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Recently, the conformable derivative and its properties have been introduced.
In this paper, we propose and prove some new results on the conformable mul-
tivariable fractional calculus. We introduce a conformable version of classical
Euler's theorem on homogeneous functions. Furthermore, we are extending the
aforementioned result for higher-order partial derivatives.
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1 INTRODUCTION

For many years, many definitions of fractional derivative have been introduced by various authors. Commonly, these
definitions are not known to many researchers and, until recent years, it has been used in a purely mathematical context
only. However, during the last decades, these kinds of derivative operators have been applied to many science context
due, in part, to their frequent appearance in various applications in the fields of viscoelasticity, fluid mechanic, biology,
physic entropy theory, and engineering.1-8 Nowadays, many definitions of fractional derivative have been introduced, but
most of them are in integral form, which is more complicated to manage. The most known are the Riemann-Liouville
definition and the Caputo definition, those are both defined using integral forms as follows.

(i) Riemann-Liouville definition. For 𝛼 ∈ [n − 1,n), the 𝛼 derivative of f is

D𝛼
a( 𝑓 )(t) =

1
Γ(n − 𝛼)

dn

dtn

t

∫
a

𝑓 (x)
(t − x)𝛼−n+1 dx.

(ii) Caputo definition. For 𝛼 ∈ [n − 1,n), the 𝛼 derivative of f is

D𝛼
a( 𝑓 )(t) =

1
Γ(n − 𝛼)

)

t

∫
a

𝑓 (n)(x)
(t − x)𝛼−n+1 dx,

where Γ(x) is the Gamma function.
Of course, all definitions attempt to satisfy the usual properties of the classical derivative; however, the only property

inherited for all of the given definitions is the linearity property, for example, the following are setbacks of one or another
definition.

1. The Riemann-Liouville derivative does not satisfy D𝛼
a(1) = 0 if 𝛼 is not a natural number.
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2. The fractional derivatives proposed until now lose some of the basic properties that usual derivatives have, such as
the product rule, the quotient rule, or the chain rule.

3. In general, the fractional derivatives proposed until now do not satisfy D𝛼D𝛽 f = D𝛼+𝛽 f.
4. The Caputo definition implies that function f must be differentiable.

Recently, Khalil et al9 introduced a new definition of fractional derivative called the conformable fractional derivative.
Unlike other definitions, this new definition satisfies the rules for the derivative of the product or the quotient of two
functions and has a simpler chain rule. In addition to this conformable fractional derivative definition, the conformable
integral definition, Rolle theorem, and mean value theorem for conformable fractional differentiable functions were given.
Abdeljawad10 improved this new theory. For instance, definitions of left and right conformable fractional derivatives and
fractional integrals of higher order (ie, of order 𝛼 > 1), the fractional power series expansion and the fractional transform
Laplace definition, fractional integration by parts formulas, chain rule, and Gronwall inequality are also provided by
him. Moreover, the conformable partial derivative of the order 𝛼 ∈ of the real value of several variables and conformable
gradient vector are defined11,12; and a conformable version of Clairaut's theorem for partial derivatives of conformable
fractional orders is proved.11,12 In short time, many studies13-21 about theory and application of the fractional differential
equations are based on this new fractional derivative definition.

On the other hand, Euler's theorem on homogeneous functions is used to solve many problems in engineering, sci-
ence, and finance. Hiwarekar22 discussed the extension and applications of Euler's theorem for finding the values of
higher-order expressions for two variables. In a later work, Shah and Sharma23 extended the results from the function of
two variables to n variables and obtain results for higher-order derivatives.

This paper is organized as follows. In Section 2, the main concepts of the conformable fractional calculus are presented.
In Section 3, some classical results on homogeneous functions are recalled, then two new results on homogeneous func-
tions involving their conformable partial derivatives are introduced, specifically, the homogeneity of the conformable
partial derivatives of a homogeneous function and the conformable version of Euler's theorem. In Section 4, the con-
formable version of Euler's theorem is introduced and proved. In addition, this result is extended to higher-order
derivatives. The conclusions are given in Section 5.

