
 1

 
 
 

Universidad Politécnica de Cartagena 
Departamento de Expresión Gráfica 

 
 
 
 
 

Proyecto Fin de Carrera 
 
 
 
 

 
 
 

3D Detection of People. 
 
 
 
 
 

 
 
 

Autor: Antonio Patricio Bernal Rodríguez. 
Director: Lucas Roca Nieto. 
Titulación: Ingeniería en Automática y Electrónica Industrial. 

 
 
 

21. Abril 2009 
 



 2

CONTENTS 
 
 
1. Introduction........................................................................................................... 4 
 

1.1. Motivation. ..................................................................................................... 4 
 

1.2. Abstract. ......................................................................................................... 4 
 

1.3. Hardware........................................................................................................ 5 
 
 
2. Multiple View Geometry. .................................................................................... 7 
 

2.1. Single View Geometry. ............................................................................... 7 
 

2.2. Two-View Geometry. ................................................................................. 10 
 

2.3. Three-view geometry. ............................................................................... 14 
 

2.4. Triangulation............................................................................................... 17 
 

2.5. Camera calibration process.................................................................... 19 
 
 
3. Motion detection and tracking of people. ................................................... 22 
 

3.1. Motion templates. ...................................................................................... 22 
 

3.2. Optical flow. ................................................................................................ 25 
 

3.3. Pattern recognition. .................................................................................. 30 
 

3.4. Background Subtraction. ........................................................................ 34 
 
 
4. Analysis................................................................................................................ 38 
 

4.1. Analysis of the behavior of the motion detection and tracking 
algorithms................................................................................................................ 38 

 
4.2. Sources of error ......................................................................................... 42 

 
4.3. Analysis of the accuracy of the three-dimensional reconstruction.
 44 

 
 
5. Summary and outlook. ................................................................................. 60 
 
 



 3

Bibliography................................................................................................................ 61 
 
Appendix A. Camera calibration method. ........................................................... 63 
 
Appendix B. Kalman Filter. ..................................................................................... 66 
 
Appendix C. Applications........................................................................................ 69 



                                                                                                           Introduction. 

 4

1. Introduction. 
 
 
 

1.1. Motivation. 
 
The Nexus-project researches methods and concepts to support space and 
context for system-applications. An important requirement for this kind of 
systems is multisensor-integration and resolution of inconsistencies in the 
environment model.  
 
This thesis is based on the movement detection of people in images from 
multiple cameras, and their location in the three-dimensional space, from the 
positions where the movement occurs in the different views. The accuracy of 
the three-dimensional location will be investigated in this thesis and how this 
accuracy is influenced when the cameras are connected in a network with a low 
frame rate.  
 
 

1.2. Abstract. 
 
The aim of this work is to obtain the three-dimensional location of people in a 
scene using the information provided by several cameras; these cameras must 
have a range of view in common. The place chosen to record the videos for this 
work is the Nexus Lab in the Universität Stuttgärt.  
 
In this work, it is possible to distinguish two main tasks: 
 

 The first task is to obtain a model of the camera which let us turn the two-
dimensional information from the images taken from the cameras, in 
three-dimensional information in a known reference-frame; this topic is 
studied in chapter 2. 

 
 The second task is to obtain relevant information from the images of 

each camera, that is, the location of the people, which appear in an 
image scene, must be known to compute their three-dimensional 
location. This information will be obtained by reviewing different types of 
methods. This topic is described in chapter 3.  

 
Finally, the three-dimensional location of the people in the room has been 
accomplished by integrating the two-dimensional information obtained from the 
images of each camera with the model of the cameras and knowing their 
locations in the room. In order to quantify the measurement error of the system, 
several video tests have been recorded. The error analysis is accomplished in 
chapter 4.  
 
 
 
 



                                                                                                           Introduction. 

 5

 
1.3. Hardware. 

 
The sensors used in this work, to obtain the information from the real world, are 
video cameras. The system has been thought out to support an undetermined 
number of cameras, but it has only been tested with three cameras. Two of 
them are IP-cameras; these cameras use Internet Protocol to transmit image 
data and control signals over a Fast Ethernet link. The IP-cameras used to 
record the images are from the German company Mobotix AG. The model of 
both IP-Cameras is MOBOTIX M1-IT, and their features are shown in the Table 
1.3.1. 
 

 
 

Figure 1.3.1. MOBOTIX  M1-IT. 
 
   

Product Type MOBOTIX M1 

Model IT 

Features Mono, Audio, Microphone 

Camera Code 006AC1 

HARDWARE 

Board Revision 1.4c 

Processor Type Intel sa1110 rev 9 

Processor Speed 206.00 MHz 

ROM Size 8 MB 

RAM Size 64 MB 

 
Table 1.3.1. MOBOTIX M1-IT features. 
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The Company Mobotix AG offered a lot of software and development tools to 
control the camera’s different resources, to record video sequences, to set 
alarms and to control the audio and microphones. The maximum frame rate, in 
the mode used in this work, is 25 fps for each camera, which is a higher rate 
than the one used to record videos test (2 to 10 fps). 
 
The location of the MOBOTIX-M1-IT cameras in the Nexus Lab is shown in the 
Figure 1.3.2. 
 
 

 
 

Figure 1.3.2. Location of the MOBOTIX-M1-IT in the Nexus Lab. 
 
 



                                                                                                                 Analysis. 
 

 7

2. Multiple View Geometry. 
 
This chapter describes the geometry, which lets us link groups of correspondent 
points in N-images, in a scene with points from the three-dimensional world. In 
order to achieve this aim, the chapter is divided in five parts. The first part 
describes the single view geometry, and the perspective or pinhole camera 
model. This is the foundation for the following parts. The second part describes 
the geometry for a stereo system; this geometry is called epipolar geometry. 
The third part describes the trifocal tensor, which plays the same role in three 
views, as the one played by the fundamental matrix in two views. The fourth 
part is about the triangulation problem in a stereo system. The fifth and last part 
describes how the cameras were modeled in our system. 
 

2.1. Single View Geometry. 
 
The aim of this chapter is to link the position of scene points with their 
corresponding image points. To do this, we need to model the geometric 
projection performed by the sensor. A camera is a mapping between the 3D 
world and a 2D image. The most common geometric model of a camera is the 
perspective or pinhole model. This model is very simple but very useful too. 
 
Pinhole camera model. 
 
Let consider the central projection of points in space onto a plan. Let the centre 
of projection be the origin of a coordinate system (camera centre or optical 
centre), and consider the plane z=f, (f is focal length) which is called the image 
plane or focal plane. A point in the space X=(X,Y,Z)’ is mapped on the image 
plane where a line joining the point X to centre of projection meets the image 
plane. 
 
 

 
 

 
Figure. 2.1. Pinhole camera geometry. 

 
By similar triangles, it is easy to compute that the point Q(X,Y,Z) is mapped to 
the point Q’ (f X/Z, f Y/Z, f)’ on the image plane. Using homogeneous 
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coordinates for the world and image points, then the projection can be 
expressed as a linear mapping between their homogeneous coordinates. 
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(2.1.1) 

 
Now we have a projection, which mapped 3D points onto a plane, but the 
camera reference frame must be located in respect to another known reference 
frame. Then the coordinates of the image points in the camera reference frame 
can be obtained from pixel coordinates. For this we must know the camera’s 
characteristics, which are called extrinsic and intrinsic parameters. 
 
The extrinsic parameters are the parameters that define the location and 
orientation of the camera reference frame that corresponds to a known 
reference frame. 
 
The intrinsic parameters are the parameters necessary to link the pixel 
coordinates of an image point, with the corresponding coordinates in the 
camera reference frame. 
 
Extrinsic parameters. 
 
The camera reference frame, which has been introduced for the purpose of 
writing the fundamental equations of perspective projection, is often unknown. 
The extrinsic parameters let us identify uniquely the transformation between the 
unknown camera reference frame with a known reference frame. To do this, we 
can use a translation vector T, which links the position of the two reference 
frames, and a rotation matrix R, that brings corresponding axes of the two 
reference frames onto each other. Given a certain point P expressed in the 
world and camera reference-frames, the relation between Pw and Pc can be 
written as:  
 

)( TPRP wc −=  
  

(2.1.2) 
 
The camera extrinsic parameters, which specify the transformation between the 
camera and the world reference frame, are the translation vector T, and the 
three parameters which define the rotation matrix R,  
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Intrinsic parameters. 
 
For a pinhole camera model there are three sets of intrinsic parameters needed, 
which specify respectively: 
 

 The perspective projection, for which the only parameter is the focal 
length (f). 

