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Galerkin Solution for the Thin Circular Iris 
in a TE,,-Mode Circular Waveguide 

Ahstruct -An integral equation for the transverse electric field in the 
aperture of a concentric circular iris in a transverse plane of a circular 
waveguide is approximately solved by Galerkin’s method. The aperture 
field is represented by a finite sum of normal TE and TM circular 
waveguide modes that fit the circular aperture. The numerical convergence 
of the Galerkin solution is demonstrated via resultant aperture field 
distributions and equivalent shunt susceptance for the case of dominant 
TE , , -mode excitation. The resultant aperture electric field distribution 
closely resembles that of the TE,, aperture mode alone, except for edge 
.condition behavior at the edge of the ins. A resonant or capacitive iris is 
possible over a restricted range of frequencies. 

I. INTRODUCTION 
HE SPECIFIC APERTURE under consideration is T that of an infinitesimally thin circular iris of inner 

radius b in a transverse plane of a circular waveguide of 
radius a ,  as shown in Fig. 1. The circular iris is concentric 
with the axis of the circular waveguide. The case of cir- 
cularly symmetric excitation (TE,,, TM,, modes) of this 
circular iris or the related step change in waveguide diame- 
ter problem is considered by many authors, for example 
[1]-[5]. Marcuvitz [6, p. 2431 gives the equivalent shunt 
susceptance for TE,, excitation of small apertures. Gubslui 
et af. [7] formulate the Galerkin method for TE,,- and 
TM,,-mode incidence using a basis of weighted Jacobi 
polynomials. Unfortunately, their results are given only for 
TE,, and TM,, excitation. The use of aperture waveguide 
modes as a basis in the Galerlun procedure [8], [9] yields 
the same set of linear equations as Wexler’s modal analysis 
[lo] and as the conservation of complex power technique 
of Wade and MacPhie [l l] .  The Galerkin method also 
yields the same equations as the Rayleigh-ktz method, 
but without having to start from an explicit variational 
functional [12, p. 4481. In this paper, the effect of the 
entire infinite set of modes in the circular waveguide is 
approximated by series summation, in the manner of 
[13]-[15]. The relative convergence problem [16], [I71 and 
less numerical accuracy can potentially arise when the 
number of modes in the waveguide region is truncated, as 
in the implementations of [9]-[ll]. 
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The unknown in the boundary value problem is 
aperture electric field, from whch the waveguide fields 
determined. The Galerkin method is formulated for 

the 
are 
the 

case of the transverse junction between two perfectly con- 
ducting cylindrical waveguides of general cross section. 
The portion of the junction plane that extends into the 
interior (the iris) is taken to be infinitesimally thin. The 
formulation is implemented for the TE,, excitation of the 
circular iris in a circular waveguide, and several resultant 
aperture electric field distributions are given. A family of 
design curves for the variation of the equivalent shunt 
susceptance as a function of iris size b /a  and electrical 
size of the circular waveguide Ka is also given, where 
K = 2 r / h  is the wavenumber of the unbounded dielectric 
in the waveguide. 

11. DERIVATION OF ELECTRIC FIELD 
INTEGRAL EQUATION 

The portion of each waveguide cross section in the 
transverse plane z = 0 that does not coincide with the 
aperture S is shorted by a perfect electric conductor (Fig. 
2). The aperture S is excited by any number of modes 
from waveguide (a) on the left (negative z )  and is excited 
by any number of modes from waveguide (b) on the right 
(positive z ) .  The cross sectional areas of the waveguides 
are denoted by S, and Sh. An iris of finite thlckness is 
treated as the simultaneous solution of two separated 
junctions [18], [19]. Waveguides (a) and (b) can contain 
two different, lossy dielectrics. 

In the junction plane z = 0, the transverse electric and 
magnetic fields of regions (a) and (b) are expressed as 
infinite summations of the normal transverse vector mode 
functions of the corresponding waveguide 

m 

E,= V,i?,,,\ 
m \ on S,  

m 

E,= .,SJ 
‘ n = 1  on S,.  

