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ABSTRACT
A new finite element model for stress analysis of gear drives is proposed. Tie-surface constraints are applied at

each tooth of the gear model to obtain meshes that can be independently defined: a finer mesh at contact surfaces
and fillet and a coarser mesh in the remaining part of the tooth. Tie-surface constraints are also applied for the
connection of several teeth in the model. The model is validated by application of the Hertz’s theory in a spiral
bevel gear drive with localized bearing contact and by observation of convergency of contact and bending stresses.
Maximum contact pressure, maximum Mises stress, maximum Tresca stress, maximum major principal stress, and
loaded transmission errors are evaluated along two cycles of meshing. The effects of the boundary conditions that
models with three, five, seven, and all the teeth of the gear drive, provide on the above mentioned variables are
discussed. Several numerical examples are presented.

1 Introduction
Application of the finite element method for stress analysisin gear drives is a common practice in many specific sectors

(automobile, naval, aeronautic, and so on). The maximum contact pressure on the contacting surfaces, or the maximum
Von Mises stress underneath the contacting surfaces, are needed to evaluate the capability of the to-be-manufactured gear
drive. Accurate results require models with a fine mesh in thecontact region where the contact occurs, and in the fillet region
where bending stresses are higher, whereas a coarse mesh canbe applied to other parts of the gear body, far from the areas
of interest, as long as the model keeps its capability to represent tooth bending, gear torsion, wedge bending, and so on.

Different finite element models have been proposed since thefirst application of the finite element method to the in-
vestigation of stresses in gear drives [1, 2]. A step forwardin the development of a finite element model for stress analysis
of gear drives was presented in [3], allowing the analysis ofthe whole cycle of meshing through the application of a given
torque to the pinion member whereas the gear is rotated and held at rest at each contact position. Rigid boundary conditions
on the rims were considered, far enough from the contact areas to avoid any interference with the sought-for stresses. Later,
a finite element model to consider the effect of the torsionaldeformation of the gear bodies in the formation of the bearing
contact was implemented [4]. Investigation of wedge bending and rim thickness in contact and bending stresses was pre-
sented in [5, 6]. The effect of shaft deflections in the formation of the bearing contact was considered later in [7] and as a
method to determine machine-tool settings corrections in [8].
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Along the history of development of finite element models forgears, some efforts have been directed towards the
reduction of the computational cost, one of the main drawbacks of this approach. Application of multi-point constraints for
a rapid transition through the mesh of the gear tooth was applied in [9] for a two-dimension problem and in [10] for a three-
dimension problem. Multi-point constraints allows a transition from two or four elements to one element by constraining
some degrees of freedom. A finite element model based on tie-surface constraints was presented in [11] for a transmission
with three spur gears in order to consider two parts in the gear body, one with a fine mesh close to the area of interest, and the
other one with a coarse mesh. Some other efforts have been focused on combining finite element models with semi-analytical
approaches [12]. All these efforts for the reduction of the computational cost are important in the optimization process of
gear drives to get competitive transmissions [13,14].

Some questions still arise among users of the finite element method in gear design:

(1) Capability of a given model to capture the evolution of the maximum Von Mises or Tresca stress underneath the contact-
ing surfaces. This issue is important, not only to know the maximum stress that represents the root cause for pitting, but
also to know the depth at which this stress occurs since it will affect to the selection and configuration of the hardening
process.

(2) Capability of a given model to capture the evolution of the maximum contact pressure. Such a pressure can be compared
with the contact strength of gear materials which are based on tests.

(3) Capability of a given model to capture the evolution of maximum major principal stress in the fillet region. Here, some
other questions arise as how far the boundary conditions have to be from the contact area to obtain reliable results, or if
the gear tooth or the gear body are appropriately modeled.

(4) Application of linear elements versus quadratic elements in the contact region.

The main goal of this paper is to find answers to the above mentioned issues for which the following objectives have
been proposed:

(i) Implementation of a finite element model for any type of gear drive based on tie-surface constraints. Some of these
constraints allow each gear tooth to be divided into two parts. One of these parts is closer to the contact and fillet
regions for the development of a finer mesh. A coarse mesh is applied in the other part of the gear model to reduce the
computational cost. Some other tie-surface constraints are applied to connect different teeth in the model.