 
 The transformation between camera frames coordinates and pixel 

coordinates. 
 

 The geometric distortion introduced by the optics. 
 
 
To find the second set of intrinsic parameters, we must link the coordinates of 
an image point in pixel units (xim, yim) with the coordinates of the same point in 
the camera reference frame(x, y). Then, the relation between camera reference 
frame and image reference frame (in pixels) can be written as follows: 
 

yyim

xxim

soyy
soxx
)(
)(

−−=
−−=

 

 
(2.1.3) 

 
Where (ox, oy) are the pixel coordinates of the image center, and (sx, sy) are the 
effective size of the pixel. 
 
The distortion introduced by the optics can be modeled as simple radial 
distortions, according to these relations: 
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(2.1.4) 

 
Where r2=xd

2+yd
2, and xd, yd are coordinates of the distorted points. 

 
The intrinsic parameters are defined as the focal length f, the location of the 
image center in pixel coordinates (ox, oy), the effective pixel size in the 
horizontal and vertical direction(sx, sy), and if required, the radial distortion 
coefficients, k1 and k2. 
 
To determine the value of the extrinsic and intrinsic parameters of the camera, 
we must calibrate the camera. 
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2.2. Two-View Geometry. 
 
Stereo vision refers to the ability to infer information on the 3D structure and on 
the distance of a scene from two images taken from different viewpoints. A 
stereo system must solve two problems: 
 

 The correspondence problem, which consists in determining which item 
in the first view, corresponds to which item in the second view. 

 
 The reconstruction problem, given a number of corresponding parts of 

the left and right image, and information on the geometry of the stereo 
system. What can we say about the 3D location and structure of the 
observed objects?. 

 
Epipolar Geometry describes the geometry of a stereo system. This geometry 
enables us to clarify which information is needed in order to perform the search 
for corresponding elements along image lines. The Epipolar Geometry is shown 
in Figure 2.2. The Figure 2.2. shows two pinhole cameras, their projection 
centers, Ol and Or, and image planes, πl and πr. The focal lengths are denoted 
by fl and fr. The vector Pl=(Xl ,Yl ,Zl)’ and Pr=(Xr ,Yr ,Zr)’ refer to the same 3D 
point, P. The vectors pl=(xl, yl, zl)’ and pr=(xr, yr, zr)’ refer to the projections of P 
onto the left and right image plane respectively.  
 
 

 
 

Figure 2.2. epipolar geometry. 
 
The reference frames of the left and right cameras are related through the 
extrinsic parameters. These define a rigid transformation in 3D space, defined 
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by a translation vector T= (Ol – Or), and a rotation vector R. Given a point P in 
the space, the relation between Pl and Pr is therefore: 
 

)( TPRP lr −=  
  

(2.2.1) 
 
The name Epipolar Geometry is used because the points where the line through 
the centers of projection intersects the image planes are called epipoles.  
 
The relation between a point in 3D space and its projections is described in 
vector form, 
 

rrrr

llll

PZfp
PZfp
)/(
)/(

=
=

 

  
(2.2.2) 

 
The practical importance of epipolar geometry comes from the fact that the 
plane identified by P, Ol, and Or, is called epipolar plane. It intersects each 
image in a line, called epepolar line. This establishes a map between points in 
one image and lines in the other image. 
 
 
Essential Matrix. 
 
The equation of the epipolar plane through P can be written as: 
 

0)( =×− l
T

l PTTP  
 

 (2.2.3) 
or using (2.2.1): 
 

0)( =× l
T

r
T PTPR  

 (2.2.4) 
 

Writing the vector product as a matrix multiplication, we can write: 
 

ll PSPT ⋅=×  
 

 (2.2.5) 
 

Where,  
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So, 
 

0=⋅⋅ l
T

r PEP  
 (2.2.6) 

 
With, 
 

SRE ⋅=  
 

 (2.2.7) 
 
Using (2.2.2), equation (2.2.6) can be rewritten as: 
 

0=⋅⋅ l
T

r pEp  
 

(2.2.8) 
 
The matrix E is called the essential matrix and establishes a natural link 
between the epipolar constraint and extrinsic parameters of the stereo system. 
 
 
Fundamental Matrix. 
 
Let Ml and Mr be the matrices of the intrinsic parameters of the left and the right 
camera. If lp  and rp  are the points in pixel coordinates corresponding to pl and 
pr in camera coordinates, we can write:  

rrr

lll

pMp

pMp
1

1

−

−

=

=
 

 (2.2.9) 
 

By substituting (2.2.9) into (2.2.8),  
 

0=⋅⋅ r
T

l pFp  
 (2.2.10) 

 
Where, 
 

11)( −− ⋅⋅= l
T

r MEMF  
 (2.2.11) 
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F is called fundamental matrix. The most important difference between essential 
and fundamental matrices is that the fundamental matrix is defined in terms of 
pixel coordinates, and the essential matrix in terms of camera coordinates.  
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2.3. Three-view geometry. 
 
The trifocal tensor plays the same role in three views to the one played by the 
fundamental matrix in two, it encapsulates all the geometric relations between 
three view that are independent of scene structure. 
 
There are several ways in which the trifocal tensor may be approached, but our 
starting point is the incidence relationship of three corresponding lines. 
 

 
 

Figure. 2.3.1 Projection of a line in three views. Image taken from [Harley00]. 
 
 
Suppose a line L in 3D space is imaged in three views (l, l’, l’’), the planes (π, 
π’, π’’) back-projected from the lines in each view must all meet in a single line 
(L) in space.  
 
Let the camera matrices for the three views be P=[I|0], P’=[A|a4], P’’=[B|b4], 
where A and B are 3 x 3 matrices, and the vectors ai and bi are the i-th columns 
of the respective camera matrices i=1,2,3,4. 
 
Each image back-projects to a plane, these planes are: 
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Since the three image lines are derived from a single line in space, these three 
planes must meet in this common line in 3D space. This intersection constraint 
can be expressed by the requirement that M= [ π, π’ , π’’], has rank 2. This 
may be seen as follows. Points on the line of intersection may be represented 
as X=αX1+βX2, with X1 and X2 linearly independent. Such points lie on all three 
planes and so: 

 

0''' =⋅Π=⋅Π=⋅Π XXX TTT
 

 (2.3.2) 
 
It follows that MX=0. Consequently M has a 2D null-space since MX1=0, MX2=0. 
This intersection constraint induces a relation among the image lines l, l’, l’’. 
Since the rank of M is 2, there is a linear dependence between its columns mi. 
Denoting: 
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(2.3.3) 

 
The linear may be written m1= αm2+βm3 (1.3.4), then: 
 

)''( 4 lbk T=α , )'( 4 lak T−=β  for some scalar k. 
 

(2.3.5) 
 
Applying this to (2.3.4): 
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(2.3.6) 
 
And the i-th coordinate of l may therefore be written as: 
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and introducing the notation: 
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 (2.3.8) 

 
the incidence relation can be written  
 

''' lTll i
T
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(2.3.9) 
 
The set of three matrices {T1, T2, T3} constitute the trifocal tensor in matrix 
notation. Denoting the ensemble of the three matrices Ti by [T1, T2, T3], relation 
(2.3.9) may be written as, 
 

''],,[' 321 lTTTll TT =  
 (2.3.10) 

 
where l’T [T1, T2, T3] l’’ is understood to represent the vector (l’T T1 l’’, l’T T2 l’’, 
l’T T3 l’’). 
 
Various linear relationships between lines and points can be deduced in three 
images involving the trifocal tensor: 
 

 Line-line-line correspondence. 
 

''],,[' 321 lTTTll TT =  or 
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 Point-line-line correspondence. 
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(* the notation [x]x expresses the cross product). 
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2.4. Triangulation. 
 
The reconstruction by triangulation can be performed, if the intrinsic and the 
extrinsic parameters of a stereo system are known. We can assume to know 
intrinsic and extrinsic parameters if the geometry of the system does not change 
with time. Then, the intrinsic and extrinsic parameters for each camera can be 
estimated through several procedures. 
 
According to Figure 2.1, the point P, projected into the pair of corresponding 
points pl and pr, lies at intersection of the two rays from Ol through pl and from 
Or through pr respectively, but the problem is, since parameters and image 
locations are known only approximately, their intersection can only be estimated 
as the point of minimum distance between both rays (see Figure 2.4). 
 
Let a pl be the ray, l, through Ol and pl. Let T + b RT pr be the ray, r, through Or 
and pr. Let w be an orthogonal vector to both l and r. So we must determine the 
midpoint, P’, of the segment parallel to w that joins l and r, as shown in Figure 
2.4.1. 
 

