Estudio de la relación entre convección y radiación en la solidificación de una gota de estaño

TRABAJO FIN DE GRADO
GRADO EN INGENIERÍA EN TECNOLOGÍAS INDUSTRIALES

Autor: Juan Mendoza Fernández
Director: Juan Francisco Sánchez Pérez

Cartagena, 12 de Septiembre de 2019
Agradecimientos

Quiero dirigir mis agradecimientos a mi padre Juan, mi madre Pilar y mis hermanos Javier y Jose Antonio. También me gustaría mostrar mi agradecimiento al Dr. Juan Francisco Sánchez Pérez, cuya atención y dedicación han hecho posible la realización y finalización de este proyecto.
Índice general

1. Introducción ... 8
 1.1. Objetivos .. 8

2. Propiedades del estaño ... 9
 2.1. Características del estaño 9
 2.2. Aplicaciones del estaño 10

3. Mecanismos de transmisión del Calor 11
 3.1. Conducción .. 11
 3.2. Convección .. 12
 3.3. Radiación .. 12
 3.4. Mecanismos simultáneos de transmisión del calor 14

4. Definición del Problema 15
 4.1. Ecuación de continuidad modificada 16
 4.2. Ecuación del momento modificada 17
 4.3. Modelo Bidimensional 17
 4.3.1. Ecuación de la energía 18
 4.3.2. Transformación de la ecuación de la energía 18
 4.3.3. Ecuación de la energía en el sustrato 21
 4.3.4. Condiciones iniciales y de contorno en la gota 21
 4.3.5. Condiciones iniciales y de contorno en el sustrato 23
 4.3.6. Condición de contorno en la interfase gota-sustrato 23

5. Método de redes ... 24
 5.1. Método de diferencias finitas en transmisión del calor 24
 5.1.1. Ecuación para un nudo interior 24
 5.1.2. Ecuación para un nudo exterior en contacto con un fluido 26
 5.2. Viabilidad del modelo de red 27
 5.3. Desarrollo de la simulación 30
 5.4. Presentación del código 31

6. Presentación y análisis de resultados 34
 6.1. Presentación de los resultados de las simulaciones 35
 6.1.1. Simulaciones para una temperatura ambiente de 10 ºC 35
 6.1.2. Simulaciones para una temperatura ambiente de 15 ºC 37
 6.1.3. Simulaciones para una temperatura ambiente de 20 ºC 39
 6.1.4. Simulaciones para una temperatura ambiente de 25 ºC 41
 6.1.5. Simulaciones para una temperatura ambiente de 30 ºC 43
 6.1.6. Simulaciones para una temperatura ambiente de 35 ºC 45
6.1.7. Simulaciones para una temperatura ambiente de 40 °C 47
6.2. Análisis de los resultados .. 49
 6.2.1. Simulaciones para una temperatura ambiente de 150 °C 52
 6.2.2. Simulaciones para una temperatura ambiente de 200 °C 54
 6.2.3. Demostración de la escasa influencia de la radiación en el proceso de la
 solidificación .. 55
 6.2.4. Representación de la evolución de la temperatura de puntos superficiales
 de la gota para las distintas simulaciones .. 58

7. Conclusiones .. 63
Índice de figuras

2.1. Casiterita ... 9

4.1. Esquema de la gota para el instante inicial t=0 dónde se produce el impacto .. 15
4.2. Relación entre la entalpía y la temperatura en un cambio de fase para una solidificación isoterma. Imagen obtenida de [16] .. 19

5.1. Reticulación de un volumen por el método de las diferencias finitas para el caso de un nudo interior en contacto con otros nudos interiores. Representación de un nudo interior a y sus adyacentes. Figura obtenida de [15] .. 25
5.2. Circuito eléctrico equivalente para el caso de un nudo interior. Figura obtenida de [15] ... 26
5.3. Reticulación de un volumen por el método de las diferencias finitas para el caso de un nudo exterior en contacto con un fluido. Representación de un nudo exterior a y sus adyacentes. Figura obtenida de [15] ... 27
5.5. Distintos tipos de monopuertas resistivas. Figuras obtenidas de [1] 28
5.7. Fuentes constantes. Figura obtenida de [1] .. 29
5.10. Diagrama de bloques del programa de simulación de circuitos PSPICE. Figura obtenida de [1] ... 31
5.11. Fragmento de código. Parámetros generales, discretización de la gota y temperaturas ... 31
5.12. Fragmento de código. Propiedades del estaño y elección del proceso de radiación ... 32
5.13. Fragmento de código. Tiempo de simulación .. 33

6.1. Distribución de temperaturas en la gota y el sustrato para el primer caso de estudio a una temperatura ambiente de 10 °C .. 35
6.2. Distribución de temperaturas en la gota y el sustrato para el segundo caso de estudio a una temperatura ambiente de 10 °C .. 35
6.3. Distribución de temperaturas en la gota para el primer caso de estudio a una temperatura ambiente de 10 °C ... 36
6.4. Distribución de temperaturas en la gota para el segundo caso de estudio a una temperatura ambiente de 10 °C ... 36
6.5. Distribución de temperaturas en la gota y el sustrato para el primer caso de estudio a una temperatura ambiente de 15 °C .. 37
6.6. Distribución de temperaturas en la gota y el sustrato para el segundo caso de estudio a una temperatura ambiente de 15 °C .. 37
ÍNDICE DE FIGURAS

6.7. Distribución de temperaturas en la gota para el primer caso de estudio a una temperatura ambiente de 15 °C .. 38
6.8. Distribución de temperaturas en la gota para el segundo caso de estudio a una temperatura ambiente de 15 °C .. 38
6.9. Distribución de temperaturas en la gota y el sustrato para el primer caso de estudio a una temperatura ambiente de 20 °C .. 39
6.10. Distribución de temperaturas en la gota y el sustrato para el segundo caso de estudio a una temperatura ambiente de 20 °C .. 39
6.11. Distribución de temperaturas en la gota y el sustrato para el primer caso de estudio a una temperatura ambiente de 20 °C .. 40
6.12. Distribución de temperaturas en la gota para el segundo caso de estudio a una temperatura ambiente de 20 °C .. 40
6.13. Distribución de temperaturas en la gota y el sustrato para el primer caso de estudio a una temperatura ambiente de 25 °C .. 41
6.14. Distribución de temperaturas en la gota y el sustrato para el segundo caso de estudio a una temperatura ambiente de 25 °C .. 41
6.15. Distribución de temperaturas en la gota para el primer caso de estudio a una temperatura ambiente de 25 °C .. 42
6.16. Distribución de temperaturas en la gota para el segundo caso de estudio a una temperatura ambiente de 25 °C .. 42
6.17. Distribución de temperaturas en la gota y el sustrato para el primer caso de estudio a una temperatura ambiente de 30 °C .. 43
6.18. Distribución de temperaturas en la gota y el sustrato para el segundo caso de estudio a una temperatura ambiente de 30 °C .. 43
6.19. Distribución de temperaturas en la gota para el primer caso de estudio a una temperatura ambiente de 30 °C .. 44
6.20. Distribución de temperaturas en la gota para el segundo caso de estudio a una temperatura ambiente de 30 °C .. 44
6.21. Distribución de temperaturas en la gota y el sustrato para el primer caso de estudio a una temperatura ambiente de 35 °C .. 45
6.22. Distribución de temperaturas en la gota y el sustrato para el segundo caso de estudio a una temperatura ambiente de 35 °C .. 45
6.23. Distribución de temperaturas en la gota para el primer caso de estudio a una temperatura ambiente de 35 °C .. 46
6.24. Distribución de temperaturas en la gota para el segundo caso de estudio a una temperatura ambiente de 35 °C .. 46
6.25. Distribución de temperaturas en la gota y el sustrato para el primer caso de estudio a una temperatura ambiente de 40 °C .. 47
6.26. Distribución de temperaturas en la gota y el sustrato para el segundo caso de estudio a una temperatura ambiente de 40 °C .. 47
6.27. Distribución de temperaturas en la gota para el primer caso de estudio a una temperatura ambiente de 40 °C .. 48
6.28. Distribución de temperaturas en la gota para el segundo caso de estudio a una temperatura ambiente de 40 °C .. 48
6.29. Distribución de temperaturas en la gota y el sustrato para el segundo caso de estudio a una temperatura ambiente de 25 °C con las zonas referidas a la gota y al sustrato adecuadamente diferenciadas .. 49
6.30. Distribución de temperaturas en la gota para el segundo caso de estudio a una temperatura ambiente de 25 °C con puntos significativos de la gota señalados .. 50
6.31. Boceto de la distribución de temperaturas en la gota para el segundo caso de estudio a una temperatura ambiente de 25 °C con zonas significativas diferenciadas 51
6.32. Distribución de temperaturas en la gota y el sustrato para el primer caso de estudio a una temperatura ambiente de 150 °C 52
6.33. Distribución de temperaturas en la gota y el sustrato para el segundo caso de estudio a una temperatura ambiente de 150 °C 52
6.34. Distribución de temperaturas en la gota para el primer caso de estudio a una temperatura ambiente de 150 °C 53
6.35. Distribución de temperaturas en la gota para el segundo caso de estudio a una temperatura ambiente de 150 °C 53
6.36. Distribución de temperaturas en la gota y el sustrato para el primer caso de estudio a una temperatura ambiente de 200 °C 54
6.37. Distribución de temperaturas en la gota y el sustrato para el segundo caso de estudio a una temperatura ambiente de 200 °C 54
6.38. Distribución de temperaturas en la gota para el primer caso de estudio a una temperatura ambiente de 200 °C 55
6.39. Distribución de temperaturas en la gota para el segundo caso de estudio a una temperatura ambiente de 200 °C 55
6.40. Relación entre radiación y convección para distintas temperaturas de la gota con las distintas temperaturas ambiente escogidas 56
6.41. Relación entre radiación y convección para las distintas temperaturas ambiente escogidas con una temperatura de la gota de 240 °C 56
6.42. Temperatura de los puntos superficiales de la gota para una temperatura ambiente de 10 °C para ambos casos 58
6.43. Temperatura de los puntos superficiales de la gota para una temperatura ambiente de 15 °C para ambos casos 58
6.44. Temperatura de los puntos superficiales de la gota para una temperatura ambiente de 20 °C para ambos casos 59
6.45. Temperatura de los puntos superficiales de la gota para una temperatura ambiente de 25 °C para ambos casos 59
6.46. Temperatura de los puntos superficiales de la gota para una temperatura ambiente de 30 °C para ambos casos 60
6.47. Temperatura de los puntos superficiales de la gota para una temperatura ambiente de 35 °C para ambos casos 60
6.48. Temperatura de los puntos superficiales de la gota para una temperatura ambiente de 40 °C para ambos casos 61
6.49. Temperatura de los puntos superficiales de la gota para una temperatura ambiente de 150 °C para ambos casos 61
6.50. Temperatura de los puntos superficiales de la gota para una temperatura ambiente de 200 °C para ambos casos 62
7.1. Boceto con la distribución de temperaturas y la dirección de avance del frente de solidificación aproximada que han seguido las simulaciones comprendidas entre los 10 - 40 °C de temperatura ambiente 64
7.2. Boceto con la distribución de temperaturas y la dirección de avance del frente de solidificación aproximada que ha seguido la simulación a 150 °C de temperatura ambiente 64
7.3. Boceto con la distribución de temperaturas y la dirección de avance del frente de solidificación aproximada que ha seguido la simulación a 200 °C de temperatura ambiente 65
Índice de tablas

2.1. Características térmicas del estaño. .. 9
2.2. Características físicas del estaño. ... 9
2.3. Características mecánicas del estaño. ... 10

6.1. Temperaturas superiores a 10°C bajo los efectos de la convección 58
6.1. Temperaturas superiores a 10°C bajo los efectos de la convección y la radiación 58
6.2. Temperaturas superiores a 15°C bajo los efectos de la convección 58
6.3. Temperaturas superiores a 20°C bajo los efectos de la convección 59
6.4. Temperaturas superiores a 25°C bajo los efectos de la convección 59
6.5. Temperaturas superiores a 30°C bajo los efectos de la convección 60
6.6. Temperaturas superiores a 35°C bajo los efectos de la convección 60
6.7. Temperaturas superiores a 40°C bajo los efectos de la convección 61
6.8. Temperaturas superiores a 150°C bajo los efectos de la convección 61
6.9. Temperaturas superiores a 200°C bajo los efectos de la convección 62

Capítulo 1

Introducción

1.1. Objetivos

Este trabajo fin de grado tiene como objeto estudiar el proceso de solidificación de una gota de estaño sobre un sustrato metálico y estudiar qué relación existe entre la convección y la radiación en dicho proceso, dos de las tres formas existentes de intercambio de energía.

