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Abstract—This paper describes a hardware proposal to speed up the process of image matching in stereo vision systems like those 
employed by autonomous mobile robots. This proposal combines a classical window-based matching approach with a previous stage, 
where key points are selected from each image of the stereo pair. In this first step the key point extraction method is based on the SIFT 
algorithm. Thus, in the second step, the window-based matching is only applied to the set of selected key points, instead of to the whole 
images. For images with a 1% of key points, this method speeds up the matching four orders of magnitude. This proposal is, on the one 
hand, a better parallelizable architecture than the original SIFT, and on the other, a faster technique than a full image windows 
matching approach. The architecture has been implemented on a lower power Virtex 6 FPGA and it achieves a image matching speed 
above 30 fps. 
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I.  INTRODUCTION 
The use of stereo vision technique for mobile robots navigation is increasing in the last years. This technique is an alternative to 

laser or sonar for unstructured environments or to artificial landmarks in known ones. Window-based image matching algorithms 
have been commonly used for this task [1], [2]. The more employed ones are the sum of absolute differences (SAD) [3], the sum of 
squared differences (SSD) and the normalized cross correlation (NCC) [4]. There are in the literature several implementations of 
image matching algorithms both based on software [5], [6] and hardware developments [7-11]. However, the computational cost of 
window-based image matching algorithms is very high, since it is proportional to the image size. 

On the other hand, power consumption of mobile-robot vision-systems is a critical issue when power supply is a scarce 
commodity, as it happens for small robots with tiny batteries, for robots powered by solar cells or even for unmanned aerial 
vehicles (UAVs) [12]. This implies that the use of powerful software algorithms running of general purpose CPUs is discouraged 
for such applications, because they can demand an unaffordable power consumption. An alternative to cut down on power 
dissipation in stereo vision systems is to combine a simplification of such algorithms with the use of specific hardware 
architectures.  

The image matching process can be significantly simplified if the window-based algorithm is not computed over all the pixels 
in both stereo images. So, if there is a previous stage, in which only selected points are chosen from both images of the stereo pair 
are matched, then the computational complexity of the algorithm can be considerably reduced. It is commonly assumed that two 
matching pixels can be found on the common epipolar line to both stereo images [7]. This restricts the number of target pixels 
analysed in the second image to those placed on this line and at a maximum predefined distance from the pixel in the first image. 
However, small misalignments among both cameras due to vibrations or other causes, can void this assumption. In this regard, in 
[13-16] alternative software implementations to speed up the image matching are proposed. They combine the capability of SIFT 
algorithm [17] to extract selected points (or key points) from an image, with a window-based algorithm (SAD and NCC), to 
perform the matching between two images of a stereo vision system. Thus, the window-based matching is only performed over the 
set of key points (KP) previously extracted, instead of being applied over the whole image. For a typical image, where the 
maximum number of key points is 1% of the image size, this represents a speed up of four orders of magnitude. 

The SIFT algorithm is composed of two major stages of computation: key point extraction and descriptor generation. While the 
first stage requires most of the workload of the whole algorithm, the second one requires complex arithmetic operations. This has 
led to different synthesis approaches to obtain designs which progressively reach the real time operation. Due to its inherent parallel 
nature, FPGAs are the natural choice for a real time implementation of the SIFT algorithm. However, many of the mentioned 
implementations use a combination of FPGA for the first stage with an embedded processor for the second stage. This is because 
while the first stage of the algorithm is easily parallelizable, the nature of the arithmetic operations required by the second stage 
makes the use of software implementations more suitable.  



Regarding real time hardware implementations (30 frames per second), in [18, 19] two hardware/software co-designs which use 
embedded FPGA processors and able to generate descriptors for QVGA and VGA images respectively, are described. A pure 
hardware FPGA based hardware implementations, also working with VGA images at real time is presented in [20]. Two CMOS 
implementations are described in [21, 22], which reach the same frame rate for VGA and HD1080 images respectively. Finally, in 
[23-25], three pure hardware FPGA implementations able to generate descriptors at a faster rate (above 50 fps) are described. 
However, these fast implementations require some simplifications to the original algorithm in order to achieve such processing 
rates. 

