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ABSTRACT

A new finite element model for stress analysis of gear drisggsdposed. Tie-surface constraints are applied at
each tooth of the gear model to obtain meshes that can bedndeptly defined: a finer mesh at contact surfaces
and fillet and a coarser mesh in the remaining part of the todik-surface constraints are also applied for the
connection of several teeth in the model. The model is vy application of the Hertz's theory in a spiral
bevel gear drive with localized bearing contact and by olzem of convergency of contact and bending stresses.
Maximum contact pressure, maximum Mises stress, maxim@scarstress, maximum major principal stress, and
loaded transmission errors are evaluated along two cytleeshing. The effects of the boundary conditions that
models with three, five, seven, and all the teeth of the geaae dprovide on the above mentioned variables are
discussed. Several numerical examples are presented.

1 Introduction

Application of the finite element method for stress analysigear drives is a common practice in many specific sectors
(automobile, naval, aeronautic, and so on). The maximuntacompressure on the contacting surfaces, or the maximum
Von Mises stress underneath the contacting surfaces, ageddo evaluate the capability of the to-be-manufactuesa g
drive. Accurate results require models with a fine mesh irctrgact region where the contact occurs, and in the fillébreg
where bending stresses are higher, whereas a coarse mesh applied to other parts of the gear body, far from the areas
of interest, as long as the model keeps its capability toasgot tooth bending, gear torsion, wedge bending, and so on.

Different finite element models have been proposed sincéirfieapplication of the finite element method to the in-
vestigation of stresses in gear drives [1, 2]. A step forwarthe development of a finite element model for stress arsalys
of gear drives was presented in [3], allowing the analysithefwhole cycle of meshing through the application of a given
torque to the pinion member whereas the gear is rotated ddéheest at each contact position. Rigid boundary conuiitio
on the rims were considered, far enough from the contacsaoeavoid any interference with the sought-for stresseterl.a
a finite element model to consider the effect of the torsidiefdrmation of the gear bodies in the formation of the begarin
contact was implemented [4]. Investigation of wedge begdind rim thickness in contact and bending stresses was pre-
sented in [5, 6]. The effect of shaft deflections in the foliorabf the bearing contact was considered later in [7] and as a
method to determine machine-tool settings correction8Jin [
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Along the history of development of finite element models dears, some efforts have been directed towards the
reduction of the computational cost, one of the main drakbac this approach. Application of multi-point constrairfior
a rapid transition through the mesh of the gear tooth wasepipi [9] for a two-dimension problem and in [10] for a three-
dimension problem. Multi-point constraints allows a tiéine from two or four elements to one element by constragnin
some degrees of freedom. A finite element model based owmitfiaeg constraints was presented in [11] for a transmission
with three spur gears in order to consider two parts in the lgedy, one with a fine mesh close to the area of interest, and th
other one with a coarse mesh. Some other efforts have beesgfdon combining finite element models with semi-analitica
approaches [12]. All these efforts for the reduction of tbenputational cost are important in the optimization preagefs
gear drives to get competitive transmissions [13, 14].

Some questions still arise among users of the finite elemetiiod in gear design:

(1) Capability of a given model to capture the evolution & thaximum Von Mises or Tresca stress underneath the contact-
ing surfaces. This issue is important, not only to know th&imam stress that represents the root cause for pitting, but
also to know the depth at which this stress occurs sinceliafféct to the selection and configuration of the hardening
process.

(2) Capability of a given model to capture the evolution @& thaximum contact pressure. Such a pressure can be compared
with the contact strength of gear materials which are basedsis.

(3) Capability of a given model to capture the evolution ofkmaum major principal stress in the fillet region. Here, some
other questions arise as how far the boundary conditions tealve from the contact area to obtain reliable results, or if
the gear tooth or the gear body are appropriately modeled.

(4) Application of linear elements versus quadratic elets@nthe contact region.

The main goal of this paper is to find answers to the above i issues for which the following objectives have
been proposed:

(i) Implementation of a finite element model for any type oagdrive based on tie-surface constraints. Some of these
constraints allow each gear tooth to be divided into twoafne of these parts is closer to the contact and fillet
regions for the development of a finer mesh. A coarse mestpigedpn the other part of the gear model to reduce the
computational cost. Some other tie-surface constraietajaplied to connect different teeth in the model.

