Análisis de refuerzos trapezoidales para embarcaciones de recreo mediante elementos finitos.

ALUMNO:
JORDI BORONAT LLEDÓ

DIRECTOR DEL PROYECTO:
D. FRANCISCO BLASCO LLORET
Departamento de Tecnología Naval

Alicante, noviembre 2008
Capítulo 0

1- Introducción
 1.1- Introducción al proyecto
 1.2 - Fines del proyecto
 1.3 - Antecedentes

2 - Análisis de refuerzos trapezoidales

2.1 - Diseño
 2.1.1 - Elección del programa
 2.1.2 - Diseño y geometría de las piezas
 2.1.3 - Exportación de datos

2.2 - Análisis
 2.2.1 - El método de los elementos finitos
 2.2.2 - Programa de análisis mediante elementos finitos
 2.2.3 - Elección de los parámetros
 2.2.4 - Cálculo de las propiedades mecánicas de cada pieza
 2.2.5 - Análisis de las piezas por elementos finitos
 2.2.6 - Panel 1
 2.2.6 - Panel 2
 2.2.6 - Panel 3
 2.2.6 - Panel 4

3 - Conclusiones

3 - Posibles mejoras del refuerzo

4.1 - Anexo 1.1
 Artículo “Experiments on Top-Hat-Stiffened Panels of Fiber-reinforced-Plastic Boat Structures”

4.2 - Anexo 1.2
 Artículo “Finite Element Analysis of Top-Hat-Stiffened Panels of Fiber-Reinforced-Plastic Boat Structures”

4.3 - Anexo 2.1
 Características del laminado y propiedades mecánicas del panel 1.

4.4 - Anexo 2.2
 Características del laminado y propiedades mecánicas del panel 2.

4.5 - Anexo 2.3
 Características del laminado y propiedades mecánicas del panel 3.

4.6 - Anexo 2.4
 Características del laminado y propiedades mecánicas del panel 4.

4.7 - Anexo 3
 Cálculo del espesor del parche de los paneles 1, 3 y 4.

5 - Bibliografía
Capítulo 0

En los barcos construidos con materiales compuestos, existen distancias considerables entre cuadernas. Para evitar la flexión de las planchas así como para repartir los esfuerzos, se emplean unos refuerzos trapezoidales asociados a las planchas.

Dichos refuerzos presentan un problema de continuidad, ya que al haber intersecciones entre ellos, siempre hay un eje al que hay que darle continuidad. Esta discontinuidad implica que hay puntos en los que hay que prestar especial atención debido a la posibilidad de rotura con el consecuente colapso de la plancha.

En este proyecto se estudian con el mismo método de construcción, el de los composites, 4 paneles diferentes. El estudio se hace mediante elementos finitos pero se cuenta la ayuda de un artículo publicado anteriormente donde se ensayaron físicamente los mismos paneles que ahora se someten al programa de elementos finitos.

Finalmente se obtienen unas conclusiones y se intentan buscar futuras líneas de trabajo, para mejorar estos refuerzos.
1- Introducción

1.1-Introducción al proyecto

La construcción en composites, es un sector en auge desde hace unos años. La facilidad para modelar formas complejas, el bajo peso, la baja expansión térmica y unos altos valores de resistencia, fatiga y rigidez, así como una gran variedad de materiales en función de la aplicación, hace que los composites estén cada vez más introducidos en los diferentes ámbitos industriales (véase Fig.1).

Figura 1. Comparación de las distintas propiedades.

Su evolución ha sido notable a lo largo de su corta vida. Ciertos aspectos como su alto coste económico u otros como falta de conocimientos acerca de su uso y utilización, hizo que empezaran usándose únicamente en sectores punteros tales como la aeronáutica, donde el presupuesto alcanza unos valores muy altos. Sin embargo a medida que su uso se ha generalizado los costes han disminuido notablemente mientras que su uso se ha incrementado, como puede observarse en la figura 2.
Se usan en una gran variedad de sectores, pero la industria naval es una de las más importantes. Las carenas construidas con plástico reforzado con fibra de vidrio son muy comunes en barcos salvavidas, barcos de pasajeros y barcos de recreo, y de hecho hoy en día se pueden encontrar fácilmente barcos de 75 metros de eslora en fibra de vidrio. Pero uno de los mayores problemas que se encuentran al realizar este tipo de construcción, es el bajo módulo del material.

En el contexto estructural, uno de los mayores problemas a solucionar es esa deficiencia de rigidez creada por el bajo módulo de los composites. Esto se soluciona empleando un diseño adecuado, así como elementos auxiliares. Este tipo de elementos, son los refuerzos trapezoidales, ampliamente usados en la industria naval tanto por su resistencia a torsión como por su simplicidad para construirlos.

La tarea principal de los refuerzos trapezoidales, es transmitir y distribuir los esfuerzos cortantes que se producen entre las planchas y las cuadernas, así como soportar las cargas de flexión local debido a la presión hidrostática. Una configuración típica son
refuerzos trapezoidales cruzados entre sí (Fig. 3), los cuales juegan un papel importante en la estructura del casco.

Figura 3.-Refuerzos trapezoidales.

Cuando se construyen barcos siguiendo una norma, o amparándose en una sociedad de clasificaciones, su diseño está reglamentado así como los espesores y dimensiones en función del grosor de la plancha asociada. Pero cuando lo que queremos es investigar en nuevas formas entran en juego otras aplicaciones como pueden ser los programas CAD para el modelaje de piezas en 3D, o los programas de elementos finitos para analizar las piezas.
1.2 - Fines del proyecto

Con la realización de este proyecto se pretenden varios fines. Lo que se va a pretender en primer lugar es de analizar los refuerzos trapezoidales usados en la construcción de embarcaciones para llegar a obtener un proceso mediante el cual se pueda determinar analíticamente, y antes de construir la pieza, los esfuerzos a los que estará sometida. De la misma manera, esto nos proporcionará una herramienta muy útil a la hora de detectar las zonas de mayor esfuerzo prestando especial atención a dichas zonas en la posterior fase de fabricación del modelo físico. Ello va a evitar posibles problemas estructurales tales como pueden ser la deslaminación, la rotura, o en el caso más grave, el colapso de las planchas de fondo.

Otro fin será introducir al lector a los programas de elementos finitos, cada vez más usados en todos los ámbitos de la ingeniería por su aproximación a estados reales. Con ellos podemos obtener unos resultados de esfuerzos previos que aunque serán orientativos nos van a aproximar, con un cierto margen de error, a los esfuerzos a los que va a estar sometida la pieza en la vida real. Esto es una clara ventaja sobre el método de prueba-error o sobre el método de probetas para analizar y determinar los ensayos mecánicos.