Thus, replacing the second stage of the SIFT algorithm by a windows based matching approach eliminates the complexity of 
arithmetic operations. This combination of the first stage of the SIFT algorithm, to extract characteristic points from images, with a 
windows-based technique to perform matching between them is, on the one hand, a better parallelizable architecture than the 
original SIFT, and on the other, a faster technique than a full image windows matching approach. So, in this work, a full hardware 
implementation of this methodology is proposed, in order to improve both the processing speed and the power dissipation. The rest 
of the paper is organized as follows. Section II describes the system architecture, where key point extraction and region matching 
implementations are detailed. Results are described in Section III. Finally, conclusions are drawn in Section IV. 

II. SYSTEM ARCHITECTURE 
Fig. 1 shows the general architecture of the proposed system, where the main modules and the sizes of the digital buses used to 

interconnect them are detailed. As usual in every stereo vision system, the two cameras are placed side by side on an horizontal 
axis. Images taken from the left and the right cameras are stored in the respective memories. At the same time, these images are 
also processed by a key point extraction module. This module searches for KPs in both left and right input images at a frequency of 
one pixel per clock cycle. Every time a pixel is identified as a KP, its index is stored in the respective left or right memory or KP 
list. The index of a pixel defines its position in the image. For a QVGA image, the index is 0 for the pixel in the upper row and left 
column and 320x240-1 for the pixel in the lower row and right column. Once all the key points have been extracted from both 
images, the region matching process begins. During this process, all the combinations between the KPs of the left image with the 
KPs of the right image are analyzed. The matching of two regions is evaluated using the SAD algorithm. The two main processes, 
key point extraction and matching are detailed in the following subsections.  

A. Key point extraction 
As it has been explained, the first stage of SIFT algorithm is used for the KP extraction. Fig 2 summarizes this part of the 

process. An input image G0 is successively convolved with a gaussian function Ki of variance σi
2 to create a Gaussian Scale space 

(GSS). Then, each pair of adjacent gaussian images Gi+1 and Gi are subtracted to obtain a Difference-of-Gaussians (DoG) space.  

 

Fig. 1. General architecture of the proposed system for QVGA images. 

 



 
 

Fig. 2. Key Point extraction process in the SIFT algorithm. 

According to [17] the proper values of σi, vary from 1.6 for the first convolution to 5.08 for the last one. Once the GSS and the 
DoG spaces have been created, every pixel in these spaces is identified by its x,y coordinates and its value of σ. 

The next step is the identification of extrema points in the DoG space. This is achieved comparing each pixel of a given DoG 
with its 26 neighbors, 8 in the same DoG, 9 in the upper one and 9 in the lower one. If the pixel value is the maximum or the 
minimum value of all these pixel values, then this pixel is considered a KP candidate. As shown in Fig. 2, for a Gaussian pyramid 
with six Gaussian images, there are five DoGs and the extrema identification can be done over DoGs 1 to 3. Some of the KP 
candidates will be points with low contrast with respect to its neighbors. Thus, a threshold value is introduced for the determination 
of KPs. Hence, the absolute difference between a KP candidate and each one of its 26 neighbors must be greater than this threshold 
in order to consider the candidate pixel a real KP. 

Among the different proposals which can be used to synthesize this part of the SIFT algorithm, in this work several techniques 
which reduce the amount of computational resources have been used [26]. The first technique consists on the use of recursive 
filtering from the first image instead of absolute filtering. As shown in Fig. 2, each gaussian image Gi in the GSS is obtained from 
its precedent gaussian Gi-1. This is called recursive filtering. This implies an increase in the latency of the operations, because the 
gaussian images would need their precedent images to be generated first. On the other hand, all gaussian images could be created 
from the original image (absolute filtering). This would allow to simultaneously generate all the Gaussian images in the GSS. 
Taking into account that  
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it can be noted that, if σ1, and σ2 are the values of σ used to generate two adjacent gaussian images (i.e. G1 and G2), their values are 
lower than the value ofσ12, the one required to generate the G2 from the original image. Thus, the use of recursive filtering requires 
smaller values of σ. Given that the gaussian mask size is proportional to the value of σ [14], this means that also smaller mask sizes 
are required, as shown in Table I. This allows the use of fewer hardware registers and also fewer processing units. A second 
technique consists on exploiting the separability of gaussian filters [27]. This property allows to decompose a two-dimensional 
NxN Gaussian filtering into two cascaded one-dimensional Gaussian filters. So, the use of this property reduces the number of 
multipliers from N*N to N+N, and also allows the reuse of intermediate results. 