 
 

Figure 2.4.1. Triangulation with nonintersecting rays. 
 
The endpoint of the segment a0 pl and T+b0 RT pr, can be computed solving 
the linear system of equations: 
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Then the midpoint P’ can be computed: 
 

2/)(' 00 pRbTpaP T
l ++=  

 (2.4.2) 
 
In the case of several cameras, a way  to compute the three-dimensional 
point is, compute for each pair of cameras the point Pi’ and then compute 
the mean point. Assuming the number of cameras in the system is n, there 
will be Ncomb midpoints, 
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Then the midpoint can be calculated as, 
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2.5. Camera calibration process. 
 
In section 2.1, the pinhole camera model was described, as well as how the 
model of the camera was defined by the extrinsic and intrinsic parameters. In 
this section the computation of these parameters method is described. 
 
The algorithm OpenCV pretends that there is no distortion in the camera, to 
compute the focal lengths and offsets using Zhang’s method [Zhang00]. Once 
these parameters have been computed, camera distortion parameters are 
computed using Brown’s method [Brown71]. This OpenCV algorithm works well 
with planar patterns, the most common is a chessboard. The main inputs for 
this algorithm are: 
 

 The three-dimensional locations of the points in the frame defined by the 
pattern. If we use a chessboard all the z-coordinates can be set to zero, 
and the x- and y- coordinates can be easily computed knowing the length 
of the side of the square. 

 
 The coordinates in of the points (in pixels) in the image. OpenCV 

implement a function to get the position of the corners of a chessboard in 
an image (see Figure 2.5.1). 

 

 
 

Figure 2.5.1 Chessboard corner detection. 
 
With this information this algorithm computes, the intrinsic matrix of the camera, 
the distortion coefficients (for our application will be supposed that there is no 
distortion in the camera), and the rotation and translation vectors for each 
image of the pattern.  
 
The way the openCV algorithm provides the extrinsic parameters is, 
 

TPRP wc +=  
(2.5.1) 
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Figure 2.5.2. chessboard-reference-frame,  
(red x-axis,  green y-axis, blue z-axis) 

 
The problem now is how to relate the different frames-references of the 
cameras. When the cameras are close enough, and it is possible to take 
images of a pattern from the cameras, without changing the location of the 
pattern, it is possible to apply different techniques to get the fundamental 
matrices of each pair of cameras, but this is not our case.  
 
In order to compute the fundamental matrices of each pair of cameras, let 
define a world-reference-frame (‘w’), two camera-reference-frames (left ‘l’ and 
right ‘r’) and two chessboard-reference-frames (left-chessboard ‘lc’ and right-
chessboard ‘rc’).  Then we can write the expression (2.5.1) as, 
 

cllclclll

crrcrcrrr

TPRP

TPRP

__

__

+=

+=
 

(2.5.2) 
 
The rotation and translation matrices, which relate the chessboard-reference-
frames and the world-reference-frame, can be measured. The measurements 
related to the translation matrices were accomplished with a meter and the 
rotation matrix can be easily computed if the chessboard-reference-frames are 
chosen carefully. Then the expressions which relate points of the chessboard-
reference-frames and world-reference-frame can be written as, 
 

clwclclww
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TPRP
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(2.5.3) 
 
Isolating Pcr and Pcl from (2.5.3) and substituting them in (2.5.2), we obtain, 
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Isolating  Pw from one of the equation above and substituting it in the other,  
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Comparing this expression with the expression (2.2.1), 
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(2.5.5) 

 
This way, it is possible to compute the essential and fundamental matrices, for 
each pair of cameras of our system, as was explained in the section 2.2. 
 

 
 

Figure 2.5.3. Isometric projection of the room with the world-reference-frame, 
cameras-reference-frames and chessboard-reference-frames. 
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3. Motion detection and tracking of people. 
 
In this chapter several ways to get the position of persons are described, as well 
as objects in movement in a room and how to track them along a certain period 
of time. 
The aim of the following algorithms is to provide the pixel coordinates of the 
objects of interest. Once this is done, in the different videos, recorded 
simultaneously from the cameras, and assuming the intrinsic and extrinsic 
parameters of the cameras are known, it is possible to compute the three-
dimensional location of the people or objects in movement in the room.  
OpenCV implements a lot of functions which are very useful to achieve this aim. 
 

3.1. Motion templates. 
 
Motion templates were invented in the MIT Media Lab by Bobick and Davis 
[Bobick96]. This last author made further development with Gary R. Bradsky 
[Bradski00]. Motion templates can be used to: 
 

 Determine the current pose of the objects in movement. 
 

 Segment and measure the motions induced by the objects in a video 
scene. These segmented regions are not “motion blobs”, instead they 
are motion regions naturally connected to the moving parts of the object 
of interest.  

 
For the purpose of this work the first of the use is the most interesting. 
 
Using motion templates requires a silhouette of an object. There are many 
different ways to get a silhouette which could work in other situations, but they 
are based in assumptions which are not true in our case, some of them are 
mentioned below. 
 

 Using chroma keying, this is useful if there is a known background 
colour, then you can take as foreground anything different in the image. 

 
 A similar way is to learn the background model, using for instance 

averaging background method and extract foreground as silhouettes.  
 

 It is also possible to use active techniques like infrared technology or 
thermal images. 

 
A simple and effective way to get these silhouettes when stationary cameras 
are used is to employ frame-to-frame differencing, this will provide the moving 
edges of objects, which is enough to make motion templates work. Differencing 
several images and thresholding them we get a mask where pixels, set to non-
zero value, represent the points where the motion occurs. Let consider a single 
channel floating-point matrix with the same dimensions as the mask, which 
elements are set to the time stamp of the system where the mask pixels have 
non-zero value, and they are set to zero if there has been no motion detected 
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for a long time (duration). Otherwise they keep their values. This matrix is 
known as Motion History Image (MHI). This can be written: 
 

durationtimestampyxMHIandyxsilhouette
yxsilhouette

otherwhise
if
if

yxMHI

timestamp
yxMHI −<=

=

⎪
⎩

⎪
⎨

⎧
= ),(0),(

0)!,(

),(
0),(

 
(3.1.1) 

 
The OpenCV function which makes all this is cvUpdateMotionHistory(). 
 
Once Motion History Image is computed, it is possible to estimate the direction 
and the magnitude of the movement taking the gradient of the MHI image. 
Taking the gradient of the MHI, we would get direction vectors pointing in the 
direction of the movement. Gradients of the MHI can be calculated efficiently 
with Sobel filters. Some gradients will be too large due to the edges of the 
silhouettes, but since the time stamp duration is known, it is possible to reject 
these invalid gradients. The OpenCV function which computes the MHI gradient 
is cvCalcMotionGradient(). 
 
The overall direction of motion is computed as the vector sum of the valid 
gradient directions. This is done by the function cvCalcGlobalOrientation(). 
 
By isolating regions of the MHI, it is possible to determine the local motion 
within these regions. The MHI image is scanned for current silhouette regions. 
When a region marked with the most current time stamp is found, the region’s 
perimeter is searched for sufficiently recent motion (recent silhouettes) just 
outside its perimeter. When such motion is found, a downward stepping flood fill 
is performed to isolate the local region of motion, so we get the current location 
of the object of interest. Once found, we can calculate local motion gradient 
direction in the region, then remove that region, and repeat the process until all 
regions are found. The OpenCV function that isolates and computes local 
motion is CvSegmentMotion(). 
 
Using all these functions we can get a bounding box of the different regions 
where movements were found in the images of the multiple cameras of the 
system. This way we can select a point or several points within this box and 
search for possible correspondent points in the other images. There is also 
available information about direction and magnitude of these movements but 
they have not been taken into account. 
 



                                                               Motion detection and tracking of people. 
 

 24

 
 

Figure 3.1.1 Image of a person in movement in the nexus lab being tracked by 
Motion Templates Algorithm. 

 

 
 

Figure 3.1.2 Motion History Image of the Figure 3.1.1., the circle with the line 
represent the direction and the location of the movement.  
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3.2. Optical flow. 
 
Optical flow is the pattern of apparent motion of objects, surfaces, and edges in 
a visual scene caused by the relative motion between an observer and the 
scene. Optical flow techniques such as motion detection, object segmentation, 
time-to-collision and focus of expansion calculations, motion compensated 
encoding, and stereo disparity measurement use the motion of the objects 
surfaces, and edges. In this work, different optical flow techniques have been 
studied in order to detect and track objects (people) in movement in a room. 
 
