
659

J.S. Marques et al. (Eds.): IbPRIA 2005, LNCS 3522, pp. 659–666, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Image Processing Application Development:
From Rapid Prototyping to SW/HW Co-simulation

and Automated Code Generation

Cristina Vicente1, Ana Toledo2, and Pedro Sánchez-Palma1

1 Departamento de Tecnologías de la Información y Comunicaciones
E.T.S. Ingeniería de Telecomunicación - Universidad Politécnica de Cartagena

Campus Muralla del Mar S/N, 30.202 Cartagena, Spain
{Cristina.Vicente,Pedro.Sanchez}@upct.es

2 Departamento de Tecnología Electrónica
E.T.S. Ingeniería Industrial - Universidad Politécnica de Cartagena

Campus Muralla del Mar S/N, 30.202 Cartagena, Spain
Ana.Toledo@upct.es

Abstract. Nowadays, the market-place offers quite powerful and low cost re-
configurable hardware devices and a wide range of software tools which find
application in the image processing field. However, most of the image process-
ing application designs and their latter deployment on specific hardware de-
vices is still carried out quite costly by hand. This paper presents a new ap-
proach to image processing application development, which tackles the historic
question of how filling the gap existing between rapid throwaway software de-
signs and final software/hardware implementations. A new graphical compo-
nent-based tool has been implemented which allows to comprehensively de-
velop this kind of applications, from functional and architectural prototyping
stages to software/hardware co-simulation and final code generation. Building
this tool has been possible thanks to the synergy that arises from the integration
of several of the pre-existent software and hardware image processing libraries
and tools.

Keywords: image processing applications, component-based development, pro-
totyping, co-simulation, automated code generation

1 Introduction

Today, Image Processing (IP) techniques find application in many different domains
such as automated visual inspection of industrial products, medical imaging or bio-
metric person authentication, among others [1][2]. The marketplace offers many IP-
related products, ranging from platform-optimized software and hardware libraries to
high-level prototyping and simulation tools. Nevertheless, none of these products
actually covers the whole process of building IP applications. Actually, the historic
question of how bridging the gap between design models and final system implemen-
tation remains still open, also when talking about these systems.

660 Cristina Vicente, Ana Toledo, and Pedro Sánchez-Palma

This paper presents a novel approach to IP application development which is
aimed to cover the whole life cycle of this kind of products. In order to put this ap-
proach into practice, a new tool has been implemented which, following the growing
trend toward component-based application development [3], integrates some of the
previously existing IP-related products, instead of being built from scratch.

The rest of this paper is organized as follows. The common procedure followed to
build IP applications is briefly reviewed in Section 2. In Section 3, a new IP Compre-
hensive Development (IP-CoDe) Tool is presented, which is intended to help building
and evaluating both functional and architectural IP prototypes. The use of this tool to
develop a complete study case is presented in section 4. Finally, some conclusions
and future research lines are included in Section 5.

2 Building IP Applications

Building IP applications usually requires an initial rapid prototyping stage which
helps selecting the algorithms that fulfill the system functional requirements. Com-
monly, this functional prototype is implemented by means of a high level program-
ming language (C++, MATLAB, Java, etc), and generally incorporates the function-
ality provided by one of the multiple available IP libraries, e.g. Intel© Open Com-
puter Vision (free Open Source library) [4], Intel© Integrated Performance Primitives
[5], Matrox© Imaging Library [6], Mathworks© IP Toolbox [7], etc.

Once the functional prototype has been carefully tested, the application architec-
ture must be defined in terms of a specific platform which might be composed of
several processors, whether SW or HW, or both. Thus, the initial prototype is parti-
tioned into functional units that can be mapped into the different processing elements.
This architectural design stage produces a co-prototype which must be tested in order
to ensure that cost and performance constraints are met for each particular applica-
tion. Testing the selected co-prototype is usually accomplished by means of co-
simulation techniques, which allow evaluating both software and hardware, and their
interactions (synchronization, data transfer, etc).

Thus, building IP applications requires a great deal of IP algorithms and configura-
tions to be explored. In fact, different functional prototypes can fulfill the initial IP
requirements. For each prototype, different SW/HW partitions can be obtained and,
for each partition, different mappings of its functional units into the various elements
of the platform can be selected. Finally, different platforms can be considered candi-
dates for a given application.

Each of these design tasks can be developed by means of different tools, but as
stated in [8] “a new generation of tool is required which helps bridging the gap be-
tween the exiting design tools. Such tool, should address the functional and architec-
tural design stages, and reach both the software and hardware domains”.