H,= ?,E,, 

( 3 )  

(4) 
n = 1  I 

In waveguide (a), V,, is the unknown modal voltage, I ,  is 
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Fig. 1. Thin circular iris in circular waveguide. 

Fig. 2. Longitudinal view of transverse iris junction between two gen- 
eral cylindrical waveguides. 

the unknown modal current, 2, is the known electric field 
mode vector, and h ,  is the known magnetic field mode 
vector of the m th mode. The corresponding quantities of 
waveguide (b) are denoted by the caret (^) and modal 
index n. The entire modal spectra of the waveguide fields 
are needed at an abrupt discontinuity such as the junction, 
and so the entire infinite summations are maintained and 
not truncated. 

It is convenient to define the inner product between two 
transverse vectors Aand 8 over the surface Z as the scalar 
integral 

where the asterisk denotes complex conjugate. The wave- 
guide mode functions are orthonormalized in the sense 
that their pairwise inner products are given by 

The electric and magnetic vector mode functions are sim- 
ply related by a 90" transverse rotation [6, p. 41 

where 2 is th axial unit vector. The usual transmission line 
equations for the mth waveguide (a) mode and the nth 
waveguide (b) mode are 

V, = ,: + VZfl 

z,, = y, [ V: - VZfl] 

in = - j n  [ Vy - pfl] 

(8) 

(9) 

(10) 

(11) 

pn = t ; n c  + fipfl 
A .  

where the left-hand terms are total modal voltage and 
current. Equations (8) and (9) relate total modal voltage V, 
and current I ,  to the incident and reflected modal volt- 
ages V: and Vzfl of waveguide (a) in the reference plane 

~ 

z = 0. The characteristic admittance of the mth mode of 

107 

waveguide (a) is denoted by y,, which completely accounts 
for the dielectric in the guide. Equations (10) and (11) give 
the corresponding relations of waveguide (b). 

The integral equation satisfied by the unknown tangen- 
tial electric field in the aperture S is obtained by enforcing 
continuity of the tangential magnetic field H across the 
aperture, 

m m , .  

~ , h ,  = i n Z n  on S .  (12) 
m = 1 n = 1  

Insertion of the electric quantities from (7)-(11) into the 
above, taking the vector cross product of - i with both 
sides, and addition of twice the incident terms to each side 
of the resultant equation yields 
30 m 

C ymvm2rn + C jn<.'n 
ni = 1 II = 1 

m m 

= 2 y,VE2, + 2  1 jfl$flincin on S .  (13) 

Continuity of the tang5ntial electric field is automatically 
satisfied since V, and V,  are expressed as functions of the 
common unknown aperture electric field in the aperture S :  

nr = 1 n = l  

The inner product of (14) with the k th  waveguide (a) 
electric mode vector over the waveguide (a) cross section is 

m 

('u,gk)Su= C V m ( ~ m , ' , ) ~ u =  ('aper72k)S. (16) 
m = 1 

The orthogonality of the waveguide mode vectors allows 
each waveguide total modal voltage to be calculated sep- 
arately: 

X 00 

= 2  ymv,"2,(p)+2 jneF:n(F), PES.  (18) 
nr = 1 n = l  

This Fredholm integral equation of the first kind is cast 
into standard form 

/ L E (  p ,  P'>'Eaper(P') ds'= -22 x H i y p ) ,  p E s 

where the dyadic Green's function is 
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Some authors [8], [9] conceptually short the entire aperture admittance matrices are 
S with a perfect electric conductor and introduce the 
equivalent magnetic surface current over S necessary to 

00 

Y:/ = C y m ( e m ,  :,>,(:/7 2,)s 

yk: = c j n ( L  :,),(:/, in), 

(27) 

( 2 8 )  

bring the total tangential electric field back to its correct m = l  
m 

- 
value E a p e r .  In such cases, the resultant integral equation 
with the magnetic surface current as the unknown is 
entirely equivalent to (19). The boundary condition is n = l  

and the kth elements of the L x 1 current excitation 
(21) column vectors are i x Ea&) = 0, p € C  

where i is the outward normal of the boundary curve C of 
the aperture S .  This boundary condition must be satisfied 
according to (14) and (15) if the integral equation (19) is 
valid in S .  

