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Abstract—In this paper, a spatial images technique is used
to efficiently calculate the mixed potential Green’s functions
associated to magnetic sources when they are placed inside a
circular cylindrical cavity. The technique places magnetic dipole
images and charges outside the cylindrical region. Their strength
and orientation are then calculated by imposing the appro-
priate boundary conditions for the fields at discrete points of
the metallic wall. In this paper, the basic technique is combined
with spatial domain multilayered Green’s functions formulated
with Sommerfeld integrals. This allows the analysis of practical
multilayered circuits shielded in circular cavities. Convergence
results are shown to demonstrate the usefulness of the technique.
Two practical microwave circuits are also analyzed to show the
validity of the formulation.

Index Terms—Boxed circuits, cavities, circular waveguides,
Green’s functions, integral equations (IEs), printed circuits,
shielded circuits.

I. INTRODUCTION

THE ANALYSIS of shielded circuits and cavity backed an-
tennas is a subject that has attracted recently the attention

of many investigations [1]–[5]. The main reason for this is the
need to create software tools, which can evaluate and predict
the shielding effects occurring in many monolithic-microwave
integrated-circuit (MMIC) high-frequency circuits and cavity
backed antennas mounted on vehicles [2], [3], [6]–[8].

For the analysis of shielded circuits and cavity-backed an-
tennas, pure numerical techniques such as finite-element, fi-
nite-difference, or the transmission-line matrix method can be
used [9]–[11]. However, the integral-equation (IE) technique
has grown in popularity due to its efficiency, and to the ca-
pability to push to a maximum the analytical treatment of the
problem [12], [13]. The key element of any IE formulation is
the ability to compute the Green’s functions of the problem. In
the case of shielded structures, efficient formulations can be ob-
tained when the Green’s functions already take into account the
presence of the shielding enclosure. Only in this case is the nu-
merical treatment of the structure reduced to the circuit itself,
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therefore, reducing the size of the system of linear equations to
solve.

For the calculation of the Green’s functions, only the rect-
angular enclosure has been extensively treated in the past
[14]–[16]. For this geometry, the Green’s functions are usually
expressed, using spectral-domain formulations, with slow
convergence series of vector modal functions inside the rect-
angular cavity [16], [17]. However, recent attempts have been
reported to compute them using spatial-domain formulations
[18], where the Green’s functions are expressed as a slow
convergence series of spatial images. In any case, the slow
convergence series must be treated with special algorithms for
their efficient evaluation [16], [19]–[21].

Due to this particular mathematical formalism of the Green’s
functions inside cavities, the circular geometry has been by far
less exploited. However, the cylindrical enclosure is widely used
in MMICs and in cavity-backed antenna applications [22]. In
general, the Green’s functions formulation in circular geome-
tries are based on spectral-domain techniques by using the cor-
responding vector modal series of Bessel functions [23], [24].
However, this approach is shown to be critical from the nu-
merical point-of-view since higher order Bessel functions are
not easily computed with high accuracy. Also, since the conver-
gence of the series is slow, very high orders of Bessel functions
are usually required. On the other hand, spatial-domain formu-
lations have not been applied to the computation of the Green’s
functions in circular cylindrical geometries. This is mainly be-
cause an analytical solution for the spatial images of a point
source in the presence of circular cylindrical metallic structures
does not exist.

In this context, this paper presents a numerical technique that
can be used for the computation of the Green’s functions in cir-
cular cylindrical cavities. The technique is formulated for the
first time in the spatial domain, and it uses the theory of images
to enforce the proper boundary conditions for the fields. The
key idea of the approach is then to use image theory with re-
spect to tangent infinite planes to the cylindrical wall, and then
compute the strength (and orientation) of the images so that the
proper boundary conditions are satisfied at discrete points of the
metallic wall.

In [25], the technique was originally applied to the numer-
ical calculation of the Green’s functions under electrical cur-
rent excitation inside an empty cylindrical cavity. In this paper,
the numerical procedure has been extended to the evaluation of
the magnetic scalar-potential and the electric vector-potential



dyadic Green’s functions produced by magnetic currents. In ad-
dition, the same method has been successfully used in combi-
nation with the potentials of a stratified medium formulated in
the spatial domain with the aid of Sommerfeld integrals [26].
This novel extension has permitted the analysis of complex mi-
crowave circuits and cavity-backed antennas shielded by cir-
cular enclosures.

