Diseño y planificación del proceso de fabricación del bastidor y la suspensión de un Buggy Off-Road para la competición “Ultra4Europe”

TRABAJO FIN DE GRADO

GRADO EN INGENIERÍA MECÁNICA

Autor: Juan Diego Muñoz Sánchez
Director: Horacio Tomás Sánchez Reinoso
Codirector: Óscar de Francisco Ortiz

Cartagena, 18/09/2017
Índice general

Índice general .. 2
Índice de figuras .. 4
Índice de tablas ... 9
Agradecimientos .. 10
Objeto .. 11
Antecedentes ... 12

1. Introducción ... 13
 1.1. Características del terreno para las competencias con vehículos “Ultra 4” 13
 1.2. Normativa aplicable .. 14
 1.3. Análisis condiciones de funcionamiento .. 15
 1.4. Tipologías bastidores (chasis) vehículos off-road 15
 1.4.1. Chasis independiente ... 15
 1.4.1.1. Chasis de columna ... 15
 1.4.1.2. Chasis de largueros y travesaños ... 16
 1.4.2. Chasis monocasco ... 16
 1.4.3. Chasis tubular ... 17
 1.5. Tipologías suspensión vehículos off-road .. 17
 1.5.1. Configuraciones de suspensión ... 18
 1.5.1.1. Suspensión Rígida .. 18
 1.5.1.2. Suspensión independiente ... 21
 1.5.1.3. Suspensión de barra de tracción doble (Twin-Traction Beam) 22
 1.5.2. Resortes .. 23
 1.5.2.1. Muelles helicoidales ... 23
 1.5.2.2. Ballestas .. 24
 1.5.2.3. Barras de torsión ... 26
 1.5.3. Amortiguadores .. 28
 1.5.3.1. Amortiguador “Non-coil” .. 28
 1.5.3.2. Amortiguador “Coilover” .. 29
 1.5.3.3. Amortiguador de emulsión ... 29
 1.5.3.4. Amortiguador con depósito remoto .. 30
 1.5.3.5. Amortiguador “Bypass” ... 31
 1.5.3.6. Amortiguador “air shock” .. 32
 1.6. Esfuerzos aplicables al bastidor y suspensión en vehículos off-road 32
 1.7. Herramientas de diseño en 3D (CAD/CAE) ... 33
 1.7.1. Generación de modelos 3D (3D CAD) ... 38
 1.7.2. Generación de modelos CAE ... 40
 1.8. Planificación de fabricación ... 41

2. Diseño de bastidor y suspensión ... 42
 2.1. Pre-diseño bastidor (modelo alámbrico) .. 42
2.2. Cálculo de bastidor ... 44
 2.2.1. Sistema de coordenadas .. 45
 2.2.2. Propiedades de materiales .. 45
 2.2.3. Descripción de modelo FEM ... 46
 2.2.4. Casos de carga ... 47
 2.2.4.1. Caso de carga 1 ... 48
 2.2.4.2. Caso de carga 2 ... 50
 2.2.4.3. Caso de carga 3 ... 52
 2.2.4.4. Caso de carga 4 ... 53
 2.2.4.5. Caso de carga 5 ... 54
 2.2.4.6. Caso de carga 6 ... 56
 2.2.5. Resultados .. 61
 2.2.5.1. Caso de carga 1 ... 61
 2.2.5.2. Caso de carga 2 ... 64
 2.2.5.3. Caso de carga 3 ... 66
 2.2.5.4. Caso de carga 4 ... 68
 2.2.5.5. Caso de carga 5 ... 70
 2.2.5.6. Caso de carga 6 ... 72
 2.2.6. Diseño de detalle de bastidor ... 76
 2.2.6.1. Corrección de pre-diseño en función de resultados de cálculo 76
 2.2.6.2. Diseño final chasis .. 80
 2.3. Selección-dimensionado de Suspensión 80
 2.3.1. Pre-diseño configuración de suspensión (modelo alámbrico) 81
 2.3.2. Cálculo de suspensión .. 82
 2.3.3. Diseño de detalle de suspensión 86
 3. Presupuesto ... 91
 4. Planificación .. 93
 5. Conclusiones .. 96
 5.1. Conclusiones sobre el trabajo realizado 96
 5.2. Posibles mejoras ... 97
 6. Bibliografía ... 99
 ANEXO 1. Planos .. 100
Índice de figuras

Figura 1. Ejemplo de vehículo para la competición Ultra 4. ... 12
Figura 2. Ejemplo de vehículo para la competición “rally raid”. ... 13
Figura 3. Ejemplo de vehículo para la competición “rock crawling”. .. 14
Figura 4. Ejemplo de vehículo para la competición rally cronometradas. 14
Figura 5. Ejemplo de chasis de columna ... 16
Figura 6. Ejemplo de chasis de largueros y travesaños. ... 16
Figura 7. Ejemplo de chasis monocasco .. 17
Figura 8. Ejemplo de chasis tubular. .. 17
Figura 9. Ejemplo de suspensión rígida. ... 18
Figura 10. Ejemplo brazo suspensión rígida. ... 19
Figura 11. Suspensión paralela de cuatro barras con barra de tracción en diagonal. 20
Figura 12. Ejemplo suspensión triangulada de cuatro barras. ... 20
Figura 13. Ejemplo suspensión de cuatro barras tipo “Trophy trucks” 21
Figura 14. Ejemplo de suspensión independiente. .. 22
Figura 15. Ejemplo de suspensión TTB. .. 23
Figura 16. Distintos tipos de muelles. ... 23
Figura 17. Ejemplo instalación muelle sobre eje rígido. ... 24
Figura 18. Concepto de ballesta. .. 25
Figura 19. Tipos de configuración de ballestas. ... 25
Figura 20. Ejemplo de instalación de ballesta sobre eje rígido. .. 26
Figura 21. Torsión en ballesta en aceleraciones y deceleraciones fuertes..................................... 26
Figura 22. Instalación típica de barra de torsión. ... 27
Figura 23. Extremos y regulación barra de torsión. ... 27
Figura 24. Localización barra de torsión. ... 27
Figura 25. Amortiguador “Non-coil” con depósito remoto... 28
Figura 26. Amortiguador “Coilover”. .. 29
Figura 27. Amortiguadores “Non-coil” y “Coilover” emulsión.. 30
Figura 28. Amortiguadores “Non-coil” y “Coilover” con depósito remoto................................. 30
Figura 29. Amortiguadores ”Bypass” externo con depósito remoto... 31
Figura 30. Amortiguadores "Bypass" interno con depósito remoto

Figura 31. Amortiguador "air shock"

Figura 32. Simplificación modelo suspensión

Figura 33. Componente aeronáutico diseñado mediante el programa CATIA V5

Figura 34. Pieza mecánica diseñada mediante siemens NX

Figura 35. Pieza mecánica compleja diseñada mediante siemens NX

Figura 36. Modelo 3D motocicleta con render fotográfico en siemens NX

Figura 37. Planos 2D a partir de modelo 3D diseñado mediante siemens NX

Figura 38. Ejemplo pieza analizada linealmente

Figura 39. Ejemplo pieza analizada no linealmente

Figura 40. Ejemplo pieza analizada dinámicamente

Figura 41. Ejemplo pieza analizada a fatiga

Figura 42. Ejemplo pieza analizada a ruido y vibración

Figura 43. Etapas de diseño de sólidos mediante Siemens NX

Figura 44. Representación del sólido con el navegador de pieza del modelo

Figura 45. Proceso preparación modelo CAD para generar modelo CAE

Figura 46. Proceso ensamblaje distintos modelos CAE

Figura 47. Ejemplo planificación

Figura 48. Cuatro tipos de diseño para chasis off-road

Figura 49. Croquis 2D dimensiones principales

Figura 50. Modelo alámbrico 3D sobre croquis referencia

Figura 51. Alzado, Planta, Perfil y vista isométrica de modelo alámbrico del chasis

Figura 52. Sistema de coordenadas

Figura 53. Modelo FEM Bastidor

Figura 54. Diagrama de fuerzas

Figura 55. Reacciones del vehículo caso de carga a flexión (LC 1A y LC 1B)

Figura 56. Esquema caso de carga a flexión (LC 1A)

Figura 57. LC 1A

Figura 58. Esquema caso de carga a flexión (LC 1B)

Figura 59. LC 1B

Figura 60. Esquema caso de carga a torsión

Figura 61. LC 2
Figura 62. Esquema caso de carga combinado (flexión/torsión)............................... 52
Figura 63. LC 3.. 53
Figura 64. Esquema caso de carga lateral... 53
Figura 65. LC 4.. 54
Figura 66. Esquema caso de carga longitudinal (aceleración – deceleración) 55
Figura 67. LC 5.. 56
Figura 68. Impacto Frontal... 56
Figura 69. Impacto Lateral.. 57
Figura 70. Impacto Posterior.. 57
Figura 71. Impacto de Vuelco... 57
Figura 72. LC 6A.. 58
Figura 73. LC 6B.. 59
Figura 74. LC 6C.. 60
Figura 75. LC 6D.. 60
Figura 76. Desplazamientos Caso 1A. .. 61
Figura 77. Desplazamientos Caso 1B.. 62
Figura 78. Tensión de Von Misses Caso 1A. .. 62
Figura 79. Tensión de Von Misses Caso 1B. .. 63
Figura 80. Reacciones Caso 1A... 63
Figura 81. Reacciones Caso 1B... 63
Figura 82. Desplazamientos Caso 2... 64
Figura 83. Tensión de Von Misses Caso 2. ... 65
Figura 84. Reacciones Caso 2... 65
Figura 85. Desplazamientos Caso 3... 66
Figura 86. Tensión de Von Misses Caso 3. ... 67
Figura 87. Reacciones Caso 3... 67
Figura 88. Desplazamientos Caso 4. .. 68
Figura 89. Tensión de Von Misses Caso 4. ... 69
Figura 90. Reacciones Caso 4... 69
Figura 91. Desplazamientos Caso 5... 70
Figura 92. Tensión de Von Misses Caso 5. ... 70
Figura 93. Reacciones Caso 5... 71
Figura 94. Desplazamientos Caso 6A. ... 72
Figura 95. Desplazamientos Caso 6B. ... 72
Figura 96. Desplazamientos Caso 6C. ... 73
Figura 97. Desplazamientos Caso 6D. ... 73
Figura 98. Tensión Von Misses Caso 6A. ... 74
Figura 99. Tensión Von Misses Caso 6B. ... 74
Figura 100. Tensión Von Misses Caso 6C. ... 74
Figura 101. Tensión Von Misses Caso 6D. ... 74
Figura 102. Reacciones Caso 6A. ... 75
Figura 103. Reacciones Caso 6B. ... 75
Figura 104. Reacciones Caso 6C. ... 75
Figura 105. Reacciones Caso 6D. ... 75
Figura 106. Zona de σ_{max} en Caso 6A. ... 76
Figura 107. Zona de σ_{max} en Caso 6B. ... 76
Figura 108. Zona de σ_{max} en Caso 6C. ... 76
Figura 109. Zona de σ_{max} en Caso 6D. ... 76
Figura 110. Tubos añadidos para cumplir con los requisitos. 77
Figura 111. Nodos con tensión superior a 236,6 Mpa en caso 6A-2. 78
Figura 112. Nodos con tensión superior a 236,6 Mpa en caso 6B-2. 79
Figura 113. Nodos con tensión superior a 236,6 Mpa en caso 6D-2. 79
Figura 114. Diseño final chasis. ... 80
Figura 115. Pre-diseño configuración suspensión. ... 81
Figura 116. Localización de amortiguadores. .. 82
Figura 117. Configuración de amortiguador con triple muelle. 84
Figura 118. Diseño final de suspensión. .. 86
Figura 119. Dimensiones amortiguador. .. 87
Figura 120. Diseño final de amortiguadores. .. 88
Figura 121. Diseño final 1/4. ... 89
Figura 122. Diseño final 2/4. ... 89
Figura 123. Diseño final 3/4. ... 90
Figura 124. Diseño final 4/4. ... 90
Figura 125. Sub-tareas del paquete de compras de material. 93
Figura 126. Sub-tareas del paquete de Fabricación.. 93
Figura 127. Sub-tareas del paquete de acabado superficial................................. 94
Figura 128. Sub-tareas del paquete de Montaje. ... 95
Figura 129. Planificación de fabricación.. 95
Índice de tablas

Tabla 1. Lista de símbolos y sus letras griegas asociadas. .. 44
Tabla 2. Lista de acrónimos. ... 45
Tabla 3. Propiedades de materiales. .. 45
Tabla 4. Resumen de malla FEM. ... 46
Tabla 5. Resumen resultados caso de carga 1. .. 64
Tabla 6. Resumen resultados caso de carga 2. .. 66
Tabla 7. Resumen resultados caso de carga 3. .. 68
Tabla 8. Resumen resultados caso de carga 4. .. 69
Tabla 9. Resumen resultados caso de carga 5. .. 71
Tabla 10. Resumen resultados caso de carga 6. .. 75
Tabla 11. Resumen resultados caso de carga 6-2. ... 77
Tabla 12. Recorridos a final de carrera del amortiguador. .. 87
Tabla 13. Lista simplificada de materiales. .. 91
Tabla 14. Lista simplificada de procesos de fabricación. ... 92
Tabla 15. Presupuesto de fabricación. ... 92
Agradecimientos

Agradezco a Dr. Horacio Sánchez Reinoso, profesor del departamento de Ingeniería de Materiales y Fabricación, Universidad Politécnica de Cartagena, y a D. Oscar de Francisco Ortiz, profesor del departamento de Ingeniería y Técnicas aplicadas en el Centro Universitario de la Defensa, el apoyo prestado para la realización del presente proyecto final de grado, sin el que no podría haber terminado este trabajo correctamente.

Por otro lado, agradezco a mi hijo Samuel por el tiempo que me ha cedido y que no podré recuperar. Y a Marina, por haberme animado a terminar y ser tan comprensiva conmigo. Gracias a los dos por haber hecho el esfuerzo tan grande para permitir que pueda terminar este proyecto en fecha.
Objeto

El objeto principal de este proyecto fin de grado consiste en el diseño y planificación del proceso de fabricación del bastidor y suspensión de un vehículo off-road para la competición “Ultra 4 Europe”.

Para conseguir el objetivo de este proyecto, se plantea la elaboración de la fase de pre-diseño del bastidor con programa CAD 3D. Selección de alternativas e introducción de posibles innovaciones para la obtención del prototipo final, teniendo en cuenta los procesos de fabricación actuales para este tipo de bastidores. Cálculo, análisis estructural y dimensionamiento del bastidor con el fin de obtener una solución optimizada del mismo bajo diferentes estados de carga. Elaboración de planos finales en 2D y selección de componentes normalizados/comerciales que hagan viable la fabricación del bastidor. Finalmente, se elaborará la planificación de los procesos de fabricación del basculante.
Antecedentes

El objetivo de este documento es mostrar los resultados del análisis estático llevado a cabo con un modelo de elementos finitos generado a partir del modelo CAD del chasis de un vehículo off road para la competición “Ultra 4 Europe”. La competición “Ultra 4 Europe” es una de las competiciones “off Road” más intensas y explosivas de la actualidad. Ésta competición tiene sus orígenes en 2007 en EE.UU y en 2012 en Europa. Combina las carreras tipo rally por el desierto (“Desert Racing”) junto con las de trial 4x4 (“rock crawling”) más extremo.

Esta competición europea desarrolla sus carreras en Francia, Reino Unido (Gales), Portugal y Reino Unido (Inglaterra) para esta edición 2017.

Las carreras suelen desarrollarse en 2 días con 3 etapas en total y los recorridos no suelen superar los 300Km de longitud entre todas las etapas (circuito abierto con límite de tiempo, para completar las vueltas establecidas, y pruebas cronometradas de corto recorrido).

Este nivel de exigencia con relativamente pocos kilómetros, requiere de vehículos preparados para un entorno mixto con la dificultad de tener un vehículo capaz de ir a gran velocidad (200Km/h) y de tener grandes recorridos de suspensión para las zonas más técnicas con obstáculos difíciles de sobrepasar.

Todos los elementos motrices del vehículo están sometidos a grandes esfuerzos y el chasis está sometido a todo tipo de cargas y, dada la cualidad mixta de las carreras, ha de estar preparado para soportar impactos a gran velocidad en terrenos de arena y/o roca y seguir funcionando con total funcionalidad en las zonas de trial. Además, es la principal barrera de seguridad para el piloto y copiloto del vehículo. Es en esta parte del vehículo (bastidor/chasis) donde se centra este trabajo.

![Figura 1. Ejemplo de vehículo para la competición Ultra 4.](image)
1. Introducción

1.1. Características del terreno para las competiciones con vehículos “Ultra 4”

Un vehículo diseñado para competir en “Ultra4 europe” debe estar preparado para las condiciones que se encuentran en las carreras de enduro por el desierto, “rock crawling” y las pruebas de rally cronometradas. Estas tres disciplinas de carrera son las que se encuentran en un evento “Ultra4 europe”. Por tanto, el diseño de este tipo de vehículos debe de tener características que le permitan moverse bien por las tres tipologías de terrenos que se va a encontrar. Las características principales de cada una de ellas son:

- **Rally Raid.** Son carreras en las que destaca la alta velocidad de los vehículos con alta temperatura ambiente y suspensiones preparadas para obstáculos y saltos a gran velocidad. La precisión de conducción es importante pero no determinante en este tipo de carreras que dependen más de la orientación.

![Figura 2. Ejemplo de vehículo para la competición “rally raid”](image)

- **“Rock crawling”**. Son carreras de trial 4x4 donde destacan las velocidades lentas, conducción de precisión y transmisiones sometidas a torsiones muy elevadas. En estas carreras, el coche debe “escalar”, generalmente, por zonas rocosas.
Figura 3. Ejemplo de vehículo para la competición “rock crawling”.

- **Pruebas de rally cronometradas.** Son carreras en circuitos de tierra muy cortos (no más de 10Km) donde la velocidad y curvas cerradas están predominando gran parte del circuito. Se trata de carreras con una velocidad media-alta y conducción de precisión.

Figura 4. Ejemplo de vehículo para la competición rally cronometradas.

1.2. Normativa aplicable.

Las carreras “Ultra4 Europe” están reguladas por las especificaciones definidas para la competición “Ultra4 Racing” (Hammerking Productions). En dicha normativa, se definen los requisitos para cada una de las categorías respecto a seguridad del vehículo (arnés de seguridad, red de seguridad, asientos, extintor, bocina, reflectores, kit de primeros auxilios y kit de supervivencia), identificación del vehículo (número de vehículo definido por la organización), requisitos específicos sobre algunos componentes del vehículo (radiadores, manguitos de gasolina, etc.), chasis, ingeniería,
motor, caja de cambios, reductora, transmisiones, dirección, suspensión, frenos, controles, sistema de combustible, medio ambiente, tornillería, sistema eléctrico y ruedas.

1.3. Análisis condiciones de funcionamiento.

Las condiciones de funcionamiento del vehículo varían en función de la tipología del terreno. Se describen a continuación para cada una de las disciplinas:

- En los terrenos Rally raid, el vehículo está sometido a calor intenso, arena y viento. Teniendo que atravesar obstáculos importantes a gran velocidad. A veces, incluso el vehículo puede quedarse clavado en la arena por lo que es importante llevar las herramientas necesarias para sacarlo.

- En las zonas de trial (Rock Crawling), se necesita flexibilidad por parte de las ruedas del vehículo para adaptarse a las zonas que hay que atravesar. Generalmente de rocas grandes y con pasos complicados que hacen que la técnica del piloto y la suavidad del vehículo a la hora de atravesar los obstáculos sea primordial en este tipo de zonas.

- En las pruebas de rally cronometradas, se requieren vehículos con aceleraciones y deceleraciones rápidas y con capacidad de atravesar obstáculos medianos en terrenos de tierra por pista.

1.4. Tipologías bastidores (chasis) vehículos off-road.

El chasis es la parte principal del vehículo ya que aporta la resistencia estructural (sería similar al esqueleto de un animal) y da estabilidad al mismo. Además, también se usa como soporte para montar el resto de sistemas que componen el vehículo.

1.4.1. Chasis independiente.

Los chasis independientes son aquellos que generalmente están fabricados en acero y diseñados de modo que la carrocería del vehículo queda montada encima de él. Existen dos tipos: los chasis de columna y los chasis de “escalera y armazón perimetral”.

1.4.1.1. Chasis de columna.

Este tipo de estructura fue inventada por Colin Chapman. Él utilizó una celosía en forma de columna vertebral para conectar el eje delantero al trasero. La columna vertebral proporciona la estructura para todos los componentes de trabajo del vehículo. Este chasis se utiliza sobre todo en los vehículos roadsters. Como desventaja, no son aplicables a los vehículos off-road.
1.4.1.2. **Chasis de largueros y travesaños.**

Su diseño es muy básico. La mayoría de vehículos clásicos, SUV vehículos más grandes que circulan por la ciudad, se hacen con chasis de largueros.

1.4.2. **Chasis monocasco.**

El chasis monocasco son los que más se usan hoy en día por la mayoría de fabricantes. Esta es una estructura bastante rígida que es fácil de producir en masa y proporciona una gran estabilidad en caso de un accidente por su capacidad para absorber energía durante
la colisión. A pesar de que son fáciles de fabricar no es rentable para su fabricación en pequeñas cantidades.

Figura 7. Ejemplo de chasis monocasco.

1.4.3. Chasis tubular.

La estructura tubular es muy cara de fabricar, pero tiene la ventaja de ser mucho más estable que otros tipos de chasis. Debido a la complejidad de su diseño y fabricación, no es rentable para la producción en masa. Los chasis tubulares son construidos y diseñados principalmente para vehículos de carreras. Ya sean sobre asfalto o sobre terrenos off-road.

Figura 8. Ejemplo de chasis tubular.

1.5. Tipologías suspensión vehículos off-road.

La suspensión de los vehículos off-road, como en cualquier otro vehículo, tiene tres objetivos principales: suavizar los golpes de las irregularidades del terreno, mantener las ruedas tocando el suelo y controlar la estabilidad del vehículo. En la suspensión para vehículos off-road, existen tres configuraciones principalmente: Suspensión rígida, suspensión independiente y suspensión de barra de tracción doble.
Además, hay otros dos componentes a considerar y que afectan al comportamiento del vehículo: los resortes (o muelles) y los amortiguadores. Estos componentes se instalan sobre cualquiera de las configuraciones indicadas anteriormente con alguna restricción particular según cada caso.

La funcionalidad de los resortes es absorber la energía de las fuerzas que actúan sobre las ruedas, pero requieren de amortiguadores para disminuir o amortiguar la vibración después de golpear con un bache o irregularidad del terreno. Cada rueda del vehículo tiene un resorte y un amortiguador.

En ocasiones, la suspensión del eje delantero puede no ser igual a la del eje trasero. Esto es debido a que las ruedas delanteras deben girar a derecha e izquierda para maniobrar y, además, absorben más par durante la operación de frenado.

1.5.1. Configuraciones de suspensión.

1.5.1.1. Suspensión Rígida.

El sistema rígido es uno de los tipos de suspensión más antiguos y básicos que existe. Su funcionamiento es sencillo. Unos resortes y amortiguadores van atornillados directamente a la barra transversal del puente, que es la que recibe las variaciones que le mandan las suspensiones. Como se puede ver en la foto de abajo, cuando un coche atraviesa un obstáculo con una sola rueda, el puente entero se inclina en el sentido que dicte el terreno.

![Figura 9. Ejemplo de suspensión rígida.](image-url)

Es un sistema que ahora mismo se usa en los todoterrenos para circular por vías sin asfaltar, o modelos de competición de montaña. Lo usan para que el coche se eleve lo suficiente en los terrenos y no sufra el chasis, por su parte inferior, en esos trayectos. Sin
embargo, tienen varias desventajas, entre las que se destaca la inestabilidad. La inestabilidad de estos sistemas da como resultado un marcado sobreviraje. Hay algunos diseños de eje rígido que montan muelles helicoidales y otros en los que se montan ballestas. En el caso de montar muelles, éstos solo soportan el peso del vehículo y se necesita de otro sistema para sujetar el eje rígido en posición mientras permite que se mueva con libertad para librarse de irregulares del terreno. El diseño del brazo de suspensión usa dos brazos paralelos al chasis. Se sujetan al chasis en un punto de pivotado y a un punto fijo en el eje rígido que permite pivotar arriba y abajo. Una barra de tracción se instala de manera longitudinal al eje (transversal al vehículo) para sujetar al eje en posición centrada. Esta configuración hace que conforme el brazo de suspensión se mueva, el ángulo del eje cambie, como se puede ver en la figura 10.

