Animating formal specifications with
inheritance in a DL-based framework'

Pedro Sanchez Patricio Letelier Isidro Ramos

Department of Information Systems and Computation
Valencia University of Technology
Camino de Vera, s/n, 46071 Valencia

email {ppalma | letelier | iramos}@dsic.upv.es

http://www.dsic.upv.es/users/oom
Keywords: Requirements engineering, object oriented methods,
inheritance, animation of specifications.

Abstract

Dynamic Logic (DL) provides a suitable formal framework to model
actions and reasoning about them. OASISis a language for the
specification of object oriented conceptual models. In our model,
specialization is a relation between classes that defines an inheritance
mechanism through static and dynamic partitions. A variant of DL
(including the Deontic operators for permission, prohibition and
obligation) is the formalism used in OASIS to deal with changes of state,
triggers, preconditions, protocols and operations. The animation of
conceptual models in order to validate the specification is an interesting
topic. We have worked on translating OASIS specifications
automatically to concurrent environments in order to obtain a prototype
useful to validate specifications by animation. The aim of this paper is to
show that it is feasible to translate static and dynamic partitions
automatically into dynamic logic formulae. Thus, using the same
developed schema of animation it is possible to execute
OASIS specifications including inheritance.

1 Introduction

Conceptual models, representing the functional requirements of information systems,
are a key factor when linking problem and solution domains. Building a conceptual
model is a discovery process, not only for analysts but also for stakeholders. The most
suitable strategy in this situation is to build conceptual models in an iterative and
incremental way, through analyst and stakeholder interaction. Conceptual modeling
involves four activities: elicitation of requirements, modeling or specification,
verification of quality and consistency, and eventually, validation.

! This research is supported by the “Comision Interministerial de Ciencia y Tecnologia”
(CICYT) through the MENHIR proyect (grant no. TIC97-0593-C05-01).



Formal methods for conceptual modeling provide improvements in soundness and
precision for specifications and help in their verification. However, when considering
elicitation and requirements validation, prototyping techniques are more often used.
Hence, it is interesting to obtain a combination of both approaches.

This work uses OASIS [10,7] (Open and Active Specification of Information Systems),
a formal approach for object oriented conceptual specification of information systems.
This is a step forward in a growing research field where the validation of formal
specifications through animation is being explored [16]. In this sense, some other
proposals close in nature to OASIS and to the work we are carrying out using OASIS are
TROLL [5], ALBERT [6] and OBLOG [13]. The differences between these works and
ours are basically determined by features of the underlying formalisms and the offered
expressiveness. According to the presented results, the state of art is similar and is
characterized by preliminary versions of animation environments.

Validation and verification play an important role in the quality of the final product. By
means of validating formal specifications stakeholders can fasten the correspondence
between formal specifications and user prospects. The verification process allows to
verifying the correctness between implementations and specification. Errors can be
propagated towards the design and implementation process if the validation and/or
verification are not done exhaustively. Basically, validation and verification techniques
can be classified in two groups:

o Statics: reasoning about system properties regarding a set of predefined rules.
e Dynamics: executing some kind of implementation of the system.

As Feenstra points out in [1] two approaches are considered when animating
specifications: to reason about scenarios (what requires an automatically generated
prototype obtained from formal specifications) and to reason about reachability
properties (what requires software capable of solving queries automatically). In our
work the animation process focuses on the first approach showing the effects of actions
in the system by testing scenarios.

Figure 1 shows a framework based on OASIS for elicitation, modeling, verification and
validation of requirements. Elicitation is achieved by using scenarios [14]. The elements
and expected behavior of a given specification are extracted by analysts from scenarios.
Functional requirements are modeled using a graphical specification module based on
OASIS. Conceptual models can be verified according to OASIS formal properties. At
each stage of the requirements specification process it would be possible to validate the
behavior of the associated prototype against the expected behavior. This comparison
could lead to updates or extensions of existing scenarios. This cycle continues until the
requirements are compliant with the proposed set of scenarios.

Experiments have been carried out using Object-Oriented Petri Nets [15] and
Concurrent Logic Programming [8] as concurrent environments for OASIS
specifications. Correspondences between OASIS and these environments have been
included in a translator program. This translator takes an OASIS specification stored in
the repository and generates automatically a Concurrent Logic Program or a Petri Net
that constitute a prototype for the corresponding conceptual model. Furthermore,
through a preliminary version of the graphical animation environment, the analyst can
interact with the prototype in a suitable way. We obtain CodeSign code automatically



from OASIS specifications. This work is being integrated into a CASE tool for system
modeling supporting the OASIS approach. We have addressed validation through
animation focusing on OASIS but this work could be extended to other similar
languages. Basically, the obtained prototypes allow to animate sets of a variant of
Dynamic Logic formulae [12] (including permissions, valuations and obligations)
representing OASIS specifications. Our aim is to be able to animate (using the same
translator) OASIS specifications including inheritance.
Validation through

Elicitation animation
—— > <

Scenarios

Verification of
Consistency

?
% Analysis and
UL Specification K—\
AN J
N

~

User = g ™
- -~
<> 7 . /
T He  implicit Automatical  Prototype
«é traslation Generation for

Re quire ments OASIS animation

Model
Figure 1: Animation Environment.