Y aunque es posible que el análisis mediante dichos programas informáticos no evite realizar pruebas, en el caso de hacerlas el número de probetas será mucho menor ya que tendremos unos márgenes y unos resultados iniciales sobre los que empezar a trabajar.
1.3 - Antecedentes

Se ha investigado sobre refuerzos en diferentes formas y también sobre refuerzos trapezoidales. Buscando por la red podemos encontrar diferentes artículos, eso si prácticamente todos de autores extranjeros, sobre optimización de paneles, disposición de refuerzos, optimización de las formas de los refuerzos en función del peso del panel (Liu et al., 2007), etc. que están relacionados casi exclusivamente con el ámbito naval o aeronáutico, dos sectores donde los composites son usados para una gran variedad de funciones debido a las ventajas que ya se han comentado.

Todo ello nos hace ver que el sector de los materiales compuestos incluso siendo un sector minoritario, tiene gran relevancia., por lo que los antecedentes de este proyecto, podrían ser cada uno de los diferentes estudios realizados en esta materia, pero no es así ya que el antecedente mas relevante y sobre el que se basa el proyecto, es un estudio realizado por Eksik et al. (2007 a y b) y publicado en la revista Marine Technology, el cual expondré brevemente en las siguientes líneas.

El estudio que se hizo, constó básicamente de dos fases. La primera fue una reproducción física de los refuerzos típicos que se usan en el ámbito naval, y concretamente en las embarcaciones de recreo, los cuales una vez construidos se sometieron a ensayos. La segunda fase consistió en una modelización de los refuerzos mediante programas informáticos y un posterior análisis mediante elementos finitos.

Los dos artículos se han incluido en los anexos 1.1 y 1.2, pero aún así pasaremos seguidamente a describir las fases de tal forma que sea más comprensible todo el proceso. Primeramente se construyeron las diferentes planchas que se iban a someter a ensayos. Para ello el proceso fue el siguiente: se laminó la base del refuerzo y se dejo secar, dicha base tenía unas dimensiones de un metro por un metro (1m x 1m); una vez seca la plancha se colocaron sobre ella unos trapecios no estructurales de foam en ambas direcciones que harían de molde y se laminó sobre ellos, dando continuidad a uno de los ejes, el cual en nuestro caso será el eje “equis”; Finalmente y solo en el caso
que se dispusiera así, se laminaba un parche sobre la unión de ambos refuerzos consiguiendo un refuerzo extra.

Debido a los posibles errores de lectura, diferencias en el laminado, comportamientos no lineales, etc... y para tener una toma de datos más exacta, de cada plancha se realizaron varios ensayos por lo que el proceso anterior se aplicó a todos los modelos realizados.

Una vez obtenido el panel, se procedió a analizarlo. Para ello, los autores del artículo disponían de una estructura de un metro por un metro sobre la cual se colocaba plancha. Dicho armazón tenía en el centro un agujero de ochocientos por ochocientos cincuenta milímetros (800x850 mm) donde se colocaba una bolsa que contenía agua y que estaba unida a un circuito hidráulico mediante el cual se podía presurizar, con lo que la plancha recibía una presión uniforme. Finalmente sobre el armazón se colocaba un marco que fijándolo con unas tuercas creaba las condiciones de contorno fijas como si de un panel de un barco se tratase. A continuación, en la figura 4 se puede ver el sistema de presión.

Figura 4.- Sistema de presión y sus elementos.
Para analizar los paneles, se sometían a pequeños incrementos de presión mientras se inspeccionaba la pieza visualmente. Lo primero que se detectó fue un sonido característico que avisaba de la primera deslaminación. En este momento se anotaban los datos y se proseguía cargando el panel. Tras las sucesivas cargas, llegaba un momento donde el panel fallaba y se obtenía la rotura del mismo. En el instante en el que la pieza rompía, se anotaban los datos de flexión, así como carga de rotura y rigidez del panel.

Al haber distintas piezas con diferentes laminados, este estudio les sirvió para determinar cómo influye la cantidad de refuerzo en la rigidez del panel.

La segunda fase del estudio consistió en una modelización del refuerzo en un programa CAD y un posterior análisis con elementos finitos. El programa reprodujo un refuerzo ideal, continuo tanto en el eje “equis” como en el eje “y”, observándose que los valores obtenidos mediante su aplicación no distaban mucho de los obtenidos mediante los ensayos físicos (Eksik, 2007b).
2 - Análisis de refuerzos trapezoidales

2.1 - Diseño

2.1.1 - Elección del programa

Para el diseño de las piezas se ha utilizado un programa CAD/CAM. Este tipo de programas se introdujeron en los años 70, mientras que los programas usados tradicionalmente, son programas de diseño analítico. Esto quiere decir que toda la geometría se crea en referencia a un sistema de coordenadas espaciales, lo que significa que los cambios en el diseño exigen que todo el diseño se cree desde cero. Si, por ejemplo, a una pieza se le quiere aumentar el grosor de las superficies, todos los agujeros pensados para atravesarlas de lado a lado deben recalcularse. Estos cambios exigen una dedicación desmesurada.

Para solventar este problema, se eligió un programa de diseño paramétrico. Este tipo de programas usa parámetros para definir sus límites ó acciones. Un programa paramétrico de CAD difiere básicamente de cualquier otro tradicional, en un aspecto clave. En un programa paramétrico la información visual es parte de la información disponible en el banco de datos, o sea, una representación de la información como un objeto en la memoria de la computadora. Cada elemento del dibujo es tratado como un "objeto", que no es definido únicamente por sus coordenadas espaciales (x, y, z), sino que también lo es por sus parámetros, sean estos gráficos ó funcionales. Los bancos de datos referentes a los objetos son interligados permitiendo que cualquier cambio ocurrido en una especificación, modifique toda la pieza.
2.1.2 - Diseño y geometría de las piezas

Para crear las piezas en el programa se ha hecho mediante la opción de extrusión. Para ello los pasos que se han seguido han sido los siguientes. Lo primero que se hizo fue dibujar la sección de los refuerzos. Las dimensiones así como los espesores, se han obtenido de Eksik et al. (2007a) de cuyo artículo se incluye aquí la siguiente figura (Fig. 5).

Una vez obtenida la sección, se extrusión el eje “equis” para conseguir de esta forma una continuidad en dicho eje como en el caso real. Después se procedió con el eje “y”, el cual una vez estrusiónado, fue vaciado por protución en la zona donde intersectan ambos ejes. Finalmente la plancha fue creada aparte, pensando en combinar los objetos posteriormente. Las medidas de la plancha, aunque en el ensayo fueran de un metro por un metro (1x1m), se diseñaron de unas dimensiones de ochocientos por ochocientos cincuenta milímetros. De esta forma al fijar las condiciones de contorno en el programa de elementos finitos, obtendríamos una superficie de ensayo igual a la del artículo.