(ii) Application of the Hertz’s theory to validate the proposed finite element model in terms of maximum contact pressure,
maximum Von Mises stress and maximum Tresca stress. Application of the Hertz’s theory is important here to determine
the appropriate thickness of the finer-mesh part and the depth at which these maximum stresses are reached.

(iii) Investigation of the effects of proximity of the boundary conditions on bending and contact stresses and on the function
of loaded transmission errors through consideration of models with one, three, five, and seven pairs of teeth. The
possibility of using a whole gear drive model is also presented and compared with the previous models.

Application of the Hertz’s theory to analyze contact stresses in gear drives has several limitations. A hertzian contact
requires a gap between the contacting surfaces that can be modeled through a function of typeh(x,y) = cxx2+ cyy2. Here,
the gaph can be stated as a function of two independent variablesx andy with coefficientscx andcy that depend on the
relative curvatures of pinion and gear tooth surfaces [15].This is the main reason why a spiral bevel gear drive with double
crowned tooth surfaces is considered here. Contact stresses provided by the proposed model are compared to Hertz stresses.
The Hertz’s theory has been applied in the analysis of spur gear drives in [16, 17]. The same ideas are extended here for
the case of a spiral bevel gear drive as it will be shown in the numerical example. Although the implemented finite element
model is applied to a spiral bevel gear drive, the same ideas can be easily extended to other types of gear drives.

2 Development of the finite element model
The finite element model has, for each tooth, two different parts that are meshed independently, the contact-fillet region

for a finer mesh, and the tooth body region for a coarse mesh (see Figs. 1 and 2). Such meshes are generated automatically as a
function of the point coordinates that are determined from application of gear theory and following the prescribed generating
motions of each gear and its corresponding tool [18]. The finite element model is developed through the following stages:

(1) Determination of point coordinates on the gear tooth surfaces for the definition of the tooth body mesh (see Fig. 1(a)).
The point coordinates are determined from application of gear theory as a function of the number of elements in longitu-
dinal, profile, and fillet directions. Quadratic elements are considered here in order to capture the longitudinal curvature
of the gear (as in helical, spiral bevel or hypoid gears) withfew elements along longitudinal direction. A reduced number
of finite elements is considered in the profile and in the filletdirections (4 elements in profile direction and 2 elements
in the fillet direction). The obtained points are used as a reference to define the designed volume to be meshed.

(2) The designed volume is divided considering auxiliary surfaces from (1) to (6) and an intermediate surfaceS as it is illus-
trated in Fig. 1(b). These surfaces are obtained from intermediate points, which are derived from the point coordinates
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mentioned above. Intermediate surfaceS separates the tooth body region from the contact-fillet region and is defined
parallel to the contact and fillet tooth surfaces by an amountequal toctmot . Here,ct is a coefficient andmot is the module
(the outer transverse module for a spiral or an hypoid type) of the gear drive.
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Fig. 1. For mesh definition of tooth body region: (a) designed volume with obtained points from application of gear theory, (b) auxiliary

surfaces and intermediate surface S, (c) nodes, and (d) finite elements.

(3) Node coordinates are determined in the tooth body regionfrom the obtained point coordinates considering the auxiliary
surfaces and the intermediate surfaceS (see Fig. 1(c)). Not all the point coordinates are used for the determination of
the nodes since quadratic elements are considered here.

(4) Finite elements are built from the obtained nodes following the numbering for node connectivity shown in Fig. 1(d).
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(5) New point coordinates are determined on the gear tooth surfaces for the definition of the contact-fillet region mesh and
as a function of the number of elements in longitudinal, profile and fillet directions (see Fig. 2(a)). A number of layers
of elements is also defined (3 layers of elements are shown in Fig. 2(b)) between the tooth surfaces and the intermediate
surfaceS. Nodes and elements are automatically derived from the prescribed number of elements for this mesh and
independently of the number of elements defined for the toothbody mesh. Here, linear o quadratic elements can be
considered.
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Fig. 2. For mesh definition of contact-fillet region: (a) designed volume with obtained points from application of gear theory, and (b) nodes

and finite elements.

