongation of the functions
through Taylor expansions at both sides of the discontinuity.

Theorem 2 Let f(x) 2 C3([x0, x⇤] [ [x⇤, xn]) except at a point x⇤ 2 (xj , xj+1). We denote the
function to the left of x⇤ by f�(x) and to the right of x⇤ as f+(x). If we know the following
jumps in the function and its derivatives at x⇤ and they are finite, [f ] = f+(x⇤) � f�(x⇤), [f 0] =
f 0+(x⇤)� f 0�(x⇤), [f 00] = f 00+(x⇤)� f 00�(x⇤), then the subtraction of the correction term,

C = �

✓
↵� h

3

◆
[f ] +

↵

6
(3↵� 2h) [f 0] + �

↵2

6
(↵� h) [f 00], (2.13)

to the Simpson’s numerical integration formula, with � = 1, if the discontinuity is placed at an
odd interval, and � = �1, if the discontinuity is placed at an even interval, assures that the error
is equal to,

E(f) + C =
↵2

36

�
3↵2 + 6h2 � 8h↵

�
[f 000] +

f+
xxx(⌘2)

6

✓
�↵4

4
+

h2↵2

2

◆

+
f�
xxx(⌘3)

24

✓
↵4

4
� h↵3 + h2↵2

◆
+O(h5).

(2.14)

If the discontinuity falls at an odd interval, then ⌘2 2 [xj+1 � ↵, xj+1], ⌘3 2 [xj�1, xj�1 + ↵]. If
the discontinuity falls at an even interval, the case is symmetric and ⌘2 2 [xj�1, xj�1 + ↵], ⌘3 2
[xj+1 � ↵, xj+1].

• We start by the case when the discontinuity is placed in the interval [xj�1, xj ].

1. As in the trapezoidal rule, we know that for the + part of the integral,

E⇤+(f) =

Z xj+1

xj�1+↵
(f+(x)� p+(x)) dx.

The interpolating polynomial p(x) in the Lagrange form is,

p(x) =
(x� xj)(x� xj+1)

(xj�1 � xj)(xj�1 � xj+1)
f�
j�1 +

(x� xj�1)(x� xj+1)

(xj � xj�1)(xj � xj+1)
f+
j

+
(x� xj�1)(x� xj)

(xj+1 � xj�1)(xj+1 � xj)
f+
j+1.

(2.15)
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Proceeding in the same way as we did in (3.17) for the trapezoid rule, we can use the
expression of f�

j�1 in terms of the quantities from the + side to write,

f�
j�1 = f+

j�1 � [f ] + [f 0]↵� [f 00]
↵2

2
+ [f 000]

↵3

6
+O(h4). (2.16)

Now we can write,

p(x) =
(x� xj)(x� xj+1)

(xj�1 � xj)(xj�1 � xj+1)

✓
f+
j�1 � [f ] + [f 0]↵� [f 00]

↵2

2
+ [f 000]

↵3

6

◆

+
(x� xj�1)(x� xj+1)

(xj � xj�1)(xj � xj+1)
f+
j +

(x� xj�1)(x� xj)

(xj+1 � xj�1)(xj+1 � xj)
f+
j+1

= p+(x) +
(x� xj)(x� xj+1)

(xj�1 � xj)(xj�1 � xj+1)

✓
� [f ] + [f 0]↵� [f 00]

↵2

2
+ [f 000]

↵3

6

◆

+O(h4).

(2.17)

Then, the error for the integral at the + side in the interval [x⇤, xj+1], as shown in
Figure 2.1 to the left, can be expressed as,

E⇤+(f) =

Z xj+1

xj�1+↵
(f+(x)� p+(x)) dx =

Z xj+1

xj�1+↵
(f+(x)� p(x)) dx

+

Z xj+1

xj�1+↵

(x� xj)(x� xj+1)

(xj�1 � xj)(xj�1 � xj+1)

✓
� [f ] + [f 0]↵� [f 00]

↵2

2
+ [f 000]

↵3

6

◆
dx+O(h5)

= E(f)[x⇤,xj+1]

� 1

72

�
�
6 [f ]� 6↵ [f 0] + 3↵2[f 00]� ↵3[f 000]

� �
�4h3 + 2↵3 � 9h↵2 + 12h2↵

�

h2
+O(h5)

= E(f)[x⇤,xj+1] + C+ +O(h5),

(2.18)

and we also have that,

E⇤+(f) =

Z xj+1

xj�1+↵
(x� xj�1)(x� xj)(x� xj+1)f

+[xj�1, xj , xj+1, x] dx. (2.19)

The polynomial in the integrand of (2.19) changes the sign in the interval (xj�1 +
↵, xj+1). Thus, we can not use the integral mean value theorem. Instead, we can define
the function

w(x) =

Z x

xj�1+↵
(x� xj�1)(x� xj)(x� xj+1) dx,

that satisfies, w(xj�1+↵) = 0, and w(x) > 0 for x 2 (xj�1+↵, xj+1�↵) and w(x) < 0
for x 2 (xj+1 � ↵, xj+1). Then, we can divide the integral in two parts,

E⇤+(f) =

Z xj+1

xj�1+↵
w0(x)f+[xj�1, xj , xj+1, x] dx

=

Z xj+1�↵

xj�1+↵
w0(x)f+[xj�1, xj , xj+1, x] dx

+

Z xj+1

xj+1�↵
w0(x)f+[xj�1, xj , xj+1, x] dx.

(2.20)
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Integrating by parts the first integral,
Z xj+1�↵

xj�1+↵
w0(x)f+[xj�1, xj , xj+1, x] dx =

⇥
w(x)f+[xj�1, xj , xj+1, x]

⇤xj+1�↵
xj�1+↵

�
Z xj+1�↵

xj�1+↵
w(x)

d

dx
f+[xj�1, xj , xj+1, x] dx.

Using now that w(xj+1 � ↵) = 0, due to the symmetry of the polynomial that appears
in the integrand of w(x) in a uniform grid, that (see 3.2.17 page 147 of Atkinson [38])

d

dx
f+[xj�1, xj , xj+1, x] = f+[xj�1, xj , xj+1, x, x], (2.21)

and the integral mean value theorem, we get,

�
Z xj+1�↵

xj�1+↵
w(x)f+[xj�1, xj , xj+1, x, x] dx =

� f+[xj�1, xj , xj+1, ⇠1, ⇠1]

Z xj+1�↵

xj�1+↵
w(x) dx =

f+[xj�1, xj , xj+1, ⇠1, ⇠1]

✓
�1

5
(2↵5) + 2↵4h� 1

3
(10↵3h2) + 2↵2h3 � 1

15
(4h5)

◆

=
f+
xxxx(⌘1)

24
O
�
h5
�
,

(2.22)

for some ⇠1, ⌘1 2 [xj�1 + ↵, xj+1 � ↵]. For the second integral in (2.20), w0(x) does not
change the sign in [xj+1 � ↵, xj+1] so we can apply the integral mean value theorem,

Z xj+1

xj+1�↵
w0(x)f+[xj�1, xj , xj+1, x] dx = f+[xj�1, xj , xj+1, ⇠2]

Z xj+1

xj+1�↵
w0(x) dx

=
f+
xxx(⌘2)

6

✓
�↵4

4
+

h2↵2

2

◆
,

for some ⇠2, ⌘2 2 [xj+1 � ↵, xj+1]. Thus,

Z xj+1

xj�1+↵
w0(x)f+[xj�1, xj , xj+1, x] dx =

f+
xxxx(⌘1)

24
O(h5) +

f+
xxx(⌘2)

6

✓
�↵4

4
+

h2↵2

2

◆
.

So, from (2.18) we get that the corrected error for the integral in the + side of the left
plot of Figure 2.2 is,

E(f)[x⇤,xj+1] + C+ +O(h5) = E⇤+(f) =
f+
xxxx(⌘1)

24
O(h5) +

f+
xxx(⌘2)

6

✓
�↵4

4
+

h2↵2

2

◆
,

(2.23)
with ⇠2, ⌘2 2 [xj+1 � ↵, xj+1] and ⇠1, ⌘1 2 [xj�1 + ↵, xj+1 � ↵].
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2. For the integral in the � side of the left plot of Figure 2.2, we want to obtain the error

E⇤�(f) =

Z xj�1+↵

xj�1

(f�(x)� p�(x)) dx.

From (2.15) we can express the quantities from the + side in terms of the � side using
the jump conditions in (3.16), as we did before,

p(x) =
(x� xj)(x� xj+1)

(xj�1 � xj)(xj�1 � xj+1)
f�
j�1

+
(x� xj�1)(x� xj+1)

(xj � xj�1)(xj � xj+1)

✓
f�
j + [f ] + [f 0](h� ↵) + [f 00]

(h� ↵)2

2
+ [f 000]

(h� ↵)3

6

◆

+
(x� xj�1)(x� xj)

(xj+1 � xj�1)(xj+1 � xj)

✓
f�
j+1 + [f ] + [f 0](h+ ↵) + [f 00]

(h+ ↵)2

2
+ [f 000]

(h+ ↵)3

6

◆
+O(h4)

= p�(x) +
(x� xj�1)(x� xj+1)

(xj � xj�1)(xj � xj+1)

✓
[f ] + [f 0](h� ↵) + [f 00]

(h� ↵)2

2
+ [f 000]

(h� ↵)3

6

◆

+
(x� xj�1)(x� xj)

(xj+1 � xj�1)(xj+1 � xj)

✓
[f ] + [f 0](h+ ↵) + [f 00]

(h+ ↵)2

2
+ [f 000]

(h+ ↵)3

6

◆
+O(h4).

(2.24)

Now, the error for the integral on the � side, as shown in Figure 2.2 to the left, can be
expressed as,

E�(f) =

Z xj�1+↵

xj�1

(f�(x)� p�(x)) dx =

Z xj�1+↵

xj�1

(f�(x)� p(x)) dx

+

Z xj�1+↵

xj�1

(x� xj�1)(x� xj+1)

(xj � xj�1)(xj � xj+1)

✓
[f ] + [f 0](h� ↵) + [f 00]

(h� ↵)2

2
+ [f 000]

(h� ↵)3

6

◆
dx

+

Z xj�1+↵

xj�1

(x� xj�1)(x� xj)

(xj+1 � xj�1)(xj+1 � xj)

✓
[f ] + [f 0](2h� ↵) + [f 00]

(2h� ↵)2

2
+ [f 000]

(2h� ↵)3

6

◆
dx+O(h5)

= E(f)� 1

72

 
↵2 (�54h+ 12↵) [f ]

h2
+

↵2
�
54h↵� 12↵2 � 36h2

�
[f 0]

h2
+

↵2
�
6↵3 + 24h2↵� 27h↵2

�
[f 00]

h2

+
↵2
�
�2↵4 + 9h↵3 � 12h3↵� 6h2↵2 + 12h4

�
[f 000]

h2

!
+O(h5)

= E(f)(xj�1,x⇤) + C� +O(h5) =

Z xj�1+↵

xj�1

(x� xj�1)(x� xj)(x� xj+1)f
�[xj�1, xj , xj+1, x] dx.

(2.25)

It is not di�cult to see that the polynomial in the integrand does not change the sign
in the interval (xj�1, xj�1 + ↵). Thus, using the integral mean value theorem

E⇤�(f) =

Z xj�1+↵

xj�1

(x� xj�1)(x� xj)(x� xj+1)f
�[xj�1, xj , xj+1, x] dx

= f�[xj�1, xj , xj+1, ⇠3]

Z xj�1+↵

xj�1

(x� xj�1)(x� xj)(x� xj+1) dx

=
f�
xxx(⌘3)

24

✓
↵4

4
� h↵3 + h2↵2

◆
,

(2.26)
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for some ⇠3, ⌘3 2 [xj�1, xj�1 + ↵]. So, from (2.25) we get that the corrected error for
the left part of the integral is,

E(f)(xj�1,x⇤) + C� +O(h5) = E⇤�(f) =
f�
xxx(⌘3)

24

✓
↵4

4
� h↵3 + h2↵2

◆
, (2.27)

for some ⇠3, ⌘3 2 [xj+1 � ↵, xj+1].

Adding the error terms C+ and C� obtained in (2.18) and (2.25), we obtain

C+ + C� = �
✓
�
✓
↵� h

3

◆
[f ] +

↵

6
(3↵� 2h) [f 0]� ↵2

6
(↵� h) [f 00] +

↵2

36

�
3↵2 + 6h2 � 8h↵

�
[f 000]

◆
.

(2.28)
Let us denote the terms up to O(h3) by,

C = �
✓
�
✓
↵� h

3

◆
[f ] +

↵

6
(3↵� 2h) [f 0]� ↵2

6
(↵� h) [f 00]

◆
. (2.29)

Adding now the errors in the intervals [x⇤, xj+1] and [xj�1, x⇤] as expressed respectively in
(2.23) and (2.27), and denoting again

E(f) = E(f)[xj�1,x⇤] + E(f)[x⇤,xj+1],

we obtain from (2.29) and (2.28),

E⇤(f) = E⇤+(f) + E⇤�(f) = E(f) + C +O(h5) =
↵2

36

�
3↵2 + 6h2 � 8h↵

�
[f 000] +

f+
xxx(⌘2)

6

✓
�↵4

4
+

h2↵2

2

◆

+
f�
xxx(⌘3)

24

✓
↵4

4
� h↵3 + h2↵2

◆
,

(2.30)
with ⌘2 2 [xj+1 � ↵, xj+1], ⌘3 2 [xj�1, xj�1 + ↵].

• If the discontinuity is placed in the interval (xj , xj+1) at a distance ↵ from xj+1, that is the
case presented in Figure 2.2 to the right, the case is symmetrical and the correction term is:

C = �
✓✓

↵� h

3

◆
[f ] +

↵

6
(3↵� 2h) [f 0] +

↵2

6
(↵� h) [f 00]

◆
.

In this case the error reads,

E⇤(f) = E(f) + C +O(h5) =
↵2

36

�
3↵2 + 6h2 � 8h↵

�
[f 000] +

f+
xxx(⌘2)

6

✓
�↵4

4
+

h2↵2

2

◆

+
f�
xxx(⌘3)

24

✓
↵4

4
� h↵3 + h2↵2

◆
,

(2.31)

with ⌘2 2 [xj�1, xj�1 + ↵], ⌘3 2 [xj+1 � ↵, xj+1].
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Remark 1 Theorems 1 and 2 imply that we can use the classical composite trapezoidal rule or
the composite Simpson’s rule to obtain the integral over a large interval and, then, add the corres-
ponding correction terms (2.6) or (2.13) to obtain O(h2) or O(h4) global accuracy respectively, if
discontinuities are present in the data. Mind that the correction terms are typically added to take
into account the e↵ect of the set of discontinuities, which cardinal is usually small (one dimension
lower) compared with the number of points in the data. Thus, it is enough if the correction terms
provide the order of the global error of the classical composite integration rule. The integral can
be obtained through classical quadrature rules and then add the corrections as post-processing.

2.3 Modified Newton-Cotes integration formulas

The Trapezoidal rule and the Simpson’s 1
3 formula, which we have analyzed in previous sections,

are the first two cases of Newton-Cotes integration formulas. In what follows, we will try to obtain
expressions for the errors of corrected integration formulas of any order. To do so, we present
some previous lemmas that we will use afterward in the proofs.

Lemma 2 Let f(x) 2 Cn+1([a, x⇤][ [x⇤, b]) except at a point x⇤ 2 (a, b). We denote the function
to the left of x⇤ by f�(x) and to the right of x⇤ as f+(x). If we know the following jumps in
the function and its derivatives at x⇤ and they are finite, [f ] = f+(x⇤)� f�(x⇤), [f 0] = f 0+(x⇤)�
f 0�(x⇤), · · · , [f (n)] = f (n)+(x⇤) � f (n)�(x⇤), then at any node xi we can express any value of
f+(xi) in terms of the jumps and the continuous extension of the function from the other side of
the discontinuity (see for example, Figures 2.1, 2.2, 2.3), that is:

f+
i = f�

i + [f ] + [f 0](xi � x⇤) +
1

2
[f 00](xi � x⇤)2 + · · ·+ 1

n!
[f (n)](xi � x⇤)n +O(hn+1). (2.32)

Isolating, we can obtain f�
i in terms of f+

i .

The proof is direct using Taylor expansions.
We denote by bxc greatest integer less than or equal to x and dxe the least integer greater than

or equal to x.

Lemma 3 We consider an interpolating polynomial of degree n in the Lagrange form in the inter-
val [a, b], constructed using n+1 points belonging to a piecewise continuous function that contains
a discontinuity at x⇤ 2 (a, b) and that is n times piecewise continuously di↵erentiable. We follow
the same notation as before and denote the information to the left of the discontinuity with the �
symbol and to the right with the + symbol. Then in the interval of interest [a, b]:

• We can express this polynomial as a continuous extension in the � region of the polynomial
at the + region, plus additional terms as,

pn(x) =
n+1X

i=0

f+(xi)
j=n+1Y

j=0,j 6=i

x� xj
xi � xj

+Q�(x) = p+n (x) +Q�(x). (2.33)
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If we denote by,

f̃i = [f ] + [f 0](xi � x⇤) +
1

2
[f 00](xi � x⇤)2 + · · ·+ 1

n!
[f (n)](xi � x⇤)n +O(hn+1), (2.34)

then Q�(x) contains all the information of the discontinuity and takes the expression,

Q�(x) =

bx⇤�a
h cX

i=0

f̃i

j=n+1Y

j=0,j 6=i

x� xj
xi � xj

, (2.35)

• We can express this polynomial as a continuous extension in the + region of the polynomial
at the � region, plus additional terms as,

pn(x) =
n+1X

i=0

f�(xi)
j=n+1Y

j=0,j 6=i

x� xj
xi � xj

+Q+(x) = p+n (x) +Q+(x).

In this case Q+(x) takes the expression,

Q+(x) =
n+1X

i=dx⇤�a
h e

f̃i

j=n+1Y

j=0,j 6=i

x� xj
xi � xj

,

The proof is direct using Lemma 6 and replacing fi in the Lagrange form of the polynomial

pn(x) =
n+1X

i=0

fi

j=n+1Y

j=0,j 6=i

x� xj
xi � xj

,

by the values f+
i or f�

i provided in (2.32), depending of fi belonging to the + or � side.

Lemma 4 We consider the integral of the polynomial interpolation error from Lemma 5 in the
smooth interval [x0, x⇤],

En =

Z x⇤

x0

(f(x)� pn(x)) dx =

Z x⇤

x0

(x� x0) · · · (x� xn)f [x0, · · · , xn, x] dx.