![Figura 10. Ejemplo brazo suspensión rígida.](image)

Una variación del brazo de suspensión, es la suspensión paralela de cuatro barras mostrada en la figura 11. En este caso, la suspensión sigue utilizando un muelle helicoidal y una barra de tracción. En vez de un brazo utiliza unas barras superiores e inferiores con puntos de pivotado en ambos extremos. Conforme el eje se mueve arriba y abajo, las barras permiten el movimiento manteniendo la misma relación con el suelo y el ángulo del eje. Esta suspensión permite una mejor conducción y maniobrabilidad.
Figura 11. Suspensión paralela de cuatro barras con barra de tracción en diagonal.

Otra suspensión de cuatro barras es la triangulada de cuatro barras. La suspensión paralela de cuatro barras necesita una barra de tracción adicional para posicionar el eje en el centro. Con una suspensión triangulada de cuatro barras, si las barras están montadas en el ángulo correcto, la barra de tracción no es necesaria. En este caso las barras superiores están montadas en ángulo y las barras inferiores están montadas en el ángulo opuesto. Cuanto mayor sea el ángulo, mayores podrán ser los esfuerzos laterales soportados por las barras.

Figura 12. Ejemplo suspensión triangulada de cuatro barras.

Otra variación de suspensión de barras es la utilizada en los “Trophy trucks” que tienen grandes recorridos de suspensión a velocidades muy elevadas. En este tipo de vehículos se monta unos brazos paralelos a la estructura (longitudinales) en la parte baja del chasis y eje rígido. En los dos extremos se colocan rótulas para el pivotado de las barras.
inferiores. Además, se montan unas barras superiores en forma de V que se sujetan al chasis por encima de las anteriores y al eje rígido, también por encima. Esta suspensión no solo permite al eje trasero moverse libremente arriba y abajo. Las rótulas de las barras superiores en V permiten articular al eje libremente. Esta suspensión se usa con amortiguadores “Coilover” y “Bypass” instalados sobre la misma rueda para poder controlar el eje rígido. Solo se usa para ejes traseros.

Figura 13. Ejemplo suspensión de cuatro barras tipo “Trophy trucks”.

1.5.1.2. Suspensión independiente.

La suspensión independiente es un tipo de suspensión en la que las dos ruedas se mueven independientemente la una de la otra. En este tipo de suspensión, generalmente de triángulos superpuestos, hay un brazo (triángulo) superior, y otro inferior, sujetos a cada una de las ruedas, por un lado, y al chasis por el otro. La función resorte se consigue con barras de torsión o con amortiguadores “coilover”, que combinan un muelle helicoidal y un amortiguador en una sola unidad.

La suspensión más común es la de brazos desiguales en A. Dos brazos montados perpendicularmente al chasis se fijan al soporte del buje de rueda. Los dos brazos pivotan en los dos extremos mediante rótulas, pero el brazo superior es más corto y mantiene la rueda paralela al suelo en el recorrido arriba y abajo de la suspensión. El brazo en A mantiene el ángulo de rueda en todo el recorrido de suspensión.

Este sistema permite, mediante diseño, obtener grandes recorridos de suspensión dependiendo de donde se ancle el punto del amortiguador, o más cerca o más lejos del punto de pivotado sobre el chasis. En ocasiones, para conseguir mayor recorrido de suspensión, los sistemas se vuelven más complejos al tener que conseguir que la dirección y los palieres se adapten al recorrido por lo que se obtiene un sistema más caro que el sistema TTB par aun mismo recorrido de suspensión.
1.5.1.3. **Suspensión de barra de tracción doble (Twin-Traction Beam).**

Este tipo de suspensión, también llamado suspensión barra en I doble, fue diseñada por Ford para combinar lo mejor de la suspensión rígida (dependiente) y de la suspensión independiente. Un sistema TTB tiene dos barras en el frontal del vehículo cada barra se sujeta sobre un punto de pivotado (rótula) en el chasis y a la rueda en el otro extremo. Las barras se solapan un poco, por lo que actúan, básicamente, como un brazo de suspensión largo. Una junta en U en el centro permite el movimiento independiente de las dos barras.
Los sistemas de suspensión anteriormente citados se refieren principalmente a los utilizados para los ejes delanteros del vehículo off-road. Para el eje trasero, la mayoría de vehículos suelen llevar eje rígido con ballestas o muelles helicoidales. Por otro lado, además de las configuraciones de suspensión hay que conocer los tipos de resortes y amortiguadores que se usan en el sector off-road.

1.5.2. Resortes.

Hay tres tipos principales de resortes: los muelles helicoidales, las ballestas y las barras de torsión. Los tres tipos de resorte son buenos absorbiendo energía.

1.5.2.1. Muelles helicoidales.

Los muelles helicoidales están hechos de acero endurecido y templado doblados en forma de espiral. Estos muelles pueden ser rígidos, suaves o tener un comportamiento variable. El parámetro que define su comportamiento suele ser una constante de rigidez K que define la fuerza por cada milímetro de deformación a la que se somete el muelle. Ésta constante es usada para describir cuando un muelle se comporta de manera lineal (misma constante durante todo el rango de compresión), progresiva (la constante varía conforme aumenta el rango de compresión) y constante doble (cambia de constante a partir de cierto valor de compresión).

Figura 15. Ejemplo de suspensión TTB.

La ventaja de los muelles helicoidales básicamente es debido a que permiten la mayor flexibilidad en cuanto a configuraciones de rigidez variables (constante K) además de permitir unos recorridos elevados de suspensión.
La desventaja principal es que no permiten una carga elevada de en comparación con las ballestas. En los muelles helicoidales, el peso del vehículo está concentrado en una superficie pequeña sobre el chasis del vehículo, mientras que en las ballestas, se reparte por mayor superficie.

1.5.2.2. Ballestas.

El sistema de ballestas es más antiguo que la propia automoción. Se ha usado desde las antiguas carretas tiradas por caballos. Conceptualmente son muy simples. Una ballesta está compuesta de una o más pletinas arqueadas de acero. Cada pieza se conoce como hoja, y una o más hojas pueden apilarse una sobre la otra. Se montan por debajo o por encima de un eje rígido (suspensión dependiente). Como la ballesta va atornillada sobre el eje, ésta soporta el peso del vehículo y sirve para asegurar el eje al chasis.

Figura 17. Ejemplo instalación muelle sobre eje rígido.
Figura 18. Concepto de ballesta.

Hay varias configuraciones posibles de instalación como se puede ver en la figura 19.

Figura 19. Tipos de configuración de ballestas.

No obstante, en los vehículos off-road, las ballestas se suelen instalar de manera semi-ellíptica desde la parte delantera hacia la trasera, como se puede ver en la figura 20.
La principal ventaja de las ballestas es su simplicidad. Además, a diferencia de los muelles helicoidales, las hojas de las ballestas sirven para mantener el eje rígido de las ruedas sujeto en posición por lo que no necesitan de complejos sistemas de suspensión. Por otro lado, la desventaja principal radica en la torsión que se genera durante aceleraciones y deceleraciones fuertes, debido a que las ballestas están atornilladas en la parte superior o inferior del eje. Además, este montaje requiere que las hojas tengan una constante de rigidez elevada por lo que el confort de la conducción se ve afectado negativamente.

1.5.2.3. Barras de torsión.

En el caso de las barras de torsión, éstas no se aplanan como las ballestas o se comprimen como en los muelles helicoidales. En su lugar, un tubo de acero unido a los brazos de suspensión del vehículo se retuerce sobre su propio eje cuando el brazo se desplaza arriba y abajo (por los movimientos de la rueda). El otro extremo de la barra está atornillado al chasis y no se retuerce. Cuando una rueda golpea un bache y se mueve hacia arriba, la tensión se genera al mismo tiempo que la barra de torsión se retuerce desde su posición de reposo. Después de pasar el bache, la barra se destuerce recuperando la posición original y empujando la rueda hacia abajo. Las barras de torsión se instalan longitudinalmente al vehículo permitiendo a éstas tener mayor longitud como muestra en la figura 22.
Los extremos suelen tener una forma hexagonal o dentada para acoplarse adecuadamente a una pieza de anclaje llamada llave de torsión. La posición de esta llave puede ser ajustada para modificar altura de circulación del vehículo.

La ventaja de la barra de torsión es su eficiencia en cuanto al espacio necesario para instalarlas en el vehículo. Ocupan muy poco volumen en comparación con otros sistemas de suspensión. Además, también está la posibilidad de ajustar la altura del vehículo en función de las necesidades.

Por el contrario, la principal desventaja es relativa a su posición de montaje respecto al vehículo (en la parte inferior del mismo) lo que la hace más vulnerable a los daños por baches, suciedad de la carretera o terrenos irregulares.
1.5.3. Amortiguadores.

La función de los amortiguadores es, principalmente, convertir energía cinética en energía calorífica. La forma de hacerlo, históricamente, ha sido restringiendo el paso de un determinado volumen de aceite, mediante su viscosidad, para convertir la energía cinética en calor y, por tanto, ralentizar el movimiento del resorte en la suspensión de un vehículo. En sus inicios, el amortiguador hidráulico era simplemente un cilindro lleno de aceite con un pistón y vástago moviéndose en su interior y empujando el aceite a través de una lámina con orificios. Más adelante, con la invención del amortiguador cargado de gas, la efectividad de los amortiguadores se vio mejorada notablemente. Mientras que otros avances han desarrollado varios medios de regular el caudal de aceite dentro del amortiguador para cumplir con las necesidades específicas de cada situación (regulación independiente de compresión y extensión del amortiguador).

Actualmente, existen varios tipos de amortiguadores para el uso off-road dependiendo de la configuración de la suspensión.

1.5.3.1. Amortiguador “Non-coil”.

Los amortiguadores “Non-coil” (sin resorte sobre el propio amortiguador) son usados en aplicaciones donde un resorte separado es usado para soportar el peso del vehículo. Este resorte puede ser cualquiera de los ya mencionados (ballestas, muelles helicoidales y barra de torsión). Además, este tipo de amortiguadores tienen dos variedades: emulsión y con depósito remoto.

![Amortiguador “Non-coil” con depósito remoto.](image)

Figura 25. Amortiguador “Non-coil” con depósito remoto.
1.5.3.2. **Amortiguador “Coilover”**.

Los amortiguadores “coilover” consisten en un amortiguador de aceite que monta un muelle helicoidal sobre sí mismo. Los extremos del muelle están sujetos a los extremos del amortiguador. La función del muelle es la misma que la de un muelle helicoidal normal. Sin embargo, un “coilover” puede aportar más de una constante de muelle durante su funcionamiento. Así, los amortiguadores de doble constante usan dos muelles helicoidales montados en serie mientras que los de triple constante, montan tres muelles en serie.

Además, como en el caso de los amortiguadores “non-coil”, los “coilover” pueden ser del tipo emulsión o con reserva remota.

![Amortiguador “Coilover”](image)

Figura 26. Amortiguador “Coilover”.

1.5.3.3. **Amortiguador de emulsión**.

Los amortiguadores de emulsión consisten en una combinación de aceite y nitrógeno a alta presión que controlan la acción del rebote. El término emulsión significa que el nitrógeno y el aceite están mezclados juntos y que la mezcla pasa a través del pistón interno.

Si un amortiguador de emulsión se calienta mucho, puede comenzar la cavitación debido a las burbujas de nitrógeno moviéndose entre el pistón y las láminas, lo que perjudica el funcionamiento del mismo. Como resultado, un amortiguador de emulsión es menos resistente al calor comparado con uno de depósito remoto.

Este tipo de amortiguadores se usan mucho en competiciones donde las velocidades son bajas y/o los ciclos de la suspensión son relativamente lentos.
1.5.3.4. Amortiguador con depósito remoto.

Los amortiguadores con depósito remoto se diferencian de los de emulsión básicamente porque el aceite y el nitrógeno presurizado en el depósito están separados por un segundo pistón flotante que los separa. Este segundo pistón puede moverse según la presión del nitrógeno y de la acción del amortiguador.

El nitrógeno presurizado aplica una presión sobre el aceite en el otro lado que, efectivamente, incrementa el punto de ebullición del aceite y lo previene contra la mezcla con aire. Sin esta configuración, el aire del exterior podría entrar en el depósito de aceite y causar espuma en el aceite lo que perjudica la funcionalidad del amortiguador.

En cuanto el amortiguador se comprime, el aceite es desplazado por el pistón hacia el depósito remoto. Éste aceite empuja el pistón flotante que comprime a su vez al nitrógeno. Por este mecanismo, el aceite es mantenido en un volumen confinado bajo presión que previene la cavitación debido a la acción del nitrógeno. Además, permite utilizar el depósito remoto como cámara de expansión cuando el aceite se calienta.

En este tipo de amortiguador, es buena solución instalar el depósito remoto lo más lejos posible de fuentes de calor para que ayude a la refrigeración del amortiguador.
1.5.3.5. Amortiguador “Bypass”.

Otro tipo de amortiguadores utilizados en vehículos de alta velocidad son los amortiguadores Bypass. Estos amortiguadores se usan en conjunto con los amortiguadores “coilover” u otro tipo de resorte. Es un amortiguador que toma una porción de aceite dentro del cuerpo del amortiguador y lo redirige a otra zona del mismo. En este caso, el amortiguador permite ajustar específicamente el comportamiento de manera diferente en varios puntos del rango de desplazamiento. Además, mientras otros amortiguadores son solo sensibles a la velocidad del impulso (creando mayor resistencia conforme la velocidad aumenta), el amortiguador “bypass” también es sensibles a la posición permitiendo ajustes tanto en compresión como en extensión (o rebote). El objetivo de éstos redireccionamientos es tener un amortiguamiento suave en los primeros milímetros de recorrido para incrementar la dureza del amortiguamiento conforme se comprime. El aceite es temporalmente desplazado fuera del amortiguador mediante los tubos externos y válvulas de simple efecto para después introducirlo por el otro extremo. El amortiguador “Bypass” pueden ser externo o interno. Los externos llevan también el depósito remoto mientras los internos pueden utilizarse, además, como como amortiguadores “Coilover”.

Figura 29. Amortiguadores ”Bypass” externo con depósito remoto.

Figura 30. Amortiguadores ”Bypass” interno con depósito remoto.
1.5.3.6. Amortiguador “air shock”.

Como en un amortiguador “Coilover”, un amortiguador “Air shock” está cargado con nitrógeno y puede ser usado para cumplir con las dos funciones: resorte y amortiguación. Estos amortiguadores se parecen a un amortiguador hidráulico, pero incorporan vástagos más robustos. Internamente, el aceite y el nitrógeno están mezclados juntos y se mueven a través de los orificios. La cantidad de nitrógeno cargado determina la efectividad de la constante del resorte, además de que las válvulas interiores usan el aceite para amortiguar los movimientos. La mezcla está confinada en el amortiguador. El comportamiento puede ser ajustado modificando los pasos de aceite internos, la cantidad de aceite y la presión del nitrógeno. Debido a su simplicidad de diseño, los amortiguadores neumáticos son considerablemente más baratos que un amortiguador “coilover”. Se suelen usar en vehículos ligeros y con ciclos cortos de suspensión.

![Imagen de un amortiguador "air shock".](image)

Figura 31. Amortiguador "air shock".

1.6. Esfuerzos aplicables al bastidor y suspensión en vehículos off-road.

Un vehículo “off-road” en movimiento se caracteriza por una continua variación de las fuerzas de interacción entre el camino y los neumáticos. Estas variaciones dependen de la forma y dimensiones de las irregularidades, las características elásticas y de inercia de los componentes de suspensión del vehículo. El chasis tiene como objeto soportar de manera segura las máximas cargas dinámicas además de mantener la seguridad de los ocupantes del vehículo frente a un impacto frontal/posterior, lateral o vuelco. Generalmente, se utiliza un modelo simplificado del vehículo para evaluar las características dinámicas de la suspensión y para determinar la fuerza transmitida de la suspensión hacia el chasis del vehículo. La figura 32 muestra el modelo de dos grados de libertad de un cuarto del vehículo.
Figura 32. Simplificación modelo suspensión.

Donde:

\(m_v \): Masa del vehículo soportada por la suspensión. \\
\(m_t \): Masa del vehículo no soportada por la suspensión. \\
\(c_v \): Amortiguamiento de la suspensión. \\
\(c_t \): Amortiguamiento del neumático. \\
\(z_1 \): Desplazamiento vertical del vehículo. \\
\(z_2 \): Desplazamiento vertical del neumático.

1.7. Herramientas de diseño en 3D (CAD/CAE).

Se denomina diseño asistido por ordenador (CAD) a la tecnología mediante la cual se pueden crear, manipular y representar productos en tres dimensiones. Con los programas de CAD se consiguen planos de fabricación de calidad técnica y estética muy superiores a las conseguidas por métodos tradicionales. Existen muchos programas generadores de objetos en tres dimensiones.

El CAD es actualmente imprescindible en las oficinas técnicas de las grandes y pequeñas empresas.

Las aplicaciones de los sistemas CAD abarcan todas las áreas de la producción industrial y de los servicios (mecánica, diseño, arquitectura, obras públicas, electrónica, etc.).

Existen programas de propósito general válidos para cualquier área de trabajo, pero la mayoría son desarrollados pensando en un campo de aplicación concreto.
La capacidad que presentan los sistemas CAD para el tratamiento de los datos relativos a las superficies que definen los componentes diseñados, los hace idóneos para áreas de trabajo como la producción por mecanizado o para la simulación. Los sistemas CAD/CAE contienen módulos CAD para el diseño de componentes, y además módulos específicos para el cálculo por elementos finitos. De este modo, la información geométrica de las piezas diseñadas mediante los módulos CAD es utilizada posteriormente por el CAE para la generación del modelo de cálculo por elementos finitos. El módulo CAE es utilizado para establecer las condiciones de contorno de la pieza, así como las cargas aplicables a la misma.

La facilidad de manejo de estos programas, en comparación con los métodos tradicionales de cálculo, hace de los sistemas CAD/CAE/CAM una herramienta muy útil para reducir tiempos de producción y disminuir errores en los productos, además de permitir la validación de piezas complejas que serían inviables sin esta tecnología.
Los módulos básicos que componen un sistema CAD/CAE 3D suelen ser los siguientes:

- Generación y edición de modelos 3D.
Incluyen características avanzadas para diseño de forma intuitiva: edición paramétrica, variacional, explícita, sustitución de formas, eliminación instantánea de líneas ocultas, generación de imágenes sombreadas, cálculo de propiedades físicas (volumen, masa, centro de gravedad, momentos de inercia, etc.), detección de interferencias, etc.

Figura 35. Pieza mecánica compleja diseñada mediante siemens NX.

- Generación de imágenes fotorrealistas 3D.
Presentación y concepción del diseño de un producto mediante la generación de renderizados de calidad fotográfica. Estos módulos ayudan al usuario en la visualización desde cualquier producto en cualquier etapa evolutiva del diseño, facilitando la elección de fuentes de luz, tipo de material, texturas externas, etc., con el fin de obtener resultados realistas y convincentes.

Figura 36. Modelo 3D motocicleta con render fotográfico en siemens NX.
Herramientas flexibles para la producción de planos.

Son sistemas de dibujo 2D de altas prestaciones. Generalmente se suelen usar en combinación con 3D para acotar y dimensionar el modelo, o bien como herramienta autónoma de producción de planos. Suelen disponer de dimensionado sensible al contexto (acotación variacional), gestión de vistas múltiples, gestión de conjuntos 2D y asociatividad de modelos con modeladores 3D.

Figura 37. Planos 2D a partir de modelo 3D diseñado mediante siemens NX.

Interfaces.

Para que los usuarios puedan transferir dibujos y modelos a otros sistemas CAD/CAE/CAM. Los más utilizados son: IGES, CADL, DXF, SET, STEP, VDA, CGM, HPGL, OLE, WRL, X _ T.

Análisis de información.

Los programas incorporan una serie de funciones para medir las coordenadas del modelo CAD, calcular distancias, superficies, etc. Es posible realizar anotaciones en objetos bidimensionales, tales como documentos de tipo vectorial o mapa de puntos, situándolos yuxtapuestos en pantalla, con lo que resulta muy sencillo comparar entre versiones de dibujos y documentos.

Simulación estática y dinámica.

Los sistemas CAE permiten entender como un componente o producto ensamblado reacciona bajo las tensiones o vibraciones. Debido a que los productos y materiales se están volviendo cada vez más complejos, los procesos de Ingeniería y diseño requieren de herramientas que vayan más allá del simple análisis estático y dinámico de estructuras. Así, los sistemas CAE actuales ofrecen las siguientes tipologías de análisis / cálculo:
Entorno preparado para resolver un gran rango de problemas de análisis donde el material y la rigidez no van más allá del comportamiento lineal y donde las deformaciones son pequeñas en comparación con las dimensiones generales de la estructura.

Figura 38. Ejemplo pieza analizada linealmente.

Entorno para simular componentes simples que experimentan el comportamiento no lineal (como el retén de plástico), o conjuntos complejos (como el análisis del choque en el techo de un vehículo), utilizando “solvers” de análisis no lineal implícitos y explícitos.

Figura 39. Ejemplo pieza analizada no linealmente.

Evalúa los efectos dinámicos como frecuencia transitoria, cargas aleatorias, respuesta de amortiguadores y dinámica de rotores.

Figura 40. Ejemplo pieza analizada dinámicamente.
○ Análisis de fatiga y durabilidad.

Permite mejorar la durabilidad de los productos y valida simulando condiciones de carga reales a lo largo de la vida útil del producto analizado.

![Figura 41](image1.png)

Figura 41. Ejemplo pieza analizada a fatiga.

○ Análisis de ruido, vibración y dureza (NVH)

Permite cuantificar las características NVH de vehículos.

![Figura 42](image2.png)

Figura 42. Ejemplo pieza analizada a ruido y vibración.

1.7.1. Generación de modelos 3D (3D CAD).

La mayoría de programas de diseño en 3D permiten la generación de sólidos o superficies laminares con diferentes herramientas de fácil aplicación para el usuario. La mayoría de los sólidos, que se pueden generar en este tipo de programas, parte de un croquis al que se le aplica una operación de revolución (o extrusión) y posteriormente se realizan operaciones booleanas de sustracción, unión o intersección junto con operaciones de redondeo, taladrado o achaflanado. También pueden partir de una figura primitiva (cilindro, cubo, esfera o cono) a la que se le realizan estas operaciones.

En la figura 43 se muestran algunos de los pasos que se suelen seguir durante el proceso habitual de diseño para generar un sólido cualquiera en el sistema CAD/CAE/CAM empleado para la realización de este proyecto, Siemens NX 11.0.
Figura 43. Etapas de diseño de sólidos mediante Siemens NX.
a) Sólido a partir de primitiva (cilindro). b) Sólido resultante tras añadir resalte y agujeros. c) Aplicación de matriz circular de agujeros externos. d) Sólido final tras realizar diferentes operaciones de taladrado y matrices.

Para el diseño del sólido anterior, solamente se han usado herramientas de cilindro, resalte y taladro (agujero). No obstante, se podrían utilizar tantas operaciones como fuesen necesarias y éstas irían apareciendo en el árbol del modelo.

Figura 44. Representación del sólido con el navegador de pieza del modelo.
Una vez el diseño está completado, este tipo de programas gestionan el modelo como si de un componente se tratará llamado “part”. Por tanto, se pueden crear ensamblajes y añadir como piezas independientes a otro “part” de conjunto en el que se añaden tantas piezas (modelos 3D) como sean necesarios. Estos conjuntos de “parts” son conocidos como ensamblajes o “assemblies”. El modelo de conjunto se realiza como si de un montaje real se tratara, añadiendo piezas y aplicando las restricciones de montaje que se requieran: paralelismo, concentricidad, perpendicularidad, distancia, alineación, ángulo, contacto, etc.

1.7.2. Generación de modelos CAE

Los programas de análisis estructural (CAE) permiten la creación de modelos de elementos finitos a partir de piezas diseñadas en 3D y muestran los resultados del análisis con multitud de opciones de visualización.

Para crear el modelo de análisis, el modelo CAD de referencia debe ser simplificado, mallado para obtener el FEM (Finite Element Model) y aplicarle, finalmente, las condiciones de contorno (restricciones y cargas aplicadas). En la figura 45 se muestra un esquema del proceso para el software utilizado en este proyecto, Siemens NX 11.0.

![Figura 45. Proceso preparación modelo CAD para generar modelo CAE.](image)

Además de esto, también es posible analizar piezas ensambladas. Siendo el modelo de simulación un ensamblaje de varios FEM. En la figura 46 se muestra un esquema del proceso para el software utilizado en este proyecto, Siemens NX 11.0.
1.8. Planificación de fabricación.

Para reducir la incertidumbre durante el proceso de fabricación e identificar el camino crítico (fase del proceso de fabricación más crítica en caso de no cumplirse), se debe realizar un análisis del volumen de trabajo y el momento de fabricación en cada caso. Para ello se debe analizar qué tareas hay que realizar, planificar la secuencia y solape de tareas (tareas que no se pueden realizar hasta que otra no haya terminado previamente o tareas que pueden realizarse en paralelo) y definir los recursos necesarios para la ejecución de cada tarea.

