Show simple item record

dc.contributor.authorLegaz Aparicio, Alvar Ginés 
dc.date.accessioned2020-01-15T11:48:52Z
dc.date.available2020-01-15T11:48:52Z
dc.date.issued2019
dc.descriptionMención Europeo / Mención Internacional: Concedido.es_ES
dc.description.abstract[SPA] Esta tesis doctoral se presenta bajo la modalidad de compendio de publicaciones. En las últimas décadas, la estimación de orientación se ha convertido en una tarea clave del procesado de imagen, dada su capacidad para extraer características de bajo nivel y su aplicación en el análisis de datos. Existen un gran número de aplicaciones donde la estimación de orientación juega un papel fundamental como son: el análisis de huellas dactilares, extracción de puntos característicos, bifurcaciones, esquinas o intersecciones, filtrado adaptativo o seguimiento de objetos, entre otras. Sin embargo, con el paso del tiempo han aparecido diferentes problemas asociados a la estimación de orientación que pueden complicar este proceso. Los más importantes a destacar son los siguientes: las limitaciones que presentan muchos de los métodos de estimación en estructuras complejas, por ejemplo, estructuras con varias orientaciones asociadas, el incremento de la complejidad computacional de los métodos más modernos o la dependencia de éstos a solo unas determinadas aplicaciones. Resulta en estos momentos, por tanto, una tarea clave conseguir métodos de estimación que sean lo más globales y genéricos posibles, en otras palabras, lo más independientes del tipo de imagen con la que se trabaje y del campo de aplicación. En esta Tesis doctoral, en primer lugar, se aborda una revisión de los conceptos más importantes de la estimación de orientación, como es el concepto de estructura, orientación y sus propiedades principales. También se describen los métodos de estimación de orientaciones más importantes: tensor estructural, bancos de filtros, gradiente al cuadrado promediado, etc. Y las aplicaciones más importantes como la detección de texturas, extracción de características, análisis de huellas dactilares, filtrado variante o seguimiento de objetos, entre otras. Las contribuciones principales a esta Tesis son dos. En primer lugar, la propuesta de un marco de trabajo (de estimación de orientaciones) capaz de sistematizar el proceso de estimación de orientaciones, independientemente del tipo de estructuras o el tipo de aplicación. El marco propuesto está basado en una de las técnicas de estimación de orientación más usadas, los bancos de filtros. Durante este trabajo, éstos han sido probados en multitud de escenarios mientras se consideraban diferentes familias de filtros para su aplicación. En segundo lugar, se abordan casos prácticos de aplicación del marco de trabajo propuesto con el objetivo de mostrar sus excelentes capacidades en aplicaciones muy dispares, mostrando su potencial en multitud de posibilidades. Dado que el método de presentación de la presente Tesis doctoral es mediante un compendio de artículos, la organización de esta memoria constará de un primer capítulo de introducción y estado del arte. Seguidamente se mostrarán, de forma coherente y organizada, los artículos con los resultados obtenidos durante el periodo de investigación de la Tesis, con una introducción para cada uno de los artículos incluidos en este compendio. Finalmente, el capítulo de conclusiones y trabajo futuro cierra la Tesis.es_ES
dc.description.abstract[ENG] This doctoral dissertation has been presented in the form of thesis by publication. In the last decades, image orientation estimation has become in a fundamental task of image processing, due to its ability to extract low level features and its application to data analysis. There are a wide number of applications where the image orientation estimation plays and important role, some of these are: fingerprint analysis, feature extractions such as bifurcation, junction and corner, adaptive filtering or tracking applications. However, with the pass of time, different problems related to orientation estimation have appeared and they can complicate this process. The most important problems to highlight are: difficult of a wide number of methods to estimate the orientation of complex object structures, for example, structures with multiple orientations associated, high computational cost of modern methods or dependence on the application framework. Therefore, nowadays, the obtention of global and generics methods, in other words, methods as independent as possible from the image and the application, has become in a important task. In this Thesis, firstly, a review of main concepts of image orientation have been carried out, such as the concept of structure, orientation and their main properties. The most important methods have been described, as e.g., structural tensor, bank of filters, average square gradient, etc. And the most important applications based on image orientation estimation as texture analysis, feature extraction, fingerprint analysis, object tracking and space variant filtering, among others. The main contributions to this Thesis are two. First one is the proposal of a new framework for image orientation estimation, which can systematize this process, making it independent of image type and application. The proposed framework is based on one of the most used estimation orientation techniques, the bank of filters. Throughout this work, it have been tested in a wide variety of scenarios, considering different families of filters for their application. Secondly, the proposed framework has been evaluated in practical applications to show its ability and potential. This Thesis has been carried out by the method of compendium of publications, it has been organized as follows. Chapter one shows an introduction and a review of the state of art. Chapter two shows the journal papers and other contributions done during the research period of this Thesis. Finally, Chapter three shows the conclusion and future work.en
