Area preserving analytic flows with dense orbits

Habib Marzougui

H. Marzougui address: Department of Mathematics, Faculty of Sciences of Bizerte, Zarzouna 7021, Tunisia

Gabriel Soler López

G. Soler López address: Universidad Politécnica de Cartagena, Departamento de Matemética Aplicada, Paseo Alfonso XIII 52, 30203 Cartagena, Spain

Abstract

The aim of this paper is to give sufficient conditions on area-preserving flows that guarantee the existence of dense orbits. We also answer a question by M. D. Hirsch, [1]. The results of this work are a generalization of the ones in [1] and [2].

Key words: analytic flow, area-preserving flow, orbit, dense orbit, ω -limit set

2000 MSC: 37A10, 37B20, 37E35

1. Introduction

Let S be a *surface*, that is, a second countable Hausdorff topological space which is locally homeomorphic to the plane. We recall that S admits an analytic structure which is unique up to diffeomorphisms, see [3, 4], [5, Example 3.1.6] and [6, p. 16]. A continuous map $\Phi : \mathbb{R} \times S \to S$ is a *flow* on S when the following properties hold:

(a) $\Phi(0, u) = u$ for any $u \in U$;

Preprint submitted to Elsevier

14th October 2008

Email addresses: habib.marzouki@fsb.rnu.tn (Habib Marzougui), gabriel.soler@upct.es (Gabriel Soler López)

URL: filemon.upct.es/~gabi (Gabriel Soler López)

(b) $\Phi(s, \Phi(t, u)) = \Phi(s + t, u)$ for any $s, t \in \mathbb{R}$.

If moreover Φ is C^r -class (resp. smooth, analytic) then Φ is said to be a C^r (resp. smooth, analytic) flow. Let $u \in S$, then the map $\Phi_u : \mathbb{R} \to S$ is defined by $\Phi_u(t) = \Phi(t, u)$ and the orbit of u is $\mathcal{O}_u = \Phi_u(\mathbb{R})$. When $\mathcal{O}_u = \{u\} u$ is called a singular point; otherwise u is regular. If Φ_u is a periodic nonconstant map the orbit of u is periodic. The set of singular points from the flow Φ is denoted by $\operatorname{Sing}(\Phi)$.

A set $A \subset S$ is said to be *invariant* if $\Phi(\mathbb{R} \times A) = A$. The ω -limit set of u is defined by $\omega_{\Phi}(u) = \{v \in S : \exists (t_n)_{n=1}^{\infty} \to +\infty; (\Phi_u(t_n))_{n=1}^{\infty} \to v\}$ and the α -limit set of u is similarly defined by $\alpha_{\Phi}(u) = \{v \in S : \exists (t_n)_{n=1}^{\infty} \to -\infty; (\Phi_u(t_n))_{n=1}^{\infty} \to v\}$, both sets are closed and invariant and if S is compact they are also connected.

The Riemann structure on S induces a corresponding Lebesgue measure μ with a smooth density function (in particular, μ is positive on any open set of S). We assume that μ is normalized. Φ is an *area-preserving* flow (or μ is Φ *invariant*) if for any measurable set $A \subset S$ we have $\mu(A) = \mu(\Phi(\{t\} \times A))$ for any $t \in \mathbb{R}$. Our interest is to give sufficient conditions on an area-preserving flow for having dense orbits. In particular we generalize the following result.

Theorem 1 (M.D. Hirsch and H. Marzougui,[1, 2]). Let S be a compact connected surface and let $\Phi : \mathbb{R} \times S \to S$ be an area-preserving smooth flow such that $\operatorname{Sing}(\Phi)$ is totally disconnected. Then Φ has a dense orbit if and only if Φ has not periodic orbits and $\operatorname{Sing}(\Phi) \} \cup \{x : \omega_{\Phi}(x) \cup \alpha_{\Phi}(x) \subset \operatorname{Sing}(\Phi)\}$ does not separate S.

