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Introduction 
Electromagnetic susceptors, understood as trans-
ductors of energy, from radiative to thermal, are of 
high interest when combined with materials that are 
non-efficient by themselves in a heating process using 
microwave technology. Susceptors can be either 
embedded into the material (as filaments, powders, 
etc.) or attached to them as a supplementary layer 
added on their interfaces.  

The loss factor modelled as the imaginary part of 
the complex permittivity of a material can predict the 
result of the pyroelectric effects that underlies during 
its microwave heating process. Such mechanisms 
have a dependence on temperature, hence the heating 
process rate may evolve with time as the temperature 
varies. Furthermore, the heat transfer coefficient can 
also vary with the temperature. Both, the loss factor 
and the heat transfer coefficient are involved in the 
heat transfer equation, and their dependence with the 
temperature can largely justify the thermal runaway 
effects. Such effects are noticeable when the heat 
generation and transfer rates overcome the period of 
time required by any artifacts introduced inside a 
microwave exposure chamber for leveling the 
volumetric heating uniformity.  

This study focuses on determining the complex 
permittivity of several susceptors at the 2.45-GHz 
frequency, in the temperature range 30-70 °C. 
 
Materials and methods 

All the materials under test were solids in the form of 
powders. The samples were contained in test tubes for 
being measured with the dielectrometer ITACA’s 
Dielectric Kit for Vials. The test tubes containing the 
samples were heated previously up to around 90°C in 

a water bath (Balneum Mariae), using a boiling 
recipient pre-heated in a domestic microwave oven. 
While the sample temperature was naturally cooling 
down towards the room temperature, as rules the 
Newton’s law of cooling, the measurements of the 
dielectric constant and the loss factor were performed 
using the dielectrometer, and the temperature using an 
optical fiber temperature sensor (OpSens OTG-A) 
along with a signal conditioner (OpSens TempSens), 
following the methodology presented in the 
literature1. The experimental setup is shown in Fig. 1. 

In order to get a fixed reference point for the 
temperature probe, the robust configuration depicted 
in Fig. 2 was designed. Such configuration is aimed to 
keep the fiber as straight as possible within the tube 
(adding 2 extra drilled caps), in order to avoid its 
crushing on the cap edges (inserting a Styrofoam piece 
into the outermost cap hollow), and to keep the fiber 
tip at a constant distance d from the tube bottom 
(sticking a stop-tape around the fiber).  

The distance d = 23 mm was chosen to be as 
closest as possible to the measurable tube segment 
(which occupies part of the dielectrometer cavity) 
without getting into it for avoiding any possible 
disturbance in the complex permittivity measurements 
and get the most accurate temperature readings.  

The tested materials are listed on Table 1. The 
density is a quotient of two variables, so its uncertainty 
has been estimated accordingly by computing the 
following equation: 
 

∆𝜌𝜌 = 𝜌𝜌 �∆𝑚𝑚
𝑚𝑚

+ ∆𝑣𝑣
𝑣𝑣
�, 

 
where m and v stand for the mass and volume, 
respectively, and Δ denotes the uncertainties. 
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Figure 1: Experimental setup. 
 

      
 

 
Figure 2: Detail of the temperature sensor configuration:  

weak (left) and robust (right) schemes. 
 

For each material, the measurement protocol 
was repeated at least 3 times in order to get averaged 
values of their dielectric properties vs. temperature at 
2.45 GHz.  

 

 
Figure 3: Volumeter designed with a parallax error control 

(4.7 ± 0.1 cm3 readable) 
 
The raw data was processed under a Matlab 

platform. Each recorded measurement was 
interpolated to get a resolution of 0.1°C, and then 
trimmed to get all the set ready within the same 
temperature range (and values) for the averaging 
process, as shown in Fig. 4. 

 
Results 

The averaged dielectric constant and loss factor curves 
versus temperature at the frequency of 2.45 GHz for 
each material listed in Table 1 are shown in Figs. 5-
11. The values discretized at the temperatures of 30°C, 
50°C and 70°C are listed conveniently in Table 2. 
Finally, the graphical comparison among all the 
materials is depicted in Figs. 12, 13. 
 