Nowadays, an increasing work in validation through animation of conceptual models
has been developed. Many CASE tools have integrated an special module for
animation. Most of tools related to requirements validation do not offer much help for
animation. OBLOG? has an animation module but it is not still available. In Rhapsody’
and ObjectTime" a graphical representation (a sequence diagram) is included as a result
of the animation and interaction between objects. In this way, Aonix’ offers a module
called “Animator” in which the edition and execution of scenarios are supported. In
BridgePoint® validation is done by monitoring in several levels the generated prototype
but it is not easy to contrast between the obtained and expected results. In [3] an
environment about TROLL in which is possible to study the change in the state of
objects is showed. In a similar way, in [6] the architecture and functionality of an
animation module for ALBERT specifications is presented. In all these proposals near
to OASIS, the state of the art is clearly characterized by preliminary versions of
animation modules. The aim of this paper is to show that is feasible to translate
automatically the OASIS specialization in DL formulae. Thus using the same developed
schema of animation it is possible to execute OASIS specifications including
inheritance.

2http://www.oblog.pt

http://www.ilogix.com

4 http://www.objectime.com
http://www.aonix.com
6 http://www.projtech.com



The rest of this paper is organized as follows: in section 2 we introduce the basic
concepts of OASIS. Section 3 gives the formal framework of specialization in OASIS.
Section 4 gives a short description of the used DL. Section 5 establishes a representation
mechanism for specialization. Section 5 summarizes the paper and outlines further
work. Finally, an appendix introduces a full case study.

2 Basic concepts of OASIS

An OASIS specification is a presentation of a theory in the used formal system and is
expressed as a structured set of class definitions. Classes can be simple or complex. A
complex class is defined in terms of other classes (simple or complex) by establishing
relationships among classes. These relationships provide aggregation or inheritance
mechanisms. A class has a name, one or more identification mechanisms for its
instances (objects) and a type or template that is shared by every instance belonging to
the class. Each object has an unique identifier (0id) set by the system, however, objects
are referred by their identification mechanisms belonging to the problem space. A
function establishes a mapping between the identification mechanisms and the oid. The
type or template describes the structure and behavior of every object.

Thus each object encapsulates its own state and behavior rules. As usual in object
oriented environments, objects can be seen from two points of view: static and dynamic.
From the static perspective, the attributes are properties describing the object structure.
The object state in a given instant is the set of structural properties values. From the
dynamic perspective, the evolution of objects is characterized by the “change of state”
notion. The occurrence of actions implies changes (by means of valuations and
derivations) in the values of the attributes. Object activity is determined by a set of
rules: preconditions (as forbidden actions in certain states), triggers (as obligations to
be fulfilled in certain states), protocols (as allowed sequences of actions in object life)
and operations (as obligated sequences of actions). A step is the set of actions executed
at the same instant by the object.

Inheritance is a mandatory characteristic of the object oriented paradigm. Inheritance is
a mechanism through which subclasses inherit properties of superclasses. The
inheritance mechanism is an unquestionable help in incremental construction and reuse,
but researches rarely agree on its meaning and usage [17]. In OASIS, inheritance is used
in a disciplined way under the concept of specialization.

3 Specialization in OASIS

In OASIS to specialize a class means to create one or more partitions for it. Each
partition is a set of new classes that divides the original one taking into account some
criterions, thus many partitions can coexist. One object, in a given instant, is instance of
only one subclass in every partition. Next we give the characteristics of each kind of
specialization in OASIS, it is, static partitions and dynamic partitions.

Definition 1 Subclasses and superclasses. When a subclass is a specilization of
another class, the former is said to be a subclass and the latter a superclass. The
template of a subclass is derived from the templates of other classes (superclasses).



3.1 Static partitions

A static partition [18] divides completely the possible instances set of the partitioned
class into disjoints subsets. Thus, static partitions divide the space of objects. Each
object is permanently created as an instance of a given subclass in static partitions.

Each instance of a given subclass is at the same time one instance of its superclass and
vice versa.

Example 1  Two static partitions of class vehicle:

truck, car, other

static specialization of vehicle;
gas, diesel, other

static specialization of vehicle;

3.2 Dynamic partitions

A dynamic partition [18] includes subclasses to which an object can belong during its
lifetime. Object migration between classes is produced by the occurrence of actions.
Thus, a dynamic partition divides the possible states of objects allowing to objects to
change their subclasses.

From the point of view of the OASIS language, we can specify the transition between
subclasses in a partition in two manners (being equivalent): by means of a migration
process (related to occurring actions) or by attribute values.

Example 2 A dynamic specialization of class car produced by the occurrence of the
actions new car, and repair car in OASIS:

working, broken down dynamic
specialization of car
migration relation is
car = new_car.working;
working = break down.broken down;
broken down = repair.working;

The creation of a car instance implies that it starts belonging to the class working.
As an instance of working, actions from car and working templates can be
recognized. The action break down implies to leave the subclass working and to
migrate towards broken down class.

From a theoretical point of view, the process representing the life of an instance of car
is the joint of processes defined in every subclass. The connections among subclasses
are given by the actions included in the migratory process.

Example 3 A dynamic partition of the class person under the attribute approach:

child where {age < 13}
teenager where {13 < = age and age < = 19}



adult where {19 < age}
dynamic specialization of person;

In this case, whenever the attribute age changes, depending on the established
conditions one instance of person could migrate between subclasses.

Eventually, in OASIS is not allowed to define static partitions from dynamic ones.