Una planificación de fabricación vincula todo lo anterior y lo representa, generalmente, en un diagrama de barras tipo “Gantt” como el de la figura 47.

Figura 46. Proceso ensamblaje distintos modelos CAE.

Figura 47. Ejemplo planificación.
2. Diseño de bastidor y suspensión

2.1. Pre-diseño bastidor (modelo alámbrico)

Para el diseño preliminar del bastidor se tomará como referencia la experiencia de los vehículos existentes en la competición ultra4, donde la distancia entre ejes varía entre 2794mm-3048mm y anchura de ruedas 2159mm-2286mm.

Otro factor a considerar es el diseño estético del vehículo que también se le da importancia, además de a la funcionalidad. En este proyecto se pretende hacer un diseño de chasis que consiga una estética donde predomina el concepto “rock-crawling” debido a que las pruebas en Europa son más técnicas por la falta de espacios abiertos de gran anchura en la mayoría de los países donde se realizan las pruebas.

![Figura 48. Cuatro tipos de diseño para chasis off-road.](image)

En esta fase, se plantean líneas que representen la forma o figura estética principal que se quiere utilizar como base para el diseño de detalle del chasis. Y en el caso de este proyecto, se ha pensado en un vehículo de 3040mm de distancia entre ejes y 2160mm de ancho.

En cuanto a la configuración de la suspensión, se opta por una suspensión de triangulada de cuatro brazos con ejes rígidos delante y detrás. Esta decisión se toma por el mismo motivo que el de la estética, el predominio de las pruebas “rock crawling” (donde se necesitan grandes recorridos de suspensión y gran flexibilidad de los ejes motrices) en la competición ultra4Europe. La cuestión del coste también influye en la decisión ya que es notablemente inferior a la que usan por lo general los homólogos americanos: solución de suspensión independiente delante y a la suspensión tipo “trophy truck” detrás.
En el caso de la amortiguación, se va a optar por un amortiguador tipo “coilover” por rueda, lo que se tiene en consideración para el cálculo del bastidor a la hora de aplicar cargas.

Al tratarse de un chasis tubular (por ser la mejor opción para este tipo de vehículos como explicado en el apartado 1.4.3), se puede comenzar el pre-diseño mediante un croquizado rápido de las dimensiones principales del vehículo y a continuación, hacer un diseño 3D mediante líneas que representen a los tubos de la estructura del bastidor conforme al criterio de diseño estético comentado anteriormente.

Figura 49. Croquis 2D dimensiones principales.

Figura 50. Modelo alámbrico 3D sobre croquis referencia.
Figura 51. Alzado, Planta, Perfil y vista isométrica de modelo alámbrico del chasis.

2.2. Cálculo de bastidor.

Antes de comenzar con la descripción del modelo de elementos finitos y con la descripción de los casos de carga, conviene realizar una descripción de los acrónimos y símbolos utilizados en este apartado:

La tabla 1 contiene un ejemplo de la definición de símbolos y sus unidades empleadas:

<table>
<thead>
<tr>
<th>Símbolo</th>
<th>Definición</th>
<th>Unidades</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Area de sección del perfil</td>
<td>mm2</td>
</tr>
<tr>
<td>I</td>
<td>Segundo momento de inercia</td>
<td>mm4</td>
</tr>
<tr>
<td>L</td>
<td>Longitud</td>
<td>mm</td>
</tr>
<tr>
<td>M</td>
<td>Momento a flexión</td>
<td>N·m</td>
</tr>
<tr>
<td>e</td>
<td>Espesor</td>
<td>mm</td>
</tr>
<tr>
<td>δ</td>
<td>Deflexión</td>
<td>mm</td>
</tr>
<tr>
<td>ε</td>
<td>Deformación</td>
<td>-</td>
</tr>
<tr>
<td>ρ</td>
<td>Densidad</td>
<td>Kg/mm3</td>
</tr>
<tr>
<td>σ</td>
<td>Esfuerzo a tension</td>
<td>MPa</td>
</tr>
<tr>
<td>τ</td>
<td>Esfuerzo cortante</td>
<td>MPa</td>
</tr>
<tr>
<td>a</td>
<td>Aceleración-Deceleración</td>
<td>m/s2</td>
</tr>
<tr>
<td>V</td>
<td>Velocidad</td>
<td>m/s</td>
</tr>
<tr>
<td>F</td>
<td>Fuerza</td>
<td>N</td>
</tr>
<tr>
<td>m</td>
<td>Masa</td>
<td>Kg</td>
</tr>
<tr>
<td>g</td>
<td>Aceleración de la gravedad</td>
<td>m/s2</td>
</tr>
</tbody>
</table>

Tabla 1. Lista de símbolos y sus letras griegas asociadas.
La tabla 2 contiene un ejemplo de los acrónimos utilizados:

<table>
<thead>
<tr>
<th>Acronimo</th>
<th>Definición</th>
<th>Unidades</th>
</tr>
</thead>
<tbody>
<tr>
<td>FEM</td>
<td>Modelo elementos finitos</td>
<td>-</td>
</tr>
<tr>
<td>FEA</td>
<td>Análisis elementos finitos</td>
<td>-</td>
</tr>
<tr>
<td>S_u</td>
<td>Tensión de rotura</td>
<td>MPa</td>
</tr>
<tr>
<td>S_y</td>
<td>Límite elástico</td>
<td>MPa</td>
</tr>
<tr>
<td>LC</td>
<td>Caso de carga</td>
<td>-</td>
</tr>
<tr>
<td>Fs</td>
<td>Factor de seguridad</td>
<td>-</td>
</tr>
<tr>
<td>CoG</td>
<td>Centro de gravedad</td>
<td>-</td>
</tr>
<tr>
<td>U_{max}</td>
<td>Desplazamiento máximo de nodos</td>
<td>Mm</td>
</tr>
<tr>
<td>σ_{max}</td>
<td>Esfuerzo máximo de Von Misses</td>
<td>MPa</td>
</tr>
</tbody>
</table>

Tabla 2. Lista de acrónimos.

2.2.1. Sistema de coordenadas.

El sistema de coordenadas utilizado como referencia para la aplicación de cargas y desplazamientos nodales se muestra en la figura 52. La gravedad se ha aplicado en el eje Z. El eje X está orientado siguiendo la longitud del chasis y el eje Y es perpendicular a Z y X.

![Figura 52. Sistema de coordenadas.](image)

2.2.2. Propiedades de materiales.

El componente principal del chasis está formado por tubo de acero structural estirado en frío y sin soldadura de diámetro 50mm y espesor 3mm. Las propiedades mecánicas del material se indican en la tabla 3.

<table>
<thead>
<tr>
<th>Material</th>
<th>Young's Module [E, MPa]</th>
<th>Poisson coefficient $[\nu,-]$</th>
<th>Density $[\rho, \text{Kg/mm}^3]$</th>
<th>Yield strength $[S_y, \text{MPa}]$</th>
<th>Tensile strength $[S_u, \text{MPa}]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>S355</td>
<td>210 000</td>
<td>0.30</td>
<td>$7.85 \cdot 10^{-9}$</td>
<td>355</td>
<td>595</td>
</tr>
</tbody>
</table>

Tabla 3. Propiedades de materiales.
2.2.3. Descripción de modelo FEM.

El modelo FEM se realiza utilizando el pre-diseño del bastidor tubular con líneas que representan a cada tubo que forma el chasis. Después se aplican las propiedades a cada línea y su vinculación entre ellos. El resultado se muestra en la imagen 53 donde las líneas verdes son los elementos creados y las líneas azules son de apoyo para indicar la dirección de aplicación de fuerzas.

![Figura 53. Modelo FEM Bastidor.](image)

La masa total simulada es de 1130Kg distribuida como se indica a continuación:

- Chasis: 300Kg.
- Motor: 420Kg. (Motor, transmisión y reductora)
- Piloto: 150Kg. (simula peso del piloto más asiento).
- Copiloto: 150Kg. (simula peso del copiloto más asiento).
- Depósito: 50Kg. (Simula peso depósito más combustible).
- Radiador: 60Kg. (simula peso radiador más líquido refrigerante que contiene).

El mallado resultante queda:

```plaintext
MESH SUMMARY
-----------------
Total number of elements in the part: 1301
Total number of nodes in the part: 1155
Number of Concentrated Mass elements: 5
Number of Beam elements: 1291
Number of RBE3 elements: 5
Minimum element label used: 2027
Maximum element label used: 4628
Minimum node label used: 779
Maximum node label used: 4050
```

Tabla 4. Resumen de malla FEM.
En este modelo hay elementos 0D y elementos 1D. Los elementos 0D simulan las cargas fijas que va a tener el bastidor (Motor, Piloto, Copiloto, Depósito y Radiador). Todos los elementos 1D son del tipo CBEAM de sección redonda con diámetro exterior 50mm y espesor 3mm. También se utilizan elementos RBE 3 para transmitir las cargas entre los elementos 0D y los elementos 1D. Se escoge este tipo de elemento por no afectar a la rigidez para el cálculo.

2.2.4. Casos de carga.

Las cargas que aplican a un vehículo off-road son:

- Cargas generadas por el movimiento del vehículo sobre un suelo irregular.
- Cargas generadas por las maniobras realizadas por el piloto.
- Cargas por impacto.

Todas las cargas anteriores se transmiten según el diagrama de fuerzas de la figura 54:

![Diagrama de fuerzas](image)

Figura 54. Diagrama de fuerzas.

Donde:
- R_1 y R_2 son las reacciones al suelo transmitidas por las ruedas
- M_{s1} y M_{s2} son las masas suspendidas que no aplican directamente esfuerzo sobre el chasis. Representan el peso de los ejes rígidos de transmisión, ruedas y suspensión, delantero y trasero. Se considerarán para el cálculo de la suspensión.
- M_1 es la masa del chasis del vehículo.
- M_2 es la masa del motor del vehículo.
- M_3 es la masa del piloto y copiloto (considerando asientos).
- M_4 es la masa del radiador del vehículo.
- M_5 es la masa del depósito de combustible del vehículo.
- R_3 y R_4 son las reacciones transmitidas por la suspensión hacia el bastidor y los ejes rígidos de transmisión.
- R_5, R_6, R_7 y R_8 son las reacciones transmitidas al chasis mediante los elementos que conectan los ejes rígidos de transmisión y el chasis.
Debido a la complejidad de las situaciones de carga que se pueden dar en un vehículo off-road, para el cálculo del chasis se aplicarán únicamente 6 estudios de carga simplificados para hacer un análisis estático:

2.2.4.1. Caso de carga 1

Cargas aplicadas en los puntos de apoyo de suspensión y que aplican fuerzas de flexión al bastidor. Estas cargas simulan las fuerzas transmitidas por las ruedas al bastidor, a través de la suspensión. En este caso de carga se simulan dos subcasos:

1. **Cargas de peso simplemente soportado por los puntos de anclaje de suspensión.**
 Este caso se plantea para conocer las reacciones en condiciones normales sobre los puntos de suspensión. En la figura 55 se puede ver un esquema de este caso de carga.

2. **Cargas generadas en el momento de pasar de una situación de no contacto de las cuatro ruedas sobre el suelo y volver a contactar (por ejemplo, al dar un salto con el vehículo).** En la imagen 56 se puede ver un esquema de este caso de carga.

3.

![Esquema caso de carga a flexión (LC 1A).](image)

Figura 55. Reacciones del vehículo caso de carga a flexión (LC 1A y LC 1B).

- Cargas por peso simplemente apoyado (LC 1A)

![Esquema caso de carga a flexión (LC 1A).](image)

Figura 56. Esquema caso de carga a flexión (LC 1A).
En este caso, la única fuerza que actúa sobre el vehículo es la fuerza de la gravedad y el modelo se simula apoyado sobre los cuatro puntos de suspensión (movimientos restringidos y giros libres) y el modelo FEM se simula según la figura 57.

Figura 57. LC 1A.

- Cargas por caída o salto (caso de carga 1B)

Figura 58. Esquema caso de carga a flexión (LC 1B).

Donde V es la velocidad de caída y H es la altura de caída.

Considerando que el vehículo cae desde una altura de 4 metros, se tiene:

$$H = \frac{1}{2} gt^2.$$

Ahora se puede calcular el tiempo de caída: $t = \sqrt{\frac{2H}{g}} = \sqrt{\frac{8}{9,8}} = 0,90s.$
La velocidad de impacto en el suelo será: \(v = g \times t = 9.81 \times 0.90 = 8.86 \, m/s \approx 31.9 \, Km/h \)

Teniendo en cuenta que la amortiguación transmite las cargas de las ruedas al chasis y, considerando el instante en el que el vehículo está apoyado sobre las 4 ruedas (transmitiendo carga al chasis a través de los amortiguadores), se tiene:

- **Masa total,** \(m = 1130Kg \)
- **Velocidad de caída,** \(V = 31.9 \, Km/h = 8.86 \, m/s \)
- **Tiempo del impacto,** \(t = 0.6 \, s \) (tiempo desde velocidad de caída hasta parada completa. Valor estimado por el funcionamiento de la suspensión)
- **Deceleración,** \(a = \frac{v_f - v_i}{t} = \frac{0 - 8.86}{0.6} = -14.7 \, m/s^2 \)
- **Fuerza de impacto,** \(F = m \times a = 1130 \times (-14.7) = -16,686KN \)
 \[\text{de donde } R_t = R_d = \frac{16,686}{2} = 8,343KN \]

El valor de deceleración anterior es equivalente a aplicar \(1.5g \) al modelo apoyado sobre los cuatro puntos de suspensión (movimientos restringidos y giros libres). El modelo FEM se simula según la figura 59.

![Figura 59. LC 1B.](image)

2.2.4.2. Caso de carga 2

Cargas aplicadas en los puntos de apoyo de suspensión en direcciones opuestas y que aplican fuerzas de torsión al bastidor. Estas cargas simulan las fuerzas transmitidas por las ruedas al bastidor al rodar sobre un terreno irregular (por ejemplo, cuando alguna rueda del eje delantero se encuentra con un bache) y que hacen que el eje delantero y trasero experimenten un momento en direcciones opuestas.
Donde R'_t es la reacción en el eje trasero (generalmente menor que la reacción en el eje delantero R_d) y, t_t y t_d es la distancia entre ruedas del eje trasero y delantero respectivamente.

R'_t se puede determinar a partir del equilibrio de momentos: \[M = \frac{R'_t}{2} \times t_t = \frac{R_d}{2} \times t_d. \]

R'_t será igual a R_d cuando t_t y t_d sean iguales.

Considerando que la carga aplica a una rueda de cada eje de transmisión (delantero y trasero), y que la carga aplicada es la misma que en el LC 1B, siendo los puntos donde aplica la carga opuestos entre sí, se tiene:

- **Masa total,** $m = 1130Kg$
- **$R_t = R_d = \frac{m \times 1.5g}{2} = \frac{1130 \times 1.5 \times -9.81}{2} = -8314KN$**

Como la fuerza de transmite desde las ruedas hacia los 2 puntos de anclaje de suspensión opuestos, el modelo FEM se simula aplicando 1,5g sobre dos de estos puntos opuestos y aplicando restricciones de movimiento a los otros dos puntos (los giros no se restringen, se dejan libres).
2.2.4.3. Caso de carga 3

Superposición de las cargas a flexión y torsión aplicadas en los puntos de apoyo de suspensión. Estas cargas simulan las fuerzas transmitidas por las ruedas al bastidor al rodar por un terreno muy irregular y que generan un sistema de fuerzas no simétrico en ninguno de los planos del vehículo.

Figura 62. Esquema caso de carga combinado (flexión/torsión).

Donde la rueda del recuadro rojo está en el aire, la rueda del recuadro azul estará soportando toda la carga del eje delantero, la rueda del recuadro amarillo aumenta y la del recuadro verde disminuye.

En este caso, considerando que la carga aplica a una rueda, en el eje delantero, y las dos del eje trasero (pero con fuerzas diferentes), se calculan las cargas superpuestas de los dos casos anteriores resultando que la carga a aplicar en la rueda delantera es igual a la aplicada en el LC 2 y las cargas en las ruedas traseras son las aplicadas en el LC 1B:

- **Masa total,** \(m = 1130Kg \)
- \(R_d = \frac{R_t + R'_t}{2} = \frac{m \times 1.5g}{2} = \frac{1130 \times 1.5(9.81)}{2} = 8314KN \)

En este caso, se simula el modelo FEM soportado por 3 de los puntos de anclaje de suspensión según el esquema de la figura anterior y se aplica 1.5g al bastidor que sería el equivalente a la fuerza aplicada. Quedando el modelo FEM a simular como se indica en la figura 63.
2.2.4.4. Caso de carga 4

Cargas aplicadas en los puntos de unión de ruedas y que aplican fuerzas laterales al bastidor. Estas cargas simulan las fuerzas transmitidas por las ruedas al bastidor al maniobrar en una curva con el vehículo en el momento de comienzo de vuelco.
Donde:

- Aceleración centrífuga: \(\frac{V^2}{R} = \frac{gt}{2h} \)
- Fuerza en el CoG en el momento de vuelco: \(\frac{mV^2}{R} = \frac{mg}{2h} \)

Sacando momentos, se obtiene: \(Y_d = \frac{mV^2}{R} \frac{b}{a+b} \); \(Y_t = \frac{mV^2}{R} \frac{a}{a+b} \)

Se simula la condición de giro medio a velocidad alta.

- Masa total, \(m = 1130 Kg \)
- Velocidad, \(v = 80 Km/h = 22,22 m/s \)
- Radio de Giro, \(R = 30 m \)
- Fuerza en CoG, \(F = \frac{1130 \times 22.22}{30} = 18,597 KN \)
- Fuerza convertida a aceleración lateral: \(a = \frac{18597}{1130} = 16.7 m/s^2 \)

El modelo FEM se simula aplicando la gravedad y una aceleración 1,7 veces la de la gravedad lateral provocada por el giro.

2.2.4.5. Caso de carga 5

Cargas aplicadas en los puntos de unión de ruedas y que aplican fuerzas de flexión al bastidor. Estas cargas imitan las fuerzas transmitidas por las ruedas al bastidor al rodar por un terreno irregular acelerando o frenando.
Donde en el caso de aceleración, los pesos son transferidos de delante a atrás y las fuerzas de reacción quedan:

\[R_t = \frac{mg(L-a)+mh\frac{dv}{dt}}{L} \quad \quad R_d = \frac{mg - ma + mh\frac{dv}{dt}}{L} \]

Y en el caso de deceleración, los pesos son transferidos de atrás a delante y las fuerzas serán:

\[R_t = \frac{mg(L-a)-mh\frac{dv}{dt}}{L} \quad \quad R_d = \frac{mg + ma + mh\frac{dv}{dt}}{L} \]

Considerando que, por la posición adelantada del centro de gravedad, decelerar es el caso más desfavorable, se tiene:

- Masa total, \(m = 1130 Kg \)
- Velocidad inicial, \(V = 100 \text{Km/h} = 27,7 \text{m/s} \)
- Deceleración, \(a = \frac{v_f - v_i}{t} = \frac{0 - 27,7}{3} = -9,23 \text{m/s}^2 \)
- Fuerza de empuje \(F = ma = 1130 \times 9,23 = 10,433KN \)
El modelo FEM se simula aplicando una fuerza sobre los puntos de anclaje de los brazos traseros, restricción en dirección X e Y de los brazos delanteros y restricción en Z de los puntos de suspensión.

Figura 67. LC 5.

2.2.4.6. Caso de carga 6

Los estudios por impacto en un vehículo off-road pueden presentarse con múltiples configuraciones: impacto frontal, impacto lateral, impacto posterior e impacto de vuelco. Su objetivo principal es asegurar la integridad física del piloto y copiloto además de minimizar los daños sobre el chasis del vehículo (MS≥1,5). Todas las condiciones considerando máxima velocidad de referencia están descritas en las figuras siguientes:

Figura 68. Impacto Frontal.
En este estudio se consideran los 4 posibles impactos. Para la obtención de la fuerza de impacto, se analizará el cambio en la energía cinética del vehículo en cada caso y, según el caso, se convierte a aceleración:
• Impacto frontal (LC 6A)

 o Masa total, \(m = 1130\, Kg \)

 o Velocidad del impacto, \(V = 80\, Km/h = 22,22\, m/s \)

 o Tiempo del impacto, \(t = 0,15\, s \) (tiempo desde \(V_{\text{máx}} \) hasta \(V_0 \)).

 o Deceleración, \(a = \frac{v_f-v_i}{t} = \frac{-22,22}{0,15} = -148,13\, m/s^2 \)

 o Fuerza de impacto, \(F = \frac{1}{2} \frac{m \times V^2}{t \times V} = \frac{0,5 \times 1130 \times 22,22}{0,15} \cong 83,695\, KN \)

El FEM se simula con restricción de movimiento en los anclajes de las barras de suspensión traseras, aplicando gravedad en dirección Z negativa, fuerza de impacto sobre la parrilla del vehículo, fuerzas equivalentes al soportado del peso del vehículo sobre los puntos de suspensión en dirección lineal al amortiguador (mayormente Z positiva) en el momento del impacto, una fuerza equivalente al 30% de los 83,695KN sobre los puntos de anclaje de los brazos delanteros, en la dirección de estos (mayormente X negativa), al ser las ruedas delanteras las primeras en entrar en contacto en caso de impacto frontal. El modelo resultante se puede ver en la figura 72.

![Figura 72. LC 6A.](image)

• Impacto lateral (LC 6B)

 o Masa total, \(m = 1130\, Kg \)

 o Velocidad del impacto, \(V = 80\, Km/h = 22,22\, m/s \)

 o Tiempo del impacto, \(t = 0,3\, s \) (tiempo hasta frenado total del vehículo que impacta lateralmente)

 o Fuerza de impacto, \(F = \frac{1}{2} \frac{m \times V^2}{t \times V} = \frac{0,5 \times 1130 \times 22,22}{0,3} \cong 41,850\, KN \)

En este caso se considera mayor tiempo de frenada al ser un impacto entre vehículos que decelera en mayor tiempo.

El FEM se simula con restricción de movimiento en el lateral opuesto al impacto, aplicando la gravedad en dirección Z negativa, la fuerza del impacto sobre el lateral, fuerzas equivalentes al soportado del peso del vehículo sobre los puntos de suspensión en
dirección lineal al amortiguador (mayormente Z positiva) en el momento del impacto. El modelo resultante se puede ver en la figura 74.

![Figura 73. LC 6B.](image)

- Impacto posterior (caso de carga 6C)
 - Masa total, \(m = 1130 Kg \)
 - Velocidad del impacto, \(v = 80 \text{ Km/h} = 22,22 \text{ m/s} \)
 - Tiempo del impacto, \(t = 0,3 \text{ s} \) (tiempo hasta frenado total del vehículo que impacta posteriormente)
 - Fuerza de impacto, \(F = \frac{1}{2} \frac{M \times v^2}{t 	imes v} = \frac{0,3 \times 1130 \times 22}{0,3} \approx 41,850 KN \)

Al igual que en el impacto lateral (LC 6B) se considera mayor tiempo de frenada. El FEM se simula con restricción de movimiento en la parrilla frontal, aplicando la gravedad en dirección Z negativa, la fuerza del impacto sobre la parte trasera, fuerzas equivalentes al soportado del peso del vehículo sobre los puntos de suspensión en dirección lineal al amortiguador (mayormente Z positiva) y una fuerza equivalente al 30% de los 41,840KN sobre los puntos de anclaje de los brazos traseros, en la dirección de estos (mayormente X positiva), al ser las ruedas traseras las primeras en entrar en contacto en caso de impacto posterior. El modelo resultante se puede ver en la figura 74.
Impacto por vuelco (caso de carga 6D)

Considerando que el vehículo cae desde una altura de 4 metros, se tiene:

\[H = \frac{1}{2} gt^2 \]

Ahora se puede calcular el tiempo de caída:

\[t = \sqrt{\frac{2H}{g}} = \sqrt{\frac{8}{9.8}} = 0.90 \text{s} \]

El impacto en el suelo será a:

\[v = g \cdot t = 9.81 \cdot 0.90 = 8.86 \frac{m}{s} \approx 31.9 \frac{Km}{h} \]

- Masa total, \(m = 1130 Kg \)
- Velocidad de caída, \(v = 31.9 \frac{Km}{h} = 8.86 \frac{m}{s} \)
- Tiempo del impacto, \(t = 0.15 s \) (tiempo desde velocidad de caída hasta parada completa)
- Deceleración, \(a = \frac{v_f - v_i}{t} = \frac{0 - 8.86}{0.15} = -59.07 \frac{m}{s^2} \)

El valor de deceleración anterior es equivalente a aplicar 5.9g al modelo apoyado sobre los puntos de contacto en el vuelco (coraza superior vehículo). La dirección de la gravedad aplicada es Z positivo para simular el vuelco.
2.2.5. Resultados

En este apartado se analizan los resultados de desplazamientos y tensiones de Von Misses de cada caso de carga. Además, se calcula el factor de seguridad de cada caso que debe ser siempre ≥ 1.5.