 

Table 1. Tested materials 

Material Chemical 
formula 

  CAS 
number 

Mass  
(g)* 

Volume 
(cm3)* 

Density  
(kg/m3) 

Activated Charcoal C 7440-44-0 1.2 4.0 300 ±  30** 
Silicon Carbide SiC 409-21-2 8.7 4.6 1890 ±   60 
Silicon Dioxide SiO2 7631-86-9 4.0 4.6 870 ±   40 
Aluminum Al 7429-90-5 3.7 3.6 1360 ±   60 
Copper Cu 7440-50-8 26.9 4.8 5600 ± 100 
Copper Oxide CuO 1317-38-0 15.0 4.7 3190 ±   90 
Titanium Oxide TiO2 1217-70-0 4.0 3.9 1030 ±   50 

* Uncertainty of ± 0.1. ** Density uncertainty is greater than 5%. 
 
  



AMPERE Newsletter                                      Issue 95                                             March 12, 2018 
     

4 
     

 
Figure 4: Raw data resampled for a resolution of 0.1°C, and trimmed. 

 

 

 
Figure 5: Averaged dielectric constant and loss factor for activated charcoal at 2.45 GHz 

. 

 
Figure 6: Averaged dielectric constant and loss factor for Silicon Carbide at 2.45 GHz. 
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Figure 7: Averaged dielectric constant and loss factor for Silicon Dioxide at 2.45 GHz. 

 

 
Figure 8: Averaged dielectric constant and loss factor for Aluminum at 2.45 GHz. 

 
Figure 9: Averaged dielectric constant and loss factor for Copper at 2.45 GHz. 
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Figure 10: Averaged dielectric constant and loss factor for copper oxide at 2.45 GHz. 

 
 

 
 

Figure 11: Averaged dielectric constant and loss factor for Titanium Oxide at 2.45 GHz. 
 

Table 2. Complex relative permittivity values of the materials at 2.45 GHz vs. temperature. 

Material Chemical 
formula 

         Complex relative permittivity 𝜀𝜀𝑟𝑟  
∗ (2.45 GHz,𝑇𝑇) 

 T=30°C T=50°C T=70°C 
Activated charcoal C 14.69 – j 6.06 14.5 – j 5.72 14.47 – j 5.37 
Silicon carbide SiC 11.45 – j 2.00 11.72 – j 1.65 11.87 – j 1.35 
Silicon dioxide SiO2 2.94 – j 0.48 3.06 – j 0.57 3.16 – j 0.70 
Aluminum Al 18.44 – j 0.30 17.67 – j 0.27 17.12 – j 0.25 
Copper Cu 14.63 − j0.26 13.82 – j 0.22 13.17 – j 0.20 
Copper oxide CuO 4.05 – j 0.13 4.10 – j 0.14 4.13 – j 0.16 
Titanium oxide TiO2 4.28 – j 0.04 4.27 – j 0.04 4.27 – j 0.04 
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Figure 12: Curves for the dielectric constant (a) and the loss 
factor (b) vs. temperature of the listed materials at 2.45 GHz. 

 

    
 
Figure 13: Curves for the dielectric properties (in a Cole-Cole 
representation) of the materials at 2.45 GHz. 
 
 

Conclusions  

The silicon-carbide and active-charcoal loss-factor 
curves shown in Fig. 4 are decreasing as the 
temperature increases, with slopes of around 
−0.016/°C and −0.017/°C respectively. This means 
that they are good candidates for being 
electromagnetic susceptors, where the thermal 
runaway must be controlled. On the other hand, the 
loss factors of silicon dioxide and titanium oxide 
increase with temperature, hence they might be 
interesting susceptors to be considered where the 
application requires forcing a thermal runaway.  
 Regarding the dielectric constant, the susceptor 
might also be chosen for impedance mismatch 
considerations. For instance, copper or aluminum, 
instead of being good susceptors due to their low loss 
factor, they might be helpful where the introduction of 
partial shielding effect is required. Oxides of titanium 
and copper are neither good susceptors by themselves, 
also because of their low losses, but they show a 
relatively low dielectric constant which can be useful 
in combination with good susceptors to improve the 
impedance matching and achieve a better energy 
absorption. 
 It has to be noted that the activated charcoal used 
was an extremely refined powder composed of 
relatively tiny and light particles. It was not possible 
to measure it at higher densities since its dielectric 
parameters increased over the measureable limits of 
the dielectrometer. Moreover, while the sample was 
being heated, it was volumetrically expanded, 
probably due to the expansion of the air with 
temperature.  
 
For further reading 
1. J. Fayos-Fernández, R. B. Mato, J. Monzó-Cabrera, M. J. 

Cocero-Alonso, “Low-cost setup for the characterization of 
the dielectric properties of materials versus temperature”, 
AMPERE 15th Int’l Conf. Microwave and High-Frequency 
Heating, Krakow, 2015. DOI 10.13140/RG.2.2.11332.83843 
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