Optical flow techniques can be classified in: 
 

 Dense optical flow techniques. OpenCV functions implement two of 
this kind of techniques Horn Schunck Method and Bock Matching. Dense 
methods present a high computational cost, because they try to find the 
displacement or velocity of each pixel between the previous and the 
current frame.  

 
 Sparse optical flow techniques. OpenCV functions implement optical 

flow Lucas-Kanade method and its modification, which works with image 
pyramids. This kind of algorithms tracks a given subset of pixels between 
frames. 

 
Horn Schunck Method. 
 
The Horn Schunck method [Horn81]  assumes that: 
 

 The surface being imaged is flat, to avoid variations in brightness. 
 

 Incident illumination is uniform across the surface, so brightness at a 
point in the image is then proportional to the reflectance of the surface. 

 
 Reflectance varies smoothly and has no spatial discontinuities. This 

condition assures us that the image brightness is differentiable. 
 
Defining the brightness of a pixel in the image at time t as (E(x,y,t)), according 
to the previous assumptions, this value does not change with time. This can be 
written: 
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This is a single linear equation in the two unknowns (dx/dt, dy/dt), and it is 
solved introducing the local flow velocity constraint. However it is impossible to 
determine the component of the movement in the direction of the iso-brightness 
contours, at right angles to the brightness gradient, so a new constraint it is 
needed, the smoothness constraint.   
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One way to express the smoothness constraint of the optical flow velocity is to 
minimize the sum of the squares of the Laplacians of the x and y components of 
the flow. The solution of these equations devised by Horn and Schunck is: 
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In this expression, 
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And α is a constant weighting coefficient known as the regularization constant. 
 
Block Matching 
 
Block Matching algorithms, try to match pixels in a previous frame with pixels in 
the current frame. These algorithms divide the image into blocks, which usually 
overlap, and compute the motion of these blocks. The implementation in 
OpenCV uses a spiral search that works out from the location of the original 
block in the previous frame, and compares the candidate new blocks with the 
original. This comparison is a sum of absolute differences of the pixels. If a 
good enough match is found, the search is terminated. 
 
Both of these Dense Optical Flow Techniques were considered not useful for 
our purpose, because the information they provide us was not as interesting as 
the information, which the Sparse Optical Flow Techniques could offer. In 
addition, and as was mentioned before, these algorithms present a high 
computational cost. 
 
Lucas-Kanade Algorithm 
 
The Lucas–Kanade method [Lucas81] is a two-frame differential method for 
optical flow estimation developed by Bruce D. Lucas and Takeo Kanade. It 
introduces an additional term to the optical flow, by assuming the flow to be 
constant in a local neighborhood around the central pixel under consideration at 
any given time. 
 
The Lucas-Kanade algorithm is based on the following assumptions: 
 

 Brightness constancy. A pixel from the image of an object in the scene 
does not change in appearance as it moves from frame to frame.  

  
 Temporal persistence or “small movements”. The image motion of a 

surface patch changes slowly in time. Then the truthfulness of this 
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assumption will depend on the frame rate of the camera and the speed of 
the object to be tracked. 

 Spatial coherence. Neighbouring points in a scene belong to the same 
surface, have similar motion, and project to nearby points on the image 
plane. 

 
The first assumption for the one-dimensional problem can be written as follows, 
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According to the previous expression, in the one-dimensional problem, we can 
compute the velocity of one edge as the relation between the variation of the 
brightness with time and the variation of the brightness along the x-axis, as 
shown in Figure 3.2.1. 
 

 
Figure 3.2.1., shows the transition from a high brightness level to a low 

brightness level along the x-axis. Image taken from [Lucas81]. 
 

Because the brightness assumption is not totally true, and the frame rate of the 
cameras is not as high as desired, in relation to the motion, the velocity 
computed in the previous way is not exact. However, it is possible to improve 
the estimation of the velocity by iterating the result, using the Newton’s Numeric 
Method. If the first estimation of the velocity is not good enough, the iteration 
method will diverge. 
 
The generalization for the two-dimensional case requires adding the y-
coordinate to the expression 3.2.2.,  
 

0=++ tyx IvIuI  
(3.2.3.) 

 
This is a single equation, and there are two unknowns, so the problem is 
underconstrained, and we can not obtain a unique solution from it. It is only 
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possible to solve the motion component which is perpendicular to the line 
described by the flow equation 3.2.3., as it is shown in the Figure 3.2.2. 

 
 

Figure 3.2.2., shows the normal flow of a given pixel in two-dimension. Image 
taken from [Lucas81]. 

 
The problem of the normal optical flow arises when within the window, which is 
being used to measure motion, is only an edge, not a corner. This is insufficient 
to determine how the object is moving. This problem is known as the aperture 
problem and it is illustrated in Figure 3.2.3. 
 

 
 

Figure 3.2.3., illustrates the aperture problem. Image taken from [Bradski08]. 
 
Using the Spatial coherence assumption, the problem can be solved just by 
taking the surrounding pixels to set up a system of equations, which will be 
overconstrained and can be solved by least-square minimization. The tracking 
window should be centered in a corner region from an image, to assure the 
system of equations can be solved. 
 
Lucas-Kanade algorithm does not work very well when large windows are taken 
to track large motions, because large windows often break the coherent motion 
assumption. This problem is solved by the Pyramid Lucas-Kanade Algorithm 
[Jean99], which tracks first over large spatial scales, using image pyramid, and 
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then refines the initial motion velocity assumption by working in lower levels of 
the image pyramid. 
 
The Pyramid Lucas-Kanade algorithm was attempted to use in the problem of 
people detection in a room without success. It was thought to find points with 
adequate features to track in the image (using the OpenCV function 
cvGoodFeaturesToTrack()) and track them (using the OpenCV function 
cvCalcOpticalFlowPyrLK()). After that, we could find those with large enough 
movements between frames and estimate their three-dimensional position. 
These points could produce good results in the three-dimensional 
reconstruction, if we could match these points with their correspondent points in 
the images captured by the other cameras. However this is not possible in our 
case. The main assumption in the stereo matching algorithm is, that the most of 
the scene points must be visible in both views. Since this assumption is not true 
in our case (this is shown in Figure 3.2.4.), we have a group of points being 
tracked by the optical flow algorithm, but we can not use this information to 
locate the movement in the three-dimensional world.  
 
 

 
 

Figure 3.2.4.shows two images recorded simultaneously. 
 
 

 
 

Figure 3.2.5. Pyramid Lucas-Kanade demo image. 
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3.3. Pattern recognition. 
 

The methods described in previous sections provide the two-dimensional 
position of moving objects in a scene, in our case in a room. We can not 
distinguish if the objects in movement are boxes, chairs, dogs, or people.  
For this reason, it was attempted to use different kind of techniques which could 
provide the position of a human body, although it stays stationary. 
The OpenCV functions implement several pattern recognition algorithms, which 
could decide if there is a human body in a scene or not, and let us know its 
position. The most interesting of these algorithms is the Haar-Classifier 
algorithm developed by Paul Viola and Michael Jones, commonly known as 
Viola-Jones detector [Viola01]. This algorithm was later extended by Rainer 
Lienhart and Jochen Mayd [Lienhart02]. 
 
The Viola-Jones detector was thought as a new algorithm for robust and 
extremely rapid object detection. Nevertheless it was motivated by the face 
detection task. In other detection systems, auxiliary information, such as image 
differences in video sequences, or pixel color in color images, has been used to 
achieve high frame rates. This system achieves high frame rates by working 
only with the information present in a single gray scale image. Nonetheless 
these alternative sources of information can also be integrated to achieve 
higher frame rates. 
 
There are four main innovation features of the Viola-Jones detector, 
 

 Haar-like input features. They consist in a threshold applied to sums and 
differences of rectangular image regions.  

 

 
 

Figure 3.3.1. Rectangle features used by Viola-Jones algorithm. Image 
taken from [Viola01]. 

 
 Integral image representation. The integral image representation of one 

image in a given pixel is computed as the sum of the pixels above and to 
the left of that pixel, this can be written, 
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Where ‘ii’ is the integral image and ‘i’ is the original image.  
The integral image can be computed from an image with a few 
operations per pixel, by using the following pair of recurrences, 
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(3.3.2) 

 
Once computed, the Haar-like features can be computed at any scale or 
location in constant time. 

 
 New method for constructing a classifier, by selecting a small number of 

important features using AdaBoost. In order to ensure fast classification, 
the learning process must exclude a large majority of the available 
features, and focus on a small set of critical features. The feature 
selection is achieved by a modification of the AdaBoost procedure, which 
consists in constraining the weak learner, so that each weak classifier 
returned can depend on only a single feature. 