En cada caso de carga, se analiza la necesidad de modificar diseño y re-calcular hasta obtener unos resultados óptimos para dicho caso de carga. Si las modificaciones tuviesen algún impacto en el resto de casos de carga, se indicará la necesidad de recalcular el caso impactado o se justificará la no necesidad de recalcular.

2.2.5.1. Caso de carga 1

2.2.5.1.1. Desplazamiento de nodos

![Imagen de desplazamiento de nodos](image_url)

Figura 76. Desplazamientos Caso 1A.
2.2.5.1.2. **Tensión de Von Mises**

Figura 77. Desplazamientos Caso 1B.

Figura 78. Tensión de Von Misses Caso 1A.
2.2.5.1.3. Reacciones en los apoyos

Figura 79. Tensión de Von Misses Caso 1B.

Figura 80. Reacciones Caso 1A.

Figura 81. Reacciones Caso 1B.
2.2.5.1.4. Análisis resultados.

Analizando los resultados, se puede concluir que el chasis soporta las cargas a las que está sometido en los dos sub-casos de carga con un factor de seguridad alto en ambos casos. Los resultados se resumen en la tabla 5:

<table>
<thead>
<tr>
<th>Caso de carga</th>
<th>Fuerza aplicada</th>
<th>Tensión Máx. (Mpa)</th>
<th>Deformación Max. (mm)</th>
<th>Factor de seguridad</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC 1A</td>
<td>1g</td>
<td>49,05</td>
<td>0,92</td>
<td>7,23</td>
</tr>
<tr>
<td>LC 1B</td>
<td>1,5g</td>
<td>73,58</td>
<td>1,38</td>
<td>4,82</td>
</tr>
</tbody>
</table>

Tabla 5. Resumen resultados caso de carga 1.

2.2.5.2. Caso de carga 2

2.2.5.2.1. Desplazamiento de nodos

Figura 82. Desplazamientos Caso 2.
2.2.5.2.2. Tensión de Von Mises

Figura 83. Tensión de Von Misses Caso 2.

2.2.5.2.3. Reacciones en los apoyos

Figura 84. Reacciones Caso 2.
2.2.5.2.4. **Análisis resultados.**

Analizando los resultados, se puede concluir que el chasis soporta las cargas a las que está sometido en este caso de carga con un factor de seguridad alto. Los resultados se resumen en la tabla 6:

<table>
<thead>
<tr>
<th>Caso de carga</th>
<th>Fuerza aplicada</th>
<th>Tensión Máx. (Mpa)</th>
<th>Deformación Max. (mm)</th>
<th>Factor de seguridad</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC 2</td>
<td>1,5g</td>
<td>136,03</td>
<td>3,23</td>
<td>2,61</td>
</tr>
</tbody>
</table>

Tabla 6. Resumen resultados caso de carga 2.

2.2.5.3. **Caso de carga 3**

2.2.5.3.1. **Desplazamiento de nodos**

Figura 85. Desplazamientos Caso 3.
2.2.5.3.2. **Tensión de Von Mises**

![Figura 86. Tensión de Von Misses Caso 3.](image)

2.2.5.3.3. **Reacciones en los apoyos**

![Figura 87. Reacciones Caso 3.](image)
2.2.5.3.4. **Análisis resultados.**

Analizando los resultados, se puede concluir que el chasis soporta las cargas a las que está sometido en este caso de carga con un factor de seguridad alto. Los resultados se resumen en la tabla 7:

<table>
<thead>
<tr>
<th>Caso de carga</th>
<th>Fuerza aplicada</th>
<th>Tensión Máx. (Mpa)</th>
<th>Deformación Max. (mm)</th>
<th>Factor de seguridad</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC 3</td>
<td>1,5g</td>
<td>173,43</td>
<td>6,33</td>
<td>2,04</td>
</tr>
</tbody>
</table>

Tabla 7. Resumen resultados caso de carga 3.

2.2.5.4. **Caso de carga 4**

2.2.5.4.1. **Desplazamiento de nodos**

![Figura 88. Desplazamientos Caso 4.](image)
2.2.5.4.2. Tensión de Von Mises

![Figura 89. Tensión de Von Misses Caso 4.]

2.2.5.4.3. Reacciones en los apoyos

![Figura 90. Reacciones Caso 4.]

2.2.5.4.4. Análisis resultados.

Analizando los resultados, la tensión máxima se produce en un punto singular y se puede no considerar como crítica. Por tanto, se puede concluir que el chasis soporta las cargas a las que está sometido en este caso de carga con un factor de seguridad adecuado. Los resultados se resumen en la tabla 8:

<table>
<thead>
<tr>
<th>Caso de carga</th>
<th>Fuerza aplicada</th>
<th>Tensión Máx. (Mpa)</th>
<th>Deformación Max. (mm)</th>
<th>Factor de seguridad</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC 4</td>
<td>1,7g</td>
<td>218,05</td>
<td>3,61</td>
<td>1,62</td>
</tr>
</tbody>
</table>

![Tabla 8. Resumen resultados caso de carga 4.](image-url)
2.2.5.5. Caso de carga 5

2.2.5.5.1. Desplazamiento de nodos

Figura 91. Desplazamientos Caso 5.

2.2.5.5.2. Tensión de Von Mises

Figura 92. Tensión de Von Misses Caso 5.
2.2.5.5.3. Reacciones en los apoyos

Figura 93. Reacciones Caso 5.

2.2.5.5.4. Análisis resultados.

Analizando los resultados, se puede concluir que el chasis soporta las cargas a las que está sometido, en este caso de carga con un factor de seguridad alto. Los resultados se resumen en la tabla 9:

<table>
<thead>
<tr>
<th>Caso de carga</th>
<th>Fuerza aplicada</th>
<th>Tensión Máx. (Mpa)</th>
<th>Deformación Max. (mm)</th>
<th>Factor de seguridad</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC 5</td>
<td>10433N</td>
<td>141,1</td>
<td>1,68</td>
<td>2,51</td>
</tr>
</tbody>
</table>

Tabla 9. Resumen resultados caso de carga 5.
2.2.5.6. Caso de carga 6.

2.2.5.6.1. Desplazamiento de nodos.

Figura 94. Desplazamientos Caso 6A.

Figura 95. Desplazamientos Caso 6B.
Figura 96. Desplazamientos Caso 6C.

Figura 97. Desplazamientos Caso 6D.
2.2.5.6.2. **Tensión de Von Misses**

Figura 98. Tensión Von Misses Caso 6A.

Figura 99. Tensión Von Misses Caso 6B.

Figura 100. Tensión Von Misses Caso 6C.

Figura 101. Tensión Von Misses Caso 6D.
2.2.5.6.3. **Reacciones en los apoyos**

Figura 102. Reacciones Caso 6A.
Figura 103. Reacciones Caso 6B.
Figura 104. Reacciones Caso 6C.
Figura 105. Reacciones Caso 6D.

2.2.5.6.4. **Análisis resultados.**

Analizando los resultados, se concluye que el chasis no aguanta las cargas ya que los resultados de tensiones dan factores por debajo de 1,5 e incluso por debajo de 1. Por tanto, hay que rediseñar el chasis y recalcular los cuatro casos de carga para asegurar que cumple con los requisitos. Los resultados se resumen en la tabla:

<table>
<thead>
<tr>
<th>Caso de carga</th>
<th>Fuerza aplicada</th>
<th>Tensión Máx. (Mpa)</th>
<th>Deformación Max. (mm)</th>
<th>Factor de seguridad</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC 6A</td>
<td>83695</td>
<td>483,36</td>
<td>14,01</td>
<td>0,73</td>
</tr>
<tr>
<td>LC 6B</td>
<td>41850</td>
<td>370,56</td>
<td>18,79</td>
<td>0,95</td>
</tr>
<tr>
<td>LC 6C</td>
<td>41850</td>
<td>274,01</td>
<td>6,17</td>
<td>1,29</td>
</tr>
<tr>
<td>LC 6D</td>
<td>694,84</td>
<td>69,48</td>
<td>34,99</td>
<td>0,51</td>
</tr>
</tbody>
</table>

Tabla 10. Resumen resultados caso de carga 6.
2.2.6. Diseño de detalle de bastidor

2.2.6.1. Corrección de pre-diseño en función de resultados de cálculo.

Una vez se tienen los resultados de cálculo del pre-diseño, se presta especial atención a las zonas de mayor tensión para, en el diseño de detalle, reforzarlas con cartelas, tubos adicionales o modificando la geometría del chasis, según cada caso.

En el caso de carga 6A, la mayor tensión aparece en la zona de la parrilla frontal. En el caso 6B, la tensión máxima aparece en un tubo lateral. En el caso 6C, aparece en uno de los tirantes traseros y en el caso 6D, aparece en una unión de la coraza superior. En el resto de casos de carga (1-5), siempre se está por encima de 1,5 de factor de seguridad.

Las zonas exactas de mayor tensión para el caso 6 se pueden ver en las figuras de la 106 a la 109.

Figura 106. Zona de σ_{max} en Caso 6A.

Figura 107. Zona de σ_{max} en Caso 6B.

Figura 108. Zona de σ_{max} en Caso 6C.

Figura 109. Zona de σ_{max} en Caso 6C.
Tras varios análisis de posibles soluciones a cada caso, se decide añadir 26 tubos/cartelas distribuidos según se muestra en la figura 110 en color naranja.

Al volver al FEA con esta nueva geometría, se obtienen los resultados de la tabla 11

<table>
<thead>
<tr>
<th>Caso de carga</th>
<th>Fuerza aplicada</th>
<th>Tensión Máx. (Mpa)</th>
<th>Deformación Max. (mm)</th>
<th>Factor de seguridad mínimo</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC 6A-2</td>
<td>83695</td>
<td>311,98</td>
<td>10,25</td>
<td>1,13</td>
</tr>
<tr>
<td>LC 6B-2</td>
<td>41850</td>
<td>317,56</td>
<td>13,79</td>
<td>1,11</td>
</tr>
<tr>
<td>LC 6C-2</td>
<td>41850</td>
<td>236,37</td>
<td>7,72</td>
<td>1,5</td>
</tr>
<tr>
<td>LC 6D-2</td>
<td>6g</td>
<td>456,45</td>
<td>9,78</td>
<td>0,77</td>
</tr>
</tbody>
</table>

Tabla 11. Resumen resultados caso de carga 6-2.

Analizando los datos del segundo cálculo de todo los sub-casos 6, se puede ver que aún hay casos de carga donde no se cumple el requisito de factor de seguridad mínimo (≥1,5). No obstante, si se analiza detalladamente los resultados obtenidos en cada uno de los casos donde no se cumple este requisito, se puede comprobar que se debe a singularidades del cálculo infinitesimal y que se pueden llegar a despreciar o, en el peor de los casos, que no implican riesgo para el piloto o copiloto por la zona donde se presentan ya que se está tomando un factor de seguridad frente a límite elástico y no frente a límite de rotura.

A continuación, se realiza este análisis detallado que justifica la solución adoptada en cada caso:
El valor objetivo de factor de seguridad frente a límite elástico es de 1,5. Por tanto, $Fs = \frac{Sy}{\sigma_{max}} \rightarrow \sigma_{max} = \frac{Sy}{Fs} = \frac{355}{1,5} = 236,7MPa$. Es decir, que la tensión máxima no debe sobrepasar los 236,6 MPa para estar dentro de un factor de seguridad de 1,5. Con este límite de tensión, se analizan resultados del segundo FEA realizado para cada sub-caso.

- Caso de carga 6A-2. (LC 6A-2)

Filtrando por los valores que se encuentran por encima de la tensión de referencia (236,6 Mpa), se muestran los valores de la figura 111 donde, como se puede observar, hay un nodo con 311,96 Mpa (marcados en rojo) y cuatro donde la tensión es mayor a 272 Mpa (marcados en naranja). El resto, no superan los 250 Mpa (marcados en verde).

La conclusión a la que se puede llegar es que en estos nodos concretos, el cálculo estaría por debajo de un factor de 1,5 pero se considera igualmente válido ya que estamos aplicando factor de seguridad frente a límite elástico (y se está por encima de 1), lo que es muy conservador y no implica riesgo ni para el piloto ni el copiloto.

![Figura 111. Nodos con tensión superior a 236,6 Mpa en caso 6A-2.](image)

- Caso de carga 6B-2. (LC 6B-2)

En el caso 6B-2, solo hay un nodo con tensión superior a 236,6 MPa. De lo que se deduce que hay una singularidad en el cálculo y que se puede despreciar. Por tanto, se tiene factor superior a 1,5 frente a límite elástico tras la modificación de diseño.
Figura 112. Nodos con tensión superior a 236,6 Mpa en caso 6B-2.

- Caso de carga 6D-2. (LC 6D-2)

En este caso, hay tres nodos con tensión superior a 236,6 Mpa. Uno de ellos supera el valor del límite elástico (marcado en rojo). En este caso, se puede concluir que el nodo de mayor tensión se debe a una singularidad (debido a la variación alta frente al siguiente valor de tensión) y, en el resto, no se estaría cumpliendo con factor de seguridad 1,5 frente a límite elástico y, como ya mencionado en el caso 6A-2, no implica riesgo para el piloto ni el copiloto ya que se está siendo conservador al utilizar el límite elástico en vez del límite de rotura.

Figura 113. Nodos con tensión superior a 236,6 Mpa en caso 6D-2.
2.2.6.2. Diseño final chasis.

Tras concluir el FEA, se continua con el diseño del chasis considerando las conclusiones del apartado anterior. Tras aplicar operaciones de tubo al modelo alámbrico y recortar los extremos para que tengan una unión correcta en cada nudo donde se unen dos o más tubos, el diseño del chasis quedaría según la figura 114, donde se han representado de amarillo los nuevos elementos añadidos para cumplir con el cálculo realizado. Además, se muestran otros elementos adicionales añadidos por funcionalidad o simplemente por estética, como pueden ser los soportes para instalaciones o los puntos de anclaje de los asientos, motor, radiadores, depósito de combustible, carenados, etc.

Aunque todos estos elementos auxiliares pueden contribuir en el comportamiento final del chasis, no se consideran en el cálculo al no ser elementos diseñados o añadidos para tal función. El peso final del chasis pasa de los 300 Kg estimados al inicio a 376Kg tras añadir todos los elementos mencionados (25% más) pero, dados los factores de seguridad obtenidos, no se considera crítico y no es necesario recalcular.

Figura 114. Diseño final chasis.

2.3. Selección-dimensionado de Suspensión

Como ya se ha justificado en el apartado 2.1, para el pre-diseño del chasis se ha considerado una suspensión triangulada de cuatro barras con ejes rígidos y con amortiguadores “coilover” delante y detrás. Esto se refleja en el pre-diseño de la suspensión.
2.3.1. Pre-diseño configuración de suspensión (modelo alámbrico)

Para el pre-diseño de la suspensión, se colocan las ruedas para simular la distancia entre ejes escogida (3038mm) y con la separación entre ruedas seleccionada (2159mm). A partir de aquí, considerando el espacio necesario del motor (ya considerado en el pre-diseño del chasis), el recorrido que se espera de la suspensión (380-400mm de carrera máxima) y la triangulación de cuatro brazos, se obtiene un concepto de suspensión alámbrico como el de la figura 115, donde en amarillo se representa el chasis y en naranja los brazos de suspensión triangulados.

Con este diseño se consigue para el tren delantero, un ángulo de 30º en los brazos superiores y un ángulo de 25º en los brazos inferiores. Mientras que en el tren trasero se consiguen 40º de ángulo para los brazos superiores y 50º de ángulo para los inferiores. Ángulos más que suficientes para transmitir las cargas laterales que surgen en la conducción del vehículo.

A continuación, se ubican los amortiguadores que, debido a una cuestión estética, se colocan en diferente ángulo los del eje delantero respecto a los del eje trasero. El resultado se puede ver en la figura 116 donde se han representado los amortiguadores con líneas de color azul.
El ángulo de los amortiguadores traseros queda de 25° en el plano XY, 73° en el plano YZ y 70° en el plano XZ, cada uno. Mientras que los amortiguadores delanteros quedan a 26° con respecto al plano XY, 64° en el plano ZY y 86° en el plano XZ.

2.3.2. Cálculo de suspensión.

En este apartado se procede a calcular la constante de rigidez de los muelles helicoidales que se van a instalar sobre cada amortiguador. Al tratarse de amortiguadores montados simétricamente en cada eje (delantero y trasero), se tratará el cálculo de un amortiguador por eje. Para este cálculo no se precisa del uso de ningún software de cálculo dinámico al ser una suspensión que va a estar sometida a muy diferentes casos de carga y falta información detallada sobre la dinámica de éstos casos de carga. Se entiende que con el cálculo manual es suficiente para justificar la suspensión.

Para este vehículo, se plantea un recorrido de amortiguación 60/40. Es decir, 60% de recorrido a compresión y 40% de recorrido de extensión. Teniendo en cuenta que el recorrido total de la suspensión diseñada es de 400mm, esto deja 240mm (60%) para compresión del amortiguador en caso de una irregularidad convexa (resalte en el terreno) y 160mm (40%) para la extensión del amortiguador en caso de una irregularidad cóncava (agujero en el terreno). Por tanto, en condición de reposo del vehículo, los amortiguadores deben estar comprimidos únicamente 160mm debido al peso del mismo y, según las reacciones obtenidas del caso de carga 1A, los...
amortiguadores traseros tendrán unos muelles con una constante de rigidez menor a la de los amortiguadores delanteros ya que las cargas son menores.

Según el caso de carga mencionado, los amortiguadores traseros soportan una carga media, en condición de reposo (vehículo apoyado en el terreno), de: $F_T = \frac{F_{1T} + F_{2T}}{2} = \frac{1928.6 + 1865.12}{2} = 1896.66 \, N \cong 1900 \, N$ por cada amortiguador trasero.

Ahora bien, si consideramos la compresión que debe tener el muelle en el momento de soportar esta carga tenemos:

$$F_T = K_{tT} \times X$$

donde K_t es la rigidez total del muelle o conjunto de muelles y X es el desplazamiento de compresión del muelle. Por tanto: $K_{tT} = \frac{F_T}{X}$ y como se ha considerado una compresión de 160mm en reposo, resolviendo la ecuación, se tiene: $K_{tT} = \frac{1900}{160} = 11.875 \, N/mm$

Para los amortiguadores delanteros se tiene:

$$F_D = \frac{F_{1D} + F_{2D}}{2} = \frac{2986.12 + 3077.23}{2} = 3031.67 \, N \cong 3032 \, N,$$

luego $K_{tD} = \frac{F_D}{X} = \frac{3032}{160} = 18.95 \, N/mm$

El próximo paso es decidir la configuración de muelles que irán sobre el amortiguador. Es decir, si se va a instalar doble muelle o triple muelle sobre cada amortiguador. Esta decisión depende, además de la funcionalidad necesaria de los muelles, por el posible daño que pueda sufrir el amortiguador debido a una abrasión en exceso por pandeo de los mismos si se comprimen demasiado (incluso siendo capaces de soportar esa compresión). Un pandeo excesivo, dañará el tubo del amortiguador poniendo en riesgo su funcionalidad y se debe evitar esto.

Como se ha seleccionado una carrera de suspensión de 400mm (elevada), se decide montar triple muelle sobre cada amortiguador, de manera que, en un rango determinado de la carrera se actuará con una constante de rigidez resultado de la instalación de tres muelles en serie y, en otro rango diferente, cambiará a otra constante de rigidez resultado de la instalación de dos muelles en serie. Esto es debido al mecanismo de funcionamiento del amortiguador “Coilover”. En la figura 117 se puede ver la configuración de un amortiguador “Coilover” de triple muelle.
Un amortiguador “Coilover” de tres muelles reacciona a la carga comprimiéndose o extendiéndose y las dos correderas que separan los muelles se deslizan arriba y abajo hasta que, en un momento concreto de la compresión, la corredera de triple muelle hace tope contra el anillo tope de corredera y se anula el efecto del muelle superior en el funcionamiento del amortiguador. En este momento, la constante de rigidez cambia a la resultante de los dos muelles (principal e intermedio) que se siguen comprimiendo hasta el límite de compresión del amortiguador (o tope mecánico externo). El punto clave de esta configuración es seleccionar cada muelle con la constante de rigidez y longitud adecuadas para la aplicación.

Un primer intento de seleccionar la constante de los muelles es realizar un cálculo iterativo hasta encontrar unos valores de rigidez que cumplan con el valor total obtenido anteriormente (11,85 y 18,95 N/m respectivamente).

- **Eje trasero**

La constante de rigidez equivalente obtenida es de 11,85N/m. Por tanto:

\[
\frac{1}{K_{\text{eq}}} = \frac{1}{K_1} + \frac{1}{K_2} + \frac{1}{K_3}
\]

Siendo:

- \(K_1\), la constante de rigidez del muelle principal.
- \(K_2\), la constante de rigidez del muelle intermedio.
- \(K_3\), la constante de rigidez del muelle superior.
Suponiendo $K_1=35$ y $K_2=57$, se puede despejar K_3. Así, se tendrá:

$$\frac{1}{11,875} = \frac{1}{35} + \frac{1}{57} + \frac{1}{K_3} \rightarrow \frac{1}{K_3} = \frac{1}{11,875} - \frac{1}{35} - \frac{1}{57} = \frac{1}{11,875} - \frac{92}{1995} \rightarrow$$

$$K_3 = \frac{1995 \times 11,875}{1995 - 1092,5} = 26,25 \, \text{N/mm}$$

El resultado supone válido porque sale una constante de rigidez menor que las dos supuestas. Por tanto, el funcionamiento del amortiguador es correcto: primeros milímetros de compresión se comprime principalmente el muelle superior hasta que llega a un tope y empiezan a comprimirse los otros dos.

Además, comprobando estos valores en catálogos de muelles comerciales (Eibach) para amortiguadores “Coilover”, se puede ver que hay referencias con valores muy aproximados a los supuestos y al obtenido como resultado de despejar la ecuación. Según catálogo, estas constantes quedarían como:

$$K_1 = 35,11 \, \text{N/mm} \quad K_2 = 57,06 \, \text{N/mm} \quad K_3 = 26,33 \, \text{N/mm}$$

- **Eje delantero**

La constante de rigidez equivalente obtenida es de 18,95N/m. Por tanto:

$$\frac{1}{K_{tr}} = \frac{1}{K_1} + \frac{1}{K_2} + \frac{1}{K_3}$$

Siendo igualmente:

- K_1, la constante de rigidez del muelle principal.
- K_2, la constante de rigidez del muelle intermedio.
- K_3, la constante de rigidez del muelle superior.

Suponiendo los mismos valores para $K_1=35$ y $K_2=57$, se puede despejar K_3. Así, se tendrá:

$$\frac{1}{18,95} = \frac{1}{35} + \frac{1}{57} + \frac{1}{K_3} \rightarrow \frac{1}{K_3} = \frac{1}{18,95} - \frac{1}{35} - \frac{1}{57} = \frac{1}{18,95} - \frac{92}{1995} \rightarrow$$

$$K_3 = \frac{1995 \times 18,95}{1995 - 1743,4} = 41,89 \, \text{N/mm}$$

En este caso, el resultado no es óptimo ya que la constante de rigidez sale mayor que uno de los supuestos. Por tanto, hay que recalcular modificando el supuesto.
Suponiendo ahora que $K_1=57$ y $K_2=79$, se tiene:

$$\frac{1}{K_3} = \frac{1}{18,95} - \frac{1}{57} - \frac{1}{79} = \frac{1}{18,95} - \frac{136}{4503}$$

$$K_3 = \frac{4503 \times 18,95}{4503 - 2577,2} = 44,30 \frac{N}{mm}$$

Ahora este resultado si parece lógico y se considera como bueno porque atiende la funcionalidad.

Comprobando también estos valores en catálogos de muelles comerciales (Eibach) para amortiguadores “Coilover”, se puede ver que hay referencias con valores muy aproximados a los supuestos y al obtenido como resultado de despejar la ecuación. Según catálogo, estas constantes quedarían como:

$$K_1 = 61 \frac{N}{mm} \quad K_2 = 79 \frac{N}{mm} \quad K_3 = 44 \frac{N}{mm}$$

Una vez que se han calculado los muelles, se procede a continuar con el diseño de detalle de la suspensión.