As usually for any $U \subset S$, Bd U and Int U respectively denote the topological boundary and the interior of U. Our main results are the two following and generalize the previous one.

Theorem A. Let S be a compact connected surface and let $\Phi : \mathbb{R} \times S \to S$ be an area-preserving smooth flow. Φ has a dense orbit if and only if the following statements hold:

- 1. Φ has not periodic orbits.
- 2. $\operatorname{Int}(\operatorname{Sing}(\Phi)) = \emptyset$.
- 3. $\operatorname{Sing}(\Phi) \cup \{x : \omega_{\Phi}(x) \cup \alpha_{\Phi}(x) \subset \operatorname{Sing}(\Phi)\}\$ does not separate S.

Theorem B. Let S be a compact connected surface and let $\Phi : \mathbb{R} \times S \to S$ be an area-preserving analytic flow such that $\operatorname{Sing}(\Phi) \neq S$. Φ has a dense orbit if and only if the following statements hold

- 1. Φ has not periodic orbits.
- 2. $\operatorname{Sing}(\Phi) \cup \{x : \omega_{\Phi}(x) \cup \alpha_{\Phi}(x) \subset \operatorname{Sing}(\Phi)\}\$ does not separate S.

The flow Φ is said to be *(topologically) transitive* if it admits a dense orbit. The study of transitive flows and what surfaces are transitive, i.e. admit transitive flows, has a long tradition in the literature (see for instance the bibliography in [7] and [8, 9, 10, 11]). It is worth emphasizing that a complete characterization of transitive surfaces was obtained in the following terms.

Two orientable circles on S are said to be a pair of *crossing circles* if they intersect transversally at exactly one point.

Theorem 2 (Th. A from [8]). Let S be a connected surface. Then the following statements are equivalent:

- S is transitive;
- S is not homeomorphic to S² (the sphere), P² (the projective plane), nor to any surface in B² (the Klein bottle);
- S contains a pair of crossing circles.

The flows constructed in the proof of the above theorem are smooth provided that any surface admits smooth structure. It is also interesting to remark that \mathbb{S}^2 , \mathbb{P}^2 and \mathbb{B}^2 are not transitive.

If a flow Φ admits a dense orbit then there exists a dense G_{δ} set, $D \subset S$, so that \mathcal{O}_v is dense for any $v \in D$, see [2, 8]. M. D. Hirsch [1] asked if this G_{δ} set is full measure or not; in the present note we answer this question as follows.

Theorem C. Let S be a compact connected surface. Then the following statements hold:

- 1. Let $\Phi : \mathbb{R} \times S \to S$ be an analytical flow having a dense orbit. Then $\mu(\{v : \mathcal{O}_v \text{ is dense}\}) = 1.$
- 2. If $S \neq \mathbb{S}^2$, \mathbb{P}^2 nor \mathbb{B}^2 then there exists a smooth flow $\Phi : \mathbb{R} \times S \to S$ having a dense orbit and so that $\mu(\{v : \mathcal{O}_v \text{ is dense}\}) < 1$.

The remainder of this work is divided in three sections. The first one introduces some theorems about singular points and dynamical properties of a flow. In Section 3 we prove Theorems A and B. Finally Section 4 is devoted to the proof of Theorem C.

2. Technical results

In this section we introduce notation and we prove some technical results.

2.1. Dynamic properties

A point $u \in S$ is said to be *recurrent* if $u \in \omega_{\Phi}(u)$ or $u \in \alpha_{\Phi}(u)$. Singular points and those from periodic orbits are examples of recurrent points, so called *trivial*. All other recurrent points u are *nontrivial*. The closure of the orbit from any nontrivial recurrent point is called *quasi-minimal* set. In the following $\operatorname{Rec}(\Phi)$ denotes the set of recurrent points of the flow Φ .