 
 Novel method for combining successively more complex classifiers in a 

cascade structure, which dramatically increases the speed of the 
detector by focussing attention on promising regions of the image. The 
key insight is that smaller and therefore more efficient, boosted 
classifiers can be constructed. They reject many of the negative sub-
windows before more complex classifiers are called upon to achieve low 
false positive rates. The overall form of the detection process is that of a 
degenerate decision tree, which is called “cascade”, see Figure 3.3.2. A 
positive result from the first classifier triggers the second classifier, and 
so on. A negative outcome at any point leads to the immediate rejection 
of the sub-window. 

 

 
 

Figure 3.3.2. Cascade detector scheme. Image taken from [Viola01]. 
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Rainer Lienhart and Jochen Mayd extended the Viola-Jones algorithms with two 
important contributions, 
 

 The basic and over-complete set of Haar-like feature is extended by an 
efficient set of 45º rotated features, which add additional domain-
knowledge to the learning framework and which is otherwise hard to 
learn.  

 
 Novel post-optimization procedure for a given boosted classifier that 

improves its performance significantly. 
 

 
 

Figure 3.3.3. Set of features modified by Rainer Lienhart and Jochen Mayd. . 
Image taken from [Lienhart02]. 

 
This technique works well on objects that have distinguishing views, that is, 
front views of faces, backs, sides or fronts of cars. However it does not work 
well on side views of faces or corner views of cars, this is due to the sub-
window which must be learnt, includes part of the changing background. 
 
OpenCV implement all the necessary functions to train and run the Haar-
classifier. In addition, there are three trained detectors, available in the files of 
the OpenCV, which are very interesting for our purpose: 
 

 Upper body detector. 
 Lower body detector. 
 Full body detector. 

 
These detectors were trained by Hannes Kruppa and Bernt Schiele [Kruppa03]. 
The upper-body detector is the most useful in our scenario because legs are 
often hidden and even when they are visible, they are more difficult to 
recognise. 
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Figure 3.3.4. Detection of upper-body of a person using haar-classifier. 
 

It was not possible to use this algorithm for the three-dimensional estimation of 
the position of people, because the detection rate was very low even to try to 
combine it with tracking algorithms. This is because the detector must rely on 
silhouette information and they include information about the changing 
background. Nevertheless, it is possible to improve its performance, by training 
the detector not only with back and front views of the body but also with side 
views. 
 
 Comparing this method with the previous methods based on motion detection, 
the following conclusions were achieved, 
 

 Because this method is not based on motion, it can detect stationary 
people. 

 
 Using motion based algorithms makes it usual, that two people walking 

together are interpreted like a single object; this should not happen when 
the Haar-classifier is used.  

 
 The Haar-classifier algorithm is an extremely rapid object detector but it 

is much slower than every motion detection algorithm. 
 

 The detection rate of the upper-body detector is not high enough for our 
application, it should be taken into account that to estimate the three-
dimensional position of each person, we need at least a pair of two-
dimensional coordinates in different cameras of the system. 
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3.4. Background Subtraction. 
 
The background subtraction algorithms are used to isolate parts of objects 
(foreground) from the rest of the image (background). In this application the 
background corresponds to the stationary part of the image and the foreground 
corresponds to the part of the image with motion.  
 
OpenCV does not implement any specific algorithm of background subtraction 
but it provides a lot of tools to implement them. 
 
In order to define the background, several situations must be taken into 
account. In our case, we are watching a room and our desired foreground 
objects are people in the room. Our assumption is that everything large enough 
with movement in a scene is a person, but it could also be a chair being moved 
by a person.  Somehow the foreground must be updated to include the chair 
which has been moved and the hole left by the old position of the chair. Other 
situations, which could produce false detections, are the illumination changes 
which can be considered as objects of the foreground. 
 
The simplest background subtraction method is to subtract one frame from 
another and then label any difference bigger than a threshold as foreground. 
Then we obtain a mask of the same size of the image with non-zero values in 
pixels belonging to the foreground. Applying a dilate operation and finding the 
components of the mask which are connected, we get the different objects 
(people) of the foreground. This simple background subtraction method, 
combined with tracking techniques based in the Kalman filter, works well but it 
is very frame rate dependent. 
 

 
 

Figure 3.4.1. Person tracked with method based in differencing frames 
background subtraction combined with a Kalman Filter. The blue box represents 

the region belonging to the foreground. 
 

The main problem with this method is that the foreground obtained is up to the 
frame rate, so with a low frame rate the box obtained to represent the objects of 
the foreground will be larger than the object, and with very low frame rates (one 
frame per second) it is possible to find two objects belonging to the foreground 
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which represent the old and the new position of a single object (person) in 
movement (see Figure 3.4.2). 
 

 
 

Figure 3.4.2.  
 

Other problem is derived from the fact of the dilate operation must use a kernel 
big enough to join the pixels of a single object. Sometimes it also joins  pixels of 
different objects, resulting as a single object of the foreground (see Figure 
3.4.3). In addition, the point selected to represent each object has been the top-
centered of each region with movement. This is influenced by the dilate 
operation so it will affect the accuracy of the three-dimensional reconstruction.  
 

 
 

Figure 3.4.3. Two people are considered as an only foreground object. 
 
In order to avoid the problems explained above, a more sophisticated 
background subtraction method was implemented. It takes the first image of the 
video stream as background. Then, a mask is obtained by a differencing 
operation between the background and the current image, followed by a 
threshold and dilates operations. This mask is used to find the connected 
components and in this way get the segmented objects of the foreground. The 
current frame is also subtracted from the previous frame, and a threshold 
operation is accomplished, giving as result a mask with pixels which change 
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from one frame to the previous frame. This mask is called “silhouette”, and is 
used to update a matrix which contains the timestamp of the last movement for 
each pixel; as it was done in the Motion History Image, 
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This matrix is used to search for recent movements in the regions of the 
foreground. If there is no recent movement in this region, its content is used to 
update the background. To determine if there was or not recent movement in a 
region, a threshold is applied to our Motion History Image and the pixels within 
this region are counted. If there are not enough pixels with recent movement, 
relative to the surface of the region, then this region updates the background to 
the correspondent region.  
 
This method has a better behaviour than the previous, because it does not 
depend on the frame rate, due to the time information that it handles. In 
addition, the kernel required for the dilate operation is smaller than the previous 
one. This allows us to distinguish between objects of the foreground even when 
they are very near (see Figure 3.4.4), and does not distort the pixel coordinates 
of the point.  
 

 
 

Figure 3.4.4. Two people which appear very near in the image are interpreted 
as two different objects of the foreground. 

 
In order to make a faster update of the background when a big illumination 
change happens, if the algorithm detects a big change between the background 
and the current frame, it updates the whole background until this situation 
disappears. 
 
The more sophisticated background subtraction technique has been used to 
measure the position of objects (people) in the current scenes, and these 
measurements have been used by Kalman filters (see Appendix B. Kalman 
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Filter) to estimate the position of the objects in the next frame. In this way we 
are able to track the objects in a period of time. 
 
The point selected to represent each region of the foreground is the top-center 
point. The aim is to track the movement of this point in a plane, so the state 
vector will be composed by the position and velocity of the object in the two 
dimensional system. 
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(3.4.2) 
 
Although the state vector has four components, only the position components 
can be measured, not the velocity components, so the measurement vector is, 
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Assuming constant velocity of the object between frames, and supposing a time 
between frames equal to dt, the transition matrix for our system can be written, 
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There is no control inputs in the system considered here, so the matrix B does 
not exist. The matrix H which relates to the current state with the measurement 
is, 
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4. Analysis. 
 
So far, different methods have been described in order to get information in two 
dimensions from each image, which is taken from a digital camera. It has also 
been described how to obtain the parameters of the pin-hole model of a 
camera, and how to use the information from pixel coordinates of the previous 
methods and the epipolar constraints obtained from the model of the cameras. 
Through this method, it is possible to obtain groups of points (one point per 
image) which are supposed to be the same as in the three-dimensional world. It 
is then possible via triangulation reconstruction to obtain the three-dimensional 
position of this point. In this chapter I analyze the behavior of the different 
methods used to get the pixel locations of the objects, the sources of error 
which have an influence in the system output, and finally I analyze the accuracy 
of the three-dimensional measurement. 
 