111. FORMAL GALERKIN SOLUTION OF 
INTEGRAL EQUATION 

The linear integral operator (19) is 

) . E a p e r ( P ' )  ds'. ( 2 2 )  
n = l  

The adjoint operator 8" satisfies [20, p. 3151 

Note that Yt/ and I t  are functions only of the geometry, 
frequency, and excitation of the left side of the junction, 
and similarly for Y// and I; on the right. This is due to the 
inherent separation of the Green's function (20). The cou- 
pling between waveguides (a) and (b) occurs algebraically 
as a simple matrix addition, with the solution obtained via 
matrix inversion. The element Yz/ can be thought of as the 
mutual admittance between the kth and Ith aperture 
modes, where the coupling is via the infinite set of wave- 
guide (a) modes. 

IV. MODAL BASIS (8X, B ) ,  = (A, 9%), (23) 

where Aand B are elements of the domain of 9 and 8", 
respectively. Application of this definition and the Hilbert 
space inner product (5) gives 

If the aperture has the shape of a familiar waveguide 
cross section, then the normal TE (h-type) and TM (e-type) 
aperture waveguide modes constitute a candidate basis for 
the tangential electric field in the aperture. The transverse m 

electric fields for the modes are expressed in terms of 
scalar potential wave functions [6, p. 41 

zu'aper ( P )  = C y,*Frn ( P )  J 12: S ( P')  * ( 6') ds' 
m = l  

The domains of 9 and - 8" are identical and are the set 
of vector functions Eaper(p) that are integrable with the 
waveguide vector modal functions over the aperture S and 
result in convergent series of (22) and (24). Furthermore, 
the class of legitimate aperture fields is limited to those 
vector functions that satisfy the boundary condition (21). 
The Galerkin technique is now applied in the manner of 
[8] and [9]. The unknown aperture electric field is ap- 
proximated by _a linear combination of L independent 
basis functions e,( p ) ,  

I 

TE modes: Z h  = 2 X VI*' 

TM modes: 2' = - VI*' 

which satisfy the boundary conditions 

a*h 
a v  
-- - 0 on C (Neumann or hard) (33) 

\E e = 0 on C (Dirichlet or soft). (34) 
The inner product between the TE, aperture mode and the 
TE, waveguide (a) mode is 

(:/", e:), = /kr* [ *:*v,*:] ds - /P:*v:G: ds 

(35) 

E a p e r ( p )  = C T ? I ~ / ( P )  ( 2 5 )  where the scalar potentials satisfy the Helmholtz equation 
/ = 1  

where the unknowns are the complex aperture voltages f/. [ v,z + (i$)*] @/ = 0. (36) 
Inserting (25)  into (18) and taking the inner Product Over 
the aperture S of the residual error with the kth basis 
function yields L linear equations. In matrix form these 
iinear equations are 

The two-dimensional divergence theorem, the directional 
derivative of a scalar, and boundary condition (33) for the 
aperture mode on c yield 

(& e:t), = ( ii;,*/J*:*:* S ds. (37) (y"  + p)?= p + p (26) 
where the ( k ,  I)th elements of the L x L square aperture Similarly, the inner product over S of the TM aperture and 
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waveguide modes is given by (37), is 

The inner product of the TE, aperture mode and the TM, 
waveguide (a) mode is 

(g;, e:), = /i( v,*;* X vt’@/) . di (39) 

which in view of vector identities and Stokes’ theorem 
reduces to 

(g/“,e:),= $q;*v,.i;h.di. (40) 
C 

Similarly, the inner product between the TM, aperture 
mode and the TE, waveguide (a) mode is trivial: 

Similarly, (38) and (40) give 
i b\ 

( i;, e:), = $ $;v,*i*. di = 0 (41) 
C 

from boundary condition (34) for the TM, aperture mode 
on C. 