The theoretical details of the approach are given for both
the magnetic scalar-potential and the electric vector-potential
dyadic Green’s functions produced by magnetic currents. Re-
sults show a fast convergence behavior. The convergence results
show that the derived technique is indeed efficient, and can be
used for the numerical calculation of the relevant Green’s func-
tions avoiding slow convergence series of previous formulations
[20], [21]. In addition, the novel technique has been shown to
be effective in the calculation of the resonant frequencies of cir-
cular–cylindrical cavities. It is shown in this paper that the new
Green’s functions (new GFs) accurately predict the resonant fre-
quencies of the cavities treated. Moreover, the field distribution
of the associated resonant modes can be effectively recovered
using the proposed formulation.

Finally, the usefulness of the new technique is shown by an-
alyzing two practical circuits. The first circuit is an encapsu-
lated bandpass printed filter based on coupled-line sections. The
filter response has been obtained for different cavity radii, and
has been compared with measurements. The second circuit is a
cavity-backed patch antenna inside a circular cavity with the top
cover removed to allow for radiation. In this case, the measure-
ments are compared with simulations obtained with a square
cavity of equal area, and with the new circular cavity model.
It is shown that the antenna response predicted by the method
presented in this paper agrees very well with respect to measure-
ments, and that the accuracy is greatly improved with respect to
the results obtained with the square cavity of equal area.

II. THEORY

The formulation of the technique under electric-current
excitation can be found in [25]. Here, we present the formu-
lation needed to obtain the potentials under magnetic-current
excitation.

The geometry for the calculation of the mixed-potential
Green’s functions is presented in Fig. 1. As shown, a magnetic
unit dipole is placed inside a circular–cylindrical metallic
cavity. The magnetic field can be expressed by using the mixed
potentials as

(1)

The physical boundary condition for the magnetic field at a
metallic plane is the nullity of its normal component

on the cavity wall (2)

where is the unitary vector in the radial direction of the cylin-
drical coordinate system of Fig. 1. To fulfill this boundary con-
dition for the magnetic field, a clever selection for the magnetic

Fig. 1. Unitary magnetic dipole inside a circular cylindrical cavity studied in
this paper.

Fig. 2. Image charge rearrangement used to enforce the boundary conditions
for the magnetic scalar potential at one point along the cylindrical wall. Point
P is a generic observation point.

scalar potential is the nullity of the normal component of its gra-
dient on the cavity contour. This condition can be written as

on the cavity wall (3)

If we impose condition (3) at only one point of the wall, then
a proper choice will be to place an infinite plane tangent to the
cylindrical wall at the point of interest, and then by image theory
take a positive charge at the mirror position with respect to the
plane (see Fig. 2). The total potential obtained with this system
of images can be obtained by superposition as

(4)



Fig. 3. Image charges rearrangement used to enforce the boundary conditions
for the magnetic scalar potential at two points along the cylindrical wall. Point
P is a generic observation point.

where all positions vectors are shown in Fig. 2, is
the magnetic scalar-potential Green’s function inside the cylin-
drical cavity, and is the magnetic scalar-potential
Green’s function of a unit point charge in free space (5)

(5)

When working with real circular enclosures, it is desirable
to be able to impose the boundary conditions at more than one
point of the cylindrical wall. To do so, we continue with the
same strategy, and now we take two tangent planes to the cylin-
drical cavity in order to impose the boundary conditions at two
distinct points (see Fig. 3). The key point of the procedure is
to numerically evaluate the value of the two image charges so
that the boundary conditions for the potential are satisfied at the
two selected tangent points. In this case, the following system
of equations is obtained:

(6a)

(6b)

where all positions vectors are shown in Fig. 3.
The same procedure can now be generalized in order to im-

pose proper boundary conditions for the potential at -distinct
points of the cylindrical wall. The following system of
linear equations is obtained:

(7)

The only difficulty in setting up this system is in the evalua-
tion of the gradient of the magnetic scalar potential. In free
space, however, this gradient has the following closed-form
expression:

(8)

The solution of this system gives the values of the -image
charges needed to satisfy the boundary conditions for
the potential at -distinct points of the cylindrical wall. The
final magnetic scalar-potential Green’s function inside the
cylindrical cavity is simply evaluated by reusing the already
computed charge amplitudes

(9)

For the evaluation of the electric vector-potential dyadic
Green’s function, a similar procedure is followed, but taking
into account the vector nature of the quantity to be computed.
In this case, it is convenient to express the magnetic field in
terms of only the electric vector potential as

(10)

The zero normal component of the magnetic field at the cavity
wall leads to two different conditions for the electric vector
potential