3.3 Species and multiple inheritance in OASIS

The Cartesian product between leaf classes of a given specialization hierarchy gives the
set of species mixing all properties of those classes. Furthermore, emergent properties
can be specified in their templates.

Example 4  Species of the hierarchy vehicle:

truck*diesel, car*gas, car*diesel
other*diesel, other*gas, truck*gas

Example 5 The class truck*diesel may have an emergent attribute named
tonnage. This attribute must be specified in the t ruck*diesel template.

4 OASIS formalized in DL

Dynamic logic (DL) [4] has been traditionally considered to describe and reason about
dynamic systems. The aim of this logic is the study of mathematical properties of
programs and their behaviour. An object in OASIS is able to pass from one state to
another. Due to the state change, the truth values of the formulas describing the state
also change. The objective in our work is to define a logical basis to be able to express
our reasoning about OASIS specifications. To each OASIS object we associate an
accessibility relation in such a way that a pair of state (s,7) is in that relation if and only
if there is a computation of the program (execution of a set of actions by the object)
transforming the state s into the state ¢.

In [12] Deontic Logic is described as a variant of DL [4]. The definition of deontic
operators in DL is:

O(a)<[—a] false || “the occurrence of a is obligatory”.

F(a)<[a] false “the occurrence of a is forbidden”.

“a 1s permitted if and only if a

P(a)< —F(a)

1s not forbidden”.

Where false denotes no reachable world. It is usual to find in related works the special
atom V of violation representing a problematic or “non-ideal” situation. In our work the
atom false expresses the impossibility of performing a transition.



We are using a sublanguage of the language presented by Meyer in [12] including the
following kind of formulae:

“the occurrence of a is forbidden

y—>|alfalse

in states where v is satisfied”

“the occurrence of a is obligatory

y—>[—alfalse
in states where v is satisfied”

“immediately after a occurrence,

y—[a]o ¢ must be satisfied

in states where v is satisfied”

These formulae are named prohibition, obligation and valuation, respectively.
Additionally, y is a well-formed formula that characterizes the state of an object when
the action a occurs and —a represents the non-occurrence of the action a (i.e. only other
actions different from a could occur). Furthermore, there is no state satisfying the atom
false. Thus, one action is forbidden if its occurrence leads the system towards a
violation state, and one action is obligatory if its non-occurrence leads the system
towards a violation state.

An OASIS class template is represented by the tuple (Atr, Ev, Formulae, Processes) ,
that is, attributes, events, DL formulae (valuations, prohibitions and obligations) and
process specifications (protocols and operations). In [9] it is showed how Processes can
also be interpreted as a set of DL formulae. Thus, the class template can be seen as (Atr,
Ev, DLForm) where DLForm includes all DL formulae establishing the behavior of
objects. Next section details how, through a translation process, static and dynamic
partitions can be integrated in the same formal framework of DL.

S Specialization in DL

As mentioned in previous sections species involve classes in the same hierarchy.
Likewise, the classes constituting species have a common ancestor class which has been
partitioned more than once. Figure shows a specialization hierarchy with the following
species:

C3xCy C;3*Cyq Cs*C,
CyxCy CyxCs  CyxCy
Cs*xCy Cs*xCyq CsxC5

But, for instance, the following are not species: C;*Cy4,C,#C7, C3%Cs*Cy, etc.



b47— Co
o )\
C1 C2

A

Ce C7
Figure 2: Specialization hierarchy.

We are interested in establishing the properties of species because in OASIS objects are
always instances of species. In order to calculate these properties we will see some
simplified case studies. Next we will analyze the equivalent in DL of any static
partition.

5.1 Static partition hierarchies

Given a specialization hierarchy with only static partitions the set of properties
describing the behavior of any leaf class in the hierarchy is the union of properties from
root class to the leaf class. In static and dynamic partitions of OASIS we have behavioral
compatibility between superclasses and subclasses. Thus, the set of properties of any
leaf class Cijis given as follows:

i.  Set of attributes:

Atr; = UATtr VCy= C; hasta Cy= C,o
ii.  Set of events:

Ev; = Evy VCy= C; hasta Cy= C,o

iii.  Valuation formulae in subclasses can only modify emergent attributes’ (and also
attributes without valuations in superclasses), thus the set of valuation formulae
is the union of valuations from leaf class to root class (i.e. the DL formulae
union).

iv.  If a prohibition formula is modified in the subclass then the new condition must
imply the superclass condition, thus the set of properties is the union of the
properties from leaf class to root class (i.e. the DL formulae union). In this way,
only are considered the most specific preconditions.

v.  Obligation formulae are established in the same way as prohibition formulae.

After deriving both structural and behavioral properties from every leaf class, it is
immediate to calculate the properties of species.

Definition 2 Template of a species (Cy*..+*C,) is a class template with the following
elements:

Atrg...\OAtr, JAtr,

That is, attributes defined in the subclass specification.



Evpu...UEv, UEV,

DLFormpu... ODLForm, ODLForm,

where Atr;, Ev; and DLForm; are attributes, events and DL formulae of class Ci; Atr.,
Ev, and DLForm, are the added attributes, events and DL formulae being specified for
the species (Cy*...*C,). In case of overlapping of properties the calculus of properties
follows the constraints previously mentioned.

5.2 Dynamic partition hierarchies

Whenever dynamic partitions are included, the process to determine properties of
species is slightly different.