(6) A master surface is defined on the tooth body mesh and a slave surface is defined on the contact-fillet region mesh for
each gear tooth of the model (see Fig. 3). The master surface is conformed by those nodes of the tooth body mesh
that belong to the intermediate surfaceS. The slave surface is conformed by those nodes that belong tothe faces of the
elements of the contact-fillet region mesh that are closer tosurfaceS. A tie-surface constraint is defined between the
master surface and the slave surface, which means that the nodes of the slave surface are tied to the master surface. Such a
constraint allows independency in the definitions of the twodescribed meshes and assures transmission of displacements
and loads between the two meshes [19].

(7) Connection between several teeth of the finite element model is accomplished through the definition of new tie-surface
constraints. Figure 4 illustrates schematically the arrangement of slave and master surfaces for the connection of several
teeth in the finite element model. The scheme is focused, for the purpose of clarity, on a traverse section of the finite
element model, although this arrangement is valid along theface width of the gear. Some elements are calledmaster
elementsbecause they are used to define a master surface. Some other elements are calledslave elementsbecause they
are used to define a slave surface. Some other elements are calledmaster/slave elementsbecause one of its faces is used
to be part of a master surface and some other face is used to be part of a slave surface. Figure 4 illustrates the connection
of three teeth and the same ideas can be applied to connect fiveor seven teeth. For the example illustrated in Fig 4, slave
surfacess11 ands12 are tied to master surfacem1, whereas slave surfacess21 ands22 are tied to master surfacem2. The
arrangement has been established taking into account that anode of a slave surface can be tied to just one master surface
and a node of a master surface can be at the same time slave of another master surface [19].

(8) A node-based surface is defined on the inner part and on both sides of the gear rim to conform a rigid surface (see Fig. 4).
Boundary conditions of the gear model are applied to this surface. Since the nodes of this surface will have restrictions
on their degrees of freedom, they cannot belong to a slave surface but can be part of a master surface [19]. A 3D view
of the rigid surface is shown in Fig. 5(a) for a three-tooth model. The rigid surface is rigidly connected to a reference
node that is defined on the axis of rotation of the gear. All thedegrees of freedom of the reference node govern now the
degrees of freedom of the rigid surface. In the case of the pinion, all the degrees of freedom of the reference node are
constrained but the rotation around the gear axis is released. A torque around the gear axis of rotation is then applied
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Fig. 3. For illustration of the tie-surface constraint between the nodes of the slave surface and the master surface for one tooth of the gear

model.
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Fig. 4. Scheme in a transverse section at the heel of the gear teeth for illustration of: (i) slave and master surfaces to connect several teeth,

and (ii) rigid surface for application of boundary conditions.

to this reference node and therefore to the rigid surface. Inthe case of the driven gear, the reference node is blocked at
each contact position obtained from the application a toothcontact analysis algorithm.

(9) The possibility of a model comprising all the teeth of thegear drive is considered as well. In this case, those teeth that
will not come into contact during the analysis of the cycle ofmeshing are modeled with just six quadratic elements as
it is illustrated in Fig. 5(b). The connection between theseteeth and the teeth that will come into contact during the
analysis of the cycle of meshing is arranged through master-slave surface constraints. The connection between each
tooth of this group of teeth that will not come into contact isarranged by using common nodes in the gear rim region.
Regarding the rigid surface, it is conformed by those nodes that are in the inner part of the gear rim and do not belong
to any slave surface.

(10) The contact formulation between pinion and gear is defined through an algorithm based on the interactions between a
master surface and a slave surface [19]. In a model defined with n pairs of contacting teeth,n = {1,3,5,7}, n master-
slave surface interactions are defined. The master surfacesare considered usually at the driven gear since the curvatures
of its tooth surfaces are lower than the curvatures of the pinion tooth surfaces.
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Fig. 5. For illustration of the rigid surface in, (a) a three-tooth finite element model and, (b) a all-tooth finite element model, of the pinion.
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3 Numerical examples
A spiral bevel gear drive with localized bearing contact is considered here for the purpose of illustration of the features

of the proposed finite element model. The basic data of the transmission is shown in Table 1 whereas the blank data are
illustrated in Table 2. A generating face-hobbing process based on the cyclo-palloidc© method [20] has been considered here
for the localization of the bearing contact. Details of the mathematical model of this method and the involved variablesand
nomenclature can be found in [21]. Additional cutter data and basic machine-tool settings are shown in Table 3 for three
cases of design. Each case of design is provided with a different amount of crowning by considering different values for the
cutter radiirci andrco (see [21]). The third case of design is provided as well with profile crowning by considering parabolic
profiles with a parabola coefficientap = 0.0015 mm−1.