(11)

If the first condition is satisfied, the second condition is re-
duced, working in cylindrical coordinates, to a single condition
involving the azimuthal component of the electric vector poten-
tial as follows:

(12)

Considering a magnetic unit dipole oriented along the -axis
(Fig. 4), we first impose the boundary conditions at one point
of the cylindrical wall. We propose to use two orthogonally ori-
ented magnetic dipoles to fulfill both conditions [first equation
of (11) and (12)], as shown in Fig. 4. Every one of the orthog-
onal dipoles will have its own weight, therefore, obtaining the
following system of equations:

(13a)

(13b)

where we have used the following definitions for the constants:

(14a)

(14b)

It is interesting to notice that the procedure just described is
equivalent to adjust the strength of the image dipole and its ori-



Fig. 4. Image magnetic dipoles used to enforce the boundary conditions for
the electric vector potential at discrete points along the circular cylindrical wall.

entation in order to impose the two boundary conditions just
mentioned.

The same procedure can now be generalized in order to im-
pose the right boundary conditions at -arbitrary points along
the cavity wall. Following this technique, a system
of linear equations is obtained, namely,

(15a)

(15b)

where , and we have used again the definition
in (14) for the additional constants. Both constants can be com-
puted, for a general multilayered medium, in the spectral do-
main. For the case of free space, however, straightforward cal-
culations lead to the following closed-form expression:

(16)

Once the system is solved, all the amplitudes of the
image magnetic dipoles ( , ) are used to recover the elec-

tric vector-potential components inside the cylindrical cavity in
the following way:

(17a)

(17b)

It is worth mentioning that, according to these expressions, an
-directed magnetic dipole will produce a -component of the

electric vector potential. This cross component is given by the
-component of the dipole images in the arrangement shown in

Fig. 4, and it is physically caused by the curvature nature of the
circular–cylindrical cavity wall.

The theory presented in this paper allows for the study of
slots and apertures opened in circular enclosures through the use
of the equivalence principle [27]. It is important to notice that
the method presented here can not be obtained through duality
with the formulation of [25]. Although we change the nature
of the source from electric to magnetic, the nature of the cylin-
drical metallic wall is not changed from a perfect electric wall
to a perfect magnetic wall. Consequently, although duality does
apply for the calculation of the free-space Green’s functions, the
process leading to the imposition of the boundary conditions for
the fields is different than the one presented in [25].

It is also interesting to observe that, with the method pro-
posed, the boundary conditions are matched at a fixed value of
the longitudinal -axis of the waveguide (height of the cylinder).
The method is, therefore, precise when the field is recovered at
exactly the same height. This would be the case, for instance,
when analyzing zero thickness printed coplanar metallizations
with the IE technique. Also, for small cylinder heights in terms
of wavelength, the method is still approximately valid. We have
observed that the error remains below 3% for heights of ap-
proximately . If larger cylinder heights are required, the
method presented in this paper can be easily generalized in order
to impose the same boundary conditions along the longitudinal

-axis. This can be accomplished in a systematic fashion by ar-
ranging the image sources into a ring-type configuration.

This formulation, combined with the theory presented in [25],
allows for the analysis of a wide range of printed circuits and
cavity backed antennas shielded in circular–cylindrical enclo-
sures. For this ultimate purpose, the extension of the theory to
account for dielectric layers is address in Section III.

III. EXTENSION TO MULTILAYERED MEDIUM

One of the advantages of the technique just derived is that
it can be easily extended to account for a multilayered medium.
This is simply done by substituting the free-space Green’s func-
tions just employed by the multilayered media Green’s func-
tions formulated in the spatial domain through the well-known
Sommerfeld transformation [26]

(18)



where is a spectral-domain Green’s function, and
is the spatial-domain counterpart.

For a stratified medium, the basic potentials are derived in
the spectral domain from voltages and currents computed in
an equivalent transverse transmission-line network describing
the layered structure [28], [29]. For instance, for the potentials
treated in this paper, and using the so-called Sommerfeld choice
[26], we obtain

(19a)

(19b)

where is the current computed in the equivalent transverse
transmission-line circuit under TE excitation and is the
corresponding current computed under TM excitation.

To set up the numerical procedure described in Section II, we
first need to obtain the above potentials in the spatial domain.
This is easily accomplished using the Sommerfeld transforma-
tion of order 0, namely,

(20a)

(20b)

In addition, the evaluation of the coefficients of the linear
system, shown in (7), involves the computation of the radial
component of the gradient of the magnetic scalar potential.
Straightforward manipulations in the spectral domain lead to
the following expression:

(21)

where now the Sommerfeld transformation of order 1 is needed,
as defined in (18).