The idea is to translate all the subclass properties in every dynamic partition into an
ascending direction. Figure 3 shows an example in which class C has been dynamically
partitioned. Thus we want to extend the dynamic formulae of class C, of Figure 3
separating the formulae due to Cs from those due to C;. Next specific considerations
when deriving the DL formulae set are described here.

Migration by action occurrence

Figure 3: Dynamic partition.

Given the dynamic partition {Cj,...,C,} of the class C, then the template of C;including
properties of subclasses for each class C; belonging to the partition, is given as:

L Set of attributes: Atr = AtrjuAtr;U...UAtr,.

11. Set of events: Ev = EviUEV;U...UEV,.

iii.  The set of valuations formulae is the union of valuation formulae of classes C;
and C; to C,. Each valuation must have a condition that controls when it is used.

iv.  The set of prohibition formulae is the union of prohibition formulae from the
classes C; and C; to C,. Taking into account the behavior compatibility
restriction, if C; redefines a prohibition of C; then the condition of C; prevails.

v.  Obligation formulae are established in the same way as prohibition formulae.

vi.  Migration processes defined in partitions will be included in class C; as a
protocol containing valid action sequences. Prohibition formulae are directly
incorporated into the set of prohibition formulae of C; However the behavior



property of the class C; must add an occurrence predicate that evaluates the
current state of the process. Thus, this such a protocol will be translated into
prohibition formulae and valuation formulae in the same way as protocols.

vii..  Repeat the procedure from 1) to vi) for each dynamic partition of C;.

Example 6  Given the following dynamic partition in OASIS:

Ce, Co
dynamic specialization of C;
migration relation is
Conew.Cg
Ceas.Cq
Cra7.Cs

where we also have the following valuation formulae:

O,—[a,]¥, inclass C,
D¢—[ag]¥s inclass Cs
®;—[a;]¥;  inclass C;

then, when translating these properties into the class C, , the previous formulae are
substituted by the following ones®:

D[]V,
((p = Ce)ADg)—>[ag] Vs
((p = CH))AD7)—>[as]'¥;

and the following formulae are included:

(p = Co)—las](p = C7)
(p = Cr)—las](p = Co)
—(p = C¢)—[ag]false
—(p = Cy)—>[as]false

Migration by attribute value
In this case DL formulae are now defined as follows:

L Set of attributes: Atr = AtrjUAtrU...UAtr,.

ii.  Set of events: Ev = EvjUEv,U...UEv,. Taking into account that an emergent
event of a subclass must not be available if the object is not instance of that
subclass, then it is necessary to add a DL formulae that disable the occurrence of
that event (see next example).

iii.  The set of valuation formulae is the union of valuation formulae of classes C;
and C; to C,.

Where p is a variable representing the current state of the migration process. Thus p is modified by valuation formulae.



iv.  The set of prohibition formulae is the union of prohibition formulae of classes C;
and C; to C,. Taking into account the behavior compatibility restriction, if C;
redefines a prohibition of C; then the condition of C; prevails.

v.  Obligation formulae are established in the same way as prohibition formulae.

vi.  Each formula obtained from C; must add an occurrence predicate referring to the
current state of the object.

vii..  Repeat from 1) to vi) for each dynamic partition of C;.

Given the following dynamic partition in OASIS:

Cs where {atr; < 0},
C7; where {atr; >= 0}
dynamic specialization of C;

where we also have the following valuation formulae:

®,—[a,]¥, inclass C;
O¢—[ag]Vs  inclass Cg
O;—[a;]¥; inclass C;

then, when translating these properties into the class C, , the previous formulae are
substituted by the following ones:

O[],
((atr] < 0)/\@0—)[36]\{]6
((atr;>= 0)AD7)—>[as]V;

and the following formulae are included:

—(atr; < 0)>[ ag]false
—(atr; >= 0)—[ a;]false

5.3 Translation process summary

The translation process from class specification with specialization to DL formulae is
summarized in the following steps:

o The translation process is applied for each specialization hierarchy.

o The translation process in dynamic partitions (if they exist) starts from the
bottom level. All properties defined in dynamic subclasses are added to the
superclass. The translation process continues until reaching a static partition or
until reaching the top class in the hierarchy (in this case, the translation process
finishes).

e When all dynamic partitions have been substituted the properties for each leaf
class containing only static partitions are determined.

o Eventually, properties for species can be determined from leaf class properties.
This hierarchy flattening in separate species is the final representation. Thus, all
species will be independent classes at the same level and without specialization
relationships.

5.4 Animation support



From an ideal point of view the representation in DL formulae finishes when all
properties of species are specified. However, we also have to give a suitable support for
taking into account the existing polymorphism in our OASIS model. Thus, an action in
OASIS may reference a server class not being a species. In this situation the system
must determine the full properties at the lower level. This implies a separation in two
levels in our animation environment. On the one hand we have objects whose behavior
is given by one species in which they were created. On the other hand we also have a
class representing each original hierarchy class. In this additional class we keep a
reference for each object belonging to it’.

Figure 4 shows how every class is considered at the same level (without hierarchy) and
objects are associated to species. However, there are mappings from each class to their
object instances. For example obj,; is an instance of class A and B and it is also instance

of all species like B, etc.

Species
B*..

Class A

Class A
Class B

ClassB ClassC

Species
C*..

Class C

Figure 4: Representation example.