2 BASIC DEFINITIONS AND TOOLS

Definition 1. Give a function 𝑓 ∶ [0,∞) → ℝ. Then, the conformable fractional derivative of f of order 𝛼 is defined9

by

(T𝛼𝑓 )(t) = lim
𝜀→0

𝑓 (t + 𝜀t1−𝛼) − 𝑓 (t)
𝜀

, (1)

for all t > 0, 0 < 𝛼 ≤ 1.
If f is 𝛼-differentiable in some (0, a), a > 0, and limt→0+(T𝛼𝑓 )(t) exist, then it is defined as

(T𝛼𝑓 )(0) = lim
t→0+

(T𝛼𝑓 )(t). (2)

As a consequence of the aforementioned definition, the following useful theorem is obtained.9

Theorem 1. If a function 𝑓 ∶ [0,∞) → ℝ is 𝛼-differentiable at t0 > 0, 0 < 𝛼 ≤ 1, then f is continous at t0.

It is easily shown than T𝛼 satisfies the following properties.9

Theorem 2. Let 0 < 𝛼 ≤ 1 and f, g be a 𝛼-differentiable at a point t > 0. Then, we have the following:

(i) T𝛼(a f + bg) = a(T𝛼 f ) + b(T𝛼 g), for all a, b ∈ ℝ;
(ii) T𝛼(tp) = ptp−𝛼 , for all p ∈ ℝ;

(iii) T𝛼(𝜆) = 0, for any constant 𝜆 ∈ ℝ;
(iv) T𝛼( f · g) = f · (T𝛼g) + g · (T𝛼 f );
(v) T𝛼

(
𝑓

g

)
= g·(T𝛼𝑓 )−𝑓 ·(T𝛼𝑓 )

g2 ;

(vi) if, in addition, f is differentiable, then (T𝛼𝑓 )(t) = t1−𝛼 d𝑓
dt
(t).
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The conformable fractional derivative of certain functions for the aforementioned definition is given as follows:

(i) T𝛼(1) = 0;
(ii) T𝛼(sin(at)) = at1−𝛼 cos(at), a ∈ ℝ;

(iii) T𝛼(cos(at)) = −at1−𝛼 sin(at), a ∈ ℝ;
(iv) T𝛼(eat) = at1−𝛼eat, a ∈ ℝ.

Furthermore, many functions behave as in the usual derivative. The following are some formulas:

(i) T𝛼

(
1
𝛼

t𝛼
)
= 1;

(ii) T𝛼

(
e

1
𝛼

t𝛼
)
= e

1
𝛼

t𝛼 ;

(iii) T𝛼

(
sin

(
1
𝛼

t𝛼
))

= cos
(

1
𝛼

t𝛼
)

;

(iv) T𝛼

(
cos

(
1
𝛼

t𝛼
))

= − sin
(

1
𝛼

t𝛼
)

.

Remark 1. One should notice that a function could be 𝛼-differentiable at a point but not differentiable. For example,
take 𝑓 (t) = 3 3

√
t. Then, (T 1

3
𝑓 )(0) = limt→0+(T 1

3
𝑓 )(t) = 1, where (T 1

3
𝑓 )(t) = 1, for t>0, but d𝑓

dt
(0) does not exist.

Definition 2. The (left) conformable derivartive starting from a of a function 𝑓 ∶ [0,∞) → ℝ de f of order 0 < 𝛼 ≤ 1
is defined10 by (

Ta
𝛼𝑓

)
(t) = lim

𝜀→0

𝑓 (t + 𝜀(t − a)1−𝛼) − 𝑓 (t)
𝜀

. (3)

When a = 0, it is written as (T𝛼𝑓 ) (t). If f is 𝛼-differentiable in some (a, b), then define(
Ta
𝛼𝑓

)
(a) = lim

t→a+
(T𝛼𝑓 ) (t). (4)

Note that, if f is differentiable, then (Ta
𝛼𝑓 ) (t) = (t − a)1−𝛼 d𝑓

dt
(t). All properties in Theorem 2 are valid also for Definition 2

when t is replaced by (t − a). Conformable fractional derivative of certain functions for Definition 2 is given as follows:

(i) Ta
𝛼 ((t − a)p) = p(t − a)p−𝛼, ∀p ∈ ℝ;

(ii) Ta
𝛼

(
e𝜆

(t−a)𝛼

𝛼

)
= 𝜆e𝜆

(t−a)𝛼

𝛼 ;

(iii) Ta
𝛼

(
sin

(
𝜔

(t−a)𝛼

𝛼
+ C

))
= 𝜔 cos

(
𝜔

(t−a)𝛼

𝛼
+ C

)
, ∀𝜔,C ∈ ℝ;

(iv) Ta
𝛼

(
cos

(
𝜔

(t−a)𝛼

𝛼
+ C

))
= −𝜔 sin

(
𝜔

(t−a)𝛼

𝛼
+ C

)
, ∀𝜔,C ∈ ℝ;

(v) Ta
𝛼

(
(t−a)𝛼 )

𝛼

)
= 1.