Otro parámetro a determinar es la longitud de cada uno de los muelles. Si bien, hay que tener en cuenta que, las longitudes escogidas para un amortiguador, son válidas para los cuatro ya que, principalmente, se selecciona para tener un guiado correcto del amortiguador y asegurar que, en ninguna de las posiciones, durante el recorrido, pueda quedar ningún muelle sin guiado. Al depender de la geometría del amortiguador, se realiza la selección cuando se tiene más detalle del diseño de suspensión.

2.3.3. Diseño de detalle de suspensión

Una vez que se ha definido el pre-diseño de la suspensión, se procede a realizar el diseño de detalle del mismo. Así, la suspensión quedará según se puede ver en la figura 118

![Figura 118. Diseño final de suspensión.](image)
Respecto a los amortiguadores, para completar el diseño, hay que seleccionar el modelo de amortiguador y los muelles que llevará instalados cada amortiguador. Tras revisar varios catálogos, el amortiguador seleccionado para este vehículo es un modelo del fabricante FOX. En concreto, el modelo “Coilover Emulsion referencia 980-02-057-A”, ya que cubre el rango de carrera previsto.

Las medidas generales del amortiguador se pueden ver en la figura 119.

Donde la cota L varía en función del eje donde vaya montado el amortiguador debido a la diferencia de ángulos mencionada anteriormente. Así, en la tabla 12 se puede ver estos valores.

<table>
<thead>
<tr>
<th>Recorrido del amortiguador a final de carrera</th>
<th>Eje delantero</th>
<th>Eje trasero</th>
</tr>
</thead>
<tbody>
<tr>
<td>Totalmente Extendido</td>
<td>390</td>
<td>390</td>
</tr>
<tr>
<td>Totalmente Comprimido</td>
<td>60</td>
<td>40</td>
</tr>
</tbody>
</table>

Tabla 12. Recorridos a final de carrera del amortiguador.

Los márgenes utilizados hasta tope mecánico se han dejado para evitar impactos del amortiguador al llegar al final de carrera ya que los pesos suspendidos del eje delantero y trasero o el impacto por tope mecánico a compresión del amortiguador puede dañar seriamente el mismo. Para eliminar esta posibilidad, se instalarán en el vehículo limitadores de extensión y topes mecánicos hidráulicos que actuarán antes de que el amortiguador llegue a sus finales de carrera en cada eje.

Para la selección de los muelles se tendrá en cuenta las dimensiones del amortiguador arriba indicadas y, considerando que la cota L es de 390mm cuando el amortiguador está en su extensión máxima, se puede sacar la longitud del muelle principal, que deberá ser no menor a L.

En el catálogo de Eibach, se encuentra con un amortiguador que tiene la constante de rigidez calculada anteriormente y una longitud de 406mm. Ahora, para seleccionar la
longitud de los dos muelles restantes, según las cotas de la figura 119, la suma de los dos muelles debe estar en torno a $174,5 + 334,5 = 509\, mm$ y, para estos dos muelles, ya no hay riesgo de no quedar guiados ya que nunca salen de la zona del tubo del amortiguador y, además, se sabe que van a ser precargados inicialmente con la tuerca de ajuste. Por tanto, se selecciona una longitud para el muelle intermedio de 254mm y para el muelle superior de 203. Estas longitudes serán las mismas para los cuatro amortiguadores si bien las constantes de rigidez no serán las mismas en los muelles que vayan en el eje delantero y en el trasero.

Para el eje trasero, las referencias comerciales, según catálogo de Eibach, son:

- Muelle principal: 1600.250.200
- Muelle intermedio: 1000.250.325
- Muelle superior: 800.250.150

Y para el eje delantero, las referencias son:

- Muelle principal: 1600.250.350
- Muelle intermedio: 1000.250.450
- Muelle superior: 800.250.250

El diseño final de los amortiguadores queda según se muestra en la figura 120.

![Figura 120. Diseño final de amortiguadores.](image-url)
El resultado final, donde se integran todos los elementos considerados en este proyecto se muestra desde la figura 121 a 124 en distintas vistas.

Figura 121. Diseño final 1/4.

Figura 122. Diseño final 2/4
Figura 123. Diseño final 3/4.

Figura 124. Diseño final 4/4
3. Presupuesto

Para la elaboración del presupuesto es necesario conocer la lista de materiales y los procesos de fabricación para poder hacer un presupuesto detallado y ajustado.

La lista de materiales simplificada del chasis y suspensión se indica en la tabla 13. Para más detalle sobre la lista de materiales, se puede consultar el anexo 1 donde se pueden ver todos los planos asociados a las piezas de fabricación.

<table>
<thead>
<tr>
<th>PARTE FUNCIONAL</th>
<th>DENOMINACION</th>
<th>CANTIDAD</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHASIS</td>
<td>Tubos</td>
<td>192</td>
</tr>
<tr>
<td></td>
<td>Cartelas y soportes</td>
<td>88</td>
</tr>
<tr>
<td>SUSPENSIÓN</td>
<td>Amortiguador</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Muelles</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Barras de suspensión</td>
<td>8</td>
</tr>
</tbody>
</table>

Tabla 13. Lista simplificada de materiales.

Por otro lado, como comentado en apartados anteriores, se pretende utilizar unos procesos de fabricación que suministren las piezas lo más precisas, y bien acabadas, posible. Con este criterio, se ha pensado en utilizar principalmente, corte por láser 3D/2D, plegado-curvado CNC y mecanizado CNC para la fabricación de las piezas bajo plano ya que son los procesos que mayor precisión y mejor relación calidad/precio están disponibles en el mercado para este tipo de construcción. Si bien algunos de los procesos no son los más baratos actualmente (en comparación con otros procesos de fabricación) para tiradas pequeñas de fabricación, si que permiten recibir las piezas con un mejor acabado lo que reduce el tiempo de fabricación y montaje final. Además, los últimos avances tecnológicos realizados en estas tecnologías hacen que su coste se haya reducido notablemente y sean más accesibles tanto para proyectos unitarios como para proyectos seriados.

Tras una profunda exploración del mercado, se ha decidido que la gestión de fabricación de la estructura tubular contemple toda la fase productiva (compra de materia prima, transporte a proveedor de corte por láser, curvado de tubos, soldadura, etc.), mientras que para las piezas de chapa plana (láser 2D y plegado) y piezas de suspensión, se opta por trasladar esta gestión al proveedor siendo la única información suministrada los planos de fabricación y siendo el proveedor el que se encarga de toda la gestión de la producción de éstas piezas hasta suministrarlas totalmente terminadas, según cada plano. Esta decisión se toma debido a la gran oferta industrial que se presenta en España para los procesos de corte por láser y plegado CNC, y para los procesos de mecanizado CNC.

Considerando lo comentado en el párrafo anterior, la lista simplificada de procesos queda según se indica en la tabla 14.
PARTE FUNCIONAL

CHASIS

<table>
<thead>
<tr>
<th>PROCESO FABRICACIÓN</th>
<th>CANTIDAD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corte por láser de tubo 3D</td>
<td>186</td>
</tr>
<tr>
<td>Curvado de tubos</td>
<td>6</td>
</tr>
<tr>
<td>Corte de láser 2D</td>
<td>70</td>
</tr>
<tr>
<td>Corte de láser 2D + Plegado CNC</td>
<td>18</td>
</tr>
<tr>
<td>Acabado superficial.</td>
<td>1</td>
</tr>
</tbody>
</table>

SUSPENSIÓN

<table>
<thead>
<tr>
<th>PROCESO FABRICACIÓN</th>
<th>CANTIDAD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Torneado CNC</td>
<td>12</td>
</tr>
<tr>
<td>Fresado</td>
<td>8</td>
</tr>
</tbody>
</table>

Tabla 14. Lista simplificada de procesos de fabricación.

Además, debido a lo particular de algunos componentes (dificultad de encontrarlos en el mercado nacional o encontrados, pero a un precio muy elevado), para la elaboración del presupuesto se ha explorado el mercado internacional con el objeto de comprar algunos componentes específicos fuera de España (Estados unidos, Inglaterra y/o Alemania). Así, el presupuesto final considerando todo lo anterior, quedaría según se indica en la tabla 15.

PARTE FUNCIONAL

CHASIS

<table>
<thead>
<tr>
<th>CONCEPTO DE COSTE</th>
<th>CANTIDAD</th>
<th>PRECIO (€)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tubo Ø50x3 S355 estirado en frío-sin soldadura</td>
<td>120 metros</td>
<td>1440</td>
</tr>
<tr>
<td>Transporte a proveedor de corte</td>
<td>2 unidades</td>
<td>335</td>
</tr>
<tr>
<td>Corte por láser 3D del tubo según planos</td>
<td>186 piezas</td>
<td>1302</td>
</tr>
<tr>
<td>Curvado tubo CNC según planos</td>
<td>6 piezas</td>
<td>120</td>
</tr>
<tr>
<td>Corte de chapas por láser 2D para cartelas y refuerzos según planos</td>
<td>70 piezas</td>
<td>650</td>
</tr>
<tr>
<td>Corte de chapas por láser 2D + Plegado CNC para soportes de instalaciones y refuerzos según planos</td>
<td>18 piezas</td>
<td>200</td>
</tr>
<tr>
<td>Ensamblado, soldado y lijado de chasis</td>
<td>140 horas</td>
<td>1540</td>
</tr>
<tr>
<td>Tratamiento superficial</td>
<td>1 unidad</td>
<td>450</td>
</tr>
</tbody>
</table>

SUSPENSIÓN

<table>
<thead>
<tr>
<th>CONCEPTO DE COSTE</th>
<th>CANTIDAD</th>
<th>PRECIO (€)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amortiguador FOX 980-02-057-A comercial</td>
<td>4 unidades</td>
<td>1277,5</td>
</tr>
<tr>
<td>Muelles helicoidales de suspensión comerciales</td>
<td>12 unidades</td>
<td>1726</td>
</tr>
<tr>
<td>Mecanizado CNC para brazos suspensión según planos</td>
<td>8 unidades</td>
<td>455</td>
</tr>
<tr>
<td>Rótilas de suspensión comerciales</td>
<td>16 unidades</td>
<td>229</td>
</tr>
<tr>
<td>Separadores de rótilas según planos</td>
<td>32 unidades</td>
<td>195</td>
</tr>
<tr>
<td>Montaje suspensión según planos</td>
<td>4 horas</td>
<td>100</td>
</tr>
<tr>
<td>Finales de carrera de suspensión (compresión-extensión) comerciales</td>
<td>4 unidades</td>
<td>750</td>
</tr>
</tbody>
</table>

Tabla 15. Presupuesto de fabricación.
4. Planificación

Tras haber desglosado las tareas y procesos a realizar, se puede comenzar a realizar la planificación. El desglose de fabricación del chasis se ha agrupado en cuatro grandes paquetes de trabajo: Compra de material, fabricación, acabado superficial y montaje.

Considerando esto, se describen los procesos de cada paquete.

- Compra de material:

 ![Figura 125. Sub-tareas del paquete de compras de material.](image)

 Donde el material de fabricación se corresponde a piezas bajo plano y el material comercial es el material de catálogos. Y los materiales de plazo largo son aquellos que tardan más de 15 días en recibirse desde que se formaliza el pedido.

- Fabricación.

 El 90% del chasis se piensa fabricar mediante tecnología de corte láser tanto 2D como 3D. Además, algunas de las piezas de corte laser 2D irán con una operación posterior de plegado CNC para que las piezas lleguen lo más terminadas posibles al proceso de soldadura y/o montaje. El proceso de fabricación quedará según la figura 126.

 ![Figura 126. Sub-tareas del paquete de Fabricación.](image)
Donde “preparación de material” se refiere a la parte logística de asegurar que todos los materiales y recursos están listos antes de comenzar la tarea para no quedar parado, a mitad de la misma, en caso de que falte algún material o recurso, “pre-montaje de la estructura” se considera al montaje con soldadura ligera (puntos de soldadura ligeros) para unir las piezas entre sí y poder armar la estructura antes de comenzar a soldar por completo, “soldadura de estructura” se refiere al proceso de soldado 100% tanto de la estructura como de sus soportes adicionales, y “limpieza y desbarbado” se considera al proceso de lijado de la estructura para limpiar la escoria, aristas vivas, salpicaduras de soldadura y demás imperfecciones que pueda quedar como resultado del proceso de soldadura.

- Acabado superficial.

El proceso de pintado se piensa realizar con pintura tipo epoxi de dos componentes sobre una base de imprimación con alto contenido en zinc. Esta selección se considera debido a que el chasis va a estar sometido a todo tipo de condiciones ambientales y la imprimación suministra una muy buena capa de protección anticorrosiva además de una buena base de pegado de la pintura. Este tipo de pintura precisa de un proceso previo en las piezas a pintar que se describe a continuación.

![Figura 127](Figura 127. Sub-tareas del paquete de acabado superficial.)

Donde el chorreado con arena es para preparar las superficies para el proceso de pintado y para terminar de limpiar las impurezas que hayan podido quedar de la fase anterior, Limpieza de estructura es el proceso de eliminar el polvo que haya podido quedar tras el proceso de chorreado y el resto de procesos son los relativos al pintado de la estructura.
• Montaje.

El montaje del chasis lleva pocas tareas asociadas ya que la mayoría de componentes van soldados a la estructura. No obstante, si es necesario instalar algún soporte desmontable para instalaciones o para los asientos del piloto y copiloto. El proceso de montaje quedaría:

![Diagrama de montaje](Figura128)

Figura 128. Sub-tareas del paquete de Montaje.

Donde montaje de piezas comerciales se refiere a todo lo que se compre de catálogo (amortiguador, muelles, et.) y el montaje de piezas fabricadas se refiere al montaje de piezas fabricadas bajo plano y que no van soldadas a la estructura.

Todo los procesos-fases anteriores se secuencian en el tiempo y se crea el diagrama Gantt de la figura 129.

![Diagrama Gantt](Figura129)

Figura 129. Planificación de fabricación

En el gráfico Gantt se puede ver que se han identificado oportunidades de solape de tareas para reducir los tiempos de compra de material y poder comenzar antes la fabricación.
5. Conclusiones

En este apartado se realiza un breve análisis del trabajo realizado comparándolo contra los objetivos marcados en la propuesta de proyecto y se analizan las posibles opciones de mejora para proyectos futuros relacionados con el diseño de vehículos off-road.

5.1. Conclusiones sobre el trabajo realizado.

Este proyecto comenzó con el objetivo de diseñar y planificar el proceso de fabricación del chasis y suspensión de un buggy off-road. Para ello, se planteó en la propuesta de proyecto cumplir con los siguientes objetivos y que se comenta cada uno de ello:

- Elaboración de la fase de pre-diseño del bastidor con programa de modelado sólido en 3D.

El pre-diseño se ha realizado teniendo en cuenta que, por la tipología de las carreras en “Ultra4 Europe”, el vehículo va a estar sometido a todo tipo de terrenos y climas

- Selección de alternativas e introducción de posibles innovaciones para la obtención del prototipo final, teniendo en cuenta los procesos de fabricación actuales para este tipo de bastidores.

Considerado a lo largo de todo el proyecto, con un diseño mixto entre los vehículos “Ultra4” y los “Rock Crawler”. Este objetivo se considera conseguido teniendo en cuenta que la mayoría de los tubos, que componen el chasis, están fabricados mediante tecnología corte láser 3D. No obstante, el utilizar esta tecnología ha limitado el diseño estético ya que no se pueden curvar tuberías y cortar en 3D sin afectar a la tolerancia de los cortes y, ya que los nudos de unión entre varios tubos requieren de cortes muy complicados con ángulos muy concretos entre los cortes de ambos extremos de un mismo tubo, no se puede garantizar que coincidan de manera tan precisa como si lo hace el chasis de tubos rectos planteados. De ahí que el diseño de este chasis tenga una geometría, en su mayoría, con aristas vivas y no curvadas. Las geometrías curvadas dan un aspecto estético mejor al chasis.

- Cálculo, análisis estructural con el fin de obtener una solución optimizada del mismo bajo diferentes estados de carga.

Para ello, sabiendo de la dificultad de estimar muchas de las hipótesis planteadas para el diseño (por ejemplo, las cargas a las que estará sometido el chasis), se han planteado las que se consideran peores hipótesis que se podrían dar en una competición de este tipo y se ha conseguido un diseño final que cumple con dichas hipótesis sobradamente.
• Elaboración de planos finales en 2D y selección de componentes normalizados/comerciales que hagan viable la fabricación del bastidor.

Donde la selección se ha justificado en los apartados al respecto. Los planos, se pueden ver en el anexo.

• Planificación de los procesos de fabricación del chasis.

Donde se han planteado todos los procesos de fabricación previstos junto con el listado de material a fabricar y se han secuenciado solapando las tareas que ha sido posibles para optimizar tiempos.

Por otro lado, una de las conclusiones más importantes a la que se ha llegado con este trabajo es la dificultad de conseguir el diseño de un chasis optimo desde cero ya que implica tener en cuenta todos los componentes que van a ir sobre el vehículo para la toma de decisiones final. Es decir, todos aquellos componentes que afectan al diseño del chasis, bien porque añaden soportes sobre el mismo o bien porque limiten la geometría del chasis, deberían formar parte del diseño antes de concluir el diseño del chasis. Por ejemplo, un tubo no puede atravesar el motor, aunque los resultados del FEA lo sugieran para mejorar la rigidez de la estructura y, si no se piensa en el volumen de espacio que ocupa el motor, se puede plantear un diseño de chasis que no valga por tener colisiones una vez que se haya fabricado.

Por lo que se debería completar el diseño con todos los componentes del vehículo antes de dar por cerrado el diseño del chasis para tener éxito en la fabricación y montaje del mismo.

En resumen, el chasis diseñado y la suspensión diseñada permite competir en las carreras para las que ha sido diseñado, pero no garantiza que sea el mejor chasis o la mejor suspensión ya que se podrían añadir mejoras que aumentasen su efectividad. Algunas de estas mejoras se indican en el apartado 5.2.

5.2. Posibles mejoras.

Existen algunas acciones pendientes, no desarrollados en este proyecto por no ser considerados como críticos para el cumplimiento de los objetivos principales, pero que aportarían una mejora al comportamiento general del vehículo. Estas mejoras afectan tanto al chasis como a la suspensión y se describen a continuación.

En el apartado del chasis, se puede plantear un análisis de alivio de pesos manteniendo los factores de seguridad obtenidos. No obstante, debido a la incertidumbre de los casos de carga que se pueden plantear en un vehículo off-road, se requiere de más información para poder realizar este trabajo sin riesgo a disminuir demasiado el peso afectando a la rigidez de la estructura en alguno de los casos de carga no previstos. La información adicional se podría obtener mediante la telemetría que se describe más adelante.
Por otro lado, en el apartado de suspensiones, para mejorar la estabilidad de paso por curva a gran velocidad, se puede instalar una barra estabilizadora por eje, que consiste en una barra de torsión conectada a cada una de las ruedas de un mismo eje. Esta barra consigue que el vehículo se incline mucho menos en el paso por curva, sin afectar a los recorridos de suspensión, pudiendo pasar mucho más rápido. Sin embargo, el dimensionado de la barra estabilizadora va muy ligado al peso del vehículo y su centro de gravedad además de otros parámetros no analizados en este proyecto.

Una cuestión que siempre surge en relación a los vehículos off-road es la duda o incertidumbre en cuanto a la información disponible de los terrenos off-road para plantear los casos de carga adecuados que permitan desarrollar un diseño mucho más optimizado en peso y funcionalidad de suspensión. Lamentablemente, la diferencia entre unos terrenos y otros es tan sensible que obliga a que se tenga que sobredimensionar y a ajustar algunos parámetros, como los de la suspensión, para optimizar el comportamiento del vehículo en cada circuito.

Esto se podría mejorar notablemente si se instalan, en uno de estos prototipos, de los sensores necesarios en la suspensión y chasis para hacer una telemetría de aceleraciones y fuerzas a las que realmente está sometido el vehículo en cada terreno, de manera que permita ajustar suspensiones y/o rigideces en función de las lecturas tomadas como se hace en otro tipo de competiciones donde esta tecnología está mucho más extendida, como las carreras de velocidad de turismos o motociclismo.
6. Bibliografía

11. http://camburg.com
ANEXO 1. Planos

A continuación, se muestran los planos de fabricación de todas las piezas que componen el chasis y la suspensión. No se incluye ningún plano de conjunto debido al uso de equipos informáticos con software de visualización que permiten a los operadores utilizar directamente los modelos 3D en taller para el proceso de montaje. Esto hace innecesario dedicar tiempo de Ingeniería para elaborar dichos planos reduciendo las horas totales de diseño si se adopta el procedimiento adecuado.

El montaje se realizará en tolerancia según UNE EN 22768-1:1994 Tipo mK, para dimensiones lineales y angulares.
PLEGADO
ESCALA 1:12

CORTAR SEGÚN
MODELO CAD

TOLERANCIAS DESIGUALES
- TOLERANCIAS DE 0.15 MM
 PARA TODOS LOS TALADROS
- TOLERANCIAS NO INDICADAS SEGÚN
 UNE EN 22768/1994 TIPO M

MATERIAL:
ACERO S355 JR e44

ANCLAJE BÁQUET DEL. 1
BG-1246
FABRICAR UNA PIEZA DIBUJADA Y OTRA SIMÉTRICA
CORTAR SEGÚN MODELO CAD

PLEGADO
ESCALA 1:1

25°

TOLERANCIAS GENERALES

- TOLERANCIA DE \(\pm 0.05 \)
PARA TODO LOS TALADROS

- TOLERANCIAS NO INDICADAS SEGÚN UNE EN 22768-1:1994 TIPO M

MATERIAL
ACERO S235JR e=3mm

NORMA - CANTIDAD 90 PESO 0.17Kg

DISEÑO
A4 21

SISTEMA CAD
BG-4x4

OREJETA SOPORTE

BG-1268 A
<table>
<thead>
<tr>
<th>Fecha</th>
<th>Nombre</th>
<th>Tolerancias Generales</th>
<th>Pieza de Referencia</th>
</tr>
</thead>
</table>
| 15/09/2017 | J. O. Muñoz | - Tolerancia de [± 0,5] para todos los taladros.
- Toleranías no indicadas según UNE EN 22768-1:1994 tipo M | - |
| | | Material | ACERO S355 e=5mm |
| | | Normal | - |
| | | Cantidades | 2 |
| | | Peso | 0.75Kg |
| | | Tamaño | - |
| | | Unidad | - |

CARTELA 2 TUBO

Referencia | **BG-1283**

Sistema | **A4**

Método | **A1**

Fecha | 15/09/2017

Nombre | J. O. Muñoz

Tolerancias Generales

- Tolerancia de [± 0,5] para todos los taladros.
- Tolerancias no indicadas según UNE EN 22768-1:1994 tipo M.

Material

ACERO S355 e=5mm

Normal

- Cantidades: 2

Peso

0.75Kg

Tamaño

A4

Referencia

BG-1283
CARTELA 3 TUBO

BG-1284

ACERO S355 e=5mm

Para todos los taladros

Tolerancias no indicadas según
UNE EN 22768-1994 TIPO M

0,15Kg
CARTELLA 8 TUBO

ACERO S355 e=5mm

TOLERANCIAS NO INDICADAS SEGÚN UNE EN 22668-11994 TIPO M

MATERIAL

NORMA -

CANTIDAD 2

PESO 0.09Kg

APRUEBADO -

OBSEQUIA 15/09/2017

PROYECTO BG-4x4

FORMA A4

ESCALA 1:1

PG. 1
CHAPA SOPORTE CONJUNTO FRENOS

MATERIA AL: ACERO F111 e=5mm

- Toleran C DE [± 0.05]
 PARA TODOS LOS TALADROS
- Tolerancias NO INDICADAS SEGUN UNE EN 22768-1994 TIPO M

DENOMINACIÓN: A4
ESCALA: 1:12
PROYECTO: BG-4x4

REPTsIA: BG-1009
NÚM.: A
Tolerancias Generales:

- Tolerancia de [± 0,5]
- Para todos los taladros
- Tolerancias no indicadas según UNE EN 22769-1:1994 TIPO M

Material:
ACERO S355 e=5mm

Norma: -
Cantidad: 2
Peso: 0,05Kg

Diseñó: A4
Escala: 1:1
Proyectó: BG-4x4

Nombre: CARTELA 9 TUBO
Referencia: BG-1290 A
CARTELA 11 TUBO

MATERIAL: ACERO S355 e=5mm

NORMA: -
CANTIDAD: 2
PESO: 0.16Kg

FERMEDAD SUPERFICIAL: -

DIBUJO: 15/09/2017
NOMBRE: JD Muroz

TOLERANCIAS GENERALES:
- TOLERANCIA DE [±0,5] PARA TODOS LOS TALADROS
- TOLERANCIAS NO INDICADAS SEGUN UNE EN 22768-1:1994 TIPO M

DISEÑO
- ESCALA: A4
- ESPIRAL: 1:1

REFERENCIA: BG-1296
NÚMERO: A

MARCAR REFERENCIA

BG-1296
CARTELA 12 TUBO

ACERO S355 e=5mm

MATERIAL
ACERO S355 e=5mm

CONSTRUCCIÓN

- TOLERANCIA DE [±0.5]
 PARA TODO LOS TALADROS

- TOLERANCIAS NO INDICADAS SEGÚN UNE EN 22768-1:1994 TIPO M

15/09/2017
JO MUÑOZ

TOLERANCIAS GENERALES

- TOLERANCIA DE [±0.5]
 PARA TODO LOS TALADROS

- TOLERANCIAS NO INDICADAS SEGÚN UNE EN 22768-1:1994 TIPO M

CARTELA 12 TUBO

BG-1297
CARTELA SOP. ROD. TRANS.

