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Abstract

The aim of this paper is to give sufficient conditions on area-preserving flows
that guarantee the existence of dense orbits. We also answer a question by
M. D. Hirsch, [1]. The results of this work are a generalization of the ones
in [1] and [2].
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1. Introduction

Let S be a surface, that is, a second countable Hausdorff topological
space which is locally homeomorphic to the plane. We recall that S admits
an analytic structure which is unique up to diffeomorphisms, see [3, 4], [5,
Example 3.1.6] and [6, p. 16]. A continuous map Φ : R×S → S is a flow on
S when the following properties hold:

(a) Φ(0, u) = u for any u ∈ U ;
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(b) Φ(s, Φ(t, u)) = Φ(s + t, u) for any s, t ∈ R.

If moreover Φ is Cr-class (resp. smooth, analytic) then Φ is said to be a Cr

(resp. smooth, analytic) flow. Let u ∈ S, then the map Φu : R→ S is defined
by Φu(t) = Φ(t, u) and the orbit of u is Ou = Φu(R). When Ou = {u} u is
called a singular point; otherwise u is regular. If Φu is a periodic nonconstant
map the orbit of u is periodic. The set of singular points from the flow Φ is
denoted by Sing(Φ).

A set A ⊂ S is said to be invariant if Φ(R × A) = A. The ω-limit set
of u is defined by ωΦ(u) = {v ∈ S : ∃(tn)∞n=1 → +∞; (Φu(tn))∞n=1 → v}
and the α-limit set of u is similarly defined by αΦ(u) = {v ∈ S : ∃(tn)∞n=1 →
−∞; (Φu(tn))∞n=1 → v}, both sets are closed and invariant and if S is compact
they are also connected.

The Riemann structure on S induces a corresponding Lebesgue measure µ
with a smooth density function (in particular, µ is positive on any open set of
S). We assume that µ is normalized. Φ is an area-preserving flow (or µ is Φ-
invariant) if for any measurable set A ⊂ S we have µ(A) = µ(Φ({t}×A)) for
any t ∈ R. Our interest is to give sufficient conditions on an area-preserving
flow for having dense orbits. In particular we generalize the following result.

Theorem 1 (M.D. Hirsch and H. Marzougui,[1, 2]). Let S be a com-
pact connected surface and let Φ : R × S → S be an area-preserving smooth
flow such that Sing(Φ) is totally disconnected. Then Φ has a dense orbit if and
only if Φ has not periodic orbits and Sing(Φ)}∪{x : ωΦ(x)∪αΦ(x) ⊂ Sing(Φ)}
does not separate S.

As usually for any U ⊂ S, Bd U and Int U respectively denote the topo-
logical boundary and the interior of U . Our main results are the two following
and generalize the previous one.

Theorem A. Let S be a compact connected surface and let Φ : R× S → S
be an area-preserving smooth flow. Φ has a dense orbit if and only if the
following statements hold:

1. Φ has not periodic orbits.
2. Int(Sing(Φ)) = ∅.
3. Sing(Φ) ∪ {x : ωΦ(x) ∪ αΦ(x) ⊂ Sing(Φ)} does not separate S.

Theorem B. Let S be a compact connected surface and let Φ : R× S → S
be an area-preserving analytic flow such that Sing(Φ) 6= S. Φ has a dense
orbit if and only if the following statements hold
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1. Φ has not periodic orbits.
2. Sing(Φ) ∪ {x : ωΦ(x) ∪ αΦ(x) ⊂ Sing(Φ)} does not separate S.

The flow Φ is said to be (topologically) transitive if it admits a dense
orbit. The study of transitive flows and what surfaces are transitive, i.e.
admit transitive flows, has a long tradition in the literature (see for instance
the bibliography in [7] and [8, 9, 10, 11]). It is worth emphasizing that a
complete characterization of transitive surfaces was obtained in the following
terms.

Two orientable circles on S are said to be a pair of crossing circles if they
intersect transversally at exactly one point.

Theorem 2 (Th. A from [8]). Let S be a connected surface. Then the
following statements are equivalent:

• S is transitive;

• S is not homeomorphic to S2 (the sphere), P2 (the projective plane),
nor to any surface in B2 (the Klein bottle);

• S contains a pair of crossing circles.