To effectively synthesize the recursive filtering stage, a pipelined schema has been implemented. Fig. 3 shows the structure of a 
pipeline structure which exploits parallelism between the successive filtering stages. All the filtering operations, (Gauss), 
Difference of Gaussians operations (DoG) and neighborhood evaluation to detect extrema points (Neigh) generate a valid pixel 
value per clock cycle. The first filtering operation (Gauss1) performed on the left image requires 1619 cycles to output the first 
valid pixel, and then 320x240 additional cycles to complete the initial image filtering and obtain G1. The second filtering operation 
(Gauss 2) over this same image starts 1,294 cycles later, when the top four lines of G1 are completed. As it is shown in the figure, 
each consecutive filtering operation, from Gauss 2 to Gauss 6, begins with an increasing delay, because the respective mask sizes 
are bigger (Table I). This means that more lines are needed to be generated in Gi before the next Gaussian operation starts. This 
same pipeline structure allows that the first DoG operation (DoG1) begins when the first pixel of G2 is available.  



TABLE I.  ABSOLUTE FILTERING VS RECURSIVE FILTERING 

Scale 
Absolute Recursive 

σ Mask size σ Mask size 

6 5.08 31 3.0900 15 

5 4.03 25 2.4525 13 

4 3.20 19 1.9466 11 

3 2.54 15 1.5450 9 

2 2.02 13 1.2263 7 

1 1.6 9 1.6 9 

 

 

Fig. 3. Chronogram of the pipelined first stage of  the SIFT algorithm. 

Then the successive DoG operations begin successively and, when the first pixel of the DoG2 is available, the comparison 
between pixels in DoG1 and its neighbors in DoG0 and DoG2 begins. This KP extraction process ends after 88,099 clock cycles. 
Compared to the alternative of using absolute filtering, the recursive filtering implies a certain latency in the pipeline structure 
which, however, is negligible compared to the throughput achieved. 

This same processing is applied to the image captured by the right camera. However, due to the structure of the pipeline 
implemented, this operation begins after 1,922 cycles once the Gauss1 operation on the left image is finished. The whole 
processing of both images takes 166,821 cycles (1,668 ms with a 100 MHz system clock). 

B. Region Matching 
Region matching begins once the KP extraction process of the right image has finished. Every KP in the right image is matched 

with every KP in the left image. This yields a total number of NKP2 operations. The matching algorithm used has been the Sum of 
Absolute Differences (SAD), which is given by: 
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where Ii,j is the intensity of a given pixel of the analyzed block of image and Ri,j is the intensity of a given pixel in the reference 
block, as shown in Fig 4. A null value of SAD means a perfect match between the image block and the reference block.  

  

 



Fig. 4. Analyzed image (I) and reference image or block (R). 

The size of the reference block can vary, usually from 3x3 pixels to greater values. The bigger the size is, the more accurate 
results will be obtained, but also, a higher hardware complexity and/or a longer processing time will be required. In this work 
several sizes have been tested as it will be discussed in next section, being the 7x7 the smallest one. The procedure is the following: 
The first KP index is read from the KP list of the left image (Fig. 1), and then, the pixels which compose the block reference 
centered in that KP are read from the left image memory. This will be the reference block R. R is then matched against the region 
centered in the first KP of the right image and the corresponding value of SAD is obtained. This procedure is repeated for all the 
KPs in the right image. When this process ends, the second KP from the left image is taken as reference block index and so on. For 
a 7x7 window size, the matching operation requires 7x7 cycles to read a given KP window from the left image memory and three 
more cycles due to intermediate buffers, which yields 52 cycles. 52 cycles are also required to read each KP image block from the 
right image memory. Thus, the match of all KPs in the left image with all the KPs in the right image would require 52 x NKP2 
cycles. For QVGA size images, and taking into account that the number of KPs typically represents the 1% of the pixels in the 
image [14], NKP would be 768 pixels. 

This means a maximum of 30,670,848 cycles to perform the matching operation between both images. For a 100 MHz FPGA, 
this is equivalent to 306.71 ms, which yields a processing rate of approximately 3 frames per second (fps), far away from real time 
requirements. Hence, the parallelization of this stage is required, in order to perform several matching operations simultaneously. In 
this case, the required parallelism degree for the matching stage in order to achieve processing rates above 30 fps is 10. 