En la siguiente secuencia, figuras 6 y 7 podemos observar el proceso de creación de las piezas.
2.1.3 – Exportación de datos

Para el intercambio entre programas se ha elegido guardar los diseños con extensión STEP o también conocida como ISO 10303.

STEP (Standard for the Exchange of Product model data) o Estándar del modelo de datos para intercambio de productos, es un estándar internacional para la representación e intercambio de información de productos industriales. El objetivo es proveer un mecanismo que sea capaz de describir la información de un producto a través del ciclo de vida del producto, independientemente de cualquiera sistema en particular. La naturaleza de esta descripción la convierte en la adecuada, no solo para un intercambio neutral de archivos, sino que también es una base para implementar y compartir bases de datos de productos y archivos.

Típicamente STEP puede ser usado para intercambiar datos entre CAD, CAM, CAE, PDM/EDM y otros sistemas CAx. STEP soporta modelos de diseño mecánico, eléctrico, análisis y manufactura, con información adicional específica de varias industrias tales como automotriz, aeroespacial, construcción de edificios, barcos, aceite y combustibles, plantas de proceso y otros.
2.2 - Análisis

2.2.1 - El método de los elementos finitos

El método se basa en dividir el cuerpo, estructura o dominio (medio continuo) —sobre el que están definidas ciertas ecuaciones integrales que caracterizan el comportamiento físico del problema— en una serie de subdominios no intersectantes entre sí denominados «elementos finitos». El conjunto de elementos finitos forma una partición del dominio también denominada discretización. Dentro de cada elemento se distinguen una serie de puntos representativos llamados «nodos». Dos nodos son adyacentes si pertenecen al mismo elemento finito; además, un nodo sobre la frontera de un elemento finito puede pertenecer a varios elementos. El conjunto de nodos considerando sus relaciones de adyacencia se llama «malla».

Los cálculos se realizan sobre una malla o discretización creada a partir del dominio con programas especiales llamados generadores de mallas, en una etapa previa a los cálculos que se denomina pre-proceso. De acuerdo con estas relaciones de adyacencia o conectividad se relaciona el valor de un conjunto de variables incógnitas definidas en cada nodo y denominadas grados de libertad. El conjunto de relaciones entre el valor de una determinada variable entre los nodos se puede escribir en forma de sistema de ecuaciones lineales (o linealizadas). La matriz de dicho sistema de ecuaciones se llama matriz de rigidez del sistema. El número de ecuaciones de dicho sistema es proporcional al número de nodos.

Típicamente el método de los elementos finitos se programa computacionalmente para calcular el campo de desplazamientos y, posteriormente, a través de relaciones cinemáticas y constitutivas las deformaciones y tensiones respectivamente, cuando se trata de un problema de mecánica de sólidos deformables o más generalmente un problema de mecánica de medios continuos. El método de los elementos finitos es muy usado debido a su generalidad y a la facilidad de introducir dominios de cálculo complejos (en dos o tres dimensiones). Además el método es fácilmente adaptable a problemas de transmisión de calor, de mecánica de fluidos para calcular campos de velocidades y presiones (mecánica de fluidos computacional, CFD) o de campo
electromagnético. Dada la imposibilidad práctica de encontrar la solución analítica de estos problemas, con frecuencia en la práctica ingenieril los métodos numéricos y, en particular, los elementos finitos, se convierten en la única alternativa práctica de cálculo.

Una importante propiedad del método es la convergencia; si se consideran particiones de elementos finitos sucesivamente más finas, la solución numérica calculada converge rápidamente hacia la solución exacta del sistema de ecuaciones.

2.2.2 - Programa de análisis mediante elementos finitos

En una simulación estructural el análisis de elementos finitos ayuda a producir visualizaciones de rigidez y fuerza y además ayuda a minimizar peso, materiales y costos. El análisis de elementos finitos permite una detallada visualización del lugar donde se doblan o tuercen las estructuras, e indica la distribución del esfuerzo y los desplazamientos. Los programas computacionales de análisis de elementos finitos proveen un amplio rango de opciones de simulación para controlar la complejidad de ambos, el modelado y el análisis de un sistema. De forma similar, el nivel deseado de precisión y los requerimientos de tiempo computacional asociados pueden ser manejados simultáneamente para atender a la mayoría de las aplicaciones de ingeniería.

El análisis de elementos finitos, permite la construcción de diseños enteros, su refinación y la optimización de éstos antes de que el diseño sea manufacturado. Esta poderosa herramienta de diseño ha mejorado en gran forma, ambos, el estándar de diseños en ingeniería y la metodología del proceso del diseño en muchas aplicaciones industriales. La introducción del análisis de elementos finitos ha reducido el tiempo que se toma para llevar productos desde el concepto hasta la línea de producción. A través de la mejora de diseños de prototipos iniciales usando el análisis de elementos finitos se han acelerado, principalmente, las pruebas y el desarrollo. En resumen, los beneficios del análisis de elementos finitos son: una alta precisión, diseño mejorado, y una mejor percepción de los parámetros críticos de diseño, prototipos virtuales, menos prototipos de hardware, y ciclo de diseño más rápido y económico, alza en la productividad y en las ganancias.
2.2.3 - Elección de los parámetros

Hoy en día, en todos los programas informáticos, existen multitud de opciones y parámetros que podemos cambiar en función de nuestros requisitos y del grado de exactitud que queramos obtener en los resultados. Debido a que éste proyecto pretende es reproducir un ensayo ya realizado y mediante el estudio con elementos finitos obtener conclusiones sobre comportamientos mecánicos en función de las formas de los refuerzos, se han llevado a cabo unas aproximaciones:

* Suponer los materiales estudiados como materiales isotrópicos.

 En física, la isotropía se refiere al hecho de que ciertas magnitudes vectoriales medibles dan resultados idénticos con independencia de la dirección escogida para la medida. La anisotropía (opuesta de isotropía) es la propiedad general de la materia según la cual determinadas propiedades físicas, tales como: elasticidad, temperatura, conductividad, velocidad de propagación de la luz, etc. varían según la dirección en que son examinadas. Algo anisótropo podrá presentar diferentes características según la dirección.

 Las piezas estudiadas están construidas mediante materiales compuestos. Este tipo de materiales son de tipo ortotrópicos, ya que se tienen diferentes propiedades mecánicas en cada eje.

* Comportamiento lineal.

