
Real time architectures for the Scale Invariant Feature
Transform algorithm

G. Doménech-Asensi, .J. Garrigós
Dpto. de Electrónica, Tec. de Computadoras y Proyectos

Universidad Politécnica de Cartagena
Cartagena, Spain

gines.domenech@upct.es

P. López, V. Brea, D. Cabello
Centro de Inv. en Tecnoloxías da Información (CITIUS)

University of Santiago de Compostela
Santiago de Compostela, Spain

p.lopez@usc.es

Abstract—Feature extraction in digital image processing is a very intensive task for a CPU. In order to achieve real time image
throughputs, hardware parallelism must be exploited. The speed-up of the system is constrained by the degree of parallelism of the
implementation and this one at the same time, by programmable device size and the power dissipation. In this work, issues related to
the synthesis of the Scale-Invariant Feature Transform (SIFT) algorithm on a FPGA to obtain target processing rates faster than 50
frames per second for VGA images, are analyzed. In order to increase the speedup of the algorithm, the work includes the analysis of
feasible simplifications of the algorithm for a tracking application and the results are synthesized on an FPGA.

Keywords—FPGA; VHDL; Scale Invariant Feature Transform

I. INTRODUCTION
There are several proposals in the literature for hardware implementations of the SIFT algorithm. This algorithm is

composed by two major stages of computation [1]: keypoint (KP) extraction and descriptor generation. While the first
stage requires most of the workload of the whole algorithm, the second one requires complex arithmetic operations.
This has led to different synthesis approaches to obtain designs which progressively reach the real time operation.
However due to its inherent parallel nature, the natural choice for a real time SIFT implementation are FPGAs. In [2,3],
hardware/software co-designs using embedded FPGA processors able to generate descriptors for QVGA and VGA
images respectively at 30 frames per second (fps) are described. A pure hardware FPGA based hardware
implementations is found in [4] for VGA images and 30 fps. CMOS implementations are proposed in [5, 6], which
reach the same frame rate for VGA and HD1080 images respectively. In [7-9], pure hardware FPGA implementations
able to generate faster descriptors (above 50 fps) are presented. These last implementations require however some
simplifications to the original algorithm. Because of its structure of serial steps, the SIFT algorithm allows its
implementation following pipeline architectures, which are easy to implement in FPGAs. Hence the speed will be
limited by the slowest stage of the pipe. The following sections propose some implementations to exploit
parallelization of the algorithm

II. KEYPOINT EXTRACTION
Fig. 1 shows a proposal of pipeline which exploits parallelism not only at SIFT-step level but also at inter-step level.

All the filtering operations, (Gauss), Difference of Gaussians operations (DoG) and neighborhood evaluation to detect
extrema points (Neigh) generate a valid pixel value per cycle. Thus the first smoothing operation (Gauss1) requires
3215 cycles to output the first valid pixel and then 640x480 extra cycles to complete the initial image filtering. Then a
next image can be processed. Operating as a pipeline, a new image can be processed every 310425 cycles (3,104 ms at
100 MHz).

This work has been partially funded by Spanish government projects TEC2015-66878-C3-2-R (MINECO/FEDER, UE) and TEC2015- 66878-C3-3-R
(MINECO/FEDER, UE).

Fig. 1. Chronogram of pipelined SIF algorithm

In order to save computational resources, this implementation performs recursive filtering from the first image
instead of absolute filtering. This requires smaller values of σ and also smaller mask sizes: 9x9, 7x7, 9x9, 11x11, 13x13
and 15x15. This allows the use of fewer registers in the sliding window architecture and also fewer processing units.
On the other hand, the penalty is an increase in the latency of the pipeline, although it is negligible compared to the
throughput achieved. Finally, the use of decomposed two-dimensional Gaussian filtering reduces the number of
multipliers and also allows the reuse of intermediate results. Table I shows the device utilization for the first step of the
algorithm for a single octave configuration.

TABLE I. DEVICE UTILIZATION SUMMARY (XC6VLX240T)

Logic Utilization Step 1 All steps Available
Slice Registers 3130 (1%) 4850 (1%) 301440

Slice LUTs 4404 (2%) 6584 (4%) 150720

fully used LUT-FF pairs 567 (8%) 1318 (13%) 8815

Block RAM/FIFO 63 (15%) 88 (21%) 416

BUFG/BUFGCTRL/BUFHCEs 1 (0%) 1 (0%) 176

DSP48E1s 124 (16%) 129 (16%) 768

A fixed point data format has been used. It uses 8 bits for the integer part. To select the number of digital bits, the
performance of the fixed point has been compared with the floating point algorithm implemented in Matlab. Data
formats of 2,3,4 and 5 decimal offered 22%, 59.5%, 76.31% and 85.46% precision in the KP identification. A 5
decimal bit was finally implemented.