(i) Application of the Hertz’s theory to validate the prageal finite element model in terms of maximum contact pressure
maximum Von Mises stress and maximum Tresca stress. Apiplivaf the Hertz's theory is important here to determine
the appropriate thickness of the finer-mesh part and thénggpthich these maximum stresses are reached.

(i) Investigation of the effects of proximity of the bouary conditions on bending and contact stresses and on th&dnon
of loaded transmission errors through consideration of ef®dith one, three, five, and seven pairs of teeth. The
possibility of using a whole gear drive model is also presdm@nd compared with the previous models.

Application of the Hertz's theory to analyze contact stessim gear drives has several limitations. A hertzian cantac
requires a gap between the contacting surfaces that can thel@dahrough a function of typgex,y) = cxx? + nyz. Here,
the gaph can be stated as a function of two independent variablesdy with coefficientscy and cy that depend on the
relative curvatures of pinion and gear tooth surfaces [This is the main reason why a spiral bevel gear drive with deub
crowned tooth surfaces is considered here. Contact strpsseided by the proposed model are compared to Hertz egess
The Hertz’s theory has been applied in the analysis of spar deves in [16,17]. The same ideas are extended here for
the case of a spiral bevel gear drive as it will be shown in timaerical example. Although the implemented finite element
model is applied to a spiral bevel gear drive, the same ideabe easily extended to other types of gear drives.

2 Development of the finite element model

The finite element model has, for each tooth, two differentgthat are meshed independently, the contact-fillet regio
for a finer mesh, and the tooth body region for a coarse mestgs. 1 and 2). Such meshes are generated automatically as a
function of the point coordinates that are determined frppliaation of gear theory and following the prescribed gating
motions of each gear and its corresponding tool [18]. Theefimiement model is developed through the following stages:

(1) Determination of point coordinates on the gear tootlfias@s for the definition of the tooth body mesh (see Fig. 1(a))
The point coordinates are determined from application af geeory as a function of the number of elements in longitu-
dinal, profile, and fillet directions. Quadratic elementsewnsidered here in order to capture the longitudinal curea
of the gear (as in helical, spiral bevel or hypoid gears) fétinelements along longitudinal direction. A reduced numbe
of finite elements is considered in the profile and in the fiie¢ctions (4 elements in profile direction and 2 elements
in the fillet direction). The obtained points are used as eregfce to define the designed volume to be meshed.

(2) The designed volume is divided considering auxilianfestes from (1) to (6) and an intermediate surf&ess it is illus-
trated in Fig. 1(b). These surfaces are obtained from irgdiate points, which are derived from the point coordinates
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mentioned above. Intermediate surf&&separates the tooth body region from the contact-filletoregind is defined
parallel to the contact and fillet tooth surfaces by an amequal toc;my;. Here,¢; is a coefficient andny is the module
(the outer transverse module for a spiral or an hypoid typ#jegear drive.

Fig. 1. For mesh definition of tooth body region: (a) designed volume with obtained points from application of gear theory, (b) auxiliary
surfaces and intermediate surface S, (c) nodes, and (d) finite elements.

(3) Node coordinates are determined in the tooth body refgion the obtained point coordinates considering the aanili
surfaces and the intermediate surf&@ee Fig. 1(c)). Not all the point coordinates are used ferdtermination of
the nodes since quadratic elements are considered here.

(4) Finite elements are built from the obtained nodes follmathe numbering for node connectivity shown in Fig. 1(d).
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(5) New point coordinates are determined on the gear toatacms for the definition of the contact-fillet region mesk an
as a function of the number of elements in longitudinal, peafnd fillet directions (see Fig. 2(a)). A number of layers
of elements is also defined (3 layers of elements are showigir2{b)) between the tooth surfaces and the intermediate
surfaceS. Nodes and elements are automatically derived from thecpbesl number of elements for this mesh and
independently of the number of elements defined for the tbotty mesh. Here, linear o quadratic elements can be
considered.

toe

gear rim

"

linear element

Fig. 2. For mesh definition of contact-fillet region: (a) designed volume with obtained points from application of gear theory, and (b) nodes
and finite elements.