With respect to the computation of the electric vector poten-
tial, the only difficulty to set up the numerical algorithm is the
evaluation of the coefficients defined in (14). An efficient way to
proceed is to evaluate these coefficients directly in the spectral
domain with subsequent transformation to the spatial domain
using the Sommerfeld integral in (18). After some manipula-
tions, one can obtain

(22)
where, again, a Sommerfeld transformation of order 1 is in-
volved. Once these coefficients are computed in the spatial do-
main using (22), they are used inside the system, shown in (15),
to compute the final weights of the image sources. It is important
to note that similar expressions can also be used under electric
current excitation to extend the theory presented in [25] to a mul-
tilayered medium. In this case, duality can be used on (19)–(22)
to obtain the relevant spatial-domain quantities under electric
current excitation.

It is also interesting to notice that the formulation presented
not only allows to take into account the presence of dielectric
layers, but also it allows to automatically impose the boundary
conditions at the top and bottom covers in the case of a com-
pletely closed circular cylindrical cavity. This is simply accom-
plished in the spectral domain by terminating the equivalent

Fig. 5. Magnetic scalar-potential (G ) convergence along the Y -axis of
Fig. 1.

Fig. 6. Electric vector-potential (G ) convergence along the Y -axis of
Fig. 1.

Fig. 7. Electric vector-potential (G ) convergence along the X-axis of
Fig. 1.



Fig. 8. Electric vector-potential cross-component (G ) evaluated with 20
images.

Fig. 9. Finite circular cylinder geometry used for validation.

transmission-line network by two short circuits placed at the
proper location of the metallic covers [18].

IV. RESULTS

In order to check the numerical behavior of the technique
developed, we present in Fig. 5 the magnetic scalar-potential
Green’s function along the -axis of Fig. 1 for a cavity with
radius . The position of the source is also shown in Fig. 1.
This figure shows the results obtained when 2, 10, 15, and 20
points are used to enforce the boundary conditions. It can be
observed that the results with 15 and 20 points are very similar,
showing that convergence has been reached. It is interesting to
note in these figures that the magnetic scalar potential has a
zero derivative at the cavity wall. This is necessary so that the
magnetic field can fulfill the right boundary conditions at the
wall.

Similar results are presented in Fig. 6 for the com-
ponent of the electric vector-potential dyadic Green’s function

Fig. 10. Magnetic-field G (�r) component along the Y -axis of Fig. 1
for two different cylinder heights (h=� = 0:5 and h=� = 1:0). Comparison
between new GFs and standard IE is shown.

Fig. 11. Magnetic-field G (�r) component along the Y -axis of Fig. 1
for two different cylinder heights (h=� = 0:5 and h=� = 1:0). Comparison
between new GFs and standard IE is shown.

along the -axis. In this case, this component does not vanish
at the cavity wall since it will be related to the tangent com-
ponent of the magnetic field. Again, the results are presented
when 2, 10, 15, and 20 points are used to enforce the boundary
conditions. Also in this case, the convergence is attained with
approximately 15 points, showing the effectiveness of the de-
rived approach.

To illustrate the potential singular behavior close to the
source, the convergence of the same component along
the -axis has been studied in Fig. 7. As can be observed,
the convergence is attained with the same number of images
as for the -axis cut. It can be seen in this figure that the

component vanishes at the cavity wall in this cut. This
is because the component of the electric vector potential is now
related to the normal component of the magnetic field, which
must vanish at the wall.



Fig. 12. Geometry of the circular cavity where the multilayered media Green’s functions are evaluated. The fixed observation point is taken for the investigation
of natural resonances of the cavity (results of Fig. 17). (a) Side view. (b) Top view.

As already discussed in this paper, the curvature of the cir-
cular–cylindrical cavity generates a cross component
of the electric vector-potential dyadic Green’s function [see
(17b)]. Fig. 8 presents a contour plot of this cross
component. It can be observed that this component is important
out of the main -axis of Fig. 1, and it tends to be maximum
at directions 45 with respect to this axis.