A lo largo de este trabajo se abordarán los fundamentos básicos que definen la trasferencia de energía y se introducirán los principales problemas que se dan en los procesos de solidificación, concretamente el problema de Stefan.

Para el estudio de ambos procesos de solidificación se utilizará el programa MatLab®), que, sirviéndose del método de redes, nos proporcionará diferentes representaciones de las distribuciones de temperaturas de las gotas donde se podrá observar con detalle los aspectos antes referidos. Dicho software presenta un código basado en las ecuaciones de Navier-Stokes.

El desarrollo del proyecto conllevará los siguientes objetivos parciales:

1. Estudio de las propiedades del estaño.
2. Estudio de los fenómenos de enfriamiento por convección y radiación.
3. Estudio del proceso de solidificación de una gota de material metálico sobre un sustrato.
4. Estudio y entendimiento del software elaborado con el método de redes.
5. Simulación de varios escenarios.
6. Estudio de los resultados obtenidos.
7. Elaboración de conclusiones.
Capítulo 2

Propiedades del estaño

2.1. Características del estaño

El estaño es un metal plateado blando y plegable que emite el ruido característico de "lloro del estaño" cuando se dobla. Es un elemento relativamente común. Se encuentra en la naturaleza principalmente como dióxido \(SnO_2 \) casiterita (su abundancia es de 2,2ppm). El elemento se obtiene reduciendo el dióxido con carbón. Se encuentra en muchas aleaciones y se usa para recubrir otros metales protegiéndolos de la corrosión.

![Figura 2.1: Casiterita. Imagen obtenida de [3]](image)

A continuación, se presentan unas tablas con las principales propiedades térmicas, físicas y mecánicas del estaño obtenidas de [2]

<table>
<thead>
<tr>
<th>Característica</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calor latente de fusión ((J/kg))</td>
<td>59000</td>
</tr>
<tr>
<td>Capacidad calorífica en estado sólido ((J/kgK))</td>
<td>226</td>
</tr>
<tr>
<td>Capacidad calorífica en estado líquido ((J/kgK))</td>
<td>206</td>
</tr>
<tr>
<td>Conductividad térmica en estado sólido ((W/mK))</td>
<td>63</td>
</tr>
<tr>
<td>Conductividad térmica en estado líquido ((W/mK))</td>
<td>32.6</td>
</tr>
</tbody>
</table>

Tabla 2.1: Características térmicas del estaño.

<table>
<thead>
<tr>
<th>Característica</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Densidad en estado líquido ((kg/m^3))</td>
<td>6940</td>
</tr>
<tr>
<td>Densidad en estado sólido ((kg/m^3))</td>
<td>7298.4</td>
</tr>
<tr>
<td>Punto de fusión ((K))</td>
<td>505.08</td>
</tr>
<tr>
<td>Punto de ebullición ((K))</td>
<td>2875</td>
</tr>
</tbody>
</table>

Tabla 2.2: Características físicas del estaño.
Estado del Material

<table>
<thead>
<tr>
<th>Estado del Material</th>
<th>Policristalino</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dureza - Mohs</td>
<td>1.5 – 1.8</td>
</tr>
<tr>
<td>Módulo de Tracción (GPa)</td>
<td>49.9</td>
</tr>
<tr>
<td>Módulo Volumétrico (GPa)</td>
<td>58.2</td>
</tr>
<tr>
<td>Relación de Poisson</td>
<td>0.357</td>
</tr>
</tbody>
</table>

Tabla 2.3: Características mecánicas del estaño.

2.2. Aplicaciones del estaño

Dentro de sus principales aplicaciones destaca su presencia en aleaciones con plomo como elemento soldador ya que el estaño con el plomo da lugar a una mezcla eutética. Suele usarse para soldar tuberías o elementos de circuitos eléctricos.

También es usado en para revestir plomo, zinc, acero u otros elementos ya que produce aleaciones bastante útiles capaces, entre otras cosas, de prevenir la corrosión. Los contenedores de acero revestido con plomo suelen ser usados para la conservación de alimentos.

Dentro de la industria química se usan también los conocidos compuestos orgánicos del estaño, los cuales consisten en compuestos químicos basados en estaño con hidrocarburos sustituyentes. Una de las aplicaciones de estos compuestos orgánicos del estaño es la de elemento estabilizador del PVC, ya que retarda su degradación. También, debido a sus propiedades biocidas, suelen ser usados para la fabricación de pesticidas, fungicidas o como conservante de alimentos [4].
Capítulo 3

Mecanismos de transmisión del Calor

En este apartado se presentarán los conceptos principales que definen a los distintos mecanismos de transmisión del calor para facilitar su identificación en el problema a estudiar.

Se define calor como la energía que se transmite entre sistemas debido a la presencia de un gradiente de temperaturas. La transferencia de calor se produce del punto de mayor temperatura al de menor temperatura hasta alcanzar el equilibrio térmico. Se pueden diferenciar tres modos distintos de transferencia del calor: conducción, convección y radiación.

3.1. Conducción

La conducción es la transferencia de energía de las partículas más energéticas de una sustancia hacia las adyacentes menos energéticas, como resultado de interacciones de esas partículas. La conducción puede tener lugar en los sólidos, líquidos o gases. Sin embargo, la dificultad de determinar las propiedades de las moléculas de los líquidos y gases dificultan la descripción y el entendimiento de los mecanismos de conducción en ellos [14]. Durante su movimiento, las moléculas de los líquidos y los gases colisionan entre sí dando lugar a una transferencia de energía en estas colisiones. En los sólidos se debe a la combinación de las vibraciones de las moléculas en una retícula y al transporte de energía por parte de los electrones libres. La rapidez de la conducción a través de un medio depende de la disposición espacial de las moléculas, su espesor y el material de que esté hecho, así como de la diferencia de temperaturas a través de él, [8] La ley que gobierna la conducción térmica es conocida como ley de Fourier de la conducción del calor y tiene la siguiente forma:

\[Q_{\text{cond}} = -kA \frac{dT}{dx} \]
(3.1)

Donde \(k \) es la conductividad térmica que se define como la capacidad del material para conducir calor y \(\frac{dT}{dx} \) es el gradiente de temperaturas. El signo negativo garantiza que la transferencia de calor sea positiva en la dirección \(x \) positiva.

Combinando la ecuación 3.1 con la primera ley de la termodinámica se obtiene:

\[\frac{\partial^2 T}{\partial x^2} = \frac{\rho c}{k} \frac{\partial T}{\partial t} = \frac{1}{\alpha} \frac{\partial T}{\partial t} \]
(3.2)
Donde α es la difusividad térmica, parámetro que mide la rapidez con la que un material disipa el calor. [18]

Las conductividades térmicas varían en un amplio intervalo siendo muy notable la diferencia entre sustancias en distintos estados, así pues, las conductividades térmicas de gases varían en un orden de 10^4 respecto a la de los metales puros. Las conductividades térmicas de los metales suelen ser altas, sin embargo, las de las aleaciones suelen ser más bajas debido a la presencia de partículas extrañas que dificultan la transferencia del calor en el seno del metal.

3.2. Convección

Se entiende por convección la transferencia de calor efectuada por el flujo de fluidos. Así pues, estudió de la convección combina dos campos como la conducción térmica y la mecánica de fluidos. En el caso de ausencia de movimiento del fluido, la transferencia de calor se realizará por pura conducción. [5]

Podemos distinguir dos tipos de convección en función del origen del movimiento del fluido:

1. **Convección forzada**: Se produce cuando el movimiento del fluido tiene un origen externo tal como la presencia o acción de una bomba, un ventilador o el viento.

2. **Convección natural (o libre)**: Se tiene convección libre cuando el movimiento del fluido no presenta una velocidad forzada ya que el origen de las fuerzas de empuje es la diferencia de densidades internas provocada por la variación de la temperatura en el fluido.[6]

A pesar de la complejidad de la convección, se observa que la rapidez de la transferencia de calor por convección es proporcional a la diferencia de temperaturas y se expresa mediante la ley de Newton de enfriamiento:

$$\dot{Q}_{\text{conv}} = hA_s(T_s - T_\infty)$$ (3.3)

Donde h es el coeficiente de transferencia de calor por convección en $W/m^2\, ^\circ C$. A_s es el área del sólido a través del cual se produce la transferencia de calor.

Si asumimos que T_∞ es la T_{amb} podemos escribir la ecuación 3.3 como:

$$\dot{Q}_{\text{conv}} = hA_s(T_s - T_{\text{amb}})$$ (3.4)

3.3. Radiación

"La radiación térmica es la radiación electromagnética emitida por un cuerpo como resultado de su temperatura". [10]. Cuando el medio de transporte de la energía radiante es el fotón, se de saber que la energía de cada fotón viene dada por $e = h\nu$ donde $h = 6,625 \times 10^{-34}Js$
es la constante de Planck y ν es la frecuencia de onda. La radiación difiere del resto de mecanismos de transmisión del calor en que no necesita un medio material para su trasmisión.

La radiación es un fenómeno que adquiere mucha importancia incluso a bajas temperaturas y a que todos los sólidos, líquidos o gases cuya temperatura sea superior al cero absoluto emiten energía en forma de radiación. En medios opacos como la madera o los metales, la energía en forma de radiación de las partículas interiores no llegan a alcanzar la superficie en la mayoría de los casos, es por eso que se considera un fenómeno superficial y solo se tiene en cuenta la energía emitida en forma de radiación de las partículas superficiales. La radiación emitida por una superficie queda expresada mediante la Ley de Stefan-Boltzmann:

$$\dot{Q}_{emitido,max} = \sigma A_s T_s^4$$

(3.5)

Dónde $\sigma = 5,67 \times 10^{-8}W/m^2K^4$ es la constante de Stefan-Boltzmann. La superficie idealizada que emite radiación a esta razón máxima toma el nombre de cuerpo negro. La radiación emitida por todas las superficies reales es menor que la emitida por un cuerpo negro y se expresa como:

$$\dot{Q}_{emitido} = \varepsilon \sigma A_s T_s^4$$

(3.6)

Dónde ε es la emisividad de la superficie.