(6) A master surface is defined on the tooth body mesh and a slaface is defined on the contact-fillet region mesh for
each gear tooth of the model (see Fig. 3). The master suracenformed by those nodes of the tooth body mesh
that belong to the intermediate surfé&eThe slave surface is conformed by those nodes that belaihg tiaces of the
elements of the contact-fillet region mesh that are closeutéaceS. A tie-surface constraint is defined between the
master surface and the slave surface, which means thatdles néthe slave surface are tied to the master surface. Such a
constraint allows independency in the definitions of the di@scribed meshes and assures transmission of displacement
and loads between the two meshes [19].

(7) Connection between several teeth of the finite elemedaiie accomplished through the definition of new tie-suefac
constraints. Figure 4 illustrates schematically the ageament of slave and master surfaces for the connection efalev
teeth in the finite element model. The scheme is focusedhfptirpose of clarity, on a traverse section of the finite
element model, although this arrangement is valid alondabe width of the gear. Some elements are cattegbter
elementdecause they are used to define a master surface. Some ethnen& are calledlave elementbecause they
are used to define a slave surface. Some other elementslacbroakter/slave elementecause one of its faces is used
to be part of a master surface and some other face is used st p slave surface. Figure 4 illustrates the connection
of three teeth and the same ideas can be applied to connect §egen teeth. For the example illustrated in Fig 4, slave
surfaces;; ands;» are tied to master surface;, whereas slave surfaceg andsy, are tied to master surface. The
arrangement has been established taking into account tivateaof a slave surface can be tied to just one master surface
and a node of a master surface can be at the same time slavetbéamaster surface [19].

(8) Anode-based surface is defined on the inner part and drsinies of the gear rim to conform a rigid surface (see Fig. 4).
Boundary conditions of the gear model are applied to thiaser Since the nodes of this surface will have restrictions
on their degrees of freedom, they cannot belong to a sla¥acgubut can be part of a master surface [19]. A 3D view
of the rigid surface is shown in Fig. 5(a) for a three-toothd@lo The rigid surface is rigidly connected to a reference
node that is defined on the axis of rotation of the gear. Alldbgrees of freedom of the reference node govern now the
degrees of freedom of the rigid surface. In the case of thepjrall the degrees of freedom of the reference node are
constrained but the rotation around the gear axis is refeasé¢orque around the gear axis of rotation is then applied
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Fig. 3. For illustration of the tie-surface constraint between the nodes of the slave surface and the master surface for one tooth of the gear
model.

master surface wnnnnnnnnne
slave surface

rigid surface nodes
tied symbol ~—{

[ master elements [ slave elements [] master/slave elements

Fig. 4. Scheme in a transverse section at the heel of the gear teeth for illustration of: (i) slave and master surfaces to connect several teeth,
and (ii) rigid surface for application of boundary conditions.

9)

(10)

to this reference node and therefore to the rigid surfacéhdrcase of the driven gear, the reference node is blocked at
each contact position obtained from the application a tootitact analysis algorithm.

The possibility of a model comprising all the teeth of gear drive is considered as well. In this case, those teath th
will not come into contact during the analysis of the cyclarafshing are modeled with just six quadratic elements as
it is illustrated in Fig. 5(b). The connection between theseth and the teeth that will come into contact during the
analysis of the cycle of meshing is arranged through matéee surface constraints. The connection between each
tooth of this group of teeth that will not come into contachisanged by using common nodes in the gear rim region.
Regarding the rigid surface, it is conformed by those noldatdre in the inner part of the gear rim and do not belong
to any slave surface.

The contact formulation between pinion and gear is @dfihrough an algorithm based on the interactions between a
master surface and a slave surface [19]. In a model definédwvpairs of contacting teetm = {1,3,5,7}, n master-
slave surface interactions are defined. The master surfiasee®nsidered usually at the driven gear since the cue&tur
of its tooth surfaces are lower than the curvatures of thepitooth surfaces.
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Fig. 5. For illustration of the rigid surface in, (a) a three-tooth finite element model and, (b) a all-tooth finite element model, of the pinion.