Table 1. Basic transmission and cutter data.

Data Value

Reference gear ratio 1.5

Shaft angle [degrees] 90.0

Input power [KW] 60.0

Pinion speed [rpm] 1500.0

AGMA quality number 8

Cutter radius [mm] 55.0

Number of blade groups 5

Table 2. Blank data.

Blank Data Pinion Gear

Tooth number N1 = 20 N2 = 31

Pitch angle [degrees] γ1 = 32.829 γ2 = 57.171

Spiral angle [degrees] ψm = 35.0

Hand of spiral left-hand right-hand

Outer transverse module [mm] mot = 4.566

Mean normal module [mm] mmn = 3.163

Mean cone distance [mm] Am = 71.223

Face width [mm] Fw = 26.0

Outer addendum [mm] a01= 3.163 a02= 3.163

Outer dedendum [mm] b01= 3.795 b02= 3.795

Face cone angle [degrees] γF1 = 32.829 γF2 = 57.171

Root cone angle [degrees] γR1 = 32.829 γR2 = 57.171

Minimum normal backlash [mm] B = 0,150

Mean normal chordal addendum [mm] ac1 = 3.230 ac2 = 3.191

Mean normal chordal tooth thickness [mm] tn1 = 4.907 tn2 = 4.909

The obtained gear drive and the contact patterns for the three designs are illustrated in Fig. 6. These results are based
on the application of a TCA algorithm applied before in [22] and based in [23]. Here, the gear tooth surfaces are assumed
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Table 3. Additional cutter data and basic machine-tool settings for three cases of design.

Case 1 Case 2 Case 3

Data Pinion Gear Pinion Gear Pinion Gear

Reference radius inner blades,rci [mm] 55.0 55.0 55.0 55.0 55.0 55.0

Reference radius outer blades,rco [mm] 57.4 57.4 56.4 56.4 55.4 55.4

Parabola coef. inner blades,api [mm−1] 0.0 0.0 0.0 0.0 0.0015 0.0

Parabola coef. outer blades,apo [mm−1] 0.0 0.0 0.0 0.0 0.0015 0.0

Slope angle,ν [degrees] 8.017 8.001 8.170 8.154 8.327 8.311

Inner machine distance,Mdi [mm] 67.400 67.386 67.538 67.524 67.680 67.666

Inner cradle angle,q2i [degrees] 46.652 46.656 46.609 46.614 46.566 46.570

Outer machine distance,Mdo [mm] 67.930 67.917 67.837 67.823 67.763 67.748

Outer cradle angle,q2o [degrees] 48.653 48.658 47.779 47.784 46.901 46.905

Machine center to back,∆XD [mm] 0.0 0.0 0.0 0.0 0.0 0.0

Blank offset,∆Em [mm] 0.0 0.0 0.0 0.0 0.0 0.0

Sliding base,∆XB [mm] 0.0 0.0 0.0 0.0 0.0 0.0

Machine root angle,γm [degrees] 32.829 57.171 32.829 57.171 32.829 57.171

Gear-to-cradle roll ratio,mgc 1.844587 1.190056 1.844587 1.190056 1.844587 1.190056

Gear-to-blade roll ratio,mgb 0.242516 0.156160 0.247119 0.159126 0.251850 0.162174

to behave as rigid surfaces. A marking compound thickness of0.0065 mm is considered to determine the size of the contact
ellipses. The algorithm is based on minimization of the distances between the rigid surfaces and works properly for line,
point or edge contacts.

In order to validate the proposed finite element model, the following subsections are considered:

(i) Application of the Hertz’s theory.
(ii) Validation of the proposed finite element model by comparing contact stresses and Hertz stresses.
(iii) Observation of convergency for bending stresses.
(iv) Investigation of contact and bending stresses along the cycle of meshing.
(v) Investigation of transmission errors along the cycle ofmeshing.