Theorem 3 (Poincaré recurrence theorem). Let $\Phi : \mathbb{R} \times S \to S$ be an area-preserving flow, then $\mu(\text{Rec}(\Phi)) = 1$

Proof. See [12, p. 141]. □

Proposition 4. Let Φ be a continuous flow on a compact connected surface S and let $u \in S$. If $\omega_{\Phi}(u)$ or $\alpha_{\Phi}(u)$ contains a periodic orbit then it reduces to this periodic orbit.

In particular, If Φ is topologically transitive then it does not admit periodic orbits.

Proof. This follows from [13, p. 67, Proposition 7.11]. \Box

Proposition 5. Let Φ be a continuous flow on a compact connected surface S and let $u \in S$ so that \mathcal{O}_u is nontrivial recurrent. If $v \in \omega_{\Phi}(u)$ one of the two following possibilities occurs:

- $\omega_{\Phi}(v) = \omega_{\Phi}(u);$
- $\omega_{\Phi}(v) \subset \operatorname{Sing}(\Phi)$.

Proof. This result is equivalent to [14, Proposition 2.1] for orientable surfaces. It remains valid for non orientable ones by pulling-back the flow to the orientable 2-covering. \Box

2.2. Singularities of an analytic flow

By an *r*-star we mean a topological space R homeomorphic to $\{z \in \mathbb{C} : z^r \in [0,1]\}$, the homeomorphism maps 0 to a point p which is called the *vertex* of the star and maps the *r*-roots of the unity to the *endpoints* of the star. Any single point will be said to be a 0-star.

Theorem 6 (Th. 4.3 from [15]). Let $\Phi : \mathbb{R} \times S \to S$ be an analytic flow on a compact connected surface S such that $\operatorname{Sing}(\Phi) \neq S$ and let $u \in \operatorname{Sing}(\Phi)$. Then $\operatorname{Sing}(\Phi)$ is locally a 2n-star having u as its vertex for some nonnegative integer n.

Corollary 7. Let S be a compact connected surface and Φ an analytic flow on S. Then either $\operatorname{Sing}(\Phi) = S$ or $\mu(\operatorname{Sing}(\Phi)) = 0$.

Proof. If $\operatorname{Sing}(\Phi) \neq S$, use that S is compact and $\operatorname{Sing}(\Phi)$ is closed to find a finite open covering $\{U_i\}_{i=1}^k \bigcup \{V_i\}_{i=1}^l, \{k, l\} \subset \mathbb{N}$, such that (i) $\operatorname{Sing}(\Phi) \cap U_i$ is a $2n_i$ -star for any $1 \leq i \leq k$ and some $n_i \in \mathbb{N}$; (ii) $\operatorname{Sing}(\Phi) \cap V_i = \emptyset$ for any $1 \leq i \leq l$.

Since $\operatorname{Sing}(\Phi) \cap U_i$ is a $2n_i$ -star, $\mu(\operatorname{Sing}(\Phi) \cap U_i) = 0$. Thus

$$\mu(\operatorname{Sing}(\Phi)) \le \sum_{i=1}^{k} \mu(\operatorname{Sing}(\Phi) \cap U_i) = 0.$$

3. Proofs of Theorems A and B

3.1. Proof of Theorem A

We begin by assuming that \mathcal{O}_u is dense for some $u \in S$, then by Proposition 4, Φ has not periodic orbits. Moreover it is clear that $\operatorname{Int}\operatorname{Sing}(\Phi) = \emptyset$ and $S_1 = \operatorname{Sing}(\Phi) \cup \{x : \omega_{\Phi}(x) \cup \alpha_{\Phi}(x) \subset \operatorname{Sing}(\Phi)\}$ is invariant. Assume that S_1 separates S, then $S \setminus S_1$ has at least two (invariant) components, S_1^1 and S_1^2 , the first one containing \mathcal{O}_u ; then $\overline{S_1^2} = \overline{\mathcal{O}_u} \cap \overline{S_1^2} \subset \overline{S_1^1} \cap \overline{S_1^2}$, a contradiction. Therefore S_1 does not separate S.