3 Numerical examples

A spiral bevel gear drive with localized bearing contactdaasidered here for the purpose of illustration of the fezgur
of the proposed finite element model. The basic data of thstnéssion is shown in Table 1 whereas the blank data are
illustrated in Table 2. A generating face-hobbing processeld on the cyclo-pallofd method [20] has been considered here
for the localization of the bearing contact. Details of thatihematical model of this method and the involved variables
nomenclature can be found in [21]. Additional cutter datd basic machine-tool settings are shown in Table 3 for three
cases of design. Each case of design is provided with a éiffemmount of crowning by considering different values Far t
cutter radiirg; andrg, (see [21]). The third case of design is provided as well withfie crowning by considering parabolic

profiles with a parabola coefficieap = 0.0015 mn L.,

Table 1. Basic transmission and cutter data.

Data Value

Reference gear ratio 15

Shaft angle [degrees] 90.0

Input power [KW] 60.0

Pinion speed [rpm] 1500.0

AGMA quality number 8

Cutter radius [mm] 55.0

Number of blade groups 5

Table 2. Blank data.

Blank Data Pinion Gear
Tooth number N; =20 N, =31
Pitch angle [degrees] y1=32829 vy, =57171
Spiral angle [degrees] Ym =350
Hand of spiral left-hand right-hand
Outer transverse module [mm] my = 4.566
Mean normal module [mm] Mm = 3.163
Mean cone distance [mm] Am=71223
Face width [mm] Fv = 26.0

Outer addendum [mm]
Outer dedendum [mm]
Face cone angle [degrees]
Root cone angle [degrees]

Minimum normal backlash [mm]

Mean normal chordal addendum [mm]

ap1 =3.163  apgy=3.163

bo1=3795 bp=3.795

Yr1=32829 yrp=57.171

Yr1 = 32829 yrp=57.171
B=0,150

a1 =3230 ap=3191

Mean normal chordal tooth thickness [mm] t,; = 4.907 the = 4.909

The obtained gear drive and the contact patterns for the thesigns are illustrated in Fig. 6. These results are based
on the application of a TCA algorithm applied before in [2BHébased in [23]. Here, the gear tooth surfaces are assumed



Table 3. Additional cutter data and basic machine-tool settings for three cases of design.

Case 1l Case 2 Case 3
Data Pinion Gear Pinion Gear Pinion Gear
Reference radius inner bladeg, [mm] 55.0 55.0 55.0 55.0 55.0 55.0
Reference radius outer bladeg [mm] 57.4 57.4 56.4 56.4 55.4 55.4
Parabola coef. inner blades, [mm—1] 0.0 0.0 0.0 0.0 0.0015 0.0
Parabola coef. outer bladesgy [mm~1] 0.0 0.0 0.0 0.0 0.0015 0.0
Slope angley [degrees] 8.017 8.001 8.170 8.154 8.327 8.311
Inner machine distanc®)qi [mm] 67.400 67.386 67.538 67.524 67.680 67.666
Inner cradle anglayy; [degrees] 46.652 46.656 46.609 46.614 46.566 46.570
Outer machine distanc®]yo [mm] 67.930 67.917 67.837 67.823 67.763 67.748
Outer cradle angleyy, [degrees] 48.653 48.658 47.779 47.784 46.901 46.905
Machine center to backXp [mm] 0.0 0.0 0.0 0.0 0.0 0.0
Blank offset, AEmy, [mm] 0.0 0.0 0.0 0.0 0.0 0.0
Sliding baseAXg [mm] 0.0 0.0 0.0 0.0 0.0 0.0
Machine root angleym [degrees] 32.829 57.171 32.829 57.171 32.829 57.171
Gear-to-cradle roll ratiangc 1.844587 1.190056 1.844587 1.190056 1.844587 1.190056
Gear-to-blade roll ratiang, 0.242516 0.156160 0.247119 0.159126 0.251850 0.162174

to behave as rigid surfaces. A marking compound thickne80865 mm is considered to determine the size of the contact
ellipses. The algorithm is based on minimization of theatises between the rigid surfaces and works properly for line
point or edge contacts.

In order to validate the proposed finite element model, tHeving subsections are considered:

(i) Application of the Hertz’s theory.
(i) Validation of the proposed finite element model by comipg contact stresses and Hertz stresses.
(iii) Observation of convergency for bending stresses.
(iv) Investigation of contact and bending stresses aloagi¥ftle of meshing.
(v) Investigation of transmission errors along the cyclenefshing.