• If there is not a change of sign in the polynomial of the integrand in the interval [x0, x⇤], the
error can be written as,

En =
f (n+1)(⇠)

(n+ 1)!
hn+2

Z x⇤�x0
h

0
µ(µ� 1) · · · (µ� n+ 1)(µ� n) dµ (2.36)

for some ⇠ 2 [x0, xn].
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• If there is a change of sign in the polynomial of the integrand in the interval [x0, x⇤], the
error can be written as,

En =

Z x⇤

x0

(f(x)� pn(x)) dx =
f (n+1)(⇠1)

(n+ 1)!
hn+2

Z x⇤�x0
h

0
µ(µ� 1) · · · (µ� n+ 1)(µ� n) dµ

+
f (n+2)(⇠2)

(n+ 2)!
hn+3

Z x⇤�x0
h

0
µ(µ� 1) · · · (µ� n+ 1)(µ� n)(µ� x⇤ � x0

h
) dµ.

(2.37)
for some ⇠1, ⇠2 2 [x0, xn].

First, if there is not a change of sign in the polynomial of the integrand in the smooth interval
[x0, x⇤], we can directly use the integral mean value theorem and the fact that,

f [x0, · · · , xn] =
f (n)(⇠)

n!
for some ⇠ 2 [x0, · · · , xn], (2.38)

to write,

En =

Z x⇤

x0

(f(x)� pn(x)) dx =

Z x⇤

x0

(x� x0) · · · (x� xn)f [x0, · · · , xn, x] dx

=
f (n+1)(⇠)

(n+ 1)!

Z x⇤

x0

(x� x0) · · · (x� xn) dx.

for some ⇠ 2 [x0, xn]. Applying the change of variables x = x0 + µh, 0  µ  n, we can write,

En =
f (n+1)(⇠)

(n+ 1)!

Z x⇤

x0

(x� x0) · · · (x� xn) dt

=
f (n+1)(⇠)

(n+ 1)!
hn+2

Z x⇤�x0
h

0
µ(µ� 1) · · · (µ� n+ 1)(µ� n) dµ.

Secondly, If there is a change of sign in the polynomial of the integrand in the smooth interval
[x0, x⇤], we can define

w(y, x) =

Z x

y
(t� x0) · · · (t� xn) dt, (2.39)

that satisfies that, at smooth zones,

w(x0, x0) = w(x0, xn) = 0, w(x0, x) > 0 for x0 < x < xn,

when n is even, and

w(x0, x0) = 0, w(x0, x) < 0 for x0 < x < xn,
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when n is odd. In [39] (page 309) there is a complete proof of these facts.
Now, we can write,

En =

Z x⇤

x0

w0(x0, x)f [x0, · · · , xn, x] dx. (2.40)

Integrating by parts and using that w(x0, x0) = 0,

Z x⇤

x0

w0(x0, x)f [x0, · · · , xn, x] dx = [w(x0, x)f [x0, · · · , xn, x]]x
⇤

x0
�
Z x⇤

x0

w(x0, x)
d

dx
f [x0, · · · , xn, x] dx

= w(x0, x
⇤)f [x0, · · · , xn, x⇤]�

Z x⇤

x0

w(x0, x)
d

dx
f [x0, · · · , xn, x] dx.

(2.41)

Using now (2.38), we can write,

w(x0, x
⇤)f [x0, · · · , xn, x⇤] =

f (n+1)(⇠1)

(n+ 1)!
w(x0, x

⇤) =
f (n+1)(⇠1)

(n+ 1)!

Z x⇤

x0

(t� x0) · · · (t� xn) dt.

for some ⇠1 2 [x0, x⇤]. Applying again the change of variables t = x0 + µh, 0  µ  n, we can
write,

Z x⇤

x0

(t� x0) · · · (t� xn) dt = hn+2
Z x⇤�x0

h

0
µ(µ� 1) · · · (µ� n+ 1)(µ� n) dµ.

Thus, we have that,

w(x0, x
⇤)f [x0, · · · , xn, x⇤] =

f (n+1)(⇠1)

(n+ 1)!
hn+2

Z x⇤�x0
h

0
µ(µ� 1) · · · (µ� n+ 1)(µ� n) dµ, (2.42)

for some ⇠1 2 [x0, xn].
For the last integral in (2.41) we can use the fact that (see 3.2.17 page 147 of Atkinson [38])

d

dx
f [x0, · · · , xn, x] = f [x0, · · · , xn, x, x], (2.43)

the integral mean value theorem, and (2.38) to write

�
Z x⇤

x0

w(x0, x)
d

dx
f [x0, · · · , xn, x] dx = �

Z x⇤

x0

w(x0, x)f [x0, · · · , xn, x, x] dx

= �f [x0, · · · , xn, ⌘2, ⌘2]
Z x⇤

x0

w(x0, x) dx

= �f (n+2)(⇠2)

(n+ 2)!

Z x⇤

x0

Z x

x0

(t� x0) · · · (t� xn) dtdx,
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for some ⌘2, ⇠2 2 [x0, xn]. Now we can change the order of integration and apply the change of
variables t = x0 + µh, 0  µ  n:

Z x⇤

x0

Z x

x⇤
(t� x0) · · · (t� xn) dtdx =

Z x⇤

x0

Z x⇤

t
(t� x0) · · · (t� xn) dxdt

=

Z x⇤

x0

(t� x0) · · · (t� xn)(d� t) dt

=� hn+3
Z x⇤�x0

h

0
µ(µ� 1) · · · (µ� n+ 1)(µ� n)(µ� x⇤ � x0

h
) dµ.

(2.44)

Thus, we can write that

�
Z x⇤

x0

w(x0, x)
d

dx
f [x0, · · · , xn, x] dx

=
f (n+2)(⇠2)

(n+ 2)!
hn+3

Z x⇤�x0
h

0
µ(µ� 1) · · · (µ� n+ 1)(µ� n)(µ� x⇤ � x0

h
) dµ.

(2.45)

Joining the partial results in (2.45) and (2.42), we finish the proof,

En =

Z x⇤

x0

(f(x)� pn(x)) dx =

Z x⇤

x0

(x� x0) · · · (x� xn)f [x0, · · · , xn, x] dx

=
f (n+1)(⇠1)

(n+ 1)!
hn+2

Z x⇤�x0
h

0
µ(µ� 1) · · · (µ� n+ 1)(µ� n) dµ

+
f (n+2)(⇠2)

(n+ 2)!
hn+3

Z x⇤�x0
h

0
µ(µ� 1) · · · (µ� n+ 1)(µ� n)(µ� x⇤ � x0

h
) dµ,

for some ⇠1, ⇠2 2 [x0, xn]. From Lemma 4 we can get the following corollary.

Corollary 1 If the smooth interval is [x⇤, xn]:

• If there is not a change of sign in the polynomial of the integrand in the interval [x⇤, xn], the
error can be written as,

En =

Z xn

x⇤
(f(x)� pn(x)) dx = (�1)n+2 f

(n+1)(⇠)

(n+ 1)!
hn+2

Z xn�x⇤
h

0
µ(µ� 1) · · · (µ� n+ 1)(µ� n) dµ

(2.46)
for some ⇠ 2 [x0, xn].

• If there is a change of sign in the polynomial of the integrand in the interval [x⇤, xn], the
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error can be written as,

En =

Z xn

x⇤
(f(x)� pn(x)) dx = �f (n+1)(⇠1)

(n+ 1)!
hn+2

Z xn�x0
h

x⇤�x0
h

µ(µ� 1) · · · (µ� n+ 1)(µ� n) dµ

+
f (n+2)(⇠2)

(n+ 2)!
hn+3

Z xn�x0
h

x⇤�x0
h

µ(µ� 1) · · · (µ� n+ 1)(µ� n)(µ� xn � x0
h

) dµ.

(2.47)
for some ⇠1, ⇠2 2 [x0, xn].

First, if there is not a change of sign in the polynomial of the integrand in the interval [x⇤, xn],
we just need to do the change of variables y = xn � x and proceed as in Lemma 4,

En =

Z xn

x⇤
(f(x)� pn(x)) dx =

Z xn

x⇤
(x� x0) · · · (x� xn)f [x0, · · · , xn, x] dx

= (�1)n+2
Z xn�x⇤

0
(y � (xn � x0)) · · · (y � (xn � xn�1))yf [x0, · · · , xn, xn � y] dy

= (�1)n+2 f
(n+1)(⇠)

(n+ 1)!

Z xn�x⇤

0
(y � nh) · · · (y � h)y dy.

for some ⇠ 2 [x0, xn]. Applying the change of variables y = µh, 0  µ  n, we can write,

En = (�1)n+2 f
(n+1)(⇠)

(n+ 1)!
hn+2

Z xn�x⇤
h

0
µ(µ� 1) · · · (µ� n+ 1)(µ� n) dµ.

Secondly, if there is a change of sign in the polynomial of the integrand in the smooth interval
[x⇤, xn], we can define

w(xn, x) =

Z x

xn

(t� x0) · · · (t� xn) dt. (2.48)

that satisfies, by the symmetry of the polynomials used, that at smooth zones,

w(xn, xn) = w(xn, x0) = 0, w(xn, x) < 0 for x0 < x < xn,

when n is even, and

w(xn, xn) = 0, w(xn, x) < 0 for x0 < x < xn,

when n is odd.
Following similar arguments to those in [39] (page 309), or just using symmetry arguments,

the proof of these facts can be easily obtained.
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Now, we can write the error as in Lemma 4,

En =

Z xn

x⇤
w0(xn, x)f [x0, · · · , xn, x] dx.

and integrate by parts,
Z xn

x⇤
w0(xn, x)f [x0, · · · , xn, x] dx = [w(xn, x)f [x0, · · · , xn, x]]xn

x⇤ �
Z xn

x⇤
w(xn, x)

d

dx
f [x0, · · · , xn, x] dx

= �w(xn, x
⇤)f [x0, · · · , xn, x⇤]�

Z xn

x⇤
w(xn, x)

d

dx
f [x0, · · · , xn, x] dx.

(2.49)
Proceeding exactly as in Lemma 4 and observing that,

w(xn, x
⇤) = �w(x⇤, xn),

we obtain

w(xn, x
⇤)f [x0, · · · , xn, x⇤] = �f (n+1)(⇠1)

(n+ 1)!
hn+2

Z xn�x0
h

x⇤�x0
h

µ(µ� 1) · · · (µ� n+ 1)(µ� n) dµ, (2.50)

for some ⇠1 2 [x0, xn].
For the last integral in (2.49) we can proceed again as in Lemma 4 to write

�
Z xn

x⇤
w(xn, x)

d

dx
f [x0, · · · , xn, x] dx = �

Z xn

x⇤
w(xn, x)f [x0, · · · , xn, x, x] dx

= �f [x0, · · · , xn, ⌘2, ⌘2]
Z xn

x⇤
w(xn, x) dx

= �f (n+2)(⇠2)

(n+ 2)!

Z xn

x⇤

Z x

xn

(t� x0) · · · (t� xn) dtdx,

for some ⌘2, ⇠2 2 [x0, xn]. Now we can change the order of integration and apply the change of
variables t = x0 + µh, 0  µ  n:

�
Z xn

x⇤

Z x

xn

(t� x0) · · · (t� xn) dtdx = �
Z xn

x⇤

Z xn

t
(t� x0) · · · (t� xn) dxdt

=�
Z xn

x⇤
(t� x0) · · · (t� xn)(xn � t) dt

=hn+3
Z xn�x0

h

x⇤�x0
h

µ(µ� 1) · · · (µ� n+ 1)(µ� n)(µ� xn � x0
h

) dµ.

(2.51)
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Thus, we can write that

�
Z xn

x⇤
w(xn, x)

d

dx
f [x0, · · · , xn, x] dx

=
f (n+2)(⇠2)

(n+ 2)!
hn+3

Z xn�x0
h

x⇤�x0
h

µ(µ� 1) · · · (µ� n+ 1)(µ� n)(µ� xn � x0
h

) dµ.

(2.52)

Joining the partial results in (2.50) and (2.52), we finish the proof,

En =

Z xn

x⇤
(f(x)� pn(x)) dx =

Z xn

x⇤
(x� x0) · · · (x� xn)f [x0, · · · , xn, x] dx

= �f (n+1)(⇠1)

(n+ 1)!
hn+2

Z xn�x0
h

x⇤�x0
h

µ(µ� 1) · · · (µ� n+ 1)(µ� n) dµ

+
f (n+2)(⇠2)

(n+ 2)!
hn+3

Z xn�x0
h

x⇤�x0
h

µ(µ� 1) · · · (µ� n+ 1)(µ� n)(µ� xn � x0
h

) dµ,

for some ⇠1, ⇠2 2 [x⇤, xn].

Theorem 3 We suppose that the piecewise continuous function f has discontinuities at x⇤ up to
the n-th derivative. The subtraction of the correction term,

C =

Z x⇤

a
Q+(x) dx+

Z b

x⇤
Q�(x) dx (2.53)

to the numerical integration formula, assures that the error is:

• If the discontinuity is placed in the interval [x0, x1]

E⇤(f) = E(f) + C = C1
n
(f�)(n+1)(⇠1)

(n+ 1)!
hn+2 + C2

n
(f+)(n+1)(⇠2)

(n+ 1)!
hn+2 + C3

n
(f+)(n+2)(⇠3)

(n+ 2)!
hn+3,

with ⇠1, ⇠2, ⇠3 2 [x0, xn], and

C1
n =

Z x⇤�x0
h

0
µ(µ� 1) · · · (µ� n+ 1)(µ� n) dµ,

C2
n =

Z xn�x0
h

x⇤�x0
h

µ(µ� 1) · · · (µ� n+ 1)(µ� n) dµ.

C3
n =

Z xn�x0
h

x⇤�x0
h

µ(µ� 1) · · · (µ� n+ 1)(µ� n)(µ� n) dµ.

• If the discontinuity is placed in the interval [xn�1, xn],

E(f) + C = C1
n
(f�)(n+1)(⇠1)

(n+ 1)!
hn+2 + C2

n
(f�)(n+2)(⇠2)

(n+ 2)!
hn+3 + (�1)n+2C3

n
(f+)(n+1)(⇠3)

(n+ 1)!
hn+2,
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with ⇠1, ⇠2, ⇠3 2 [x0, xn], and

C1
n =

Z x⇤�x0
h

0
µ(µ� 1) · · · (µ� n+ 1)(µ� n) dµ,

C2
n =

Z x⇤�x0
h

0
µ(µ� 1) · · · (µ� n+ 1)(µ� n)(µ� x⇤ � x0

h
) dµ.

C3
n =

Z xn�x⇤
h

0
µ(µ� 1) · · · (µ� n+ 1)(µ� n) dµ.

• In any other case,

E⇤(f) = E(f) + C = C1
n
(f�)(n+1)(⇠1)

(n+ 1)!
hn+2 + C2

n
(f�)(n+2)(⇠2)

(n+ 2)!
hn+3 + C3

n
(f+)(n+1)(⇠3)

(n+ 1)!
hn+2 + C4

n
(f+)(n+2)(⇠4)

(n+ 2)!
hn+3.

with ⇠1, ⇠2, ⇠3, ⇠4 2 [x0, xn], and

C1
n =

Z x⇤�x0
h

0
µ(µ� 1) · · · (µ� n+ 1)(µ� n) dµ,

C2
n =

Z x⇤�x0
h

0
µ(µ� 1) · · · (µ� n+ 1)(µ� n)(µ� x⇤ � x0

h
) dµ,

C3
n =

Z xn�x0
h

x⇤�x0
h

µ(µ� 1) · · · (µ� n+ 1)(µ� n) dµ.

C4
n =

Z xn�x0
h

x⇤�x0
h

µ(µ� 1) · · · (µ� n+ 1)(µ� n)(µ� n) dµ.

The proof is straightforward using Lemmas 3, 4 and Corollary 1.

2.3.1 Correction terms for commonly used Newton-Cotes formulas

In Table 2.2 we present some expressions for the correction terms C in (2.53). In Table 2.2 we
have used the notation Cn,j , j = 1 · · ·n, being n the degree of the interpolating polynomial used
to obtain the integration rule. Thus, for the trapezoidal rule there is only the term C1,1. For the
Simpson’s 1/3 rule there are two terms: C2,1 if the discontinuity falls at an odd interval and C2,2

if the discontinuity falls at an odd interval. For the Simpson’s 3/8 rule, there are three terms:
C3,1 if

�
dx⇤

h emod 3
�
= 1, C3,2 if

�
dx⇤

h emod 3
�
= 2 and C3,3 if

�
dx⇤

h emod 3
�
= 0. For higher orders,

the notation is similar. Just to show an example, in Figure 2.3 we should use C3,1 in the case
presented to the left, C3,2 in the case presented at the middle and C3,3 in the case to the right.

2.4 Numerical experiments

In this section we analyze the numerical accuracy obtained by the integration formulas proposed
in previous sections. In the first subsection, we present some grid refinement analysis for functions

35



· · ·

f�
j�1 f+

j
f+
j+1

f+
j+2

· · ·xj�1

x⇤ = xj�1 + ↵

xj xj+1 xj+2

d d d d
f�
j+1 f�

j+2f�
j

f+
j�1

i� i+

· · ·

f�
j�1

f�
j f+

j+1
f+
j+2

· · ·xj�1 xj

x⇤ = xj + ↵

xj+1 xj+2

d
d d d

f�
j+1 f�

j+2f+
j

f+
j�1

i� i+

· · ·

f�
j�1

f�
j

f�
j+1 f+

j+2

· · ·xj�1 xj xj+1

x⇤ = xj+2 � ↵

xj+2

d d d d
f+
j+1 f�

j+2
f+
jf+

j�1

i� i+

Figure 2.3: Three examples of functions with discontinuities (solid line) placed in di↵erent intervals
at a position x⇤. We have labeled the domain to the left of the discontinuity as � and the one
to the right as +. We have also represented with a dashed line the prolongation of the functions
through Taylor expansions at both sides of the discontinuity.

with discontinuities. In the second subsection we include an example of a practical application of
the formulas, jointly with a numerical analysis of the accuracy obtained.

2.4.1 A study of the numerical accuracy attained through the proposed nu-
merical integration formulas

In this section we will apply the classical and corrected simple and composite trapezoid rule,
Simpson’s 1/3 rule and Simpson’s 3/8 rule to data obtained from the discretisation of the function
in (2.54), that presents jumps in the function and all the derivatives. We will consider that we start
from discretized data and that the location of the discontinuity, as well as the jump conditions,
are known exactly. As it was motivated in the abstract and the introduction, we suppose that the
function is only known at data points.

f(x) =

⇢
cos (⇡x) + 10, if a  x < b,
sin (⇡x) , if b  x  c.

(2.54)

The results observed in the experiments are similar for any other piecewise continuous function
that we have explored.