Theorem 3 (Chain rule10). Assume 𝑓, g ∶ (a,∞) → ℝ be (left) 𝛼-differentiable functions, where 0 < a ≤ 1. Let
h(t) = f (g(t)). Then, h(t) is 𝛼-differentiable for all t ≠ a and g(t) ≠ 0 and(

Ta
𝛼h

)
(t) =

(
Ta
𝛼𝑓

)
(g(t)) ·

(
Ta
𝛼g
)
(t) · (g(t))𝛼−1. (5)

If t = a, then (
Ta
𝛼h

)
(a) = lim

t→a+

(
Ta
𝛼𝑓

)
(g(t)) ·

(
Ta
𝛼g
)
(t) · (g(t))𝛼−1. (6)

Remark 2. In the work of Abdeljawad,10 the left conformable fractional derivative at a for some smooth funcions is
discussed. Let 0 < a ≤ 1 and n ∈ ℤ+, then the left sequential conformable fractional derivative of order n is defined
by the expression

(n)Ta
𝛼𝑓 (t) = Ta

𝛼Ta
𝛼 …Ta

𝛼 (t)
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

n-times

. (7)

Proceeding inductively, it is easy to show that, if f is n-continuously differentiable and 0 < 𝛼 ≤ 1
n

, then the nth-order
sequential conformable fractional derivative is continuous and vanishes at end point a.

Finally, the conformable partial derivative of a real valued function with several variables is defined11,12 as follows.
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Definition 3. Let f be a real valued function with n variables and a = (a1, … , an) ∈ ℝn be a point whose ith
component is positive. Then, the limit

lim
𝜀→0

𝑓
(

a1, … , ai + 𝜀a1−𝛼
i , … , an

)
− 𝑓 (a1, … , an)

𝜀
, (8)

if it exists, is denoted 𝜕𝛼

𝜕x𝛼i
𝑓 (a), and called the ith conformable partial derivative of f of the order 𝛼 ∈ (0, 1] at point a.

Remark 3. If a real valued function f with n variables has all conformable partial derivatives of the order 𝛼 at a =
(a1, … , an) ∈ ℝn, each ai > 0, then the conformable 𝛼-gradient of f of the order 𝛼 ∈ (0, 1] at a is

∇𝑓 (a) =
(

𝜕𝛼

𝜕x𝛼1
𝑓 (a) , … ,

𝜕𝛼

𝜕x𝛼n
𝑓 (a)

)
. (9)

In the work of Atangana et al,11 Clairaut's theorem for partial derivatives of conformabe fractional orders is probed.

Theorem 4. Let be 𝛼, 𝛽 positive constants, such that 0 < 𝛼, 𝛽 ≤ 1. Assume that f (x, y) is a function for which
𝜕𝛼

𝜕x𝛼

(
𝜕𝛽𝑓 (x,𝑦)

𝜕𝑦𝛽

)
and 𝜕𝛽

𝜕𝑦𝛽

(
𝜕𝛼𝑓 (x,𝑦)

𝜕x𝛼

)
exist and are continuous over a domain D ⊂ ℝ2, then

𝜕𝛼

𝜕x𝛼

(
𝜕𝛽𝑓 (x, 𝑦)

𝜕𝑦𝛽

)
= 𝜕𝛽

𝜕𝑦𝛽

(
𝜕𝛼𝑓 (x, 𝑦)

𝜕x𝛼

)
. (10)

3 CONFORMABLE PARTIAL DERIVATIVES OF HOMOGENEOUS
FUNCTIONS

In this section, some classic results on homogeneous functions are recalled.24

Definition 4. Let f be a real valued function with n variables defined on a set D⊂ ℝn for which (tx1, … , txn) ∈ D
whenever t > 0 and (x1, … , xn) ∈ D. Then, f is homogeneous function of degree r if

𝑓 (tx1, … , txn) = tr𝑓 (x1, … , xn) for all (x1, … , xn) ∈ D and t > 0. (11)

Theorem 5. Let f, g be a real valued functions with n variables defined on a set D ⊂ ℝn for which (tx1, … , txn) ∈ D
whenever t > 0 and (x1, … , xn) ∈ D. Suposse that f and g are homogeneous functions of degree r. Then, f + g and 𝜆 f are
homogeneous functions of degree r.