3 The IP-CoDe Tool: An Integration Experience

Prototyping is a rapid and inexpensive way to validate system requirements. Usually,
different prototypes are built in order to test different aspects of the application under

Image Processing Application Development 661

development. As a matter of fact, functional models are built as software throwaway
prototypes by means of specialized tools, different from those needed for architec-
tural co-prototyping, where HW devices must be also taken into account. Integrating
these tools under a unified environment would ease evolving functional prototypes to
the corresponding co-prototypes, thus filling the existing gap between application
design and implementation.

Functional Prototype
GUI Modeling

Heterogeneous COTS Image
Processing Libraries

#ifndef GROI_H
#define GROI_H

#include <cv.h>
#include <cvaux.h>
#include <highgui.h>

Automated
Code Generation

Execution
Time

HW HW

SW

SW

IP-CoDe Tool
Manual SW/HW
Partitioning

HIP Library

GUI

Automated
Simulink Model

Generation

System Specification

Functional Design

Architectural Design

Implementation

C
o-

si
m

ul
at

io
nC

o-sim
ulation

S
im

ul
at

io
nS

im
ulation

GUI Wrapping
Facilities

Automated SW
S-Function
Generation

Simulink HW
Implementation

SW Implementation

Functional
Requirements

Cost and
Performance
Constraints

Functional Prototype
GUI Modeling

Heterogeneous COTS Image
Processing Libraries

Heterogeneous COTS Image
Processing Libraries

#ifndef GROI_H
#define GROI_H

#include <cv.h>
#include <cvaux.h>
#include <highgui.h>

Automated
Code Generation

Execution
Time

HW HW

SW

SW

IP-CoDe Tool
Manual SW/HW
Partitioning

HIP LibraryHIP Library

GUIGUI

Automated
Simulink Model

Generation

System Specification

Functional Design

Architectural Design

Implementation

C
o-

si
m

ul
at

io
nC

o-sim
ulation

S
im

ul
at

io
nS

im
ulation

GUI Wrapping
Facilities

Automated SW
S-Function
Generation

Simulink HW
Implementation

SW Implementation

Functional
Requirements

Cost and
Performance
Constraints

Fig. 1. Scheme of the IP application development life cycle using the IP-CoDe Tool.

In the following sections, our experience with IP product integration to build an IP
Comprehensive Development Tool is detailed. This tool covers the whole IP applica-
tion development life cycle, as shown in Fig. 1.

3.1 Functional Design

The first stage when building any application is to define its functional and non-
functional requirements. IP application functional requirements typically deal with
the selection of the algorithms that must be applied to input images in order to extract

662 Cristina Vicente, Ana Toledo, and Pedro Sánchez-Palma

relevant visual features (color, shape, texture, etc), while non-functional requirements
are commonly related to cost, synchronization and timing issues.

As stated in section 2, the functional modeling stage is usually accomplished by
means of one of the multiple IP libraries available. Although these libraries are func-
tionally overlapped to some extent, they cover different aspects and consequently,
they can be considered complementary. Thus, being able to simultaneously employ a
mixture of them for building functional prototypes would be both useful and enrich-
ing. However, each IP library uses its own defined data structures, function calling
conventions and error handling mechanisms, making it difficult to join them together.

In order to integrate the functionality provided by several of the existing IP librar-
ies and toolboxes [4-7], the IP-CoDe Tool provides a wrapping mechanism which
allows building homogeneous and inter-connectable IP components from heterogene-
ous IP functions. Wrappers allow mapping data representations, adding functionality
to (or masking unneeded functionality of) components, and provide a higher level of
abstraction to the components [9][10].

The IP-CoDe Tool provides a template for homogeneous IP component genera-
tion. In order to fill in this template, the user must provide (1) the signature of the
function being wrapped, i.e. the number and type of its parameters, (2) the external
interface of the component, i.e. the number and type of its connectors, and (3) the
function that links each component connector to one of the function parameters. Once
this template has been filled in, the IP-CoDe Tool automatically generates the corre-
sponding wrapper, and thus a new component which is added to a repository of ho-
mogeneous and inter-connectable IP components for its latter use.

The IP-Code Tool allows building functional prototypes in a very rapid and intui-
tive way due to its Graphical User Interface (GUI), which makes it possible to “drag
and drop” and interconnect any number of components selected from the repository.
Any functional model depicted using this tool may be wrapped as well, in order to
build a new higher-level functional component.