4.1. Analysis of the behavior of the motion detection and 
tracking algorithms.  

 
In chapter 3, the method, which was used to obtain the two-dimensional 
information in pixel units of the location of a person (object in movement) in an 
image, was described.  Analyzing the behavior of these methods, I reached the 
following conclusions: 
 

 Optical Flow Algorithm. 
 

At the end of the experiment, the Pyramid Lucas-Kanade algorithm was not 
successfully implemented to track people. Only a group of points was being 
successfully tracked by the Pyramid Lucas-Kanade algorithm. The problem 
arises from the fact that it has not been possible to develop any matching 
algorithm between points of different cameras. This way it is impossible to 
accomplish the three-dimensional reconstruction of the points being tracked 
with this method.  
 

 
 

Figure 4.1.1 illustrates the behavior of the optical flow algorithm. 
 

 Body detection with Haar Classifier. 
 
This method was studied because it could present some advantages: 
 

o It can detect stationary people. 
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o Using motion based algorithms, it is usual that two people walking 
together are interpreted like a single object; this should not happen when 
the Haar Classifier is used.  

 

 
 

Figure 4.1.2. illustrates the behaviour of the body detector. 
 
 
Despite these advantages, the Haar Clasifier was not used to estimate the 
three-dimensional position, because the detection rate of the upper-body 
detector is very low for this purpose. In order to be able to compute the three-
dimensional location, the same body should be detected in at least two images. 
 

 Motion Templates. 
 
The two-dimensional information provided by the motion templates algorithm 
was useful to compute the three-dimensional position of objects in movement. 
After analyzing the behavior of this method, 
 

o Motion templates algorithm provides the position of an object in 
movement, not only people. 

 
o When several objects are too close together, they can be interpreted as 

an only object. 
 
o The body of a person is sometimes interpreted by the detector as 

different objects. 
 

o With low frame rates (2 fps) the hole that is left from the object in 
movement can be detected as other object. 

 
o The points obtained with this method are not exactly at the top of the 

object in movement.  
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Figure 4.1.3.  illustrates the behavioral features of the Motion Templates 
method. 

 
 Background Subtraction and Tracking based on Kalman filter. 

 
The information of the location of the foreground object in the image, which had 
been obtained through the background subtraction method, was successfully 
used to compute the three-dimensional position of these objects. The behavior 
of this method is very similar to the behavior of the Motion Templates but with 
some differences: 
 

o The objects of the foreground are objects in movement, not only people. 
 
o It distinguishes different objects when they are very near. 

 
o Its frame rate is totally independent. 

 
o The points provided by this method are in the top-center of the object. 

 
o It is the fastest method. 

 

 
 

Figure 4.1.4. illustrates the behavioral features of the Background Subtraction 
method. 

 
 Runtime analysis. 

 
Although the aim of this application is not to work in real time, a part of it may be 
used in that context. The runtimes of the different algorithms in a single core 
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processor 1.5 GHz with an image size of 320x240 pixels have been calculated 
and the results are shown in the Table 4.1. 
 
 

Method Runtime (ms.) 
Optical flow 55 
Body detection 500 
Motion templates 57 
Background subtraction 3 

 
Table 4.1 Comparison between runtimes. 
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4.2. Sources of error 
 
In this the section different sources of error will be analyzed, but befote that it 
should be kept in mind that in this system is very difficult to compute a value for 
an error because the detection algorithms used to compute the objects location 
in the images are based in motion detection and the measurement process of 
the instant position of one person in movement in a room could be complicated. 
In addition, the objects are represented by a single point located in its top and 
this is not a fix position in the three-dimensional world but it depends on the 
relative position of the object and the cameras. 
 
It is possible to distinguish three sources of error those which are relative to the 
calibration process, those which are relative to the location provided by the 
detection algorithms, and those which are relative to matching process among 
points of images from different cameras. 
 

 Errors related to the calibration process. 
 
The calibration process let us compute the camera extrinsic and intrinsic 
parameters, according to a model of the camera, as it was explained in Chapter 
1, it was used the pin-hole camera model without taking into account the 
distortion lens parameters because the error introduced by this simplification of 
the model was considered negligible. Although the model of the camera match 
perfect with its behaviour, it provide us its position relative to a chess board 
frame (see Chapter 1) and this position must be related to the world-reference-
frame, and the measurement of this relation will also have an influence in the 
global error. 
 

 Summarizing the errors derived of the calibration process: 
 

 The goodness of fit of the model. 
 

 The accuracy of the algorithm to compute the model parameters. 
 

 The accuracy of the measurements of the relative position between the 
board-reference-frame and the world-reference-frame. 

 
 Errors related to the detection algorithms. 

 
The algorithms which compute the pixel coordinates of the people (objects in 
movement) in each image from the different cameras produce two kinds of 
error: 
 

 Errors related with the behaviour of the algorithm, that is, when the 
algorithm interprets one object as if there were two different objects, or 
vice versa, when the algorithm interprets two objects as an only object.  

 
 Errors related with the accuracy of the location, the ideal case is that the 

points computed for the detection algorithms in each image would be the 
projection of the same three-dimensional point, for this reason it was 
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chosen the top-center point to represent each object and instead of its 
center of mass because if this point would have been chosen it would 
have introduced large matching error when some parts of the people are 
hidden by stationary objects (chairs, tables,…). Even so, the points 
computed by the detection algorithms depend on the projection of the 
objects in each camera and they do not match exactly with the same 
point in the real world and due to the fact of taking the top points they are 
usually over the top of the object and the influence of this error increase 
with the distance of the object to the camera. 

 
 Errors related to the matching algorithm. 

 
The matching algorithm implemented for this application it is based only in the 
epipolar constraint among the points computed by the detection methods in the 
images of each camera, but there is no matching algorithm implemented in the 
way of features matching or correlation matching. The reason for not 
implementing these kinds of matching algorithms is that they assume that most 
scene points are visible from each viewpoints and the relative position of the 
cameras make this assumption false as it is shown in the Figure 4.2.1. 
 

 
 

Figure 4.2.1.  shows two frames taken simultaneously from two cameras. 
 
The matching algorithm consists of linking those points visible from each 
camera and which minimize the distance to the epipolar lines of the other 
cameras. So the matching algorithm fails when links points of images which are 
not correspondent and then a non desired three-dimensional point is computed. 
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4.3. Analysis of the accuracy of the three-dimensional 
reconstruction. 

 
In this subsection it is analyzed the accurate of the three-dimensional 
measurement, in order to accomplish this analysis videos with a person doing 
small movements around nine known positions were recorded, although the 
exact location of the people it is unknown, it must be within a small known 
region (60x60 cm) of the room. Two videos were recorded with different frame 
rates (2 and 5 fps), and the data were analyzed taking into account two and 
three views. Figure 4.3.1.  shows the nexus lab, the location of the world-
reference-frame, and the location of the cameras used to record the videos to 
be analyzed. Figure 4.3.2 represents the isometric projection of the nexus lab, 
the location of the world-reference frame and the three camera-reference-
frames. Notice that the grid of the ground of the isometric projection has been 
drawn to represent the stabs of the floor of the nexus lab, and the nine yellow 
ones are the regions were the person was recorded. 
 

 
 

Figure 4.3.1.  shows the location of the word-reference-frame and the cameras 
used in the accurate analysis process in the nexus lab. 
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Figure 4.3.2 shows the isometric representation of the nexus lab, the world-
reference-frame, the three cameras-reference-frames, and the location of the 

regions used in the accurate analysis process. (The grid in the plane XZ 
represents the slabs of the nexus lab) 

 
In the Table 4.3.1.are the world-reference-coordinates of the boundaries and 
the midpoints of the nine regions in yellow shown in the Figure 4.3.2. The y-
coordinate correspond to the height of the person which is 1830 mm. 
 

X (mm) Z (mm)  
min mean max min mean max 

1 3650 3950 4250 3000 3300 3600 
2 4850 5150 5450 3000 3300 3600 
3 6050 6350 6750 3000 3300 3600 
4 3650 3950 4250 3900 4200 4500 
5 4850 5150 5450 3900 4200 4500 
6 6050 6350 6750 3900 4200 4500 
7 3650 3950 4250 4800 5100 5400 
8 4850 5150 5450 4800 5100 5400 
9 6050 6350 6750 4800 5100 5400 

 
Table 4.3.1. Boundaries and midpoints of the test regions. 