3.1 Application of the Hertz’s theory
In order to validate the proposed finite element model in terms of contact behaviour, the Hertz’s theory was applied to

the three cases of design. The same ideas that were developedin [17] for implementation of the Hertz’s theory in a spur gear
drive with double crowned tooth surfaces, are considered here. For the Hertz’s hypothesis [15] to be satisfied, the bearing
contact needs to be localized inside the tooth surfaces and to be elliptical, as it occurs for the three cases of design shown in
Fig. 6.

The implemented algorithm for Hertz’s analysis is similar to the one implemented in [17] for a single point of contact. A
mean contact position is chosen along the cycle of meshing. The whole load is considered to be shared between just one pair
of contacting teeth. This makes easier the application of the Hertz’s theory to a gear drive and is enough to test locally the
contact behaviour of the proposed finite element model. The sharing of the load between several pairs of teeth is considered
later, from Subsection 3.3 on.

The results provided by the implemented algorithm to the three cases of design are illustrated in Table 4. The chosen
contact position is the number 12 of a total of 21 contact positions. Principal curvatures are computed numerically from
an interpolated surface that is built upon a grid of 41×41 points that belong to a reference surface. This referencesurface
represents the gap between pinion and gear tooth surfaces atthe chosen contact position (more details about the applied
algorithm can be view in [17]). Complete and incomplete elliptical integrals of first kind and second kind [15] have been
computed numerically by Simpson 1/3 rule [24]. The gear materials are steel with elastic modulesE1 = E2 = 210000 MPa
and Poisson’s coefficientsν1 = ν2 = 0.3. The considered applied torque is 380.0 Nm (see Table 1).

The evolutions of principal stresses and effective Mises and Tresca stresses underneath the contacting surfaces at the
mean contact position 12 are illustrated in Fig. 7 for case 2 of design. The depth of maximum Mises stresses occurs at 0.71b
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Fig. 6. Gear drive model and contact patterns corresponding to three cases of design.

whereas the depth of maximum Tresca stress occurs at 0.78b.
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Fig. 7. Evolution of stresses underneath the contacting surfaces for case 2 of design at mean contact position 12 obtained from application

of Hertz’s theory.

3.2 Validation of the proposed finite element model by comparing contact stresses and Hertz stresses
A number of finite element models with just one pair of contacting teeth are built following the procedure described in

Section 2 for case of design 2 (see Fig. 8(a)). A coefficientct = 0.2 (see Fig. 1(b)) and three layers of quadratic elements in
the contact-fillet region (see Fig. 2) are considered for these models. The models are built considering different number of
elements in profile (np) and longitudinal (nl) directions. Figure 8(b) shows that convergency of the results occur for contact
areaAc, maximum contact pressurepo, maximum Mises stressσMo , and maximum Tresca stressσTo as the numbernp of
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Table 4. Results from application of the algorithm based on the Hertz’s theory.

Result Case 1 Case 2 Case 3

Major principal curvature radius,RI [mm] 1623.5 2779.7 3731.2

Minor principal curvature radius,RII [mm] 15.8 15.8 15.4

Equivalent applied force at the contact position,F [N] 12781.9 12781.9 12735.3

Equivalent elastic modulus,E∗ [MPa] 115384.6

Major semi-length of contact ellipse, a [mm] 8.610 10.570 11.813

Minor semi-length of contact ellipse, b [mm] 0.439 0.397 0.370

Contact area,Ac [mm2] 11.876 13.179 13.737

Maximum contact pressure,po [MPa] 1614.4 1454.7 1390.6

Maximum Mises stress,σMo [MPa] 908.0 816.4 779.6

Maximum Tresca stress,σTo [MPa] 991.6 889.7 848.6

Depth maximum Mises stress,dMo [mm] 0.312 0.282 0.263

Depth maximum Tresca stress,dTo [mm] 0.342 0.310 0.289

elements is increased (all these models have 64 elements in longitudinal direction and 16 elements in the fillet direction and
are named as models 64× np ×16). The same observation can be done when the numbernl is increased (see Fig. 8(c) for
models with 48 elements in profile direction and 16 elements in the fillet direction, which are named as modelsnl ×48×16).
It is observed that increasing the numbernp has a larger influence in the convergency of the results than increasing the
numbernl . It is observed as well that the model 64×48×16 provide similar results to the ones obtained by using models
with a finer mesh.