When the depicted functional prototype seems to be complete, the user can auto-
matically obtain the corresponding code, which can be compiled and linked in order
to produce a running prototype that allow testing the functional behavior using differ-
ent input data (see Fig. 1).

3.2 Architectural Design

Building an architectural co-prototype implies selecting a specific platform on which
to deploy the functional prototype. Thus, at this stage a SW/HW partitioning must be
decided and non-functional requirements must be tested. As mentioned in section 2,
these tests require a co-simulation tool.

Among the existing simulation tools, Simulink [11] is one of the most popular,
mainly owing to its straight forward connection to MATLAB and to its graphical
easy-to-use interface. Actually, Simulink can be used as a co-simulation tool, as both
SW and HW blocks can be incorporated as a part of the system under simulation. SW
blocks can be obtained from the many existing Simulink Toolboxes, and can also
encapsulate MATLAB, C/C++, FORTRAN and Ada functions (S-functions). HW

Image Processing Application Development 663

blocks can be obtained from the various HW device-specific Toolboxes (e.g. System
Generator [12] for the Xillinx FPGA1). These are some of the reasons why Simulink
has been selected as the co-simulation tool for the IP-CoDe Tool.

After a SW/HW partitioning of the functional prototype has been decided (manu-
ally so far), the IP-CoDe Tool automatically deploys the corresponding Simulink co-
prototype (mdl file). Each SW block in this co-prototype is then automatically filled
in with an S-function automatically built by the IP-CoDe Tool from the correspond-
ing component in the functional prototype. The estimated execution time of each SW
block is then calculated, as this information is required for timing and synchroniza-
tion purposes during the co-simulation (see Fig. 1).

In order to fill in the HW blocks, a library of IP high-level HW components has
been created from a set of low-level functions included in the System Generator Tool-
box for Simulink [11]. Some other HW blocks have also been included in this library
directly from VHDL2-cores using a wrapper mechanism to allow their interconnec-
tion with the former ones. It is worth noting that all these HW blocks can be directly
simulated by Simulink3 without needing to buy any specific HW device. However,
Simulink can also be used for generating and transferring the corresponding VHDL
code for each HW block to a target FPGA in order to speed up the co-simulation.

Once the co-prototype is finished, co-simulation allows checking the non-
functional requirement fulfillment. For instance, the execution time information pro-
vided by the co-simulation allows checking whether the synchronization and timing
requirements are met. In the same way, other low-level HW requirements (e.g. maxi-
mum working frequency or FPGA area occupancy), can also be retrieved and
checked.

3.3 Implementation

After carefully testing and fine-tuning the co-prototype, the final code of the IP appli-
cation can be automatically obtained. Actually, the code associated to each software
block is obtained during the functional prototyping stage, and the VHDL code corre-
sponding to the HW blocks is straightly obtained by the System Generator Toolbox.

4 A Practical Study Case: Detecting Contours in Skin Regions

In order to test the IP-CoDe Tool, a complete IP application has been developed
which allows detecting contours in human skin regions contained in color images.

Firstly, a functional prototype of the study case application was graphically built
using the depicting and interconnection facilities provided by the IP-Code Tool GUI.

1 FPGA stands for Field Programmable Gate Array.
2 VHDL stands for VHSIC (Very High-Speed Integrated Circuit) Hardware Design Language.
3 System Generator blocks are supplied with a functionally equivalent software Simulink

block that can be used for simulation. On the other hand, HW blocks directly obtained from
VHDL-cores can also be simulated in Simulink using an external tool, e.g. ModelSim [13].

664 Cristina Vicente, Ana Toledo, and Pedro Sánchez-Palma

When the prototype seemed to be finished it was compiled and the corresponding
executable version was automatically generated. However, after testing this prototype
using several input images, some errors were detected and thus, the prototype had to
be modified, fine-tuned and recompiled and again.

Once the functional prototype had been tested and the execution time associated to
each component had been measured, the corresponding architectural co-prototype
was built by manually selecting which components should be implemented in HW
and which ones in SW, thus allowing the Simulink model (mdl file) to be automati-
cally generated and co-simulated.

It is worth noting that, despite the changes and adjustments introduced during the
functional prototyping, completing this stage took just a few minutes. On the other
hand, it also should be noticed that despite the small size of the images employed, the
co-simulation took about fifteen minutes to complete. In the case of full-sized images,
the co-simulation time should be measured in hours. This leads to the conclusion that
changes introduced at the architectural level have a much greater impact in the de-
ploying time than those performed at the functional level.