 
The Graphs 4.3.1 - 4.3.8 show the output of the system with different 
configurations when the person goes from the first to the last region staying 
within each region for a period of time. The black solid lines shows the mid point 
of the region and black dotted lines the boundaries of the regions in each 
coordinate.
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Graph 4.3.1.  Output of the system using 2-cameras, 2 frames-per-second, and Motion-

Template method. 
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Graph 4.3.2.  Output of the system using 2-cameras, 5 frames-per-second, and Motion-

Template method. 
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Graph 4.3.3.  Output of the system using 3-cameras, 2 frames-per-second, and Motion-

Template method. 
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Graph 4.3.4.  Output of the system using 3-cameras, 5 frames-per-second, and Motion-

Template method. 



                                                                                                                 Analysis. 
 

 50

0 50 100 150 200 250 300

4000

5000

6000

7000

2c 2fps back.txt
x-

co
or

di
na

te
 (m

m
)

frame

0 50 100 150 200 250 300

3000

3500

4000

4500

5000

5500

z-
co

or
di

na
te

 (m
m

)

frame

0 50 100 150 200 250 300
1600

1700

1800

1900

2000

y-
co

or
di

na
te

 (m
m

)

frame

Graph 4.3.5.  Output of the system using 2-cameras, 2 frames-per-second, and 
Background Subtraction method. 
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Graph 4.3.6.  Output of the system using 2-cameras, 5 frames-per-second, and 

Background Subtraction method. 
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Graph 4.3.7.  Output of the system using 3-cameras, 2 frames-per-second, and 
Background Subtraction method. 
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Graph 4.3.8.  Output of the system using 3-cameras, 5 frames-per-second, and 
Background Subtraction method.
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In the previous graphics the position measured by the system with the different 
configurations has been shown. It can be noticed that the error in the x-axis is 
the highest and it increases with the distance of the object to the cameras 1 and 
2 and it decreases when the camera 3 is used to compute the three-
dimensional coordinate, this is due to the rays from the cameras 1 and 2 
becomes more and more parallel when the point they are pointing to is further, 
so small errors in the correspondence become big errors in the reconstruction 
this is illustrate in the Figure 4.3.3. 

 
Figure 4.3.3. Shows the relation between the distance to the camera centers 

and the error 
 
In order to compare the results with the different settings of the system the 
measurements have been separated according to the regions they belongs to, 
and the absolute mean errors have been computed taking the midpoint of each 
region as real value. 
 

 Error comparison between different frame rates. 
 
Analyzing the results with different frame-rates, it seems that the frame rate 
does not have an influence in the results of the program but they do, not in the 
error measured with this process, but in the behaviour of the algorithm based on 
frame differencing. The Figure shows the comparison between the errors of the 
system output using 2 and 5 fps and background subtraction method, and there 
is any obvious relationship between the error and the frame rate. 
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Graph 4.3.9. Shows the absolute mean error of the system output in each 

region using background subtraction method, 3 cameras, 2 fps (blue) and 5 fps 
(red). 

 
 Error comparison between different methods. 

 
The error using Background Subtraction and Motion Templates methods it is 
also very similar. . Graph 4.3.10.shows the absolute mean errors of the system 
using the same frame rate and number of cameras but the different methods. 
 



                                                                                                                 Analysis. 
 

 56

1 2 3 4 5 6 7 8 9
0

500

1000
x-

er
ro

r(m
m

)

1 2 3 4 5 6 7 8 9
0

20

40

60

y-
er

ro
r(m

m
)

1 2 3 4 5 6 7 8 9
0

100

200

300

z-
er

ro
r(m

m
)

 
Graph 4.3.10. Shows the absolute mean error of the system output in each 

region using 3 cameras  5 fps and  Background Subtraction method (blue) and 
Motion Template (red),. 

 
 Error comparison between two and three cameras.  

 
Graph 4.3.11. shows the absolute mean error of the system using the cameras 
1 and 2 (blue) and the cameras 1, 2 and 3, it is noticed that when the third 
camera is used to compute the three-dimensional location of the person the 
error in the x-axis decreases while the others coordinates remain constant or 
increase, this is due to the relative position of the third camera, which focus is 
almost perpendicular to the focus of the other cameras (see Graph 4.3.11.). 
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Graph 4.3.11. Shows the absolute mean error of the system output in each 
region using Background Subtraction method 5 fps, 2 cameras  (blue) and 3 

cameras(red). 
 

 Distance between correspondent rays. 
 
The distance between correspondent rays can be understood as a 
measurement of the goodness of the matching between points of images of 
different cameras, and in the ideal case should be zero.  
 
In order to analyze the goodness of the matching among points, the distance 
between each pair of rays for each measurement has been computed and 
stored. Graphs 4.3.12 and 4.3.13 shows the distance between each pair of rays 
using three cameras, it can be noticed that the distance between the rays from 
the cameras 1 - 2 is much shorter than the distance between the rays from the 
cameras 1 - 3, and 2 – 3, this is due to the projection of the three-dimensional 
world is more similar in cameras 1 and 2 than the cameras 1-2 and 3, and this 
has an influence in the matching goodness since we take the top-center point of 
the object in movement to represent the hole object, this situation can be seen 
in the Figure 4.3.4...  
 
Comparing the mean values of the distance between rays using Motion 
Templates and Background Subtraction methods can be noticed that the 
distance is longer when the first method is used. This is due to the Motion 
Templates used in our system it is based in frame differencing to get a 
silhouette this produces that the point chosen to accomplish the three-
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dimensional reconstruction is influenced by the trace left of the tracked object 
along different frames. 
 
 
 

 
 
Figure 4.3.4. Shows the person being tracked, the yellow points in each image 
are the matched points and the green line the line projection of the previous to 

the current camera. 
 
 

0 50 100 150 200 250 300 350 400 450

50

100

150

di
st

: 1
 - 

2 
(m

m
)

0 50 100 150 200 250 300 350 400 450

200

400

600

di
st

: 1
 - 

3 
(m

m
)

0 50 100 150 200 250 300 350 400 450

200

400

600

di
st

: 2
 - 

3 
(m

m
)

 
 
Graph 4.3.12. shows the absolute (blue) and mean (red) distance between each 

pair of rays, using the Motion Templates method, 3 cameras and 5 fps. 
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Graph 4.3.13. shows the absolute (blue) and mean (red) distance between each 
pair of rays, using the Background Subtraction method, 3 cameras and 5. fps. 

 
 Summary. 

 
 It has been tried to compute the three-dimensional location of people in a 

room using four different methods to get the two dimensional information 
from the image of each camera, and it has been accomplished only with 
two the Motion Templates and Background Subtraction methods. 

 
 Both methods have reported similar errors, although the Background 

Subtraction method using a Kalman filter to track the foreground objects 
is faster, frame rate independent and behaves better.  

 
 The measurement error in the x-axis of the world-reference-frame is the 

largest and increase with the distance due to the location and orientation 
of the cameras 1 and 2. This error decreases when the camera 3 is used 
to compute the three-dimensional location. 

 
 The system works well when there is only a person in the room but it 

does not work when several people appear together or occluded in the 
video, due to there is no matching algorithm between points of the 
different images. 

 
 According to the results obtained we can conclude that the method with 

the best behaviour and accuracy is the Background Subtraction Method. 
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5. Summary and outlook. 
 

 Summary. 
 
The aim of this thesis is the detection of people in images captured from 
multiple cameras, estimate their three-dimensional location, based on the 
information obtained from the cameras, and investigate the accuracy of the 
three-dimensional location. 
 
In order to achieve this aim, it was necessary to obtain the relative location 
between the camera-reference-frames and a known reference-frame. This was 
accomplished according to what was explained in chapter 2 of this work.  
Combining this information with the location of the people in each image 
captured from the different views, the three-dimensional reconstruction can be 
accomplished. The different methods to obtain the location of people in an 
image were studied in chapter 3. The last part of this work, chapter 4, is 
dedicated to investigate the accuracy of the systems designed to compute the 
three-dimensional location of people. 
 

 Outlook. 
 
There are several ways to improve and extend the results of this thesis. Some 
of them are, 
 

 Using higher camera resolutions, this will increase the accuracy of the 
location, and at the same time the runtime of the algorithms.  

 
 Adding more views of the scene, the three-dimensional point computed 

will be more accurate. 
 

 Improving the tracking people algorithms to allow the system to compute 
the three-dimensional location of more than one person. To achieve this, 
the algorithm should be able to track the people when they are partly-
hidden by other people. 

 
 Methods based on pattern recognition are also very interesting, because 

they do not need people in movement, and in that way are totally frame 
rate independent. 
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Appendix A. Camera calibration method. 
 
There are several methods to obtain the pin-hole camera model parameters, 
that is, intrinsic parameters: focal lengths and the origin of the image; and 
extrinsic parameters: rotation and translation matrix, which relate the camera-
reference-frame with an external known reference-frame. OpenCV chose one 
method which works well on planar objects; this is based on Zhang’s method. 
 