6 Conclusion

OASIS is a formal approach for the specification of object oriented conceptual models.
In OASIS conceptual schemes of information systems are represented as societies of
interacting concurrent objects. Animating such models in order to validate the
specification of information systems is a topic of interest in requirements engineering.

Using inheritance we can specialize (or generalize) properties defined in classes.
Specialization is an important modeling mechanism. There are two kinds of
specializations in OASIS: by defining static and dynamic partitions. Objects in static
partitions belong to a given specialized class during their whole lifetime. Besides,
objects in dynamic partitions can migrate from one subclass to another one. The
migration between subclasses of the same partition may be due to action occurrence or
change in attribute values. A process migration represents the possible transitions
among subclasses that an object can do. In addition, class templates of OASIS can be
expressed as a set of DL formulae.

Static and dynamic specialization constructs in conceptual modeling allow expressing
directly some patterns. For example, in [2] the dynamic classification is implemented

A mapping between identifying mechanisms andids.



using the pattern named sfate and the role mechanism may be implemented using the
pattern named role object.

This paper gives the required steps to translate static and dynamic partitions in the same
framework of DL wused for class template. Thus, an OASIS specification with
specialization can be interpreted automatically as an equivalent specification without
specialization in our DL-based framework. In this way, the current animation
environment, working with valuation, prohibition and obligation formulae, can be used
to animate specifications with specialization.

We have built a translator program to obtain a prototype from OASIS specifications
automatically. The translator should be extended in order to include the mappings
established in this paper. This work is being integrated into a CASE tool for system
modeling supporting the OASIS approach and the methodology OO-METHOD [11]
defined for OA4SIS.

References

[1] Feenstra R.B. and Wieringa R.J. Validating Specifications of Dynamic Systems using Automated
Reasoning Techniques. In J.C. Bioch and Y.-H. Tan (Eds.), Proceedings of the Seventh Dutch
Conference on Artificial Intelligence, NAIC'95, pages 105-114, 1995.

[2] Gamma E., Helm R., Johnson R. and Vlissides J. Design Patterns: elements of Reusable Object
Oriented Software. Professional Computing Series, Addison-Wesley, Reading, MA, 1994.

[3] Grau A. and Kowsari M. A. Validation System for Object-Oriented Specifications of Information
Systems. In Manthey R. and Wolfengagen V. (Eds.), Proceedings of the First East-European
Symposium on Advances in Databases and Information Systems (ADBIS'97), St. Petersburg,
Electronic Workshops in Computing, Springer, September 2-5, 1997.

[4] Harel D. Dynamic Logic. In Handbook of Philosophical Logic II, editors D.M. Gabbay, F.
Guenthner, pages 497-694, Reidel 1984.

[5] Grau A., Kuester Filipe J., Kowsari M., Eckstein S., Pinger R. and Ehrich H.-D. The TROLL
Approach to Conceptual Modelling: Syntax, Semantics and Tools. In Ling T.W., Ram S. and Lee
M.L. (Eds.) Proc. of the 17th Int. Conference on Conceptual Modeling (ER'98), Singapore,
pages 277-290, Springer, LNCS 1507, November 16-19, 1998.

[6] Heymans P. The Albert Il Specification Animator. Technical Report CREWS 97-13, Cooperative
Requirements Engineering with Scenarios, http://sunsite.informatik.rwth-
aachen.de/CREWS/reports97.htm.

[7] Letelier P., Ramos 1., Sanchez P. and Pastor O. OASIS 3.0: A Formal Approach to Object-
Oriented Conceptual Modeling. Servicio de Publicaciones de la Universidad Politécnica de
Valencia (SPUPV-98.4011), ISBN 84-7721-663-0, 1998. (in Spanish)

[8] Letelier P., Sanchez P. and Ramos 1. Prototyping a requirements specification through an
automatically generated concurrent logic program. Gupta (Ed.) Practical Aspects of Declarative
Languages, Lecture Notes in Computer Science LNCS 1551, pages 31-45, Springer-Verlag,
1998.

[9] Letelier P., Sanchez P. and Ramos 1. Process Specification for Objects interpreted into Dynamic
Logic. 1II Jornadas de Ingenieria de Software (JIS'98), Murcia, pages 281-292, 1998. (in
Spanish)

[10] Pastor O. and Ramos 1. OASIS version2(2.2): A Class-Definition Language to Model
Information Systems Using an Object-Oriented Approach. Servicio de Publicaciones
Universidad Politécnica de Valencia, SPUPV-95.788, 1995.

[11] Pastor O., Insfran E., Pelechano V., Romero J., and Merseguer J. OO-METHOD: An OO
Software Production Environment Combining Conventional and Formal Methods. Proceedings
of Conference on Advanced Information Systems Engineering, CAiSE '97, pages 145-158,
Barcelona, 1997.

[12] Meyer J.-J.Ch. A4 different approach to deontic logic: Deontic logic viewed as a variant of
dynamic logic. In Notre Dame Journal of Formal Logic, vol.29, pages 109-136, 1988.



[13]

[14]

[15]

[16]
[17]

[18]

OBLOG Software S.A. The OBLOG Sofitware Development Approach. (White Paper). 1999,
http://www.oblog.pt/Download/Documentation.exe

Rolland C., Ben Achour C., Cauvet C., Ralyté J., Sutcliffe A., Maiden N.A.M., Jarke M.,
Haumer P., Pohl K., Dubois E. and Heymans P. A Proposal for a Scenario Classification
Framework. Technical Report CREWS 96-01, http://sunsite.informatik.rwth-
aachen.de/CREWS/reports96.htm.