As a validation example, we have used the novel technique
to compute the magnetic field produced by a magnetic unitary
dipole inside two finite circular cylinders of heights (
and ). The magnetic dipole is placed according to Fig. 1
in the cross section, and it is located at exactly half the height
of the cylinder, as indicated in Fig. 9. The top and bottom
covers of the cylinder are closed by perfect conducting lids. In
this example, we have then analyzed a completely closed cir-
cular–cylindrical cavity using the multilayered media Green’s
functions formalism presented in Section III. The boundary
conditions at the top and bottom covers are automatically taken
into account by the formulation, by terminating with appro-
priate short circuits the transverse equivalent transmission-line
network used to formulate the spectral-domain Green’s func-
tions [28], [29].

To validate the results obtained with the new technique, we
include in these same figures the magnetic field computed using
a standard surface electric-field IE technique, considering the
same unitary magnetic dipole inside the circular cylinders of
finite heights. The surface IE utilizes the free-space Green’s
functions, and it discretizes the finite lateral wall of the cylinder
using triangular cells. The IE is excited with the electric field ra-
diated by an (or )-oriented unitary magnetic dipole, as shown
in Fig. 9. In free space, the excitation for an -oriented dipole
can be written in closed form as

(23)

Finally, the IE is solved with a Galerkin procedure using rooftop
basis functions defined on triangular cells. The total magnetic
field inside the finite cylinder will be the superposition of the

Fig. 13. Electric scalar-potential (G ) convergence along the Y -axis for the
structure shown in Fig. 12; � = 3.

scattered magnetic field produced by the induced electrical cur-
rents on the metallic walls, and the magnetic field produced by
the original magnetic current source. This last term can be com-
puted analytically, giving (24), shown at bottom of the following
page, for the -oriented case.

In Fig. 10, we give the results obtained for the
component of the magnetic-field dyadic Green’s function along
the -axis of Fig. 1. Furthermore, Fig. 11 shows the
component, again, along the -axis of Fig. 1, as shown in (24).

It can be observed that the field recovered with the newly de-
veloped cavity Green’s functions is closed to the field computed
with the IE approach. The agreement is even more valuable if we
bear in mind that the surface IE recovers the field by discretizing
the whole lateral cavity wall with triangular cells. Consequently,
these results represent an important validation of the technique
proposed in this paper.

For the numerical solution of the IE in these examples, a total
of 600 cells (corresponding to 900 unknowns) were used in the
discretization of the whole lateral cavity wall. On the contrary,



Fig. 14. Electric scalar-potential (G ) convergence along the Y -axis for the
structure shown in Fig. 12; � = 9.

Fig. 15. Magnetic vector-potential (G ) convergence along the Y -axis for
the structure shown in Fig. 12; � = 3.

the new GFs are calculated using 20 points along the wall con-
tour. It is important to point out that, in the novel formulation,
the number of points needed to achieve good convergence de-
pends on the electrical size of the cylindrical cavity. Numerical
results have shown that good numerical precision is obtained
when 15 points are used per wavelength of the cylindrical cavity
radius (15 points per ).

Another important aspect of the algorithm is its convergence
behavior when the radius of the cavity becomes small. We have

Fig. 16. Magnetic vector-potential (G ) convergence along the Y -axis for
the structure shown in Fig. 12; � = 9.

Fig. 17. Electric scalar potential (G ) at a fixed observation point for the
structure in Fig. 12 as a function of frequency; � = 3.

checked the convergence in this case for cylinders of radius as
small as and , finding that convergence is achieved
with approximately 12 images in both cases. When the radius
of the cylinder is small, the electrical size of the cylinder is not
important, always obtaining a good convergence behavior with a
flat number of points (around 12 points). This number of points
is not related with the electrical size of the cavity, but rather
with the minimum number of points needed to represent with
some precision its circular shape. If you perform the analysis
with a lesser number of points, then the circular geometry of

(24)



Fig. 18. Electric scalar potential (G ) at the second resonance of Fig. 17
(a=� = 0:4796); � = 3.

Fig. 19. Electric scalar potential (G ) at the third resonance of Fig. 17
(a=� = 0:6241); � = 3.

the waveguide is not well represented, becoming more of a sort
of an irregular polygon rather than a real circle. Note that the
number of 12 points indicates that approximately three points
per quadrant are needed to represent reasonably well the shape
of the circular waveguide.

To test the convergence of the algorithm in a real multilayered
situation, we have considered the structure shown in Fig. 12,
where the source is placed according to Fig. 12(b). Two different
dielectric permittivities have been considered for the study of
the numerical convergence, namely, and . In the
first case, the electric scalar potential has been evalu-
ated along the -axis of Fig. 12(b) with 2, 10, 15, and 20 im-
ages. The results are presented in Fig. 13. It can be seen again
that good convergence is attained with only 15 images.