Se puede escribir la transferencia de calor por radiación como:

$$\dot{Q}_{rad} = \varepsilon \sigma A_s (T_s^4 - T_{alred}^4)$$

(3.7)

La transferencia de calor mediante radiación hacia una superficie rodeada por un gas como el aire, ocurre paralelo a la conducción (o convección, si hay un movimiento masivo del gas) entre esa superficie y el gas. Por lo tanto, la transferencia total de calor se determina sumando las contribuciones de dos mecanismos distintos de transmisión de calor. Esto se lleva a cabo mediante la definición de un coeficiente combinado de transferencia de calor $h_{combinado}$.

De esta manera, la aportación total de calor de los dos mecanismos se expresa como:

$$\dot{Q}_{total} = \dot{Q}_{total} + \dot{Q}_{rad} = h_{conv} A_s (T_s - T_{alred}) + \varepsilon \sigma A_s (T_s^4 - T_{alred}^4)$$

(3.8)

$$\dot{Q}_{total} = h_{combinado} A_s (T_s - T_{\infty})$$

(3.9)

$$h_{combinado} = h_{conv} + h_{rad} = h_{conv} + \varepsilon \sigma (T_s - T_{alred}) (T_s^2 - T_{alred}^2)$$

(3.10)
"La radiación suele ser significativa con relación a la conducción o a la convección natural, pero despreciable en relación a la convección forzada, en especial cuando intervienen superficies que tienen emisividades bajas y temperaturas de bajas a moderadas."[8].

3.4. Mecanismos simultáneos de transmisión del calor

Tal y como se puede leer en [8], la existencia de tres mecanismos distintos de transmisión del calor no implica que puedan existir simultáneamente en un medio. De esta forma, en el interior de un sólido puede haber transferencia de calor en forma de conducción y radiación, pero no convección al no existir ninguna fase fluida interna. Sin embargo, si su superficie externa se encuentra expuesta a un fluido experimentará un intercambio de energía en forma de convección.

En un fluido estático la transferencia de calor es por conducción y, posiblemente, por radiación, y por convección y radiación si el fluido fluye. En ausencia de radiación, la transferencia de calor es por conducción o convección dependiendo de si existe o no movimiento masivo de ese fluido.
Capítulo 4

Definición del Problema

Este trabajo tiene por objeto el estudio de la solidificación en dos dimensiones de una gota de estaño sobre un sustrato metálico a menor temperatura, teniendo en cuenta los efectos de los distintos mecanismos de transmisión de energía para terminar concluyendo si existe o no relación entre el intercambio de energía existente por convección con el fluido externo y la fase fluida interna y la radiación emitida por la misma gota, y definir la naturaleza de la misma en caso de que exista.

Inicialmente, el problema expuesto considera que la gota impacta contra la superficie. No obstante, la velocidad es tan reducida que se pueden despreciar los efectos de deformación que produce el impacto sobre la gota de manera que se puede estimar que la gota no impacta, sino que se deposita sobre el sustrato.

Figura 4.1: Esquema de la gota para el instante inicial t=0 donde se produce el impacto

A lo largo de las distintas simulaciones se variará la temperatura ambiente mientras que parámetros como el radio de la gota quedarán fijos. Es decir, estudiaremos la solidificación de una misma gota en condiciones ambientales distintas para un mismo tiempo de solidificación establecido.

El principal problema que presenta el estudio de la solidificación es la presencia de cambios de fase durante la misma. La solidificación no se produce de manera instantánea, sino que se desarrolla gradualmente lo que dificulta su estudio y la elaboración de un modelo matemático que la caracterice con precisión. La gota comienza su solidificación en su parte inferior en
contacto con el sustrato a baja temperatura. Se forma una primera fase sólida y un frente de solidificación que se desplaza en el tiempo conforme el resto de la gota solidifica [7]. Se tiene, en este caso, la presencia de una fase sólida en contacto con una fase líquida.

Tal y como se discute en [16] para desarrollar un modelo matemático capaz de simular el flujo del fluido y la transferencia de calor en presencia de un proceso de solidificación considerando el cambio de fase es necesario resolver la ecuación del momento y la ecuación de la energía de manera que se explique el movimiento de la interfaz sólido-líquido con forma arbitraria, es decir, del frente de solidificación. La dificultad matemática del problema reside en la problemática presente a la hora de seleccionar las condiciones de contorno adecuadas.

En [16] se señala el método de redes como uno de los métodos más frecuentes para tratar el problema del frente de solidificación teniendo en cuenta el cambio de fase, pero que, incluso siendo una técnica precisa, su uso queda limitado a una solidificación “casi unidimensional” en la que el frente de solidificación tiene un movimiento restringido en una única dirección.

Este método consiste en el dividir el volumen total de la gota en celdas y calcular la fracción de volumen líquido en cada una de esas celdas definida como \(\theta = (x, y, z) \) donde se otorga un valor a \(\theta \) que varía entre 0 y 1 siendo el valor 0 el asignado al estado sólido total y el 1 al estado líquido total.

Se procede pues, a presentar las ecuaciones con las que [16] modela el problema que se está estudiando.

Como ya se ha comentado, el fundamento de dividir la gota en celdas tiene como objetivo final aproximar la posición del frente de solidificación en cada instante. Para ello se define la función \(\theta(x, y, z) \) que determina la cantidad de líquido que hay en cada celda para cada instante. Se define entonces la función volumétrica líquido-sólido como:

\[
\theta = \frac{\text{cantidad de volumen fluido en el volumen de control}}{\text{“cantidad de volumen fluido + cantidad de volumen sólido” en el volumen de control}}
\]

De esta manera, queda impuesto el valor uno para una celda llena de líquido y el valor cero para una celda totalmente sólida.

4.1. Ecuación de continuidad modificada

La ecuación de continuidad en forma diferencial adopta la siguiente forma:

\[
\frac{D}{Dt}(m) = \frac{D}{Dt}(m_l + m_s) = 0
\]

Donde \(m_l \) y \(m_s \) son la masa líquida y masa sólida respectivamente y se definen en función de \(\theta \) como:

\[
m_l = \int_0^{V(t)} \rho_l \theta dV
\]

(4.2)
m_s = \int_0^{V(t)} \rho_s (1 - \theta) dV \quad (4.3)

De esta manera, sustituimos en la ecuación (4.1) y queda:

\[\frac{D}{Dt} \left(\int_0^{V(t)} \rho_l \theta dV \right) = \frac{D}{Dt} \left(\int_0^{V(t)} \rho_s (1 - \theta) dV \right) = 0 \quad (4.4) \]

Asumiendo que la densidad es constante \(\rho_l = \rho_s \) y transformando esta ecuación como se muestra en [16] se obtiene finalmente:

\[\frac{\partial \theta}{\partial t} + \frac{\partial}{\partial x_k} [(\theta u_k) - \frac{\partial (\theta - 1)}{\partial t}] + \frac{\partial}{\partial x_j} [(\theta - 1) u'_j] = 0 \quad (4.5) \]

Donde \(u_k \) y \(u'_j \) son las velocidades medias del líquido y sólido. Se asume que las partículas completamente sólidas actúan como una pared de manera que \(u'_j = 0 \) para todo \(j \). Por tanto, la ecuación de continuidad modificada tiene la forma:

\[\frac{\partial}{\partial x_j} (\theta u_k) = 0 \quad (4.6) \]

4.2. Ecuación del momento modificada

Dada una masa de fluido y aplicando la segunda Ley de Newton sobre dicho elemento de materia se puede concluir en la ecuación de conservación del momento el cual iguala las fuerzas externas que actúan sobre la masa tales como fuerzas gravitacionales y fuerzas superficiales como las de presión y viscosidad con la variación del momento. Tras el desarrollo que se presenta en [16] se llega a la ecuación del momento modificada:

\[\frac{\partial (u_j \theta)}{\partial t} + \theta u_k \frac{\partial u_j}{\partial x_k} = \theta \frac{\partial \sigma_{ij}}{\partial x_i} + f \theta \quad (4.7) \]

Donde \(f \) es un vector que representa la resultante de las fuerzas máscicas y \(\sigma \) es el tensor de esfuerzos que representa la resultante de las fuerzas de superficie.

4.3. Modelo Bidimensional

De acuerdo a lo expuesto en [16] el modelo unidimensional que se presenta no puede modelar nuestro problema puesto que no es válido en casos donde la transferencia de calor mediante convección es significante. Para que esta la sea, y de acuerdo con [17] la muestra debe de ser de
una masa superior a 15 gramos. Por tanto, en este estudio y por el hecho de querer estudiar la influencia de la convección en el proceso de solidificación asumiremos que la masa de nuestra gota es superior a los 15 gramos. Además, el modelo unidimensional se desarrolla asumiendo que la transferencia del calor se da en una única dirección principal ortogonal al sustrato, puesto que asume que el gradiente de temperaturas en dirección axial es mucho más notable que en dirección radial. Este gradiente axial guía el movimiento del frente de solidificación (interfaz sólido-líquida) que se puede aproximar mediante la solución de Neumann al problema de Stefan.

Se conoce como problema de Stefan a un particular problema de frontera en movimiento que describe el movimiento de la interfase sólido-líquido conocida como frente de solidificación a lo largo del proceso de cambio de fase. [12]

Para modelar la evolución temporal de la solidificación se tendrá como referencia el modelo bidimensional desarrollado en [16] el cuál se expondrá a continuación:

4.3.1. Ecuación de la energía

Asumiendo que las partículas de cada fase presente en la gota tiene propiedades físicas y térmicas constantes aunque diferentes, y considerando que la disipación viscosa no es significativa y, por tanto, no teniendo en cuenta en la ecuación de la energía, ya que, si consideramos que en el número de Eckert, $Ec = \frac{V_0^2}{c_l \Delta T}$, c_l es el calor específico del líquido y ΔT es la diferencia de temperatura entre la gota y el sustrato, se obtiene un valor del orden de 10^{-3}, por lo que se justifica que los efectos de la disipación viscosa sean despreciables.

A partir de los anteriores supuestos, se procede a establecer la ecuación de la energía en función de la entalpía para unos ejes axisimétricos establecidos:

$$\frac{\partial}{\partial t}(\rho h) + u \frac{\partial}{\partial x}(\rho h) + v \frac{\partial}{\partial y}(\rho h) = \frac{\partial}{\partial x}(k \frac{\partial T}{\partial x}) + \frac{\partial}{\partial y}(k \frac{\partial T}{\partial y}) + \frac{k}{x} \frac{\partial T}{\partial x}$$

(4.8)

Dónde k es la conductividad térmica del material, h la entalpía y T la temperatura.

La presencia de dos fases distintas da lugar a un problema complejo en el que se combina la transferencia de calor por convección en la fase líquida y la transferencia de calor por conducción entre la fase sólida y el sustrato. La anterior ecuación expuesta se encuentra en función de dos variables dependientes, en [16] se realiza una transformación a la ecuación para reescribirla en función de una única variable.

4.3.2. Transformación de la ecuación de la energía

Se procede ahora a mostrar la transformación de la ecuación de la energía expuesta en [16].