Sanchez P., Letelier P. and Ramos 1. Constructs for prototyping information systems with object
Petri Nets. Proceeding of the IEEE International Conference on SMC'97, pages 4260-4265,
Orlando, 1997.

Siddiqi J., Morrey 1.C., Roast C.R. and Ozcan M.B. Towards quality requirements via animated
Jformal specifications. Annals of Software Engineering, n.3, 1997.

Taivalsaari A. On the Notion of Inheritance. ACM Computing Surveys, Vol. 28, N. 3,
September 1996.

Wieringa R., Jonge W. and Spruit P. Roles and dynamic subclasses: a modal logic approach.
Vrije U., The Netherlands, 1995.

A An example

In this

example a vending machine (vm) accepts coins (coin_in) increasing the customer

credit (credit). This credit decreases (coin_out) when a product is given (give). The
machine also allows canceling the operation (CANCEL) and then returning all the stored
coins. The machine has a warning light (ight_empty) that is switched on if the action
switch_on occurs. The OASIS 3.0 specification of vm is the following:

class

vm

identification
number: (number);
constant attributes
number :nat;
variable attributes
credit :nat(0);
light empty :bool (false);
events
set new;
coin in;

coin

out;

lighEﬁempty;

give;

valuations
[::switch on]light empty:=true;
[coin in]credit:=credit+l;
[::coin out]credit:=credit-1;
[give]credit:=credit-1;
preconditions
CANCEL if {credit > 0};

give

if {credit > 0}

operations

CANCEL:

CANCEL1= {credit > 1l}::coin out.CANCEL1
+ {credit=1l}::coin out;

end class

This machine is specialized in chocolate machines (choc_vm) and others (other_vm).

This 1s

a static partitioning, thus the OASIS specification is the following:

choc_vm, other vm

static specialization of wvm;



An object belonging to the class choc_vm has chocolates as products and their quantity
is num_chocs. This quantity is reduced by one unit when giving a chocolate (give). It is
not possible (a prohibition) to obtain a chocolate if there is neither credit nor chocolate.
In OASIS we have:

class choc_vm
variable attributes

num_chocs nat (0);
valuations

[give] num chocs:=num chocs-1;
preconditions

give if {credit > 0 and num chocs > 0}
end class

We will now consider a dynamic partitioning. The idea is to make a distinction between
chocolate machines with products (with_choc) and without products (no_choc). A
machine of type no_choc must switch on the warning (light_empty). In OASIS we have:

no choc {num chocs=0},
with choc {num chocs > 0}

dynamic specialization of choc vm;
class no_choc
triggers

::switch on when {light empty=false};
end class

We will also include a static partition of class choc_vm. Thus we make a distinction
between bounded'' (bounded_choc) and unbounded (unbounded_choc). The following
OASIS specification gives the detailed information of this partition:

bounded choc, unbounded choc
static specialization of choc vm;

class unbounded
protocols
GETCHOC:
GETCHOCl=coin in.GETCHOC2;
GETCHOC2={credit=1}give.GETCHOCl + {credit > l}give.GETCHOC?2
+ coin in.GETCHOC2 + {credit=1}::coin out.GETCHOC1
+ {credit > 1l}::coin out.GETCHOC2Z2;
end class

class bounded
protocols
GETCHOC:
GETCHOCl=coin in.GETCHOC2;
GETCHOC2=give.GETCHOCl+ coin in.GETCHOC3 +::coin out.GETCHOCL;

It is mandatory in OASIS to repeat the full inherited condition and then to expend the formula in the subclass specialization.

! A bounded machine has a limited admission of credit.



GETCHOC3=give.GETCHOC2+ coin in.GETCHOC4 +::coin out.GETCHOCZ;
GETCHOC4=give.GETCHOC3 + ::coin out.GETCHOC3;
end class

Eventually, vm is dynamically partitioned in working and broken_down. After the
creation action (set) the machine starts in the working state. A machine may be repaired
(repair) to reach the working state. When the action break _down occurs, the machines
moves to the state broken_down where the events cancel, coin_in and give are not
habilitated. The specification in OASIS (see the Figure 5) is the following one:

broken down, working
dynamic specialization of vm
migration relation is
vim = set.working;
working = break down.broken down;
broken down = repair.working;

class broken down
events

repair;
preconditions

coin in if {false};
CANCEL if {false};
give if {false};
end class

class working
events

break down;
end class

broke
/ down
vm
working
no
choc
e \ ] choc other
/ vm vm
with
choc
—
bounded unbounded
choc choc

Figure 5: Specialization hierarchy.
A.1 DL for each OASIS class
We give here a DL formulae set for each class mentioned above:

class vin

credit=N —[coin in] credit=N+1
credit=N —[::coin out] credit=N-1



credit=N —[give] credit=N-1

[::switch on] light empty=true

[set] cancel=0

[CANCEL] cancel=CANCEL1

cancel=CANCELl A credit > 1 —[::coin out] cancel=CANCELl
cancel=CANCELl A credit=1 —[::coin out] cancel=0