In the grid refinement experiments, the error Ei is calculated as the absolute value of the di↵er-
ence between the exact integral and the approximated one, obtained via the simple or composite
quadrature rules. The order of accuracy is obtained in general as,

Oi =
ln(Ei/Ei+1)

ln(ni/ni+1)
, (2.55)

being Ei the error obtained for a grid of ni points and Ei+1, the error obtained for a grid of
ni+1 points (in the experiments, ni+1 = 2ni for the trapezoid rule and the Simpson’s 3

8 rule or
ni+1 = 2ni + 1 for the Simpson’s 1

3 rule).
Let us first check the numerical order attained by the simple quadrature rules. For this first

experiment we initially set a = 0, c = 0.5. Then, we divide the interval [a, c] in the number of panels
used by the simple quadrature rule that we want to check. The grid-spacing is represented by h
and we set b = (n+ d)h, where d is a number in the interval [0, 1], and n = 0, 1, 2, . . ., depending
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Figure 2.4: Grid refinement analysis for the numerical integration of the function in (2.54). To the
left, using the simple trapezoid rule and the corrected simple trapezoid rule. At the center, using
the simple Simpson’s 1/3 rule and the corrected one. To the right, using the simple Simpson’s 3/8
rule and the corrected one. In all the cases, the error of the corrected formulas decreases following
the theoretical rate.

on the number of panels that the particular rule uses. The value of n and d is maintained during
the whole experiment. In the experiments that we present n = 0, d = 0.4, but similar results can
be obtained with other values. Once we have calculated the error for the simple rule in absolute
value, we divide the interval [a, c] by two and we repeat the process keeping the value of n and d.
The results are presented in Figure 2.4. We can see that in all the cases, the error of the corrected
formulas decreases following the theoretical rate and the noncorrected formulas present an error
that corresponds to the first term of the corrections presented in Table 2.2, that is O(h). To the
left of Figure 2.4, we present the results for the simple trapezoid rule in blue and for the corrected
simple trapezoid rule in red. The error for the noncorrected rule decreases as the dashed line in
blue, which shows the division of the error by two each time that the mesh size is divided by
two (O(h) order of accuracy). The corrected trapezoid rule behaves very similarly to the dashed
line in red, which divides the error by eight when the mesh side is divided by two (O(h3) order
of accuracy). At the center, the error for the non corrected Simpson’s 1

3 decreases as the dashed
line in blue, which represents O(h) order of accuracy. The error for the corrected Simpson’s 1

3
is represented by the dashed line in red, which represents O(h4) order of accuracy. To the right,
the error for the noncorrected Simpson’ 3

8 rule decreases with O(h) order of accuracy, while the
corrected one decreases with O(h4) order of accuracy. We can also observe the numerical results
in table 2.3.

In Table 2.4 we present a second grid refinement experiment for the composite rules. In this
case, we start from a point value discretization of the data with n = 2i, i = 3, 5, . . . , 12 points for
the trapezoid and the Simpson’s 3

8 rule. For the Simpson’s 1
3 we set n = 2i + 1, i = 3, 5, . . . , 12.

The order presents some variability in the case of the Simpson’s 1
3 , (as well as the order of the

noncorrected rules). Even so, in Figure 2.5 we can observe that the decreasing of the errors
presented in Table 2.4 coincides with the expected theoretical one, also represented in the graphs.
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Figure 2.5: Grid refinement analysis for the numerical integration of the function in (2.54). To
the left, using the composite trapezoid rule and the corrected composite trapezoid rule. At the
center, using the composite Simpson’s 1/3 rule and the corrected one. To the right, using the
composite Simpson’s 3/8 rule and the corrected one. In all the cases, the error of the corrected
formulas decrease following the theoretical rate.

In Figure 2.5 to the left, we present the results for the composite trapezoid rule in blue and for the
corrected composite trapezoid rule in red. We can see that the noncorrected rule shows a decrease
in the error very similar to the dashed line in blue, which shows the division of the error by two
each time that the mesh size is divided by two (O(h) order of accuracy). The corrected trapezoid
rule behaves very similarly to the dashed line in red, which divides the error by four when the mesh
side is divided by two (O(h2) order of accuracy). At the center of Figure 2.5, the non corrected
Simpson’s 1

3 rule behaves very similarly to the dashed line in blue, which represents O(h) order
of accuracy. The corrected Simpson’s 1

3 rule behaves very similarly to the dashed line in red,
which represents O(h4) order of accuracy. Similar behavior can be observed for the Simpson’ 3

8
rule (at the right in Figure 2.5): the noncorrected rule presents O(h) order of accuracy, while the
corrected one presents O(h4). We can see that the orders of accuracy of the corrected composite
rules correspond to those of the classical composite rules at smooth zones.

2.4.2 Example: Solving Sturm-Liouville boundary problems using the Green
functions and numerical integration

In this section we present an example that shows a practical application of the corrected numerical
integration formulas introduced before.

Let us consider a Sturm-Liouville one dimensional two-point boundary value problem [40],

uxx(x) = f(x), a < x < b, (2.56)

with specified boundary conditions u(a) = ua, u(b) = ub. The solution can be expressed as,

u(x) =
x� b

a� b
ua +

x� a

b� a
ub +

Z b

a
G(x, ⇠)f(⇠) d⇠, (2.57)
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where G(x, ⇠) is the Green’s function, defined as the solution of,

G⇠⇠(x, ⇠) = �(x� ⇠), a < ⇠ < b, (2.58)

with homogeneous boundary conditions G(x, a) = 0, G(x, b) = 0. We also know that in the
one-dimensional case, the function G presents known jump conditions (see for example [41])

[G(⇠, ⇠)] = lim
x!⇠+

G(x, ⇠)� lim
x!⇠�

G(x, ⇠) = 0,

[Gx(⇠, ⇠)] = lim
x!⇠+

Gx(x, ⇠)� lim
x!⇠�

Gx(x, ⇠) = 1,
(2.59)

which are known as connection conditions. We consider the case when the values of f(x) and
G(x) are given at grid points. We include the exact jump conditions at the discontinuities of the
integrand in (2.57) in order to get an accurate computation of the numerical quadratures. Thus,
we apply the modified integration formulas presented in previous sections to compute the integral
in (2.57) numerically. This approach is preferred if we want to obtain the approximated solution at
some points instead of the entire domain and it is often called an integral equation approach. The
interested reader can see [41, 42, 43, 44, 45, 46, 47] and the references therein for more discussions
about the discrete Green function.

Let us consider a Sturm-Liouville two-point boundary value problem of the type shown in
(2.56), with specified boundary conditions u(0) = 0, u(1) = 0

uxx(x) = f(x), 0 < x < 1 (2.60)

The solution of this problem can be expressed as,

u(x) =

Z 1

0
G(x, ⇠)f(⇠) d⇠. (2.61)

Following (2.58), we have that, for our problem, G(x) is the Green function that can be defined
as the solution of

Gxx(x) = �(x� ⇠), 0 < ⇠ < 1, (2.62)

with specified boundary conditions G(x, 0) = 0, G(x, 1) = 0, where �(x) represents the Dirac
delta function. Integrating twice Gxx and applying the boundary conditions, and the connection
conditions in (2.59), we obtain that the expression for the Green’s function is

G(x, ⇠) =

⇢
x(⇠ � 1), if 0  x < ⇠,
(x� 1)⇠, if ⇠  x  1.

(2.63)

Given f(x) 2 C[0,↵) [ (↵, 1], as mentioned before, we assume that the functions f and G are
given in discrete form, and that we know the jumps in the integrand of (2.61) and its derivatives.
In our experiment, we selected f(x) as follows,

f(x) =

⇢
1, if 0  x < ↵,
0, if ↵  x  1.

(2.64)
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For this f(x) and the boundary conditions u(0) = 0, u(1) = 0, we can obtain very easily (just
integrating) the analytical solution of the problem in (2.56) with a = 0 and b = 1,

u(x) =

(
x2

2 + (↵
2

2 � ↵)x, if 0  x < ↵,
↵2

2 (x� 1), if ↵  x  1.
(2.65)

We use this expression to check against the numerical solution.
Note that the expression in (2.61) implies that we need to do a numerical integration for every

point of the solution that we want to obtain. The function G is bivariate and we particularize
the x variable in order to obtain a univariate function. Thus, in the numerical integration we
typically have to deal with the discontinuity of G(x, ⇠) plus the discontinuities that f(x) might
contain. The discretization of G in the ⇠ direction must have the same number of points as the
function f , but can have an arbitrary number of points in the x direction. In our experiments, if
n is the number of points in the ⇠ direction, we select a number of points in the x direction equal
to m = 4n, in order to assure that the discontinuity of G falls sometimes between grid points of f .

The error in the approximated solution is computed in the infinity norm in the interval [0, 1]
and the order of accuracy is obtained in general as,

Ōi =
ln(E1

i /E1
i+1)

ln(ni/ni+1)
. (2.66)

For the trapezoid rule, E1
i is the error in the infinity norm obtained for a grid of ni points, and

E1
i+1 is the error obtained for a grid of ni+1 = 2ni points. For the Simpson 1/3 rule, we select

ni points to compute E1
i , and ni+1 = 2ni + 1 to compute E1

i+1, just to assure an odd number of
points in the computation.

We check the solution of the problem (2.60) obtained through the expression in (2.61), using the
classical trapezoid rule and the Simpson 1/3 rule and we compare them with the result obtained
using their modified versions. The results are listed in Table 2.1 when ↵ = ⇡

4 . We can see that, in
this case, the modified quadrature formulas provide the exact solution up to the machine precision.
The average of the orders for the original quadrature formulas are only approximately O(h).

Note that a finite element method (FEM) can be used to solve the interface problem presented
in this subsection. The key point is whether the location of the discontinuity is a nodal point or
not. If not, the solution to the FEM will not be very accurate near the discontinuity since the
computed mass matrix and the load vector are likely to lose accuracy using traditional numerical
quadrature techniques. Note also that the optimal error estimates for the FEM are based on
average norms (L2, H1, energy) that cannot tell the point-wise accuracy, while the approach
presented in this manuscript can provide point-wise error estimates.

2.5 Conclusions

In this chapter, we have presented correction terms for the classical trapezoid rule, Simpson’s
1
3 rule, and the most common Newton-Cotes integration formulas. These correction terms have
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n = 2i 24 25 26 27 28 29 210 211 212 213

Error T.R. (E1
i ) 3.32470e-03 8.68748e-04 6.75714e-05 3.27956e-04 1.48027e-04 5.34071e-05 6.25827e-06 1.73014e-05 1.21226e-05 6.24818e-06

Ōi - 1.9362 3.6845 -2.279 1.1476 1.4708 3.0932 -1.4671 0.51319 0.95619
Error C.T.R. (E1

i ) 4.16334e-17 5.55112e-17 5.55112e-17 5.55112e-17 6.93889e-17 2.08167e-16 2.49800e-16 4.44089e-16 6.52256e-16 1.99840e-15
Ōi - - - - - - - - - -

n = 2i + 1 24 + 1 25 + 1 26 + 1 27 + 1 28 + 1 29 + 1 210 + 1 211 + 1 212 + 1 213 + 1
Error S. 1/3 R. (E1

i ) 2.51799e-03 2.89379e-03 2.24835e-04 2.60974e-04 3.99048e-04 6.95012e-05 1.42677e-05 1.33435e-05 2.70634e-05 6.48331e-06
Ōi - -0.20069 3.686 -0.21504 -0.61266 2.5215 2.2843 0.096619 -1.0202 2.0615

Error C.S. 1/3 R. (E1
i ) 2.77556e-17 4.16334e-17 2.77556e-17 4.16334e-17 4.16334e-17 4.16334e-17 4.16334e-17 4.16334e-17 4.16334e-17 4.16334e-17

Ōi - - - - - - - - - -

Table 2.1: Grid refinement analysis in the infinity norm for the integral shown in (2.61) using two
composite quadrature rules. The first part of the table shows the trapezoidal rule (T.R.) and the
corrected trapezoidal rule (C.T.R.). The bottom part shows the Simpson’s 1/3 Rule (S. 1/3 R.)
and the corrected Simpson’s rule (C.S. 1/3 R.).

an explicit closed formula that allows keeping the global accuracy attained by classical formulas
at smooth zones even when the data contains discontinuities in the function or the derivatives.
The correction terms can be used for the simple or composite classical integration formulas and
it is possible to compute the integral using these formulas and then, as post-processing, add the
correction terms to raise the accuracy. Correction terms for any other integration rule can be
found following analogous processes to the ones shown in this work. We have also given correction
terms for the most widely used Newton-Cotes quadrature formulas and we have proved that the
use of these correction terms assures the expected theoretical accuracy. We have shown that the
correction terms depend on the jumps of the function that is to be integrated and its derivatives.
All the numerical experiments that we have presented, confirm the theoretical results obtained.
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Table 2.2: Correction terms to be subtracted from the most common integration formulas.
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(c� a) 1
2

1
4

1
8

1
16

1
32

1
64

1
128

1
256

1
512

1
1024

Error T.R. (Ei) 5.55384e-01 2.87374e-01 1.41312e-01 6.97373e-02 3.46224e-02 1.72492e-02 8.60914e-03 4.30072e-03 2.14940e-03 1.07446e-03
Oi - 0.95056 1.024 1.0189 1.0102 1.0052 1.0026 1.0013 1.0006 1.0003

Error C.T.R. (Ei) 8.73231e-02 8.36720e-03 8.18010e-04 8.67118e-05 9.84247e-06 1.16748e-06 1.41995e-07 1.75028e-08 2.17243e-09 2.70590e-10
Oi - 3.3835 3.3546 3.2378 3.1391 3.0756 3.0395 3.0202 3.0102 3.0051

Error S. 1/3 R. (Ei) 1.65392e-01 8.75298e-02 4.48262e-02 2.26680e-02 1.13966e-02 5.71378e-03 2.86074e-03 1.43133e-03 7.15906e-04 3.58013e-04
Oi - 0.91804 0.96543 0.98368 0.99206 0.99608 0.99806 0.99903 0.99952 0.99976

Error C.S. 1/3 R. (Ei) 3.64440e-04 8.31101e-06 1.04180e-06 7.25089e-08 4.61560e-09 2.88760e-10 1.80198e-11 1.12481e-12 7.02849e-14 4.37150e-15
Oi - 5.4545 2.9959 3.8448 3.9736 3.9986 4.0022 4.0018 4.0003 4.007

Error S. 3/8 R. (Ei) 3.80713e-02 2.11065e-02 1.10144e-02 5.61914e-03 2.83719e-03 1.42546e-03 7.14440e-04 3.57647e-04 1.78930e-04 8.94916e-05
Oi - 0.85102 0.9383 0.97097 0.98588 0.99304 0.99654 0.99828 0.99914 0.99957

Error C.S. 3/8 R. (Ei) 3.23113e-04 5.67780e-06 9.29742e-08 1.52212e-09 2.56990e-11 4.60409e-13 9.00668e-15 2.02095e-16 5.63785e-18 1.92988e-17
Oi - 5.8306 5.9324 5.9327 5.8882 5.8026 5.6758 5.4779 5.1637 -1.7753

Table 2.3: Grid refinement analysis for the simple quadrature rules. The first part of the table
shows the trapezoidal rule (T.R.) and the corrected trapezoidal rule (C.T.R.). The central part
shows the Simpson’s 1/3 Rule (S. 1/3 R.) and the corrected Simpson’s rule (C.S. 1/3 R.). Finally
the bottom part shows the Simpson’s 3/8 Rule (S. 3/8 R.) and the corrected Simpson’s 3/8 rule
(C.S. 3/8 R.). We have used the function in (2.54).

n = 2i 24 25 26 27 28 29 210 211 212 213

Error T.R. (Ei) 3.14564e-01 3.00647e-02 4.44922e-02 2.21224e-02 1.83580e-02 1.83086e-03 2.74401e-03 1.37153e-03 1.14264e-03 1.14245e-04
Oi - 3.3872 -0.56548 1.008 0.2691 3.3258 -0.58377 1.0005 0.26341 3.3222

Error C.T.R. (Ei) 2.63164e-03 6.16553e-04 1.49283e-04 3.66601e-05 9.09938e-06 2.26614e-06 5.65427e-07 1.41201e-07 3.52844e-08 8.81900e-09
Oi - 2.0937 2.0462 2.0258 2.0104 2.0055 2.0028 2.0016 2.0006 2.0003

Error S. 3/8 R. (Ei) 2.33932e-01 7.25343e-03 4.45169e-02 1.28813e-02 1.37617e-02 4.56764e-04 2.74410e-03 7.99969e-04 8.56956e-04 2.85576e-05
Oi - 5.0113 -2.6176 1.7891 -0.095376 4.9131 -2.5868 1.7783 -0.099277 4.9073

Error C.S. 3/8 R. (Ei) 1.74854e-05 9.70184e-07 5.58112e-08 3.36499e-09 2.07176e-10 1.28564e-11 8.00249e-13 5.06262e-14 1.77636e-15 8.88178e-16
Oi - 4.1717 4.1196 4.0519 4.0217 4.0103 4.0059 3.9825 4.8329 1

n = 2i + 1 24 + 1 25 + 1 26 + 1 27 + 1 28 + 1 29 + 1 210 + 1 211 + 1 212 + 1 213 + 1
Error S. 1/3 R. (Ei) 3.81374e-02 1.36672e-01 9.79905e-03 3.41046e-02 2.43374e-03 8.53020e-03 6.09443e-04 2.13230e-03 1.52298e-04 5.33090e-04

Oi - -1.8414 3.8019 -1.7993 3.8087 -1.8094 3.807 -1.8068 3.8074 -1.8075
Error C.S. 1/3 R. (Ei) 4.59121e-06 4.99040e-08 1.72994e-08 2.08413e-10 6.81162e-11 8.00249e-13 2.65565e-13 1.77636e-15 5.32907e-15 7.10543e-15

Oi - 6.5236 1.5284 6.3751 1.6134 6.4114 1.5914 7.224 -1.585 -0.41504

Table 2.4: Grid refinement analysis for the composite quadrature rules. The first part of the table
shows the trapezoidal rule (T.R.) and the corrected trapezoidal rule (C.T.R.). The central part
shows the Simpson’s 3/8 Rule (S. 3/8 R.) and the corrected Simpson’s rule (C.S. 3/8 R.). Finally
the bottom part shows the Simpson’s 1/3 Rule (S. 1/3 R.) and the corrected Simpson’s 1/3 rule
(C.S. 1/3 R.). We have used the function in (2.54).
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Chapter 3

Adapting cubic Hermite splines to
the presence of singularities through
correction terms

3.1 Introduction

In this chapter, it is our aim to design a nonlinear cubic Hermite spline interpolation adapted to
the presence of singularities and constructed using the point-values discretization, i.e. using the
data values f(x) at the positions x = xj , j = 0, . . . ,m. In this case, we try to obtain fully accurate
first order derivatives and interpolation even close to the singularities (by full accuracy we mean
the highest theoretically possible accuracy that we can obtain through our spline), but trying to
preserve the jumps in the function and its derivatives in the reconstruction. The resulting method
presents a high order of accuracy in the whole domain and provides piecewise C2 regularity at
both sides of the singularities. In order to reach our objective, we are inspired by the construction
of the Immersed Interface Method (IIM) [3, 48, 49], in the sense that we design correction terms
that allow us to fulfil our objectives. This method has been mostly used for the solution of elliptic
equations with singularities in the context of fluid-structure interaction and it is based on an
accurate tracking of the singularities and the modification of the finite di↵erence scheme close to
them.