 Supondremos que el material tiene un comportamiento lineal, es decir, que la deformación es proporcional a la carga que aplicamos en el material.

* Teoría de la capa única equivalente (Mayugo, 2003).

 En esta teoría el laminado se representa por un elemento de capa única equivalente con las propiedades anisótropas específicas. Se basa en forzar un campo de desplazamiento continuo a través del grosor del laminado. Esta teoría requiere poco coste computacional aunque no permite obtener cierto tipo de resultados como, por ejemplo, las tensiones cortantes entre láminas.
2.2.4 - Calculo de las propiedades mecánicas de cada pieza

Para el cálculo de las propiedades mecánicas, al haber utilizado la teoría de la capa única, necesitamos saber las propiedades mecánicas de todo el laminado. Para obtener dichas características hemos tenido en cuenta el porcentaje en peso de fibra en el laminado.

Para llevar a cabo esta fase, lo primero que se tuvo en cuenta es el tipo de laminado que tenía cada parte de la plancha. Las diferentes capas se encuentran detalladas en Etsik et al. (2007a) y son las siguientes:

<table>
<thead>
<tr>
<th>Plancha</th>
<th>Panel 1</th>
<th>Panel 2</th>
<th>Panel 3</th>
<th>Panel 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>MAT 500 g/m²</td>
<td>MAT 500 g/m²</td>
<td>MAT 500 g/m²</td>
<td>MAT 500 g/m²</td>
</tr>
<tr>
<td>2</td>
<td>MAT 600 g/m²</td>
<td>MAT 600 g/m²</td>
<td>MAT 600 g/m²</td>
<td>MAT 600 g/m²</td>
</tr>
<tr>
<td>3</td>
<td>ROVING 600 g/m²</td>
<td>ROVING 600 g/m²</td>
<td>ROVING 600 g/m²</td>
<td>ROVING 600 g/m²</td>
</tr>
<tr>
<td>4</td>
<td>MAT 500 g/m²</td>
<td>MAT 500 g/m²</td>
<td>MAT 500 g/m²</td>
<td>MAT 500 g/m²</td>
</tr>
<tr>
<td>5</td>
<td>MAT 600 g/m²</td>
<td>MAT 600 g/m²</td>
<td>MAT 600 g/m²</td>
<td>MAT 600 g/m²</td>
</tr>
<tr>
<td>6</td>
<td>ROVING 600 g/m²</td>
<td>ROVING 600 g/m²</td>
<td>ROVING 600 g/m²</td>
<td>ROVING 600 g/m²</td>
</tr>
<tr>
<td>7</td>
<td>MAT 450 g/m²</td>
<td>MAT 450 g/m²</td>
<td>MAT 450 g/m²</td>
<td>MAT 450 g/m²</td>
</tr>
<tr>
<td>8</td>
<td>MAT 500 g/m²</td>
<td>MAT 500 g/m²</td>
<td>MAT 500 g/m²</td>
<td>MAT 500 g/m²</td>
</tr>
<tr>
<td>9</td>
<td>ROVING 600 g/m²</td>
<td>ROVING 600 g/m²</td>
<td>ROVING 600 g/m²</td>
<td>ROVING 600 g/m²</td>
</tr>
<tr>
<td>10</td>
<td>MAT 450 g/m²</td>
<td>MAT 450 g/m²</td>
<td>MAT 450 g/m²</td>
<td>MAT 450 g/m²</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Foam</th>
<th>Foam 20 Kg/m²</th>
<th>Foam 20 Kg/m²</th>
<th>Foam 20 Kg/m²</th>
<th>Foam 20 Kg/m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base y alma del refuerzo</td>
<td>MAT 500 g/m²</td>
<td>MAT 500 g/m²</td>
<td>MAT 500 g/m²</td>
<td>MAT 500 g/m²</td>
</tr>
<tr>
<td>12</td>
<td>MAT 500 g/m²</td>
<td>MAT 500 g/m²</td>
<td>MAT 500 g/m²</td>
<td>MAT 500 g/m²</td>
</tr>
<tr>
<td>13</td>
<td>MAT 500 g/m²</td>
<td>MAT 500 g/m²</td>
<td>MAT 500 g/m²</td>
<td>MAT 500 g/m²</td>
</tr>
<tr>
<td>14</td>
<td>MAT 500 g/m²</td>
<td>MAT 500 g/m²</td>
<td>MAT 500 g/m²</td>
<td>MAT 500 g/m²</td>
</tr>
<tr>
<td>15</td>
<td>MAT 500 g/m²</td>
<td>MAT 500 g/m²</td>
<td>MAT 500 g/m²</td>
<td>MAT 500 g/m²</td>
</tr>
<tr>
<td>16</td>
<td>MAT 500 g/m²</td>
<td>MAT 500 g/m²</td>
<td>MAT 500 g/m²</td>
<td>MAT 500 g/m²</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parte Superior</th>
<th>MAT 500 g/m²</th>
<th>MAT 500 g/m²</th>
<th>MAT 500 g/m²</th>
<th>MAT 500 g/m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>MAT 500 g/m²</td>
<td>MAT 500 g/m²</td>
<td>MAT 500 g/m²</td>
<td>MAT 500 g/m²</td>
</tr>
<tr>
<td>13</td>
<td>MAT 500 g/m²</td>
<td>MAT 500 g/m²</td>
<td>MAT 500 g/m²</td>
<td>MAT 500 g/m²</td>
</tr>
<tr>
<td>14</td>
<td>MAT 500 g/m²</td>
<td>MAT 500 g/m²</td>
<td>MAT 500 g/m²</td>
<td>MAT 500 g/m²</td>
</tr>
<tr>
<td>15</td>
<td>MAT 500 g/m²</td>
<td>MAT 500 g/m²</td>
<td>MAT 500 g/m²</td>
<td>MAT 500 g/m²</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parche</th>
<th>MAT 500 g/m²</th>
<th>MAT 500 g/m²</th>
<th>MAT 500 g/m²</th>
<th>MAT 500 g/m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>MAT 500 g/m²</td>
<td>MAT 500 g/m²</td>
<td>MAT 500 g/m²</td>
<td>MAT 500 g/m²</td>
</tr>
</tbody>
</table>

Tabla 1. Laminados de cada uno de los paneles.

