Show simple item record

dc.contributor.authorMartínez Gil, José Gabriel 
dc.date.accessioned2018-04-11T15:44:51Z
dc.date.available2018-04-11T15:44:51Z
dc.date.issued2015-06-26
dc.description.abstract[SPA] Esta tesis doctoral se presenta bajo la modalidad de compendio de publicaciones. Es apoyado por 12 documentos, de los 27 en coautoría del candidato y publicados en diferentes revistas durante el desarrollo de esta tesis. Todos los documentos están indexados en el Journal Citation Reports (ISI-JCR). Los elementos seleccionados alcanzan 45 puntos de acuerdo con los reglamentos de la UPCT (Artículo 33 del Reglamento de estudios oficiales de máster y doctorado de la Universidad Politécnica de Cartagena, aprobado por el Consejo de Gobierno el 13 de abril de 2011 y modificado en Consejo de Gobierno el 11 de julio de 2012.), requiriendo un mínimo de 12 puntos para permitir la presentación de la tesis a través de un conjunto de publicaciones. Siguiendo esas regulaciones, esta tesis incluye: los objetivos de la tesis, el estado del arte, un resumen extendido para cada artículo (incluido el procedimiento experimental y los principales logros), una copia de cada trabajo seleccionado y las conclusiones generales.es_ES
dc.description.abstract[ENG] This thesis is presented through a set of publications. Designers and engineers have been dreaming for decades of motors sensing, by themselves, working and surrounding conditions, as biological muscles do originating proprioception. Here bilayer full polymeric artificial muscles were checked up to very high cathodic potential limits (-2.5 V) in aqueous solution by cyclic voltammetry. The electrochemical driven exchange of ions from the conducting polymer film, and the concomitant Faradaic bending movement of the muscle, takes place in the full studied potential range. The presence of trapped counterion after deep reduction was corroborated by EDX determinations giving quite high electronic conductivity to the device. The large bending movement was used as a tool to quantify the amount of water exchanged per reaction unit (exchanged electron or ion). The potential evolutions of self-supported films of conducting polymers or conducting polymers (polypyrrole, polyaniline) coating different microfibers, during its oxidation/reduction senses working mechanical, thermal, chemical or electrical variables. The evolution of the muscle potential from electrochemical artificial muscles based on electroactive materials such as intrinsically conducting polymers and driven by constant currents senses, while working, any variation of the mechanical (trailed mass, obstacles, pressure, strain or stress), thermal or chemical conditions of work. One physically uniform artificial muscle includes one electrochemical motor and several sensors working simultaneously under the same driving reaction. Actuating (current and charge) and sensing (potential and energy) magnitudes are present, simultaneously, in the only two connecting wires and can be read by the computer at any time. From basic polymeric, mechanical and electrochemical principles a physicochemical equation describing artificial proprioception has been developed. It includes and describes, simultaneously, the evolution of the muscle potential during actuation as a function of the motor characteristics (rate and sense of the movement, relative position, and required energy) and the working variables (temperature, electrolyte concentration, mechanical conditions and driving current). By changing working conditions experimental results overlap theoretical predictions. The ensemble computer-generator-muscle theoretical equation constitutes and describes artificial mechanical, thermal and chemical proprioception of the system. Proprioceptive tools and most intelligent zoomorphic or anthropomorphic soft robots can be envisaged.EN