Models 64× 48× 16 are built considering different values of coefficientct and either linear or quadratic elements.
Figure 9 shows the contact pressure distribution on the pinion tooth surface for case 2 of design withct = 0.2 andct = 0.125.
Here, 3 layers of quadratic elements are considered in the contact-fillet region mesh. Evolution of maximum contact pressure
and contact area is illustrated in Figure 10 considering several values of coefficientct . It is observed that a very thin layer in
the contact-fillet region mesh is accompanied by high valuesof contact pressures. However, an increment in the coefficient
ct leads to an approximation of the results to the Hertz results. Similar conclusions can be observed as well for cases 1
and 3 of design. A thickness of the contact-fillet region about ct = 2b/mot or ct = 2.5b/mot is favorable to get maximum
contact pressures with relative errors below the 5% respectto the maximum contact pressure obtained in the Hertz analysis.
If the contact-fillet region is very thin and the intermediate surfaceS (see Fig. 1) is very close to the contacting surface, the
deformation of the contact-fillet region mesh leads to an uneven distribution of contact pressure as it is shown in Fig. 9(b).

The proposed model can capture the maximum value of Mises or Tresca stress underneath the contacting surfaces.
Figure 11(a) shows in detail the maximum Mises stress for case 2 of design when 3 layers of quadratic elements are consid-
ered. A cut section in the contact-fillet region mesh allows the stress distribution to be visualized inside the contact model.
Figures 11(b) and (c) shows the variation of Mises and Trescastresses when different coefficientsct and types of elements
(linear o quadratic) are considered. The represented stresses are extrapolated values at the nodes with an average threshold of
75% [19]. The results show that maximum Mises and Tresca stresses approach the Hertz result as coefficientct is increased.
However, the results are not so close to the Hertz results as the maximum contact pressures are.

3.3 Observation of convergency for bending stresses
Bending stresses are evaluated considering the major principal stressσ1 in the fillet of the middle tooth. Validation

of the finite element model for bending stresses is executed through observation of convergency of the results at a given
contact position. Figure 12 shows that, indeed, convergency occurs either for linear elements or quadratic elements when
the number of elements in the fillet directionn f is increased. Case 2 of design is considered here at contact position number
12. A three-tooth model allows the boundary conditions of the rigid surface to be far enough from the fillet area where
stresses are obtained. Three types of elements in the contact-fillet region are considered (see [19]): (i) C3D8 elements(linear
elements with eight nodes), (ii) C3D20 elements (quadraticelements with 20 nodes), and (iii) C3D8I (linear elements with
8 nodes and incompatible modes of deformation to improve itsbending behaviour). A difference about 40 MPa is observed
between elements C3D8 and C3D20 whenn f = 20, which represents approximately a 10% of relative error.However,
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comparing elements C3D8I with elements C3D20, the relativeerror is reduced below 0.5% whenn f = 20. Some more
models considering elements C3D8I withn f = 24 andn f = 28 are analyzed to prove that convergency occurs as well for
this type of element.

3.4 Investigation of contact and bending stresses along thecycle of meshing
Case 3 of design is considered for investigation of contact and bending stresses along the cycle of meshing. This design is

provided with an adjusted contact pattern in diagonal direction (see Fig. 6) and a parabolic function of unloaded transmission
errors (see below). Two cycles of meshing are analyzed through 21 contact positions by considering a tooth contact analysis
algorithm where three pairs of contacting teeth are taken into account. Since maximum contact stresses (contact pressure,
Mises stress and Tresca stress) are obtained in the contact region mesh of the whole model, periodicity of the evolution of
these variables along the two cycles of meshing is expected.Maximum major principal stress for evaluation of the bending
behaviour of the gear drive is measured at the fillet region mesh of the middle tooth for each model along the 21 contact
positions.

The finite element models are built with a mesh 64×48×16 considering either linear elements (C3D8 and C3D8I) or
quadratic elements (C3D20) for the contact-fillet region mesh, and quadratic elements (C3D20) for the body region mesh.
Models with three pairs of teeth, five pairs, and seven pairs,are built. Their corresponding counterparts considering the
same number of contacting teeth and all the other teeth of thegear drive are built as well (these models are identified with
the adjective complete). The models are built with a coefficientct = 0.25 and three layers of elements in the contact-fillet
region. Figure 13 shows the finite element model and its corresponding counterpart when five pairs of contacting teeth are
considered. The rigid surfaces are defined for each type of model and for each gear member as it is illustrated in Fig. 5 for
the pinion member.

