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Thick Eccentric Circular Iris in Circular Waveguide

S. P. Yeo and S. G. Teo

Abstract—Other researchers have observed that eccentric irises possess |
certain advantageous features that may lead designers to prefer them over - i
the conventional concentric irises. The least-squares boundary residual Ir
method (LSBRM) is utilized in this paper to analyze the behavior of such . :
an eccentric-iris structure (of nonzero thickness). Tests have confirmed !
that the computer model thus obtained is capable of yielding numerical i
results that are accurate to within +1%. [

Index Terms—Circular waveguides, modeling, waveguide discontinu- .-{—‘ 2 “-*q:ﬂ 5 meim
ities.

Fig. 1. Thick eccentric circular iris (with axis &?;) in circular waveguide
I. INTRODUCTION (with axis atOs).
LTHOUGH circular irises have been in use since the earlier part
of this century [1], [2], they still continue to attract the attention
of researchers [3]-[6]. James, for instance, has noted that “there is
a lack of readily available data on the admittance of circular irises
in waveguides” [3, p. 430].

It is common practice to place circular irises concentrically within
circular waveguides. However, Shen and MacPhie have recently == Fa Py e — W,
pointed out that “the off-centered iris has more design flexibilities
than the centered iris and provides the advantage of a larger sus-

Region 1 Fegion 01

ceptance range” [6, p. 2641]. The model developed by them to o |
predict the characteristics of this thick eccentric-iris structure is based LI a i
on the conservation of the complex power technique (CCPT), but g == N i

unfortunately they have “assumed that no propagating modes exist
in the smaller waveguide” [6, p. 2640] (which is thel/2t <

z < 1/2t section in Fig. 1), and the validity of their model is
thus limited to a narrow frequency range. We have chosen instead
to develop a different model—based on the least-squares boundary o
residual method (LSBRM), which is noted for its mathematical rigor

[7]—which does not require such an assumption; in fact, our model

even allows the possibility of the-1/2t < = < 1/2t iris region

supporting more than one propagating mode. z=1
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Fig. 2. Equivalent one-port structure for use in eigenmode analysis of iris
Il. DEVELOPMENT OF MODEL depicted in Fig. L.

The symmetry of the overall structure about the= 0 midplane
suggests that we can resort to an eigenmode approach. We are, . .
therefore, able to reduce the actual two-port, depicted in Fig.‘i\,’e_r both aperture !nterfa&pe,. and metallic surfacsn_mm]),vv_here
to the equivalent one-port, sketched in Fig. 2, where the ipput 7» IS Fhe prqpagathn constant of the mode.assouated W'tm,’the
wave from the source excites the Varigus ps, ps, - - -, Waves in wave in Region II,6 is the Kronecker deltaZ is some app_roprlat(_e
the circular waveguide (Region |, where< —1/2¢) and g1, ¢z, impedance term (which we have found, from our computational trials,

3.---, waves within the bisected-iris aperture (Region I, wheréhomd be assigned the value of @)k K" is an integer variable that

—1/2t < = < 0). If the iris is subjected to odd-eigenmode excitation}aS @n odd value for the odd eigenmode and even value for the

each of theg:, g2, ¢s,- -, waves launched from the = —1/2¢ even eigenmode, andand i are the transverse components of the
1 ’ 2 > - =t . . . . .
discontinuity plane will be reflected from the effective short circui‘talec’[rIC and magnetic fields, respectively, for each of the modes (with

at thez = 0 midplane with a phase change of On the other hand, th? s_uperscripts " or “II” _denoting either of the two regions). I_n
for the even-eigenmode case, there will be an open circuit inste%WC'p'e' complete expansions should be used to represent the fields

over thez = 0 aperture and the corresponding reflection coefficielft Reg!ons I qn.d I howe.ver,. in practice, bot .and.N have to
for each of they, waves becomes-1. Equation (1), shown at the be assigned finite values in view of the constraints imposed by the

bottom of the following page, provides a suitable measure of the to&ﬂmputatlonal faC|I|t|e_s avgllable. o )
field mismatch existing over the transverse plane at —1/2 (i.e., As has been explained in [7]-[9], it is more convenient to recast
the residual defined in (1) as a positive—definite Hermitian form
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wherey = (pop1 pa, -+, par qi1 g, -+ -, gn)' andWis a(M + N + 10
1) x (M + N + 1) positive—definite Hermitian matrix containing

the coupling integrals between the various modes of the expansions.
We have been able to derive closed-form expressions for all the os
matrix entries of ¥ (where, as in [6], Graf's addition theorem has
been utilized to effect the transformation of the cylindrical-coordinate
system from that based of. as the origin to that withO, as o
the origin). Hence, there is no need for us to resort to numerical2
integration even for a nonzero displaceménrom O; to O-; this

is of particular importance because previous experience with the o4
LSBRM [8] has revealed that the computational errors accumulated
during numerical integration may lead to a deterioration in the
accuracy of the data predicted by the resulting software. Page-length 02
restrictions do not permit us to provide a list of all these closed-
form expressions here, but we have reproduced such details in [9]