Proof.

( 𝑓 + g)(tx1, … , txn) = 𝑓 (tx1, … , txn) + g(tx1, … , txn) = tr𝑓 (x1, … , xn) + trg(x1, … , xn)

= tr( 𝑓 (x1, … , xn) + g(x1, … , xn)) = tr( 𝑓 + g)(x1, … , xn).

(𝜆𝑓 )(tx1, … , txn) = 𝜆𝑓 (tx1, … , txn) = 𝜆tr𝑓 (x1, … , xn) = tr(𝜆𝑓 (x1, … , xn)) = tr(𝜆𝑓 )(x1, … , xn).

Theorem 6. Let f, g be a real valued functions with n variables defined on a set D⊂ ℝn for which (tx1, … , txn) ∈ D
whenever t > 0 and (x1, … , xn) ∈ D. Suppose that f and g are homogeneous functions of degree r and s, respectively.
Then, f · g and f∕g (for all (x1, … , xn) ∈ D such that g(x1, … , xn) ≠ 0) are homogeneous functions of degree r + s and
r − s, respectively.
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Proof.

( 𝑓 · g)(tx1, … , txn) = 𝑓 (tx1, … , txn) · g(tx1, … , txn) = tr𝑓 (x1, … , xn) · tsg(x1, … , xn)
= tr+s(𝑓 (x1, … , xn) · g(x1, … , xn)) = tr+s( 𝑓 · g)(x1, … , xn).(

𝑓

g

)
(tx1, … , txn) =

𝑓 (tx1, … , txn)
g(tx1 … , txn

= tr𝑓 (x1, … , xn)
tsg(x1, … , xn)

= tr−s 𝑓 (x1, … , xn)
g(x1, … , xn)

= tr−s
(
𝑓

g

)
𝑓 (x1, … , xn).

Theorem 7. Let f be a real valued function with n variables defined on a set D1 ⊂ ℝn for which (tx1, … , txn) ∈ D1
whenever t > 0 and (x1, … , xn) ∈ D1. Let g be a real valued function on a set D2 ⊂ ℝ for which ty ∈ D2, whenever t > 0
and y ∈ D2. Assume that f (D1) ⊂ D2 and that f and g are homogeneous functions of degree r and s, respectively, then g ◦ f
is a homogeneous function of degree rs.

Proof.

(g◦𝑓 )(tx1, … , txn) = g( 𝑓 (tx1, … , txn)) = g
(

tr𝑓 (x1, … , txn)
)
= (tr)sg (𝑓 (x1, … , xn)) = trs(g◦𝑓 )(x1, … , xn).

Now, two new results on homogeneous functions involving conformable partial derivatives are presented.

Remark 4. Let 𝛼 ∈ (0, 1
p
], p ∈ ℤ+ and f be a real valued function with n variables defined on an open set D ⊂ ℝn, such

that, for all (x1, … , xn) ∈ D, each xi > 0. Function f is said to be in Cp
𝛼(D,ℝ) if all its conformable fractional partial

derivatives of order ≤ p exist and are continuous on D.

Theorem 8. Let 𝛼 ∈ (0, 1
p
], p ∈ ℤ+ and f be a real valued function with n variables defined on an open set D ⊂ ℝn for

which (tx1, … , txn) ∈ D whenever t > 0 and (x1, … , xn) ∈ D, each xi > 0, that satisfies the following.

(i) f is homogeneous function of degree r.
(ii) 𝑓 ∈ Cp

𝛼(D,ℝ).

Then, each of its conformable partial derivatives of order q, with q ≤ p, is homogeneous functions of degree r − q𝛼.