La relación entre temperatura y entalpía se define como:
dónde \(c \) es el calor específico del material. La figura 4.2 obtenida de [16] define la relación entre la entalpía total y la temperatura. Se aprecia que esta relación tiene forma de función escalón lo que concluye que durante la solidificación, la entalpía es función de la temperatura y que los calores específicos son constantes en cada fase.

![Figura 4.2](image_url)

Figura 4.2: Relación entre la entalpía y la temperatura en un cambio de fase para una solidificación isoterma. Imagen obtenida de [16]

La temperatura viene dada por:

\[
T = \begin{cases}
\frac{h}{c_s}, & h \leq c_s T_m \\
T_m, & c_s T_m < h < c_s T_m + H_f \\
\frac{(h - H_f)/c_l}{c_l}, & h \geq c_s T_m + H_f
\end{cases}
\]

(4.11)

Dónde \(H_f \) es el calor latente de fusión. A partir del sistema de coordenadas mostrado en la figura anterior dónde \(h = 0 \) se corresponde con el cambio de fase, se puede reescribir la ecuación (4.11) como:

\[
T = \begin{cases}
T_m + \frac{h}{c_s}, & h \leq 0 \\
T_m, & 0 < h < H_f \\
T_m + \frac{(h - H_f)/c_l}{c_l}, & h \geq H_f
\end{cases}
\]

(4.12)

Ahora se procede a definir el potencial de conducción del calor \(T^* \) el cual es usado para resolver la ecuación de la energía en [16].
CAPÍTULO 4. DEFINICIÓN DEL PROBLEMA

\[T^* = \int_{T_m}^{T} k(T) dT \]
(4.13)

Se puede escribir \(T^* \) para diferentes fases:

\[T^* = \begin{cases}
 k_s(T - T_m), & T < T_m \\
 0, & T = T_m \\
 k_l(T - T_m), & T > T_m
\end{cases} \]
(4.14)

Transformando la ecuación (4.12) con la ecuación (4.14) se obtiene:

\[T^* = \begin{cases}
 k_s h / c_s, & h \leq 0 \\
 0, & 0 < h < H_f \\
 k_l (h - H_f) / c_l, & h \geq H_f
\end{cases} \]
(4.15)

Lo que permite reescribir la ecuación de la energía (4.8) en términos de \(T^* \):

\[\frac{\partial}{\partial t} (\rho h) + u \frac{\partial}{\partial x} (\rho h) + v \frac{\partial}{\partial y} (\rho h) = \frac{\partial^2 T^*}{\partial x^2} + \frac{\partial^2 T^*}{\partial y^2} + \frac{1}{x} \frac{\partial T^*}{\partial x} \]
(4.16)

De la ecuación (4.15) se puede apreciar que \(T^* \) es función lineal de la entalpía, tal que:

\[T^* = \Gamma(h) h + S(h) \]
(4.17)

donde \(\Gamma \) y \(S \) son funciones de \(h \). Sustituyendo la ecuación (4.17) en (4.16) se obtiene:

\[\frac{\partial}{\partial t} (\rho h) + u \frac{\partial}{\partial x} (\rho h) + v \frac{\partial}{\partial y} (\rho h) = \left[\frac{\partial}{\partial x} (\Gamma \frac{\partial h}{\partial x}) + \frac{\partial}{\partial y} (\Gamma \frac{\partial h}{\partial y}) + \Gamma \frac{\partial h}{\partial x} \right] + \\
\left(\frac{\partial^2 S}{\partial x^2} + \frac{\partial^2 S}{\partial y^2} + \frac{1}{x} \frac{\partial S}{\partial x} \right) \]
(4.18)

donde \(\Gamma = \begin{cases}
 k_s / c_s, & h \leq 0 \text{ fase sólida} \\
 0, & 0 < h < H_f \text{ interfase} \\
 k_l / c_l, & h \geq H_f \text{ fase líquida}
\end{cases} \)
(4.19)

De esta manera se obtiene la ecuación de la energía en función de una única variable, la entalpía.
4.3.3. Ecuación de la energía en el sustrato

Tal y como se relata en [16], la ecuación de la energía en el sustrato de acuerdo con el sistema de referencia axilsimétrico escogido se escribe como:

\[
\rho_w c_w \frac{\partial T_w}{\partial t} = \frac{\partial}{\partial x} (k_w \frac{\partial T_w}{\partial x}) + \frac{\partial}{\partial y} (k_w \frac{\partial T_w}{\partial y}) + \frac{k_w}{x} \frac{\partial T_w}{\partial x} \tag{4.20}
\]

dónde el subíndice \(w\) se refiere al sustrato y \(y_w\) es la dirección opuesta de \(y\).

4.3.4. Condiciones iniciales y de contorno en la gota

Condiciones de contorno en los límites de la malla

Como se relata en [16], para definir las condiciones iniciales y de contorno, primero se expresará la temperatura \(T\) en función de la entalpía \(h\) y de las nuevas funciones \(\Gamma\) y \(S\). Tras relacionar las ecuaciones (4.12) y (4.19) como se indica en [16] se obtiene:

\[
T = T_m + \frac{1}{k} (h \Gamma + S) \tag{4.21}
\]

dónde:

\[
dónde = \begin{cases}
 k = k_s, & h \leq 0 \text{ fase sólida} \\
 k = k_m, & 0 < h < H_f \text{ interfase} \\
 k = k_l, & h \geq H_f \text{ fase líquida}
\end{cases} \tag{4.22}
\]

Al definirse un sistema de coordenadas axilsimétrico y al tener la gota forma de esfera, nuestro problema será simétrico para el eje \(y\). Además, tal y como señala [16] sólo se tendrá en cuenta una porción de la gota en la computación. El problema reside en fijar las condiciones de contorno para cada porción de la malla. En [16] se establece que la zona por la que pasa el eje axilsimétrico, es decir, el plano virtual que dividirá la gota en dos, es tratado como una pared adiabática. Por otro lado, la frontera inferior en de la gota también usará condiciones de contorno adiabáticas para las zonas no mojadas. Por otro lado, las zonas mojadas, es decir, zonas de la gota en contacto con la superficie, si deberán ser tenidas en cuenta, ya que se produce un importante intercambio de calor en forma de conducción. De esta manera, deberemos considerar la resistencia térmica de la superficie del sustrato en las formulaciones. El resto de zonas límite como la zona superior o el límite derecho de la gota se fijan como paredes adiabáticas como señala [16].

La condición de la pared izquierda queda como \(\partial T/\partial x = 0\) y como la temperatura había quedado definida en función de la entalpía.

\[
\frac{\partial h}{\partial x} = 0 \text{ en el límite izquierdo} \tag{4.23}
\]

Y como las nuevas funciones \(\Gamma\) y \(S\) también son función de la entalpía:
CAPÍTULO 4. DEFINICIÓN DEL PROBLEMA

\[\frac{\partial \Gamma}{\partial x} = 0, \quad \frac{\partial S}{\partial x} = 0, \quad \text{en el límite izquierdo} \quad (4.24) \]

Para la zona inferior no mojada, se tienen las siguientes condiciones de contorno:

\[\frac{\partial h}{\partial y} = 0 \quad \text{y en consecuencia} \quad \frac{\partial \Gamma}{\partial y} = 0, \quad \frac{\partial S}{\partial y} = 0 \quad (4.25) \]

Y en la zona mojada donde se produce un intercambio de calor en forma de conducción se tiene como condición de contorno:

\[k \frac{\partial T}{\partial y} = q \quad (4.26) \]

donde se asume que la dirección positiva del calor intercambiado es desde la gota al sustrato. La ecuación (4.26) en términos de entalpía queda como:

\[\delta T = \frac{q \delta y}{k} \quad (4.27) \]

Tal y como se señala [16], cuándo la temperatura en la celda adyacente al sustrato es conocida, la temperatura del límite inferior \(T_b \) puede ser obtenida usando la ecuación (4.27). Se aplica la ecuación (4.21) para obtener \(h_b \) tal y como se muestra a continuación:

\[h_b = \frac{1}{\Gamma_b} [k_b(T_b - T_m - S_b)] \quad (4.28) \]

donde = \begin{cases} si \ T_b < T : \quad \Gamma_b = k_s/c_s, & S_b = 0, & k_b = k_s \\ si \ T_b \geq T : \quad \Gamma_b = k_l/c_l, & S_b = -H_f k_l/c_l, & k_b = k_l \end{cases} \quad (4.29)

donde el subíndice \(b \) hace referencia a la zona mojada del límite inferior.

Condiciones de contorno en la superfi cie libre

Ahora se procede a determinar las condiciones de contorno de la superfi cie libre en cada fase de la solidifi cación de la gota. Tal y como indica [16], estas zonas tendrán una condición de contorno adiabática. Esta condición adiabática debe ser complementada especificando el valor de la entalpía, y de las funciones defi nidas en función de la misma, de la zona inmediatamente exterior a la gota. Está condición puede ser fácilmente cambiada para una condición de contorno de convección o radiación según señala [16]. Finalmente se concluye que, para zonas cercanas al sustrato la conducción es la forma de intercambio de calor dominante y para zonas interiores de la gota la conducción y la convección. Además, señala [16], la condición adiabática en la superfi cie libre resulta razonable.
Condiciones iniciales

Por último, se procede a fijar las condiciones iniciales. Se asume que el el momento del impacto de la gota con el sustrato es \(t = 0 \), de manera que se fija el valor de la entalpía (y de las funciones asociadas a la misma) para este tiempo. Estos valores son calculados en función de la distribución inicial de la temperatura la cual será distinta para zonas de distinta fase. Se asume según [16], que la gota tiene una temperatura uniforme en la fase líquida por encima del punto de fusión, que para el estaño es de 240 °C.

4.3.5. Condiciones iniciales y de contorno en el sustrato

Condiciones de contorno en los límites de la malla

Al igual que en la gota, la zona límite izquierda que coincide con la zona de paso del eje de simetría será considerada como una pared adiabática, es decir, tendrá como condición de contorno \(\partial T / \partial x = 0 \). La zona superior del sustrato no mojada que coincide con la zona límite inferior de la gota no mojada tendrá las mismas condiciones de contorno que esta, es decir, \(\partial T_w / \partial y_w = 0 \). Por otro lado, la zona mojada superior del sustrato donde se produce la conducción tendrá la siguiente condición de contorno:

\[
-k_w \frac{\partial T_w}{\partial y_w} = q \tag{4.30}
\]

donde se ha considerado como positiva la dirección de \(q \) de la gota al sustrato. La ecuación (4.30) puede ser usada para obtener la temperatura límite de la zona superior del sustrato \(T_{w,t} \).

Condiciones iniciales

Para \(t = 0 \) se asume que la temperatura del sustrato \(T_w \) es uniforme.