We now prove the converse, we assume that Φ is an area-preserving and satisfies the three conditions in the theorem. Use Theorem 3, that $\operatorname{Int}\operatorname{Sing}(\Phi) = \emptyset$ and the absence of periodic orbits to deduce the existence of nontrivial recurrent points. Assume that Φ admits only empty interior quasiminimal sets, since these quasiminimal sets are only a finite number [14], we label them by K_1, K_2, \ldots, K_l . Let $S' = S \setminus (K_1 \cup K_2 \cup \cdots \cup K_l)$, then it is clear that S' is open, non empty (otherwise, one of K_i have a non empty interior, absurd), invariant and decomposes in connected components $\{U_i\}_{i\in\mathcal{I}}$. Use hypothesis (1), (2) and Theorem 3 to assure the existence of nontrivial recurrent points in any U_i generating nonempty interior quasiminimals. Take $u \in S$ so that $\omega_{\Phi}(u)$ has nonempty interior, then by [8, Lemma 2.2] $O = \operatorname{Int} \omega_{\Phi}(u)$ is non empty connected, invariant and $\overline{O} = \omega_{\Phi}(u)$. Assume that $\omega_{\Phi}(u) \neq S$, so $\operatorname{Bd} O \neq \emptyset$ and there is $w \notin \omega_{\Phi}(u)$. Then $S \setminus \operatorname{Bd} O$ contains at least two components, one containing u and the other one w, in other words, $\operatorname{Bd} O$ separates the surface S. Let $v \in \operatorname{Bd} O$ then, by Proposition 5, $\omega_{\Phi}(v) \subset \operatorname{Sing}(\Phi)$ and therefore $\operatorname{Bd} O \subset S_1$. As $\operatorname{Bd} O$ separates S, S_1 also separates S, a contradiction. Hence $\omega_{\Phi}(u) = S$, so \mathcal{O}_u is dense in S and the theorem follows. \Box

3.2. Proof of Theorem B

The proof of this theorem follows immediately by applying Theorem A and Corollary 7.

4. Proof of Theorem C

4.1. Proof of statement (1)

The proof is a consequence of technical results from [11] which can be stated in the following way.

Proposition 8 (Corollary 12 and Proposition 13 from [11]). Let S be a compact connected surface and let $\Phi : \mathbb{R} \times S \to S$ be a transitive analytical flow. Let u be such that \mathcal{O}_u is dense, then:

- 1. $S \setminus \{v : \mathcal{O}_v \text{ is dense}\}$ is the union of $\operatorname{Sing}(\Phi)$ and nonrecurrent points. If w is nonrecurrent, then $\omega_{\Phi}(w)$ (and also $\alpha_{\Phi}(w)$) is a singular point.
- 2. The number of nonrecurrent orbits is finite.

We now prove the first statement of Theorem C. Let us write

 $T_1 := \{ w : w \text{ is regular, } \omega_{\Phi}(w) \text{ and } \alpha_{\Phi}(w) \text{ are singular points} \},\$

then $\{v : \mathcal{O}_v \text{ is dense}\} = S \setminus (T_1 \cup \operatorname{Sing}(\Phi))$ by Proposition 8. Moreover $\mu(\{v : \mathcal{O}_v \text{ is dense}\}) = 1 - \mu(T_1 \cup \operatorname{Sing}(\Phi)) = 1 - \mu(T_1) - \mu(\operatorname{Sing}(\Phi))$. Finally as $\mu(\operatorname{Sing}(\Phi)) = 0$ by Corollary 7 and $\mu(T_1) = 0$ by Proposition 8(2), the first statement of the theorem is proved. \Box

4.2. Proof of statement (2)

Let A and B a pair of crossing circles on S, let D be a disk on $S \setminus (A \cup B)$ and take a compact set $\mathcal{K} \subset D$ homeomorphic to $\mathcal{C} \times [0, 1]$ where \mathcal{C} is a Cantor set and $\mu(\mathcal{K}) > 0$.