Fig. 2. Simulink co-simulation screenshot. SW blocks are shown in a plain-color while pat-
terned ones denote HW components. Images resulting from each SW/HW processing step are
shown together with the corresponding temporization.

The final co-prototype and the co-simulation results are shown in Fig. 2 where dif-
ferent kinds of blocks are shown: patterned blocks represent HW components while
plain-color ones correspond to SW elements. HW blocks were obtained from two
different sources: System Generator Simulink Toolbox (Xillinx), and a wrapped

Image Processing Application Development 665

VHDL-core obtained from Nallatech [14]. Similarly, SW blocks were obtained from
Matlab C/C++ and Intel OpenCV functions. White blocks represent components
needed for the simulation (visualization probes or external elements, e.g. a camera
model) but that will not have any code associated in the final implementation.

Fig. 2 shows the images resulting from every SW/HW processing step. These im-
ages show the instant when they have been generated, thus allowing estimating the
temporization of the final implementation. Fig. 3 shows the results obtained by the
co-prototype using a different input image. This example proves that the designed
application is robust to different skin colors.

Fig. 3. Results obtained using a different input image. From left to right: original image,
smoothed intensity component, skin mask obtained by applying a threshold to the chroma
components, Canny contours [15], and logical AND applied to the two previous images.

5 Conclusions and Future Research

This paper presents a new approach to IP application development that covers from
functional and architectural prototyping stages to SW/HW co-simulation and final
code generation. Building such a comprehensive tool has been possible thanks to the
synergy that arises from the integration of several preexistent IP-related products. A
complete IP application for contour detection in human skin regions has been wholly
developed using the IP-CoDe Tool as a study case.

At present, the IP-CoDe Tool only allows building feed-forward functional proto-
types. Extending this functionality to allow the presence of loops will widen the range
of applications that could be created. It would also be interesting to find new tools,
which being integrated with the existing ones could help automating the SW/HW
partitioning to some extent, finding bottlenecks, or detecting which parts of the gen-
erated code are more susceptible of being parallelized.

Acknowledgements

This work has been partially supported by the Spanish CITYT Project COSIVA (TIC
2000-1765-C03-02), the European Community Project EFTCOR (DPI2002-11583-
E), and the mobility program for researchers of the Technical University of Cartagena
(PMPDI-UPCT-2004). We would also like to thank Dr. M. Pinzolas-Prado for his
help and support, and A. J. Martínez-Lamberto and J. A. Martínez-Navarro for their
collaboration in the IP-CoDe Tool implementation.

666 Cristina Vicente, Ana Toledo, and Pedro Sánchez-Palma

References

1. Bovik, A.: Handbook of Image and Video Processing, Academic Press (2000) 749-869.
2. Vicente-Chicote, C., Fernández-Andrés, C., Sánchez-Palma, P.: Automated Visual Inspec-

tion Systems Development from a Generic Architectural Pattern Description (in Spanish),
NOVATICA, Vol. 171, (2004) 63-65.

3. Bass, L., et al..: Volume II: Technical Concepts of Component-Based Software Engineer-
ing, SEI Technical Report CMU/SEI-2000-TR-008. May 2000.

4. Intel® OpenCV. Available: http://www.intel.com/research/mrl/research/opencv
5. Intel® IPP. Available: http://www.intel.com/software/ products/ipp/
6. Matrox© MIL version 7.5. Available: http://www.matrox.com/ imaging/products/mil
7. The Mathworks© Image Processing Toolbox 5.

Available: http://www.mathworks.com/ products/image/
8. Perrier, V.: A look inside Electronic System Level (ESL) design, CMP United Business

Media, EEDesign.com, Article Id. 18402916, March 26 (2004).
9. Dean, J.C., Vigder, M.R.: System Implementation Using Commercial Off-The-Shelf Soft-

ware, National Research Council Canada (NCR), Report 40173 (1997).
10. Troya, J. M., Vallecillo, A.: Controllers: Reusable Wrappers to Adapt Software Compo-

nents. Information & Software Technology, Vol. 43(3), (2001) 189-202.
11. Simulink® 6. Available: http://www.mathworks.com/products/simulink/
12. System Generator. Available: www.xilinx.com/products/design_resources/design_tool
13. ModelSim. Available: www.model.com
14. Nallatec sample IP VHDL-core. Available: www.Nallatech.com
15. Canny, J.F.: A Computational Approach to Edge Detection. IEEE Transaction on Pattern

Analysis and Machine Intelligence, Vol. 8 No. 6 (1986) 679-698.