—(credit > 0) —[give] false

—(credit > 0) —>[CANCEL] false

(cancel=CANCEL1l A credit > 1) v (cancel=CANCELl A credit=1)
—»[—::coin out] false

class choc vim

num_ chocs=N —[give] num chocs=N-1
—(num_chocs > 0 A credit > 0) -—[give] false

class bounded choc

[set] getchoc=GETCHOC1

getchoc=GETCHOCl —[coin in] getchoc=GETCHOC2
getchoc=GETCHOC2 —[coin in] getchoc=GETCHOC3
getchoc=GETCHOC3 —[coin in] getchoc=GETCHOC4
getchoc=GETCHOC2 —[choc] getchoc=GETCHOCL1
getchoc=GETCHOC3 —[choc] getchoc=GETCHOC2
getchoc=GETCHOC4 - [choc] getchoc=GETCHOC3
getchoc=GETCHOC2 —[::coin out] getchoc=GETCHOC1
getchoc=GETCHOC3 —[::coin out] getchoc=GETCHOC2
getchoc=GETCHOC4 —[::coin out] getchoc=GETCHOC3
— ((getchoc=GETCHOC1l)v (getchoc=GETCHOC2)

v (getchoc=GETCHOC3))-[coin in] false

— ((getchoc=GETCHOC2) v (getchoc=GETCHOC3) v (getchoc=GETCHOC4))-[choc]

false

—( (getchoc=GETCHOC2)v (getchoc=GETCHOC3)
v (getchoc=GETCHOC4))—[::coin out] false

class unbounded choc

[set] getchoc=GETCHOC1

getchoc=GETCHOCl —[coin in] getchoc=GETCHOC2
getchoc=GETCHOC2 A (credit=1l) —[give] getchoc=GETCHOCL1
getchoc=GETCHOC2 A (credit > 1) —[give] getchoc=GETCHOC2'?
getchoc=GETCHOC2 —[coin in] getchoc=GETCHOC2
getchoc=GETCHOC2 A (credit=1l) —[::coin out] getchoc=GETCHOC1
getchoc=GETCHOC2 A (credit > 1) —[::coin out] getchoc=GETCHOC2
= ((getchoc=GETCHOC1) v (getchoc=GETCHOC2))-[coin in] false
— ((getchoc=GETCHOC2) —[give] false

— ( (getchoc=GETCHOC2) —[::coin out] false

class no_choc

light empty=false —[—::switch on] false

2
This formula and next one may be deleted due to not modifying the variable value of the process.



class broken down

—(false) —[coin in] false
—(false) —[CANCEL] false
—(false) —[give] false

A.2 Representation of dynamic partitions

As mentioned above, properties of dynamic partitions need to be included in the
partitioned class. The properties of the class choc_vm after incorporating the properties
of classes no_choc and with_choc are the following ones:

num chocs=0 A light empty=false —[—::switch on] false"
num_ chocs=N —[give] num chocs=N-1
—(num_chocs > 0 A credit > 0) -—[give] false

The inclusion of properties of the subclasses broke_down and working into the class vm
plus the migratory process, gives the following set of DL formulae:

credit=N —[coin in] credit=N+1

credit=N —[::coin out] credit=N-1

credit=N —[give] credit=N-1

[::switch on] light empty=true

[set] cancel=0

[CANCEL] cancel=CANCEL1l

cancel=CANCELl A credit > l-[::coin out] cancel=CANCEL1l
cancel=CANCELl A credit=1-[::coin out] cancel=0

— (vm=working) —[give] false'’

— (vm=working) —[CANCEL] false

— (vm=working) —[coin in] false

(cancel=CANCEL1l A credit > 1) v (cancel=CANCELl A credit < =1)
—>[::coin out] false

[set] vm=working"’

vm=working a—(credit > 0)— [give] false

vm=working a —(credit > 0)-— [CANCEL] false

vm=working — [break down] vm=broken down

vm=broken down - [repair] vm=working

= ((vm=working) - [break down] false

= ((vm=broke down) —[repair] false

A.3 Representation of static partitions

After dealing with dynamic partitions we need to derive the DL formulae for each path
from each leaf class to the top class.

13 This formula is moved here from the dynamic subclass.

This permission and the next two ones replace the prohibitions ofm due to be more restrictive.

15 This formula and the following one are related to the migratory process of the dynamic partition



class vin - choc vm - bounded

num chocs=N - [give] num chocs=N-1
credit=N - [coin in] credit=N+l
credit=N - [::coin out] credit=N-1
credit=N - [give] credit=N-1
[::switch on] light empty=true
[set] getchoc=GETCHOC1

getchoc=GETCHOCl — [coin in] getchoc=GETCHOC2
getchoc=GETCHOC2 — [coin in] getchoc=GETCHOC3
getchoc=GETCHOC3 — [coin in] getchoc=GETCHOC4
getchoc=GETCHOC2 — [choc] getchoc=GETCHOCL1
getchoc=GETCHOC3 — [choc] getchoc=GETCHOC2
getchoc=GETCHOC4 — [choc] getchoc=GETCHOC3
getchoc=GETCHOC2 — [::coin out] getchoc=GETCHOCI1
getchoc=GETCHOC3 — [::coin out] getchoc=GETCHOC2
getchoc=GETCHOC4 — [::coin out] getchoc=GETCHOC3

[set] vm=working

vm=working — [break down] vm=broken down

vm=broken down - [repair] vm=working

[set] cancel=0

[CANCEL] cancel=CANCEL1

cancel=CANCELl A credit > 1 - [::coin out] cancel=CANCELIl
cancel=CANCELl A credit=1l - [::coin out] cancel=0