Proof. Next, the Principle of Mathematical Induction on q is used. For q = 1, computing10 the conformable partial
derivative of Equation 11 with respect to xi, for i = 1, 2, … ,n, then

𝜕𝛼𝑓 (tx1, … , txn)
𝜕(txi)𝛼

· (txi)𝛼−1 · 𝜕
𝛼(txi)
𝜕x𝛼i

= tr · 𝜕
𝛼𝑓 (x1, … , xn)

𝜕(xi)𝛼
,

using 𝜕𝛼 (txi)
𝜕x𝛼i

= tx1−𝛼
i and dividing both sides by t𝛼 to get

𝜕𝛼𝑓 (tx1, … , txn)
𝜕(txi)𝛼

= tr−𝛼 · 𝜕
𝛼𝑓 (x1, … , xn)

𝜕(xi)𝛼
.

Therefore, the result is true for q = 1.
Assume that this result is true for q = k, that is,( (k)𝜕𝛼𝑓 (tx1, … , txn)

𝜕(txi1 )𝛼 · 𝜕(txi2)𝛼 … 𝜕(txik )𝛼

)
= tr−k𝛼 ·

( (k)𝜕𝛼𝑓 (x1, … , xn)
𝜕(xi1 )𝛼 · 𝜕(xi2)𝛼 … 𝜕(xik )𝛼

)
.

Let n = k + 1, computing the conformable partial derivative of the aforementioned equation with respect to xi, for
i = 1, 2, … ,n,10 then( (k+1)𝜕𝛼𝑓 (tx1, … , txn)

𝜕(txi1 )𝛼 · 𝜕(txi2 )𝛼 … 𝜕(txik+1 )𝛼

)
(txi)𝛼−1 𝜕

𝛼(txi)
𝜕x𝛼i

= tr−k𝛼 ·
(k+1)𝜕𝛼𝑓 (x1, … , xn)

𝜕(xi1)𝛼 · 𝜕(xi2)𝛼 … 𝜕(xik+1)𝛼
,
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using 𝜕𝛼 (txi)
𝜕x𝛼i

= tx1−𝛼
i and dividing both sides by t𝛼 to get

( (k+1)𝜕𝛼𝑓 (tx1, … , txn)
𝜕(txi1)𝛼 · 𝜕(txi2)𝛼 … 𝜕(txik+1 )𝛼

)
= tr−(k+1)𝛼 ·

(k+1)𝜕𝛼𝑓 (x1, … , xn)
𝜕(xi1)𝛼 · 𝜕(xi2)𝛼 … 𝜕(xik+1)𝛼

.

Thus, this result is true for q = k + 1.
Therefore, by the Principle of Mathematical Induction, this result is true for any positive integer q ≤ p. This

completes the proof of the theorem.

4 CONFORMABLE EULER'S THEOREM ON HOMOGENEOUS FUNCIONS
AND ITS EXTENSION

In this section, the version conformable of Euler's theorem on homogeneous functions is proposed.

Theorem 9. Let 𝛼 ∈ (0, 1] and f be a real valued function with n variables defined on an open set D ⊂ ℝn for which
(tx1, … , txn) ∈ D whenever t > 0 and (x1, … , xn) ∈ D, each xi > 0. Assuming that 𝑓 ∈ C𝛼(D,ℝ), then f is homogeneous
function of degree r if and only if

n∑
i=1

x𝛼i · 𝜕
𝛼𝑓 (x1, … , xn)

𝜕x𝛼i
= r𝑓 (x1 … , xn), ,∀(x1, … , xn) ∈ D. (12)

Proof. Let us probe that, if f is homogeneous function of degree r, then 12 holds. Let (x1, … , xn) ∈ D.
Consider the function

g(t) = 𝑓 (tx1, … , txn),∀t > 0.

Since g is 𝛼-differentiable on (0,∞), then, applying the conformable chain rule,10 it is given that

(T𝛼g)(t) =
n∑

i=1

𝜕𝛼𝑓 (tx1, … , txn)
𝜕(txi)𝛼

· (txi)𝛼−1 · T𝛼(txi) =
n∑

i=1

𝜕𝛼𝑓 (tx1, … , txn)
𝜕(txi)𝛼

· (txi)𝛼−1 · xi · t1−𝛼 =
n∑

i=1
x𝛼i · 𝜕

𝛼𝑓 (tx1, … , txn)
𝜕(txi)𝛼

.

Since f is homogeneous function of degree r, then

g(t) = 𝑓 (tx1, … , txn) = tr𝑓 (x1, … , xn) ⇒ (T𝛼g)(t) = rtr−𝛼𝑓 (x1, … , xn).