4.3.6. Condición de contorno en la interfase gota-sustrato

La conexión entre la solución de la ecuación de la energía de cada una de las zonas se realiza a través del flujo de calor intercambiado \(q \). En la zona no mojada no existe flujo de calor, sin embargo, en la zona mojada se tiene que el flujo queda definido como:

\[
q = \frac{\delta T}{R_t} \tag{4.31}
\]

donde \(\delta T \) es la diferencia de temperaturas entre las dos celdas adyacentes, una perteneciente a la zona inferior de la gota y otra perteneciente a la zona superior del sustrato. \(R_t \) es la resistencia térmica total por unidad de área de la superficie de contacto.
Capítulo 5

Método de redes

Con cierta frecuencia se tienen que estudiar procesos de la naturaleza sujetos a formas geométricas complejas o con condiciones de contorno que varían en el tiempo (como el problema de estudio de este trabajo) donde resulta imposible encontrar una solución analítica. En estos casos donde la solución analítica resulta inaccesible se suelen usar métodos iterativos que nos proporcionan aproximaciones numéricas a la solución del problema.

La mayoría de estos métodos realizan una reticulación del espacio de estudio en pequeñas celdas elementales finitas de manera que se adaptan a la forma física del problema. Cuanto más pequeñas sean estas divisiones, más precisa será la solución obtenida por el método diferencial. En este trabajo, al presentar una simetría axial, se divide la mitad de la gota en un determinado número de celdas y aplicando las ecuaciones diferenciales a cada una de las celdas se obtiene un conjunto de ecuaciones diferenciales en diferencias finitas.

El método de redes establece un circuito eléctrico equivalente al problema, de manera que se hacen coincidir las ecuaciones del modelo de redes para un elemento de volumen con las ecuaciones del modelo matemático discretizado.

El método de simulación por redes (MESIR) es el usado para la realización de este trabajo. Para la resolución del circuito eléctrico hace uso del software PSPICE, el cual resuelve matemáticamente el sistema.

Por otro lado, en vez de realizar una discretización simultánea de las variables de espacio y tiempo solo se realiza la discretización de la primera de ellas, ya que la reticulación espacial es realizada de forma sucesiva por NGSPICE durante la simulación.

5.1. Método de diferencias finitas en transmisión del calor

5.1.1. Ecuación para un nudo interior

En muchas situaciones se pueden encontrar geometrías que dificultan el cálculo analítico o condiciones de frontera tales que la solución analítica sea tan compleja que presente una evaluación numérica muy difícil. Para estas situaciones, resulta muy útil resolver el problema mediante el método numérico de las diferencias finitas.

En transmisión del calor, en problemas de dos y tres dimensiones, encontramos soluciones complejas y extensas que requieren del uso de este método para su resolución.
Tal y como se relata en [15] este método considera al elemento de estudio como un volumen constituido a su vez por volúmenes muy pequeños pero finitos, obteniendo así una aproximación de los elementos diferenciales usados en la formulación analítica. Cuanto más pequeños se hagan estos elementos, menor será la diferencia entre la resolución mediante el modelo de diferencias finitas y el modelo diferencial.

Se define como *nudo* al centro de cada elemento de volumen finito y se asume que la temperatura del nudo es la misma en todo el volumen finito.

Para el caso de la conducción bidimensional se aplica el principio de conservación de la energía a un elemento de profundidad unitaria Δz; de anchura Δx y altura Δy como el de la siguiente figura.

\[q_{ba} + q_{ca} + q_{ea} + q_{da} = 0 \]
\[(5.1) \]

Figura 5.1: *Reticulación de un volumen por el método de las diferencias finitas para el caso de un nudo interior en contacto con otros nudos interiores. Representación de un nudo interior a y sus adyacentes. Figura obtenida de [15]*

Aplicando un balance de energía al nudo interior a se obtiene:

\[q_{ba} + q_{ca} + q_{ea} + q_{da} = 0 \]

dónde cada término se corresponde con el calor transmitido por conducción desde el nudo a al resto de nudos adyacentes. Si se expresa cada término en función de las temperaturas nodales y atendiendo a la analogía eléctrica que establece que cualquier separación física entre dos nodos presenta una oposición a la transmisión del calor semejante a la oposición que presenta una resistencia eléctrica al paso de la corriente, se tiene que:
\[q_{ij} = \frac{T_i - T_j}{R_{ij}}; \text{siendo} \quad R_{ij} = \frac{\Delta X_{ij}}{k \cdot A_{k_{ij}}} \]

De modo que se puede ilustrar el caso bidimensional de la transmisión de calor a través de una placa como el circuito eléctrico semejante siguiente:

Figura 5.2: Circuito eléctrico equivalente para el caso de un nudo interior. Figura obtenida de [15]

De esta manera se establece el siguiente paralelismo:

- \(q_{ij} \rightarrow \) Intensidad eléctrica
- \(R_{ij} \rightarrow \) Resistencia eléctrica

El balance anterior solo es válido para los nudos interiores del sólido, para los nudos situados en la periferia del sólido y que se encuentran en contacto con un fluido se realiza un balance distinto.

5.1.2. Ecuación para un nudo exterior en contacto con un fluido

Debido a la naturaleza de nuestro problema, habrá nudos que estén situados en la periferia de la parte sólida del elemento que estén en contacto tanto con el fluido exterior como con el fluido interior que no es otro que el propio material fundido antes de solidificar.

Para estos nudos se realiza un balance distinto tal y como se explica en [15]. Si consideramos un nudo \(a \) como el que se muestra en la siguiente figura, se puede apreciar que al estar al borde del sólido está en contacto con un fluido, por lo que el intercambio de calor es convectivo y debe aplicarse la ley de Newton entre nudos. Con \(T_f \) siendo la temperatura del fluido no perturbado y \(h_e \) el coeficiente de transmisión del calor entre el sólido y el fluido.

Se puede observar que en el caso del nudo \(a \), este intercambia calor mediante conducción con los nudos interiores \(b, d, e \) y con el nudo "c" mediante convección y que además representa únicamente la mitad del volumen que representa cualquier nudo interior. Aplicando un balance de energía se obtiene:
Figura 5.3: Reticulación de un volumen por el método de las diferencias finitas para el caso de un nudo exterior en contacto con un fluido. Representación de un nudo exterior a y sus adyacentes. Figura obtenida de [15]

\[q_{ba} + q_{ca} + q_{ea} + q_{fa} = 0 \] (5.2)

aplicando la analogía eléctrica donde \(R_{ij} = \frac{\Delta X_{ij}}{k \cdot A_{kij}} \) es la resistencia conductiva y \(R_{ij} = \frac{1}{h_{ij} \cdot A_{kij}} \) es la resistencia convectiva se obtiene.

\[\frac{T_b - T_a}{R_{ab}} + \frac{T_d - T_a}{R_{ad}} + \frac{T_e - T_a}{R_{ae}} + \frac{T_f - T_a}{R_{af}} = 0 \] (5.3)

Se tendría un sistema eléctrico equivalente como el siguiente:

5.2. Viabilidad del modelo de red

Las variables del circuito equivalente deben de cumplir con la primera y segunda ley de Kirchhoff. Solo que la variable de intensidad en nuestro caso será el flujo de calor y la diferencia de potencial será la diferencia de temperaturas.

Según [1], se puede establecer un modelo de red viable si cumple que:

- Las variables del circuito cumplen las leyes de Kirchhoff
- La red debe ser independiente de la variable tiempo

No obstante, la solución de las leyes de Kirchhoff proporciona soluciones donde no se relacionan los flujos y a las fuerzas. Las relaciones entre flujos y fuerzas se conocen como ecuaciones
constitutivas y definen los elementos del circuito que expresan características específicas de cada proceso.

Se habla de monopuerta para referirse a los elementos que modelan las relaciones entre los flujos y las fuerzas. Estas pueden ser pasivas o activas según disipen o generen energía de acuerdo con el criterio previamente establecido.

- **Monopuertas pasivas**: Se dividen en:
 - **Monopuertas resistivas**: Se da cuando se quiere describir un proceso disipativo tal como un efecto viscoso o una fricción. Es independiente del tiempo y puede relacionar variables de manera lineal o no:
 \[
 \frac{dX(t)}{dt} = R\frac{dj(t)}{dt}
 \]
 (5.4)

 Cuando la relación es lineal se representa con una resistencia, si la relación expresada no es lineal se representa con una fuente de tensión o intensidad controladas:

- **Monopuertas capacitivas**: Se da cuando el fenómeno que se quiere describir reproduce un proceso de almacenamiento de energía. La relación entre variable, al igual que en el caso anterior, es independiente del tiempo:
 \[
 j(t) = C\frac{dX(t)}{dt}
 \]
 (5.5)
Se representa como un condensador:

\[C \]

Figura 5.6: Monopuerta capacitiva lineal. Figura obtenida de [1]

- **Monopuertas activas:** Se dividen en:
 - **Fuente constante:** El objetivo de estos elementos es indicar la dirección del flujo exclusivamente:
 \[F_j(j) = 0 \quad y \quad F_x(j) = 0 \]
 \[(5.6) \]

 Se representan con una fuente de intensidad o de tensión:

 Figura 5.7: Fuentes constantes. Figura obtenida de [1]

 - **Fuentes dependientes en el tiempo:** Las ecuaciones constitutivas son semejantes a las anteriormente presentadas, sin embargo están presentan un dependencia del tiempo:
 \[X = X(t) \quad y \quad j = j(t) \]
 \[(5.7) \]

 Se representan como fuentes de tensión e intensidad cuya forma de onda varía en el tiempo y puede ser de tipo cuadrado, triangular...

 Figura 5.8: Fuentes dependientes. Figura obtenida de [1]

- **Fuentes controladas:** Las monopuertas que representan ecuaciones constitutivas entre variables mediante cualquier función y no contiene explicitamente el tiempo, ya que, relaciona flujos y fuerzas de ramas ajenas entre sí, reciben el nombre de fuentes controladas.
5.3. Desarrollo de la simulación

Una vez se ha modelado el problema a un lenguaje que el programa sea capaz de interpretar se inicia la simulación. Tal y como relata [9] con cinco subprogramas que interactúan entre sí gracias a que se dispone de una estructura de datos creada cuando se inicia la simulación, hecho que permite la comunicación entre ellos.

Estos subprogramas son:

- **Entrada**: Su función es la interpretar el archivo y construir la estructura de datos que favorece la interacción entre los distintos subprogramas.

- **Organización**: Este subprograma constituye una parte muy importante de la simulación puesto que se encarga de la creación de estructuras adicionales de datos que pueden ser solicitadas posteriormente por el programa.

- **Análisis**: El subprograma de mayor importancia pues se encarga de ejecutar la resolución de los circuitos teniendo en cuenta los datos proporcionados por el programa de entrada para luego transmitirlos a la memoria central para su posterior procesamiento por el subprograma de salida.

- **Salida**: Se encarga de organizar los datos de la memoria central y mostrarlos de la manera indicada.

- **Utilidades**: Se encarga de aspectos como la organización y el almacenaje.