III. RESULTS 
The proposed hardware architecture has been prototyped on a lower power Virtex 6 FPGA (XC6VLX75TL). The image size 

employed for the stereo pair was QVGA (320x240). The Gaussian pyramid was built using the values of σ and mask size shown in 
Table I for recursive filtering operations. The threshold to discard key point candidates with low contrast was set after considering 
different issues. In our tests with different set of images, the best results were obtained for threshold values within the range 0.03 to 
0.06. On the other hand, the recommended value for the threshold value employed in the extrema detection is 0.03 [17]. Finally, the 
first significant digit of most of these values in a binary representation is the fifth one. So, in order to obtain an efficient hardware 
implementation the threshold was set to 2-5 (0.03125).  

A fixed point data format has been used to perform all arithmetic operations. It uses 8 bits for the integer part. The minimum 
number of bits for the decimal part was defined according to the size of the threshold mentioned previously. So a five decimal bit 
format was finally implemented. 

Different tests were carried out to check the hardware proposed. Fig. 5 shows a pair of stereo images captured from an 
structured indoor environment. The key points are displayed as dots in each one of the images. The number of key points extracted 
from the left and from the right image has been 89 and 105 respectively. For a 7x7 pixel size window, the number of matches has 
been 37. Fig. 6 shows the matches between both left and right images. These matches were obtained after analyzing the SAD 
values for every combination of KPs from both stereo images. 

 

Fig. 5. Key points extracted from feft and.right images 

 

 

 

 



Fig. 6. Key points matched between both images. 

TABLE II.  NUMBER OF KEYPOINTS AND MATCHES FOR DIFFERENT SIZES OF THE MATCHING WINDOW 

Window size Number of KP Matches Even Odd 
7x7 89 105 37 

9x9 87 102 39 

11x11 84 100 36 

13x13 84 100 41 

15x15 84 100 41 
    

 

Fig. 7. Key points extracted from feft and.right images 

 

Fig. 8. Key points matched between both images. 

Table II details the number of KP extracted for left and right images as well as the number of matches for different sizes of the 
matching window for the images shown in Fig. 5. The number of KPs detected decreases for increasing window sizes because the 
pixels between the image border and the mask radius are discarded.  

Unstructured environments have also been tested. Fig. 7 shows a pair of stereo images captured from an outdoor unstructured 
environment. The matching between both images is shown in Fig. 8. The number of KPs extracted from the left and from the right 
image has been 87 and 96 respectively. For a 7x7 pixel size window, 23 matches were found. The number of KP extracted for even 
and odd images as well as the number of matches for different sizes of the matching window is shown in Table III. Table IV details 
the device utilization. The FPGA is the smallest of the low power Virtex 6 series. The second column shows the values when no 
parallelization is used. The third column shows the utilization when a parallelization x10 is used for the matching stage. It can be 
noted that the parallelization mainly requires slice registers and LUTS resources, while complex units as extra DSPs are not needed. 
This is because they are used only to compute the multiplications of the Gaussian filtering of the first stage.  

TABLE III.  NUMBER OF KEYPOINTS AND MATCHES FOR DIFFERENT SIZES OF THE MATCHING WINDOW 

Window size Number of KP Matches Even Odd 
7x7 87 96 23 

9x9 84 94 22 

11x11 83 94 25 

13x13 82 94 25 

 

 



15x15 81 93 25 

TABLE IV.  DEVICE UTILIZATION SUMMARY (XC6VLX75TL) 

Logic Utilization No parallel Parallel  
x 10 Available 

Slice Registers 4782 (5%) 5223 (5%) 93120 

Slice LUTs 6953 (14%) 8042 (17%) 46560 
fully used LUT-FF 

pairs 1732 (17%) 2002 (20%) 10086 

Block RAM/FIFO 112 (71%) 112 (71%) 156 

BUFG/BUFGCTRL/ 1 (3%) 1 (3%) 32 

DSP48E1s 128 (44%) 128 (44%) 288 

 

IV. CONCLUSION 
In this work, a stereo matching hardware architecture for autonomous mobile robots, has been described. The architecture 

combines the ability of the SIFT algorithm to extract characteristic points from images with a window-based matching algorithms. 

The solution proposed is, one the one hand, a better parallelizable architecture than the original SIFT, and on the other, a faster 
technique than a full image windows matching approach. The architecture has been synthesized on a XC6VLX75TL FPGA. This is 
the lower power device of the Virtex 6 series. It is a very suitable FPGA to be employed by small mobile robots which require low 
power dissipation. The use of the resources of the FPGA allows for further parallelization of the matching process. This would 
allow to increase the number of key points or even the image size in future developments.  

The hardware implementation has been tested for an structured indoor environment and for an unstructured outdoor one. In both 
tests, the matching has exhibit good results in comparison with software testbenches. 
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