Taking t = 1, our results follows.
Now, let us probe that, if 13 holds, then f is an homogeneous function of degree r. Let (x1, … , xn) ∈ D and consider

function h(t) defined as

h(t) = 𝑓 (tx1, … , txn)
tr − 𝑓 (x1, … , xn),∀t > 0.

Since h is 𝛼-differentiable on (0,∞), then applying the conformable chain rule10 produces

(T𝛼h)(t) =

(∑n
i=1 x𝛼i · 𝜕𝛼𝑓 (tx1,… ,txn)

𝜕(txi)𝛼

)
· tr − rtr−𝛼𝑓 (tx1, … , txn)

t2r

=
tr−𝛼

(∑n
i=1 (txi)𝛼 ·

𝜕𝛼𝑓 (tx1,… ,txn)
𝜕(txi)𝛼

− r𝑓 (tx1, … , txn)
)

t2r = 0,

since, by hypothesis
∑n

i=1 x𝛼i · 𝜕𝛼𝑓 (x1,… ,xn)
𝜕(xi)𝛼

= r𝑓 (x1, … , xn) and, therefore, at point (tx1, … , txn) produce
∑n

i=1 (txi)𝛼 ·
𝜕𝛼𝑓 (tx1,… ,txn)

𝜕(txi)𝛼
= r𝑓 (tx1, … , txn).
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If (T𝛼h)(t) = 0 on (0,∞), then h is a constant and, as h(1) = 0, then h(t) = 0 on (0,∞). Therefore,

𝑓 (tx1, … , txn)
tr − 𝑓 (x1, … , xn) = 0 ⇒ 𝑓 (tx1, … , txn) = tr𝑓 (x1, … , xn).

Then, f is homogeneous function of degree r.

Example 1. Using Theorem 9, it is easy to prove the following statement. Let 𝛼 ∈ (0, 1] and f be a real valued function
with n variables defined on an open set D⊂ ℝn for which (tx1, … , txn) ∈ D whenever t > 0 and (x1, … , xn) ∈ D, each
xi > 0, that satisfies the following:

(i) f is homogeneous function of degree r;
(ii) 𝑓 ∈ C𝛼(D,ℝ);

(iii) r f > 0.

Then,

𝑓 (x1, … , xn) = A(x1, … , xn) ·
n∏

i=1

(
x𝛼i
)𝛿i(x1,… ,xn),∀(x1, … , xn) ∈ D, (13)

where

A(x1, … , xn) =
n∏

i=1

⎛⎜⎜⎝
𝜕𝛼𝑓 (x1,… ,xn)

𝜕x𝛼i

r𝛿i(x1, … , xn)

⎞⎟⎟⎠
𝛿i(x1,… ,xn)

, (14)

with

𝛿i(x1, … , xn) =
x𝛼i

𝜕𝛼𝑓 (x1,… ,xn)
𝜕x𝛼i∑n

𝑗=1 x𝛼
𝑗

𝜕𝛼𝑓 (x1,… ,xn)
𝜕x𝛼

𝑗

=
x𝛼i

𝜕𝛼𝑓 (x1,… ,xn)
𝜕x𝛼i

r𝑓 (x1, … , xn)
,∀i = 1, 2, … ,n, (15)

and
n∑

i=1
𝛿i(x1, … , xn) = 1.

Solution. From Equation 15, we obtain

𝑓 (x1, … , xn)
x𝛼i

=

𝜕𝛼𝑓 (x1,… ,xn)
𝜕x𝛼i

r𝛿i(x1, … , xn)
.

Now, it is straithforward to use those expression in 14 to get

A(x1, … , xn) =
n∏

i=1

(
𝑓 (x1, … , xn)

x𝛼i

)𝛿i(x1,… ,xn)

= 𝑓 (x1, … , xn)
n∏

i=1

(
1
x𝛼i

)𝛿i(x1,… ,xn)

and the result follows.
Finally, conformable Euler's theorem on homogeneous functions for higher-order derivative is extended.