III. DESCRIPTOR GENERATION
Fig. 2 shows the implementation proposed in [10] to perform the descriptor generation operation. It generates a

short descriptor based on 27 elements, which can be valid for tracking applications [11]. Other simplifications
employed are the use of Manhattan distance instead of the Euclidean one or 3x3 KP neighborhood and 3-bin histogram
instead 4x4 and 8-bin one. Finally it combines CORDIC and Taylor approach to perform the two normalization
operations at the end of this stage. Table I shows the device utilization for the proposed implementation (KP extraction
+ descriptor generation).

Table II shows a performance comparison of different architectures. With the proposed architecture, the first
descriptor is obtained after 489 cycles (Fig. 1). Then, a new descriptor is output every 228 cycles. Thus, to obtain 3072
descriptors the number of cycles required is 489+(3071*228)=700677 (7.01 ms at 100MHz). Since this is slower that
the KP extraction stage, this is the value which limits the implementation speed. So, for this architecture, the
throughput is 143 fps for a single octave and six scales.

Fig.2. Time-optimized architecture.

TABLE II. PERFORMANCE COMPARISON .

Work Implementation Image size Number
of KP

Time
(Frame rate)

[2] Stratix II 2 +
NIOS II 320x240 -

 33 ms

[3] Virtex5 + MicroBlaze 640x480 -
 31 ms

[7] Cyclone® II 640×480 -
 (56 fps)

[8] Virtex6 640x480 132100
(per second) (60fps)

[5] TSMC 0.18μm CMOS 640×480. 890
 33 ms.

[6] 90 nm
CMOS 1920x1080 6000 (30 fps)

[9] Virtex5 512×512 2900 60.64

[4] Virtex5 640×480 1270 30 fps
This
work Virtex6 640×480 3072 12,5 ms

(143 fps *)
* Máximum thoughput exploiting pipeline of stages 1 and 2

Processing of two more octaves would require an increase of 75% of cycles in the first stage if no additional
parallelization is done. This yields 543244 cycles (5,432 ms at 100 MHz) which is still faster than the descriptor
generation time.

REFERENCES
[1] D. Lowe, “Distintive image features from scale-invariant key-points”, Int. J. Compt. Vis., vol. 60, no. 2, pp 91-

110, Nov. 2004.
[2] V. Bonato et al, "A Parallel Hardware Architecture for Scale and Rotation Invariant Feature Detection," IEEE

Trans. on Circ. and Syst. for Video Techn., vol.18, no.12, pp. 1703-1712, Dec. 2008.
[3] L. Yao et al, "An architecture of optimised SIFT feature detection for an FPGA implementation of an image

matcher," Intl. Conf. on Field-Programmable Technology, 2009. FPT 2009, pp.30-37, 9-11 Dec. 2009.
[4] M. Qasaimeh, A. Sagahyroon and T. Shanableh, "FPGA-Based Parallel Hardware Architecture for Real-Time

Image Classification," in IEEE Trans. on Computational Imaging, vol. 1, no. 1, pp. 56-70, March 2015
[5] F.C. Huang, et al, "High-Performance SIFT Hardware Accelerator for Real-Time Image Feature Extraction,"

IEEE Trans. on Circ. and Syst. for Video Tech., vol.22, no.3, pp. 340-351, Mar. 2012.
[6] L. C. Chiu et al, "Fast SIFT Design for Real-Time Visual Feature Extraction," in IEEE Trans. on Image

Processing, vol. 22, no. 8, pp. 3158-3167, Aug. 2013.
[7] K. Mizuno et al., “Fast and low-memory-bandwidth architecture of SIFT descriptor generation with scalability on

speed and accuracy for VGA video,” in Proc. IEEE FPL, 2010, pp. 608–611.

[8] W. Deng et al, "An efficient hardware architecture of the optimised SIFT descriptor generation," in Proc IEEE
FPL, 2012, pp. 345-352.

[9] J. Jiang, X. Li and G. Zhang, "SIFT Hardware Implementation for Real-Time Image Feature Extraction," in IEEE
Transactions on Circuits and Systems for Video Technology, vol. 24, no. 7, pp. 1209-1220, July 2014.

[10] P. Leyva et al., "Simplification and hardware implementation of the feature descriptor vector calculation in the
SIFT algorithm," in Proc. IEEE FPL, 2014, pp. 1-4.

[11] S. Gauglitz, T. Höllerer and·M. Turk, “Evaluation of Interest Point Detectors and Feature Descriptors for Visual
Tracking”, Int J Computer Vision, vol. 94, no 3, pp 335-360, Sep. 2011.