La siguiente figura muestra un esquema del programa a modo de diagrama de bloques:
5.4. Presentación del código

En esta sección se presentarán algunas de las líneas más significativas del código usado para las simulaciones con el objetivo de explicar algunas de las partes más importantes del mismo.

```plaintext
  # PARÁMETROS GENERALES
  
  # Reference drop radius
  Rp = drop.A * 0.5;  
  # Spread of the drop
  spread = 0.5;  
  # Tin splat radius
  Rsplat = spread * Rp;  
  # Tin splat thickness
  Lsplat = spread * Rp / 2.7;  
  
  # Domain and spatial discretization of the drop [m]
  nq = 7;  
  n = (nq+1) (for 7 functions) (Fassanicht uses 50 partitions, ng=30)
  deltax = fix(Rsplat/ng);
  deltay = fix(Lsplat/ng);
  nxy = nq * deltax;
  n = fix(Rsplat/deltax)+1;

  # Metal substrate
  nmax = 2^3;  
  # Cells along the thickness of metal substrate nx=3
  nxy = nmax;
  Lmetal = deltay * nmax;  
  # Thickness of metal substrate

  # Temperatures
  Tm = 10473;  
  Tin = 10473;  
  T0 = Tin + 273;  
  T0m = 231.5 + 273;  
  Tm = Tm + Tin;  
  Tm = Tm + Tin;  
```

En la figura 5.11 se pueden apreciar distintas secciones de código. La primera hace referencia tanto a la forma inicial de la gota como a la longitud que alcanza la misma una vez se extiende como consecuencia de su estado líquido inicial. De esta manera, se tiene el parámetro \(R_{\text{drop}} \) que determina la longitud del radio inicial de la gota, el parámetro \(\text{spread} \) que determina extensión de la gota, y los parámetros \(R_{\text{splat}} \) y \(L_{\text{splat}} \) que definen tanto la anchura como la altura de la
gota extendida sobre la superficie.

Luego se presenta la sección donde se establecen las características de la discretización de la gota. En la línea de código 32 se encuentra el parámetro de interés \(n_g \) que establece el número de particiones o nudos en los que se discretiza la gota. De este parámetro depende en gran medida la precisión de la simulación y el tiempo que lleva realizar cada una de ellas.

Por último, se encuentra la sección TEMPERATURAS donde, \(T_a \) fija la temperatura ambiente, parámetro el cual se modificará en cada una de las simulaciones, \(T_l \) establece la temperatura inicial de la gota la cuál debe ser superior a la temperatura de solidificación \(T_{SOL} \) para que la gota se encuentre inicialmente en estado fundido. Para terminar, se tienen los parámetros \(T_{min} \) y \(T_s \) que establecen la temperatura inicial del acero.

En la figura 5.12 se tiene la parte de código donde se establecen las propiedades del estaño tales como la densidad en estado sólido, la densidad en estado líquido, su capacidad calorífica tanto en estado sólido como líquido y su calor latente de fusión entre otras.

Al final de la figura se tiene la sección donde se establece la presencia o no de radiación durante la simulación. De esta manera, en la línea 80 del código se establece que para el valor de 0 no se tendrá en cuenta la influencia de la radiación en la simulación, y para el valor de 1 se tendrá en cuenta la influencia de la radiación durante la simulación.
Por último en la figura 5.13 se presenta el fragmento de código donde se fija el tiempo total de la simulación. En el caso de este proyecto, se fijó un valor de 8000 ms para todas las simulaciones debido a que durante este tiempo, la solidificación se encontraba justo a mitad de la misma aproximadamente y el interés de este proyecto reside en encontrar diferencias significativas teniendo o no en cuenta la influencia de la radiación durante esa parte de la solidificación ya que es imposible determinar si existen o no diferencias debido a la presencia de radiación una vez se tiene la gota completamente solidificada.
Capítulo 6

Presentación y análisis de resultados

En este capítulo se van a presentar y comparar los resultados obtenidos de la simulación con el método de redes para el caso de estudio en el que se tiene en cuenta solo la convección y el caso de estudio en el que se tiene en cuenta la convección y la radiación. Después, se analizará si se existe alguna tendencia o si se presenta alguna anomalía para, posteriormente, elaborar una conclusión final.

Las distintas simulaciones se han obtenido para distintas temperaturas ambiente. Para cada valor de temperatura ambiente considerado se han obtenido cuatro figuras, dos de ellas representan la distribución de la temperatura tanto de la gota como el sustrato en conjunto (una para el caso en el que se estudian los efectos de la convección y otra para el caso en el que se estudian los efectos de la convección junto a la radiación), y otras dos que representan la distribución de la temperatura en la sección de la gota para cada caso de estudio sin presencia de la distribución de temperaturas en el sustrato.

En las figuras se pueden distinguir zonas a diferentes temperaturas en función de los colores que presentan. Además, se ha acompañado a los puntos más significativos de cada representación con etiquetas que localizan exactamente el punto en la sección de la gota y nos proporcionan su temperatura exacta.

Se procede a presentar los resultados de las simulaciones a razón de dos por página, donde se presentará primeramente el resultado obtenido para el caso de solo convección a la temperatura ambiente especificada seguido del caso en el que se tienen en cuenta los efectos de la convección y la radiación.
6.1. Presentación de los resultados de las simulaciones

6.1.1. Simulaciones para una temperatura ambiente de 10 °C

Figura 6.1: Distribución de temperaturas en la gota y el sustrato para el primer caso de estudio a una temperatura ambiente de 10 °C

Figura 6.2: Distribución de temperaturas en la gota y el sustrato para el segundo caso de estudio a una temperatura ambiente de 10 °C
Figura 6.3: Distribución de temperaturas en la gota para el primer caso de estudio a una temperatura ambiente de 10 °C

Figura 6.4: Distribución de temperaturas en la gota para el segundo caso de estudio a una temperatura ambiente de 10 °C
6.1.2. Simulaciones para una temperatura ambiente de 15 °C

Figura 6.5: Distribución de temperaturas en la gota y el sustrato para el primer caso de estudio a una temperatura ambiente de 15 °C

Figura 6.6: Distribución de temperaturas en la gota y el sustrato para el segundo caso de estudio a una temperatura ambiente de 15 °C
Figura 6.7: Distribución de temperaturas en la gota para el primer caso de estudio a una temperatura ambiente de 15 °C

Figura 6.8: Distribución de temperaturas en la gota para el segundo caso de estudio a una temperatura ambiente de 15 °C
6.1.3. Simulaciones para una temperatura ambiente de 20 ºC

Figura 6.9: Distribución de temperaturas en la gota y el sustrato para el primer caso de estudio a una temperatura ambiente de 20 ºC

Figura 6.10: Distribución de temperaturas en la gota y el sustrato para el segundo caso de estudio a una temperatura ambiente de 20 ºC
Figura 6.11: Distribución de temperaturas en la gota para el primer caso de estudio a una temperatura ambiente de 20 °C

Figura 6.12: Distribución de temperaturas en la gota para el segundo caso de estudio a una temperatura ambiente de 20 °C
6.1.4. Simulaciones para una temperatura ambiente de 25 °C

Figura 6.13: Distribución de temperaturas en la gota y el sustrato para el primer caso de estudio a una temperatura ambiente de 25 °C

Figura 6.14: Distribución de temperaturas en la gota y el sustrato para el segundo caso de estudio a una temperatura ambiente de 25 °C
Figura 6.15: Distribución de temperaturas en la gota para el primer caso de estudio a una temperatura ambiente de 25 °C

Figura 6.16: Distribución de temperaturas en la gota para el segundo caso de estudio a una temperatura ambiente de 25 °C
6.1.5. **Simulaciones para una temperatura ambiente de 30 °C**

Figura 6.17: Distribución de temperaturas en la gota y el sustrato para el primer caso de estudio a una temperatura ambiente de 30 °C

Figura 6.18: Distribución de temperaturas en la gota y el sustrato para el segundo caso de estudio a una temperatura ambiente de 30 °C
Figura 6.19: Distribución de temperaturas en la gota para el primer caso de estudio a una temperatura ambiente de 30 ºC

Figura 6.20: Distribución de temperaturas en la gota para el segundo caso de estudio a una temperatura ambiente de 30 ºC
6.1.6. Simulaciones para una temperatura ambiente de 35 °C

Figura 6.21: Distribución de temperaturas en la gota y el sustrato para el primer caso de estudio a una temperatura ambiente de 35 °C

Figura 6.22: Distribución de temperaturas en la gota y el sustrato para el segundo caso de estudio a una temperatura ambiente de 35 °C
Figura 6.23: Distribución de temperaturas en la gota para el primer caso de estudio a una temperatura ambiente de 35 °C

Figura 6.24: Distribución de temperaturas en la gota para el segundo caso de estudio a una temperatura ambiente de 35 °C
6.1.7. Simulaciones para una temperatura ambiente de 40 ºC

Figura 6.25: Distribución de temperaturas en la gota y el sustrato para el primer caso de estudio a una temperatura ambiente de 40 ºC

Figura 6.26: Distribución de temperaturas en la gota y el sustrato para el segundo caso de estudio a una temperatura ambiente de 40 ºC
Figura 6.27: Distribución de temperaturas en la gota para el primer caso de estudio a una temperatura ambiente de 40 °C

Figura 6.28: Distribución de temperaturas en la gota para el segundo caso de estudio a una temperatura ambiente de 40 °C
6.2. Análisis de los resultados

Primero se va a explicar con detalle que es lo que se está viendo en cada una de las imágenes anteriormente presentadas distinguiendo cada una de las partes más significativas que se aprecian en ellas. Para ello, se utilizará como ejemplo la figura 6.14 y sobre ella se señalarán las diferentes zonas explicando que intercambio de calor se llevan a cabo en ellas. Después se procederá de igual manera con la figura 6.16. Después se procederá a analizar las simulaciones obtenidas y se elaborará una conclusión.

Figura 6.29: Distribución de temperaturas en la gota y el sustrato para el segundo caso de estudio a una temperatura ambiente de 25 °C con las zonas referidas a la gota y al sustrato adecuadamente diferenciadas

En la figura 6.29 pueden apreciarse dos zonas bien diferenciadas. La zona 1 se corresponde con la distribución de temperaturas en el sustrato y la zona 2 con la distribución de temperaturas en la gota. Como se puede observar, la región de la zona 1 próxima a la zona 2 presenta un tono azul más claro que el resto, esto es porque su temperatura es ligeramente superior al resto del sustrato. En la región comprendida entre la zona 1 y la zona 2 se produce una transferencia de calor mediante conducción.

Ahora se procederá a analizar con más detalle la distribución de temperaturas que presenta la zona 1 y finalmente se presentará un boceto del resultado de la distribución de temperaturas estudiada, plasmado en la sección de la gota.
Figura 6.30: Distribución de temperaturas en la gota para el segundo caso de estudio a una temperatura ambiente de 25 °C con puntos significativos de la gota señalados

En la figura 6.30 podemos distinguir las siguientes zonas y puntos significativos:

- El **punto naranja claro** se corresponde con el punto central más bajo de la gota. Se encuentra en contacto con el sustrato y como se puede observar, se presupone en estado sólido ya que se encuentra a una temperatura de 411.2 K, la cual es claramente inferior a la temperatura de solidificación del estaño.

- El **punto verde oscuro** se corresponde con el punto más alto de la gota, tanto en su posición inicial como en su posición final (gota extendida). Por este punto y el anterior pasa el eje axilisimétrico establecido para el estudio. Este punto también se encuentra en estado sólido y se produce un intercambio de calor mediante conducción los puntos adyacentes de la gota, un intercambio por convección con el fluido que rodea la gota y mediante radiación por ser un punto de la superficie de la gota.

- El **punto naranja oscuro** se corresponde con un punto situado en el borde la gota y en contacto con el sustrato. En este punto se produce un intercambio de calor mediante conducción con el sustrato, un intercambio por convección con el fluido que rodea la gota y mediante radiación por ser un punto de la superficie de la gota. Además, también existe un intercambio de energía en forma de conducción con los puntos adyacentes sólidos de la gota y de convección con los puntos adyacentes en estado líquido si los hubiera.