Let us start by describing in brief detail the discretization of data that we shall use. The point-
values sampling process used to obtain the pairs of data (xj , f(xj)), j = 0, . . . ,m, from a function
f that may contain jump discontinuities implies the loss of the information regarding the exact
position of these jump discontinuities, as it only preserves local information at the positions xj .
Even so, it is possible to detect the interval that contains the discontinuity [50]. The described kind
of discretization would only allow for the detection and location of the position of discontinuities
in the first order derivative (kinks in the function) [50, 51]. Yet, if we assume that the data come
from a discretization through local averages of the function f(x), i.e. the cell-averages setting
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[50], then it is indeed possible to locate jump discontinuities in f(x). In this work we use data
discretized in the point-values. Further research could cover the results using cell-averages.

Let us continue by describing the classical Hermite interpolation and by exposing some classical
results. Classical cubic Hermite interpolation is based on the construction of a cubic polynomial
using the values fj = f(xj), fj+1 = f(xj+1) of the function f , and its first order derivatives,
f 0
j = f 0(xj) at the positions xj , xj+1. These four pieces of data allow to obtain the four unknowns
in a cubic polynomial. Then, continuity conditions on the function and its first and second order
derivatives are imposed at the xj in order to set a system of equations that provides a global
solution for the considered interval. That way, piecewise cubic Hermite interpolation is known to
be fourth order accurate for smooth functions. Assuming that the data is smooth, if the spline uses
approximations of the first order derivatives f̃ 0

j ⇡ f 0
j , (from now on, if not stated otherwise, we use

the tilde˜to represent approximations of di↵erent values: the function, the derivatives, the location
of the singularity, etc.), then the maximum accuracy of the piecewise cubic Hermite interpolant
is known to be O(h4) if the approximation of the first order derivatives is O(h3) accurate. If f
presents singularities between the nodes (from here on we will use the word node as a synonym
for the points of union of the di↵erent polynomial pieces of the spline), even good approximations
of the first order derivatives at the nodes will lead to inaccurate approximations of the function
inside the interval that contains the singularity. Discontinuities in the data lead either to classical
Hermite splines showing Gibbs oscillations close to discontinuities in the function, or the smearing
of singularities if the discontinuity is in the derivatives. This is logical considering that Hermite
interpolation can be expressed in terms of the Hermite basis, represented in Figure 3.1, which is
composed of polynomials that are smooth, two of them being non-monotone. The smearing of
discontinuities in the first order derivative can be clearly explained through the smoothness of
the base. The occurrence of oscillations close to jumps in the function will be justified later on,
showing that the non-monotone elements of the base are multiplied by non-zero coe�cients close
to discontinuities.

Thus, our aim is twofold: to design a technique that allows for the obtention of the first order
derivatives of the function at the nodes of the spline with full accuracy even close to singularities,
and to use the computed first order derivatives to obtain a fully accurate spline. These two
objectives will be reached through the computation of correction terms.

3.2 Some preliminaries about classical cubic Hermite splines

In this section we briefly introduce the classical way of constructing the cubic Hermite spline.
Then, we introduce some new techniques that allow for the adaption of the classical interpolant to
the presence of singularities. The objective is to design a technique that enables the obtention of
sharp reconstructions of functions with discontinuities in the function or the derivatives, avoiding
the smearing of the singularity or the appearance of Gibbs oscillations.

There is an extensive list of references that treat the field of the construction and the study
of the properties of cubic Hermite splines. For example, [52] or [53] contain a in-depth revision of
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the classical theoretical results in the field. The idea behind the construction of the spline is to
compute a piecewise polynomial function of degree three between the data nodes. The resulting
function must be C2, i.e. the function and the first two derivatives must be continuous. The basis
used to construct the polynomial between the nodes varies in the literature. Some authors start
from m + 1 pairs of values (xj , yj), j = 0, . . . ,m and write the expression of the polynomial at a
particular interval [xj , xj+1] as

gj(x) = aj(x� xj)
3 + bj(x� xj)

2 + cj(x� xj) + dj . (3.1)

Sometimes it is more convenient to use the alternative expression

gj(x) = aj(x� xj)
2(x� xj+1) + bj(x� xj)

2 + cj(x� xj) + dj , (3.2)

which easily provides a bound for the error of the Hermite interpolation. In any of both cases,
regularity conditions must be imposed at the nodes in order to obtain a piecewise defined function
that is C2. Basically, we need to impose the continuity of the function and the two first order
derivatives at the nodes. If yj , yj+1 denote the values of the function at the nodes xj , xj+1, and
Dj , Dj+1 the values of the first order derivatives at the same nodes, imposing the continuity of the
function and the first and second order derivatives at the nodes, it is straightforward to obtain
the following expression for the coe�cients in (3.1) (see for example [36] for a complete deduction
of the formulas),

aj =
hj+1Dj+1 +Djhj+1 + 2yj � 2yj+1

h3j+1

,

bj = �hj+1Dj+1 + 2Djhj+1 + 3yj � 3yj+1

h2j+1

,

cj = Dj ,

dj = yj ,

(3.3)

where hj+1 = xj+1 � xj .
As mentioned before, the expression of the Hermite spline (3.1) can be expressed in terms of

the Hermite basis, represented in Figure 3.1 for cubic splines. By replacing the coe�cients of the
spline in (3.1) by the values found in (3.3) we obtain,

gj(x) =
hj+1Dj+1 +Djhj+1 + 2yj � 2yj+1

h3j+1

(x� xj)
3

� hj+1Dj+1 + 2Djhj+1 + 3yj � 3yj+1

h2j+1

(x� xj)
2 +Dj(x� xj) + yj .

(3.4)

Moreover, the change of variables s = x�xj

hj+1
returns the expression of the spline in terms of the
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cubic Hermite basis,

gj(s) = (hj+1Dj+1 +Djhj+1 + 2yj � 2yj+1) s
3 � (hj+1Dj+1 + 2Djhj+1 + 3yj � 3yj+1) s

2 +Djhj+1s+ yj

=
�
1� s2(3� 2s)

�
yj + s2(3� 2s)yj+1 +

�
s3 � 2s2 + s

�
hj+1Dj +

�
s3 � s2

�
hj+1Dj+1

= b1(s)yj+1 + b2(s)yj + b3(s)hj+1Dj + b4(s)hj+1Dj+1,
(3.5)

for s 2 [0, 1].
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Figure 3.1: Representation of the Hermite basis for s 2 [0, 1].

The values of the first order derivatives at the nodes Dj can be known a priori, as with the
Hermite interpolation, or they can be obtained by imposing the continuity of the second order
derivatives at the nodes, as with the Hermite spline. Thus, the Hermite spline relies on the solution
of a linear system of equations for the Dj , which needs two boundary conditions. Common options
for the boundary conditions that can be found in the literature are: natural boundary conditions,
not-a-knot condition, complete cubic spline, etc. The complete cubic spline consists of imposing
slope boundary conditions,

g00(x0) = D0, g0m�1(xm) = Dm,

and we have chosen it for our spline. If the first order derivatives are not available at the boundaries,
they can be replaced by O(h3) approximations.

Imposing the continuity of the second order derivatives of the spline leads to the following
equation for each interval between the nodes

Dj�1

hj
+ 2

✓
1

hj
+

1

hj+1

◆
Dj +

Dj+1

hj+1
= 3

 
yj+1 � yj

h2j+1

+
yj � yj�1

h2j

!
.
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Thus we easily obtain a linear system for the first order derivatives Dj at the nodes,

2
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(3.6)
with �j = yj�yj�1

hj
. We will consider a uniform grid spacing, but the results for non-uniform

grid spacing can be obtained in an analogous way. With this consideration, the system in (3.6)
transforms into

2

664

4 1 0 0 · · · 0 0
1 4 1 0 · · · 0 0
· · · · · · · · · · · · · · · · · · · · ·
0 0 0 0 · · · 1 4

3

775

2

664

D1
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· · ·
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3
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2

664

�2+�1
2 � D0

6
�3+�2

2
· · ·
�m+�m�1

2 � Dm
6

3

775 . (3.7)

The existence of a singularity at any place of the domain leads to the computation of inaccurate
first order derivatives through the system in (3.7). In case of jump discontinuities in the function,
the consequence is the appearance of global Gibbs oscillations in the reconstruction of the spline
that will a↵ect the entire domain. A discussion about the size of the oscillations close to the
discontinuity can be found in [36]. If a discontinuity is found in the derivatives, the singularity is
smeared. In the next sections we will propose correction terms for preserving the accuracy of the
spline close to the singularities.

We can also consider now the accuracy of the Hermite interpolation and its second order
derivatives. These are classical results that will be used later, and which proofs can be found in
pages 58 and 59 of [54].

Theorem 4 (Error of classical cubic Hermite interpolation)
Given a su�ciently smooth function f , the error for the cubic Hermite interpolation is given

by

|f(x)� gj(x)| 
max |f (4)(⇠)|

384
h4, x, ⇠ 2 [xj , xj+1], (3.8)

for all h > 0.

Corollary 2 (Error of the second order derivative of classical cubic Hermite interpolation)
Given a su�ciently smooth function f , the error for the second order derivative of the cubic

Hermite interpolation is given by

|f 00(x)� g00j (x)| 
max |f (4)(⇠)|

2
h2, x, ⇠ 2 [xj , xj+1], (3.9)

for all h > 0.
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Remark 2 If the first order derivatives Dj , Dj+1 are approximated, an accuracy of O(h3) is
enough to keep the O(h4) accuracy of the cubic Hermite interpolation at smooth zones. To confirm
this observation, instead of considering the canonical base as in (3.1), let us write the Hermite
polynomial in the interval [xj , xj+1] using the expression in (3.2). As we know the values f(xj) =
yj , f(xj+1) = yj+1 and the first order derivatives of the function f 0(xj) = Dj , f 0(xj+1) = Dj+1,
we can just set a system of equations to obtain the Hermite polynomial. It takes the following
expression:

gj(x) =
(Dj +Dj+1)h+ 2(yj+1 � yj)

h3
(x� xj)

2(x� xj+1) +
yj+1 � yj �Djh

h2
(x� xj)

2 +Dj(x� xj) + yj .

(3.10)
It is clear from the expression in (3.10) that O(h3) is enough in Dj , Dj+1 to preserve the O(h4)
accuracy of the cubic Hermite interpolation.

3.3 Accurate approximation of first order derivatives using splines
and data in the point-values

· · ·

fj�1 fj

fj+1

fj+2

· · ·xj�1 xj x⇤ = xj + ↵ xj+1 xj+2

d d

d di� i+

Figure 3.2: In this figure we can see an example of discontinuity in the function and its derivatives
placed in the interval [xj , xj+1] at a position x⇤ = xj + ↵.

Let us assume that there is a singularity at x⇤ = xj +↵ in the interval [xj , xj+1], just as shown
in Figure 3.2. For the moment, let us assume that we know the position of the singularity and the
jumps in the function and its derivatives. As shown in Figure 3.2, we label all the information about
the function to the left of the singularity as �. The information to the right is labeled as +. Under
this configuration, having the values of a su�ciently piecewise smooth function f at the nodes
x0, x1 . . . , xm and the jumps in the function and some of its derivatives at x⇤, [f ], [f 0], [f 00], [f 000], it
is possible to correct the approximations of the first and second order derivatives of the function f
computed through the cubic spline (3.4) at the same nodes x0, x1 . . . , xm to obtain O(h3) accuracy.
Of course, if there is a singularity, the system in (3.7) must be adapted to its presence in order to
fulfil the accuracy and regularity requirements. In order to do this, we can modify the right hand
side of the system in (3.7). For the general case presented in Figure 3.2, we can adapt the system
in (3.7) by modifying the equations corresponding to Dj and Dj+1. At smooth zones of the data,
it is clear that the system in (3.7) must hold, as the regularity conditions imposed at the nodes

48



are met. If a singularity is placed in the interval [xj , xj+1], the system in (3.7) is not valid, as
the function cannot be approximated accurately through a polynomial. As each equation of the
system in (3.7) is designed to obtain a particular first order derivative Dj at the point xj , if we
encounter a singularity, we can just add a correction term at the right hand side of the system
that takes into account the presence of the singularity and that allows for the obtention of the
desired accuracy of the first order derivative. Let us summarize all the previous considerations in
the following Lemma.

Lemma 5 If the singularity is placed in the interval [xj , xj+1], then the local truncation error Cj

of the equation for the first order derivatives Dj is equal to

Cj =

 
3
[f ]

h
� 1

24

(�48h+ 72↵) [f 0]

h
� 1

24

�
�36↵2 + 48↵h� 12h2

�
[f 00]

h

� 1

24

�
12↵3 + 12h2↵� 24↵2h

�
[f 000]

h

!
� 1

24

�
�6h2↵2 � 3↵4 + h4 + 8↵3h

�
[f (4)]

h
+O(h4),

(3.11)
and for the first order derivative Dj+1 it is equal to

Cj+1 =

 
3
[f ]

h
+

1

24

(�72↵+ 24h) [f 0]

h
+

1

24

�
�24↵h+ 36↵2

�
[f 00]

h

+
1

24

�
12↵2h� 12↵3

�
[f 000]

h

!
+

1

24

�
3↵4 � 4↵3h

�
[f (4)]

h
+O(h4).

(3.12)

The equations for the first order derivatives D�
j and D+

j+1 in (3.7) are

D�
j�1 + 4D�

j +D+
j+1 = 6

f+
j+1 � f�

j�1

2h
,

D�
j + 4D+

j+1 +D+
j+2 = 6

f+
j+2 � f�

j

2h
.

(3.13)

Taking into account the presence of the singularity, using Taylor expansions and considering the
resulting local truncation error, we can write the expression in (3.13) using quantities only from
one side of the discontinuity. Let us denote by CL

j the correction term for the left hand side of

(3.13) and by CR
j the correction term for the right hand side of (3.13),

D�
j�1 + 4D�

j +D+
j+1 = D�

j�1 + 4D�
j +D�

j+1 + CL
j +O(h4) =

f+
j+1 � f�

j�1

2h
=

f�
j+1 � f�

j�1

2h
+ CR

j +O(h4),

D�
j + 4D+

j+1 +D+
j+2 = D+

j + 4D+
j+1 +D+

j+2 + CL
j+1 +O(h4) =

f+
j+2 � f�

j

2h
=

f+
j+2 � f+

j

2h
+ CR

j+1 +O(h4),

(3.14)
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so we can simply consider that, due to the presence of the singularity,

D�
j�1 + 4D�

j +D�
j+1 = 6

f�
j+1 � f�

j�1

2h
+ Cj +O(h4),

D+
j + 4D+

j+1 +D+
j+2 = 6

f+
j+2 � f+

j

2h
+ Cj+1 +O(h4),

(3.15)

where Cj = CR
j �CL

j and Cj+1 = CR
j+1 �CL

j+1 amount to the local truncation error. These terms
will depend on the position of the singularity and the jumps in the function and its derivatives.
Thus, we will need the jump relations

[f ] = f+(x⇤)� f�(x⇤),
⇥
f 0⇤ = f+

x (x⇤)� f�
x (x⇤),

⇥
f 00⇤ = f+

xx(x
⇤)� f�

xx(x
⇤),

⇥
f 000⇤ = f+

xxx(x
⇤)� f�

xxx(x
⇤).

(3.16)

Looking at Figure 3.2 and (3.13), we can see that, in the equation for D�
j , f

+
j+1 and D+

j+1 belong to

the + side of the domain, while D�
j belongs to the � side. Thus, we can use the Taylor expansions

of f+
j+1 and D+

j+1 around x⇤ and then use the jump relations [f ], [f 0], [f 00], [f 000] in (3.16) to express
the + values in terms of the � values. Assuming that we know the jump conditions in (3.16), or
that we have a good approximation, we are ready to obtain expressions for f+

j+1 in terms of f�
j+1

and for f�
j in terms of f+

j . Using Taylor expansions, we can write

f�(xj) = f�
j = f�(x⇤)� f�

x (x⇤)↵+
1

2
f�
xx(x

⇤)↵2 � 1

3!
f�
xxx(x

⇤)↵3 +O(h4),

f+(xj) = f+
j = f+(x⇤)� f+

x (x⇤)↵+
1

2
f+
xx(x

⇤)↵2 � 1

3!
f+
xxx(x

⇤)↵3 +O(h4),

f�(xj+1) = f�
j+1 = f�(x⇤) + f�

x (x⇤)(h� ↵) +
1

2
f�
xx(x

⇤)(h� ↵)2 +
1

3!
f�
xxx(x

⇤)(h� ↵)3 +O(h4),

f+(xj+1) = f+
j+1 = f+(x⇤) + f+

x (x⇤)(h� ↵) +
1

2
f+
xx(x

⇤)(h� ↵)2 +
1

3!
f+
xxx(x

⇤)(h� ↵)3 +O(h4),

(3.17)
and subtracting we obtain

f+
j = f�

j + [f ]� [f 0]↵+
1

2
[f 00]↵2 � 1

3!
[f 000]↵3 +O(h4),

f+
j+1 = f�

j+1 + [f ] + [f 0](h� ↵) +
1

2
[f 00](h� ↵)2 +

1

3!
[f 000](h� ↵)3 +O(h4).

(3.18)

By replacing these expressions in the right hand side of (3.13), we obtain the local truncation error
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for this part of the equation:

f+
j+1 � f�

j�1

2h
=

f�
j+1 � f�

j�1

2h
+

1

2

[f ]

h
� 1

2

(↵� h) [f 0]

h
+

1

4

�
h2 � 2h↵+ ↵2

�
[f 00]

h

� 1

12

�
�h3 + 3h2↵� 3h↵2 + ↵3

�
[f 000]

h

+
1

48

�
h4 � 4h3↵+ 6h2↵2 � 4h↵3 + ↵4

�
[f (4)]

h
+O(h4)

=
f�
j+1 � f�

j�1

2h
+ CR

j +O(h4),

f+
j+2 � f�

j

2h
=

f+
j+2 � f+

j

2h
+

1

2

[f ]

h
� 1

2

[f 0]↵

h
+

1

4

[f 00]↵2

h
� 1

12

[f 000]↵3

h

+
1

48

[f (4)]↵4

h
+O(h4)

=
f+
j+2 � f+

j

2h
+ CR

j+1 +O(h4).