Cada refuerzo y dependiendo de la zona, tiene diferentes laminados y por lo tanto diferentes propiedades. Básicamente podemos distinguir cuatro zonas. La plancha, la base del refuerzo, el alma del refuerzo y la parte superior, cuyos nombres en inglés corresponden a “base plate”, “flange”, “web” y “crown” respectivamente. En la siguiente figura podemos observar las diferentes partes señaladas.
El cálculo de las propiedades de cada una de las partes se ha realizado mediante una hoja de cálculo. En ésta se ha detallado el laminado de cada parte. Al tener la referencia de los pesos de cada panel con refuerzo, el proceso que se siguió fue el siguiente:

* Se detalló cada una de las diferentes capas del laminado, introduciendo en cada casilla correspondiente el número de capas y así como el gramaje y el tipo de trenzado que llevaba cada tipo de tejido.

* Una vez con esto y sabiendo los pesos finales de cada plancha, se procedió a calcular el porcentaje en peso de fibra. Se partieron de unos valores estándar que son: treinta por ciento en peso de fibra para tejido MAT y cincuenta por ciento en peso para tejido ROVING. Con estos valores se obtuvo un peso para cada plancha reforzada que se compararon con los obtenidos en el artículo citado anteriormente. Cabe destacar que se ha encontrado una diferencia en los pesos del panel 1, ya que para hacer coincidir estos entre el valor del artículo y los calculados en la tabla de Excel habría que poner un porcentaje de fibra en peso del 10%, cosa que no puede ser. Por tanto, destacar este pequeño desajuste y decir que finalmente se ha supuesto el tejido laminado al 30% en peso.

*Finalmente como la densidad de la matriz y la de la fibra difieren bastante (1,2 Kg/m3 la de la matriz y 2,6 Kg/m3 la de la fibra), se varió porcentualmente la cantidad de fibra en peso hasta que los valores del peso de la plancha con el refuerzo convergieron tanto...
para el trabajo de Etsik et al. (2007a), como para los datos del presente trabajo. (Para la hoja de cálculo mirar anexo 1).

Una vez que se supo la cantidad de fibra que hay en cada laminado, se procedió a calcular las propiedades mecánicas. Para calcular dichas características se recurrió al reglamento para barcos de nueva construcción del grupo Germanischer Lloyd AG del cual en la parte 3, capítulo tres, sección 1 B 3.2 (Germanischer Lloyd, 2003a) se obtuvieron las siguientes fórmulas

Carga de rotura
\[\sigma_{ZB} = 1278 \psi - 510 \psi + 123 \] [N/mm²]

Módulo de Young
\[E_Z = (37 \psi - 4,75) \times 10^3 \] [N/mm²]

Resistencia a flexión
\[\sigma_{bB} = 502 \psi^2 + 106,8 \] [N/mm²]

Resistencia a compresión
\[\sigma_{dB} = 1278 \psi - 510 \psi + 123 \] [N/mm²]

Resistencia a cortante
\[\tau_B = 80 \psi + 38 \] [N/mm²]

Módulo cortante
\[G = (1,7 \psi +2,24) \times 10^3 \] [N/mm²]

Deslaminación interlaminar
\[\tau_{iB} = 22,5 -17,5 \psi \] [N/mm²]

Siendo \(\psi \) el porcentaje en fibra en peso.

Entrando en las fórmulas con los contenidos de fibra en peso se obtienen las propiedades. A continuación se muestran los resultados obtenidos para cada una de las diferentes partes del panel 1. Para más información acerca de los paneles 2, 3 y 4, consultar los anexos 1.2, 1.3 y 1.4.
Panel 1

Plancha

<table>
<thead>
<tr>
<th>Propiedad</th>
<th>Valor 1</th>
<th>Valor 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carga de rotura</td>
<td>97,34 N/mm²</td>
<td>106,99 N/mm²</td>
</tr>
<tr>
<td>Módulo Young</td>
<td>7830,00 N/mm²</td>
<td>8744,12 N/mm²</td>
</tr>
<tr>
<td>Resistencia a flexión</td>
<td>164,83 N/mm²</td>
<td>173,57 N/mm²</td>
</tr>
<tr>
<td>Resistencia a compresión</td>
<td>123,00 N/mm²</td>
<td>126,71 N/mm²</td>
</tr>
<tr>
<td>Resistencia a cortante</td>
<td>65,20 N/mm²</td>
<td>67,18 N/mm²</td>
</tr>
<tr>
<td>Módulo cortante</td>
<td>2818,00 N/mm²</td>
<td>2860,00 N/mm²</td>
</tr>
<tr>
<td>Deslaminación interlaminar</td>
<td>16,55 N/mm²</td>
<td>16,12 N/mm²</td>
</tr>
<tr>
<td>Densidad</td>
<td>1,68 Kg/m³</td>
<td>1,71 Kg/m³</td>
</tr>
</tbody>
</table>

Parte Superior

<table>
<thead>
<tr>
<th>Propiedad</th>
<th>Valor 1</th>
<th>Valor 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carga de rotura</td>
<td>80,40 N/mm²</td>
<td>106,99 N/mm²</td>
</tr>
<tr>
<td>Módulo Young</td>
<td>5610,00 N/mm²</td>
<td>8744,12 N/mm²</td>
</tr>
<tr>
<td>Resistencia a flexión</td>
<td>146,16 N/mm²</td>
<td>173,57 N/mm²</td>
</tr>
<tr>
<td>Resistencia a compresión</td>
<td>114,00 N/mm²</td>
<td>126,71 N/mm²</td>
</tr>
<tr>
<td>Resistencia a cortante</td>
<td>60,40 N/mm²</td>
<td>67,18 N/mm²</td>
</tr>
<tr>
<td>Módulo cortante</td>
<td>2716,00 N/mm²</td>
<td>2860,00 N/mm²</td>
</tr>
<tr>
<td>Deslaminación interlaminar</td>
<td>17,60 N/mm²</td>
<td>16,12 N/mm²</td>
</tr>
<tr>
<td>Densidad</td>
<td>1,59 Kg/m³</td>
<td>1,71 Kg/m³</td>
</tr>
</tbody>
</table>

Foam

No estructural

Base y laterales

<table>
<thead>
<tr>
<th>Propiedad</th>
<th>Valor 1</th>
<th>Valor 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carga de rotura</td>
<td>80,40 N/mm²</td>
<td>106,99 N/mm²</td>
</tr>
<tr>
<td>Módulo Young</td>
<td>5610,00 N/mm²</td>
<td>8744,12 N/mm²</td>
</tr>
<tr>
<td>Resistencia a flexión</td>
<td>146,16 N/mm²</td>
<td>173,57 N/mm²</td>
</tr>
<tr>
<td>Resistencia a compresión</td>
<td>114,00 N/mm²</td>
<td>126,71 N/mm²</td>
</tr>
<tr>
<td>Resistencia a cortante</td>
<td>60,40 N/mm²</td>
<td>67,18 N/mm²</td>
</tr>
<tr>
<td>Módulo cortante</td>
<td>2716,00 N/mm²</td>
<td>2860,00 N/mm²</td>
</tr>
<tr>
<td>Deslaminación interlaminar</td>
<td>17,60 N/mm²</td>
<td>16,12 N/mm²</td>
</tr>
<tr>
<td>Densidad</td>
<td>1,59 Kg/m³</td>
<td>1,71 Kg/m³</td>
</tr>
</tbody>
</table>

Finalmente para determinar todas las propiedades, lo único que faltaba saber era qué características tiene el parche de las piezas 1, 3 y 4. De él ya teníamos hallado el porcentaje de fibra en peso pero no viene detallado en ningún lado su espesor. En este caso hemos vuelto a usar el reglamento. Para ello esta vez nos hemos remitido a la parte 3, capítulo tres, sección 1 B 3.3 (Germanischer Lloyd, 2003b).