3.1 Application of the Hertz's theory

In order to validate the proposed finite element model in seoifrcontact behaviour, the Hertz's theory was applied to
the three cases of design. The same ideas that were devatdp&gifor implementation of the Hertz's theory in a spur gea
drive with double crowned tooth surfaces, are consideree. Heor the Hertz’s hypothesis [15] to be satisfied, the Ingari
contact needs to be localized inside the tooth surfacescalne élliptical, as it occurs for the three cases of desigwahn
Fig. 6.

The implemented algorithm for Hertz's analysis is simitattie one implemented in [17] for a single point of contact. A
mean contact position is chosen along the cycle of meshingwhole load is considered to be shared between just one pair
of contacting teeth. This makes easier the applicationettbrtz’s theory to a gear drive and is enough to test lochby t
contact behaviour of the proposed finite element model. Tharsg of the load between several pairs of teeth is consitier
later, from Subsection 3.3 on.

The results provided by the implemented algorithm to thedtrases of design are illustrated in Table 4. The chosen
contact position is the number 12 of a total of 21 contacttmos. Principal curvatures are computed numerically from
an interpolated surface that is built upon a grid of441 points that belong to a reference surface. This refersmdace
represents the gap between pinion and gear tooth surfatke ahosen contact position (more details about the applied
algorithm can be view in [17]). Complete and incompletepdifial integrals of first kind and second kind [15] have been
computed numerically by Simpson 1/3 rule [24]. The gear nlteare steel with elastic modul&s = E; = 210000 MPa
and Poisson’s coefficientg = v, = 0.3. The considered applied torque is 380.0 Nm (see Table 1).

The evolutions of principal stresses and effective Mises Bresca stresses underneath the contacting surfaces at the
mean contact position 12 are illustrated in Fig. 7 for casédesign. The depth of maximum Mises stresses occurs ab0.71
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Fig. 6. Gear drive model and contact patterns corresponding to three cases of design.

whereas the depth of maximum Tresca stress occurs &b.0.78

B 1,000
0 =890MPa -} 2o Tresca
Oy= 816 MPa 7’ " T~ow
5 1} \\\:~\_
00 MR
H maximum principal 7
s 0 i ———————— "]
=) g
2 /S
£ -500 T in
wn) /’ \: .
A
i ! minimum principal
-1,000 o
Do, I
-1,500 T T T T T T T T
0.5h}i b 15b 2b 25b 3b 35b 4b 45b 5b
H Depth
dy, =0282 mm' 'dp, =0310mm ¥

Fig. 7. Evolution of stresses underneath the contacting surfaces for case 2 of design at mean contact position 12 obtained from application
of Hertz's theory.

3.2 Validation of the proposed finite element model by compang contact stresses and Hertz stresses

A number of finite element models with just one pair of cortagteeth are built following the procedure described in
Section 2 for case of design 2 (see Fig. 8(a)). A coeffiaiert 0.2 (see Fig. 1(b)) and three layers of quadratic elements in
the contact-fillet region (see Fig. 2) are considered fos¢hmodels. The models are built considering different nurobe
elements in profiler(,) and longitudinalfy) directions. Figure 8(b) shows that convergency of theltesaecur for contact
areaA;, maximum contact pressug®, maximum Mises stressy,, and maximum Tresca stregs, as the numbeny of
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Table 4. Results from application of the algorithm based on the Hertz’s theory.

Result Casel Case2 Case3
Major principal curvature radiu® [mm] 1623.5 2779.7 3731.2
Minor principal curvature radiugy;; [mm] 15.8 15.8 15.4
Equivalent applied force at the contact positiBrfN] 12781.9 12781.9 12735.3
Equivalent elastic modulug* [MPa] 115384.6

Major semi-length of contact ellipse, a [mm] 8.610 10.570 .81B
Minor semi-length of contact ellipse, b [mm] 0.439 0.397 m3
Contact areal: [mm?] 11.876  13.179 13.737
Maximum contact pressurge [MPa] 1614.4  1454.7 1390.6
Maximum Mises stressiy, [MPa] 908.0 816.4 779.6
Maximum Tresca stresey, [MPa] 991.6 889.7 848.6
Depth maximum Mises stregdy, [mm] 0.312 0.282 0.263
Depth maximum Tresca stresk, [mm] 0.342 0.310 0.289

elements is increased (all these models have 64 elememtsgiudinal direction and 16 elements in the fillet direntand
are named as models &4np x 16). The same observation can be done when the numligincreased (see Fig. 8(c) for
models with 48 elements in profile direction and 16 elementie fillet direction, which are named as models 48x 16).