0.6

magn

for reference by any interested researchers. 007 S ’ Py Py P = ” o
It has been established in [7] and [8] that the minimization of the iris thickness t (mm)
positive—definiteA with respect to the mode coefficienis, (where @)
m=1,2,3,---,M) andg,, (wheren =1, 2, 3,---, N) results in
the following inhomogeneous matrix equation: 120
Uz =—v (3) 100
wherez = (pl P2t DM 1 G2 s (JN‘)t is aCtUa”yy without the 80 N
input p coefficient, and where théM + N) x (M + N) U and S11
(M 4+ N) x 1 v submatrices are obtained by partitioniHg in the g 60
following manner: 2
. % 40
; wir U ®
W= { v Q}' “) & 20
. o y . y . S S
SinceU is obviously a positive—definite Hermitian matrix as well, ol TT~—= x_ 2
we may choose to employ the efficient Cholesky routine (without “‘*"~~\>L___x %
matrix inversion) to solve (3) for: so as to derive the values of 3
all the unknown mode coefficients with reference to the inpyt
of which only pi/po (for each of the eigenmodes) is required for -0 - > " 5 Py o = y o
the computation of the scattering-matrix entries via the following iris thickness t (mm)
conversion formulas: (b)
S11 = S99 = l{ <P_1) + <1£) } Fig._3. _Rlots_of: (€) magr)itudes and (b) phases of scattering coefficients
2 D0/ even Po / oqa against iris thickness predicted by present LSBRM mode (—sfqr and
1 1 1 ----for s21) and CCP_T model of_ Sh_en and Mathle [6]q o for s11 and
S12 = S31 = 7{ <7) — <7) } (5) xxx for s2¢) for thick eccentric iris witha = 12.7 mm, b = 9.5 mm,
2 \Po/ cven PO/ oda d=15mm, 8 =0° f =9 GHz

|s11] and|s21| will, in the limit, approach the expected values of
IIl. SAmPLE REsuLTs unity and zero, respectively, with increasing

As has been pointed out in Section I, Shen and MacPhie [6] haveDuring the derivation of our model in Section Il, we have not found
recently used the CCPT to analyze the thick eccentric iris. It isnecessary to utilize the cutoff iris—waveguide assumption employed
evident from the graphs in Fig. 3 (of the scattering coefficients in [6]. Table | presents some of the results we painstakingly computed
and s»; against the iris thickness) that the results predicted by for the special case of a thick eccentric iris inserted into a circular
our LSBRM model compare favorably with those obtained by theaveguide (witht,a = 3.5) that supports th&E1, TMo1 andTE2;
CCPT version—for magnitude as well as phase. One of the maitodes. For this particular over-moded example, &, andTMg,
assumptions made by Shen and MacPhie is that “no modes caodes can propagate within the iris waveguide (With = 2.6). It
propagate in the iris waveguide” [6, p. 2641]; i.e., their iris functionss, therefore, not surprising to note that we need to select lafge
as a cutoff waveguide and the amount of power that is able to tun@eld NV settings for the two expansions in order to attain convergence
through it must progressively decrease as its thickness is increasadhe results predicted by our LSBRM model for the amounts of
This explains the monotonic behavior of the graphs in Fig. 3, wheseattered power carried by the reflected and transmitted modes in the

m=»M g . 1.0 n=N _IVE e 1,10 2
2ot Wodm—1+pmle, — 2070 an{l+ (=1)" exp (—mt)le, | dS
A 2
S pobm—t + P tel, | dS (1)
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TABLE |
CoNVERGENCE OFNUMERICAL RESULTS OBTAINED BY PRESENTLSBRM MODEL FOR SCATTERED POWERS CARRIED BY
TE11, TMo1 AND TE2; MobDES FOROVER-MODED THICK ECCENTRICIRIS WITH kot = 3.5, kob = 2.6, t/a = 0.5,
d/a = 0.2, 8 = 0° (N.B.: ForR CONVENIENCE, INPUT POWER FROM TE || SOURCE HASBEEN NORMALIZED TO UNITY)

Number of modes Power carried by each reflected mode Power carried by each transmitted mode Sum of reflected and
M=N TE,, TM,, TE,, TE,, TM,, TE,, transmitted powers
10 0.046 0.107 0.026 i 0.468 0.036 0.028 0.711
50 0.036 0.115 0.025 0.589 0.044 0.030 0.839
100 0.034 0.117 0.025 0.633 0.048 0.032 0.889
500 0.030 0.120 0.024 0.707 0.051 0.035 0.967
1,000 0.029 0.120 0.024 0.727 0.052 0.037 0.989
1,500 0.029 0.120 0.024 0.728 0.052 0.037 0.990

Table | that the sum of the scattered powers converges to within 1%
of this input-power value if we increask/ and N to more than
1500 for this over-moded situation.

