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Abstract

In 1959 Theocharis [10] showed that with linear demand and constant marginal costs Cournot

equilibrium is destabilized when the competitors become more than three. With three competi-

tors the Cournot equilibrium point becomes neutrally stable, so, even then, any perturbation

throws the system into an endless oscillation. Theocharis’s argument was in fact proposed

already in 1939 by Palander [4]. None of these authors considered the global dynamics of the

system, which necessarily becomes nonlinear when consideration is taken of the facts that prices,

supply quantities, and profits of active firms cannot be negative. In the present paper we address

the global dynamics.

1 Introduction

In a short communication Theocharis (1959) [10] reconsiders the classical Cournot oligopoly problem

(see Cournot (1838) [1]), assuming a linear demand function and constant marginal costs. He

demonstrates that with three competitors the Cournot equilibrium becomes neutrally stable and
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with four it becomes unstable. This paper has been taken as ”seminal” by several authors, so,

despite its limited scope, it might be interesting to take a new look at it. See for instance Okuguchi

(1976) [7] and Tuinstra (2004) [9](a book review of Puu and Suskho [5]).

As one of the present authors pointed out in another article Puu (2006) [6], the Theocha-

ris argument was stated under more general conditions 20 years earlier by Palander (1939) [4].

Palander’s article was published in Swedish, so Theocharis cannot be blamed for rediscovering

this, though Palander (1936) [3] gave most of the argument in a presentation at a regular Cowles

commission meeting in 1936, so some of Theocharis’s supervisors might have had a chance to know

the argument.

Our purpose is to consider the global dynamics of this simple model, taking into account that

supply quantities cannot become negative, something that makes the model nonlinear. Neither Pa-

lander, nor Theocharis, dealt with the global dynamics, so they considered local stability alone. Pa-

lander just considered the loss of stability, though for more general conditions, whereas Theocharis

proposed a general solution to the linear model, which, however, is not relevant for the global

dynamics when the nonnegativity constraints are taken in account.

1.1 The Theocharis 1959 Model

Let us now specify the model. According to the linear demand function, its inverse gives market

price:

p := a − b
i=n∑

i=1

qi (1)

as dependent on the total sum of the supplies of the n competitors. Obviously
∑i=n

i=1 qi must be

less than or at most equal to the ratio a/b. To simplify notation, we can define total supply as

Q :=

i=n∑

i=1

qi (2)

and “residual supply” (not under the control of the i:th competitor) as:

Qi := Q − qi, i = 1, ...n (3)

Total revenue for the i:th competitor hence becomes:

Ri = (a − b (Qi + qi)) qi, i = 1, ...n (4)

whence marginal revenue:

R′
i =

∂Ri

∂qi
= a − bQi − 2bqi, i = 1, ...n (5)
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Given constant marginal costs, total costs are

Ci = ciqi, i = 1, ...n (6)

and marginal costs:

C ′
i =

∂Ci

∂qi
= ci, i = 1, ...n (7)

Equating marginal revenue (5) to marginal cost (7) to obtain profit maximum, we can solve for

qi:

qi =
1

2

(
a − ci

b
− Qi

)
, i = 1, ...n (8)

which can either be treated as a simultaneous system of equations, or, else as a system of recurrence

equations. Dealing with the first possibility, (8), given definitions (2) and (3), can be solved for the

coordinates of the Cournot equilibrium point. To simplify again, define the average marginal cost,

c =
1

n

i=n∑

i=1

ci (9)

Then the Cournot point has coordinates:

qi =
a + nc − (n + 1)ci

(n + 1)b
, i = 1, ...n (10)

We may also want to know the total output at the Cournot point, which is easily calculated as the

sum of (10):

Q =
n

n + 1

a − c

b
(11)

It is reassuring that, in the Cournot equilibrium point, price p = a − bQ = 1
n+1a + n

n+1c > 0 is

always positive.

However, as stated, we may want to treat (8) as a dynamical system. Suppose each firm assumes

all the competitors to retain their supplies from the previous period. Then the ”best reply” of this

firm is:

qi (t + 1) =
1

2

(
a − ci

b
− Qi (t)

)
, i = 1, ...n (12)

This relation (12) is usually called the reaction function. Note that (10) is a particular solution

to (12), so, if we want, we can easily restate (10) in terms of deviation variables qi (t + 1)− qi,

obtaining a homogenous system.

It is worthwhile to note that the derivatives of (12):

∂qi (t + 1)

∂Qi (t)
= −

1

2
, i = 1, ...n (13)
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are constant, − 1
2 , independent of the coordinates of the Cournot equilibrium point. These deriva-

tives enter the Jacobian determinant of the system in all the off-diagonal elements, whereas the

diagonal elements are zero (because the best reply of each firm does not depend on its own supply

in the previous period). We have:

J =




0 −1
2 · · · −1

2

−1
2 0 · · · −1

2
...

...
. . .

...

−1
2 −1

2 · · · 0




(14)

Next, the characteristic equation is:

|J − λI| =

(
λ −

1

2

)n−1(
λ +

n − 1

2

)
= 0 (15)

Hence, there are n − 1 eigenvalues λ1,...n−1 = 1
2 and 1 last eigenvalue λn = −n−1

2 . Theocharis

concludes that in duopoly there are two eigenvalues λ1 = 1
2 , and λ2 = −1

2 , both less than unity

in absolute value, so the Cournot equilibrium is stable. In triopoly the eigenvalues are λ1,2 = 1
2 ,

λ3 = −1, so the equilibrium is neutrally stable with a tendency to endless but stationary oscillation.

For n > 3, |λn| = n−1
2 > 1, so the equilibrium is unstable. As usual, the eigenvalues correspond to

a diagonalization of the system, the first n − 1 associated with differences of the phase variables,

the last with the sum of all the phase variables.