- La **zona morada** se corresponde con la zona donde se presupone que se encuentra el frente de solidificación las temperaturas son menores pero cercanas a la temperatura de fusión. Los puntos morados señalados en el interior de la zona morada se corresponden con el inicio del frente de solidificación, en ellos se produce un intercambio de energía mediante convección y conducción.

- El **punto rojo** se corresponde con un punto de la periferia de la gota que se encuentra en estado líquido. Es el punto a mayor temperatura de la gota. Experimenta un intercambio de energía mediante convección con el fluido externo que rodea la gota y mediante radiación.
CAPÍTULO 6. PRESENTACIÓN Y ANÁLISIS DE RESULTADOS

Una imagen aproximada de las distintas zonas de la sección de la gota estudiada presentes en la simulación tomada como ejemplo sería la que se muestra en la figura 6.31

Figura 6.31: Boceto de la distribución de temperaturas en la gota para el segundo caso de estudio a una temperatura ambiente de 25 ºC con zonas significativas diferenciadas

Una vez explicado lo que se ve en cada una de las figuras obtenidas de la simulación se procede a analizar por pares de fotos los resultados obtenidos ya que el objeto de este estudio es el de encontrar diferencias en el mismo proceso de solidificación teniendo en cuenta o no la radiación durante el mismo.

Suele que al analizar los pares de fotos se aprecia que no hay diferencia significativas en ninguno de los pares de fotos obtenidos. Véase las figuras 6.4 y 6.3 por ejemplo. Se observa que en ambas imágenes la forma obtenida de la distribución de las temperaturas es idéntica. Además, se han señalado los mismos puntos y estos tienen la misma temperatura. Suced lo mismo en las imágenes sucesivas. Se observa, por ejemplo, que en el par de figuras 6.20 y 6.19 la forma de la distribución de la temperatura ha cambiado respecto a la presente en las imágenes 6.4 y 6.3 (Lo que indica que, al comenzar la solidificación con una temperatura ambiente mayor y desarrollarse bajo la presencia de la misma, la fase alcanzada en la solidificación en ese instante de tiempo es diferente a la alcanzada bajo el efecto de la otra temperatura ambiente, resultado totalmente lógico), pero entre ellas es idéntica.

Dado que para el intervalo de temperaturas 10 - 40 ºC se observa que no existe diferencia entre las simulaciones que tienen en cuenta la radiación y las que no lo tienen, se procede a hacer un par de simulaciones más con una temperatura ambiente de 150 ºC y 200 ºC con el propósito de descartar la posibilidad de que la ausencia de diferencias sea debido al rango de temperaturas seleccionado en primera instancia.
6.2.1. Simulaciones para una temperatura ambiente de 150 ºC

Se obtienen las figuras 6.32 y 6.34 cuando solo se tiene en cuenta la convección y las figuras 6.33 y 6.35 cuando se tienen en cuenta la radiación y la convección.

Figura 6.32: Distribución de temperaturas en la gota y el sustrato para el primer caso de estudio a una temperatura ambiente de 150 ºC

Figura 6.33: Distribución de temperaturas en la gota y el sustrato para el segundo caso de estudio a una temperatura ambiente de 150 ºC
Figura 6.34: Distribución de temperaturas en la gota para el primer caso de estudio a una temperatura ambiente de 150 °C

Figura 6.35: Distribución de temperaturas en la gota para el segundo caso de estudio a una temperatura ambiente de 150 °C
6.2.2. Simulaciones para una temperatura ambiente de 200 °C

Se obtienen las figuras 6.36 y 6.38 cuando solo se tiene en cuenta la convección y las figuras 6.37 y 6.39 cuando se tienen en cuenta la radiación y la convección.

Figura 6.36: Distribución de temperaturas en la gota y el sustrato para el primer caso de estudio a una temperatura ambiente de 200 °C

Figura 6.37: Distribución de temperaturas en la gota y el sustrato para el segundo caso de estudio a una temperatura ambiente de 200 °C
Figura 6.38: Distribución de temperaturas en la gota para el primer caso de estudio a una temperatura ambiente de 200 °C

Figura 6.39: Distribución de temperaturas en la gota para el segundo caso de estudio a una temperatura ambiente de 200 °C

Como se puede apreciar, entre cada par de fotos no existe ninguna diferencia, de manera que puede afirmarse que el intervalo de temperaturas escogido inicialmente no era el motivo de las similitudes.

6.2.3. Demostración de la escasa influencia de la radiación en el proceso de la solidificación

Con motivo de demostrar la escasa influencia de la radiación en el proceso de solidificación, se procede a enfrentar en una gráfica las ecuaciones 3.4 y 3.7 para estudiar el peso de cada uno de
los mecanismos de transmisión de energía en el proceso de solidificación. De esta manera, para cada temperatura ambiente estudiada se obtendrá una gráfica que recogerá la relación entre mecanismos para distintas temperaturas de la gota. Se obtiene entonces:

![Gráfica de relación entre radiación y convección](image1)

Figura 6.40: Relación entre radiación y convección para distintas temperaturas de la gota con las distintas temperaturas ambiente escogidas

Y si nos centramos en las diferentes temperaturas ambiente tenidas en cuenta para las distintas simulaciones para la temperatura de la gota escogida de 240 °C se obtiene:

![Gráfica de relación entre radiación y convección](image2)

Figura 6.41: Relación entre radiación y convección para las distintas temperaturas ambiente escogidas con una temperatura de la gota de 240 °C
En 6.40 se puede observar que cuanto mayor es la temperatura ambiente más hacia arriba se desplazan las líneas de puntos y, por tanto, se requiere una temperatura menor de la gota para que la radiación alcance el mismo peso en el enfriamiento que para temperaturas ambientes inferiores. Por otro lado se observa que a mayor temperatura de la gota, mayor es el peso de la radiación en el enfriamiento lo que es lógico al ser la gota la fuente de radiación del problema.

De la figura 6.40 se puede concluir que:

- El peso de la radiación en el proceso de enfriamiento se hace mayor cuanto mayor es la temperatura ambiente.

- El peso de la radiación en el proceso de enfriamiento se hace mayor cuanto mayor es la temperatura de la gota.

- Siendo la temperatura de la gota 240 ºC inicialmente, se necesitaría casi el doble de temperatura para que la relación entre radiación y convección alcanzara solamente un valor de 0,5, es decir, que el peso de la radiación en el enfriamiento fuese de un 25% ya que para alcanzar una relación de valor 1 (50% de peso para cada uno de los mecanismos de transmisión de energía) se tendría que tener una temperatura de la gota cercana a 1000 ºC para la mayoría de temperaturas ambiente escogidas.

Por otro lado, de la figura 6.41 se puede concluir que para todas las temperaturas ambiente de las simulaciones estudiadas, la relación entre radiación y convección no llega a alcanzar siquiera un valor de 0,2, lo que explica la nula influencia de la radiación en los resultados obtenidos.
6.2.4. Representación de la evolución de la temperatura de puntos superficiales de la gota para las distintas simulaciones

También se han representado las temperaturas de los puntos superficiales de la gota recogidos en las siguientes tablas para estudiar cómo evoluciona la temperatura en dirección radial.

<table>
<thead>
<tr>
<th>Anchura (m)</th>
<th>Temperatura (K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.000025</td>
<td>413.4</td>
</tr>
<tr>
<td>0.000825</td>
<td>448</td>
</tr>
<tr>
<td>0.000975</td>
<td>504.9</td>
</tr>
<tr>
<td>0.001875</td>
<td>504.9</td>
</tr>
</tbody>
</table>

Tabla 6.1: Temperaturas superficiales a 10°C bajo los efectos de la convección

<table>
<thead>
<tr>
<th>Anchura (m)</th>
<th>Temperatura (K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.000025</td>
<td>413.4</td>
</tr>
<tr>
<td>0.000825</td>
<td>448</td>
</tr>
<tr>
<td>0.000975</td>
<td>504.9</td>
</tr>
<tr>
<td>0.001875</td>
<td>504.9</td>
</tr>
</tbody>
</table>

Tabla 6.1: Temperaturas superficiales a 10°C bajo los efectos de la convección y la radiación

<table>
<thead>
<tr>
<th>Anchura (m)</th>
<th>Temperatura (K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.000025</td>
<td>414.5</td>
</tr>
<tr>
<td>0.000875</td>
<td>454.8</td>
</tr>
<tr>
<td>0.000925</td>
<td>504.9</td>
</tr>
<tr>
<td>0.001925</td>
<td>504.9</td>
</tr>
</tbody>
</table>

Tabla 6.2: Temperaturas superficiales a 15°C bajo los efectos de la convección

<table>
<thead>
<tr>
<th>Anchura (m)</th>
<th>Temperatura (K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.000025</td>
<td>414.5</td>
</tr>
<tr>
<td>0.000875</td>
<td>454.8</td>
</tr>
<tr>
<td>0.000925</td>
<td>504.9</td>
</tr>
<tr>
<td>0.001925</td>
<td>504.9</td>
</tr>
</tbody>
</table>

Tabla 6.2: Temperaturas superficiales a 15°C bajo los efectos de la convección y la radiación

Figura 6.42: Temperatura de los puntos superficiales de la gota para una temperatura ambiente de 10 °C para ambos casos

Figura 6.43: Temperatura de los puntos superficiales de la gota para una temperatura ambiente de 15 °C para ambos casos
Capítulo 6. Presentación y Análisis de Resultados

<table>
<thead>
<tr>
<th>Anchura (m)</th>
<th>Temperatura (K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.000025</td>
<td>415.5</td>
</tr>
<tr>
<td>0.000825</td>
<td>448.6</td>
</tr>
<tr>
<td>0.000875</td>
<td>504.9</td>
</tr>
<tr>
<td>0.001975</td>
<td>504.9</td>
</tr>
</tbody>
</table>

Tabla 6.3: Temperaturas superficiales a 20°C bajo los efectos de la convección

<table>
<thead>
<tr>
<th>Anchura (m)</th>
<th>Temperatura (K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.000025</td>
<td>415.5</td>
</tr>
<tr>
<td>0.000825</td>
<td>448.6</td>
</tr>
<tr>
<td>0.000875</td>
<td>504.9</td>
</tr>
<tr>
<td>0.001975</td>
<td>504.9</td>
</tr>
</tbody>
</table>

Tabla 6.3: Temperaturas superficiales a 20°C bajo los efectos de la convección y la radiación

Figura 6.44: Temperatura de los puntos superficiales de la gota para una temperatura ambiente de 20°C para ambos casos

<table>
<thead>
<tr>
<th>Anchura (m)</th>
<th>Temperatura (K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.000025</td>
<td>415.5</td>
</tr>
<tr>
<td>0.000825</td>
<td>448.6</td>
</tr>
<tr>
<td>0.000875</td>
<td>504.9</td>
</tr>
<tr>
<td>0.001975</td>
<td>504.9</td>
</tr>
</tbody>
</table>

Tabla 6.3: Temperaturas superficiales a 20°C bajo los efectos de la convección

<table>
<thead>
<tr>
<th>Anchura (m)</th>
<th>Temperatura (K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.000025</td>
<td>415.5</td>
</tr>
<tr>
<td>0.000825</td>
<td>448.6</td>
</tr>
<tr>
<td>0.000875</td>
<td>504.9</td>
</tr>
<tr>
<td>0.001975</td>
<td>504.9</td>
</tr>
</tbody>
</table>

