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Thick Eccentric Circular Iris in Circular Waveguide

S. P. Yeo and S. G. Teo

Abstract—Other researchers have observed that eccentric irises possess
certain advantageous features that may lead designers to prefer them over
the conventional concentric irises. The least-squares boundary residual
method (LSBRM) is utilized in this paper to analyze the behavior of such
an eccentric-iris structure (of nonzero thickness). Tests have confirmed
that the computer model thus obtained is capable of yielding numerical
results that are accurate to within �1%.

Index Terms—Circular waveguides, modeling, waveguide discontinu-
ities.

I. INTRODUCTION

ALTHOUGH circular irises have been in use since the earlier part
of this century [1], [2], they still continue to attract the attention

of researchers [3]–[6]. James, for instance, has noted that “there is
a lack of readily available data on the admittance of circular irises
in waveguides” [3, p. 430].

It is common practice to place circular irises concentrically within
circular waveguides. However, Shen and MacPhie have recently
pointed out that “the off-centered iris has more design flexibilities
than the centered iris and provides the advantage of a larger sus-
ceptance range” [6, p. 2641]. The model developed by them to
predict the characteristics of this thick eccentric-iris structure is based
on the conservation of the complex power technique (CCPT), but
unfortunately they have “assumed that no propagating modes exist
in the smaller waveguide” [6, p. 2640] (which is the�1=2t <
z < 1=2t section in Fig. 1), and the validity of their model is
thus limited to a narrow frequency range. We have chosen instead
to develop a different model—based on the least-squares boundary
residual method (LSBRM), which is noted for its mathematical rigor
[7]—which does not require such an assumption; in fact, our model
even allows the possibility of the�1=2t < z < 1=2t iris region
supporting more than one propagating mode.

II. DEVELOPMENT OF MODEL

The symmetry of the overall structure about thez = 0 midplane
suggests that we can resort to an eigenmode approach. We are,
therefore, able to reduce the actual two-port, depicted in Fig. 1,
to the equivalent one-port, sketched in Fig. 2, where the inputp0
wave from the source excites the variousp1, p2, p3; � � � ; waves in
the circular waveguide (Region I, wherez < �1=2t) and q1, q2,
q3; � � � ; waves within the bisected-iris aperture (Region II, where
�1=2t < z < 0). If the iris is subjected to odd-eigenmode excitation,
each of theq1, q2, q3; � � � ; waves launched from thez = �1=2t
discontinuity plane will be reflected from the effective short circuit
at thez = 0 midplane with a phase change of�. On the other hand,
for the even-eigenmode case, there will be an open circuit instead
over thez = 0 aperture and the corresponding reflection coefficient
for each of theqn waves becomes+1. Equation (1), shown at the
bottom of the following page, provides a suitable measure of the total
field mismatch existing over the transverse plane atz = �1=2t (i.e.,
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Fig. 1. Thick eccentric circular iris (with axis atO1) in circular waveguide
(with axis atO2).

Fig. 2. Equivalent one-port structure for use in eigenmode analysis of iris
depicted in Fig. 1.

over both aperture interfaceSaper and metallic surfaceSmetal), where

n is the propagation constant of the mode associated with theqn
wave in Region II,� is the Kronecker delta,Z is some appropriate
impedance term (which we have found, from our computational trials,
should be assigned the value of 1 k
), K is an integer variable that
has an odd value for the odd eigenmode and even value for the
even eigenmode, ande andh are the transverse components of the
electric and magnetic fields, respectively, for each of the modes (with
the superscripts “I” or “II” denoting either of the two regions). In
principle, complete expansions should be used to represent the fields
in Regions I and II; however, in practice, bothM andN have to
be assigned finite values in view of the constraints imposed by the
computational facilities available.