Tabla 2. – Propiedades de las distintas partes del panel 1
El espesor de cada capa, podrá ser determinado individualmente mediante la siguiente fórmula:

\[
t = 0.001 \cdot \frac{W}{\rho_F} \left(\frac{1}{\rho_F} + \frac{1 - \Psi}{\Psi} \cdot \frac{1}{\rho_H} \right) \quad [\text{mm}]
\]

Donde:

\(W \) = Peso por unidad de área del refuerzo de fibra [g/m²].

\(\rho_F \) = Densidad de la fibra (2,6 [g/cm³] usando E-glass como material de refuerzo).

\(\rho_H \) = Densidad de la resina (2,6 [g/cm³] para matriz de resina de poliéster insaturada).

Introduciendo los datos en la fórmula hemos obtenido que el espesor para un parche de fibra de vidrio, consistente en dos capas de MAT de seiscientos gramos por metro cuadrado será de 2,8 mm. (Cálculos en el anexo 2).
2.2.5 - Análisis de las piezas por elementos finitos

El análisis mediante programas de elementos finitos, se lleva a cabo en varias fases. Primero se diseñan las piezas en un programa informático, se exportan, se abren con el programa de elementos finitos que deseemos y finalmente se analizan.

Anteriormente se ha descrito tanto el diseño como el tipo de archivo para exportar, así que este apartado se dedicará al análisis por elementos finitos. Se intentará explicar los pasos realizados y los parámetros aplicados. De la misma forma se comentarán tanto los resultados como los diferentes tipos de rotura que se producen en las distintas piezas.
2.2.6 - Panel 1

Lo primero que ha de hacerse es abrir el archivo STEP con el programa de elementos finitos. Al abrir el archivo, en la pantalla nos aparecerá el panel 1 como se ve en la figura 9.

En este momento tendremos la pieza en el programa pero todavía no se habrá determinado ningún parámetro acerca de materiales, resistencia, etc....Para ello lo primero que hay que hacer es mallar la pieza. Esto se genera automáticamente mediante la opción de mallado en la que se determina la precisión de la malla. Cuanto más preciso sea el mallado, mas número de nodos, lo que implica mas cálculos y por lo tanto mas tiempo de procesado.

En la figura 10, se muestra la pieza una vez realizado el mallado.
A continuación se decide el tipo de elemento a analizar. Podremos elegir entre barra, viga, membrana, 2d, brick, placa, etc…. En nuestro caso elegiremos “brick” cuya traducción sería un sólido.

Una vez definidos los elementos, hay que asignar el tipo de material y para ello se crea una biblioteca de materiales con los datos obtenidos del reglamento y se le dará a cada elemento las propiedades mecánicas que le corresponden. Una vez que tenemos definidos los materiales de todas las partes, se procede a aplicar las condiciones de contorno. Estas condiciones son las que reproducen el estado en el que se encontrará la pieza cuando se ensaye físicamente.

En nuestro caso para reproducir las condiciones que se dieron en el estudio realizado por Eksik et al. (2007) se ha hecho lo siguiente: en primer lugar se han restringido tanto el giro como el desplazamiento en el borde del panel, para simular que se encuentra en el armazón metálico descrito en la página 9 y siguientes de este trabajo, y a continuación se han definido las solicitaciones exteriores, aplicado una presión a la plancha, para simular aquella a la que se verán sometidos los paneles. Dicha presión fue de 0.35 MPa. En la figura 11 se puede ver el modelo mallado, tanto con las condiciones de contorno como las solicitaciones exteriores aplicadas.
Figura 11. Condiciones de contorno.

Con todos los parámetros anteriores definidos, podemos realizar el análisis de la pieza. Para ello pulsaremos el botón que lo inicia y dejaremos que el ordenador lleve a cabo su trabajo. El tiempo que dura el análisis, como ya se ha dicho, antes variará en función del tipo de pieza y de la calidad del mallado.

Una vez realizado el análisis, el cual en nuestro caso tarda entre 5 y 8 minutos, el programa nos envía a la página de resultados. Tenemos distintos tipos de resultados en función de los tipos de valores que queramos: desplazamiento, desplazamiento rotacional, tensión y deformación unitaria son algunos. Como resultado inicial el programa muestra las tensiones de Von Mises.

La imagen que nos aparece tras los análisis, la cual corresponde a la tensión de Von Mises, es la siguiente:
Figura 12. Resultados de tensión de Von Mises para el panel nº1.

En el modelo experimentado por Eksik et al. (2007a), este panel sufrió primeramente una deslaminación interlaminar, después los bordes tomaron un color blanquecino en la junta entre el panel y el armazón que lo empotraba y finalmente se produjo un fallo mecánico por el punto donde se cruzan los dos refuerzos.

En el análisis la coloración blanquecina reflejada en el ensayo de Eksik et al. (2007a), fue debida a esfuerzos cortantes que se pueden ver reflejados en el análisis de la siguiente manera (figura 12). En la zona de los refuerzos mas cercana al empotramiento se observa que la tensión de Von Mises es muy elevada. Aunque ello no producirá la rotura de la pieza, es la causa principal del blanqueamiento de dichas zonas. Otro punto es en la intersección de los dos refuerzos, justo en medio del panel. Aquí se puede apreciar como hay una zona donde la tensión de Von Mises es más elevada. Tal y como se ve, los esfuerzos se concentran en la unión de el refuerzo X (continuo) con el refuerzo Y (discontinuo). En este punto donde se concentran los esfuerzos será donde la pieza romperá y donde lo hizo el modelo físico realizado en los artículos comentados anteriormente.

Otro de los resultados que tenemos es la flexión de los paneles antes de romper, tal y como se ve en la figura 13.
Figura 13. Resultados de desplazamiento en el eje Z del panel nº1.