(3.19)

The same thing can be done for the left hand side of (3.13). We can write that

f�
x (xj) = f�

x (x⇤)� f�
xx(x

⇤)↵+
1

2
f�
xxx(x

⇤)↵2 � 1

3!
f�
xxxx(x

⇤)↵3 +O(h4),

f+
x (xj) = f+

x (x⇤)� f+
xx(x

⇤)↵+
1

2
f+
xxx(x

⇤)↵2 � 1

3!
f+
xxxx(x

⇤)↵3 +O(h4),

f�
x (xj+1) = f�

x (x⇤) + f�
xx(x

⇤)(h� ↵) +
1

2
f�
xxx(x

⇤)(h� ↵)2 +
1

3!
f�
xxxx(x

⇤)(h� ↵)3 +O(h4),

f+
x (xj+1) = f+

x (x⇤) + f+
xx(x

⇤)(h� ↵) + +
1

2
f+
xxx(x

⇤)(h� ↵)2 +
1

3!
f+
xxxx(x

⇤)(h� ↵)3 +O(h4).

(3.20)
By subtracting and denoting D�

j = f�
x (xj), D

+
j = f+

x (xj), D
�
j+1 = f�

x (xj+1) and D+
j+1 = f+

x (xj+1)
we obtain

D+
j = D�

j + [f 0]� [f 00]↵+
1

2
[f 000]↵2 � 1

3!
[f (4)]↵3 +O(h4),

D+
j+1 = D�

j+1 + [f 0] + [f 00](h� ↵) +
1

2
[f 000](h� ↵)2 +

1

3!
[f (4)](h� ↵)3 +O(h4).

(3.21)

By replacing now (3.21) in the left hand side of (3.13), we get expressions for CL
j and CL

j+1:

D�
j�1 + 4D�

j +D+
j+1 = D�

j�1 + 4D�
j +D�

j+1 � [f 0] + [f 00]↵� 1

2
[f 000]↵2 +

1

3!
[f (4)]↵3 +O(h4)

= D�
j�1 + 4D�

j +D�
j+1 + CL

j +O(h4),

D�
j + 4D+

j+1 +D+
j+2 = D+

j + 4D+
j+1 +D+

j+2 + [f 0] + [f 00](h� ↵) +
1

2
[f 000](h� ↵)2 +

1

3!
[f (4)](h� ↵)3 +O(h4)

= D+
j + 4D+

j+1 +D+
j+2 + CL

j+1 +O(h4).

(3.22)
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By replacing the expressions (3.19) in the right hand side of (3.13), and (3.22) in the left hand
side, we recover the expression in (3.15):

D�
j�1 + 4D�

j +D�
j+1 = 6

f�
j+1 � f�

j�1

2h
+ Cj +O(h4),

D+
j + 4D+

j+1 +D+
j+2 = 6

f+
j+2 � f+

j

2h
+ Cj+1 +O(h4),

(3.23)

with the local truncation errors written as

Cj = CR
j � CL

j = 3
[f ]

h
� 1

24

(�48h+ 72↵) [f 0]

h
� 1

24

�
�36↵2 + 48↵h� 12h2

�
[f 00]

h

� 1

24

�
12↵3 + 12h2↵� 24↵2h

�
[f 000]

h
� 1

24

�
�6h2↵2 � 3↵4 + h4 + 8↵3h

�
[f (4)]

h
+O(h4),

Cj+1 = CR
j+1 � CL

j+1 = 3
[f ]

h
+

1

24

(�72↵+ 24h) [f 0]

h
+

1

24

�
�24↵h+ 36↵2

�
[f 00]

h

+
1

24

�
12↵2h� 12↵3

�
[f 000]

h
+

1

24

�
3↵4 � 4↵3h

�
[f (4)]

h
+O(h4).

(3.24)
Note that, if x⇤ is unknown, we only need to locate the interval that contains the singularity to

obtain an accurate computation of the first order derivatives at the nodes through the spline. Then,
we can give a rough approximation x̃⇤ of x⇤ inside that interval, and use it to obtain accurate
approximations of the jump in the function and its derivatives at the chosen x̃⇤ (for example,
using one-sided interpolation, as explained in [49]). For the cubic Hermite spline, we need O(h4)
accuracy for [f ], O(h3) accuracy for [f 0], and so on. This observation is straightforward if we look
at the expression of the correction terms in (3.24). Of course, the use of an inaccurate x̃⇤ instead
of x⇤ (but still inside the interval that contains the singularity), will produce a large error in the
approximation of the function in the interval that contains the singularity (typically an error of
order O(1) for jumps in the function and O(h) for jumps in the first order derivative), but not in
the approximation of the first order derivatives at the nodes. Moreover, it would also provide a
reconstruction of the function without oscillations. Later on (in Remark 5) we will discuss how the
approximation of the location of the singularity a↵ects the interpolation of the function through
the spline. The location of the interval that contains a jump discontinuity in the function, or the
approximated location of a discontinuity in the first order derivative can be done using Harten’s
ENO-SR (essentially non oscillatory-subcell resolution). A nice discussion about the process, with
an improved algorithm for the location, is given in [32].

Let us consider now the Hermite spline in the interval [a, b], constructed using m + 1 points
belonging to a piecewise continuous function that contains a singularity at x⇤ 2 [xj , xj+1] and that
is at least four times continuously di↵erentiable except at x⇤. Let us follow the same notation as
before and denote the information to the left of the singularity with the � symbol and to the right
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with the + symbol. The system of equations for the first order derivatives at the nodes can be
expressed as

2

666666664

4 1 0 · · · 0 0 0 0 · · · 0 0
1 4 1 · · · 0 0 0 0 · · · 0 0
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
0 0 0 · · · 1 4 1 0 · · · 0 0
0 0 0 · · · 0 1 4 1 · · · 0 0
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
0 0 0 · · · 0 0 0 0 · · · 1 4

3

777777775

2

666666664

D�
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D�
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· · ·
D�

j

D+
j+1

· · ·
D+

m�1

3

777777775

= 6

2

6666666666664

��1 +��2
2 � D�

0
6

��2 +��3
2

· · ·
f+
j+1�f�

j�1

2h
f+
j+2�f�

j

2h
· · ·
�+m�1+�+m

2 � D+
m
6

3

7777777777775

.

(3.25)
Now we can prove the following theorem.

Theorem 5 (Accuracy of adapted first order derivatives close to singularities)
Let us consider a piecewise continuous function f that contains a singularity at x⇤ and that

is at least four times continuously di↵erentiable on R\{x⇤} with uniformly bounded derivatives.
The first order derivatives obtained through the non-corrected system of the spline for this function
satisfy

||f 0 �D||L1  max{|Cj |, |Cj+1|}, (3.26)

where Cj , Cj+1 are given in Lemma 5.
The addition of the correction terms �Cj ,�Cj+1 up to O(h3), i.e. the subtraction of the local

truncation errors in (3.24) up to O(h3), to the right hand side of the equations of the spline for
Dj and Dj+1 in the system (3.25) allows for the computation of first order derivatives that satisfy

||f 0 �D||L1  Ch3 sup
c2R\{x⇤}

|f (4)(c)|+Kh3[f (4)], (3.27)

for all h > 0, with K,C > 0 independent of f .

For simplicity we will take a uniform partition of the considered interval. The proof presented
in what follows can be extended to a non-uniform partition. Let us represent the system in (3.25)
by AD = d. Let F and r be the vectors,

F =

2

664

f 0(x1)
f 0(x2)
· · ·
f 0(xm�1)

3

775 , r = d�AF = A(D � F ), (3.28)

where f 0(x) are the first order derivatives of f at the nodes.
For i = 1, . . . , j � 1, j + 2, . . . ,m� 1 we can use Taylor’s expansion to express yi�1 = f(xi�1)

and yi+1 = f(xi+1) in terms of f(xi) and the derivatives of f at xi,

ri = 6

✓
yi+1 � yi�1

2h

◆
�Di�1 � 4Di �Di+1. (3.29)
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Now we can use Taylor’s expansion to express yi�1 = f(xi�1), yi+1 = f(xi+1), Di�1 and Di+1 in
terms of f(xi) and the derivatives of f at xi,

ri =
3

h

 ✓
f(xi) + hf 0(xi) +

h2

2
f 00(xi) +

h3

6
f 000(xi) +

h4

24
f (4)(⌧1)

◆

�
✓
f(xi)� hf 0(xi) +

h2

2
f 00(xi)�

h3

6
f 000(xi) +

h4

24
f (4)(⌧2)

◆!

�
✓
f 0(xi) + hf 00(xi) +

h2

2
f 000(xi) +

h3

6
f (4)(⌧3)

◆
� 4f 0(xi)

�
✓
f 0(xi)� hf 00(xi) +

h2

2
f 000(xi)�

h3

6
f (4)(⌧4)

◆

=
1

24
h3
⇣
3f (4)(⌧1)� 3f (4)(⌧2)� 4f (4)(⌧3) + 4f (4)(⌧4)

⌘
, (3.30)

with ⌧n 2 [xi�1, xi+1], n = 1, . . . , 4. Therefore, for i = 1, . . . , j � 1, j + 2, . . . ,m� 1 we obtain

|ri| 
7

12
sup

c2[xi�1,xi+1]
|f (4)(c)|h3. (3.31)

Note that if the boundary conditions D�
0 , D

+
m are exact, the previous bound holds.

If we assume that the singularity is placed in the interval [xj , xj+1], just as shown in Figure
3.2, the process to obtain rj is similar, but we need to follow the same steps taken to obtain the
local truncation error in (3.24): use Taylor expansions around x⇤ to express the values y+j+1 and

f+
x (xj+1) in terms of the � side (or viceversa) using the jump relations as in (3.18) and (3.21).
After some basic algebra, we obtain that the rj that comes from (3.25) satisfies

rj = 6

 
y+j+1 � y�j�1

2h

!
� f�

x (xj�1)� 4f�
x (xj)� f+

x (xj+1)

= 6

 
y�j+1 � y�j�1

2h

!
+ Cj � f�

x (xj�1)� 4f�
x (xj)� f�

x (xj+1) +O(h4).

By replicating the process for rj+1, we easily obtain the bound in (3.26), corresponding to the
non-corrected spline. Thus, if we subtract to rj the local truncation error Cj in (3.24) up to O(h3),
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we obtain

rj � Cj = 6
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(3.32)

with ⌧n 2 [xi�1, xi+1], n = 1, . . . , 4. For the equation of Dj+1 in (3.25), the result is equivalent.
Taking into account the expression of A in (3.25), the norm of its inverse is ||A�1||L1  1 (see, for
example, Theorem 2.1 of [55]), and since r = A(D�F ), then ||D�F ||L1  ||r||L1 . Therefore we
obtain the bound in (3.27) by just applying the triangular inequality to the norm of the vector r.

Thus, the subtraction of the local truncation error to the right hand side of the system in
(3.25),
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0 0 0 · · · 1 4 1 0 · · · 0 0
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,

(3.33)

allows for the obtention of first order derivatives with the bound for the error given in (3.27).
It is also important to note that, in order to solve the system in (3.33), we need to know

its right hand side. The right hand side of the system in (3.33) is composed of finite di↵erence
approximations of the first order derivative. Thus, if the positions of the singularities are not
known, the processing of these di↵erences can be used to approximate their location. See for
example the algorithm described in [50].
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Remark 3 If the data presents more than one singularity, the treatment is exactly the same. If
an algorithm for locating the singularity is used, the only requirement is that the singularities are
placed far enough from each other, i.e. at such a distance that the location algorithm is capable of
distinguishing between two contiguous singularities. In the case of the algorithm presented in [50],
singularities must be placed one stencil away from each other (four points for cubic polynomials).

3.4 Analysis of the absence of the Gibbs phenomenon close to
jump discontinuities in the cubic Hermite spline using co-
rrected first order derivatives

In this section we will analyse the absence of the Gibbs phenomenon when using the corrected
first order derivatives.

In Theorem 5 we have proved that the accuracy attained in the first order derivatives computed
using the corrected system (3.33) is O(h3) in the infinity norm. With this result, it is posible to
prove that, using these derivatives, the Hermite spline does not introduce the Gibbs phenomenon
close to jump discontinuities.

We should start by introducing the definition of the Gibbs phenomenon given by D. Gottlieb
and C.-W. Shu in [24].

Definition 1 The Gibbs phenomenon
Given a punctually discontinuous function f and its sampling, defined by f(xi) = f(ih), the

Gibbs phenomenon deals with the convergence of the function g based on f(xi) towards f when h
goes to zero. It can be characterized by two features ([24]):

1. Away from the discontinuity, the convergence is rather slow and for any point x

|f(x)� g(x)| = O(h).

2. There is an overshoot, close to the discontinuity, that does not diminish with the reduction
of h. Thus,

max |f(x)� g(x)| does not tend to zero with h.

With the results about the accuracy of the first order derivatives obtained in Theorem 5 and
the previous definition of the Gibbs phenomenon, we can state the following theorem.

Theorem 6 Absence of the Gibbs phenomenon
The Hermite spline obtained using the adapted first order derivatives computed through (3.33)

does not introduce Gibbs oscillations close to jump discontinuities in the function.

We can analyse two cases. The first one is when the considered interval does not contain a
singularity. In this case, Theorem 5 assures O(h3) accuracy for the first order derivatives. And, as
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mentioned in Remark 2, this is enough for the Hermite spline to attain O(h4) accuracy at smooth
zones, so no Gibbs oscillations are possible.

The second case is when the considered interval contains a jump discontinuity in the function.
Let us assume that the singularity is in the interval [xj , xj+1]. In (3.27), Theorem 5 assures that
the first order derivatives attained through the corrected system in (3.33) also have O(h3) order
of accuracy. Thus, it can be considered that the vector of first order derivatives D that results
from solving (3.33) will be

||D||L1 = O(1). (3.34)

Now, considering (3.3) we can write

aj =
hDj+1 +Djh+ 2yj � 2yj+1

h3
=

O(h) +O(h) + 2yj � 2yj+1

h3
,

bj = �hDj+1 + 2Djh+ 3yj � 3yj+1

h2
= �O(h) + 2O(h) + 3yj � 3yj+1

h2
,

cj = Dj = O(1),

dj = yj .

(3.35)

If we consider that there is a jump discontinuity in the interval [xj , xj+1], then yj+1�yj = O(1)
and

dj = yj ,

cj = Dj = O(1),

bj = �hDj+1 + 2Djh+ 3yj � 3yj+1

h2
= �O(h) + 2O(h)� 3O(1)

h2
=

O(1)

h2
= O

✓
1

h2

◆
,

aj =
hDj+1 +Djh+ 2yj � 2yj+1

h3
=

O(h) +O(h)� 2O(1)

h3
=

O(1)

h3
= O

✓
1

h3

◆
.

(3.36)

And if x 2 [xj , xj+1], the equation of the spline (3.1) transforms into

gj(x) = aj(x� xj)
3 + bj(x� xj)

2 + cj(x� xj) + dj = O

✓
1

h3

◆
O
�
h3
�

+ O

✓
1

h2

◆
O
�
h2
�
+O (h) + yj = yj +O(1). (3.37)

This means that the error attained by the Hermite spline with O(h3) accurate first order derivatives
provides O(h4) accuracy when interpolating the data, except at the interval that contains the
discontinuity, where the approximation is O(1) accurate.

Now we only need to check that the approximation provided by the spline is in the interval
[yj , yj+1] when h goes to zero. In order to verify this assumption, we can write the equation of the
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spline in (3.1) as

gj(x) = aj(x� xj)
3 + bj(x� xj)

2 + cj(x� xj) + dj

=
hDj+1 +Djh+ 2yj � 2yj+1

h3
(x� xj)

3 � hDj+1 + 2Djh+ 3yj � 3yj+1

h2
(x� xj)

2

+Dj(x� xj) + yj .

(3.38)

Introducing the change of variables s = x�xj

h , we get

gj(x) = (hDj+1 +Djh+ 2yj � 2yj+1) s
3 � (hDj+1 + 2Djh+ 3yj � 3yj+1) s

2 +Djhs+ yj ,

=
�
1� s2(3� 2s)

�
yj + s2(3� 2s)yj+1 +

�
s3 � 2s2 + s

�
hDj +

�
s3 � s2

�
hDj+1

= b1(s)yj+1 + b2(s)yj + b3(s)hDj + b4(s)hDj+1,

(3.39)

for s 2 [0, 1]. The expression can also be reformulated as follows:

gj(x) = yj +
�
s2(3� 2s)

�
(yj+1 � yj) +

�
s3 � 2s2 + s

�
hDj +

�
s3 � s2

�
hDj+1, (3.40)

where the first two terms of (3.40) are just a dilation and a translation of the Hermite base function
b1(s) = s2(3 � 2s). This function presents a minimum at s = 0 and a maximum at s = 1, so no
Gibbs oscillations can be introduced by this element of the Hermite base, as can be seen in Figure
3.1. In this Figure it can be observed that the base functions b3(s) and b4(s) oscillate. Thus, Gibbs
oscillations can appear if these bases appear multiplied by large coe�cients. As we have already
mentioned, in (3.40) Dj and Dj+1 are O(1). With these considerations in mind, it is not di�cult
to conclude that the last two terms in (3.40) go to zero when h ! 0. So no Gibbs oscillation is
possible.

It should be noted that an analogous analysis can be done for the classical spline. In this case,
the vector of first order derivatives D that results from solving (3.33) without the correction terms
will be

||D||L1 = O

✓
1

h

◆
, (3.41)

due to the bound in (3.26) and the expressions for Cj , Cj+1 given in Lemma 5. Following exactly
the same arguments as before and rewriting the expressions from (3.35) to (3.40) taking into
account (3.41) in the process, we can easily conclude that the classical spline introduces the Gibbs
phenomenon close to jump discontinuities in the function.

3.5 Full accuracy of the adapted Hermite interpolation

Once the first order derivatives have been calculated with O(h3) accuracy, if we use them directly
in the expression in (3.4) without any other enhancement, the interpolation will lose its accuracy
at the interval [xj , xj+1] that contains the singularity, as it has been analysed in Theorem 6. This
is logical, as the interpolation in the interval [xj , xj+1] can be seen as a particularization of a linear
combination of the polynomials of the Hermite basis, which are continuous. This situation can be
solved by defining a piecewise continuous Hermite polynomial at the interval [xj , xj+1].
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Remark 4 The exact location of jump discontinuities and the definition of the function at x⇤ is
lost during the point-values discretization. Thus, to obtain a reconstruction at x⇤, not only the
location of the discontinuity must be provided, but also which of the two definitions corresponds to
this point. If the discontinuities are in the derivatives, this problem does not arise, as the function
is continuous.

Let us consider the following lemma.

Lemma 6 Let us assume that the first order derivatives of the function at the nodes have been
obtained with O(h3) accuracy. Let us assume that the data presents a singularity at x⇤ with
xj  x⇤  xj+1 and, without loss of generality, that we know that f(x⇤) belongs to the � side of
the function. Then, the local truncation error of the non-corrected spline in the interval [xj , x⇤] is

C�(x) =

 
3
(x� xj)

2

h2
� 2

(x� xj)
3

h3

!
[f ]

+

 
�(�2h+ 3↵) (x� xj)

2

h2
+

(�h+ 2↵) (x� xj)
3

h3

!
[f 0]

+

0

@

⇣
� (h� ↵)2 + h (h� ↵)

⌘
(x� xj)

3

h3
�

⇣
�3

2 (h� ↵)2 + h (h� ↵)
⌘
(x� xj)

2

h2

1

A [f 00]

+

0

@

⇣
1
2 h (h� ↵)2 � 1

3 (h� ↵)3
⌘
(x� xj)

3

h3
�

⇣
1
2 h (h� ↵)2 � 1

2 (h� ↵)3
⌘
(x� xj)

2

h2

1

A [f 000] +O(h4).