1.2 Palander’s 1939 Argument

In his 1939 article Palander (1939) [4] wrote: ”as a condition for an equilibrium with a certain

number of competitors to be stable to exogenous disturbances, one can stipulate that the derivative

of the reaction function f ′ must be such that the condition |(n − 1) f ′| < 1 holds. If this criterion

is applied to, for instance, the case with a linear demand function and constant marginal costs, the

equilibria become unstable as soon as the number of competitors exceeds three. Not even in the case

of three competitors will equilibrium be restored, rather there remains an endless oscillation”. As

we see, Palander considers not just linear demand (and hence reaction) functions, but stability of

the Cournot equilibrium in general.

Further, his main interest is the case dealt with by Robinson (1933) [8] for a monopoly, where

the demand function is kinked, due to different demand elasticities of different groups of consumers,

and increasing elasticity when a price gets sufficiently low for new groups to afford the commodity.
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As realized by Robinson, a monopoly facing such a demand curve will have several local profit

maxima, and has to choose the global optimum.

Palander develops this idea to the case of duopoly, and realizes that different supplies by the

competitor may cause a firm to choose one or the other of the local optima. The reaction functions

hence are composed by disjoint linear segments, which may have several intersections or none at

all. Palander discovers multistability and fragmented basins, which is something of an exploit given

the computation facilities of the time. We will not enter the details of this more complicated issue,

which one of the present authors dealt with extensively in a previous publication (Puu and Sushko

(2002)). We only note that Palander considers the simpler case of a linear demand function just

en passant.

2 Non-linearity and the Global Dynamics

It is now time to consider that the quantities produced by all the firms, qi (t + 1), cannot become

negative according to (12). Hence they should be restricted to

a − ci

b
≥ Qi, i = 1, ...n (16)

However, there is another fact we must consider: Profits must be positive, or some of the firms

will drop out from the market (temporarily or permanently). So let us consider expected profits as

obtained from (4) and (6):

Πi = Ri − Ci = (a − ci − b (Qi + qi)) qi, i = 1, ...n

Substituting the best reply for qi from (8), and simplifying, we get:

Πi =
b

4

(
a − ci

b
− Qi

)2

, i = 1, ...n (17)

As the bracketed expression is squared, it might seem that we always have a non-negative profit.

However, for cases where (16) is not fulfilled, the non-negativity of profits is due to the fact that,

with negative output, positive costs dominate over negative revenues, a mathematically, but not

economically, meaningful case. So, we conclude that the condition for non-negative profit is the

same as the condition for non-negative output.

Hence we can reformulate the reaction functions as follows

qi (t + 1) = fi (Qi (t)) :=





1
2(a−ci

b
− Qi (t)) Qi (t) ≤

a−ci

b
,

0 Qi (t) > a−ci

b
,

i = 1, ..., n (18)
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Defining F = (f1, f2, ..., fn), the iteration of this non-linear map is not simple. Preliminary numeri-

cal experiments with (18) indicate that eventually the model can go to steady states of a monopoly

or a duopoly. With three competitors, a permanent oscillation can appear, and with four or more,

oscillations of period two, where all firms drop out every second period, seems to be the rule.

However, any number of competitors may drop out, permanently or temporarily and the remaining

firm(s) may go to Cournot equilibrium or even a monopolistic state.

2.1 Preliminary Considerations: Existence of Periodic Orbits

It is easy to check that the general solution of the system of difference equations given in (12) is

qi(t) = Ai(
1

2
)t + Bi(−

n − 1

2
)t +

a + nc − (n + 1)ci

(n + 1)b
i = 1, 2 . . . , n (19)

where Ai and Bi can be found given the initial values and the fraction on the right hand side is the

equilibrium value qi.

Then if we look at the general solution for qi(t) given in (19) and if the number of firms is greater

than three, because of the term Bi(−
n−1

2 )t, apart from the Cournot point, for F to have a periodic

orbit it is necessary that such a periodic orbit contains a point of the form (q1, q2, ..., qn) such

that qj = 0 for some j ∈ {1, 2, . . . , n}. This could make one suspects that the orbit generated by

(0, 0, . . . , 0) would play an important role when studying the dynamics of the Cournot competition.

Next we show that there always exists a periodic orbit of period two. To this end, we are going

to consider the orbit generated by (0, 0, ..., 0). For t > 0, let

(q0
1(t), q

0
2(t), ..., q

0
n(t)) = F t(0, 0, ..., 0).

Then for any t ≥ 0 it is easy to check by induction that

q0
i (2t) ≤ q0

i (2t + 2) ≤ q0
i (2t + 3) ≤ q0

i (2t + 1) (20)

for i = 1, 2, ..., n. Then (q0
i (2t))t is an increasing sequence bounded by a−ci

2b
and (q0

i (2t + 1))t is

a decreasing sequence bounded by 0 and therefore, both of them have a limit point qm
i and qM

i ,

respectively. Note that qm
i ≤ qM

i for i = 1, 2, ..., n. In addition, by the continuity of F we also have

that

F (qm
1 , qm

2 , ..., qm
n ) = (qM

1 , qM
2 , ..., qM

n )

and

F (qM
1 , qM

2 , ..., qM
n ) = (qm

1 , qm
2 , ..., qm

n ).