Figures 14(a) and (b) show the evolutions of maximum contactpressurepo and maximum major principal stressσ1o ,
respectively, along two cycles of meshing and considering the three types of elements, mentioned above, for the contact-fillet
region mesh. A three tooth pair model is considered here for the purpose of comparison of the results that the three types of
elements provide. Results ofpo are obtained, in this example, just at the middle pair of contacting teeth (pair 0). Contact and
bending stresses are illustrated in Fig. 14(c) in a three teeth pinion model for contact position 18. Figure 14(a) shows that the
three types of elements provide similar values ofpo from contact position 1 to contact position 15. However, it is observed
larger values ofpo for the model with elements C3D20 from contact position 16 tocontact position 21 (see shaded area). In
this part of the cycle of meshing, a truncation of the contactellipse occurs and edge contact appears at the middle tooth pair
(as it can be visualized in Fig. 14(c)). Although it is expected an increment of contact stresses for this circumstance, local
deformations may lead to a determined increment of the stresses. This increment may not be accurately determined with an
approach that is just based on an elastic behaviour of the materials as the one that this work is based on. However, it can be
drawn that elements C3D20 provide much higher values ofpo when edge contact occurs than elements C3D8 or C3D8I.

Regarding bending stresses and taking as a reference the results provided by a model with elements C3D20, Figure 14(b)
shows that a model with elements C3D8I provides closer values of σ1o than the ones provided by a model with elements
C3D8. In this case, the maximum relative error for a model with elements C3D8I isεmax = 3.2% whereas for a model with
elements C3D8 isεmax = 10.2%.
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ct = 0.2 and 3 layers of quadratic elements, (b) maximum Mises, and (c) maximum Tresca for several values of coefficient ct , type of element

and number of layers.

Figure 15 shows the evolution ofpo along two cycles of meshing, evaluated at each contact pair,for models with three
and five pairs of contacting teeth and for its corresponding complete models. Linear elements C3D8I are used here for
the contact-fillet region mesh whereas elements C3D20 are used for the body region mesh. The area below the curve that
describes the evolution of maximumpo is shaded in order to highlight its grade of periodicity. Forthis purpose, the maximum
values ofpo at contact positions 1, 11, and 21, are outlined as well. Pairs of contacting teeth are enumerated according to
Fig. 13(a). It is observed an improvement of the periodicityin the evolution ofpo as the number of pairs of contacting teeth
is increased from three to five (compare Figs. 15(a) and (c)),since pairs +2 and -2 come into contact when five pairs of
contacting teeth are considered. An improvement of the periodicity is also observed for a complete model in comparison
with its corresponding counterpart (compare Figs. 15(a) and (b) or Figs. 15(c) and (d)). The boundary conditions imposed
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Fig. 12. For illustration of convergency of maximum major principal stress σ1o in the fillet region of the middle tooth for several values of the

number of elements in the fillet direction n f and different types of elements.

by the rigid surface in a complete model (see Fig. 5(b)) provide an improvement of the periodicity ofpo evolution respect to
the boundary conditions imposed by the rigid surface in a non-complete model (see Fig. 5(a)). However, this improvement
is not so important as the improvement when increasing the number of contacting teeth. The results that are obtained in
models with seven pairs of contacting teeth are very similarto those obtained through application of models with five pairs
of contacting teeth, and are not illustrated here.

Regarding bending stresses, since maximum major principalstressσ1o is measured at the middle tooth of the gear model,
no important differences are observed between consideringa three tooth pair model, a five tooth pair model, or a seven tooth
pair model.

3.5 Investigation of transmission errors along the cycle ofmeshing
Case 3 of design is provided with a parabolic function of transmission errors. This function can be obtained from

application of a TCA algorithm (see [21]) and is called function of unloaded transmission errors, since no load is still applied.
A function of loaded transmission errors can be then obtained through the determination of the rotational angle of the pinion
reference node, at each contact position, when a torque is applied to the pinion model. Such a rotational angle counts for
the elastic deformations of the gear tooth surfaces when theload is applied. The function of total transmission errors is then
obtained as a sum of both previous mentioned functions. Details of derivation of the function of loaded transmission errors
and total transmission errors can be found in [8] with a different finite element model.