MATERIAL: ACERO S355 e=5mm

TOLERANCIAS GÉNERALES:
- TOLERANCIA DE [Φ10,5]
- PARA TODO LOS TALADEROS
- TOLERANCIAS NO INDICADAS SEGÚN UNE EN 2768-1:1994 TIPO M

HECHOS:
- 172
- 82.4
- 32.2
- 28.3
- 24.5
- 13.5
- 5.5
- 72.7°
- 64.7°

MEDICIONES:
- 95
- 44.7
TOLERANCIAS GENERALES

- TOLERANCIAS NO INDICADAS SEGÚN UNE EN 22768-1:1994 TIPO M

MATERIAL
ACERO F111 \(e = 5 \text{mm} \)

NORMA - CANTIDAD 1 - PESO 0.62Kg

ADVANCE SUPERFICIAL -

REPRESENTACIÓN
FORO: A4 - ESCALA 12

DESIGNACIÓN
BG-4x4

CARTELA SOP. ROD. TRANS.

BGI-1305 A
PLEGADO
ESCALA 1:2
- TOLERANCIA DE + 0.5
PARA TODO LOS TALADEROS

- TOLERANCIAS NO INDICADAS SEGÚN UNE EN 22768-1:1994 TIPO M

MATERIAL
ACERO F111 e=5mm

VENTA
- CANTIDAD 2

PESO 0.4 Kg

ADHESIVO SUPERFICIAL
-

FORMA A4

ESCALA 11

BG-4x4

REPRESENTACIÓN
CHAPA 2 SOPORTE ESCAPE

BG-1317 A
CHAPA 1 SOPORTE ESCAPE

ACERO F111 e=5mm

TALLADO 15/09/2017
J. MUÑOZ

- TOLERANCIA DE ±0.05
PARA TODO LOS TALADROS

- TOLERANCIAS NO INDICADAS SEGÚN UNE EN 22768-1:1994 TIPO M

MATERIAL
BASTIDORA 12

CHAPA 1 SOPORTE ESCAPE

BG-1318 A
CHAPA ANCLAJE BAQUET

Sistema (ca):

Material:

Tolerancias no indicadas según UNE 22768-11994 Tipo M

Material:

S235 JR e=4mm

Norma:

Cantidades:

Peso:

OBSERVACIONES:

PROYECTO:

Referencia:

Nivel:

BG-4x4

BG-1336

A
SOPORTE VASO EXPANSIÓN

ACERO S235JR e=3mm

MATERIAL
ACERO S235JR e=3mm

TOLERANCIAS GENERALES
- TOLERANCIA DE Î±5 para todos los taladros
- Tolerancias no indicadas según UNE EN 22768-1:1994 tipo M

CORTAR SEGÚN MODELO CAD

PLEGADO ESCALA 1:5

83

90°

69
CORTAR SEGÚN MODELO CAD

TOLERANCIAS GENERALES:
- TOLERANCIAS NO INDICADAS SEGÚN UNE EN 22768-1:1994 TIPO M

MATERIAL:
ACERO F111 e=5mm

CHAPA SOPORTE ACEL.

BG-4x4

BG-4038 A
NOTA: FABRICAR UNA UNIDAD DIBUJADA Y OTRA SIMÉTRICA
CORTAR SEGÚN MODELO CAD
CHAPA SOPORTE RESPIRO COMB.

Material: ACERO F-111 e=3mm

Tolerancias generales:
- Tolerancia de ± 0.5 para todos los taladros.
- Tolerancias no indicadas según UNE 22768-1:1994 tipo M.

Dimensiones:
- PLEGADO
- ESCALA 1:2
- 90°
- 40 mm
- 150 mm
- 80 mm
- 35 mm
- 84.3 mm
- 100 mm
- 22.5 mm
- R 10
- 471 mm

Referencia: BG-7042
Modelo: A

Firma: J. Muroz
Fecha: 15/09/2017

Nota: Diseñado en CAD.
NOTA:
1. FABRICAR UNA UNIDAD DIBUJADA Y OTRA SIMÉTRICA
2. MARCAR CÓDIGO DE PIEZA SIMÉTRICA: BG-1003
NOTA:
1. FABRICAR UNA UNIDAD DIBUJADA Y OTRA SIMÉTRICA.
2. MARCAR CÓDIGO DE PIEZA SIMÉTRICA: BG-1004.
SOPORTE AMORTUGHADOR 2

MATERIAL: ACERO S355 e=5mm

TOLERANCIAS GENERALES:
- TOLERANCIA DE [± 0,5]
 PARA TODOS LOS TALADEROS
- TOLERANCIAS NO INDICADAS SEGÚN UNE EN 22768-1:1994 TIPO M

DIAS: 15/09/2017

DIBUJÓ: JD MUÑOZ

HOJA: A4

Escala: 11

MG: A

REF: BG-1007 A

Peso: 0,1Kg

2

Proyecto:

BG-4x4
CORTAR SEGÚN MODELO CAD

- TOLERANCIAS NO INDICADAS SEGÚN UNE EN 22768-11994 TIPO M

MATERIA L: S235 JR e=5mm

NORMA: -
CANTIDAD: 2
PESO: 0.42Kg

PROYECTO: BG-4x4
ESCALA: 1:1

PLACA SOPORTE TRAS.

SISTEMA CAD: BG-1010 A
Tolerancias Generales

- Tolerancia de ± 0.5 mm para todos los taladros
- Tolerancias no indicadas según UNE 22768-1:1994 tipo M

Pieza de Referencia

- **Material**: ACERO S355 e=5mm
- **Forma**: A4
- **Escala**: 1:1
- **Material**: ACERO S355 e=5mm
- **Tamaño**: 0.31Kg
- **Diseño**: SOPORTE LINK 6

Referencia

- **BG-1014**
- **A**
NOTA:
1. FABRICAR UNA UNIDAD DIBUJADA Y OTRA SIMÉTRICA
2. MARCAR CÓDIGO DE PIEZA SIMÉTRICA: BG-1016
CORTAR SEGÚN MODELO 3D CAD

LONGITUD TOTAL= 2032.45

92°
R 125

MARCAR REFERENCIAS (SIN CORTAR)

E355 D50x3mm ESTIRO - S/SOLDADURA

MATERIAL
NORMA -
CARCACHO 2
PESO 6.87 Kg

ACABADO SUPERFICIAL -

DIMENSIONES
A4
CALCULO 15
PROYECTO BG-4x4

DESIGNACIÓN BASTIDOR - TUBO 32
SISTEMA 150

REFERENCIA BG-1122
NÚM. B
TAPA TUBO

ACERO S355 e=3mm

NORMA -
CANTIDAD 4
Peso 0.04 Kg

ACABADO SUPERFICIAL -

FORMATO A4
Escala 1:1
PROYECTO BG-4x4

TOLERANCIAS GENERALES
- Tolerancias no indicadas según UNE EN 22768-1:1994 TIPO M

MATERIAL

REFERENCIA BG-1127
NÚM. A
TOLERANCIAS NO INDICADAS SEGÚN LINE EN 2266-1999 TIPO H

MARCAR REFERENCIAS (SIN CORTAR)

CORTAR SEGÚN MODELO 3D CAD
CORTAR SEGÚN MODELO CAD

PLEGADO
ESCALA 12

NOTA:
1. FABRICAR UNA UNIDAD DIBUJADA Y OTRA SIMÉTRICA

TOLERANCIAS GÉNERALES
- TOLERANCIAS DE [± 0,5]
PARA TODOLOS TALADROS
- TOLERANCIAS NO INDICADAS SEGÚN UNE EN 22768-1:1994 TIPO M

MATERIAL
ACERO S355 e=5mm

PROYECTO
BG-4x4

DESIGNACIÓN
SOPORTE AMORTIGUADOR 1
BG-1154 A
SOPORTE AMORTIGUADOR 2

MATERIAL: ACERO S355 e=5mm

PROYECTO: BG-4x4

REFERENCIA: BG-1155
CORTAR SEGÚN
MODEL 3D CAD

MARCAR REFERENCIAS
(SIN CORTAR)

R 125

L_m=614.88

R 125

164.7

509.7

- TOLERANCIAS NO INDICADAS SEGÚN UNE EN 22768-1994 TIPO M

MATERIAL
E355 D50x3mm ESTIRO - S/SOLDADURA

NORMA -
CARACTER 1
PESO 2.05Kg

ACABADO SUPERFICIAL -

PROYECTO
BG-4x4

BASTIDOR - TUBO 44

BG-1161 B
TOLERANCIAS GENERALES

- TOLERANCIA DE ± 0.5
 PARA TODOS LOS TALADROS
- TOLERANCIAS NO INDICADAS SEGÚN UNE EN 22768-1:1994 TIPO M

MATERIAL
- ACERO S355 e=5mm

PIEZA DE REFERENCIA
- 14

PESO
- 0.22 Kg

DESIGNACIÓN
- BRIDA UNIÓN SUBCHASIS

REFERENCIA
- BG-1171 A
ANCLAJE BAQUET TRAS. 1

MATERIAL
S235 JR e=4mm

NORMA
- CANTIDAD 2
PECHO 0.10Kg

EN 22668-1:1994 TIPO M

TOLERANCIAS GENERALES
- TOLERANCIA DE [± 0.5]
- TOLERANCIAS NO INDICADAS SEGUN UNE EN 22668-1:1994 TIPO M

DESIGNACIÓN
A4 21

PROYECTO
BG-4x4

REFERENCIA
BG-1212 A
- Tolerancia de \[\pm 0.5 \]
 para todos los taladros

- Tolerancias no indicadas según
 UNE EN 22768-1:1994 TIPO M

Marcar referencia
sin cortar

MATERIAL:
ACERO S355 e=8mm

NORMA -
CANTIDAD 2
PESO 0.44Kg

SUPERFICIE -

CONJUNTO A4
ESCALA 1/1
PROYECTO BG-4x4

CHAPA 1 SOPORTE MOTOR
BG-1219 A
DEPARADOR RÓTULA

ACERO C45E (F-114)

MATERIAL

NORMA -

CANTIDAD 16

PESO 0.025Kg

RAZÓN SUPERFICIAL -

PAPEL A4

RESEARCH 21

PROYECTO BG-4x4

REFERENCE BG-8010 A
DEPARADOR RÓTULA

TOLERANCIAS GÉNERALES
- TOLERANCIAS NO INDICADAS SEGÚN UNE EN 22768:1:1994 TIPO M

MATERIAL
ACERO C45E (F-114)

PIEZA DE REFERENCIA
- F4-4x4

DESIGNACIÓN
BG-8015 A

SISTEMA (U)
ANCLAJE BAQUET TRAS. 2

- TOLERANCIA DE [Φ 0.5]
- PARA TODOS LOS TALADROS
- TOLERANCIAS NO INDICADAS SEGÚN UNE EN 22768-1:1994 TIPO M

MATERIAL: S235 JR e=4mm

NORMA: -
CANTIDAD: 2
PESO: 0.05Kg

FORMA: A4
ESCALA: 1:1
PROYECTO: BG-4x4

Referencia: BG-1244
OREJERTA SOPORTE TRAS.

Tolerancias Generales:
- Tolerancia de ± 0.5
 PARA TODOS LOS TALADROS
- Tolerancias no indicadas según UNE EN 22768-1994 TIPO M

Material:
S355 J2 e=5mm

CANTIDAD: 4
PESO: 0.04 Kg

Referencia: BG-1250 A

DATE: 15/09/2017
NAME: JD MUÑOZ

Designation: A4
Scale: 2:1
Project: BG-4x4
OREJETA SOPORTE

MATERIAL: S235 JR e=3mm

NORMA:

CANTIDAD: 4

PESO: 0.01Kg

COMENTARIOS: Tolerancias no indicadas según UNE EN 22768-1:1994 TIPO M

REVISIONES:

DISEÑO: A4

EMPIEZA: 21

PROYECTO: BG-4x4

REFERENCIA: BG-1254 A
Tolerancias Generales
- Tolerancias no indicadas según UNE EN 22768-11974 TIPO M

PIEZA DE REFERENCIA
- MATERIA: ACERO S355 e=5mm
- NORMA:
- ANODIZADO:

Protección
- PROTECCIÓN:

Referencia
- REFERENCIA: BG-1222
- NÚM: A

CHAPA 4 SOPORTE MOTOR

<table>
<thead>
<tr>
<th>FICHERO</th>
<th>ESCALA</th>
<th>PROTOCOLO</th>
</tr>
</thead>
<tbody>
<tr>
<td>A4</td>
<td>1/1</td>
<td>BG-4x4</td>
</tr>
</tbody>
</table>
CORTAR SEGÚN
MODELO CAD

PLACA SOPORTE DEL

BG-1243 A
CORTAR SEGÚN MODELO 3D CAD
MARCAR REFERENCIAS (SIN CORTAR)

BASTIDOR - TUBO 51

MATERIAL: E355 D50 x 3mm ESTFRIO - S/SOLDADURA
TOLERANCIAS NO INDICADAS SEGÚN UNE EN 22768-11994 TIPO M

TECLA DE PESO: 0.35Kg

NORMA: -
CANTIDAD: 1

NOTAS: -

DETALLE: BG-1156

A4
12
BG-4x4

REVERSO: -
HORA: -
HORA: -
BASTIDOR - TUBO 87
BG-1180 A
CORTAR SEGÚN MODELO 3D CAD

MARCAR REFERENCIA (SIN CORTAR)

Ø 50

60.6

BG-1181

- TOLERANCIAS NO INDICADAS SEGÚN UNE EN 22768-11594 TIPO M

MATERIAl:
E355 D50x3mm ESTFRIO - S/SOLDADURA

NORMA -

CANTIDAD 1

PESO 0.16Kg

ACABADO SUPERFICIAL -

PROYECTO
BG-4x4

DESIGNACIÓN
A4

Escala 1:12

BASTIDOR - TUBO 89

BG-1181

REF: BG-4x4
NOTA:
- FABRICAR UNA UNIDAD DIBUJADA Y OTRA SIMÉTRICA.
NOTA:
- FABRICAR UNA UNIDAD DIBUJADA Y OTRA SIMÉTRICA
NOTA:
ENTRECARAS POR AMBOS LADOS
NOTA:
ENTRECARAS POR AMBOS LADOS
NOTA:
ENTRECARAS POR AMBOS LADOS

PROFUNDIDAD ENTRECARAS = 15

M 20 x 15 (A DERECHAS)

960

M 20 x 15 (A IZQUIERDAS)

35

ENTRECARAS 32
NOTA:
ENTRECARAS POR AMBOS LADOS
SOLDADURAS NO INDICADAS TIPO
SIENDO “e” EL ESPESOR MENOR DEL ELEMENTO
DE LA UNIÓN A SOLDAR

$\theta = 0.68$
SOLDADURAS NO INDICADAS TIPO \(q = 0.6 \text{e} \)

SIENDO \("e" \) EL ESPESOR MENOR DEL ELEMENTO DE LA UNIÓN A SOLDAR
SOLDADURAS NO INDICADAS TIPO $g=0.6e$
SIENDO "e" EL ESPESOR MENOR DEL ELEMENTO DE LA UNIÓN A SOLDAR.
SOLDADURAS NO INDICADAS TIPO
SIENDO “e” EL ESPESOR MENOR DEL ELEMENTO DE LA UNIÓN A SOLDAR
SOLDADURAS NO INDICADAS TIPO "e" SIENDO "e" EL ESPESOR MENOR DEL ELEMENTO DE LA UNIÓN A SOLDAR
15/09/2017

MARCAR REFERENCIAS (SIN CORTAR)

CORTAR SEGÚN MODELO 3D CAD

VISTA DETALLE GENERAL
ESCALA 1:10

BASTIDOR - TUBO 9 SIMÉTRICO

BG-1019 A
CORTAR SEGÚN MODELO 3D CAD

650.0

MARCAR REFERENCIAS (SIN CORTAR)

\(\phi \ 50 \)

\(\theta \ 10 \)

<table>
<thead>
<tr>
<th>TOL. LÍNEAL NO ADICION</th>
<th>PIEZA DE REFERENCIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0.5 < X \leq 6)</td>
<td>E355 D50x3mm ESTFRIO - S/SOL.</td>
</tr>
<tr>
<td>(6 < X \leq 30)</td>
<td></td>
</tr>
<tr>
<td>(30 < X \leq 120)</td>
<td></td>
</tr>
<tr>
<td>(120 < X \leq 315)</td>
<td></td>
</tr>
<tr>
<td>(315 < X \leq 1000)</td>
<td></td>
</tr>
</tbody>
</table>

MATERIAL

E355 D50x3mm ESTFRIO - S/SOL. DURADA

NORMAL

- 1

PESO

2.08Kg

NORMAS

- A4

12

PROYECTO

BG-4x4

BASTIDOR - TUBO 8

BG-1020

A
CORTAR SEGÚN
MODELO 3D CAD

MARCAR REFERENCIAS
(SIN CORTAR)

VISTA DETALLE GENERAL
ESCALA 1:10

E395 D50x3mm EST FRIO - S/SOLDADURA

0.5 < X ≤ 6 ± 0.05
6 < X ≤ 30 ± 0.1
30 < X ≤ 120 ± 0.15
120 < X ≤ 315 ± 0.2
315 < X ≤ 1000 ± 0.3

MATERIAL

BASTIDOR - TUBO 9

BG-1022 A
CORTAR SEGÚN MODELO 3D CAD

MARCAR REFERENCIAS (SIN CORTAR)

BASTIDOR - TUBO 6
MARCAR REFERENCIAS (SIN CORTAR)

CORTAR SEGÚN MODELO 3D CAD

DIBUJO 15/09/2017 J. D. MUÑOZ

TOL. LÍNEALES NO HILICIDAS

<table>
<thead>
<tr>
<th>X</th>
<th>TOLERANCIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5 < X ≤ 6</td>
<td>± 0.05</td>
</tr>
<tr>
<td>6 < X ≤ 30</td>
<td>± 0.1</td>
</tr>
<tr>
<td>30 < X ≤ 120</td>
<td>± 0.15</td>
</tr>
<tr>
<td>120 < X ≤ 315</td>
<td>± 0.2</td>
</tr>
<tr>
<td>315 < X ≤ 1000</td>
<td>± 0.3</td>
</tr>
</tbody>
</table>

MATERIAL

E355 D50 x 3mm ESTRECHO - S/SOLDADURA

NORMA - CANTIDAD - PESO

ACABADO SUPERFICIAL

NOMENCLATURA A4 ESCALA 12

PROYECTO

BG-4x4

DEPARTAMENTO

BASTIDOR - TUBO 2

REFERENCIA BG-1024 NÚM. A

SISTEMA CAD
CORTAR SEGÚN MODELO 3D CAD

MARCAR REFERENCIAS (SIN CORTAR)

BASTIDOR - TUBO 1

BG-1025 A
CORTAR SEGÚN MODELO 3D CAD
MARCAR REFERENCIAS (SIN CORTAR)

BASTIDOR - TUBO 1 SIMETRICO

DIAMETRO: ø 50

TABLA DE TOLERANCIAS:

| Tolerancia | Valor
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ø 50</td>
<td>± 0.05</td>
</tr>
<tr>
<td>6 ≤ Ø ≤ 30</td>
<td>± 0.1</td>
</tr>
<tr>
<td>30 ≤ Ø ≤ 120</td>
<td>± 0.15</td>
</tr>
<tr>
<td>120 ≤ Ø ≤ 315</td>
<td>± 0.2</td>
</tr>
<tr>
<td>315 ≤ Ø ≤ 1000</td>
<td>± 0.3</td>
</tr>
</tbody>
</table>

MATERIAL: E355 D50x3mm ESTRIO - S/SOLDADURA
PESO: 0.91Kg
MARCAR REFERENCIAS (SIN CORTAR)

CORTAR SEGÚN MODELO 3D CAD

TOLERANCIAS LÍNEALES NO NORMALES

<table>
<thead>
<tr>
<th>Intervalo</th>
<th>Tolerancia</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5 < X ≤ 6</td>
<td>±0.05</td>
</tr>
<tr>
<td>6 < X ≤ 30</td>
<td>±0.1</td>
</tr>
<tr>
<td>30 < X ≤ 120</td>
<td>±0.15</td>
</tr>
<tr>
<td>120 < X ≤ 315</td>
<td>±0.2</td>
</tr>
<tr>
<td>315 < X ≤ 1000</td>
<td>±0.3</td>
</tr>
</tbody>
</table>

MATERIAL: E355 D50x3mm ESTFRIO - S/SOLDADURA

DIMENSIONES:
- Ø 50
- 7635

PROYECTO: BG-4x4

REFERENCIA: BG-1027

NOTAS:
MARCAR REFERENCIAS (SIN CORTAR)

CORTAR SEGÚN MODELO 3D CAD

TOLUANAS LINEALES NO NORCASS

<table>
<thead>
<tr>
<th>X</th>
<th>TOLUANAS LINEALES</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>± 0.05</td>
</tr>
<tr>
<td>6</td>
<td>± 0.1</td>
</tr>
<tr>
<td>30</td>
<td>± 0.15</td>
</tr>
<tr>
<td>120</td>
<td>± 0.2</td>
</tr>
<tr>
<td>315</td>
<td>± 0.3</td>
</tr>
</tbody>
</table>

MATERIAL

E355 D50x3mm ESTFRO - SI/SOLDADURA

NORMA

- CANTEADO 1

PESO

195Kg

AIREADO SUPERFICIAL

NORMADO E ESCALA

A4 12

PROYECTO

BG-4x4

BASTIDOR - TUBO 11

REFERENCIA

BG-1028

NÚMERO

A
BASTIDOR - TUBO 14 SIMÉTRICO

MATERIAL
E355 D50x3mm ESTRECHO - S/SOLDADURA

Tolerancias lineales no marcadas

<table>
<thead>
<tr>
<th>Intervalo</th>
<th>Tolerancia</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5 < X ≤ 6</td>
<td>±0.05</td>
</tr>
<tr>
<td>6 < X ≤ 30</td>
<td>±0.1</td>
</tr>
<tr>
<td>30 < X ≤ 120</td>
<td>±0.15</td>
</tr>
<tr>
<td>120 < X ≤ 315</td>
<td>±0.2</td>
</tr>
<tr>
<td>315 < X ≤ 1000</td>
<td>±0.3</td>
</tr>
</tbody>
</table>

PROYECTO
BG-4x4

Referencia
BG-1038

Notas
CORTAR SEGÚN MODELO 3D CAD

MARCAR REFERENCIAS (SIN CORTAR)

VISTA POR A
ESCALA 1:10

BASTIDOR - TUBO 18

BG-104.2
CORTAR SEGÚN MODELO 3D CAD

MARCAR REFERENCIAS (SIN CORTAR)

1265

CORTADOR

Escala 1:10

BASTIDOR - TUBO 19 SIMÉTRICO

BG-1043

A
CORTAR SEGÚN MODELO 3D CAD

MARCAR REFERENCIAS (SIN CORTAR)

VISTA POR A
ESCALA 1:10

TOLERANCIAS LINEALES NO NOTICIAS

<table>
<thead>
<tr>
<th>${0.5 < X \leq 6}$</th>
<th>±0.05</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 < ${X \leq 30}$</td>
<td>±0.1</td>
</tr>
<tr>
<td>30 < ${X \leq 120}$</td>
<td>±0.15</td>
</tr>
<tr>
<td>120 < ${X \leq 315}$</td>
<td>±0.2</td>
</tr>
<tr>
<td>315 < ${X \leq 1000}$</td>
<td>±0.3</td>
</tr>
</tbody>
</table>

MATERIAL
E355 D50x3mm ESTRIO - SISOLDADURA

PESO
4.24 Kg

DESECHO
A4 12 BG-4X4

BASTIDOR - TUBO 19

REFERENCIA
BG-1044 A
CORTAR SEGÚN MODELO 3D CAD

MARCAR REFERENCIAS (SIN CORTAR)