Remark 5. Let 𝛼 ∈ (0, 1
p
], p ∈ ℤ+ and f be a real valued function with n variables defined on an open set D⊂ ℝn. If f

is a Cp
𝛼(D,ℝ) function on D, then we use following notation for simplicity:

(i) (
x𝛼1

𝜕𝛼

𝜕x𝛼1
+ x𝛼2

𝜕𝛼

𝜕x𝛼2
+ … + x𝛼n

𝜕𝛼

𝜕x𝛼n

)(1)

𝑓 =

( n∑
i=1

x𝛼i
𝜕𝛼

𝜕x𝛼i

)
𝑓 =

n∑
i=1

x𝛼i
𝜕𝛼𝑓

𝜕x𝛼i
;

(ii) (
x𝛼1

𝜕𝛼

𝜕x𝛼1
+ x𝛼2

𝜕𝛼

𝜕x𝛼2
+ … + x𝛼n

𝜕𝛼

𝜕x𝛼n

)(2)

𝑓 =

( n∑
i=1

n∑
𝑗=1

x𝛼i x𝛼𝑗
𝜕𝛼

𝜕x𝛼i
𝜕𝛼

𝜕x𝛼
𝑗

)
𝑓 =

n∑
i=1

n∑
𝑗=1

x𝛼i x𝛼𝑗
(2)𝜕𝛼𝑓

𝜕x𝛼i x𝛼
𝑗

;
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(iii)

(
x𝛼1

𝜕𝛼

𝜕x𝛼1
+ x𝛼2

𝜕𝛼

𝜕x𝛼2
+ … + x𝛼n

𝜕𝛼

𝜕x𝛼n

)(p)

𝑓 =
⎛⎜⎜⎝

n∑
i1=1

n∑
i2=1

…
n∑

ip=1
x𝛼i1

x𝛼i2
… x𝛼ip

𝜕𝛼

𝜕x𝛼i1

𝜕𝛼

𝜕x𝛼i2

… 𝜕𝛼

𝜕x𝛼ip

⎞⎟⎟⎠𝑓
=

n∑
i1=1

n∑
i2=1

…
n∑

ip=1
x𝛼i1

x𝛼i2
… x𝛼ip

(p)𝜕𝛼𝑓

𝜕x𝛼i1
x𝛼i2

… x𝛼ip

.

These will help to prove extension of conformable Euler's theorem on homogeneous functions.

Theorem 10 (Extension of conformable Euler's theorem on homogeneous functions). Let 𝛼 ∈ (0, 1
p
], p ∈ ℤ+ and f be

a real valued function with n variables defined on an open set D ⊂ ℝn for which (tx1, … , txn) ∈ D whenever t > 0 and
(x1, … , xn) ∈ D, each xi > 0, that satisfies the following:

(i) f is homogeneous function of degree r;
(ii) 𝑓 ∈ Cp

𝛼(D,ℝ).

Then, (
x𝛼1

𝜕𝛼

𝜕x𝛼1
+ x𝛼2

𝜕𝛼

𝜕x𝛼2
+ · · · + x𝛼n

𝜕𝛼

𝜕x𝛼n

)(p)

𝑓 = r(r − 𝛼)(r − 2𝛼)… (r − (p − 1)𝛼) · 𝑓. (16)

Proof. This result is proved by the Principle of Mathematical Induction on p.
Let p = 1. By Theorem 9, ( n∑

i=1
x𝛼i

𝜕𝛼

𝜕x𝛼i

)
𝑓 =

n∑
i=1

x𝛼i · 𝜕
𝛼𝑓

𝜕x𝛼i
= r · 𝑓. (17)

Therefore, these results are true for p = 1.
Now, take p = 2. Compute the conformable partial derivative10 of Equation 17 with respect to xi, then multiply it by

x𝛼i , for i = 1, 2, … ,n, then we get
n∑

𝑗=1
x𝛼i · x𝛼𝑗

(2)𝜕𝛼𝑓

𝜕x𝛼i x𝛼
𝑗

+ x𝛼i
𝜕𝛼𝑓

𝜕x𝛼i
= r · x𝛼i · 𝜕

𝛼𝑓

𝜕x𝛼i
.

Adding all equations for i = 1, … ,n, we have

n∑
i=1

n∑
𝑗=1

x𝛼i · x𝛼𝑗
(2)𝜕𝛼𝑓

𝜕x𝛼i x𝛼
𝑗

+
n∑

i=1
x𝛼i

𝜕𝛼𝑓

𝜕x𝛼i
= r

n∑
i=1

x𝛼i · 𝜕
𝛼𝑓

𝜕x𝛼i
,

and solving
n∑

i=1

n∑
𝑗=1

x𝛼i · x𝛼𝑗
(2)𝜕𝛼𝑓

𝜕x𝛼i x𝛼
𝑗

= r(r − 𝛼) · 𝑓

or ( n∑
i=1

n∑
𝑗=1

x𝛼i x𝛼𝑗
𝜕𝛼

𝜕x𝛼i
𝜕𝛼

𝜕x𝛼
𝑗

)(2)

= r(r − 𝛼) · 𝑓.