Then either (qm
1 , qm

2 , ..., qm
n ) is a fixed point or a periodic point of period 2.
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2.2 The Cournot Equilibrium

In this section we study when the firms reach the Cournot equilibrium. To this end note that the

equation of total quantity

Q(t + 1) = −
n − 1

2
Q(t) + n

a − c

2b

has an equilibrium point at Q = a−c
b

n
n+1 . Then, the hyperplane

q1 + q2 + ... + qn = Q

is invariant for the system of difference equations and hence the set

P = {(q1, q2, ..., qn) ∈ R
n : q1 + q2 + ... + qn = Q, qi ≥ 0}

is invariant for the non–linear system. Moreover, taking into account that Qi = Q− qi, the system

restricted to P can be rewritten as

qi(t + 1) =
1

2

(
a − ci

b
− Qi(t)

)
=

1

2

(
a − ci

b
− Q

)
+

1

2
qi(t), i = 1, 2, ..., n.

The dynamics is then very simple because any individual orbit converges to the equilibrium point

qi =
a − ci

b
− Q, i = 1, 2, ..., n,

and so any orbit which starts from (q1, q2, ..., qn) ∈ P converges to the Cournot equilibrium point.

We have to point out that the set P has zero n–dimensional Lebesgue measure, and then from the

point of view of experiments the probability of finding an orbit which converges to the Cournot

point is zero.

Remark 1 Note that the existence of a Cournot point in our model is not guaranteed in general.

For instance, consider a system such that n = 4, a = b = 1, c1 = c2 = c3 = 0.8 and c4 = 0.2. Then,

4c =
∑4

i=1 ci = 2.6 and the coordinate of the Cournot point for i = 1, 2, 3, should be

qi =
1

5

a − ci

b
+

4

5

c − ci

b
= −0.08,

which is impossible because qi ≥ 0, i = 1, 2, 3, 4.

2.3 The Orbit Generated by (0, 0, . . . , 0)

In this section we discuss whether the point (0, 0, ..., 0) is periodic and which orbits are attracted

by the periodic orbit generated by it.
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Remember that F t(0, 0, ..., 0) = (q0
1(t), q

0
2(t), ..., q

0
n(t)). Then for i = 1, 2, ..., n,

q0
i (2) =

1

2


a − ci

b
−
∑

j 6=i

a − cj

b


 =

1

2

(
nc − 3ci − (n − 3)a

2b

)
,

and hence q0
i (2) = 0 if and only if a−ci

b
− na−c

b
≤ 0, which gives us the condition

nc − 3ci ≤ (n − 3)a, for all i = 1, 2, . . . , n. (21)

Condition (21) guarantees that (0, 0, ..., 0) is a periodic point of period two always the number

of firms is greater than 3, n > 3. When n = 3, from this condition one immediately deduces

that (0, 0, ..., 0) is a periodic point of period two if and only if the three marginal costs are equal,

c1 = c2 = c3.

Next result shows when an arbitrary orbit is attracted by the 2-period orbit generated by

(0, 0, . . . , 0).

Theorem 2 Let (q10
, q20

, ..., qn0
) ∈ R

n \ P with qi0 ≥ 0, i = 1, 2, ..., n, be arbitrary. Let Q(t) =

q1(t) + ... + qn(t), Q0 = q10
+ · · ·+ qn0

, cmax = max{c1, c2, . . . , cn}, and cmin = min{c1, c2, . . . , cn}.

Let At = {i| qi(t) = 0} and if B is a subset of {1, 2, . . . , n} we denote B = {i| i 6∈ B}, |B| its

cardinality and cB = 1
|B|

∑
j∈B

cj.

1. If Q(t) < a−cmax

b
, then qi(t + 1) > 0 for all i = 1, 2, . . . , n.

2. There exits t0 such that Q(t0) ≥
a−cmax

b
.

3. If there exists t0 ≥ 0 such that Q(t0) ≥
3(a−cmin)

2b
, then the 2-period orbit

{(0, 0, . . . , 0),

(
a − c1

2b
,
a − c2

2b
, . . . ,

a − cn

2b

)
}

attracts the orbit generated by (q10
, q20

, . . . , qn0
).

4. Finally assume that Q(t) ∈ [a−cmax

b
, 3(a−cmin)

2b
].

a) If n ≥ 6 and there exists t0 such that if

a > max





1
n−3(nc − 3ci) for i = 1, 2, ...n,

1
n−3(12(n − |At0+1|) + 1)cmax − 12(n − |At0+1|)cAt0+1

,

1
11n−59(24nc − 13(n − 1)cmax − 72cmin),





(22)

then the 2-period orbit {(0, 0, . . . , 0),
(

a−c1
2b

, a−c2
2b

, . . . , a−cn

2b

)
} attracts the orbit generated

by (q10
, q20

, . . . , qn0
).
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b) If n = 5 and there exists t0 such that if

a > max





1
2(nc − 3ci) for i = 1, 2, ...n,

1
2(12(5 − |At0+1|) + 1)cmax − 12(5 − |At0+1|)cAt0+1

,

50c − 19cmax − 30cmin,

1
2(15c − 9cmin − 4cmax),





(23)

then the 2-period orbit {(0, 0, . . . , 0),
(

a−c1
2b

, a−c2
2b

, . . . , a−cn

2b

)
} attracts the orbit generated

by (q10
, q20

, . . . , qn0
).

Proof. See Appendix A.

Note that Theorem 2 states that if the total quantity produced by all firms at a certain time

t0 is greater than 3(a−cmin)
2b

or the maximum possible price a is greater than certain amount and

n > 4 then the 2-period orbit

{(0, 0, . . . , 0),

(
a − c1

2b
,
a − c2

2b
, . . . ,

a − cn

2b

)
}

attracts any orbit generated by a point outside P. This means that all the firms will disappears

every two periods appearing in the next period with maximum production
(

a−c1
2b

, a−c2
2b

, . . . , a−cn

2b

)
.

In the case in which all the marginal cost are equal, ci = c for all i = 1, 2, . . . , n, we can prove

the following result, that establishes the behavior of any orbit of the system.