Figure 16 shows the functions of unloaded, loaded, and totaltransmission errors, for the proposed models with three,
five, and seven pairs of contacting teeth, and their corresponding counterpart complete models. Elements C3D8I at the
contact-fillet region mesh and elements C3D20 at the body region mesh are considered here. The function of unloaded
transmission errors is the same in all the graphs illustrated in Fig. 16 since the same case of design is considered. The area
below the function of total transmission errors is shaded tohighlight the periodicity of this function. For this purpose, the
maximum and minimum values of the function of total transmission errors are outlined as well through dashed lines. Is is
observed an improvement of the periodicity of the function of total transmission errors as the number of contacting teeth is

14



pinion axis

reference node
torque

gear axis

reference node

(a)

(b)

reference node

gear axis

reference
node

torque

gear model

pinion model

gear model

pinion model pinion axis

pair 0
pair +1

pair +2

pair -1

pair -2

Fig. 13. Finite element models based on (a) five pairs of contacting teeth (5 tooth pair model) and (b) five pairs of contacting teeth and all

the other teeth of the gear drive (5 tooth pair complete model).

15



p
o (MPa) σ1o (MPa)

1 3 5 7 9 11 13 15 17 19 21 1 3 5 7 9 11 13 15 17 19 21
Contact position Contact position

0

400

800

1200

1600

0

100

200

300

400

1688 MPa

1275 MPa 1281 MPa

CPRESS

+0
+281
+563
+844
+1126
+1407
+1688

(MPa)
1688 MPa

(Avg: 75%)
S, Max. Principal

+39
+78
+118
+158
+197
+237

+0

(MPa)

p =
o

σ  =1o
237 MPa

237 MPa

373 MPa361 MPa

335 MPa

truncation of contact ellipse

C3D8I C3D8C3D20

contact position 18

C3D20

(a) (b)

(c)

Fig. 14. Maximum contact pressures po and maximum major principal stresses σ1o along two cycles of meshing at the middle tooth of a 3

tooth pair model for illustration of different behaviour of element types C3D20, C3D8I, and C3D8.

increased from three to seven (compare Figs. 16(a), (c), and(e)). It is observed as well that the periodicity of the function of
total transmission errors obtained in a complete model is better respect to the one obtained in its corresponding counterpart
model (compare Figs. 16(a) and (b) for three pairs of contacting teeth, or Figs. 16(c) and (d) for five pairs of contacting
teeth). However, no differences in the periodicity of the function of total transmission errors between a complete model and
its corresponding counterpart model are observed when seven pairs of contacting teeth are considered (compare Figs. 16(e)
and (f)).

4 Conclusions
Based on the performed research and results obtained, the following conclusions can be drawn:

(1) A new finite element model based on the application of tie-surface constraints is proposed and validated in terms of
contact and bending stresses.

(2) The proposed model is able to capture the maximum value ofeffective Mises stress and effective Tresca stress underneath
the contacting surfaces. However, these values are overestimated respect to the values obtained from application of the
Hertz’s theory.

(3) Maximum contact pressure values are in good agreement with the values obtained from the Hertz’s theory. Some
recommendations are given to establish the thickness of thecontact-fillet region in the proposed finite element model.

(4) Quadratic and linear elements are compared in terms of maximum contact pressure and maximum major principal
stress for evaluation of contact and bending stresses. Bothtypes of elements provide similar maximum contact pressure
values, although quadratic elements show much higher values when edge contact occurs. Linear elements with improved
bending behavior show small relative errors of maximum major principal stress, at the fillet, when compared to quadratic
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elements.
(5) The effect of the rigid surfaces on the evolution of maximum contact pressure, maximum major principal stress, and total

transmission errors, is investigated for models with three, five, and seven tooth pairs, and their corresponding counterpart
models where all the teeth of the gear drive are considered. The results show that a three tooth pair model is enough
for evaluation of the maximum major principal stress, in thefillet of the middle tooth, along the cycle of meshing. The
results show as well that the boundary conditions provided by the rigid surface in a five and a seven tooth pair model
are far enough from the contact areas to provide, respectively, good periodicity of maximum contact pressure and total
transmission errors, making unnecessary the use of competemodels as long as other effects as web thickness or web
location are not investigated.
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