On the contrary, if the dielectric permittivity is increased, the
number of images needed to get convergence is higher. This sit-
uation can be observed in Fig. 14, where the convergence of

Fig. 20. Boxed microstrip bandpass filter based on coupled-line sections.

Fig. 21. Results obtained for the bandpass filter shown in Fig. 20. Measured
results on a square cavity of a similar area are included for reference.

the electric scalar potential along the same axis as before is de-
picted, but for a dielectric with . In this case 10, 20, 30,
and 40 images has been used, showing that 30 images are needed
for a reasonable convergence. This result is expected since the
electrical size of the cavity has increased due to the larger per-
mittivity of the dielectric.

The convergence of the magnetic vector-potential dyadic
component has also been studied for the same struc-
ture shown in Fig. 12. We present in Fig. 15 the distribution
of this field component along the -axis for 2, 10, 15, and
20 images, and a dielectric permittivity . Again, the
convergence is attained by imposing the boundary conditions
at only 15 points. On the other hand, Fig. 16 shows that the
number of images has to be increased for good convergence if
the dielectric permittivity is . In this case, around 30
images are needed to attain good convergence.

An interesting aspect of the theory developed is that the
potentials at the resonances of the cavity can be computed



Fig. 22. Patch antenna backed by a circular cavity and printed on a suspended substrate.

without problems of convergence. To show that this is indeed
the case, we present in Fig. 17 the electric scalar potential
versus frequency in the cavity of Fig. 12 for a fixed position
of the observer point, as shown in Fig. 12(b). We can clearly
observe three natural resonances of the cavity. In Fig. 18, we
present the electric scalar potential computed at the second
resonance shown in Fig. 17 . For a cavity with
radius to height ratio of , the second resonant
mode is [27]. We can clearly see in Fig. 18 that the
potential computed with the novel algorithm actually takes
the form of this mode . This result shows that the
novel algorithm is robust even for the computation of the
resonant modes of circular–cylindrical cavities. Similar results
are presented in Fig. 19, but at the third resonance shown in
Fig. 17 . In this case, the distribution of the
potential correctly takes the form of the third resonant mode in
the corresponding circular cavity ( [27]).

The technique developed can be used for the analysis of prac-
tical printed circuits shielded in circular enclosures. We present
in Fig. 20 a shielded bandpass filter based on coupled-line sec-
tions. In Fig. 21, we present the results obtained for two cavi-
ties of different radius ( mm). Measured results on
a square cavity are included for [18]. The circular cavities used
in the simulations are of similar area than the square cavity. It is
observed in this figure that the agreement with respect to mea-
surements is good when the areas of the cavities are similar.

The usefulness of the technique derived is best observed in
the design of cavity-backed antennas using circular enclosures.
In Fig. 22, we present a dual-polarized circular patch antenna
backed in a circular–cylindrical cavity of total height

mm and radius mm . The dielectric is sus-
pended inside the cavity at a height of mm from
the bottom. In Fig. 23, we present the scattering parameters
obtained with a square cavity of equal area, and we compare
them with the results obtained with the novel theory for a cir-
cular cavity. Also, measured results in the circular cavity are
shown for comparison. Very good agreement can be observed
between the measured results and the predictions obtained with
the novel technique. In this case, the results obtained with the
square cavity of equal area are less accurate than the results

Fig. 23. Measured and simulated scattering parameters for the antenna backed
on a circular cavity shown in Fig. 22.

obtained with the real circular cavity modeling. This example
shows that the accurate modeling of the circular shape of the
cavity is important to correctly model the scattering parameters
of this antenna.

V. CONCLUSIONS

In this paper, we have presented a novel technique for the
evaluation of the boxed Green’s functions in circular–cylin-
drical cavities. For the first time, the technique is formulated
entirely in the space domain, and it has been shown to con-
verge rapidly. The method is based on taking a space images
rearrangement to properly impose the boundary conditions
for the fields at discrete points of the cavity-wall contour. In
this paper, details of the formulation have been given under
magnetic-current excitation, and the extension to treat multi-
layered structures have been carefully reviewed. Results show
the validity of the formulation, even when computing the nat-
ural resonances of circular–cylindrical cavities. Two practical



examples of microwave circuits analyzed with the novel tech-
nique are given. Measured results confirm the accuracy of the
method and its usefulness when modeling the circular shape of
cylindrical enclosures.
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