It is observed that increasing the numimgrhas a larger influence in the convergency of the results themreasing the
numbem;. It is observed as well that the model §418 x 16 provide similar results to the ones obtained by using sode
with a finer mesh.

Models 64x 48 x 16 are built considering different values of coefficientand either linear or quadratic elements.
Figure 9 shows the contact pressure distribution on thepittoth surface for case 2 of design with= 0.2 andc; = 0.125.
Here, 3 layers of quadratic elements are considered in ttactfillet region mesh. Evolution of maximum contact jstee
and contact area is illustrated in Figure 10 consideringiséwalues of coefficiert;. It is observed that a very thin layer in
the contact-fillet region mesh is accompanied by high vatie®ntact pressures. However, an increment in the coefficie
¢; leads to an approximation of the results to the Hertz res8imilar conclusions can be observed as well for cases 1
and 3 of design. A thickness of the contact-fillet region dlmpu= 2b/my or ¢ = 2.5b/my; is favorable to get maximum
contact pressures with relative errors below the 5% respebe maximum contact pressure obtained in the Hertz aisalys
If the contact-fillet region is very thin and the intermediatirfaceS (see Fig. 1) is very close to the contacting surface, the
deformation of the contact-fillet region mesh leads to arvandistribution of contact pressure as it is shown in Fig) 9(

The proposed model can capture the maximum value of Misegesca@ stress underneath the contacting surfaces.
Figure 11(a) shows in detail the maximum Mises stress fag 2asf design when 3 layers of quadratic elements are consid-
ered. A cut section in the contact-fillet region mesh alloes $tress distribution to be visualized inside the contamieh
Figures 11(b) and (c) shows the variation of Mises and Tresesses when different coefficiemtsand types of elements
(linear o quadratic) are considered. The representedes@se extrapolated values at the nodes with an averaghdiatef
75% [19]. The results show that maximum Mises and Trescasstgeapproach the Hertz result as coefficieigtincreased.
However, the results are not so close to the Hertz resultssasiiximum contact pressures are.

3.3 Observation of convergency for bending stresses

Bending stresses are evaluated considering the majoripaingtresso; in the fillet of the middle tooth. Validation
of the finite element model for bending stresses is exectmenigh observation of convergency of the results at a given
contact position. Figure 12 shows that, indeed, convergeocurs either for linear elements or quadratic elementsnwvh
the number of elements in the fillet directionis increased. Case 2 of design is considered here at comtsitibp number
12. A three-tooth model allows the boundary conditions ef tigid surface to be far enough from the fillet area where
stresses are obtained. Three types of elements in the ¢ditletaegion are considered (see [19]): (i) C3D8 elemdliear
elements with eight nodes), (i) C3D20 elements (quadedéiments with 20 nodes), and (iii) C3D8I (linear elementhwi
8 nodes and incompatible modes of deformation to improvedtgling behaviour). A difference about 40 MPa is observed
between elements C3D8 and C3D20 when= 20, which represents approximately a 10% of relative eriéowever,
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Fig. 9. Contact pressure distribution in case 2 of design for (a) ¢ = 0.2 and (b) ¢; = 0.125with three layers of quadratic elements.
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comparing elements C3D8I with elements C3D20, the relaiver is reduced below 0.5% when = 20. Some more
models considering elements C3D8I with = 24 andn; = 28 are analyzed to prove that convergency occurs as well for
this type of element.

3.4 Investigation of contact and bending stresses along tlogcle of meshing

Case 3 of design is considered for investigation of contadtending stresses along the cycle of meshing. This designi
provided with an adjusted contact pattern in diagonal timagsee Fig. 6) and a parabolic function of unloaded trassion
errors (see below). Two cycles of meshing are analyzed ¢ftr@d contact positions by considering a tooth contact aialy
algorithm where three pairs of contacting teeth are takemancount. Since maximum contact stresses (contact pegssu
Mises stress and Tresca stress) are obtained in the coetighmesh of the whole model, periodicity of the evolutidn o
these variables along the two cycles of meshing is expeMadimum major principal stress for evaluation of the begdin
behaviour of the gear drive is measured at the fillet regiosmtd the middle tooth for each model along the 21 contact
positions.