Estos resultados, no alcanzan la precisión requerida, ya que aunque asemejan perfectamente la flexión que tiene la pieza, los valores numéricos distan de los obtenidos mediante el ensayo del modelo físico.
2.2.6 - Panel 2

Este panel tiene la misma geometría así como el mismo tipo de laminado que el panel número 1, pero se diferencian en que el primer panel está reforzado con un parche final consistente en dos capas de MAT de 600 gr/m² que cubrían la unión de los dos refuerzos, y este panel no los lleva.

Tal y como hemos hecho anteriormente, abrimos el archivo, mallamos el panel, aplicamos las condiciones de contorno y las solicitudes exteriores (las cuales en este caso corresponderán a una presión de 0.28 MPa). Todo esto se ve reflejado en las figuras 14 a 16.

![Figura 14. Panel nº2 antes del análisis.](image-url)
Una vez que tenemos todos los valores de materiales fijados y que las condiciones de contorno están aplicadas, procedemos a realizar el análisis. Para ello pulsamos el botón...
de iniciado y dejamos que el ordenador haga los cálculos necesarios. Una vez realizado el análisis, nos aparecerá de nuevo la ventana de tensión de Von Mises.

En esta pieza, podemos observar un comportamiento bastante parecido al primer panel. Como éste, tiene en el perímetro y sobre todo en la zona de los refuerzos, unos valores de esfuerzos elevados, estos esfuerzos son los que provocaron en el modelo real un blanqueamiento de la resina. También podemos observar en la parte central un incremento de la tensión, principalmente en la zona de unión de refuerzos. Por aquí es por donde fallará la pieza.

Finalmente, podemos obtener los resultados de la flexión del panel, antes de su rotura. Aquí volvemos a encontrarnos con el mismo problema que en la pieza anterior, los resultados de flexión parecen estar bien puesto que se deforman correctamente, pero sin embargo los valores numéricos no son los esperados. En la siguiente figura (número 13) tenemos la pieza deformada, así como una escala de valores en función del color.

Figura 17. Resultados de tensión de Von Mises del panel nº2.
Figura 18. Resultados de desplazamiento en el eje Z para el panel nº2.
2.2.6 - Panel 3

Este panel, y el que se explicará a continuación, tienen la misma geometría y casi el mismo laminado. Solamente se diferencian en las dimensiones del parche que cubre la unión de los dos refuerzos.

Lo hemos sometido también a ensayo, y los resultados que nos ha dado los iremos comentado a continuación. Lo primero que hemos hecho es abrir la pieza con el programa de análisis, crearle el mallado, aplicarle las condiciones de contorno y solicitudes exteriores (0.25 MPa), tal y como hemos hecho hasta ahora. Las figuras 19 a 21 nos muestran cada paso del proceso.

Figura 19. Panel nº3 antes del análisis.
Figura 20. Mallado del panel nº3.

Figura 21. Mallado y condiciones de contorno del panel nº3.
Realizados los pasos anteriores y tras el análisis, obtenemos los siguientes resultados de esfuerzos que se observan en la figura 22.

![Figura 22. Resultados de tensión para el panel nº3.](image)

Tanto esta pieza como la siguiente, a diferencia de las dos primeras se laminaron con un mayor porcentaje de fibra en peso, lo que las hace más resistentes.

Observamos que en esta pieza, se han incrementado los esfuerzos a lo largo de los refuerzos, y que el parche está sometido a poca carga, debido a su alto porcentaje de fibra. Aún así, se puede observar que en la unión central y sobre el parche, sigue habiendo una concentración de esfuerzos, que serán los causantes de que el panel falle por rotura entre la matriz y la fibra.

En cuanto a los resultados de flexión, volvemos a tener amplias diferencias entre los resultados físicos y los resultados analíticos. A continuación en la figura 23 se puede ver...
una figura donde se aprecia una flexión bastante menor que la del ensayo físico realizado por Eksik et al. (2007a).

Figura 23. Resultados de desplazamiento del panel n°3.
2.2.6 – Panel 4

Esta es la última pieza referente al artículo sobre el que se ha basado el proyecto, siendo además una pieza bastante interesante ya que tiene un mecanismo de fallo totalmente diferente a las demás y que iremos explicando a continuación. Para empezar, hemos realizado los mismos pasos que con los paneles anteriores: abrir el panel con el programa, mallarlo, definir los materiales, aplicarle las condiciones de contorno, las solicitaciones exteriores (0.28) y realizar el análisis. Las figuras del proceso se adjuntan a continuación (24 a 28).

Figura 24. Panel nº4 antes del análisis.

Figura 27. Esfuerzos del panel nº4.

Todos los paneles anteriores fallan en la intersección de los refuerzos, que es donde se concentran los esfuerzos. Este panel a parte de tener un laminado con mayor porcentaje en fibra, cosa que lo hace más resistente, tiene un parche superpuesto mayor que el del panel anterior. Los esfuerzos están más presentes, tal y como hemos comentado en las piezas anteriores, en el perímetro empotrado sobre todo en los refuerzos y en la zona central de panel. Esta última zona es por donde rompen normalmente los paneles, pero en éste hay una rotura diferente. Al tener un parche mayor, podemos observar en la figura 27 como hay mucha tensión en el refuerzo entre la zona empotrada y el refuerzo del parche. Esto hace que este panel falle por esfuerzos cortantes en dicha zona.

Respecto a los valores de flexión de la pieza, se incluye a continuación la figura 28 con los resultados obtenidos del programa, pero al igual que en los casos anteriores, los valores analíticos distan de los valores reales.
3 - Conclusiones

Para estudiar la fidelidad de las reproducciones creadas a base de programas informáticos contamos con los datos de los ensayos físicos realizados anteriormente (Eksik et al., 2007a y b)

Los análisis demuestran que los datos que se obtienen llegan a variar entre un 20% y un 30% (o incluso más si tenemos en cuenta los valores de deformación en el eje Z). Pese a que este porcentaje nos puede parecer un tanto elevado, debemos saber que en el ensayo real llegaron a darse diferencias en la carga de rotura de una misma pieza de hasta un 40% en los casos más significativos, por lo que el error cometido analizándola teniendo en cuenta todas las aproximaciones realizadas, se encuentra dentro de unos valores aceptables.

Finalmente y para terminar, cabe destacar que pese a las diferencias en los resultados, el análisis mediante elementos finitos muestra perfectamente las zonas sometidas a esfuerzo y reproduce las zonas de fatiga fielmente. Lo cual es una clara ventaja a la hora de producir la pieza.
3 - Posibles mejoras del refuerzo

3.1 - Diseño de nuevas piezas

Una vez realizado el análisis de los 4 paneles anteriores y sabiendo el comportamiento del programa, se ha procedido a completar este proyecto con un pequeño estudio acerca del diseño de los refuerzos. Como hemos visto, la construcción de paneles se realiza en diferentes fases. Esto hace que se de continuidad a un eje mientras que se impone una discontinuidad en el otro lo que crea una concentración de tensiones con el problema que supone a la hora de esfuerzos, fatiga y rotura.