VISTA POR A
ESCALA 1:10

<table>
<thead>
<tr>
<th>TOLUANES LÍNEALES</th>
<th>PIEZA DE REFERENCIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5 < X ≤ 6</td>
<td>± 0.05</td>
</tr>
<tr>
<td>6 < X ≤ 30</td>
<td>± 0.1</td>
</tr>
<tr>
<td>30 < X ≤ 120</td>
<td>± 0.15</td>
</tr>
<tr>
<td>120 < X ≤ 315</td>
<td>± 0.2</td>
</tr>
<tr>
<td>315 < X ≤ 1000</td>
<td>± 0.3</td>
</tr>
</tbody>
</table>

MATERIAL: E355 D50x3mm EST FRIO - S/SOLDADURA

NORMA: -
CANTIDAD: 1
PESO: 4.03Kg

ESPECIFICACIÓN:
- A4
- 12
- BG-4x4

DERIVACIÓN:
- BASTIDOR - TUBO 20
- BG-1045
- A

SISTEMA CAD: -

REFERENCE:
- -
- -
15/09/2017

MARCAR REFERENCIAS (SIN CORTAR)

CORTAR SEGÚN MODELO 3D CAD

TOLERANCIAS LÍNEALES NO CORRIBLES

0.5 < X ≤ 6 ± 0.05
6 < X ≤ 30 ± 0.1
30 < X ≤ 120 ± 0.15
120 < X ≤ 315 ± 0.2
315 < X ≤ 1000 ± 0.3

MATERIAL: E355

PROYECTO: BASTIDOR - TUBO 21 SIMÉTRICO

REFERENCIA: BG-1046
CORTAR SEGÓN MODELO 3D CAD

MARCAR REFERENCIAS (SIN CORTAR)

BASTIDOR - TUBO 21
MARCAR REFERENCIAS (SIN CORTAR)

CORTAR SEGÚN MODELO 3D CAD

D: 50

1016.2

B: 5.7

TOLUENAS LINEALES NO INDICADAS

0.5 < X ≤ 6 ± 0.05
6 < X ≤ 30 ± 0.1
30 < X ≤ 120 ± 0.15
120 < X ≤ 315 ± 0.2
315 < X ≤ 1000 ± 0.3

MATERIAL: E355 D50x3mm EST.FRIO - S/SOLDADURA

NORMA: -
CANTIDAD: 1
PEZO: 3.48Kg

ACABADO SUPERFICIAL: -

DESIGNACIÓN: A4
ESCALA: 1:12
PROYECTO: BG-4X4

BASTIDOR - TUBO 21

REFERENCIA: BG-1047
NÚMERO: A
CORTAR SEGÚN MODELO 3D CAD

MARCAR REFERENCIAS (SIN CORTAR)

TOLUANZAS LÍNEALES NO NORMALES

$0.5 < X \leq 6$	± 0.05
$6 < X \leq 30$	± 0.1
$30 < X \leq 120$	± 0.15
$120 < X \leq 315$	± 0.2
$315 < X \leq 1000$	± 0.3

MATERIAL: E355 D50x3mm EST.FRIO - S/SOLDADURA

NORMAL: -

CANTIDAD: 1

PESO: 2.46Kg

AÑADIDO: -

S.F.: -

PROYECTO: BG-4x4

REFERENCIA: BG-1049

NOTAS: A
CORTAR SEGÚN MODELO 3D CAD

MARCAR REFERENCIAS (SIN CORTAR)

TOL. LÁINEZ NO MECANIZADAS

\[
\begin{align*}
0.5 < X \leq 6 & \quad \pm 0.05 \\
6 < X \leq 30 & \quad \pm 0.1 \\
30 < X \leq 120 & \quad \pm 0.15 \\
120 < X \leq 315 & \quad \pm 0.2 \\
315 < X \leq 1000 & \quad \pm 0.3 \\
\end{align*}
\]

MATERIAL:
E355 D50 x 3mm EST. HIO - SIN SOL. ADADURA

ACABADO SUPERFICIAL:

NORMA:
-

DIMENSIONES:

A4

Escala:
12

PROYECTO:
BG-4x4

BASTIDOR - TUBO 24

REVISADO

BG-1050
A
MARCAR REFERENCIAS (SIN CORTAR)

CORTAR SEGÚN
MODELO 3D CAD

0.5 < X ≤ 6 ± 0.05
6 < X ≤ 30 ± 0.1
30 < Y ≤ 120 ± 0.15
120 < X ≤ 315 ± 0.2
315 < X ≤ 1000 ± 0.3

MATERIAL
E355 D50x3mm EST.FRIO - S/SOLDADURA

NORMA -
CARTELA 1
PESO 2.46

CORTADO SUPERFICIAL

NORMA A4
ESCALA 1:12
PROYECTO BG-4x4

SISTEMA UAOD

BASTIDOR - TUBO 23

BG-1051 A
CORTAR SEGÚN MODELO 3D CAD

MARCAR REFERENCIAS (SIN CORTAR)

15/09/2017

BASTIDOR - TUBO 52 SIMÉTRICO

BG-1052 A

<table>
<thead>
<tr>
<th>TOLERANCIAS LINEALES NO MECANIZADAS</th>
<th>PIEZA DE REFERENCIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5 < X ≤ 6</td>
<td>-</td>
</tr>
<tr>
<td>6 < X ≤ 30</td>
<td>-</td>
</tr>
<tr>
<td>30 < X ≤ 120</td>
<td>± 0.15</td>
</tr>
<tr>
<td>120 < X ≤ 315</td>
<td>± 0.2</td>
</tr>
<tr>
<td>315 < X ≤ 1000</td>
<td>± 0.3</td>
</tr>
</tbody>
</table>

MATERIAL: E355 D50x3mm EST. FRIO - S/SOLIDADURA

NORMA: -

CANTIDAD: 1

PECHO: 3.13Kg
<table>
<thead>
<tr>
<th>NOMBRADO</th>
<th>FECHA</th>
<th>NOMBRE</th>
<th>TOL. LÍNEALES NO NOCERADAS</th>
<th>PIEZA DE REFERENCIA</th>
</tr>
</thead>
</table>
| | 15/09/2017 | JO MUÑOZ | 0.5 < X ≤ 6 ± 0.05
6 < X ≤ 30 ± 0.1
30 < X ≤ 120 ± 0.15
120 < X ≤ 315 ± 0.2
315 < X ≤ 1000 ± 0.3 | |

MATERIAL: E355 D50x3mm EST.FRIO - S/SOLDADURA

NO. CONTR.	CANTIDAD	Peso	5.01Kg

ACABADO SUPERFICIAL

DESIGNACIÓN

BASTIDRO - TUBO 53

BG-1054 A
MARCAR REFERENCIAS (SIN CORTAR)

CORTAR SEGÚN MODELO 3D CAD

BASTIDOR - TUBO 54

BG-1055

0.5 < X ≤ 6 ± 0.05
6 < X ≤ 30 ± 0.1
30 < X ≤ 120 ± 0.15
120 < X ≤ 315 ± 0.2
315 < X ≤ 1000 ± 0.3

MATERIAL:
E355 D50x3mm ESTFRIO - S/SONDADURA

Norma:
BG-4x4

Pieza de referencia:
BG-1055

Núm. referencia:
A

Fecha:
15/09/2017

Nublado:
J D Muñoz

Espec.: 1

Peso:
2.37Kg

Ancho superficial:
-

Dimensiones:
A4

Escala:
1:12
CORTAR SEGÚN
MODELO 3D CAD

MARCAR REFERENCIAS
(SIN CORTAR)
MARCAR REFERENCIAS
(SIN CORTAR)

CORTAR SEGÚN
MODELO 3D CAD

Tolerancias lineales no marcadas

<table>
<thead>
<tr>
<th></th>
<th>0.5 < X ≤ 6</th>
<th>± 0.05</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>6 < X ≤ 30</td>
<td>± 0.1</td>
</tr>
<tr>
<td></td>
<td>30 < X ≤ 120</td>
<td>± 0.15</td>
</tr>
<tr>
<td></td>
<td>120 < X ≤ 315</td>
<td>± 0.2</td>
</tr>
<tr>
<td></td>
<td>315 < X ≤ 1000</td>
<td>± 0.3</td>
</tr>
</tbody>
</table>

MATERIAL
E355 D50x3mm ESTRIO - S/SOLDADURA
NORMA -
CANTIDAD 1
PESO 0.88Kg
ACABADO SUPERFICIAL -

NOMINADO A4
ESCALA 1/2
PROYECTO BG-4x4

BASTIDOR - TUBO 25

REFERENCIA BG-1058
NIVEL A
MARCAR REFERENCIAS (SIN CORTAR)

CORTAR SEGÚN MODELO 3D CAD

Diseño:
- MATERIAL: E355 D50x3mm ESTRUCTURAL - S/SOLDADURA
- NORMAS: -
- MUESTRA: 1
- PESO: 0.6 BKg

Dimensiones:
- 0.5 < X ≤ 6: ±0.05
- 6 < X ≤ 30: ±0.1
- 30 < X ≤ 120: ±0.15
- 120 < X ≤ 315: ±0.2
- 315 < X ≤ 1000: ±0.3

Referencia:
- BASTIDOR - TUBO 26
- NÚMERO: BG-1059
- A
CORTAR SEGÚN MODELO 3D CAD

MARCAR REFERENCIAS (SIN CORTAR)

Tolerancias lineales no marcadas:

\[\begin{align*}
0.5 \leq X & \leq 6 & \pm 0.05 \\
6 \leq X & \leq 30 & \pm 0.1 \\
30 \leq X & \leq 120 & \pm 0.15 \\
120 \leq X & \leq 315 & \pm 0.2 \\
315 \leq X & \leq 1000 & \pm 0.3
\end{align*} \]

MATERIAL

E355 D50x3mm EST FRIO - S/SOLDADURA

NORMA - CANTIDAD 1 PESO 128Kg

ACABADO SUPERFICIAL -

SISTEMA 1:00

BASTIDOR - TUBO 27

BG-1060 A
MARCAR REFERENCIAS (SIN CORTAR)

CORTAR SEGÚN MODELO 3D CAD
CORTAR SEGÚN MODELO 3D CAD

MARCAR REFERENCIAS (SIN CORTAR)

DIAMETRO: 50

LARGO: 3112

DISTANCIA: 82

E355 D50x3mm EST FRIO - S/SOLDADURA

MATERIALES Y CANTIDAD

<table>
<thead>
<tr>
<th>DIAMETRO</th>
<th>E450 D50x3mm</th>
<th>CANTIDAD</th>
<th>Peso</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5 < X ≤ 6</td>
<td>± 0.05</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>6 < X ≤ 30</td>
<td>± 0.1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>30 < X ≤ 120</td>
<td>± 0.15</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>120 < X ≤ 315</td>
<td>± 0.2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>315 < X ≤ 1000</td>
<td>± 0.3</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

DIMENSIONES DE LA PIEZA DE REFERENCIA

Escala: A4

PROYECTO: BG-4x4

DESIGNACIÓN: BASTIDOR - TUBO 29

REFERENCIA: BG-1062

NOTES: A
MARCAR REFERENCIAS (SIN CORTAR)

CORTAR SEGÚN MODELO 3D CAD

TOLUANAS LÍNEALES NO MECANIZADAS

<table>
<thead>
<tr>
<th>Toluana</th>
<th>Valor</th>
<th>Tolerancia</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5 < X ≤ 6</td>
<td>± 0.05</td>
<td></td>
</tr>
<tr>
<td>6 < X ≤ 30</td>
<td>± 0.1</td>
<td></td>
</tr>
<tr>
<td>30 < X ≤ 120</td>
<td>± 0.15</td>
<td></td>
</tr>
<tr>
<td>120 < X ≤ 315</td>
<td>± 0.2</td>
<td></td>
</tr>
<tr>
<td>315 < X ≤ 1000</td>
<td>± 0.3</td>
<td></td>
</tr>
</tbody>
</table>

MATERIAL: E355 D50 x 3mm EST FRIO - SIN SOLDADURA

NORMA: -
CAÑECHO: 1
MEDIDA: 3.01Kg

ASPECTO SUPERFICIAL: -

DESIGNACIÓN: A4
ESCALA: -
PROYECTO: BG-4x4

BASTIDOR - TUBO 49

REFERENCIA: BG-1063
NOTAS: -
CORTAR SEGÚN MODELO 3D CAD

MARCAR REFERENCIAS (SIN CORTAR)

DIAMETRO: 50

9991

28

26

DIBUJO: 15/09/2017

JO MUÑOZ

TOL. LINEALES NO MECANIZADAS

<table>
<thead>
<tr>
<th>INTERVALO</th>
<th>TOL.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5 < X ≤ 6</td>
<td>± 0.05</td>
</tr>
<tr>
<td>6 < X ≤ 30</td>
<td>± 0.1</td>
</tr>
<tr>
<td>30 < X ≤ 120</td>
<td>± 0.15</td>
</tr>
<tr>
<td>120 < X ≤ 315</td>
<td>± 0.2</td>
</tr>
<tr>
<td>315 < X ≤ 1000</td>
<td>± 0.3</td>
</tr>
</tbody>
</table>

MATERIAL:

E355 D50 x 3 mm ESTFRO - S/SOLDADURA

3.29 Kg

PROYECTO:

BG-4 x 4

DETERMINACIÓN:

BASTIDOR - TUBO 30

Referencia: BG-1064

A
MARCAR REFERENCIAS (SIN CORTAR)

CORTAR SEGÚN MODELO 3D CAD

Tolerancias líneas no marcadas

\[\begin{align*}
0.5 \leq X & \leq 6 & \pm 0.05 \\
6 < X & \leq 30 & \pm 0.1 \\
30 < X & \leq 120 & \pm 0.15 \\
120 < X & \leq 315 & \pm 0.2 \\
315 < X & \leq 1000 & \pm 0.3
\end{align*} \]

MATERIAL: E355 D50 x 3mm ESTRÍO - SI/SOLDADURA

NORMA -

CANTIDAD: 1

MEDIO: 0.55 Kg

DISEÑO: A4

PROYECTO: BG-4x4

BASTIDOR - TUBO 31

BG-1065 A
<table>
<thead>
<tr>
<th>Tolerancias Lineales No Marcadas</th>
<th>Pieza de Referencia</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0.5 < X \leq 6) (\pm 0.05)</td>
<td>-</td>
</tr>
<tr>
<td>(6 < X \leq 30) (\pm 0.1)</td>
<td>-</td>
</tr>
<tr>
<td>(30 < X \leq 120) (\pm 0.15)</td>
<td>-</td>
</tr>
<tr>
<td>(120 < X \leq 315) (\pm 0.2)</td>
<td>-</td>
</tr>
<tr>
<td>(315 < X \leq 1000) (\pm 0.3)</td>
<td>-</td>
</tr>
</tbody>
</table>

Malha: E355 D50x3mm ESTRIO - SISOLDADURA

Dimensiones:

- **Largura:** A4
- **Escala:** 1:12
- **Proyecto:** BG-4x4

Referencia: BG-1066

Fecha de Dibujo: 15/09/2017

Nombre del Dibujante: JD Muñoz
MARCAR REFERENCIAS (SIN CORTAR)

CORTAR SEGÚN MODELO 3D CAD

15/09/2017

<table>
<thead>
<tr>
<th>TOLEVARANZA LINEALES NO NORMALES</th>
<th>PIEZA DE REFERENCIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5 < X ≤ 6</td>
<td>± 0.05</td>
</tr>
<tr>
<td>6 < X ≤ 30</td>
<td>± 0.1</td>
</tr>
<tr>
<td>30 < X ≤ 120</td>
<td>± 0.15</td>
</tr>
<tr>
<td>120 < X ≤ 315</td>
<td>± 0.2</td>
</tr>
<tr>
<td>315 < X ≤ 1000</td>
<td>± 0.3</td>
</tr>
</tbody>
</table>

MATERIAL: E355 D50x3mm ESTFRIQ - S/SOLDADURA

CARACTERÍSTICAS SUPERFICIALES:

<table>
<thead>
<tr>
<th>NORMA</th>
<th>ESCALA</th>
</tr>
</thead>
<tbody>
<tr>
<td>A4</td>
<td>1:12</td>
</tr>
</tbody>
</table>

BASTIDOR - TUBO 15 SIMÉTRICO

BG-1067 A
CORTAR SEGÚN MODELO 3D CAD

MARCAR REFERENCIAS (SIN CORTAR)

15/09/2017

BASTIDOR - TUBO 16 SIMÉTRICO

BG-1068 A
Marcas de referencia (sin cortar)

Cortar según modelo 3D CAD

Diseño 16 - Tubo 16

BASTIDOR - TUBO 16

BG-1069 A
CORTAR SEGÚN MODELO 3D CAD

MARCAR REFERENCIAS (SIN CORTAR)

0.5 < X ≤ 6 ± 0.05
6 < X ≤ 30 ± 0.1
30 < X ≤ 120 ± 0.15
120 < X ≤ 315 ± 0.2
315 < X ≤ 1000 ± 0.3

BASTIDOR - TUBO 56

BG-1070 A
BASTIDOR - TUBO 56 SIMÉTRICO

MATERIAL: E355 D50x3mm EST. FRIO - S/SOLDADURA

DESLIZADO: 15/09/2017

TOLERANCIAS LÍNEALES NO INDICADAS:

- 0.5 < X ≤ 6 ± 0.05
- 6 < X ≤ 30 ± 0.1
- 30 < X ≤ 120 ± 0.15
- 120 < X ≤ 315 ± 0.2
- 315 < X ≤ 1000 ± 0.3

MEZCLA: 3.25Kg

DESIGNACIÓN: A4

PROYECTO: BG-4x4

REFERENCIA: BG-1071 A

NOTAS:

MÉTRICA

SISTEMA IDO
CORTAR SEGÚN MODELO 3D CAD

MARCAR REFERENCIAS (SIN CORTAR)

0.5 < X ≤ 6 ± 0.05
6 < X ≤ 30 ± 0.1
30 < X ≤ 120 ± 0.15
120 < X ≤ 315 ± 0.2
315 < X ≤ 1000 ± 0.3

MATERIAL: E355 D50x3mm EST FRIO - S/SOLDADURA

NORMA: -
CANTIDAD: 1
PESO: 0.88Kg

ACABADO SUPERFICIAL:

DIAMETRO:

EQUIS:

NORMA: A4
ESCALA: 1:2
PROYECTO: BG-4x4

BASTIDOR - TUBO 25 SIMÉTRICO

REFERENCIA: BG-1072
NÚMERO: A
<table>
<thead>
<tr>
<th>Tolerancias</th>
<th>0.5 < X ≤ 6</th>
<th>± 0.05</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>6 < X ≤ 30</td>
<td>± 0.1</td>
</tr>
<tr>
<td></td>
<td>30 < X ≤ 120</td>
<td>± 0.15</td>
</tr>
<tr>
<td></td>
<td>120 < X ≤ 315</td>
<td>± 0.2</td>
</tr>
<tr>
<td></td>
<td>315 < X ≤ 1000</td>
<td>± 0.3</td>
</tr>
</tbody>
</table>

Material: E355 D50x3mm EST FRIO - S/SOLDADURA

Pequeña de referencia: -

Piezas de referencia: -

Método: -

Ejemplo superior: -

Nombre: BASTIDOR - TUBO 29 SIMÉTRICO

Referencia: BG-1073

Notas: A
CORTAR SEGÚN
MODELLO 3D CAD

MARCAR REFERENCIAS
(SIN CORTAR)

\(\Phi 50 \)

26

1977

24

955 D50x3mm EST FRI - S/SOLDADURA

MATERIAL

NORMA -

CANTIDAD 1

MÉS 0.55Kg

A BASTIDOR - TUBO 31 SIMÉTRICO

BG-1074

A4 12

BG-4x4
MARCAR REFERENCIAS (SIN CORTAR)

CORTAR SEGÚN MODELO 3D CAD

BASTIDOR - TUBO 26 SIMÉTRICO

BG-1075 A
CORTAR SEGÚN MODELO 3D CAD

MARCAR REFERENCIAS (SIN CORTAR)

BASTIDOR - TUBO 27 SIMÉTRICO

BG-1076
Tolerancias Lineales No Marcadas

<table>
<thead>
<tr>
<th>Intervalo</th>
<th>Valor Tolerancia</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5 < X ≤ 6</td>
<td>± 0.05</td>
</tr>
<tr>
<td>6 < X ≤ 30</td>
<td>± 0.1</td>
</tr>
<tr>
<td>30 < X ≤ 120</td>
<td>± 0.15</td>
</tr>
<tr>
<td>120 < X ≤ 315</td>
<td>± 0.2</td>
</tr>
<tr>
<td>315 < X ≤ 1000</td>
<td>± 0.3</td>
</tr>
</tbody>
</table>

Pieza de Referencia:

- Material: E355 D50x3mm Estriado
- Soldadura: S/Soldadura

Características

- Nivel: 1
- Peso: 136Kg
- Acabado Superior: -

Referencia:

- BG-4x4

Descripción:

- Bastidor - Tubo 28 Simétrico

Referencia:

- BG-1077 A

Notas:

- N/A
CORTAR SEGÚN MODELO 3D CAD

MARCAR REFERENCIAS (SIN CORTAR)

0.5 < X ≤ 6 ± 0.05
6 < X ≤ 30 ± 0.1
30 < X ≤ 120 ± 0.15
120 < X ≤ 315 ± 0.2
315 < X ≤ 1000 ± 0.3

MATERI AL:
E355 D50x3mm ESTRECHO - S/SOLDADURA

NORMA -
CANTIDAD 1
peso 107 Kg

DESIGNACIÓN
BASTIDOR - TUBO 17 SIMÉTRICO

Escala 1:12
PROYECTO BG-4x4

REFERENCIA
BG-1079
CORTAR SEGÚN MODELO 3D CAD

MARCAR REFERENCIAS (SIN CORTAR)

E355 D50x3mm EST FRIO - SISOLDADURA

MATERIAL

NORMA

1

2.65Bkg

ACABADO SUPERFICIAL

TOL. LÍNEALES NO MARCADAS

0.5 < X ≤ 6 ± 0.05
6 < X ≤ 30 ± 0.1
30 < X ≤ 120 ± 0.15
120 < X ≤ 315 ± 0.2
315 < X ≤ 1000 ± 0.3

PROYECTO

BG-4x4

DESIGNACIÓN

BASTIDOR - TUBO 58 SIMÉTRICO

REFERENCIA

BG-1080

NOTAS
CORTAR SEGÚN MODELO 3D CAD

MARCAR REFERENCIAS (SIN CORTAR)

BASTIDOR - TUBO 59 SIMÉTRICO

Tolerancias lineales no marcadas:
- $0.5 < X \leq 6$ ± 0.05
- $6 < X \leq 30$ ± 0.1
- $30 < X \leq 120$ ± 0.15
- $120 < X \leq 315$ ± 0.2
- $315 < X \leq 1000$ ± 0.3

MATERIAL:
E355 D50x3mm EST. FRIO - S/SOLDADURA

ACABADO SUPERFICIAL:
- NORMA:
- ESCALA:
- PROYECTO:

REFERENCIA:
BG-1081

NÚMERO:
1
<table>
<thead>
<tr>
<th>TOL. LÍNEALES NO HOJASADAS</th>
<th>PIEZA DE REFERENCIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5 < X ≤ 6</td>
<td>± 0.05</td>
</tr>
<tr>
<td>6 < X ≤ 30</td>
<td>± 0.1</td>
</tr>
<tr>
<td>30 < X ≤ 120</td>
<td>± 0.15</td>
</tr>
<tr>
<td>120 < X ≤ 315</td>
<td>± 0.2</td>
</tr>
<tr>
<td>315 < X ≤ 1000</td>
<td>± 0.3</td>
</tr>
</tbody>
</table>

MATERIAL: E355 D50x3mm ESTIFRIO - S/SOLDADURA

NOM. PROYECTO: BG-1082

NOM. REFERENCIA: A

BASTIDOR - TUBO 71 SIMÉTRICO
CORTAR SEGÚN MODELO 3D CAD

MARCAR REFERENCIAS (SIN CORTAR)
MARCAR REFERENCIAS
(SIN CORTAR)

CORTAR SEGÚN
MODELO 3D CAD

TOLERANCIAS LÍNEALES NO MARKADAS

0.5 < X ≤ 6 ± 0.05
6 < X ≤ 30 ± 0.1
30 < X ≤ 120 ± 0.15
120 < X ≤ 315 ± 0.2
315 < X ≤ 1000 ± 0.3

MATÉR. E355 D50x3mm EST. FRIO - S/SOLDADURA

NORMAL -

BAJO DE SUPERFICIE -

PROY. BG-4x4

DESIGNACIÓN:
BASTIDOR - TUBO 60 SIMÉTRICO

FECHA: 15/09/2017
NOMBRE: JD MUÑOZ

BLOQUE: 1
COMO: 1
PESO: 0.5Kg
CORTAR SEGÚN MODELO 3D CAD

MARCAR REFERENCIAS (SIN CORTAR)