As has been explained in [7]–[9], it is more convenient to recast
the residual defined in (1) as a positive–definite Hermitian form

� =

i=M+N+1

i=1

j=M+N+1

j=1

y�iwijyj = y�Wy (2)
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wherey = (p0 p1 p2; � � � ; pM q1 q2; � � � ; qN)
t andW is a(M +N+

1) � (M + N + 1) positive–definite Hermitian matrix containing
the coupling integrals between the various modes of the expansions.
We have been able to derive closed-form expressions for all the
matrix entries ofW (where, as in [6], Graf’s addition theorem has
been utilized to effect the transformation of the cylindrical-coordinate
system from that based onO2 as the origin to that withO1 as
the origin). Hence, there is no need for us to resort to numerical
integration even for a nonzero displacementd from O1 to O2; this
is of particular importance because previous experience with the
LSBRM [8] has revealed that the computational errors accumulated
during numerical integration may lead to a deterioration in the
accuracy of the data predicted by the resulting software. Page-length
restrictions do not permit us to provide a list of all these closed-
form expressions here, but we have reproduced such details in [9]
for reference by any interested researchers.

It has been established in [7] and [8] that the minimization of the
positive–definite� with respect to the mode coefficientspm (where
m = 1; 2; 3; � � � ;M ) andqn (wheren = 1; 2; 3; � � � ; N ) results in
the following inhomogeneous matrix equation:

Ux = �v (3)

wherex = (p1 p2; � � � ; pM q1 q2; � � � ; qN)
t is actuallyy without the

input p0 coefficient, and where the(M + N) � (M + N) U and
(M + N) � 1 v submatrices are obtained by partitioningW in the
following manner:

W =
w11 v�

v U
: (4)

SinceU is obviously a positive–definite Hermitian matrix as well,
we may choose to employ the efficient Cholesky routine (without
matrix inversion) to solve (3) forx so as to derive the values of
all the unknown mode coefficients with reference to the inputp0,
of which only p1=p0 (for each of the eigenmodes) is required for
the computation of the scattering-matrix entries via the following
conversion formulas:

s11 = s22 =
1

2

p1
p0 even

+
p1
p0 odd

s12 = s21 =
1

2

p1
p0 even

�
p1
p0 odd

: (5)

III. SAMPLE RESULTS

As has been pointed out in Section I, Shen and MacPhie [6] have
recently used the CCPT to analyze the thick eccentric iris. It is
evident from the graphs in Fig. 3 (of the scattering coefficientss11
and s21 against the iris thicknesst) that the results predicted by
our LSBRM model compare favorably with those obtained by the
CCPT version—for magnitude as well as phase. One of the main
assumptions made by Shen and MacPhie is that “no modes can
propagate in the iris waveguide” [6, p. 2641]; i.e., their iris functions
as a cutoff waveguide and the amount of power that is able to tunnel
through it must progressively decrease as its thickness is increased.
This explains the monotonic behavior of the graphs in Fig. 3, where

(a)

(b)

Fig. 3. Plots of: (a) magnitudes and (b) phases of scattering coefficients
against iris thickness predicted by present LSBRM mode (— fors11 and
- - - - for s21) and CCPT model of Shen and MacPhie [6] (� � � for s11 and
� � � for s21) for thick eccentric iris witha = 12:7 mm, b = 9:5 mm,
d = 1:5 mm, � = 0�, f = 9 GHz.

js11j and js21j will, in the limit, approach the expected values of
unity and zero, respectively, with increasingt.