The finite element models are built with a meshx648 x 16 considering either linear elements (C3D8 and C3D8I) or
guadratic elements (C3D20) for the contact-fillet regiorsmend quadratic elements (C3D20) for the body region mesh.
Models with three pairs of teeth, five pairs, and seven paims,built. Their corresponding counterparts considerirgg t
same number of contacting teeth and all the other teeth ajehe drive are built as well (these models are identified with
the adjective complete). The models are built with a coeffiti; = 0.25 and three layers of elements in the contact-fillet
region. Figure 13 shows the finite element model and its spaeding counterpart when five pairs of contacting teeth are
considered. The rigid surfaces are defined for each type dehand for each gear member as it is illustrated in Fig. 5 for
the pinion member.

Figures 14(a) and (b) show the evolutions of maximum comeessurep, and maximum major principal stresg,,
respectively, along two cycles of meshing and considetieghiree types of elements, mentioned above, for the cefiltatt
region mesh. A three tooth pair model is considered heréhipurpose of comparison of the results that the three tyjpes o
elements provide. Results p§ are obtained, in this example, just at the middle pair of acting teeth (pair 0). Contact and
bending stresses are illustrated in Fig. 14(c) in a threte f@aion model for contact position 18. Figure 14(a) shdweg the
three types of elements provide similar valuepgfrom contact position 1 to contact position 15. Howeversibbserved
larger values of, for the model with elements C3D20 from contact position 16dntact position 21 (see shaded area). In
this part of the cycle of meshing, a truncation of the congdlgise occurs and edge contact appears at the middle taath p
(as it can be visualized in Fig. 14(c)). Although it is exetan increment of contact stresses for this circumstaacel |
deformations may lead to a determined increment of thesgsesT his increment may not be accurately determined with an
approach that is just based on an elastic behaviour of theriastas the one that this work is based on. However, it can be
drawn that elements C3D20 provide much higher valugs athen edge contact occurs than elements C3D8 or C3D8I.

Regarding bending stresses and taking as a reference tiits mevided by a model with elements C3D20, Figure 14(b)
shows that a model with elements C3D8I provides closer gatii@1, than the ones provided by a model with elements
C3D8. In this case, the maximum relative error for a modéehwiements C3D8I ismax = 3.2% whereas for a model with
elements C3D8 ismax = 10.2%.
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Fig. 11. Mises and Tresca stresses for several analysis of case 2 of design considering models 64 x 48 x 16: (a) Mises distribution for
¢t = 0.2 and 3 layers of quadratic elements, (b) maximum Mises, and (c) maximum Tresca for several values of coefficient Ct, type of element

and number of layers.

Figure 15 shows the evolution @f along two cycles of meshing, evaluated at each contactfpaimodels with three
and five pairs of contacting teeth and for its correspondimmmete models. Linear elements C3D8I are used here for
the contact-fillet region mesh whereas elements C3D20 & fos the body region mesh. The area below the curve that
describes the evolution of maximupg is shaded in order to highlight its grade of periodicity. Eos purpose, the maximum
values ofp, at contact positions 1, 11, and 21, are outlined as well.sRdicontacting teeth are enumerated according to
Fig. 13(a). It is observed an improvement of the periodititthe evolution ofp, as the number of pairs of contacting teeth
is increased from three to five (compare Figs. 15(a) and $m&e pairs +2 and -2 come into contact when five pairs of
contacting teeth are considered. An improvement of theogamity is also observed for a complete model in comparison
with its corresponding counterpart (compare Figs. 15(d)(&h or Figs. 15(c) and (d)). The boundary conditions imgose
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Fig. 12. For illustration of convergency of maximum major principal stress O1g in the fillet region of the middle tooth for several values of the
number of elements in the fillet direction N¢ and different types of elements.

by the rigid surface in a complete model (see Fig. 5(b)) mtewn improvement of the periodicity p§ evolution respect to
the boundary conditions imposed by the rigid surface in acamplete model (see Fig. 5(a)). However, this improvement
is not so important as the improvement when increasing timebien of contacting teeth. The results that are obtained in
models with seven pairs of contacting teeth are very sinmlahose obtained through application of models with fivepai
of contacting teeth, and are not illustrated here.