V. CIRCULAR IRIS 
The circular iris of Fig. 1. is excited from the left by the 

TE,, mode with unity amplitude. The physical problem is 
symmetric in azimuthal angle @ and so the @ variation of 
the excitation is preserved. Only higher order modes of 
different radial or p variations are needed, i.e., only inclu- 
sion of the TE,, and TM,,, r = 1,2; . .,modes in the 
waveguide and in the circular aperture is required. Hence- 
forth, the “1” in the modal indices is dropped for nota- 
tional convenience. The normalized scalar potentials for 
the natural modes of a circular waveguide of radius a with 
a single azimuthal variation are given by [6, pp. 66, 691 

where the normalization factors are 

(43) 

with x l r  and x;,. the r th  zeros of J1 and 5;. The trans- 
verse electric field modal vectors of (31)-(32) are 

U P 

and the cutoff wavenumbers are 

The inner product over the circular aperture S between the 
TE,, waveguide (a) mode and the TE, aperture mode, as 

X l n r  X l k  
- # -  

a b  

The modal admittances of the waveguide (a) 
TM, modes are 

YA = 

/( Ka)2 - x;: 
, K ~ > x ; ,  

v a  

(49) 

and 

(50) 
/ X i :  - ( K L ! ) 2  

, K ~ < x ; ,  
I j v  

K a  

2 K Q > X l m  ?l/GFx- 
j K  a (51) 

9 K a < X l m  I v i m  
Y; = 

where K = w f i  and 71 = are the intrinsic wavenum- 
ber and impedance, respectively, of the lossless dielectric. 
The left and right side matrices ya and rh are equal since 
waveguides (a) and (b) are identical. Henceforth, the su- 
perscript a is dropped from the admittance matrix and the 
factor 2 is dropped from the forcing term (29). The three 
types of symmetric matrix elements are 

m 
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If all TM,, and TE,,, modes except the TE,, mode are cut off in the waveguide, then (52) is 

Y:: = Gt/h + j (  Bi/h + Cjj") (55) 
where the real part is 

G i f  = 4( $ ) 2 / m x ; : J ; 2 (  ~ x i i ) x ~ ~ x ?  i [ x;; - ( -x;, : )2][ xi:  - ( - x i ,  : 121) -' 
qKaJ;(x;,)(x;: -l){(x;; - l ) (x$  -1) 

Using the principal asymptotic forms of the Bessel functions [21, pp. 364, 3711 

J,(x) - 

J,'(x) - c c o s ( x - y +  

cos ( x  - T - :j x V m  - (m + f - :in 

x l m -  ( m +  f+ :in 

a Kummer transform [22, p. 2031 on the slowly converging series of the susceptive parts yields 

(57) 

Similarly, the other aperture admittance matrix elements are accelerated as 
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a ‘  

The asymptotic series above are of the form [23, p. 5791 

a2x 7Tx2 x3 

6 4 12 
+-, o < x < 2 7 l  

cos(mx) x 4  x 6  

ni = 1 

O < x < 2 a  (62) 

where the Riemann zeta function is [21, p. 8111 
“ 0 1  

n1=1 m 
C ~ = { ( 3 )  =1.2020569. (63) 

If the excitation is the TE, waveguide mode of unity 
amplitude, then all TM current elements (29) are zero by 
(41) and the T E  current elements are 

(64) 

Using an aperture basis of M TE aperture modes and N 
TM aperture modes, i.e., 

M N - 
Eaper = + v;,f (65) 

I = 1  I = 1  

for (25), the matrix equation (26) is 

VI. RESULTS 
Fig. 3 is a computer-generated plot of the resultant 

aperture electric field direction using ten TE and ten TM 
aperture modes for an iris of size b /a  = 0.5 at a frequency 
corresponding to Ka = 2.5. This transverse electric field 
pattern appears to be a perturbed TE,, mode. The next 
largest TE aperture mode is the TE,, mode, which is 17.6 
dB below the TE,, mode in this aperture. The largest TM 
aperture mode is the TM,, mode, which is 9.6 dB below 
the TE,, aperture mode. The resultant numerical ampli- 
tudes of the higher order TE,, and TM,, aperture modes 

decay approximately as n-1.6 and n respectively. The 
asymptotic edge conditions [24, p. 41 at the aperture 
boundary ( p  - b )  