During the derivation of our model in Section II, we have not found
it necessary to utilize the cutoff iris–waveguide assumption employed
in [6]. Table I presents some of the results we painstakingly computed
for the special case of a thick eccentric iris inserted into a circular
waveguide (withkoa = 3:5) that supports theTE11,TM01 andTE21
modes. For this particular over-moded example, theTE11 andTM01

modes can propagate within the iris waveguide (withkob = 2:6). It
is, therefore, not surprising to note that we need to select largeM
andN settings for the two expansions in order to attain convergence
in the results predicted by our LSBRM model for the amounts of
scattered power carried by the reflected and transmitted modes in the

� =

S
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I
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�

n

2

dS

+
S

m=M

m=1
fp0�m�1 + pmge

I

m

2

dS

+Z2

S

m=M

m=1
fpo�m�1 � pmgh

I

m
� n=N

n=1
qnf1� (�1)K exp (�
nt)gh

�

n

2

dS

(1)



IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 46, NO. 8, AUGUST 1998 1179

TABLE I
CONVERGENCE OFNUMERICAL RESULTSOBTAINED BY PRESENTLSBRM MODEL FORSCATTERED POWERSCARRIED BY

TE11, TM01 AND TE21 MODES FOROVER-MODED THICK ECCENTRIC IRIS WITH koa = 3:5, kob = 2:6, t=a = 0:5,
d=a = 0:2, � = 0� (N.B.: FOR CONVENIENCE, INPUT POWER FROM TE11 SOURCE HASBEEN NORMALIZED TO UNITY)

(a)

(b)

Fig. 4. Plots of transverse: (a) electric- and (b) magnetic-field components
against normalized radial coordinate over discontinuity plane atz = �1=2t
(— for Region I and - - - for Region II) for thick eccentric iris withkoa = 2:5,
b=a = t=a = 0:5, d=a = 0:2, � = 0�.

z < �1=2t and z > 1=2t sections, respectively. The power of the
TE11 wave incident on this loss-free structure has, for convenience,
been normalized to unity, and we observe from the last column of

Table I that the sum of the scattered powers converges to within 1%
of this input-power value if we increaseM and N to more than
1500 for this over-moded situation.

Another important advantage of our LSBRM model is that we are
also able to generate the electromagnetic-field plots in the vicinity
of the iris. This is possible because the solution of (3) additionally
yields the values of all the other mode coefficients for the expansions
we adopted in (1) to represent the fields in Regions I and II.
Fig. 4 provides a typical set of electric- and magnetic-field plots at
z = �1=2t for one such eccentric iris. There is excellent match over
Saper between the fields of the two expansions, and the electric fields
tangential toSmetal have negligibly small magnitudes. In general,
currents will flow on the conducting surfaces and the transverse
components of the magnetic field in Fig. 4(b) are, thus, not small
in magnitude overSmetal.

IV. CONCLUSIONS

We have successfully demonstrated that the mathematically rig-
orous LSBRM can be employed to develop a reliable computer
model that is able to accurately predict the scattering characteristics
of the thick circular iris sited nonconcentrically within the circular
waveguide. In contrast to that reported by Shen and MacPhie [6],
our model does not utilize any cutoff iris–waveguide assumption,
and there is consequently no rigid validity limit on the operating
frequency range; however, there is the need to select largerM and
N settings if we want to ensure the onset of convergence in the
numerical results at the higher operating frequencies. Another useful
feature is that field plots are readily generated without too much
additional effort (once (3) has been solved via the computationally
efficient Cholesky routine for the decomposition of positive–definite
Hermitian matrices).

Hence, we may confidently set about using our resulting model
(which is suitable for running on a workstation or its equivalent) to
analyze and design thick eccentric irises for “applications in matched
windows in circular waveguide [5], in constructing filters as a block
element, and in the coupling to a dual-mode circular cavity by a
circular hole,” as has been envisaged in [6, p. 2641].
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Development of an Improved Two-Dimensional
Finite-Element Code for Cylindrically

Symmetric Eigenmodes

Kai Masuda, Kiyoshi Yoshikawa, Masami Ohnishi,
Yasushi Yamamoto, Hisayuki Toku,

Masaaki Sobajima, and Jiro Kitagaki

Abstract—A new two-dimensional finite-element (FE) eigenmode solver
has been developed, which is suitable for calculating cylindrically sym-
metric modes. The quantity H�=r is used in the code to describe the
electromagnetic fields instead ofH� or rH�, which is preferentially used
in the existing codes, and the new formulation withH�=r is found to show
higher accuracy and smoother convergence with respect to the number
of mesh points. Comparison is also made between linear and quadratic
elements, resulting in remarkably higher accuracy by the latter.