Corollary 3 Assume that ci = c for all i = 1, 2, ..., n with n > 4. For any (q10
, q20

, ..., qn0
) ∈ R

n

with qi0 ≥ 0 for all i = 1, 2, . . . , n, either (q10
, q20

, ..., qn0
) ∈ P and its orbit converges to the Cournot

fixed point ( a−c
b(n+1) ,

a−c
b(n+1) , . . . ,

a−c
b(n+1)) or (q1, q2, ..., qn) 6∈ P and its orbit converges to the periodic

orbit {
(0, 0, ..., 0),

(
a − c

2b
,
a − c

2b
, ...,

a − c

2b

)}
.

Proof. If (q10
, q20

, ..., qn0
) ∈ P, then its orbit converges to the Cournot fixed point

(
a − c

b(n + 1)
,

a − c

b(n + 1)
, . . . ,

a − c

b(n + 1)

)
.

Now assume n ≥ 6. Then

1

n − 3
(nc − 3ci) = c for i = 1, 2, ...n,

1

n − 3
(12(n − |At0+1|) + 1)cmax − 12(n − |At0+1|)cAt0+1

=
1

n − 3
c,
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and
1

11n − 59
(24nc − 13(n − 1)cmax − 72cmin) = c.

Then, by 4.a) of Theorem 2 any orbit with initial condition (q10
, q20

, ..., qn0
) ∈ R

n \ P, with qi0 ≥ 0

for all i = 1, 2, . . . , n, converges to the periodic orbit generated by (0, 0, ..., 0).

Now, assume n = 5. Then

1

2
(nc − 3ci) = c for i = 1, 2, ...n,

1

2
(12(5 − |At0+1|) + 1)cmax − 12(5 − |At0+1|)cAt0+1

=
c

2
,

50c − 19cmax − 30cmin = c,

and
1

2
(15c − 9cmin − 4cmax) = c.

Then, by 4.b) of Theorem 2 any orbit with initial condition (q10
, q20

, q30
, q40

, q50
) ∈ R

5 \ P, with

qi0 ≥ 0 for all i = 1, 2, 3, 4, 5, converges to the periodic orbit generated by (0, 0, 0, 0, 0), which

finishes the proof of the corollary.

Remark 4 Note that if condition (21) is not satisfied, the orbit generated by (0, 0, ..., 0) is not

periodic. For instance, consider n = 4, a = b = 1, c1 = c2 = c3 = 0.8 and c4 = 0.2. Then

4c − 3c4 = 2 > 1 = (4 − 3)a,

and condition (21) is not satisfied when i = 4. Hence (0, 0, 0, 0) is not a periodic point and moreover,

its orbit converges to the fixed point (0, 0, 0, 0.4). Again if n = 4, a = b = 1, c1 = c2 = c3 = 0.5 and

c4 = 0.2. Then

4c − 3c4 = 1.1 > 1 = (4 − 3)a,

and condition (21) is not satisfied when i = 4. Then the orbit generated by (0, 0, 0, 0) converges to

the periodic orbit {(0, 0, 0, 0.1), (0.2, 0.2, 0.2, 0.4)}.

Remark 5 Even when (0, 0, ..., 0) is a periodic point, not all the orbits outside P are attracted by

its orbit. For instance, fix n = 5, a = b = 1, c1 = c2 = c3 = 0.7, c4 = 0.5 and c5 = 0.3. Clearly

condition (21) is fulfilled but any point with the form (0, 0, 0, 0, q), 0 ≤ q ≤ 0.2, generates a periodic

orbit of period two. Hence, the number of periodic orbits may be infinite, even uncountable.
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Remark 6 Assume the conditions of Corollary 3 are fulfilled. Then, any orbit is attracted by the

Cournot equilibrium point if and only if the initial condition (q10
, q20

, ..., qn0
) fulfils the condition

q10
+ q20

+ ... + qn0
= Q, which implies a coordination between all the firms in order to obtain the

maximum profit.

Remark 7 When n = 3, then the point (0, 0, 0) is periodic if and only if c1 = c2 = c3, but because

of the closed solution of the linear system, there are a lot of orbits, not only those contained in P,

which do not converge to this periodic point.

2.4 When does a firm disappear from the market?

One of the most interesting problems in oligopoly dynamics is whether some firms disappear from

the market, i.e., their outputs become zero for any time t ≥ t0 ≥ 0. In connection with this question

we have the opposite one, i.e., whether a new firm can entry in the market. This would also give us

some information about possible re-enter of firms in an ongoing dynamical process. In this section

we develop these problems. We start by studying the simplest case, i.e., the monopoly case.

2.4.1 Monopoly

We analyze the existence of a time t0 such that if t ≥ t0, then qi(t) = 0 for i = 1, 2, ..., n − 1, and

hence only one firm remains, so resulting in monopoly. In this case, note that

F t(0, 0, ..., 0, qn) =

(
0, 0, ..., 0,

a − cn

2b

)

for all t ≥ 1. Then the production qn(t) = a−cn

2b
will be constant. On the other hand, for i =

1, 2, ..., n − 1

qi(t + 1) =
1

2

(
a − ci

b
−

a − cn

2b

)
≤ 0,

which gives the monopoly condition

a + cn ≤ 2ci for i = 1, 2, ..., n − 1 (24)

which implies that firm n has to have the lower marginal cost among the firms, that is cn = cmin.

Then, by condition (24), the coordinate of Cournot point of the firm with maximum marginal cost

is given by

qmax =
nc + a − (n + 1)cmax

b(n + 1)
=

a + cmin +
∑n−1

j=1 cj − (n + 1)cmax

b(n + 1)
≤

∑n−1
j=1 cj − (n − 1)cmax

b(n − 1)
≤ 0.
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Then qmax < 0 unless c1 = c2 = ... = cmax = ... = cn−1 and a + cmin = 2cmax. Then, there is no

Cournot equilibrium point for the nonlinear system except (0, 0, ..., 0, a−cmin

2b
), which is the Cournot

point of the limit case of monopoly.