The surface $T = S \setminus \mathcal{K}$ is connected and contains $A \cup B$, a pair of crossing circles. Then, by Theorem 2, T admits a smooth topologically transitive flow, $\Psi : \mathbb{R} \times T \to T$. Finally we apply [16, Lemma 2.1] to obtain a smooth topologically transitive flow, $\Phi : \mathbb{R} \times S \to S$, so that $\mathcal{K} \subset \operatorname{Sing}(\Phi)$ and the orbits from Ψ coincide with those of Φ contained in $S \setminus \mathcal{K}$. Now it is clear that Φ is topologically transitive and since $\mu(\mathcal{K}) > 0$, $\mu(\{v : \mathcal{O}_v \text{ is dense}\}) \leq$ $1 - \mu(\mathcal{K}) < 1$. \Box

Acknowledgements

The first author was supported by MERST (Ministery of Higher Education, Scientific Research and Technology, Tunisia) under the Spanish-Tunisian project, grant A/8322/07. The second one was partially supported by MEC (Ministerio de Educación y Ciencia, Spain) and FEDER (Fondo Europeo de Desarrollo Regional), grant MTM2005-03868, and Fundación Séneca (Comunidad Autónoma de la Región de Murcia, Spain), grant 00684/PI/04.

References

- M. D. Hirsch, Dense recurrence in area-preserving flows on surfaces, Nonlinearity 12 (1999) 1545–1553.
- [2] H. Marzougui, Area preserving flows with a dense orbit, Nonlinearity 15 (2002) 1379–1384.
- [3] J. R. Munkres, Obstructions to the smoothing of piecewise-differentiable homeomorphisms, Ann. of Math. (2) 72 (1960) 521–554.
- [4] K. Shiga, Some aspects of real-analytic manifolds and differentiable manifolds, J. Math. Soc. Japan 16 (1964) 128–142, correction in J. Math. Soc. Japan 17 (1965), 216–217.
- [5] W. P. Thurston, Three dimensional geometry and topology, Vol. 35 of Princeton Mathematical Series, Princeton University Press, Princeton, N.J., 1997.

- [6] M. W. Hirsch, Differential topology, Springer-Verlag, New York, 1988.
- [7] R. A. Smith, S. Thomas, Transitive flows on two-dimensional manifolds, J. London Math. Soc. 37 (1988) 569–576.
- [8] V. Jiménez López, G. Soler López, Transitive flows on manifolds, Rev. Mat. Iberoamericana 20 (2004) 107–130.
- [9] T. Ding, An ergodic theorem for flows on closed surfaces, Nonlinear Analysis 35 (1999) 669–676.
- [10] H. Marzougui, On morse conjecture for flows on closed surfaces, Math. Nachr. 241 (2002) 121–124.
- [11] H. Marzougui, G. Soler López, On a morse conjecture for analytic flows on compact surfaces, Universidad Politécnica de Cartagena, preprint (2007) 1–11.
- [12] B. Hasselblatt, A. Katok, Introduction to the modern theory of dynamical systems, Cambridge University Press, Cambridge, 1995.
- [13] C. Godbillon, Dynamical system on surfaces, Springer-Verlag, Berlin, 1983.
- [14] H. Marzougui, Structure des feuilles sur les surfaces ouvertes, C. R. Acad. Sci. Paris (Sér.1) 323 (1996) 185–188.
- [15] V. Jiménez López, J. Llibre, A characterization of ω -limit sets for analytic flows on the plane, the sphere and the projective plane, Adv. Math. **216** (2007) 677–710.
- [16] V. Jiménez López, G. Soler López, Accumulation points of nonrecurrent orbits of surface flows, Topology Appl. 137 (2004) 187–194.