— (vm=working) — [give] false

— (vm=working) —[CANCEL] false

(vm=working) - [coin in] false

((vm=working) —[break down] false

((vm=broke down) —[repair] false

((getchoc=GETCHOC1l)v (getchoc=GETCHOC2)
(getchoc=GETCHOC3))—»[coin in] false

— ((getchoc=GETCHOC2)v (getchoc=GETCHOC3) v (getchoc=GETCHOC4))- [choc]
false

—( (getchoc=GETCHOC2)v (getchoc=GETCHOC3)

v (getchoc=GETCHOC4))—[::coin out] false

—(num_chocs > 0 A credit > 0) - [give] false'®
(cancel=CANCEL1l A credit > 1) v (cancel=CANCELl A credit=1)
- [::coin out] false

num chocs=0 A light empty=false — [—::switch on] false

—
—
—
—
Vv

class vin - choc vim - unbounded

num chocs=N - [give] num chocs=N-1
credit=N - [coin in] credit=N+l

credit=N - [::coin out] credit=N-1
credit=N - [give] credit=N-1
[::switch on] light empty=true

[set] vm=working

vm=working — [break down] vm=broken down
vm=broken down - [repair] vm=working
[set] cancel=0

[CANCEL] cancel=CANCEL1l

This prohibition formulae associated to get event what have just been mentioned just above can be mixed into one formula by using the
logic connector ‘Vv’.



cancel=CANCELl A credit > 1- [::coin out] cancel=CANCEL1
cancel=CANCELl A credit=1- [::coin out] cancel=0

— (vm=working) — [give] false

— (vm=working) —[CANCEL] false

(vm=working) - [coin in] false

((vm=working) —[break down] false

((vm=broke down) —[repair] false

(num_chocs > 0 A credit > 0) - [give] false

(cancel=CANCEL1l A credit > 1) v (cancel=CANCELl A credit=1)
- [::coin out] false

num chocs=0 A switch on=false - [—::1light empty] false

[set] getchoc=GETCHOC1

getchoc=GETCHOCl —[coin in] getchoc=GETCHOC2
getchoc=GETCHOC2 A (credit=1l) —[give] getchoc=GETCHOC1
getchoc=GETCHOC2 A (credit > 1) —[give] getchoc=GETCHOC2'’
getchoc=GETCHOC2 —[coin in] getchoc=GETCHOC2
getchoc=GETCHOC2 A (credit=1l) —[::coin out] getchoc=GETCHOCL
getchoc=GETCHOC2 A (credit > 1) —[::coin out] getchoc=GETCHOC2

= ((getchoc=GETCHOC1) v (getchoc=GETCHOC2))-[coin in] false
— (getchoc=GETCHOC2) —[give] false

(getchoc=GETCHOC2) —[::coin out] false

(getchoc=GETCHOCl) v (getchoc=GETCHOC2) —[coin in] false
( )

( )

-
-
-
-

getchoc=GETCHOC2) — [give] false
getchoc=GETCHOC2) — [::coin out] false

-
-
-
-

class vin - other vin

credit=N —[coin in] credit=N+1

credit=N —[::coin out] credit=N-1

credit=N —[give] credit=N-1

[::switch on] light empty=true

[set] cancel=0

[CANCEL] cancel=CANCEL1l

cancel=CANCELl A credit > 1-[::coin out] cancel=CANCELl
cancel=CANCELl A credit=l-[::coin out] cancel=0

— (vm=working) —[give] false

— (vm=working) —[CANCEL] false

— (vm=working) —[coin in] false

(cancel=CANCEL1l A credit > 1) v (cancel=CANCELl A credit < =1)
—>[::coin out] false

[set] vm=working

vm=working — [break down] vm=broken down

vm=broken down - [repair] vm=working

= ((vm=working) - [break down] false

= ((vm=broke down) —[repair] false

A.4 Properties of species

7
This formula and the next one can be deleted although we prefer to keep them in order to make the translation process clearer.



As mentioned above, it is possible to deduce the properties (as DL formulae) for each
species as the union of the respective properties. In the example we distinguish the
following species involving only static partitions'®:

other vm
bounded choc
unbounded choc

Theses species correspond with each class mentioned above. In order to complete the
calculus of properties we present here the set of identification mechanisms, attributes
and events deduced from the specialization hierarchy of our example.

A.4.1 Identification mechanisms

The unique available identification mechanism (number) has been defined in the class
vm. This mechanism is inherited by every species.

A.4.2 Attributes and events
We present the attribute and event sets for each species. We assume that the possible
conflicts caused by coincidental names have been previously adjusted as a part of the

consistency verification process of the specification.

Specie vin - choc vim - bounded

Atr={number, credit, switch on, num chocs}
Ev={set, coin in, coin out, light empty, give, CANCEL, repair,
break down}

Specie vin - choc v - unbounded

Atr={number, credit, switch on, num chocs}
Ev={set, coin in, coin out, light empty, give, CANCEL, repair,
break down}

Especie vin - other vim

Atr={number, credit, switch on}
Ev={set, coin in, coin out, light empty, give, CANCEL, repair,
break down}

18 . L . . . . ..
In this example, taking into account that there is only one hierarchy and that there is only one double static partition of the same class,
species are formed by only one class. In a more general case it should be necessary to connect the properties of each class.