Now, we study the following question. What are the conditions that a new firm has to fulfill to

enter in the market?.

A new firm enters in a monopoly. The general Cournot point formula (11) also applies to

the case of monopoly, n = 1. Then the monopolistic firm produces:

Q =
1

2

a − c1

b

as c = c1. Considering the entry of another firm with marginal cost c2, applying (8), q2 = 1
2

a−c2
b

−

1
2Q2, would have to be positive if the new firm is to enter. As we recall, positivity of the output

also guarantees positivity of profit for that firm. In this case, the residual supply equals the supply

by the already existent monopoly firm, so Q2 = Q. Then

1

2

a − c2

b
−

1

2

(
1

2

a − c1

b

)
> 0

must be fulfilled. This obviously simplifies to:

c2 <
1

2
(a + c1) (25)

Note that the right hand side of (25) is the monopoly price of firm 1. Therefore in order for a

new firm to make a positive profit and enter in competition with the monopoly its marginal cost

must be lower than the monopoly price. It is not needed that the marginal cost of the entering

firm to be lower than the marginal cost for the monopolist. In fact, suppose a = 1, c1 = 0.5. Then

c2 < 0.75 must hold. If the new firm for instance has c2 = 0.6, then it can enter and make a

positive profit. As the Cournot point in duopoly is contractive, with eigenvalues ± 1
2 , the system

will approach the Cournot equilibrium.

Figures 1-2 illustrate these facts. A monopoly is established, and after a while a second firm

enters. In Figure 1 we have c2 = 0.8 > 0.75, so the firm does not succeed to remain on the market,

in Fig. 2, c2 = 0.7 < 0.75, so the market is transformed into a duopoly.

A natural question that arises is whether the entering firm could even have thrown out the old

monopolist, thus establishing a new monopoly. In order for this to happen we would need to have:

1

2

a − c1

b
−

1

2

(
1

2

a − c2

b

)
< 0

12



Figure 1: Failing entry attempt of another firm in a monopoly. c1 = 0.5 and c2 = 0.8.

Figure 2: Succeeding entry of another firm in a monopoly. c1 = 0.5 and c2 = 0.7.

that is,

a + c2 < 2c1

13



which, given a = 1, c1 = 0.5, simplifies to:

c2 < 0

which is impossible. This is so because c1 is so low already. If we had c1 = 0.6, then c2 < 0.2 would

do.

Dynamic discussion of the monopolistic system. Recall from Subsection 2.1 that

(q0
1(t), q

0
2(t), ..., q

0
n(t)) = F t(0, 0, ..., 0).

By condition (24), q0
i (2t) = 0 for all i = 1, 2, ..., n − 1 and t ≥ 0. Moreover, q0

n(2t) is an increasing

sequence bounded by a−cn

2b
, whose limit is qm

n . Note also that since q0
i (2t) = 0 for i = 1, 2, ..., n− 1,

then q0
n(2t + 1) = qM

n = a−cn

2b
for all t ≥ 0. Moreover by the continuity of F we also have that

F (qm
1 , qm

2 , ..., qm
n ) = (qM

1 , qM
2 , ..., qM

n ) and F (qM
1 , qM

2 , ..., qM
n ) = (qm

1 , qm
2 , ..., qm

n ).

Then either (qm
1 , qm

2 , ..., qm
n ) is a fixed point or a periodic point of period 2. So, we have to consider

two possible cases.

First, if qm
n = qM

n , then the orbit of (0, 0, ..., 0) converges to the fixed point (0, 0, ..., 0, a−cn

2b
) and

all the orbits in the system converge to this point.

Second, if qm
n < qM

n additional limit points of orbits are possible. In this case, since qm
i = 0

for i = 1, 2, . . . , n − 1 the point (0, 0, ..., 0, qm
n ) will be a periodic point of period two. Taking into

account that

F 2(0, 0, ..., 0, qm
n ) =

(
0, 0, ..., 0,

n(c − a) + 3(a − cn)

4b
+

n − 1

4
qm
n

)
= (0, 0, ..., 0, qm

n ), (26)

we obtain that

qm
n =

n(c − a) + 3(a − cn)

(5 − n)b
. (27)

If n > 5, then qm
n < 0 which is impossible. Then, the only possibility is that qm

n = 0 and hence

(0, 0, ..., 0) will be periodic of period 2. To this end the by (26) condition

n(c − a) + 3(a − cn)

4b
≤ 0

must be fulfilled, which gives us

3(a − cn) ≤ n(a − c). (28)

14



Note that condition (28) cannot be fulfilled if n = 2, 3. If n = 5, then qm
5 is not defined because

the denominator in (27) vanishes and then (0, 0, 0, 0, 0) is periodic if and only if condition (28) is

fulfilled. If n = 4, then

qm
4 =

4(c − a) + 3(a − c4)

b
≥

a − c4

2b
,

and hence the only possibility to have a periodic point of period two is (0, 0, 0, 0) to be periodic

satisfying condition (28). Finally, if n = 3

qm
3 =

c1 + c2 − 2c3

2b
≥

a − c3

2b

and if n = 2

qm
2 =

a + c1 − 2c2

3b
≥

a − c2

2b
.

Then, we have proved the following result.

Theorem 8 Assume that the monopoly condition, (24), is fulfilled and condition (28) is not. Then,

for any orbit generated by (q10
, q20

, ..., qn0
) ∈ R

n, qi0 ≥ 0, i = 1, 2, ..., n, converges to the fixed point
(
0, 0, ..., 0, a−cmin

2b

)
.