dc.description.tableofcontentsEsta tesis doctoral se presenta bajo la modalidad de compendio de publicaciones. Está formada por un total de doce artículos: 1. Toribio F. Otero, Jose G. Martinez and Joaquin Arias-Pardilla. Biomimetic electrochemistry from conducting polymers. A review. Artificial muscles, smart membranes, smart drug delivery and computer/ neuron interfaces Electrochimica Acta, year 2012, volume 84, pages 112-128. (ISI-JCR IF: 4.086, Q1 in Electrochemistry). 2. Toribio F. Otero and Jose G. Martinez. Artificial Muscles: A Tool To Quantify Exchanged Solvent During Biomimetic Reactions Chemistry of Materials, year 2012, volume 24, pages 4093-4099. (IF=8.535, Q1 in ‘Materials science, Multidisciplinary’ and ‘Chemistry, Physical’). 3. Toribio F. Otero and Jose G. Martinez. Ionic exchanges, structural movements and driven reactions in conducting polymers from bending artificial muscles Sensors and Actuators B: Chemical, year 2014, volume 199, pages 27-30. (IF=3.840, Q1 in ‘Instruments & instrumentation’, ‘Chemistry, analytical’ and ‘Electrochemistry’). 4. Toribio F. Otero and Jose G. Martinez. Structural Electrochemistry: Conductivities and Ionic Content from Rising Reduced Polypyrrole Films Advanced Functional Materials, year 2014, volume 24, pages 1259-1264. (IF=10.439, Q1 in ‘Materials science, multidisciplinary’, ‘Nanoscience & nanotechnology’, ‘Physics, applied’, ‘Chemistry, multidisciplinary’, ‘Chemistry, physical’ and ‘Physics, condensed matter’). 5. Jose G. Martinez, Toribio F. Otero and Edwin W. H. Jager. Effect of the Electrolyte Concentration and Substrate on Conducting Polymer Actuators Langmuir, year 2014, volume 30, pages 3894-3904. (IF=4.384, Q1 in ‘Materials science, multidisciplinary’, ‘Chemistry, multidisciplinary’ and ‘Chemistry, physical’). 6. Toribio F. Otero, Juan J. Sanchez and Jose G. Martinez. Biomimetic Dual Sensing-Actuators Based on Conducting Polymers. Galvanostatic Theoretical Model for Actuators Sensing Temperature The Journal of Physical Chemistry B, year 2012, volume 116, pages 5279-5290. (IF=3.377, Q2 in ‘Chemistry, physical’). 7. Jose G. Martinez and Toribio F. Otero. Biomimetic Dual Sensing-Actuators: Theoretical Description. Sensing Electrolyte Concentration and Driving Current The Journal of Physical Chemistry B, year 2012, volume 116, pages 9223-9230. (IF=3.377, Q2 in ‘Chemistry, physical’). 8. Jose G. Martinez and Toribio F. Otero. Mechanical awareness from sensing artificial muscles: Experiments and modeling Sensors and Actuators B: Chemical, year 2014, volume 195, pages 365-372. (IF=3.840, Q1 in ‘Instruments & instrumentation’, ‘Chemistry, analytical’, and ‘Electrochemistry’). 9. Jose G. Martinez and Toribio F. Otero. Structural Electrochemistry. Chronopotentiometric Responses From Rising Compacted Polypyrrole Electrodes: Experiments and Model RSC Advances, year 2014, volume 4, pages 29139-29145. (IF=3.708, Q1 in ‘Chemistry, multidisciplinary’). 10. Toribio F. Otero and Jose G. Martinez. Physical and chemical awareness from sensing polymeric artificial muscles. Experiments and modeling Progress in Polymer Science, year 2014, DOI: 10.1016/ j.progpolymsci.2014.09.002. (IF=26.854, Q1 in ‘Polymer science’). 11. Yahya A. Ismail, Jose G. Martinez and Toribio F. Otero. Polyurethane microfibrous mat template polypyrrole: Preparation and biomimetic reactive sensing capabilities Journal of Electroanalytical Chemistry, year 2014, volume 719, pages 47-53. (IF=2.871, Q2 in ‘Chemistry, analytical’ and ‘Electrochemistry’). 12. Yahya A. Ismail, Jose G. Martinez and Toribio F. Otero. Fibroin/Polyaniline microfibrous mat. Preparation and electrochemical characterization as reactive sensor Electrochimica Acta, year 2014, volume 123, pages 501-510. (IF: 4.086, Q1 in ‘Electrochemistry’).es_ES
dc.formatapplication/pdfes_ES
dc.language.isoenges_ES
dc.publisherJosé Gabriel Martínez Giles_ES
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 España*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.titleConducting polymer actuators: from basic concepts to proprioceptive systemses_ES
dc.typeinfo:eu-repo/semantics/doctoralThesises_ES
dc.subject.otherQuímica-Físicaes_ES
dc.contributor.advisorFernández Otero, Toribio 
dc.date.submitted2015
dc.subjectElectroquímicaes_ES
dc.subjectMotores eléctricoses_ES
dc.subjectPropiedades de los materialeses_ES
dc.subjectPolymerses_ES
dc.subjectPolímeroses_ES
dc.identifier.urihttp://hdl.handle.net/10317/6808
dc.contributor.departmentArquitectura y Tecnología de la Edificaciónes_ES
dc.identifier.doi10.31428/10317/6808
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.description.universityUniversidad Politécnica de Cartagenaes_ES
dc.subject.unesco2210.05 Electroquímicaes_ES
dc.subject.unesco3312.08 Propiedades de Los Materialeses_ES
dc.subject.unesco2206.10 Polímeroses_ES
dc.description.programadoctoradoPrograma de doctorado de Electroquímica. Ciencia y Tecnologíaes_ES


Files in this item

This item appears in the following Collection(s)

Show simple item record

Atribución-NoComercial-SinDerivadas 3.0 España
Except where otherwise noted, this item's license is described as Atribución-NoComercial-SinDerivadas 3.0 España