Regarding bending stresses, since maximum major prinstpesso,, is measured at the middle tooth of the gear model,
no important differences are observed between considarihgee tooth pair model, a five tooth pair model, or a sevetitoo
pair model.

3.5 Investigation of transmission errors along the cycle ofmeshing

Case 3 of design is provided with a parabolic function of sraission errors. This function can be obtained from
application of a TCA algorithm (see [21]) and is called fuontof unloaded transmission errors, since no load is spliad.

A function of loaded transmission errors can be then obtaineugh the determination of the rotational angle of theqmi
reference node, at each contact position, when a torquepiedgo the pinion model. Such a rotational angle counts for
the elastic deformations of the gear tooth surfaces whelo#tteis applied. The function of total transmission errarthien
obtained as a sum of both previous mentioned functions.iBetiderivation of the function of loaded transmissionoesr
and total transmission errors can be found in [8] with a dife finite element model.

Figure 16 shows the functions of unloaded, loaded, and t@atmission errors, for the proposed models with three,
five, and seven pairs of contacting teeth, and their corredipg counterpart complete models. Elements C3D8I at the
contact-fillet region mesh and elements C3D20 at the bodipmemesh are considered here. The function of unloaded
transmission errors is the same in all the graphs illugdratd-ig. 16 since the same case of design is considered. Eae ar
below the function of total transmission errors is shadeldighlight the periodicity of this function. For this purpgghe
maximum and minimum values of the function of total transiois errors are outlined as well through dashed lines. Is is
observed an improvement of the periodicity of the functibtotal transmission errors as the number of contactindntiset
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contact position 18

increased from three to seven (compare Figs. 16(a), (c)@hdt is observed as well that the periodicity of the fuoctof
total transmission errors obtained in a complete modeltiebeespect to the one obtained in its corresponding copate
model (compare Figs. 16(a) and (b) for three pairs of comgdeeth, or Figs. 16(c) and (d) for five pairs of contacting
teeth). However, no differences in the periodicity of thedtion of total transmission errors between a complete et

its corresponding counterpart model are observed whemgmies of contacting teeth are considered (compare Fige) 16
and (f)).

4 Conclusions
Based on the performed research and results obtained |iwif@ conclusions can be drawn:

(1) A new finite element model based on the application obtiface constraints is proposed and validated in terms of
contact and bending stresses.

(2) The proposed modelis able to capture the maximum valaextive Mises stress and effective Tresca stress undtrne
the contacting surfaces. However, these values are oiredstl respect to the values obtained from application®f th
Hertz’s theory.

(3) Maximum contact pressure values are in good agreemeéhtthé values obtained from the Hertz’s theory. Some
recommendations are given to establish the thickness afahict-fillet region in the proposed finite element model.

(4) Quadratic and linear elements are compared in terms afmmuen contact pressure and maximum major principal
stress for evaluation of contact and bending stresses. tigpdis of elements provide similar maximum contact pressure
values, although quadratic elements show much highersalhen edge contact occurs. Linear elements with improved
bending behavior show small relative errors of maximum mgaijmcipal stress, at the fillet, when compared to quadratic
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Fig. 15. Maximum contact pressure Pg along two cycles of meshing in a: (a) 3 tooth pair model, (b) 3 tooth pair complete model, (c) 5 tooth
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elements.

(5) The effect of the rigid surfaces on the evolution of maximcontact pressure, maximum major principal stress, &atl to
transmission errors, is investigated for models with thiige, and seven tooth pairs, and their corresponding copaute
models where all the teeth of the gear drive are considertd.r@sults show that a three tooth pair model is enough
for evaluation of the maximum major principal stress, infiliet of the middle tooth, along the cycle of meshing. The
results show as well that the boundary conditions providethb rigid surface in a five and a seven tooth pair model
are far enough from the contact areas to provide, respéctg@od periodicity of maximum contact pressure and total
transmission errors, making unnecessary the use of compadels as long as other effects as web thickness or web
location are not investigated.
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