Show simple item record

dc.contributor.authorDomínguez Tortajada, Elsa 
dc.contributor.authorDíaz Morcillo, Alejandro Benedicto 
dc.contributor.authorMonzó Cabrera, Juan 
dc.contributor.authorSánchez Hernández, David Agapito 
dc.date.accessioned2011-01-07T10:35:37Z
dc.date.available2011-01-07T10:35:37Z
dc.date.issued2003-09
dc.identifier.citationDOMÍNGUEZ TORTAJADA, Elsa, DÍAZ MORCILLO, Alejandro, MONZÓ CABRERA, Juan, SÁNCHEZ HERNÁNDEZ, David. En: Simposium Nacional de la Unión Científica Internacional de Radio (18º: 2003: A Coruña). URSI 2003 : XVIII Simposium Nacional de la Unión Científica Internacional de Radio, celebrado en A Coruña, del 10 al 12 de setiembre de 2003 [Recurso electrónico]. A Coruña: Universidad. Servicio de Publicaciones = Universidade. Servicio de Publicacións. 2003. 4 p. ISBN 84-9749-081-9en_US
dc.identifier.isbn84-9749-081-9
dc.description.abstractGenetic Algorithms are a general purpose optimization technique that in the last years have begun to be applied in electromagnetic applications design. In this article, the study of microwave cavities feeding from two feasible designs to optimize is presented: feeding by means of rectangular waveguides and by means of slotted waveguides.The pursued goal is optimizing and obtaining a series of design parameters such as the position, orientation and dimension of the waveguides and slots in the microwave heating system, in order to maximize the system adaptation. A combination of these parameters constitutes an individual, which is evaluated by means of the commercial software Microwave Studio (CST). The simulation result are the scattering parameters associated to the individual. The population determines the number of individuals that conform each generation. From the initial population, operations of selection, mutation and recombination are performed, creating new generations that replace the formers. The best individuals, in general, have greater possibilities to survive in the next generation as well as to perform a crossover with other individuals. That is the way in which the genetic algorithm searchs for the optimal solution, that is, the best adaptation.The results show that the solution depends on the number of the design parameters, on the individuals that constitute the initial population, and they also display the random component characteristic of this kind of algorithms.en_US
dc.formatapplication/pdf
dc.language.isospaen_US
dc.publisherUniversidad de A Coruña. Servicio de Publicaciones = Universidade da Coruña. Servicio de Publicaciónsen_US
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 España*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.titleAplicación de algoritmos genéticos en el diseño de cavidades multialimentadasen_US
dc.typeinfo:eu-repo/semantics/conferenceObjecten_US
dc.subjectCavidad multialimentadaen_US
dc.subjectCalentamiento por microondasen_US
dc.subjectGuía de ondaen_US
dc.subjectMATLABen_US
dc.subjectTecnica de optimizaciónen_US
dc.subjectCavity multi-feden_US
dc.subjectMicrowave heatingen_US
dc.subjectWaveguideen_US
dc.subjectOptimization techniqueen_US
dc.subjectAlgoritmos genéticos (AG)
dc.subjectGenetic Algorithm (GA)
dc.subject.otherTeoría de la Señal y las Comunicacionesen_US
dc.identifier.urihttp://hdl.handle.net/10317/1517
dc.contributor.investgroupGrupo de Electromagnetismo y Materia (GEM)en_US
dc.contributor.investgroupGrupo de Ingeniería de Microondas, Radiocomunicaciones y Electromagnetismo (GIMRE)


Files in this item

This item appears in the following Collection(s)

Show simple item record

Atribución-NoComercial-SinDerivadas 3.0 España
Except where otherwise noted, this item's license is described as Atribución-NoComercial-SinDerivadas 3.0 España