E, - (1 - p/b)-’ l2  E+ - (1 - p / b ) l / *  (67) 

indicate that the higher order TE,, and TM,, aperture 
modes decay at least as fast as n-1.5 and n-0 .5 ,  respec- 
tively, using the method of Carslaw [25, p. 2741 where the 
approximation (65) is recognized as a finite Fourier-Bessel 
series representation of the actual aperture field. The sin- 
gularity in the radial aperture electric field is responsible 
for the nonuniform convergence and associated Gibb’s 
phenomenon. Fig. 4. depicts the magnitude of the radial 
electric field 1 Ep I in the (p = a/2 plane and of the azimuthal 
electric field \Eel in the (p = 0 plane, using the ten-TE and 
ten-TM aperture mode approximation, corresponding to 
Fig. 3. Fig. 5 uses an aperture basis of 20 TE and 20 TM 
modes, which gives rise to a higher value of ]E,I at the 
aperture edge. 

The effect of the iris on the incident TE,, mode of the 
waveguide can be characterized by an equivalent shunt 
susceptance B, normalized with respect to the characteris- 
tic wave admittance of the waveguide TE,, mode. The 
numerical convergence of B for a 50-percent iris ( b / a  = 

0.5) operated 36 percent above cutoff (Ka = 2.5) is demon- 
strated in Table I. The variation of susceptance with iris 
size and frequency is illustrated in Fig. 6. The value 
KU = 1.9 corresponds to a frequency slightly above TE,, 
cutoff. Note that, for some values of Ka, a resonant or 
capacitive iris is possible. In contrast to the resonant iris 
for rectangular waveguides [26, p. 1701, the resonant iris 
and the capacitive iris are possible only over a restricted 
range of frequencies for the geometry of Fig. 1. The 
resonant iris is, however, obtainable for all values of b/u.  
Fig. 7 shows a comparison of the Galerkin results with the 
Bethe small-hole theory results of Marcuvitz [6, p. 2431. A 
logarithmic scale is used to permit a more precise compari- 
son. The results agree only for apertures small compared 
with wavelength; thus the results near cutoff agree for 
relatively large b/u.  As Ka increases, the Bethe small-hole 
results are accurate only for smaller relative b /a ,  as ex- 
pected. Finally, although experimental results cannot be 
obtained for the zero-thickness iris, recent experimental 
results for very thin irises [HI, [19] show excellent agree- 
ment with the Galerkin results. 
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/ 

Fig. 3. Aperture electric field direction using 20 aperture modes (M = 
N = 10) with ca = 2.5 and h/a = 0.5. 
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Fig. 5. Principal plane aperture electric field magnitude using a basis of 
40 aperture modes. 

TABLE I 
CONVERGENCE OF EQUIVALENT SHUNT SUSCEPTANCE FOR 

Ka = 2.5 AND h / a  = 0.5 

0.0 0:2 0 4  66 68 
Normalized Iris Radius, b/a 

3 

Fig. 6. Shunt susceptance of circular iris in circular waveguide. 
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Fig. 7. Shunt susceptance of circular iris in circular waveguide (loga- 
rithmic plot): comparison with Bethe small-hole theory. 
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VII. CONCLUSIONS 
The thin circular iris in circular waveguide has been 

treated by a Galerkin moment method to obtain the aper- 
ture field and shunt susceptance. A general formulation, 
which is valid for arbitrary modes incident from left and 
right, is obtained and then specialized to consider TEll- 
mode excitation. The convergence of the infinite series for 
the aperture admittance matrix elements is accelerated by 
the Kummer transform. Computations for shunt suscep- 
tance indicate that the iris may be resonant or capacitive 
over a restricted frequency range. Small aperture data 
agree with Bethe small-hole theory. 
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