(3.42)
In the interval (x⇤, xj+1] the local truncation error is

C+(x) = C�(x)�
✓
[f ] + (x� x⇤)[f 0] +

1

2
(x� x⇤)2[f 00] +

1

3!
(x� x⇤)3[f 000]

◆
+O(h4). (3.43)

As mentioned in the lemma, we have two possible cases:

• The first one is when the interpolation is being obtained at a position xj  x  x⇤. In this
case, the first order derivative D+

j+1 and the data point y+j+1 belong to the + side of the
singularity while the interpolation point x is at the � side. We can use the same technique
applied before to obtain the correction terms for the first order derivatives in order to assure
the accuracy of the interpolation. Let us consider again Figure 3.2. In the interval [xj , xj+1],
the Hermite interpolation in (3.4) will have the following expression:

gj(x) =
hD+

j+1 +D�
j h+ 2y�j � 2y+j+1

h3
(x� xj)

3

�
hD+

j+1 + 2D�
j h+ 3y�j � 3y+j+1

h2
(x� xj)

2 +D�
j (x� xj) + y�j .

(3.44)
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Now we can use (3.18) and (3.21) to obtain an expression of the corrected spline in the
interval [xj , x⇤]:

gj(x) =
hD�

j+1 +D�
j h+ 2y�j � 2y�j+1

h3
(x� xj)

3

�
hD�

j+1 + 2D�
j h+ 3y�j � 3y�j+1

h2
(x� xj)

2 +D�
j (x� xj) + y�j

+

 
3
(x� xj)

2

h2
� 2

(x� xj)
3

h3

!
[f ]

+

 
�(�2h+ 3↵) (x� xj)

2

h2
+

(�h+ 2↵) (x� xj)
3

h3

!
[f 0]

+

0

@

⇣
� (h� ↵)2 + h (h� ↵)

⌘
(x� xj)

3

h3
�

⇣
�3

2 (h� ↵)2 + h (h� ↵)
⌘
(x� xj)

2

h2

1

A [f 00]

+

0

@

⇣
1
2 h (h� ↵)2 � 1

3 (h� ↵)3
⌘
(x� xj)

3

h3
�

⇣
1
2 h (h� ↵)2 � 1

2 (h� ↵)3
⌘
(x� xj)

2

h2

1

A [f 000]

+O(h4)

= g�j (x) + C�(x) +O(h4).
(3.45)

In fact, the O(h4) term in the previous expression can be written as

T�
4 (x) =

0

@

⇣
1
6 h (h� ↵)3 � 1

12 (h� ↵)4
⌘
(x� xj )3

h3
�

⇣
1
6 h (h� ↵)3 � 1

8 (h� ↵)4
⌘
(x� xj )2

h2

1

A [f (4)] + · · ·

(3.46)

• The second one is when the interpolation is being obtained at a position x⇤ < x  xj+1. In
this case, the first order derivative D�

j and the data y�j belong to the � side of the singularity
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while the interpolation point x is at the + side. Proceeding as before, we have

gj(x) =
hD+

j+1 +D+
j h+ 2y+j � 2y+j+1

h3
(x� xj)

3

�
hD+

j+1 + 2D+
j h+ 3y+j � 3y+j+1

h2
(x� xj)

2 +D+
j (x� xj) + y+j

+

 
�2

(x� xj)
3

h3
� 1 + 3

(x� xj)
2

h2

!
[f ]

+

 
(�h+ 2↵) (x� xj)

3

h3
� (�2h+ 3↵) (x� xj)

2

h2
+ ↵� x+ xj

!
[f 0]

+

 �
h↵� ↵2

�
(x� xj)

3

h3
�
�
2h↵� 3

2 ↵
2
�
(x� xj)

2

h2
+ ↵ (x� xj)�

1

2
↵2

!
[f 00]

+

 �
1
3 ↵

3 � 1
2 h↵

2
�
(x� xj)

3

h3
+

1

6
↵3 � 1

2
↵2 (x� xj)�

�
1
2 ↵

3 � h↵2
�
(x� xj)

2

h2

!
[f 000] +O(h4)

= g+j (x) + C+(x) +O(h4)

= g+j (x) + C�(x)�
✓
[f ] + (x� x⇤)[f 0] +

1

2
(x� x⇤)2[f 00] +

1

3!
(x� x⇤)3[f 000]

◆
+O(h4).

(3.47)
In the previous expression, the O(h4) term can be written as

T+
4 (x) =

 �
� 1

12 ↵
4 + 1

6 h↵
3
�
(x� xj )3

h3
�
�
�1

8 ↵
4 + 1

3 h↵
3
�
(x� xj )2

h2
� 1

24
↵4 +

1

6
↵3 (x� xj )

!
[f (4)] + · · ·

(3.48)
From (3.47), we can see that we obtain again a relation between the correction terms for the
spline similar to that obtained for the data in (3.18),

C+(x) = C�(x)�
✓
[f ] + (x� x⇤)[f 0] +

1

2
(x� x⇤)2[f 00] +

1

3!
(x� x⇤)3[f 000]

◆
+O(h4).

Now we have all the necessary tools to prove the following theorem.

Theorem 7 (Accuracy of the corrected Hermite interpolation close to singularities)
Let us consider a piecewise continuous function f that contains a singularity at x⇤ 2 [xj , xj+1]

and that is at least four times continuously di↵erentiable on R\{x⇤}. Let us assume, without
loss of generality, that we know that f(x⇤) belongs to the � side of the function. Let us also
consider that the first order derivatives at the nodes are available with at least O(h3) accuracy.
The approximation obtained through the non-corrected Hermite spline for this function satisfies

|f(x)� gj(x)|  max{|C+(x)|, |C�(x)|}, x 2 [xj , xj+1], (3.49)
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where C+(x), C�(x) are given in Lemma 6.
The addition of the correction terms �C�(x) when x 2 [xj , x⇤] and �C+(x) when x 2

(x⇤, xj+1], i.e. the subtraction of the local truncation error given in Lemma 6 to the approxi-
mation obtained by the non-corrected Hermite spline results in the accuracy

|f(x)� gj(x)| 

8
>>>>>>>><

>>>>>>>>:

max

(
13

24
h4|[f (4)]|, 1

384
h4 sup

⇠2[xj ,x⇤]
|f (4)(⇠)|

)
, x 2 [xj , x⇤],

max

(
2

3
h4|[f (4)]|, 1

384
h4 sup

⇠2(x⇤,xj+1]
|f (4)(⇠)|

)
, x 2 (x⇤, xj+1],

1

384
h4 sup

⇠2[xj ,xj+1]
|f (4)(⇠)|, in any other case,

(3.50)

for all h > 0, independent of f .

For smooth functions, the error has been analysed in Theorem 4 and is given in (3.8).
Now we can consider the case when there is a singularity in the interval [xj , xj+1]. Looking at

the results obtained in expressions (3.42) and (3.43) of Lemma 6, we can see the local truncation
error obtained when approximating the data using the uncorrected spline. We can just change the
sign of the local truncation error, i.e isolate g�j (x) or g

+
j (x), to write that

g�j (x) = gj(x)� C�(x) +O(h4), xj < x  x⇤, (3.51)

g+j (x) = gj(x)� C+(x) +O(h4), x⇤ < x < xj+1, (3.52)

and to conclude that the addition of the correction terms �C�(x) in the interval [xj , x⇤] or �C+(x)
in the interval (x⇤, xj+1] allows us to keep the accuracy of the spline close to the singularities. In
fact, looking at the O(h4) terms in the local truncation error, we can see that the term in (3.46)
can be roughly bounded by

|T�
4 (x)|  13

24
|[f (4)]|h4, (3.53)

and the one in (3.48) can be bounded in the same way by

|T+
4 (x)|  2

3
|[f (4)]|h4. (3.54)

Remark 5 Let us assume now that we do not know the exact location of the singularity x⇤ and
we approximate it by x̃⇤. For simplicity, we can assume that x̃⇤ is located to the right of x⇤ at
a distance � (which is the error of location). Then, using Taylor’s expansion on the jump in the
function or the derivatives, we get

[f(x̃⇤)] = [f ] + �[f 0] +
�2

2
[f 00] + · · · ,

⇥
f 0(x̃⇤)

⇤
= [f 0] + �[f 00] +

�2

2
[f 000] + · · ·

(3.55)
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Therefore, from replacing these expressions in the local truncation error in (3.42) or (3.43), we
derive that an error in the location of the discontinuity leads to an error of the size of the jump of
the function in the interval between x̃⇤ and x⇤. In the case of jumps in the first order derivative,
the problem can be solved computing an accurate enough x̃⇤. Thus, in order to keep order of
accuracy O(h4) for the cubic spline, we just need the error of location � to be of order O(h4). It is
noteworthy that if there is a false detection of the singularity at a smooth zone, the jumps should
be zero (if known a priori) or close enough to zero (if approximated) [49].

Remark 6 Although we have introduced the corrected cubic Hermite spline for cases where the
location of the singularities and the jump in the function and its derivatives are known, this
information can be approximated numerically in certain instances.

When working with data derived from the discretization of piecewise smooth functions, some-
times it is possible to detect the singularities and compute their location. Some kinds of singu-
larities are jump discontinuities in the function and kinks, meaning jumps in the function or the
first order derivative respectively. The location of these singularities can be found depending on
the discretization of the data used. Kinks can be located using the point-value discretization, i.e.
a sampling of the function. There is no way of locating the position of jump discontinuities using
this kind of discretization: the exact position is lost during the discretization process. For data
discretized using point-values, the location of kinks can be obtained, for example, using the classical
approach proposed by Harten for his ENO subcell resolution (ENO-SR) algorithm [51, 50]. In [50],
the authors introduce the ENO-SR algorithm and propose its implementation for the point-values
discretization of the data.

Once the location of the singularity has been approximated, it is also possible to approximate
the jump in the function and its derivatives using one-sided interpolation. See for example [49]
for a detailed explanation about this point.

We will verify the previous assertions in the Numerical experiments section.

Corollary 3 (Error of the second order derivative of the corrected cubic Hermite interpolation)
Under the assumptions of Theorem (7), the error for the second order derivative of the corrected

cubic Hermite interpolation in the interval that contains the singularity is given by

|f 00(x)� g00j (x)| 

8
>>>>>>>><

>>>>>>>>:

max

(
1

3
h2|[f (4)]|, 1

2
h2 sup

⇠2[xj ,x⇤]
|f (4)(⇠)|

)
, x 2 [xj , x⇤],

max

(
5

12
h2|[f (4)]|, 1

2
h2 sup

⇠2(x⇤,xj+1]
|f (4)(⇠)|

)
, x 2 (x⇤, xj+1],

1

2
h2 sup

⇠2[xj ,xj+1]
|f (4)(⇠)|, in any other case,

(3.56)

for all h > 0, independent of f .

If we di↵erentiate the error terms in (3.46) and (3.48) of Lemma (6), it is not di�cult to arrive
to the expression for the error of the second order derivative of the corrected spline in the intervals
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[xj , x⇤) or (x⇤, xj+1]:

(T�
4 (x))00 =

✓
�(↵� h)3(�3↵� h+ 6↵h2(x� xj) + 6h3(x� xj))

12h2

◆
[f (4)] + · · · ,

(T+
4 (x))00 =

✓
3↵4(h� 2(x� xj))� 4h↵3(2h� 3(x� xj))

12h3

◆
[f (4)] + · · ·

(3.57)

Taking into account these results and Corollary 2, we finish the proof:

|f 00(x)� g00j (x)| 

8
>>>>>>>><

>>>>>>>>:

max

(
1

3
h2|[f (4)]|, 1

2
h2 sup

⇠2[xj ,x⇤]
|f (4)(⇠)|

)
, x 2 [xj , x⇤],

max

(
5

12
h2|[f (4)]|, 1

2
h2 sup

⇠2(x⇤,xj+1]
|f (4)(⇠)|

)
, x 2 (x⇤, xj+1],

1

2
h2 sup

⇠2[xj ,xj+1]
|f (4)(⇠)|, in any other case,

(3.58)

Corollary 4 (Smoothness of the classical Hermite spline with corrected first order derivatives)
The correction proposed in Theorem 7 leads to a piecewise C2 spline that preserves the singu-

larity of the function at x⇤. Consequently, the use of the adapted first order derivatives obtained
in Section 3.3 without the correction proposed in Theorem 7 produces a jump in the second order
derivative of the resultant spline [S00(x)] = S00(x+) � S00(x�), at xj and xj+1 if the singularity is
placed in the interval [xj , xj+1]. This jump is equal to

[S00(xj)] =
6

h2
[f ] +

(�6↵+ 4h)

h2
[f 0] +

(3↵2 + 4↵h)

h2
[f 00] +

(�↵3 + 2↵2h)

h2
[f 000], (3.59)

[S00(xj+1)] = � 6

h2
[f ] +

(6↵� 2h)

h2
[f 0] +

(�3↵2 + 10↵h)

h2
[f 00] +

(↵3 � ↵2h)

h2
[f 000]. (3.60)

Thus, in this case, the resultant spline is C1. More specifically, it is C2 except at xj and xj+1, if
[xj , xj+1] is the interval that contains the singularity.

Let us consider that we apply the correction terms proposed in Theorem 7. In this case, the
modification of the right hand side of the system in (3.33) does not a↵ect the regularity conditions
imposed at all the nodes except at xj and xj+1. This is very easy to verify by computing the
jumps [S00(xi)] and [S0(xi)] for xi, i = 1, . . . , j � 1, j + 2, . . .m � 1, using the expression of the
spline in (3.4), and confirming that these jumps are zero. Thus, we only have to consider the
jump in the first and second order derivatives at these points. By di↵erentiating once or twice
the expression in (3.4) for the spline at x�j and the expression in (3.51) for the spline at x+j , we

obtain [S0(xj)] = S0(x+j ) � S0(x�j ) = 0 and [S00(xj)] = S00(x+j ) � S00(x�j ) = 0. In the same way,
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di↵erentiating once or twice (3.4) for the spline at x+j+1 and (3.52) for the spline at x�j+1 we obtain

[S00(xj+1)] = S00(x+j+1)� S00(x�j+1) = 0 and [S0(xj+1)] = S0(x+j+1)� S0(x�j+1) = 0. This means that

the addition of the correction terms shown in Theorem 7 assures piecewise C2 regularity of the
spline everywhere except at the singularity placed at x⇤.

By repeating the same calculations but eliminating the correction term C�(x) in (3.51) or
C+(x) in (3.52) we obtain that the jumps in the first order derivative are still zero at xj and xj+1,
and we obtain the jumps in the second order derivative shown in (3.59) and (3.60) respectively.

The conclusions reached in Corollary 4 will be verified in the Numerical experiments section
(Subsection 3.7.3).

3.6 The adaption as a post-processing procedure

In this section we will analyse the possibility of correcting the spline as a post-processing. We
have two possibilities: the first one is when we want to obtain a smooth function in the interval
that contains the singularity; the second one is when we want to obtain a piecewise continuous
function in that interval. In the first case we only have to incorporate the correction of the first
order derivatives exposed in Section 3.3. In the second case we need to include also the correction
shown in Section 3.5. Let us start by the first case.

3.6.1 The cubic Hermite spline with corrected first order derivatives as a post-
processing procedure

Looking at the right hand side of the system in (3.33), we can see that the correction of the first
order derivatives of the spline can be done as a post-processing, just adding to the solution of the
uncorrected spline the solution of the system considering only as right hand side the sparse vector
that contains the correction terms. It is clear that the system can be expressed as

AD̄ = d+ C, (3.61)

and it is clear that the term that will add the desired accuracy to the vector is the solution of the
system

AD̃ = C. (3.62)

The solution D̃ of this system will be a vector which, added to the vector of first order derivatives
obtained from the classical system of the spline

AD = d, (3.63)

will provide O(h3) accuracy for the first order derivatives even close to the singularities. Looking
at the expression of the spline in (3.38), if we express each particular first order derivative resulting
from (3.61)

D̄ = D + D̃,
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then the adapted spline can be expressed as

ḡi(x) =

 
hDi+1 +Dih+ 2yi � 2yi+1

h3
(x� xi)

3 � hDi+1 + 2Dih+ 3yi � 3yi+1

h2
(x� xi)

2

+Di(x� xi) + yi

!
+

hD̃i+1 + D̃ih

h3
(x� xi)

3 � hD̃i+1 + 2D̃ih

h2
(x� xi)

2 + D̃i(x� xi) = gi(x) + g̃i(x).

(3.64)
The term g̃i(x) can be interpreted as a spline where the function values are zero and the first order
derivatives are di↵erent from zero. It can be added as a post-processing of the classical Hermite
spline in order to attain O(h3) order of accuracy for the first order derivatives at the nodes.

In [52] p. 22, the authors provide a very e�cient algorithm for solving tridiagonal systems
with dominant main diagonal, like the ones in (3.25) and (3.33). If we have the equations

b1x1 + c1x2 = d1,

a2x1 + b2x2 + c2x3 = d2,

· · ·
am�1xm�2 + bm�1xm�1 + cm�1xm = dm�1,

amxm�1 + bmxm = dm,

(3.65)

then we can compute for j = 1, 2, . . . ,m,

pj = ajqj�1 + bj , (q0 = 0),

qj = �cj/pj ,

uj = (dj � ajuj�1)/pj , (u0 = 0).

The successive elimination of x1, x2, . . . , xm�1 from the second, third, . . . ,mth equations yields
the equivalent system of equations

xj = qjxj+1 + uj , (j = 1, . . . ,m� 1),

xm = um,

where xm, xm�1, . . . , x1 are evaluated successively. We note that the quantities pj and qj depend
on the mesh but not on the ordinates at the mesh nodes (that only appear in the dj in (3.65)).
Thus, the correction can be calculated very e�ciently once the pj ’s and qj ’s of the classical spline
have been computed, as we are only changing the right hand side of the system of equations of
the classical spline, i.e. the dj ’s.

3.6.2 The fully accurate cubic Hermite spline as a post-processing procedure

The fully accurate spline presents di↵erences with the one presented in the previous subsection
only at the interval [xj , xj+1] that contains the singularity. Thus, it is possible to express the
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corrected spline with corrected first order derivatives inside that interval gj(x) as

g�j (x) = gj(x) + g̃j(x)� C�(x) +O(h4), xj < x < x⇤, (3.66)

g+j (x) = gj(x) + g̃j(x)� C+(x) +O(h4), x⇤ < x < xj+1. (3.67)

3.7 Numerical experiments

In this section we analyse the accuracy obtained when computing the corrected first order deriva-
tives proposed in Section 3.3 and in the interpolation obtained through the corrected Hermite
spline described in Section 3.5. We will compare the results of the corrected Hermite spline with
those obtained by the classical non-corrected spline.