Tabla 6.3: Temperaturas superficiales a 20°C bajo los efectos de la convección y la radiación

Figura 6.45: Temperatura de los puntos superficiales de la gota para una temperatura ambiente de 25°C para ambos casos

<table>
<thead>
<tr>
<th>Anchura (m)</th>
<th>Temperatura (K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.000025</td>
<td>415.5</td>
</tr>
<tr>
<td>0.000825</td>
<td>448.6</td>
</tr>
<tr>
<td>0.000875</td>
<td>504.9</td>
</tr>
<tr>
<td>0.001975</td>
<td>504.9</td>
</tr>
</tbody>
</table>

Tabla 6.4: Temperaturas superficiales a 25°C bajo los efectos de la convección

<table>
<thead>
<tr>
<th>Anchura (m)</th>
<th>Temperatura (K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.000025</td>
<td>415.5</td>
</tr>
<tr>
<td>0.000825</td>
<td>448.6</td>
</tr>
<tr>
<td>0.000875</td>
<td>504.9</td>
</tr>
<tr>
<td>0.001975</td>
<td>504.9</td>
</tr>
</tbody>
</table>

Tabla 6.4: Temperaturas superficiales a 25°C bajo los efectos de la convección y la radiación

Figura 6.45: Temperatura de los puntos superficiales de la gota para una temperatura ambiente de 25°C para ambos casos
<table>
<thead>
<tr>
<th>Anchura (m)</th>
<th>Temperatura (K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.000025</td>
<td>417.2</td>
</tr>
<tr>
<td>0.000775</td>
<td>450</td>
</tr>
<tr>
<td>0.000825</td>
<td>504.9</td>
</tr>
<tr>
<td>0.001425</td>
<td>509.9</td>
</tr>
<tr>
<td>0.002025</td>
<td>504.9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Anchura (m)</th>
<th>Temperatura (K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.000025</td>
<td>417.2</td>
</tr>
<tr>
<td>0.000775</td>
<td>450</td>
</tr>
<tr>
<td>0.000825</td>
<td>504.9</td>
</tr>
<tr>
<td>0.001425</td>
<td>509.9</td>
</tr>
<tr>
<td>0.002025</td>
<td>504.9</td>
</tr>
</tbody>
</table>

Tabla 6.5: Temperaturas superficiales a 30°C bajo los efectos de la convección

Tabla 6.5: Temperaturas superficiales a 30°C bajo los efectos de la convección y la radiación

Figura 6.46: Temperatura de los puntos superficiales de la gota para una temperatura ambiente de 30 °C para ambos casos

<table>
<thead>
<tr>
<th>Anchura (m)</th>
<th>Temperatura (K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.000025</td>
<td>417.9</td>
</tr>
<tr>
<td>0.000725</td>
<td>444.6</td>
</tr>
<tr>
<td>0.001075</td>
<td>504.9</td>
</tr>
<tr>
<td>0.001375</td>
<td>509.9</td>
</tr>
<tr>
<td>0.002025</td>
<td>504.9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Anchura (m)</th>
<th>Temperatura (K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.000025</td>
<td>417.9</td>
</tr>
<tr>
<td>0.000725</td>
<td>444.6</td>
</tr>
<tr>
<td>0.001075</td>
<td>504.9</td>
</tr>
<tr>
<td>0.001375</td>
<td>509.9</td>
</tr>
<tr>
<td>0.002025</td>
<td>504.9</td>
</tr>
</tbody>
</table>

Tabla 6.6: Temperaturas superficiales a 35°C bajo los efectos de la convección

Tabla 6.6: Temperaturas superficiales a 35°C bajo los efectos de la convección y la radiación

Figura 6.47: Temperatura de los puntos superficiales de la gota para una temperatura ambiente de 35 °C para ambos casos
Tabla 6.7: Temperaturas superficiales a $40^\circ C$ bajo los efectos de la convección

<table>
<thead>
<tr>
<th>Anchura (m)</th>
<th>Temperatura (K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.000025</td>
<td>418.9</td>
</tr>
<tr>
<td>0.000725</td>
<td>455.4</td>
</tr>
<tr>
<td>0.000775</td>
<td>504.9</td>
</tr>
<tr>
<td>0.001075</td>
<td>509.6</td>
</tr>
<tr>
<td>0.001375</td>
<td>509.9</td>
</tr>
<tr>
<td>0.002025</td>
<td>504.9</td>
</tr>
</tbody>
</table>

Tabla 6.7: Temperaturas superficiales a $40^\circ C$ bajo los efectos de la convección y la radiación

<table>
<thead>
<tr>
<th>Anchura (m)</th>
<th>Temperatura (K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.000025</td>
<td>418.9</td>
</tr>
<tr>
<td>0.000725</td>
<td>455.4</td>
</tr>
<tr>
<td>0.000775</td>
<td>504.9</td>
</tr>
<tr>
<td>0.001075</td>
<td>509.6</td>
</tr>
<tr>
<td>0.001375</td>
<td>509.9</td>
</tr>
<tr>
<td>0.002025</td>
<td>504.9</td>
</tr>
</tbody>
</table>

Figura 6.48: Temperatura de los puntos superficiales de la gota para una temperatura ambiente de $40^\circ C$ para ambos casos

Tabla 6.8: Temperaturas superficiales a $150^\circ C$ bajo los efectos de la convección

<table>
<thead>
<tr>
<th>Anchura (m)</th>
<th>Temperatura (K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.000025</td>
<td>367.6</td>
</tr>
<tr>
<td>0.000725</td>
<td>504.9</td>
</tr>
<tr>
<td>0.000775</td>
<td>510.7</td>
</tr>
<tr>
<td>0.001075</td>
<td>510.9</td>
</tr>
<tr>
<td>0.001375</td>
<td>510.8</td>
</tr>
<tr>
<td>0.002025</td>
<td>511</td>
</tr>
</tbody>
</table>

Tabla 6.8: Temperaturas superficiales a $150^\circ C$ bajo los efectos de la convección y la radiación

<table>
<thead>
<tr>
<th>Anchura (m)</th>
<th>Temperatura (K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.000025</td>
<td>367.6</td>
</tr>
<tr>
<td>0.000725</td>
<td>504.9</td>
</tr>
<tr>
<td>0.000775</td>
<td>510.7</td>
</tr>
<tr>
<td>0.001075</td>
<td>510.9</td>
</tr>
<tr>
<td>0.001375</td>
<td>510.8</td>
</tr>
<tr>
<td>0.002025</td>
<td>511</td>
</tr>
</tbody>
</table>

Figura 6.49: Temperatura de los puntos superficiales de la gota para una temperatura ambiente de $150^\circ C$ para ambos casos
De la distribución de la temperatura en los puntos superficiales se pueden extraer conclusiones interesantes:

- En las simulaciones obtenidas en el intervalo de temperaturas ambiente entre 10-40 °C se puede apreciar una tendencia clara de la dirección en la que se realiza la solidificación. La gota solidifica primero desde su parte central y el frente de solidificación avanza en dirección radial quedando como última parte en solidificar la parte superficial superior de la gota cercana al borde de la misma.

- En la simulación realizada a la temperatura ambiente de 150 °C se aprecia la misma tendencia anterior, aunque se visualiza un dato anómalo en el punto superior central de la gota.

- En la simulación realizada a la temperatura ambiente de 200 °C se aprecia una tendencia totalmente distinta. Ahora podemos observar que el punto central superior de la gota es el punto de mayor temperatura. La solidificación comienza en la parte central inferior, es decir, la parte central de la gota en contacto con el sustrato y sigue en dirección radial y vertical casi al mismo ritmo.
Capítulo 7

Conclusiones

En este capítulo se van a recoger la conclusiones obtenidas del análisis de los resultados del capítulo anterior.

Como se ha podido observar, la radiación y la convección no influyen entre sí a la hora de participar en el proceso de solidificación de la gota de estaño. Cada una de las simulaciones obtenidas teniendo en cuenta solo la convección ha producido unos resultados idénticos a los producidos por las simulaciones en las que, además de la convección, se tenía en cuenta la radiación. Esto ha sido demostrado enfrentando las ecuaciones que rigen ambos mecanismos llegando a la conclusión de que, para la temperatura inicial de la gota escogida (240 °C) y para el rango de temperaturas ambientes estudiadas, la radiación tenía un peso despreciable en el enfriamiento de la gota.

Por otro lado, el estudio de la evolución de la temperatura en dirección radial en puntos situados en la superficie de la gota ha permitido obtener las siguientes conclusiones.

- En las simulaciones obtenidas en el intervalo de temperaturas ambiente entre 10-40 °C se puede apreciar una tendencia clara de la dirección en la que se realiza la solidificación. La gota solidifica primero desde su parte central y el frente de solidificación avanza en dirección radial quedando como última parte en solidificar la parte superficial superior de la gota cercana al borde de la misma.

- En la simulación realizada a la temperatura ambiente de 150 °C se aprecia la misma tendencia anterior, aunque se visualiza un dato anómalo en el punto superior central de la gota y se intuye un dirección de avance del frente de solidificación en dirección radial pero a su vez en dirección hacia el sustrato.

- En la simulación realizada a la temperatura ambiente de 200 °C se aprecia una tendencia totalmente distinta. Ahora podemos observar que el punto central superior de la gota es el punto de mayor temperatura. La solidificación comienza en la parte central inferior, es decir, la parte central de la gota en contacto con el sustrato y sigue en dirección radial y vertical casi al mismo ritmo. A diferencia de la primera tendencia observada, por como están distribuidas las temperaturas, se puede afirmar que predomina la solidificación vertical ante la radial.

Las anteriores conclusiones corroboran lo expuesto durante el desarrollo del modelo bidimensional presente en [16]
Las siguientes figuras muestran un resumen de las tendencias anteriormente comentadas:

Figura 7.1: Boceto con la distribución de temperaturas y la dirección de avance del frente de solidificación aproximada que han seguido las simulaciones comprendidas entre los 10 - 40 °C de temperatura ambiente

Figura 7.2: Boceto con la distribución de temperaturas y la dirección de avance del frente de solidificación aproximada que ha seguido la simulación a 150 °C de temperatura ambiente
El hecho de que la primera parte en solidificar (a excepción del dato anómalo obtenido en las simulaciones a 150 °C) permite afirmar también que la transmisión por conducción tiene una mayor importancia en el proceso que la transmisión de energía mediante convección.

En resumen:

1. La radiación no influye durante el proceso de solidificación para las temperaturas estudiadas.
2. El peso de la radiación en el proceso de enfriamiento se hace mayor cuanto mayor es la temperatura ambiente.
3. El peso de la radiación en el proceso de enfriamiento se hace mayor cuanto mayor es la temperatura de la gota.
4. La conducción es la forma de transmisión de energía de mayor importancia durante la solidificación.
5. La dirección de avance del frente de solidificación es principalmente radial.
6. Para temperaturas ambiente altas, el avance del frente de solidificación se produce tanto en dirección radial como vertical, siendo un poco más predominante este último hasta alcanzar cierta fase de la solidificación en la que vuelve a predominar la dirección radial.
Bibliografía