The flows constructed in the proof of the above theorem are smooth
provided that any surface admits smooth structure. It is also interesting to
remark that S2, P2 and B2 are not transitive.

If a flow Φ admits a dense orbit then there exists a dense Gδ set, D ⊂ S,
so that Ov is dense for any v ∈ D, see [2, 8]. M. D. Hirsch [1] asked if this
Gδ set is full measure or not; in the present note we answer this question as
follows.

Theorem C. Let S be a compact connected surface. Then the following
statements hold:

1. Let Φ : R × S → S be an analytical flow having a dense orbit. Then
µ({v : Ov is dense}) = 1.

2. If S 6= S2,P2 nor B2 then there exists a smooth flow Φ : R × S → S
having a dense orbit and so that µ({v : Ov is dense}) < 1.

The remainder of this work is divided in three sections. The first one
introduces some theorems about singular points and dynamical properties of
a flow. In Section 3 we prove Theorems A and B. Finally Section 4 is devoted
to the proof of Theorem C.
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2. Technical results

In this section we introduce notation and we prove some technical results.

2.1. Dynamic properties

A point u ∈ S is said to be recurrent if u ∈ ωΦ(u) or u ∈ αΦ(u). Singular
points and those from periodic orbits are examples of recurrent points, so
called trivial. All other recurrent points u are nontrivial. The closure of the
orbit from any nontrivial recurrent point is called quasi-minimal set. In the
following Rec(Φ) denotes the set of recurrent points of the flow Φ.

Theorem 3 (Poincaré recurrence theorem). Let Φ : R × S → S be an
area-preserving flow, then µ(Rec(Φ)) = 1

Proof. See [12, p. 141]. ¤

Proposition 4. Let Φ be a continuous flow on a compact connected surface
S and let u ∈ S. If ωΦ(u) or αΦ(u) contains a periodic orbit then it reduces
to this periodic orbit.

In particular, If Φ is topologically transitive then it does not admit periodic
orbits.

Proof. This follows from [13, p. 67, Proposition 7.11]. ¤

Proposition 5. Let Φ be a continuous flow on a compact connected surface
S and let u ∈ S so that Ou is nontrivial recurrent. If v ∈ ωΦ(u) one of the
two following possibilities occurs:

• ωΦ(v) = ωΦ(u);

• ωΦ(v) ⊂ Sing(Φ).

Proof. This result is equivalent to [14, Proposition 2.1] for orientable sur-
faces. It remains valid for non orientable ones by pulling-back the flow to
the orientable 2-covering. ¤
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2.2. Singularities of an analytic flow

By an r-star we mean a topological space R homeomorphic to {z ∈ C :
zr ∈ [0, 1]}, the homeomorphism maps 0 to a point p which is called the
vertex of the star and maps the r-roots of the unity to the endpoints of the
star. Any single point will be said to be a 0-star.

Theorem 6 (Th. 4.3 from [15]). Let Φ : R × S → S be an analytic flow
on a compact connected surface S such that Sing(Φ) 6= S and let u ∈ Sing(Φ).
Then Sing(Φ) is locally a 2n-star having u as its vertex for some nonnegative
integer n.

Corollary 7. Let S be a compact connected surface and Φ an analytic flow
on S. Then either Sing(Φ) = S or µ(Sing(Φ)) = 0.

Proof. If Sing(Φ) 6= S, use that S is compact and Sing(Φ) is closed to find
a finite open covering {Ui}k

i=1

⋃ {Vi}l
i=1, {k, l} ⊂ N, such that (i) Sing(Φ)∩Ui

is a 2ni-star for any 1 ≤ i ≤ k and some ni ∈ N; (ii) Sing(Φ)∩Vi = ∅ for any
1 ≤ i ≤ l.

Since Sing(Φ) ∩ Ui is a 2ni-star, µ(Sing(Φ) ∩ Ui) = 0. Thus

µ(Sing(Φ)) ≤
k∑

i=1

µ(Sing(Φ) ∩ Ui) = 0.