3.7.1 Accuracy analysis of the interpolation, first and second order derivatives
obtained through the classical and corrected splines

Let us try to analyse the accuracy of the interpolation, first and second order derivatives attained
by the corrected and non-corrected spline. We will consider that we start from discretized data
that comes from the sampling of a function. The location of the discontinuity will be considered
known in the case of jump discontinuities in the function. When the jumps are in the first order
derivative, we will obtain approximations of its location using the algorithm in [50].

In order to check the accuracy of the spline between the nodes or the first and second order
derivatives at the nodes, we can perform a grid refinement analysis. For the approximation of
the derivatives, we can just obtain analytically the corresponding derivative of the function and
compare it with the approximation of the derivative obtained through the spline for each step of
the refinement analysis. The process for this grid refinement analysis will be the following:

1. Sample the function at a high resolution with the mesh size h0 and keep this data to check
the error.

2. Subsample the high resolution data using a mesh size h1 to obtain the nodes of the spline.

3. Obtain the analytical first and second order derivatives of the function at the nodes obtained
in the previous step.

4. Compute the spline with the low resolution nodes.

5. Compute the errors for the first order derivative at the low resolution nodes and for the
function and the second order derivative at the high resolution data.

6. Reduce the mesh size for the high resolution data and between nodes so that h0 =
h0
2 , h1 =

h1
2

and go back to step 1.
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Figure 3.3: Functions in (3.68) and (3.69) used in the numerical experiments.

Once we have the errors for the data, the first, and the second order derivative for all the
refinement steps, we can just apply the classical formula for approximating the numerical accuracy,

Ol = log2

✓
El

El+1

◆
,

using the infinity norm El = ||f l � f̃ l||L1 , where we have denoted the grid refinement step with
the super index l.

Experiment 1: a function with a jump discontinuity

For this first experiment we have chosen the function in (3.68), which corresponds to a function
with jumps in the function and the first four derivatives:

f(x) =

⇢
(x� ⇡

6 )(x� ⇡
6 � 3)3 + 8 sin

�
⇡x
8

�
+ 10, if 0  x < ⇡

6 ,
8 sin

�
⇡x
8

�
, if ⇡

6  x  1.
(3.68)

In this case, we assume that we know the location of the discontinuity, but we approximate
the jumps in the function and the derivatives using one-sided interpolation [49].

In this experiment we have set the relation between the high resolution data and the nodes to
h1
h0

= 32, which means that we take one point of every 32 points of the high resolution data to
obtain the low resolution data, i.e. the nodes of the spline. Thus, the low resolution nodes have
been sampled with m = 2l nodes and the high resolution data with 32m points. The results are
shown in Table 3.1 for the interpolation of the spline at the high resolution data obtained from the
low resolution data, in Table 3.2 for the first order derivative at the nodes and in Table 3.3 for the
second order derivative at the high resolution data points. We can see that the accuracy obtained
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by the corrected spline between the nodes tends to O(h4) when h goes to zero and to O(1) for
the classical spline. The accuracy of the first order derivative at the nodes tends to O(h3) for the
corrected spline and to O(1/h) for the classical one. The accuracy of the second order derivative
at the high resolution data tends to O(h2) for the corrected spline and to O(1/h2) for the classical
one. These results have been also presented in Figure 3.4, in a semilogarithmic scale in order to
show the numerical decreasing of the error and to compare it with the theoretical one, which has
been represented with dashed blue lines. In the plot to the left of this figure we can see the errors
obtained by the classical spline (stars in red) and by the corrected spline (stars in blue) at the
high resolution nodes. The slope of the dashed lines represents the decreasing of the error of the
classical spline with order of accuracy O(1) and with O(h4) for the corrected spline. At the center
we present the errors in the first order derivatives at the low resolution nodes (resulting from the
solution of the system of equations of the spline) for each spline with the same markers. The
slope of the dashed lines represent again the decreasing of the error for the classical spline with
O
�
1
h

�
accuracy and with O(h3) for the corrected spline. The plot to the right shows the errors

obtained in the second order derivative at the high resolution nodes. In this case, the slope of the
dashed lines represents the decreasing of the error for the classical spline with O

�
1
h2

�
accuracy and

with O(h2) for the corrected spline. In Subsection 3.7.2 we show that the loss of accuracy of the
classical approach is due, among other things, to Gibbs-like oscillations close to the discontinuity.

m = 2l 24 25 26 27 28 29 210

Error adapted spline (El) 5.54491e-05 1.19648e-05 3.51535e-07 3.59957e-09 2.24858e-10 1.40403e-11 8.81073e-13
Order (ln(El/El+1)) - 2.21237 5.08898 6.60970 4.00073 4.00137 3.99417

Error classical spline (El) 6.71264 7.41233 5.07078 9.78913 9.79239 9.31633 8.77116
Order (ln(El/El+1)) - -0.14305 0.54772 -0.94897 -0.00048 0.07190 0.08700

Table 3.1: Grid refinement analysis for the accuracy of the corrected and classical splines using the
infinity norm at the high resolution nodes. The original data has been sampled from the function
in (3.68). The low resolution nodes have been sampled with m = 2l nodes and the high resolution
data with 32m points.

m = 2l 24 25 26 27 28 29 210

Error 1st order derivative corr. spline (El) 1.47381e-03 1.83664e-04 2.29231e-05 2.86321e-06 3.57760e-07 4.47014e-08 5.59032e-09
Order (ln(El/El+1)) - 3.00440 3.00220 3.00110 3.00057 3.00060 2.99932

Error 1st order derivative class. spline (El) 1.03645e+02 2.11761e+02 4.10360e+02 8.07729e+02 1.61958e+03 3.24326e+03 6.49063e+03
Order (ln(El/El+1)) - -1.03078 -0.95445 -0.97698 -1.00367 -1.00183 -1.00091

Table 3.2: Grid refinement analysis for the accuracy of the first order derivative at the low res-
olution nodes of the corrected and classical splines using the infinity norm. The original data
has been sampled from the function in (3.68). The low resolution nodes have been sampled with
m = 2l nodes and the high resolution data with 32m points.
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m = 2l 24 25 26 27 28 29 210

Error 2nd order derivative corr. spline (El) 1.26490e-01 4.28426e-02 1.73353e-02 4.33295e-03 1.07375e-03 2.63758e-04 6.30744e-05
Order (ln(El/El+1)) - 1.56191 1.30533 2.00029 2.01270 2.02537 2.06409

Error 2nd order derivative class. spline (El) 5.45724e+03 2.22944e+04 9.00877e+04 3.54527e+05 1.40653e+06 5.60307e+06 2.23662e+07
Order (ln(El/El+1)) - -2.03044 -2.01465 -1.97649 -1.98818 -1.99407 -1.99703

Table 3.3: Grid refinement analysis for the accuracy of the second order derivatives at the high
resolution nodes of the corrected and classical splines using the infinity norm. The original data
has been sampled from the function in (3.68). The low resolution nodes have been sampled with
m = 2l nodes and the high resolution data with 32m points.

Experiment 2: a function with a discontinuity in the derivatives

For the second experiment we have chosen the function in (3.69)

f(x) =
���sin

⇣
x� ⇡

6

⌘��� , 0  x < 1, (3.69)

which corresponds to a function with jumps in the odd derivatives. In this case, we approximate the
location of the singularity withO(h4) accuracy using the algorithm in [50], and we also approximate
the jumps in the function (which in this case is zero) and the derivatives [49]. Following the same
setting as in the previous experiment, the results are shown in Table 3.4 for the interpolation of
the spline, in Table 3.5 for the first order derivatives at the nodes and in Table 3.6 for the second
order derivative of the spline at the high resolution data points. It can be observed that with
the corrected spline we are capable of obtaining high resolution approximations of the function,
the first and the second order derivatives, while with the classical spline the approximations are
a↵ected by the presence of the singularity. These results have been presented in Figure 3.5, where
the slope of the dashed blue lines represent again the theoretical decreasing of the error for each
case. In this figure we represent the results of the grid refinement analysis for the accuracy of the
corrected and classical splines and their first and second order derivatives using the infinity norm
shown in Tables 3.4, 3.5 and 3.6.

m = 2l 24 25 26 27 28 29 210

Error adapted spline (El) 6.59827e-07 2.78771e-08 1.15987e-09 7.37090e-11 4.64462e-12 2.91434e-13 1.83187e-14
Order (ln(El/El+1)) - 4.56494 4.58705 3.97597 3.98821 3.99432 3.99178

Error classical spline (El) 1.86023e-02 7.32441e-03 5.24429e-03 1.32151e-03 6.43286e-04 3.04237e-04 1.40813e-04
Order (ln(El/El+1)) - 1.34469 0.48196 1.98856 1.03865 1.08026 1.11141

Table 3.4: Grid refinement analysis for the accuracy of the corrected and classical splines using the
infinity norm at the high resolution nodes. The original data has been sampled from the function
in (3.69). The low resolution nodes have been sampled with m = 2l nodes and the high resolution
data with 32m points.
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Figure 3.4: In this figure we represent the results of the grid refinement analysis for the accuracy
of the corrected and classical splines and their first and second order derivatives using the infinity
norm shown in Tables 3.1, 3.2 and 3.3. The original data has been sampled from the function in
(3.68). In the first row we show the error El for the corrected and classical spline, in the second
one we show the error for the first order derivative, and finally, the error for the second order
derivative. The x axis represents de resolution level l: the increase of l implies the reduction of
the grid-spacing of the low resolution data. Thus, the slope of the dashed lines represents the
accuracy of each method.
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Figure 3.5: In this figure we represent the results of the grid refinement analysis for the accuracy
of the corrected and classical splines and their first and second order derivatives using the infinity
norm shown in Tables 3.4, 3.5 and 3.6. The original data has been sampled from the function
in (3.69). As in Figure 3.4, in the first row we show the error El for the corrected and classical
spline, in the second one we show the error for the first order derivative, and finally, the error for
the second order derivative. The x axis represents de resolution level l: the increase of l implies
the reduction of the grid-spacing of the low resolution data. Thus, the slope of the dashed lines
represents the accuracy of each method.
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m = 2l 24 25 26 27 28 29 210

Error 1st order derivative corr. spline (El) 2.66070e-05 3.57412e-06 4.61924e-07 5.86765e-08 7.39272e-09 9.27689e-10 1.16387e-10
Order (ln(El/El+1)) - 2.89614 2.95186 2.97680 2.98861 2.99439 2.99471

Error 1st order derivative class. spline (El) 5.42186e-01 6.68854e-01 3.73696e-01 9.94572e-01 9.68398e-01 9.16048e-01 8.11350e-01
Order (ln(El/El+1)) - -0.30290 0.83983 -1.41221 0.03848 0.08018 0.17510

Table 3.5: Grid refinement analysis for the accuracy of the first order derivative at the nodes of
the corrected and classical splines using the infinity norm. The original data has been sampled
from the function in (3.69). The low resolution nodes have been sampled with m = 2l nodes and
the high resolution data with 32m points.

m = 2l 24 25 26 27 28 29 210

Error 2nd order derivative corr. spline (El) 1.67571e-03 4.48916e-04 1.15908e-04 2.94324e-05 7.41473e-06 1.86069e-06 4.66252e-07
Order (ln(El/El+1)) - 1.90025 1.95346 1.97751 1.98894 1.99455 1.99666

Error 2nd order derivative class. spline (El) 3.78943e+01 4.14111e+01 2.14565e+02 4.26291e+02 8.41072e+02 1.63595e+03 3.08695e+03
Order (ln(El/El+1)) - -0.12804 -2.37332 -0.99043 -0.98039 -0.95982 -0.91606

Table 3.6: Grid refinement analysis for the accuracy of the second order derivatives at the high
resolution nodes of the corrected and classical splines using the infinity norm. The original data
has been sampled from the function in (3.69). The low resolution nodes have been sampled with
m = 2l nodes and the high resolution data with 32m points.

3.7.2 Elimination of the Gibbs phenomenon using adapted first order deriva-
tives

In this section we will analyse the behaviour of the corrected spline, the classical spline with
corrected first order derivatives and the classical spline close to discontinuities. In order to do so,
we will use the function in (3.68), which presents a jump discontinuity. As in Subsection 3.7.1,
we assume that we know the location of the discontinuity for this function, but we approximate
the jumps in the function and the derivatives using one-sided interpolation [49]. The results of
the experiments are shown in Figure (3.6). In the first row, we present the approximation (red
circles) of the function in (3.68) sampled with a high resolution of 256 points (blue crosses) and
then subsampled to obtain 16 points (solid black circles) in order to obtain the low resolution
data. We can see that the classical spline (first row, plot to the left) shows Gibbs oscillations close
to the discontinuity. If we correct the first order derivatives of the spline and we do not use any
correction for the spline itself (first row, central plot), we obtain an approximation that is free of
oscillations close to the discontinuity, but that presents di↵usion in the interval that contains the
discontinuity. If we use the corrected first order derivatives and we also correct the approximation
of the spline close to the discontinuity (first row, plot to the right), we can obtain a piecewise
continuous function without oscillations close to the discontinuity. The second row of Figure 3.6
shows the error obtained in the computation of the first order derivatives at the low resolution
nodes for each spline: to the left we show the result of the classical spline and at the center and to
the right, the error for corrected first order derivatives (which are the same both for the classical
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spline with corrected first order derivatives and for the corrected spline). The third row shows
the error at the high resolution nodes attained by each of the splines in the same order. From
these plots we can see that the use of corrected first order derivatives leads to the elimination
of the Gibbs oscillations close to the discontinuities. If we also correct the interpolation of the
spline, it is possible to obtain a piecewise continuous function with high accuracy even close to
the discontinuities.

3.7.3 Regularity

In this subsection we will analyse the behaviour of the first and second order derivatives between
the nodes for the classical spline, the classical spline with corrected first order derivatives and
the corrected spline with corrected first order derivatives. As before, for the function in (3.68),
we assume that we know the location of the discontinuity, and, for the function in (3.69), we
approximate the location of the singularity with O(h4) [50]. In both cases we approximate the
jumps in the function and the derivatives using one-sided interpolation [49]. Figures 3.7 and 3.8
show the results obtained for the functions in (3.68) and (3.69) respectively. In both figures, the
approximation of the first order derivative of the functions is shown in the first column, and the
approximation for the second order derivatives is shown in the second column. Functions in (3.68)
and (3.69) are sampled with 16 points to obtain the low resolution data. Then, each polynomial
piece of the spline is di↵erentiated once or twice to obtain the results shown in Figures 3.7 and 3.8.
We have represented some points of the first or the second order derivative of the function with
blue dots. The stars represent a sampling of the first or the second order derivatives of each one
of the polynomial pieces of the spline g(x). Each polynomial piece is represented with a di↵erent
colour. Our objective is just to compare qualitatively the first and second order derivatives of
the functions, and the approximations obtained through each spline. In each of the two figures,
the first row presents the result for the classical spline, and the second row shows the result for
the classical spline with corrected first order derivatives. Finally, the third row shows the results
for the corrected spline with corrected first order derivatives. It is clear that the classical spline
introduces oscillations in the first and the second order derivatives close to the singularities, but
maintains the C2 regularity in the whole domain. The results also show that the modification of
the right hand side of the system of equations of the spline in (3.33) eliminates the oscillations
in the function outside the interval that contains the singularity, but leads to the loss of the
regularity in the second order derivative if the spline is not corrected, as discussed in Corollary 4.
Only the corrected spline with corrected first order derivatives, discussed in Section 3.5, allows for
the elimination of the oscillations and keeps the correct piecewise regularity of the function from
which the data has been obtained.

3.8 Conclusions

In this chapter we have presented a new technique that allows for the correction of the first order
derivatives and the approximation obtained through cubic Hermite splines close to singularities.
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Figure 3.6: In the first row, we present the reconstruction or approximation g(x) of the function in
(3.68) with red circles. Initially we sample the function at a high resolution of 256 points and we
represent it with blue crosses. Then we subsample the data to obtain a low resolution version of
16 points, and we represent it with solid black circles. The second and third row are dedicated to
present the error in the first and second order derivatives, respectively. The first column presents
the results of the classical cubic Hermite spline, the second one presents those obtained by the
classical cubic Hermite spline with corrected first order derivatives. Finally, the third one presents
the results attained by the corrected cubic Hermite spline with corrected first order derivatives.
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Figure 3.7: Approximation of the first order derivative (first column), and second order derivative
(second column) of the function in (3.68) sampled with 16 points to obtain the low resolution data.
The blue dots represent the first or the second order derivative of the function. The coloured stars
represent the first or the second order derivatives of the polynomial pieces of the spline g(x). Each
colour of the stars represents a di↵erent polynomial piece of the spline. The first row presents
the result for the classical spline. The second row shows the result for the classical spline with
corrected first order derivatives. The third row shows the results for the corrected spline with
corrected first order derivatives.
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Figure 3.8: Approximation of the first order derivative (first column) and second order derivative
(second column) of the function in (3.69) sampled with 16 points to obtain the low resolution data.
The blue dots represent the first or the second order derivative of the function. The coloured stars
represent the first or the second order derivatives of the polynomial pieces of the spline g(x). Each
colour of the stars represents a di↵erent polynomial piece of the spline. The first row presents
the result for the classical spline. The second row shows the result for the classical spline with
corrected first order derivatives. The third row shows the results for the corrected spline with
corrected first order derivatives.
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The technique consists in taking into account the e↵ect introduced by the singularity by adding
correction terms, in order to assure a high order of accuracy close to the singularities. The
correction can be included in the right hand side of the system of the spline, allowing for its
application as a post-processing. It has been shown theoretically that the correction of the first
order derivatives eliminates the Gibbs phenomenon introduced by the classical spline close to jump
discontinuities. Through the correction introduced in the system of equations of the spline, we
obtain accurate first order derivatives even close to the singularities. Thus we have also discussed
the theoretical accuracy in the infinity norm obtained through the correction of the first order
derivatives. Even so, di↵usion is always present in the interval that contains a jump discontinuity
if we only correct the first order derivatives of the spline. If the correction is also introduced
in the equation of the spline (3.1) in the interval that contains the singularity, it is possible to
approximate accurately piecewise continuous functions. Proofs for the accuracy attained through
the corrected spline in the infinity norm have been provided. The new technique requires the
knowledge of the location of the singularities and the jumps in the function and its derivatives at
the singularities, or high order of accuracy approximations. We have also discussed the order of
accuracy needed in the approximated location of the singularity to keep the order of the spline.
The numerical experiments confirm the theoretical results obtained.
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Chapter 4

Image super resolution

It is important to mention here that the super resolution topic was the starting point of this thesis.
Then, we continued with the other two paths of research presented in the previous chapters, which
successfully led us to obtain enough results for the conclusion of this work. In this part of the
thesis, we briefly expose the line of research that we followed at that stage.