dc.description.sponsorshipEl trabajo de esta Tesis ha estado financiado parcialmente por el Ministerio de Economía, Industria y Competitividad (Proyecto PI17/00771) y la Universidad Politécnica de Valencia - Instituto Interuniversitario de Investigación en Bioingeniería y Tecnología Orientada al Ser Humano. Labhuman- conjuntamente con la Universidad Politécnica de Cartagena (Proyectos 4106/15TIC y 3626/13TIC).es_ES
dc.description.tableofcontentsLos artículos y capítulos de libros que forman la tesis son los siguientes: Artículo 1: A.G. Legaz-Aparicio, R. Verdú-Monedero, J. Angulo, “Multiscale Estimation of Multiple Orientations based on Morphological Directional Openings”, Signal, Image and Video Processing, 2018, Accepted, (doi:10.1007/s11760-018-1276-y). ISI-JCR(2017): 1.643, Posición 163 de 260 (T2, Q3), cat ENGINEERING, ELECTRICAL & ELECTRONIC. Artículo 2: Álvar-Ginés Legaz-Aparicio, Rafael Verdú-Monedero, Juan Morales-Sanchez, Jorge Larrey- Ruiz, Jesús Angulo, “Detection of Retinal Vessel Bifurcation by Means of Multiple Orientation Estimation Based on Regularized Morphological Openings”. XIII Medierranean Confe-rence on Medical and Biological Engineering and Computing, Sevilla, 2013. Artículo 3: S. Morales, Á. Legaz-Aparicio, V. Naranjo, R. Verdú-Monedero, “Determination of Bifurcation Angles of the Retinal Vascular Tree through Multiple Orientation Estimation ba-sed on Regularized Morphological Openings”, International Conference on Bio-inspired Systems and Signal Processing (BIOSIGNALS 2015), Lisbon (Portugal), January 2015. Artículo 4: S. Morales, V. Naranjo, J. Angulo, A.G. Legaz-Aparicio, R. Verdú-Monedero, “Retinal network characterization through fundus image processing: signicant point identication on vessel centerline”, Signal Processing: Image Communication, Vol. 59, pp. 50-64, November 2017. ISI-JCR(2017): 2.073, Posición 118 de 260 (T2, Q2), cat ENGINEERING, ELECTRICAL & ELEC-TRONIC. Artículo 5: A.G. Legaz-Aparicio, R. Verdú-Monedero, K. Engan, “Noise Robust and Ro-tation Invariant Framework for Texture Analysis and Classification”, Applied Mathematics and Computation, Volume 335, pp. 124 a 132, October 2018. ISI-JCR(2017): 2.300, Posición 21 de 252 (T1, Q1), cat MATHEMATICS, APPLIED. Artículo 6: Álvar-Ginés Legaz-Aparicio, Rafael Verdú-Monedero, Jesús Angulo, “Adaptive spatially variant morphological filters based on a multiple orientation vector field”, Mathematical modelling in Engineering & Human Behaviour 2016. Artículo 7: A.G. Legaz-Aparicio, R. Verdú-Monedero, J. Angulo, “Adaptive morphological filters based on a multiple orientation vector field dependent on image local features”, Journal of Computational and Applied Mathematics, Vol. 330, pp. 965-981, March 2018. ISI-JCR(2017): 1.632, Posición 49 de 252 (T1, Q1), cat MATHEMATICS, APPLIED.es_ES
dc.formatapplication/pdfes_ES
dc.language.isospaes_ES
dc.publisherÁlvar Ginés Legaz Aparicioes_ES
dc.relationhttp://hdl.handle.net/10317/8319es_ES
dc.relationhttp://hdl.handle.net/10317/8335es_ES
dc.relationhttp://hdl.handle.net/10317/8334es_ES
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 España*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.titleEstimación de la orientación múltiple mediante un banco de filtros y su uso en el desarrollo de aplicaciones de procesado de imagenes_ES
dc.typeinfo:eu-repo/semantics/doctoralThesises_ES
dc.subjectEstimación de orientaciones múltiples en imágeneses_ES
dc.subjectMorfología matemáticaes_ES
dc.subjectRegularizaciónes_ES
dc.subjectB-splineses_ES
dc.subjectAnalisis de texturases_ES
dc.subjectFiltrado variante en el espacioes_ES
dc.subjectExtracción de característicases_ES
dc.subject.otherTeoría de la Señal y las Comunicacioneses_ES
dc.contributor.advisorVerdú Monedero, Rafael 
dc.date.submitted2019-09-13
dc.identifier.urihttp://hdl.handle.net/10317/8312
dc.description.centroEscuela Internacional de Doctorado de la Universidad Politécnica de Cartagenaes_ES
dc.contributor.departmentTecnologías de la Información y las Comunicacioneses_ES
dc.identifier.doi10.31428/10317/8312
dc.rights.accessRightsinfo:eu-repo/semantics/embargoedAccesses_ES
dc.description.universityUniversidad Politécnica de Cartagenaes_ES
dc.subject.unesco2209.90 Tratamiento Digital. Imágeneses_ES
dc.description.programadoctoradoPrograma de Doctorado en Tecnologías de la Información y las Comunicaciones por la Universidad Politécnica de Cartagenaes_ES
dc.contributor.funderMinisterio de Economía, Industria y Competitividades_ES
dc.contributor.funderUniversidad Politécnica de Valenciaes_ES
dc.contributor.funderInstituto Interuniversitario de Investigacion en Bioingenieria y Tecnologia Orientada al Ser Humano (I3BH), LabHuman, Universidad Politécnica de Valenciaes_ES


Files in this item

This item appears in the following Collection(s)

Show simple item record

Atribución-NoComercial-SinDerivadas 3.0 España
Except where otherwise noted, this item's license is described as Atribución-NoComercial-SinDerivadas 3.0 España