Remark 9 Note that for instance, if n = 6, a = b = 1, ci = 0.6 and c6 = 0.1, then (0, 0, 0, 0, 0, 0)

is periodic and hence, even when the monopoly condition is fulfilled, the system does not go to a

monopoly.

2.4.2 Duopoly

Now we study the existence of a time t0 ≥ 0 such that, for t ≥ t0 and i = 1, 2, ..., n − 2, we have

qi(t) = 0, i.e., all firms except two will produce nothing in the future. In this case note that




qn−1(t + 1) =





1
2

(
a−cn−1

b
− qn(t)

)
if qn(t) ≤ a−cn−1

b
,

0 if qn(t) > a−cn−1

b
,

qn(t + 1) =





1
2

(
a−cn

b
− qn−1(t)

)
if qn−1(t) ≤

a−cn

b
,

0 if qn−1(t) > a−cn

b
.

The Cournot equilibrium point is

(q̃n−1, q̃n) =

(
a − 2cn−1 + cn

3b
,
a + cn−1 − 2cn

3b

)
.

The eigenvalues of the matrix of the linear system are 1
2 and −1

2 and hence the Cournot point is

asymptotically stable. Then, any orbit contained in the set

{(0, 0, ..., 0, qn−1, qn) ∈ R
n : qn−1, qn ∈ R}

15



converges to the Cournot point (0, ..., 0, q̃n−1, q̃n). Now, we consider that for i = 1, 2, ..., n − 2 the

i–th coordinate of F (0, 0, ..., 0, q̃n−1, q̃n) is

1

2

(
a − ci

b
− q̃n−1 − q̃n

)
,

Then we have that for i = 1, 2, ..., n − 2

a − ci

b
− q̃n−1 − q̃n ≤ 0,

which can be rewritten as

a + cn−1 + cn ≤ 3ci, for i = 1, 2, ..., n − 2, (29)

which is the duopoly condition. Note that for the duopoly condition to be satisfied cn and cn−1

have to be the lower marginal costs, that is, only the firms with lower marginal costs survive in the

duopoly.

Recall that the coordinate of the Cournot point of the firm with maximum marginal cost is

qmax =
nc + a − (n + 1)cmax

b(n + 1)

=
a + cn−1 + cn +

∑n−2
j=1 cj − (n + 1)cmax

b(n + 1)

≤

∑n−2
j=1 cj − (n − 2)cmax

b(n + 1)
≤ 0.

Then, if qmax < 0, and so there is no Cournot equilibrium point in the nonlinear model with n

firms, unless ci = cmax = a+cn−1+cn

3 for i = 1, 2, ..., n−2, which gives the Cournot equilibrium point

(0, 0, ..., 0, q̃n−1, q̃n) =

(
0, 0, ..., 0,

a − 2cn−1 + cn

3b
,
a + cn−1 − 2cn

3b

)
.

A new firm enters in a duopoly. Suppose the competitor succeeded to intrude the market.

Then we, from (11), get a duopoly with total output

Q =
2

3

a − c

b

where now c = 1
2 (c1 + c2). Considering the entry of a third firm with marginal cost c3, we must

check that output q3 = 1
2

a−c3
b

− 1
2Q3, and so profits, are positive. Now, Q3 = Q, and so

1

2

a − c3

b
−

1

2

(
2

3

a − 1
2 (c1 + c2)

b

)
> 0

16



must be fulfilled. Again, we easily simplify to:

c3 <
1

3
(a + c1 + c2) (30)

Note that the right hand side of (30) is the duopoly price in the duopoly equilibrium. Therefore

in order for a new firm to make a positive profit and enter in competition with the duopoly its

marginal cost must be lower than the duopoly equilibrium price.

Figure 3: Unsuccessful entry of a third firm into a duopoly. c1 = 0.5, c2 = 0.6 and c3 = 0.75.

Suppose again a = 1, c1 = 0.5, and further c2 = 0.6. Then condition (30) reads c3 < 0.7, and a

third firm will enter if, for instance, c3 = 0.65. Provided all firms make positive profits, the system

will become oscillating with constant amplitude, because the eigenvalues are now 1
2 , 1

2 ,−1.

Like Figs. 1-2 illustrated the entry of a second firm, Figs. 3-5 illustrate the entry of a third

firm when a duopoly has been established. In Fig. 3, c3 = 0.75 > 0.7, so the third firm drops out

from the market, whereas in Fig. 4, c3 = 0.65 < 0.7, so the firm remains, and duopoly equilibrium

is destroyed.

We can again inquire if it is possible for the newly entering firm to just throw out one of the

firms, so remaining a duopolist. This can indeed occur as illustrated in Fig. 5. If the second firm

which has the highest marginal cost among the original duopolists be thrown out, it must hold

that:
1

2

a − c2

b
−

1

2

(
2

3

a − 1
2 (c1 + c3)

b

)
< 0

17



Figure 4: Successful entry of a third firm into a duopoly. c1 = 0.5, c2 = 0.6. and c3 = 0.65.

Figure 5: Entry of a third firm into a duopoly, where the duopoly remains but one firm is replaced.

c1 = 0.5, c2 = 0.6. and c3 = 0.25.

which, given a = 1, c1 = 0.5, and further c2 = 0.6 simplifies to:

c3 < 0.3

18



In Fig. 5 we chose c3 = 0.25, so indeed the second firm is thrown out and duopoly reestablished.

But it could not establish a monopoly for reasons already given. The marginal cost of the first firm

c1 = 0.5 is simply too low, we would need a negative cost for the new firm to become a monopoly.

Dynamic discussion of the system. The description of the duopoly case is more difficult

than monopoly case. We only note that not always when the duopoly condition (29) is fulfilled, the

system evolve to a duopoly. For instance, assume n = 4, a = b = 1, c1 = c2 = 0.7 and c3 = c4 = 0.4.