4.1 Introduction

Super resolution, within the context of Harten’s multiresolution algorithms, is a powerful technique
for enhancing the quality and detail of images or data. Operating within Harten’s framework, super
resolution aims to improve the resolution of data by incorporating information from various scales
in the multiresolution process. This is achieved through data-dependent reconstruction operators,
enabling the generation of more precise and detailed representations of the data, especially in
areas with abrupt changes or singularities. The adaptability of Harten’s multiresolution approach
allows for the design of super resolution methods to specific problems or dataset requirements,
making them particularly e↵ective enhancing data quality in applications such as image processing
or signal processing. We will center our attention in the super resolution of images using a specific
prediction operator. We will start by introducing the Harten’s framework for multiresolution and
then explain how we have used it to try to create a super resolution algorithm based on this
framework.

In recent years, the research carried out in signal processing, and more particularly, in problems
of compression, denoising, pattern recognition and others, has made this field one of the most
studied in the area of Applied Mathematics. A common problem in approximation theory is the
reconstruction of a function from a set of discrete data that give information about the function
itself. This information is usually given as point values or cell averages of the function over a
finite set of points or cells, respectively. The function is then approximated by an interpolant,
that is, by another function whose point values or cell averages coincide with those of the original
function. This interpolant can be constructed using linear interpolation or even more sophisticated

78



procedures that take into account the presence of discontinuity points in the data. In the first
case, the accuracy of the approximation near a singularity is limited and depends on the regularity
of the data, so that if we construct the interpolating polynomial based on a set of points (stencil)
crossing the singularity, we will obtain a poor approximation. The second approach aims to solve
or at least reduce these problems.

In the past years, several attempts to improve the properties of linear subdivision schemes
have given rise to nonlinear subdivision schemes, which study the behavior of functions close to
discontinuities. These schemes are data-dependent, so it is necessary to study their stability, which
may be a↵ected by perturbations that are present in the data. For nonlinear subdivision schemes,
few general convergence or stability results are available, see for example [56, 57, 58, 59, 60, 61].
Starting with a discrete set of data, subdivision schemes generate new data by following a set
of well-established rules, and thus, obtaining another new set of data denser than the previous
one. This process can be repeated several times in order to refine the original data sequence.
Some examples of subdivision schemes are the family of schemes based on Lagrange interpolation,
the family of spline subdivision schemes related to spline spaces, the Chaikin algorithm, which is
another example of a spline subdivision scheme converging to C2 functions, the ENO interpolation
[62, 63, 64, 65, 66, 67, 68, 57, 69, 70], improved by the WENO (weighted ENO) interpolations
[70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91], as well as the
PPH interpolation [56]. Some of these algorithms could be adapted to construct super resolution
algorithms.

In the construction of subdivision schemes, the application of the rules which allow us to
create, from an initial fixed set of points, another denser set, also allows us to carry out seve-
ral zoom stages, and thus successive enlargements of the image. The subdivision schemes can
be interpreted from the prediction operator that appears in Harten’s multiresolution. Harten’s
multiresolution [92] is a very e�cient tool for image processing. The goal of multiresolution is
to obtain a multi-scale rearrangement of the information contained in a discrete data set. To
perform the transformation between the di↵erent levels of multiresolution, we use the decimation
and prediction operators. The prediction operator is the one we use to zoom, since it increases
the resolution of the initial data set. The prediction and decimation operators are closely related
to the reconstruction and discretisation operators, which connect the di↵erent discrete levels of
resolution to a suitable functional space, which depends on the applications. The feature that
makes Harten’s multiresolution more attractive than other techniques is the fact that it easily
allows the introduction of non-linearity in the schemes.

In what follows, we introduce Harten’s framework for multiresolution and then we explain very
briefly how to use it to construct a super resolution algorithm.

4.2 Harten’s framework for multiresolution

Digital image processing can benefit from multiresolution representations of data. The cell-average
setting is a common framework for these applications. To adapt well to singularities, nonlinear
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methods are desirable. Therefore, one has to ensure the stability of these representations. A
discussion about Harten’s multiresolution can be found in [92, 93, 94].

Given a data vector fL where L represents a resolution level, a multiresolution representation
of fL is any sequence of the type {f0, d1, . . . , dL} where fk is an approximation of fL at resolution
level k < L, and dk+1 represents the details required to obtain fk+1 from fk. This representation
is then processed and modified to produce a new multi-scale representation {f̂0, d̂1, d̂2, . . . , d̂L}
that is close to the original one, i.e. such that (in some norm)

||f̂0 � f0||  ✏0 ||d̂k � dk||  ✏k 1  k  L,

where the user specifies the truncation parameters ✏0, ✏1, . . . , ✏L according to some criteria. The
simplest data compression procedure is to set to zero all the scale coe�cients that are below a
given tolerance. We define

d̂k = tr(dk; ✏k) =

(
0 |dk|  ✏k,

dk otherwise.
(4.1)

We call this operation truncation. This type of data compression mainly reduces the dimensionality
of the data, eliminating part of the information contained in the original data. Another strategy,
which reduces the digital representation of the data, is quantization, which can be modelled by

d̂k = qu(dk; ✏k) = 2✏k · round


dk

2✏k

�
. (4.2)

Here round [·] means the integer obtained by rounding. Note that if |dk| < ✏k then qu( dk; ✏k) = 0
and that the following expression holds for both cases

|dk � d̂k|  ✏k.

When we decode the processed representation, we get a discrete set f̂L that is supposed to be
close to the original discrete set fL. For this to happen, some kind of stability is necessary, i.e.
we have to demand that

||f̂L � fL||  �(✏0, ✏1, . . . , ✏L),

where �(·, . . . , ·) has the following property

lim
✏l!0, 0lL

�(✏0, ✏1, . . . , ✏L) = 0.

Wavelet decompositions serve as fundamental tools commonly employed in image analysis and
compression. While these decompositions are known for their stability, it’s important to note
that the underlying theory is built upon their linearity. Nevertheless, the e↵ectiveness of wavelet
decompositions in image compression is frequently constrained by the existence of discontinuities
or edges. On one hand, the detail coe�cients dk that hold numerical significance are primarily
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associated with wavelet supports that intersect these discontinuities. On the other hand, in order
to capture only a small number of significant coe�cients in the smoother parts of the signal, it re-
quires the use of highly oscillating wavelets, which inherently have larger supports. Consequently,
this results in a greater number of significant coe�cients associated with discontinuities. Harten’s
framework for multiresolution o↵ers a well-suited environment for crafting discrete multiresolution
representations, as discussed in [92, 95], and [96]. In this framework, discrete resolution levels are
connected through inter-resolution operators known as decimation (transitioning from fine resolu-
tion k to coarser resolution k� 1) and prediction (transitioning from coarser to finer resolutions).
These inter-scale operators have a direct correlation with the discretization and reconstruction
processes. These processes bridge the continuous level, where a function denoted as f (and related
to the discrete data) lives, to each discrete level, where fk is placed. Both decimation and predic-
tion operators act within linear vector spaces represented as V k, each of which signifies di↵erent
resolution levels. Notably, as k increases, the resolution becomes finer:

D
k�1
k : V k ! V k�1 (4.3)

P
k
k�1 : V

k�1 ! V k (4.4)

They must meet two algebraic prerequisites:

1. D
k�1
k must be a linear operator.

2. D
k�1
k P

k
k�1 = IV k�1 (consistency), where IV k�1 is the identity operator at the lower-resolution

level. This condition simply means that if we decimate the data obtained through the
prediction operator, we must obtain the original data from which we started.

One of the most significant strengths of Harten’s framework lies in its adaptability. The role
played by the reconstruction operator enables the implementation of adaptive techniques specifi-
cally created for handling singularities. In most cases, these techniques involve the use of data-
dependent reconstruction operators, resulting in non-linear prediction methods and consequently
leading to non-linear multiresolution decompositions (as discussed in [95] and [96]).

A significant advance towards non-linear adaptation near singularities has been made possible
by the Essentially Non Oscillatory (ENO) reconstruction methods, which have been detailed in
[95] and [92]. When considering image examples, such as those in [67, 97], and [98], it becomes
evident that non-linear processing allows for a more finely-tuned treatment of edges. Specifically,
this approach ensures that edges do not yield as many prominent detail coe�cients as is typical
in standard wavelet transforms.

4.3 The Cell-average Multiresolution Setting

A discussion about this kind of discretization can be found in [92, 99]. We consider a set of nested
grids in [0, 1]:
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Xk = {xkj }
Jk
j=0, xkj = jhk, hk = 2�k/J0, Jk = 2kJ0,

where J0 is a fixed integer. We employ the discretization process defined as:

Dk : L1[0, 1] ! V k, fk
j = (Dkf)j =

1

hk

Z xk
j

xk
j�1

f(x)dx, 1  j  Jk, (4.5)

where L1[0, 1] represents the space of functions in [0, 1] with finite integrals, and V k is the space of
sequences with Jk elements. Using the additivity of the integral, we obtain the decimation steps:

fk�1
j = (Dk�1

k fk)j =
1

hk�1

Z xk�1
j

xk�1
j�1

f(x)dx =
1

2hk

Z xk
2j

xk
2j�2

f(x)dx =
1

2
(fk

2j�1 + fk
2j).

The consistency requirement for P
k
k�1 can be expressed as:

fk�1
j = (Dk�1

k P
k
k�1f

k�1)j =
1

2
((Pk

k�1f
k�1)2j�1 + (Pk

k�1f
k�1)2j).

Thus, if fk�1 = D
k�1
k fk, then the prediction errors can be obtained from the last two equations

and satisfy:
dk2j�1 = fk

2j�1 � (Pk
k�1f

k�1)2j�1 = (Pk
k�1f

k�1)2j � fk
2j = �dk2j .

This indicates that the prediction error contains some redundancy.
Now, if we only consider the prediction errors at, for example, the odd points of the grid Xk,

we achieve a one-to-one mapping:

fk�1
j =

fk
2j + fk

2j�1

2
, dkj = fk

2j�1 � (P k
k�1f

k�1)2j�1,

fk
2j�1 = (P k

k�1f
k�1)2j�1 + dkj , f

k
2j = 2fk�1

j � fk
2j�1. (4.6)

We can proceed to consider the primitive function and follow the same procedure as before: We
consider the sequence {F k

j } on the k-grid defined by

F k
j = hk

jX

i=1

fk
i =

Z xk
j

0
f(x)dx = F (xkj ) ) fk

j =
F k
j � F k

j�1

hk
, (4.7)

where the function F (x) is a primitive of f(x) and the sequence {F k
j } is a discretization by point-

values of F (x) on the grid Xk (a sampling of F (x) on that grid).
Let Ik�1(x;F k�1) be a reconstruction of F

Ik�1(x
k�1
j ;F k�1) = F k�1

j .
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Hence, we can obtain an approximation, f̃k
j , of f

k
j :

f̃k
j = (Ik�1(x

k
j , F

k�1)� Ik�1(x
k
j�1, F

k�1))/hk. (4.8)

The prediction error follows the expression

0 =
"k2j�1 + "k2j

2
,

therefore, we can define the details as

dkj = "k2j�1, 1  j  Jk�1,

then, we have all the information we need because

"k2j�1 = dkj , 1  j  Jk�1,

"k2j = �dkj , 1  j  Jk�1.

Now, knowing that P k
k�1 is the prediction operator, we get

fk
2j�1 = (P k

k�1f
k�1)2j�1 + dk�1

j . (4.9)

A nonlinear multiresolution results from a nonlinear interpolation. To get an adapted nonlinear
multiresolution in the cell-average framework we can apply nonlinear schemes to the primitive
function. In the linear case we get back biorthogonal wavelet algorithms [100].

We will generally consider the family of prediction operators defined by

(P k
k�1f

k�1)2j�1 = fk�1
j + F (�fk�1

j , �fk�1
j+1 ), (4.10)

where � is a linear operator but F can be nonlinear.
The cell-average framework has L1 as the natural functional space, which makes this setting

more appropriate for image processing applications than the point-values framework, where the
functional space is the continuous functions. We will use this framework to build our super
resolution algorithm. In the following section, we explain the relation between multiresolution
and subdivision schemes.

4.4 Relationship between multiresolution schemes and subdivi-
sion schemes (zoom)

If in these multiresolution algorithms, we focus only on the signal decoding stage or ascending
through the multiresolution pyramid, what we have is a subdivision scheme. Therefore, a subdi-
vision scheme S is defined through the prediction operator P k

k�1 that is used. In this case, for a
discrete sequence, it is defined as:

fk = Sfk�1 = P k
k�1f

k�1.
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In the case of interpolation, where the discretization is given by values of a function on a grid,
the subdivision scheme takes the form:

fk = Sfk

⇢
fk
2j = (Sfk�1)2j = fk�1

j 1  j  Jk�1,
fk
2j�1 = (Sfk�1)2j�1 = Ik�1(xk2j�1; f

k�1) 0  j  Jk�1.
(4.11)

In this case, the fact that reconstructions are equivalent to interpolations simplifies their design
significantly, especially when we consider that the most common interpolations are of polynomial
kind.

4.5 Towards a super resolution algorithm

Firstly, it is necessary to mention that in order to apply a super resolution algorithm, two or more
images are needed at a resolution lower than the one we want to reconstruct [101]. In addition,
these images must be the result of a registration in which the pixel spacing between the two images
must be less than 1 pixel [101]. In our case, we will obtain these low-resolution images from a
high-resolution image.

To do this, we will choose the pixels located at positions (2n + 1, 2n + 1) for the first image
and the pixels located at positions (2n, 2n) for the second image. Figure 4.1 shows an example
for a high-resolution image of 8 ⇥ 8 pixels. Once we have two or more low-resolution images, it
is necessary to know the pixel spacing existing between the mentioned low-resolution images and
the high-resolution image. In our case, we assume that two pixels located in the same position
in the low-resolution images are spaced 0.5 pixels in diagonal direction. To perform the super
resolution process it is necessary to obtain the multiresolution pyramid of both images, and then
to interpolate the values of the coe�cients and the details of the matrix. For the interpolation, we
used tensor product and some linear and non linear algorithms, like the Lagrange interpolation,
the PPH scheme or the ENO method in the point values and the cell averages.

The results obtained were not completely satisfactory, so we gave preference to the other lines
of research that we have presented in previous chapters. This line of research remains opened as
possible future work.
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Figure 4.1: High resolution mesh where two low resolution images have been placed (represented
by large black dot and large white dot) separated by 0.5 pixels in diagonal direction. The points
where we do not have information from the two low-resolution images are represented by a small
black dot.
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Chapter 5

Conclusions and future works

5.1 Conclusions

In this thesis we have designed and analyzed some numerical methods that try to handle with the
presence of discontinuities in the data. As mentioned in the introduction, we have fundamentally
explored two approaches: classical approximations plus correction terms and multiresolution al-
gorithms. Our research has lead us to propose three nonlinear algorithms that we have included
in the previous chapters of this document. More especifically:

• In Chapter 2 we have introduced correction terms for classical numerical integration me-
thods such as the trapezoid rule, Simpson’s 1

3 rule, and various Newton-Cotes formulas.
These correction terms are given through explicit closed formulas, ensuring the preservation
of global accuracy when the data is smooth, but also when the underlying data contains
discontinuities in either the function or its derivatives. Notably, these correction terms
can be added to both simple and composite rules of classical integration formulas, o↵ering
the possibility of using the new technique as a post-processing to enhance accuracy. It is
possible to extend the results obtained in our study to other integration rules following a
similar process. Furthermore, we have provided correction terms for other Newton-Cotes
quadrature formulas, assuring that their application guarantees the expected theoretical
accuracy. We have found that the correction terms presented depend on the jumps in the
function to be integrated and its derivatives. The empirical validation through numerical
experiments has corroborated the theoretical findings.

• In Chapter 3 we introduced a novel technique for correcting the first-order derivatives and
approximations obtained using cubic Hermite splines near singularities. This method is
based on the use of correction terms to take into account the influence of singularities in
the approximation, ensuring a high level of accuracy in their vicinity. These corrections can
be included into the spline’s system of equations, making it suitable for post-processing a-
pplications. The theoretical analysis demonstrates that correcting the first-order derivatives
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e↵ectively eliminates the Gibbs phenomenon typically associated with classical splines near
jump discontinuities. By introducing corrections directly into the spline equation within the
singularity’s interval, accurate first-order derivatives can be achieved even close to the sin-
gularities. The Chapter also explores the theoretical accuracy in the infinity norm resulting
from the correction of the first-order derivatives. However, it’s important to note that some
di↵usion is still present in intervals containing jump discontinuities if only the first-order
derivatives are corrected. When corrections are applied to the spline equation within the
discontinuity interval, the technique becomes capable of accurately approximating piece-
wise continuous functions. Implementing this new technique imposes the knowledge of the
singularity locations, along with information regarding the jumps in the function and its
derivatives at those singularities. The accuracy of the corrected spline in the infinity norm
is supported by theoretical proofs. The article also addresses the required order of accu-
racy for approximating singularity locations while maintaining the spline’s order. Numerical
experiments validate the theoretical findings presented in this chapter.

• Chapter 4 focuses on the creation of nonlinear algorithms for super resolution using multi-
resolution, with a particular emphasis on the use of Harten’s framework. In the context of
Harten’s multiresolution algorithms, super resolution is a possible application for improving
the quality and detail of images or data. Usually, these algorithms are designed to achieve
higher data resolution by incorporating information from various scales during the multi-
resolution process, aided by data-dependent reconstruction operators. This adaptability
allows the customization of super resolution methods to specific problem or dataset needs,
particularly beneficial for applications like image or signal processing. The chapter introduces
Harten’s multiresolution and explains how we started this thesis trying to develop a super
resolution algorithm within this framework.

5.2 Future lines of research

The findings presented in this thesis leave some open paths for future research in the context of
numerical methods and approximation techniques. One possible direction is the extension of the
correction techniques introduced here to a broader spectrum of numerical methods. For instance,
it is challenging to design correction terms for alternative approximation techniques, including
other kinds of splines, subdivision schemes, or entirely di↵erent techniques such as methods to
approximate the solution of ordinary di↵erential equations (ODEs). The exploration of these
possible paths can lead to some extensions of the methods proposed here and to more analysis,
that we might continue in the future. Another possible direction for future research lies in the
further exploration and advancement of super resolution techniques within the context explained
in Chapter 4. The potential for enhancing the quality and detail of images or data using Harten’s
multiresolution framework is still something that can be explored. Using non linear algorithms to
process the multiresolution pyramid, there are possibilities of finding paths of research that allow
to refine and expand these methods, optimizing their performance and adaptability.
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[71] F. Aràndiga, A. Baeza, A. M. Belda, P. Mulet, Analysis of WENO schemes for full and global
accuracy, SIAM J. Numer. Anal. 49 (2) (2011) 893–915.
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