En vista de los problemas representados, se ha intentado pensar en un tipo de refuerzo que evite los problemas nombrados anteriormente. Se ha pensado en un prototipo, uno en el que no se le de prioridad a la continuidad en ningún eje. Conseguir lo propuesto implica asumir algunas complicaciones, pero no es imposible. Para crear los refuerzos de la forma indicada y sin discontinuidades se debería recurrir a un molde sobre el cual se laminasen dichos refuerzos. Se tendrían unos refuerzos en forma trapezoidal como hasta ahora y también habría intersecciones entre refuerzos pero la diferencia radica en que justo en la intersección tendríamos una bóveda sin material tal y como se aprecia en la figura 29.

![Figura 29.- Refuerzo continuo en ambos ejes.](image)

A lo comentado anteriormente, cabe añadir que la creación de refuerzos en moldes abre un nuevo abanico de posibilidades. Hasta ahora la construcción de carenas se lleva a cabo laminando primeramente el casco y luego los elementos auxiliares interiores. La
propuesta llevada a cabo, permitiría hacer una construcción en varias etapas pudiéndose hacer dos procesos a la vez para juntarlos finalmente. Aplicando esto a nuestro caso, se podría laminar el casco por una parte y los refuerzos por otra para finalmente ensamblarlos. Cabe destacar que también habría que tener en cuenta el coste económico de dos moldes, así como el estudio del posterior pegado entre estructuras.

Con todo lo anterior en mente, se ha procedido a analizar 4 piezas más. Se trata de cuatro geometrías muy parecidas y que lo único que varía entre ellas son los diferentes radios de acuerdo en las intersecciones centrales. Se ha tenido en cuenta una intersección con aristas, una con un acuerdo de 12 mm que coincide con el radio de acuerdo entre el alma del refuerzo y la parte superior, un tercer acuerdo de 25 mm y finalmente un acuerdo de 50 mm. En la figura 30, se muestran cuales son los radios de acuerdo.

Figura 30.- Radios de acuerdo que se modifican.
3.2 - Análisis de nuevas piezas

Para el cálculo de estas piezas se han determinado unas propiedades mecánicas más sencillas. Como hemos comentado, el fin no es encontrar la mejor pieza si no iniciar un pequeño estudio que ayude a la posible mejora de refuerzos. Por ello que se ha supuesto que todas la pieza se construyen con fibra MAT al 30% en peso. De esta forma, debido a las características del MAT asemejaremos más el material a propiedades isotrópicas y por lo tanto crearemos unas condiciones más fieles a la hora de reproducir el ensayo en el ordenador. A continuación se muestra las diferentes piezas en el programa de análisis (Figuras 31 a 34) y las mismas tras haber sido analizadas (Figuras 35 a 38).

Figuras 31 y 32.- De derecha a izquierda: Panel con aristas y panel con radio de acuerdo 12 mm.

Figuras 33 y 34.- De derecha a izquierda: Panel con radio de acuerdo 25mm y panel con radio de acuerdo 50mm.
Figuras 35 y 36.- De derecha a izquierda: Panel con aristas y panel con radio de acuerdo 12 mm.

Figuras 37 y 38.- De derecha a izquierda: Panel con radio de acuerdo 25mm y panel con radio de acuerdo 50mm.

Para finalizar se adjuntan unas gráficas, con valores máximos, resumiendo los datos más importantes.
Figuras 39, 40 y 41. Comparaciones en función del radio de acuerdo.
3.3 - Futuras líneas de trabajo.

Tras el análisis se ha llegado a la conclusión de que tal y como se suponía el redondeo de las aristas mejoran la pieza. No cabe esperar lo mismo de la comparación entre la estructura tradicional y la estructura de pieza única ya que al no tener ningún elemento continuo el nuevo diseño flexa más pero sin embargo mejora la distribución de esfuerzos.

Todo lo comentado anteriormente nos hace ver que todavía son posibles innovaciones en este campo y que la opción de construcción en varias etapas puede mejorar la construcción de embarcaciones.

No podemos afirmarlo a ciencia cierta ya que para comprobarlo habría que hacer un estudio intenso acerca de ese tipo de refuerzos así como evaluar viabilidad económica. Esto no entra dentro de los fines de este proyecto, pero se ha incluido un pequeño boceto en el proyecto por si sirve para futuros estudios.
4.1 - Anexo 1.1

Artículo “Experiments on Top-Hat-Stiffened Panels of Fiber-reinforced-Plastic Boat Structures”
Análisis de refuerzos trapezoidales para embarcaciones de recreo mediante elementos finitos.
Análisis de refuerzos trapezoidales para embarcaciones de recreo mediante elementos finitos.
Jordi Boronat LLedó

Análisis de refuerzos trapezoidales para embarcaciones de recreo mediante elementos finitos.
Análisis de refuerzos trapezoidales para embarcaciones de recreo mediante elementos finitos.
4.2 - Anexo 1.2

Artículo “Finite Element Analysis of Top-Hat-Stiffened Panels of Fiber-Reinforced-Plastic Boat Structures”
Análisis de refuerzos trapezoidales para embarcaciones de recreo mediante elementos finitos.

Jordi Boronat LLledó
Análisis de refuerzos trapezoidales para embarcaciones de recreo mediante elementos finitos.
Análisis de refuerzos trapezoidales para embarcaciones de recreo mediante elementos finitos.
Análisis de refuerzos trapezoidales para embarcaciones de recreo mediante elementos finitos.
Análisis de refuerzos trapezoidales para embarcaciones de recreo mediante elementos finitos.
4.3 - Anexo 2.1

Características del laminado y propiedades mecánicas del panel 1.
4.4 - Anexo 2.2

Características del laminado y propiedades mecánicas del panel 2.
4.5 - Anexo 2.3

Características del laminado y propiedades mecánicas del panel 3.
4.6- Anexo 2.4

Características del laminado y propiedades mecánicas del panel 4.
Análisis de refuerzos trapezoidales para embarcaciones de recreo mediante elementos finitos.
4.7 - Anexo 3

Cálculo del espesor del parche de los paneles 1, 3 y 4.
5 - Bibliografía

Páginas consultadas:

http://www.astrosce.unam.mx/~farah/FEA/Curso%20FEA%20ALGOR/cursoFEA.htm