Another important advantage of our LSBRM model is that we are
also able to generate the electromagnetic-field plots in the vicinity
of the iris. This is possible because the solution of (3) additionally
yields the values of all the other mode coefficients for the expansions
we adopted in (1) to represent the fields in Regions | and II.
Fig. 4 provides a typical set of electric- and magnetic-field plots at
z = —1/2t for one such eccentric iris. There is excellent match over
Saper between the fields of the two expansions, and the electric fields
tangential toSmetar have negligibly small magnitudes. In general,
currents will flow on the conducting surfaces and the transverse
components of the magnetic field in Fig. 4(b) are, thus, not small
in magnitude overSmetal-

o
b

o
N

normalized magnitude of azimuthal electric field

NN e~ ~
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normalized radial coordinate f/a (with O, as origin)
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IV. CONCLUSIONS

@ We have successfully demonstrated that the mathematically rig-
orous LSBRM can be employed to develop a reliable computer
model that is able to accurately predict the scattering characteristics
of the thick circular iris sited nonconcentrically within the circular
waveguide. In contrast to that reported by Shen and MacPhie [6],
our model does not utilize any cutoff iris—waveguide assumption,
and there is consequently no rigid validity limit on the operating
frequency range; however, there is the need to select ldihend
N settings if we want to ensure the onset of convergence in the
numerical results at the higher operating frequencies. Another useful
feature is that field plots are readily generated without too much
additional effort (once (3) has been solved via the computationally
efficient Cholesky routine for the decomposition of positive—definite
Hermitian matrices).

Hence, we may confidently set about using our resulting model
(which is suitable for running on a workstation or its equivalent) to
analyze and design thick eccentric irises for “applications in matched

normalized magnitude of radial magnetic field

0.0 02 0.4 0.6 0.8 1.0 . L . . . .
normalized radial coordinate rfa (with O, as origin) windows in C|r(_:ular wavegglde [5], in constructing filters as a block
b element, and in the coupling to a dual-mode circular cavity by a
(b) circular hole,” as has been envisaged in [6, p. 2641].

Fig. 4. Plots of transverse: (a) electric- and (b) magnetic-field components
against normalized radial coordinate over discontinuity plane &t —1/2¢
(— for Region | and - - - for Region I1) for thick eccentric iris with,a = 2.5,
b/a = tfa = 0.5,dfa = 0.2, 8 = 0°.
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Development of an Improved Two-Dimensional
Finite-Element Code for Cylindrically Il NUmERICAL METHODS IN THE KUEMS
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section, including the new FE formulation with the quantiy /».
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Kai Masuda, Kiyoshi Yoshikawa, Masami Ohnishi, ) ’ - h
rHy is described in Section II-B.

Yasushi Yamamoto, Hisayuki Toku,
Masaaki Sobajima, and Jiro Kitagaki
A. Basic Equations and Weak Formulation

For resonant electromagnetic fields, we can assume electric and

Abstract—A new two-dimensional finite-element (FE) eigenmode solver magnetic fieldsE and H at a timet and locationr by
has been developed, which is suitable for calculating cylindrically sym-

metric modes. The quantity Hy/r is used in the code to describe the E(r.t) =e(r) Re[exp(iwt)], (1a)
electromagnetic fields instead offfy or rHy, which is preferentially used ' i : )
in the existing codes, and the new formulation withHy /7 is found to show H(r,t) = \/eo/po h(r Re[i exp(iwt)] (1b)

higher accuracy and smoother convergence with respect to the number o o
of mesh points. Comparison is also made between linear and quadratic Wherees and o are the permittivity and permeability in free space,

elements, resulting in remarkably higher accuracy by the latter. f = w/2x is the resonant frequency, ancandh are the eigenmode
Index Terms—Cavity eigenmode, finite-element method. patterns. Then, from Maxwell’'s equations in free space, the frequency
and the magnetic field are expressed by the following eigenvalue
problem:
|. INTRODUCTION 0
VxVxh=FhinQ 2

Cylindrically symmetric cavities are utilized in many radio-
frequency (RF) devices, such as klystrons, RF guns, and various nx (Vxh)=00nl ®)
accelerating structures in particle accelerators. Many computer coca?I
[1]-[11] have been developed thus far, and are in use for RF cavity
designing for more than 30 years. e = 1 YV x hin Q 4)

For cylindrically symmetric standing-wave modes, probably the
most commonly used code would be the SUPERFISH [2], whiGhhere t: = w/c, the boundant’, and the domair2 are the inner
calculates eigenfrequencies and corresponding angular magnetic figlgtace of the cavity wall and its volume, respectively, anis the
H, at the mesh points using the finite-differential method (FDM) witynit vector normal tor.
triangular meshes. However, depending on the cavity geometry, it issatisfaction of both (2) and (3) is equivalent to the following
sometimes not accurate enough or, in other words, takes too mygfnulation:
central processing unit (CPU) time and computer memory to achiev: .
required accuracy. Since both higher accuracy and less computatlojzlv [F’h =V x (V x h)] dv + / v-[nX (VXh)]dS =0,
efforts are always important from the viewpoint of saving time and® r
effort for the users, continuous improvements of greater extent are
called for in specific problems.

3 the corresponding electric field is given by

for anyv (5)

wheredV anddS are a volume element i and a surface element on
[, respectively. With Gauss’ divergence theorem, (5) can be reduced
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