The most common planar pattern is a chessboard. This way, by collecting 
several images of a chessboard and extracting the corner points within the 
chessboard, it is possible to collect a homography H for each view of the 
pattern. The homography matrix H can be set to the camera’s intrinsic matrix M 
multiplied by a combination of two rotation matrix columns, r1 and r2, and the 
translation vector t, including a scale factor. This yields: 
 

][][ 21321 trrsMhhhH ==  
(B.1) 

 
Then h1, h2, h3, can be written as, 
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Here λ =1/s, 
 
The vectors, r1 and r2, are orthonormal, this implies: 
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Using these properties of orthonormality, in expression (B.2), the following 
constraint can be written, 
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Let define B, as: 
 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

++
−−

−

−

== −−

1

10

01

2

2

2

2

22

22

22

1

y

y

x

x

y

y

x

x

y

y

y

x

x

x

T

f
c

f
c

f
c

f
c

f
c

f

f
c

f

MMB
 

 
(B.5) 

 
Using B, considering that matrix B is symmetric, the generic term hi

TBhj, can be 
written, 
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Using this definition for vij

T, the constraints (B.4) may be expressed as: 
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If K images of the pattern have been collected, it is possible to stack K of these 
equations together, 
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The camera intrinsic parameters can then get the closed-form solution of the 
matrix B: 
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(B.9) 

 
The extrinsic parameters are then computed from the equations (3.2), and r3, 
can be computed as the cross product of r1 and r2.  
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Appendix B. Kalman Filter. 
 
The Kalman Filter was introduced by Rudolph E. Kalman in 1960, he described 
a recursive solution to the discrete-data linear filtering problem. The Kalman 
filter is essentially a set of mathematical equations that implement a predictor-
corrector type estimator, which is optimal in the sense that it minimizes the 
estimated error covariance, when the presumed conditions are met. 
 
The Kalman filter tries to estimate the state nx ℜ∈  of a discrete time process, 
which is governed by the linear stochastic difference equation, 
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With a measurement mz ℜ∈  that is, 
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Where kw  represents the process noise and kv  represents the measurement 
noise. Both are assumed to be independent, white, and with normal probability 
distributions, 
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The n x n matrix A in the expresion (B.1) is known as the transition matrix and 
relates the state at k-1 to the state at k, in the absence of noise. The n x l matrix 
B relates the optional control input lu ℜ∈  to the state x. The m x n matrix H in 
the equation (B.2) relates the state x to the measurement z at time k. All the 
matrices might change with each time step or measurement, but they are 
assumed constant. 
 
Let define n

kx ℜ∈−ˆ  as a priori state estimate at step k, given knowledge of the 
process prior to step k and n

kx ℜ∈ˆ , as a posterior state at step k given 
measurement z at step k. Then the a prior and a posterior estimate errors can 
be defined as, 
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The estimate error covariances are then, 
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The following expression computes a posterior state estimate, as a linear 
combination of a priori estimate and a weighted difference, between an actual 
measurement and a measurement prediction, 
 

)ˆ(ˆˆ −− −+= kkkk xHzkxx  
(B.6) 

 
In this expression, the n x m matrix k is the gain or blending factor, which 
minimizes the posterior error covariance. This minimization can be 
accomplished by substituting equation (B.6) into the posterior error definition 
(B.4) and then into the posterior covariance (B.5), taking the derivative of the 
result with respect to K, and setting the result equal to zero, we obtain, 
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Equation of the Kalman filter can be divided into two groups, 
 

 Time update equations. They are used to estimate the process state at 
some time, so they are responsible for projecting forward the current 
state and error covariance estimates to obtain the a priori estimates for 
the next time step. These equations can also be thought of as predictor 
equations. 
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 Measurement update equations. After the estimation process, they 
obtain feedback in the form of measurements. These equations can be 
thought of as corrector equations. 
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(B.9) 
 
The first task during the measurement update is to compute the Kalman filter 
gain, kK , then the measure of the process is obtained, kz , and then a posterior 
state is estimated by incorporating the measurement. The final step is to obtain 
a posterior error covariance estimate.  
 
After each time and measurement update pair, the process is repeated with the 
previous posterior estimates used to project or predict the new a priori 
estimates. 
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Figure B.1. Scheme of the Kalman filter algorithm. Scheme taken from 
[Welsh95] 
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Appendix C. Applications. 
 
This appendix is a manual, which describes the different applications developed 
for this thesis. 
 
Camera Calibration. 
 
This application has been developed to compute the pin-hole model camera 
parameters, the intrinsic matrix, the rotation matrix, the translation vector and 
the distortion coefficients.  
 

 
 

Figure C.1. Camera Calibration GUI 
 
Before running this program, several images of a chessboard should be taken 
and saved in a directory (at least 12 images of an 8 by 6 chessboard pattern). 
This application only saves the rotation and translation matrices for the main 
image, the one which is selected clicking the button “…”. The application uses 
all the images which are in the same directory with the same name, followed by 
a specific number (less than 100) to compute the parameters. 
 
The inputs are: 
 

 Width: Number of interior corners in the rows of the chessboard pattern. 
 

 Height: Number of interior corners in the columns of the chessboard pattern. 
 

 Square length: Length of a square of the chessboard expressed in 
millimetres. 

 
The application saves automatically the parameters in “xml” files, in the same 
directory as the pattern images, and an image of the main pattern with the 
chessboard-reference frame represented on it (see Figure C.2). 



                                                                                                           Appendix C. 
 

 70

 
 

Figure C.2. shows the projection of the computed reference-frame. 
 
The button “FindChessCorners”, let you check if the corners of the chessboard 
were successfully detected, if there is any invalid image it can be deleted, and 
the process must be repeated (see Figure C.3). 
 

 
 

Figure C.3. shows a correct detection (left) and a wrong (right) of the 
chessboard corners. 
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Draw Isometric. 
 
The following program is a simple application, which computes the location and 
draws the isometric projection of the camera-reference-frames in the world-
reference-frame, given the translation and rotation matrices which relate: 
 

 The camera-reference-frame and the pattern-reference-frame 
(computed with the previous application). 

 
 The world-reference-frame and the pattern-reference-frame. To obtain 

these matrices, some measurements must be accomplished. 
 
*To select the matrix click the button “Load matrix”. 
 

 
 

Figure C.4. Draw Isometric GUI. 
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Applications to compute the 3D location. 
 
There are two applications which compute the three-dimensional location of the 
people. One of them uses the Motion Templates Method to obtain the two-
dimensional location of people, and the other uses the Background Subtraction 
Method. However their graphical user interfaces are the same. 
 

 
 

Figure C.5 Generic GUI for 3D location 
 
The size of the videos used for this application must be 320*n x 240, where n is 
the number of cameras used to record the videos. The videos must be 
uncompressed. 
 
How to make the program work: 
 

 First, select the number of cameras in the combo box. This number must 
be less or equal to the number of cameras used to record the opened 
video. If the number of cameras selected is less than the number of 
cameras used to record the video, only the first number of cameras 
selected will be taken into account. 

 
 Once the number of cameras is selected, it is time to introduce the 

camera matrix. By clicking the “Camera Matrix” button, a file dialog box 
will appear to choose the cameras matrices (they must be in xml files). 

 
 After selecting the camera matrices, you can choose the video to 

process clicking in the button “Process video”. 
 

  The “Pause” button allows you to stop the video sequence. 
 

 The “Show windows” button opens the output windows. 
 

 The “Rec Output” check box must be remained pressed, before the video 
is processed, to record the output windows in a video file. 
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 The “Save results” check box must be pressed, before the video is 
processed. This records the measured three-dimensional coordinates of 
an only object. 

 
 The “Photo” button captures the output windows and allows you to save 

them in the desired directory. 
 

 The threshold slider allows you to modify some internal parameters; its 
position should not be modified. 

 
 The mean, max and min runtime per frame of the detection algorithm is 

shown in the right text boxes. 
 
MOBOTIX-WEBCAM Record application. 
 
This application has been developed to record simultaneously images from two 
IP-Mobotix cameras and an optional WebCam. The format videos recorded are 
uncompressed. The application also saves a “.dat” file with the exact timestamp 
of each frame. Before beginning to record the videos: 
 

 The IP-address of the desired IP-cameras must be set. 
 

 The frame rate must be chosen in the combo box. 
 

 The destination file of the video file must be specified. 
 

 
 

Figure C.6. REC application GUI. 
 
 