Therefore, this result is true for p = 2.
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Assume now that the result is true for p = k, that is,

(
x𝛼1

𝜕𝛼

𝜕x𝛼1
+ x𝛼2

𝜕𝛼

𝜕x𝛼2
+ … + x𝛼n

𝜕𝛼

𝜕x𝛼n

)(k)

𝑓 =

( n∑
i1=1

n∑
i2=1

…
n∑

ik=1
x𝛼i1

x𝛼i2
… x𝛼ik

𝜕𝛼

𝜕x𝛼i1

𝜕𝛼

𝜕x𝛼i2

… 𝜕𝛼

𝜕x𝛼ik

)
𝑓

=
n∑

i1=1

n∑
i2=1

…
n∑

ik=1
x𝛼i1

x𝛼i2
… x𝛼ik

(k)𝜕𝛼𝑓

𝜕x𝛼i1
x𝛼i2

… x𝛼ik

= r(r − 𝛼)(r − 2𝛼)… (r − (k − 1)𝛼) · 𝑓.

Let p = k+ 1. Compute the conformable partial derivative10 of the aforementioned equation with respect to xi, then
multiply it by x𝛼i , for i = 1, 2, … ,n, and adding all equations, we find

n∑
i1=1

n∑
i2=1

· · ·
n∑

ik+1=1
x𝛼i1

x𝛼i2
· · ·x𝛼ik+1

(k+1)𝜕𝛼𝑓

𝜕x𝛼i1
x𝛼i2

… x𝛼ik+1

+ r ·
n∑

i1=1

n∑
i2=1

· · ·
n∑

ik=1
x𝛼i1

x𝛼i2
· · ·x𝛼ik

(k)𝜕𝛼𝑓

𝜕x𝛼i1
x𝛼i2

… x𝛼ik+1

= r(r − 𝛼)(r − 2𝛼)… (r − (k − 1)𝛼) ·
n∑

i=1
x𝛼i · 𝜕

𝛼𝑓

𝜕x𝛼i
.

Solve n∑
i1=1

n∑
i2=1

· · ·
n∑

ik+1=1
x𝛼i1

x𝛼i2
· · ·x𝛼ik+1

(k+1)𝜕𝛼𝑓

𝜕x𝛼i1
x𝛼i2

… x𝛼ik+1

= r(r − 𝛼)(r − 2𝛼)… (r − k𝛼) · 𝑓.

Thus, the result is true for p = k + 1. Therefore, by the Principle of Mathematical Induction, this result is true for
any positive integer p.

This completes the proof of the theorem.

Example 2. Let 𝛼 ∈ (0, 1
3
]. Since 𝑓 (x1, x2, x3) = x2

1x3
2 + x5

3 is homogeneous function of degree 5 and class Cp
𝛼 on ℝ3,

for all p ∈ ℤ+, then
3∑

i=1
x𝛼i · 𝜕

𝛼𝑓

𝜕x𝛼i
= 5𝑓

3∑
i=1

3∑
𝑗=1

x𝛼i · x𝛼𝑗 ·
(2)𝜕𝛼𝑓

𝜕x𝛼i 𝜕x𝛼
𝑗

= 5(5 − 𝛼)𝑓

3∑
i=1

3∑
𝑗=1

3∑
k=1

x𝛼i · x𝛼𝑗 · x𝛼k ·
(3)𝜕𝛼𝑓

𝜕x𝛼i 𝜕x𝛼
𝑗
𝜕x𝛼k

= 5(5 − 𝛼)(5 − 2𝛼)𝑓.

5 CONCLUSIONS
Properties of homogeneous functions that involve their conformable partial derivatives are proposed and proven in this
paper, specifically, the homogeneity of the conformable partial derivatives of a homogeneous function and the con-
formable version of Euler's theorem. In addition, this last result is extended to higher-order derivatives. The findings of
this study indicate that the results obtained in fractional case conform with the results obtained in ordinary case. Finally,
this work is applicable to thermodynamics and various areas of finance, where function is dependent on more than three
variables.
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