Then {(0, 0, 0, 0), (0.15, 0.15, 0.3, 0.3)} is a periodic orbit which attracts the orbits generated by the

points (0.1, 0.1, 0, 0) or (0.4, 0.1, 0.2, 0.2) while the fixed Cournot point (0, 0, 0.7/3, 0.7/3) attracts

the orbits generated by (0.1, 0.1, 0.2, 0.2) or (0.1, 0.2, 0, 0.2).

Anyway, we can enunciate the following result whose proof is analogous to that of Theorem 8.

Theorem 10 Assume that duopoly condition, (29), is fulfilled and that the orbit generated by

(0, 0, ..., 0) converges to the fixed point (0, 0, ..., 0, q̃n−1, q̃n).

Then, any orbit generated by (q10
, q20

, ..., qn0
) ∈ R

n, qi0 ≥ 0, i = 1, 2, ..., n, converges to the

same fixed point (0, 0, ..., 0, q̃n−1, q̃n)..

For instance, when n = 4, a = b = 1, c1 = c2 = 0.7 and c3 = c4 = 0.1, the orbit of (0, 0, 0, 0)

converges to (0, 0, 0.3, 0.3), and then any orbit of the system does the same.

2.4.3 Oligopoly

Now, assume that we have an oligopoly with n > 4 firms and n − k of them drop out from the

market , i.e., the orbit (q1(t), q2(t), ..., qn(t)) fulfils qi(t) = 0 for all t ≥ 0 and any i = 1, 2, ..., n− k.

Assume also that for t ≥ 0 and for all n − k + 1 ≤ i ≤ n the equality qi(t) = q̃i holds, where q̃i

is the i–th Cournot coordinate of the oligopoly for the remaining firms. For i = 1, 2, ..., n − k, we

have that

qi(t) =
1

2

(
a − ci

b
− Q̃

)
,

where Q̃ =
∑n

i=n−k+1 q̃i = k
k+1

a−c̃
b

. Then, qi(1) = 0 for i = 1, 2, ..., n − k if and only if

a − ci

b
≤

k

k + 1

a − c̃

b
,

where c̃ = 1
k

∑n
i=n−k+1 ci, and then we obtain the oligopoly condition

a + kc̃ ≤ (k + 1)ci for i = 1, 2, ..., n − k. (31)
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In order to discuss whether the above condition implies that n − k firms will abstain from

producing in the future, we are going to assume the following: ci = c1 for i = 1, 2, ..., n − k and

cj = cn for j = n − k + 1, ..., n, i.e., only two marginal costs are possible. Then, condition (31)

reads as follows

a + kcn ≤ (k + 1)c1. (32)

Let

Pk = {(qn−k+1, . . . , qn) ∈ R
k| q1 + q2 + . . . qk = Q̃, qi ≥ 0}.

Then Corollary 3 states that any orbit lying outside Pk eventually gives us that qi(t0) = 0 for

i = n−k+1, ..., n and for some t0 ∈ N. Hence qi(t0 +1) = a−ci

2b
> 0 for all i = 1, 2, . . . , n. Therefore

condition (32) it is not enough for all the firms with the highest marginal costs to disappear from

the market. But if an orbit starts from a point in Pk and the n − k firms cooperate in order

to produce qn+k+1(t) + ... + qn(t) = Q̃ for any t ≥ 0 then we have that the remaining firms will

disappear.

3 Conclusion

It seems that in terms of asymptotic orbits the global dynamics of the model with linear demand

function and constant marginal costs has very simple dynamics, either it goes to a monopoly, or

a duopoly, or else to an endless 2-period oscillation where all firms move in phase. It all depends

on the marginal costs of the competitors. If the number of remaining competitors is at least three,

then the Palander-Theocharis argument that the Cournot equilibrium becomes unstable applies.

This would seem to invalidate the idea that, with an increasing number of competitors, the Cournot

equilibrium point transubstantiates into a competitive equilibrium.

However, we should bear the following in mind: Considering an increasing number of competi-

tors, we actually want to compare a small number of large competitors to a large number of small

competitors. See [6]. Firms with constant marginal cost, i.e. constant returns to scale, are all

potentially infinitely large. So in the Theocharis model we are just adding more and more poten-

tially infinitely large firms on the market. That this results in destabilization is not very surprising.

Already Edgewotrh (1897) [2] insisted on the importance of adding capacity limits to cases with

constant marginal cost. An increasing number of firms should then decrease the capacity limits

for the individual firms. A way to do this, through splitting a given total capacity of an industry

between more or less numerous firms, was proposed in [6].
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In the present model context, introducing decreasing capacity limits with an increasing number

of competitors, would mean that each firm either sticks to its output according to (18), or else

produces at its capacity limit. In order for the Edgeworth (1897) [2] argument to be relevant with

an increasing number of competitors, all the capacity limits would eventually become binding. The

analysis of such a case is bound to not be very exciting.

This also hints at a problem with the combination of assumptions. According to elementary text

book microeconomics, the demand curve (and hence the marginal revenue curve) become virtually

horizontal in the ranges that the small firms can operate. Now, this picture presupposes that we use

an increasing marginal cost curve, otherwise the marginal cost curve and the demand curve never

intersect. Such a marginal cost curve (which also incorporated an asymptotic capacity limit) was

suggested in [6], but there are many alternatives. Anyhow, the destabilization of the Cournot point

does not have any great importance in the basic issue of the relation between Cournot oligopoly

and perfect competition.

Another issue raised concerning the setup of the model is that a two-period oscillation where

all firms drop out every second period is something that will be learned very fast by all the firms,

so the naive expectations become untenable, and any firm might try to get out of phase in order

to increase long term profits.