Index Terms—Cavity eigenmode, finite-element method.

I. INTRODUCTION

Cylindrically symmetric cavities are utilized in many radio-
frequency (RF) devices, such as klystrons, RF guns, and various
accelerating structures in particle accelerators. Many computer codes
[1]–[11] have been developed thus far, and are in use for RF cavity
designing for more than 30 years.

For cylindrically symmetric standing-wave modes, probably the
most commonly used code would be the SUPERFISH [2], which
calculates eigenfrequencies and corresponding angular magnetic field
H� at the mesh points using the finite-differential method (FDM) with
triangular meshes. However, depending on the cavity geometry, it is
sometimes not accurate enough or, in other words, takes too much
central processing unit (CPU) time and computer memory to achieve
required accuracy. Since both higher accuracy and less computational
efforts are always important from the viewpoint of saving time and
effort for the users, continuous improvements of greater extent are
called for in specific problems.
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From this viewpoint, a new two-dimensional-code Kyoto Uni-
versity eigenmode solver (KUEMS) has been developed, which is
aimed at improved calculations of cylindrically symmetricTM0 nm

modes applicable to klystron simulations [12]. Instead ofH� or rH�

preferentially used in the existing codes [1]–[3], [7], the KUEMS
uses: the quantityH�=r to describe the electromagnetic fields, which
has the advantage of not requiring any boundary conditions on the
symmetry axis, and the finite-element method (FEM) with quadratic
triangular elements, which has high capability to model arbitrary
structures.

This paper describes the numerical methods used in the KUEMS,
followed by comparisons of the numerical results among the three
different formulations, i.e., withH�=r, H�, and rH�, to show the
advantageous features of this new formulation withH�=r with respect
to accuracy in the eigenfrequencies, and convergence of the electric
field on the symmetry axis. Comparisons between the linear and
quadratic elements are also made to examine the accuracy together
with the SUPERFISH.

II. NUMERICAL METHODS IN THE KUEMS

The numerical methods used in the KUEMS are described in this
section, including the new FE formulation with the quantityH�=r.
The essential difference from the other formulations withH� and
rH� is described in Section II-B.

A. Basic Equations and Weak Formulation

For resonant electromagnetic fields, we can assume electric and
magnetic fieldsEEE andHHH at a timet and locationrrr by

EEE(rrr; t) = eee(rrr) Re[exp(i!t)]; (1a)

HHH(rrr; t) = �0=�0 hhh(rrr Re[i exp(i!t)] (1b)

where�0 and�0 are the permittivity and permeability in free space,
f = !=2� is the resonant frequency, andeee andhhh are the eigenmode
patterns. Then, from Maxwell’s equations in free space, the frequency
and the magnetic field are expressed by the following eigenvalue
problem:

r�r� hhh = k2hhh in 
 (2)

nnn� (r� hhh) =0 on� (3)

and the corresponding electric field is given by

eee =
1

k
r� hhh in 
 (4)

wherek = !=c, the boundary�, and the domain
 are the inner
surface of the cavity wall and its volume, respectively, andnnn is the
unit vector normal to�.

Satisfaction of both (2) and (3) is equivalent to the following
formulation:




vvv � [k2hhh�r� (r� hhh)] dv +
�

vvv � [nnn� (r� hhh)] dS = 0;

for anyvvv (5)

wheredV anddS are a volume element in
 and a surface element on
�, respectively. With Gauss’ divergence theorem, (5) can be reduced
to the following well-known weak formulation [8]:




(r� vvv) � (r� hhh) dV = k2




vvv � hhh dV; for anyvvv: (6)
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