¤

3. Proofs of Theorems A and B

3.1. Proof of Theorem A

We begin by assuming that Ou is dense for some u ∈ S, then by Propo-
sition 4, Φ has not periodic orbits. Moreover it is clear that Int Sing(Φ) = ∅
and S1 = Sing(Φ)∪{x : ωΦ(x)∪αΦ(x) ⊂ Sing(Φ)} is invariant. Assume that
S1 separates S, then S\S1 has at least two (invariant) components, S1

1 and

S2
1 , the first one containing Ou; then S2

1 = Ou∩S2
1 ⊂ S1

1∩S2
1 , a contradiction.

Therefore S1 does not separate S.
We now prove the converse, we assume that Φ is an area-preserving

and satisfies the three conditions in the theorem. Use Theorem 3, that
Int Sing(Φ) = ∅ and the absence of periodic orbits to deduce the existence
of nontrivial recurrent points. Assume that Φ admits only empty interior
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quasiminimal sets, since these quasiminimal sets are only a finite number
[14], we label them by K1, K2, . . . , Kl. Let S ′ = S\(K1 ∪ K2 ∪ · · · ∪ Kl),
then it is clear that S ′ is open, non empty (otherwise, one of Ki have a non
empty interior, absurd), invariant and decomposes in connected components
{Ui}i∈I . Use hypothesis (1), (2) and Theorem 3 to assure the existence of
nontrivial recurrent points in any Ui generating nonempty interior quasimin-
imals. Take u ∈ S so that ωΦ(u) has nonempty interior, then by [8, Lemma
2.2] O = Int ωΦ(u) is non empty connected, invariant and O = ωΦ(u). As-
sume that ωΦ(u) 6= S, so Bd O 6= ∅ and there is w 6∈ ωΦ(u). Then S\Bd O
contains at least two components, one containing u and the other one w, in
other words, Bd O separates the surface S. Let v ∈ Bd O then, by Proposi-
tion 5, ωΦ(v) ⊂ Sing(Φ) and therefore Bd O ⊂ S1. As Bd O separates S, S1

also separates S, a contradiction. Hence ωΦ(u) = S, so Ou is dense in S and
the theorem follows. ¤

3.2. Proof of Theorem B

The proof of this theorem follows immediately by applying Theorem A
and Corollary 7.

4. Proof of Theorem C

4.1. Proof of statement (1)

The proof is a consequence of technical results from [11] which can be
stated in the following way.

Proposition 8 (Corollary 12 and Proposition 13 from [11]). Let S be
a compact connected surface and let Φ : R×S → S be a transitive analytical
flow. Let u be such that Ou is dense, then:

1. S\{v : Ov is dense} is the union of Sing(Φ) and nonrecurrent points. If
w is nonrecurrent, then ωΦ(w) (and also αΦ(w)) is a singular point.

2. The number of nonrecurrent orbits is finite.

We now prove the first statement of Theorem C. Let us write

T1 := {w : w is regular, ωΦ(w) and αΦ(w) are singular points},
then {v : Ov is dense} = S\(T1 ∪ Sing(Φ)) by Proposition 8. Moreover

µ({v : Ov is dense}) = 1−µ(T1 ∪ Sing(Φ)) = 1−µ(T1)−µ(Sing(Φ)). Finally
as µ(Sing(Φ)) = 0 by Corollary 7 and µ(T1) = 0 by Proposition 8(2), the
first statement of the theorem is proved. ¤
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4.2. Proof of statement (2)

Let A and B a pair of crossing circles on S, let D be a disk on S\(A∪B)
and take a compact set K ⊂ D homeomorphic to C × [0, 1] where C is a
Cantor set and µ(K) > 0.

The surface T = S\K is connected and contains A∪B, a pair of crossing
circles. Then, by Theorem 2, T admits a smooth topologically transitive
flow, Ψ : R× T → T . Finally we apply [16, Lemma 2.1] to obtain a smooth
topologically transitive flow, Φ : R × S → S, so that K ⊂ Sing(Φ) and the
orbits from Ψ coincide with those of Φ contained in S\K. Now it is clear
that Φ is topologically transitive and since µ(K) > 0, µ({v : Ov is dense}) ≤
1− µ(K) < 1. ¤
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