4 Appendix A

1. In fact, qi(t + 1) = 1
2

(
a−ci

b
− Q(t) + qi(t)

)
and since by assumption

−Q(t) + qi(t) > −
a − cmax

b
+ qi(t) > −

a − cmax

b

it follows that

qi(t + 1) >
1

2

(
a − ci

b
−

a − cmax

b

)
=

1

2

(
cmax − ci

b

)
≥ 0

for all i = 1, 2, . . . , n.

2. By means of contradiction assume that Q(t) < a−cmax

b
for all t. Then by the previous claim,

qi(t) > 0 for all t > 0 and for all i = 1, 2, . . . , n. Thus the total production follows the rule

Q(t + 1) =





−n−1
2 Q(t) + na−c

2b
if − n−1

2 Q(t) + na−c
2b

≥ 0,

0 if − n−1
2 Q(t) + na−c

2b
< 0.

(33)

Hence, the linear difference equation gives us the solution

Q(t) =

(
Q0 +

c − a

b

n

n + 1

)(
1 − n

2

)t

+
a − c

b

n

n + 1
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yielding a contradiction with the assumption that Q(t) < a−cmax

b
for all t > 0.

3. Since qi(t0) ≤
a−ci

2b
we have that

qi(t0 + 1) =
1

2

(
a − ci

b
− Q(t0) + qi(t0)

)
≤

1

2

(
3

2
(
a − ci

b
−

a − cmin

b
)

)
≤ 0,

for i = 1, 2, . . . , n. Then qi(t0 + 1) = 0 for all i = 1, 2, . . . , n and hence since condition (21) is

satisfied, qi(t0 + 3) = 0 for all i = 1, 2, . . . , n, as desired.

4.a) Assume that t0 is the first time in which Q(t0) ≥
a−cmax

b
, that is, Q(t) < a−cmax

b
for all t < t0.

Then

Q(t0 + 1) =
1

2

(
(n − |At0+1|)

a − cAt0+1

b
−(n − |At0+1| − 1)Q(t0) −

∑

j∈At0+1

qj(t0)




Thus, since −Q(t0) −
∑

j∈At0+1

qj(t0) ≤ −a−cmax

b
−

∑
j∈At0+1

qj(t0) ≤ −a−cmax

b
it follows that

Q(t0 + 1) ≤ 1
2b

((n − |At0+1|)(a − cAt0+1
) − (n − |At0+1| − 1)(a − cmax))

= 1
2b

(a − cmax + (n − |At0+1|)(cmax − cAt0+1
))

(34)

and hence if

a > (12(n − |At0+1|) + 1)cmax − 12(n − |At0+1|)cAt0+1
(35)

then

Q(t0 + 1) <
13(a − cmax)

24b
≤

(a − cmax)

b
.

Then by 1. we have that qi(t0 + 2) > 0 for all i = 1, 2, . . . , n and hence

Q(t0 + 2) =
1

2

(
n(a − c)

b
− (n − 1)Q(t0 + 1)

)
>

1

2b

(
n(a − c) −

13

24
(n − 1)(a − cmax)

)
. (36)

Therefore Q(t0 + 2) > 3(a−cmin)
2b

if and only if

(11n − 59)a > (24nc − 13(n − 1)cmax − 72cmin) . (37)

and thus by 3. the 2-period orbit {(0, 0, . . . , 0), ( a−c1
2b

), a−c2
2b

, . . . , a−cn

2b
} attracts the orbit generated

by (q10
, q20

, . . . , qn0
)

Therefore if n ≥ 6 and there is t0 such that

a > max





1
n−3(nc − 3ci) for i = 1, 2, ...n,

1
n−3(12(n − |At0+1|) + 1)cmax − 12(n − |At0+1|)cAt0+1

,

1
11n−59(24nc − 13(n − 1)cmax − 72cmin),





(38)
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we have that the orbit generated by (q10
, q20

, . . . , qn0
) is attracted by the periodic orbit generated

by (0, 0, ..., 0).

4.b) Now, assume that n = 5. Then by (36) we get that Q(t0 +2) > 1
12b

(17a+13cmax−30c). Since

qi(t0 +2) ≤ a−ci

2b
for all i = 1, 2, . . . , n and qi(t0 +3) = 1

2(a−ci

b
−Q(t0 +2)+ qi(t0 +2)) we have that

qi(t0 + 3) ≤
1

24b
(a + 30c − 13cmax − 18ci)

On the other hand 1
24b

(a + 30c − 13cmax − 18ci) < a−cmax

15b
if and only if a > 50c − 19cmax − 30ci.

Therefore if

a > 50c − 19cmax − 30cmin (39)

it follows that Q(t0 + 3) < a−cmax

3b
, and hence by the first claim we obtain that qi(t0 + 4) > 0 for

all i = 1, 2, 3, 4, 5. Therefore by (33) we have that Q(t0 + 4) = 5(a−c)
2b

− 2Q(t0 + 3). Then

Q(t0 + 4) >
5(a − c)

2b
−

2(a − cmax)

3b
=

1

6b
(11a + 4cmax − 15c)

and 1
6b

(11a + 4cmax − 15c) > 3(a−cmin)
2b

if and only if a > 1
2(15c − 9cmin − 4cmax).

Therefore we have proved that if n = 5 and there exists t0 such that

a > max





1
2(nc − 3ci) for i = 1, 2, ...n,

1
2(12(5 − |At0+1|) + 1)cmax − 12(5 − |At0+1|)cAt0+1

,

50c − 19cmax − 30cmin,

1
2(15c − 9cmin − 4cmax),





(40)

then the orbit generated by (q1, q2, ..., qn) is attracted by the periodic orbit generated by (0, 0, . . . , 0).
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