BASTIDOR - TUBO 72 SIMÉTRICO

BG-1085 A
CORTAR SEGÚN MODELO 3D CAD

MARCAR REFERENCIAS (SIN CORTAR)

0.5 < X ≤ 6 ± 0.05
6 < X ≤ 30 ± 0.1
30 < X ≤ 120 ± 0.15
120 < X ≤ 315 ± 0.2
315 < X ≤ 1000 ± 0.3

MATERIAL:
E355 D50x3mm EST FRIO - S/ SELLADURA

NORMA -
CANTIDAD 1
PESO 0.46 Kg

A4 12

BG-4x4

BASTIDOR - TUBO 69 SIMÉTRICO

BG-1086 A
MARCAR REFERENCIAS (SIN CORTAR)

CORTAR SEGÚN MODELO 3D CAD

TABLA DE TOLERANCIAS LINEALES NO MARCADAS

<table>
<thead>
<tr>
<th>Tolerancia</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5 < X ≤ 6</td>
<td>± 0.05</td>
</tr>
<tr>
<td>6 < X ≤ 30</td>
<td>± 0.1</td>
</tr>
<tr>
<td>30 < X ≤ 120</td>
<td>± 0.15</td>
</tr>
<tr>
<td>120 < X ≤ 315</td>
<td>± 0.2</td>
</tr>
<tr>
<td>315 < X ≤ 1000</td>
<td>± 0.3</td>
</tr>
</tbody>
</table>

PIEZA DE REFERENCIA: E355 D50x3 mm ESTRECHO - SISOLDADURA

MATERIAL: E355 D50x3 mm

NORMA: -

CANTIDAD: 1

peso: 0.37 Kg

ARROLLO SUPERFICIAL: -

DESIGNACIÓN: A4

Escala: 12

PROYECTO: BG-4x4

BASTIDOR - TUBO 35

REF: BG-1087

NÚMERO DE HERRAMIENTAS: A
<table>
<thead>
<tr>
<th>MATERIAL</th>
<th>E355 D50x3mm EST. FRIO - S/SOLDADURA</th>
</tr>
</thead>
<tbody>
<tr>
<td>NORMA</td>
<td>-</td>
</tr>
<tr>
<td>CARTELAO</td>
<td>1</td>
</tr>
<tr>
<td>PELO</td>
<td>0.37Kg</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DESCRIPCIÓN</th>
<th>BASTIDOR - TUBO 35</th>
</tr>
</thead>
<tbody>
<tr>
<td>REFERENCIA</td>
<td>BG-1087</td>
</tr>
<tr>
<td>NÚMERO</td>
<td>A</td>
</tr>
</tbody>
</table>
CORTAR SEGÚN MODELO 3D CAD

MARCAR REFERENCIAS (SIN CORTAR)

ángulo 50°

956.6

70

BG-1088

E355 D50x3mm EST.FRIO - S/SOLDADURA

MATERIAL: E355 D50x3mm EST.FRIO - S/SOLDADURA

TOLUARES LÍNEALES NO MÉTRICAS

0.5 < X ≤ 6	± 0.05
6 < X ≤ 30	± 0.1
30 < X ≤ 120	± 0.15
120 < X ≤ 315	± 0.2
315 < X ≤ 1000	± 0.3

PROYECTO: BG-4x4

NOMENCLATURA: A4

BASTIDOR - TUBO 59

REFERENCIA: BG-1088

NOTAS:

SISTEMA CAD: 12
CORTAR SEGÚN
MODELO 3D CAD

MARCAR REFERENCIAS
(SIN CORTAR)

Ø 50

800.5

72

0.5 < X ≤ 6 ± 0.05
6 < X ≤ 30 ± 0.1
30 < Y ≤ 120 ± 0.15
120 < X ≤ 315 ± 0.2
315 < X ≤ 1000 ± 0.3

MATERIAL
E355 D50x3mm EST.FRIO - S/SOLDADURA

PROYECTO
BG-4x4

DESIGNACIÓN
BASTIDOR - TUBO 58

REFERENCIA
BG-1089 A
CORTAR SEGÚN MODELO 3D CAD

MARCAR REFERENCIAS (SIN CORTAR)

TOLOMÉS LÍNEALES NO INICIDAS

0.5 < X ≤ 6 ± 0.05
6 < X ≤ 30 ± 0.1
30 < X ≤ 120 ± 0.15
120 < X ≤ 315 ± 0.2
315 < X ≤ 1000 ± 0.3

MATERIAL
E355 D50x3mm EST. FRO - S/SOLDADURA

RECEPCION
14.3 Kg

DENOMINACIÓN
BASTIDOR - TUBO 70

PROJECCIÓN
BG-4x4

REFERENCIA
BG-1091

A
CORTAR SEGÚN MODELO 3D CAD

MARCAR REFERENCIAS (SIN CORTAR)

15/09/2017

BASTIDOR - TUBO 60

BG-1092 A

Específico
CORTAR SEGÚN MODELO 3D CAD

MARCAR REFERENCIAS (SIN CORTAR)

0.5 < X ≤ 6 ± 0.05
6 < X ≤ 30 ± 0.1
30 < X ≤ 120 ± 0.15
120 < X ≤ 315 ± 0.2
315 < X ≤ 1000 ± 0.3

MATERIA. E355 D50x3 mm EST. FRIO - S/SOLDADURA

PROYECTO BG-4x4

BASTIDOR - TUBO 69

BG-1093 A
MARCAR REFERENCIAS (SIN CORTAR)

CORTAR SEGÚN MODELO 3D CAD

\[\phi 50 \]

\[36 \]

\[75 \]

\[208 \]

\[36 \]

\[BG-1094 \]
MARCAR REFERENCIAS (SIN CORTAR)

CORTAR SEGÚN MODELO 3D CAD

15/09/2017

E355 D50x3mm EST FRIO - S/SOLDADURA

0.5 < X ≤ 6 ± 0.05
6 < X ≤ 30 ± 0.1
30 < Y ≤ 120 ± 0.15
120 < X ≤ 315 ± 0.2
315 < X ≤ 1000 ± 0.3

MATERAL
NORMA
CANTIDAD
PESO

BASTIDOR - TUBO 62
BG-4x4
BG-1096

DIMENSIONES LÍNEALES NO MOLDEADAS
<table>
<thead>
<tr>
<th>FICHA</th>
<th>FECHA</th>
<th>NOMBRE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2017</td>
<td>09/15</td>
<td>JD MUÑOZ</td>
</tr>
</tbody>
</table>

Tolerancias

- \(0.5 < X \leq 6\) \pm 0.05
- \(6 < X \leq 30\) \pm 0.1
- \(30 < X \leq 120\) \pm 0.15
- \(120 < X \leq 315\) \pm 0.2
- \(315 < X \leq 100\) \pm 0.3

Material

E355 D50x3mm ESTRECHO - S/SOLDADURA

Pieza de referencia

BASTIDOR - TUBO 67

Referencia

BG-1097 A
CORTAR SEGÚN MODELO 3D CAD

MARCAR REFERENCIAS (SIN CORTAR)

0.5 < X ≤ 6 ± 0.05
6 < X ≤ 30 ± 0.1
30 < X ≤ 120 ± 0.15
120 < X ≤ 315 ± 0.2
315 < X ≤ 1000 ± 0.3

MATERIAL: E355 D50×3mm EST.FRIO - S/SOLDADURA

NORMA: -
CANTIDAD: 1
PESO: 178Kg

NORMA: A4
ESCALA: 1:12
PROYECTO: BG-4×4

BASTIDOR - TUBO 74

REFERENCIA: BG-1098
NOTAS: A
CORTAR SEGÚN
MODELO 3D CAD

MARCAR REFERENCIAS
(SIN CORTAR)
MARCAR REFERENCIAS (SIN CORTAR)

CORTAR SEGÚN MODELO 3D CAD

TOLERANCIAS LÍNEALES NO HICEDAS

0.5 < X ≤ 6 ± 0.05
6 < X ≤ 30 ± 0.1
30 < X ≤ 120 ± 0.15
120 < X ≤ 315 ± 0.2
315 < X ≤ 1000 ± 0.3

MATERIAL:
E355 D50x3mm ESTRECHO - SIN SOLDADURA

DIMENSIONES:
A4 12

PROYECTO:
BG-4x4

BASTIDOR - TUBO 36

REF:
BG-1130

NOTAS:
CORTAR SEGÚN
MODELO 3D CAD

BASTIDOR - TUBO 61 SIMÉTRICO

BG-1102 A
CORTAR SEGÚN
MODELO 3D CAD

MARCAR REFERENCIAS
(SIN CORTAR)

BASTIDOR - TUBO 62 SIMÉTRICO

BG-1103

A
CORTAR SEGÚN MODELO 3D CAD

MARCAR REFERENCIAS (SIN CORTAR)

BASTIDOR - TUBO 63 SIMÉTRICO

MATERIA

E355 D50x3mm EST FRIIO - S/ SOLLADURA

PECE DE REFENECIA

2.1 Kg

TOLUANAS LINEALES EN NO HACIDAS

0.5 < X ≤ 6 ± 0.05
6 < X ≤ 30 ± 0.1
30 < X ≤ 120 ± 0.15
120 < X ≤ 315 ± 0.2
315 < X ≤ 1000 ± 0.3

MATERIA

BASTIDOR - TUBO 63 SIMÉTRICO

BG-1104

A
<table>
<thead>
<tr>
<th>FECHA</th>
<th>NOMBRE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIBUJO</td>
<td>JD MUÑOZ</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TOLEDOANÁLISIS NO NECESARIA</th>
<th>PIEZA DE REFERENCIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5 < X ≤ 6</td>
<td>± 0.05</td>
</tr>
<tr>
<td>6 < X ≤ 30</td>
<td>± 0.1</td>
</tr>
<tr>
<td>30 < X ≤ 120</td>
<td>± 0.15</td>
</tr>
<tr>
<td>120 < X ≤ 315</td>
<td>± 0.2</td>
</tr>
<tr>
<td>315 < X ≤ 1000</td>
<td>± 0.3</td>
</tr>
</tbody>
</table>

MATERIAL: E355 D50 x 3mm
ESTRUCTURA: S/SOLDADURA
NORMA: -
CANTIDAD: 1
PESO: 107Kg

ACABADO SUPERFICIAL: -

PROYECTO: BG-4x4

DESIGNACIÓN: BASTIDOR - TUBO 57 SIMÉTRICO

REFERENCIA: BG-1105

NOTAS:
CORTAR SEGÚN MODELO 3D CAD

MARCAR REFERENCIAS
(SIN CORTAR)

0.5 < X ≤ 6 ± 0.05
6 < X ≤ 30 ± 0.1
30 < X ≤ 120 ± 0.15
120 < X ≤ 315 ± 0.2
315 < X ≤ 1000 ± 0.3

MATERIAL: E355 D50x3mm EST. FRIO - S/SOLDADURA
NORMA: - CALIENTE: 1 PESO: 2.1Kg
ACABADO SUPERFICIAL: -

DENOMINACIÓN: BASTIDOR - TUBO 66 SIMÉTRICO
REFERENCIA: BG-1111 NOTA: A
CORTAR SEGÚN
MODELO 3D CAD

MARCAR REFERENCIAS
(SIN CORTAR)
CORTAR SEGÚN MODELO 3D CAD

MARCAR REFERENCIAS (SIN CORTAR)

BASTIDOR - TUBO 72

BG-1116
CORTAR SEGÚN MODELO 3D CAD

MARCAR REFERENCIAS (SIN CORTAR)

0.5 < X ≤ 6 ± 0.05
6 < X ≤ 30 ± 0.1
30 < X ≤ 120 ± 0.15
120 < X ≤ 315 ± 0.2
315 < X ≤ 1000 ± 0.3

MATERIAL: E355 D50x3mm EST. FRIO - S/SOLDADURA

PESO: 199Kg

PROYECTO: BG-4x4

BASTIDOR - TUBO 75

REFERENCIA: BG-1114
CORTAR SEGÚN MODELO 3D CAD

MARCAR REFERENCIAS (SIN CORTAR)

BASTIDOR - TUBO 66
CORTAR SEGÚN MODELO 3D CAD

MARCAR REFERENCIAS (SIN CORTAR)

15/09/2017

BASTIDOR - TUBO 80

BG-1119 A
CORTAR SEGÚN MODELO 3D CAD

VISTA POR A
ESCALA 1:10

MARCAR REFERENCIAS (SIN CORTAR)

<table>
<thead>
<tr>
<th>TOLERANCIAS LINEALES NO NOTICIAS</th>
<th>PIEZA DE REFERENCIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5 < X ≤ 6</td>
<td>E355 D50x3mm ESTRIO - S/SOLDADURA</td>
</tr>
<tr>
<td>6 < X ≤ 30</td>
<td>MATERI AL</td>
</tr>
<tr>
<td>30 < X ≤ 120</td>
<td>2.47Kg</td>
</tr>
<tr>
<td>120 < X ≤ 315</td>
<td></td>
</tr>
<tr>
<td>315 < X ≤ 1000</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NORMA</th>
<th>CANTIDAD</th>
<th>PESO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SERIE</th>
<th>ÓRDEN</th>
<th>EQ.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>A4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PROYECTO</th>
<th>ESCALA</th>
</tr>
</thead>
<tbody>
<tr>
<td>BG-4x4</td>
<td>1/10</td>
</tr>
</tbody>
</table>

BASTIDOR - TUBO 65

BG-1107 A
MARCAR REFERENCIAS (SIN CORTAR)

CORTAR SEGÚN MODELO 3D CAD

0.5 < X ≤ 6 \pm 0.05
6 < X ≤ 30 \pm 0.1
30 < X ≤ 120 \pm 0.15
120 < X ≤ 315 \pm 0.2
315 < X ≤ 1000 \pm 0.3

MATERIAL:
E355 D50x3mm ESTIRO - S/SOLDADURA

NORMA: -
CANTIDAD: 2
PESO: 0.34 kg

ACABADO SUPERFICIAL: -

PROYECTO: BG-4x4

DESIGNACIÓN: A4
Escala: 12

BASTIDOR - TUBO 33

REFERENCIA: BG-1123
MODELO: A
CORTAR SEGÚN MODELO 3D CAD

MARCARREFERENCIAS
(SIN CORTAR)

0.5 < X ≤ 6 ± 0.05
6 < X ≤ 30 ± 0.1
30 < X ≤ 120 ± 0.15
120 < X ≤ 315 ± 0.2
315 < X ≤ 1000 ± 0.3

MATERIAL: E355 D50x3mm ESTFIRIO - S/SOLDADURA

PROYECTO: BG-4X4

DESIGNACIÓN: BASTIDOR - TUBO 84

REFERENCIA: BG-1125

SISTEMA (AD)
MARCAR REFERENCIAS (SIN CORTAR)

CORTAR SEGÚN MODELO 3D CAD

BASTIDOR - TUBO 37

BG-1131 A
CORTAR SEGÚN MODELO 3D CAD

MARCAR REFERENCIAS (SIN CORTAR)

0.5 < X ≤ 6
6 < X ≤ 30
30 < X ≤ 120
120 < X ≤ 315
315 < X ≤ 1000

E355 D50x3mm ESTRIO - S/SOLDADURA

MATERIAL
NORMA -

ACABADO SUPERFICIAL

PROYECTO

BG-4x4

BASTIDOR - TUBO 84 SIMÉTRICO

REQUISITOS: 1

 Referencia: BG-1134

UNIDAD: 12

Diagrama en escala A4
BASTIDOR - TUBO 78 SIMÉTRICO

MATERIAL: E355 D50x3mm ESTRECHO - S/SOLDADURA

TOLEDANZAS LÍNEALES NO MEDIDAS

<table>
<thead>
<tr>
<th>Intervalo</th>
<th>Tolerancia</th>
<th>Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5 < X ≤ 6</td>
<td>±0.05</td>
<td>E355 D50x3mm ESTRECHO</td>
</tr>
<tr>
<td>6 < X ≤ 30</td>
<td>±0.1</td>
<td></td>
</tr>
<tr>
<td>30 < X ≤ 120</td>
<td>±0.15</td>
<td></td>
</tr>
<tr>
<td>120 < X ≤ 315</td>
<td>±0.2</td>
<td></td>
</tr>
<tr>
<td>315 < X ≤ 1000</td>
<td>±0.3</td>
<td></td>
</tr>
</tbody>
</table>

PESO: 129 Kg

PROYECTO: BG-4x4
<table>
<thead>
<tr>
<th>ORLADO</th>
<th>FECHA</th>
<th>NOMBRE</th>
<th>TOLE. INE. NO HICIERON</th>
<th>PIEZA DE REFERENCIA</th>
<th>MATERIA</th>
<th>NORMA</th>
<th>CANTIDAD</th>
<th>PESO</th>
<th>REFERENCIA</th>
<th>NIVEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>JD MUÑOZ</td>
<td>15/09/2017</td>
<td>-</td>
<td>0.5 < X ≤ 6 ± 0.05</td>
<td>E355 D50x3mm ESTR FIO - S/SOLDADURA</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>0.51Kg</td>
<td>BG-1129</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6 < X ≤ 30 ± 0.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>30 < X ≤ 120 ± 0.15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>120 < X ≤ 315 ± 0.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>315 < X ≤ 1000 ± 0.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DESIGNACIÓN: BASTIDOR - TUBO 77

PROYECTO: BG-4x4

ESCALA: A4

PESO: 0.51Kg

REFERENCIA: BG-1129 A

NOTAS: MARCAR REFERENCIAS (SIN CORTAR)

CORTAR SEGÓN MODELO 3D CAD
CORTAR SEGÚN MODELO 3D CAD

MARCAR REFERENCIAS (SIN CORTAR)

TOL.ÍANICAS IDEALES NO NORMANDAS

<table>
<thead>
<tr>
<th>INTERVALO</th>
<th>TOL.ÍANICA</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5 < X ≤ 6</td>
<td>± 0.05</td>
</tr>
<tr>
<td>6 < X ≤ 30</td>
<td>± 0.1</td>
</tr>
<tr>
<td>30 < X ≤ 120</td>
<td>± 0.15</td>
</tr>
<tr>
<td>120 < X ≤ 315</td>
<td>± 0.2</td>
</tr>
<tr>
<td>315 < X ≤ 1000</td>
<td>± 0.3</td>
</tr>
</tbody>
</table>

MATERIAL:
E355 D50 x 3mm ESTRUCTURAL - S/SOLDADURA

BASTIDOR - TUBO 81

BG-1120
CORTAR SEGÚN
MODELO 3D CAD

MARCAR REFERENCIAS
(SIN CORTAR)

D31

BG-188

325

Ø 50

25

DIA. 15/09/2017
JD MUÑOZ

BASTIDOR - TUBO 80 SIMÉTRICO

BG-1138

MATERIAL:
E355 D50x3mm ESTFRO - SISOLDADURA

IMP资本主义

DEFINICIÓN
BG-4x4

PIÉCE DE REFERENCIA

PEGA: 1

CONJUNTO: 1

106Kg

MÉTRICA

UNIDAD

MES

NÚMERO

NÚMERO

UNIDAD

MES

NÚMERO

NÚMERO

0.5 < X ≤ 6
± 0.05

6 < X ≤ 30
± 0.1

30 < X ≤ 120
± 0.15

120 < X ≤ 315
± 0.2

315 < X ≤ 1000
± 0.3

NORMA
-
BASTIDOR - TUBO 85 SIMÉTRICO

<table>
<thead>
<tr>
<th>F</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td></td>
<td></td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CORTAR SEGÚN
MODELO 3D CAD

MARCAR REFERENCIAS
(SIN CORTAR)

<table>
<thead>
<tr>
<th>E</th>
<th>FECHA</th>
<th>NOMBRE</th>
<th>TOLERANCIA</th>
<th>UNIDADES</th>
<th>PIEZA DE REFERENCIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>15/09/2017</td>
<td>JD MUÑIZ</td>
<td>0.5 < X ≤ 6</td>
<td>±0.05</td>
<td>E355 D50x3mm ESTFRO - S/SOLDADURA</td>
</tr>
<tr>
<td>A</td>
<td></td>
<td></td>
<td>6 < X ≤ 30</td>
<td>±0.1</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td></td>
<td></td>
<td>30 < X ≤ 120</td>
<td>±0.15</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td></td>
<td></td>
<td>120 < X ≤ 315</td>
<td>±0.2</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td></td>
<td></td>
<td>315 < X ≤ 1000</td>
<td>±0.3</td>
<td></td>
</tr>
</tbody>
</table>

DIMENSIONES

<table>
<thead>
<tr>
<th>E</th>
<th>ESCALA</th>
<th>PROYECTO</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>4</td>
<td>BG-4x4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>REFERENCIA</th>
<th>MODELO</th>
</tr>
</thead>
<tbody>
<tr>
<td>BG-114,0</td>
<td>A</td>
</tr>
</tbody>
</table>
CORTAR SEGÓN MODELO 3D CAD

MARCAR REFERENCIAS (SIN CORTAR)

BASTIDOR - TUBO 79 SIMÉTRICO

MATERIAL: E355 D50x3mm ESTRIFIO - SI/SOLDADURA

NORMA: -

CANTIDAD: 1

PESO: 105Kg

ACABADO SUPERFICIAL: -

PROYECTO: BG-4x4

Escala: A4

DIAMETRO: 50

LARGO: 354.9

ALTURA: 52
CORTAR SEGÚN MODELO 3D CAD

MARCAR REFERENCIAS (SIN CORTAR)

Ø 50

115.6

36

40

BG-H142

BASTIDOR - TUBO 38

BG-1142 A
Tolerancias lineales no indicadas

<table>
<thead>
<tr>
<th>Intervalo</th>
<th>Tolerancia</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5 < X ≤ 6</td>
<td>± 0.05</td>
</tr>
<tr>
<td>6 < X ≤ 30</td>
<td>± 0.1</td>
</tr>
<tr>
<td>30 < X ≤ 120</td>
<td>± 0.15</td>
</tr>
<tr>
<td>120 < X ≤ 315</td>
<td>± 0.2</td>
</tr>
<tr>
<td>315 < X ≤ 1000</td>
<td>± 0.3</td>
</tr>
</tbody>
</table>

Pieza de referencia:

- **Material:** E355 D50x3mm ESTFRI O - S/SOLDADURA
- **Norma:** -
- **Cantidades:** 1
- **Peso:** 0.29Kg
- **Acabado superficial:** -
- **Proyecto:** BG-4x4

Referencia:

- **BG-1143 A

Designación:

- **BASTIDOR - TUBO 39**
MARCAR REFERENCIAS (SIN CORTAR)

CORTAR SEGÚN MODELO 3D CAD

BASTIDOR - TUBO 40
CORTAR SEGÚN MODELO 3D CAD

MARCAR REFERENCIAS (SIN CORTAR)

DIBUJO: 15/09/2017 JD MUÑOZ

|
0.5 < X ≤ 6	± 0.05
6 < X ≤ 30	± 0.1
30 < X ≤ 120	± 0.15
120 < X ≤ 315	± 0.2
315 < X ≤ 1000	± 0.3

MATERIAL: E355 D50x3mm ESTFRIO - S/SOLDADURA

NORMA: - CAJETON: 1 PESO: 0.32Kg

ACABADO SUPERFICIAL: -

PROYECTO: BG-4x4

DESIGNACIÓN: BASTIDOR - TUBO 41

REFERENCIA: BG-1145 NÚM. A

SISTEMA UNI: HMA MASA: HMA
BASTIDOR - TUBO 41 SIMÉTRICO

BG-1146

A1
BASTIDOR - TUBO 41 SIMÉTRICO

BG-1146

A
DEBIDO A LA COMPLICACIÓN DEL DISEÑO SE NOS REQUERÍA MÁS DE UNA HOJA SE DEBE DE MARCAR REFERENCIAS (SIN CORTAR) Y CORTAR SEGÚN MODELO 3D CAD.
MARCAR REFERENCIAS (SIN CORTAR)

CORTAR SEGÚN MODELO 3D CAD

15/09/2017

BASTIDOR - TUBO 38 SIMÉTRICO

BG-1149 A
MARCAR REFERENCIAS (SIN CORTAR)

CORTAR SEGÚN MODELO 3D CAD

DIAMETRO: 50

14.96

17.7

8.7

BASTIDOR - TUBO 37 SIMÉTRICO

BG-4×4

BG-1150 A

ORDEN: A4

ESCALA: 12

MATERIAL: E355 D50x3mm EST. FRI. - S/SOLDADURA

0.5 < X ≤ 6 ± 0.05
6 < X ≤ 30 ± 0.1
30 < X ≤ 120 ± 0.15
120 < X ≤ 315 ± 0.2
315 < X ≤ 1000 ± 0.3

PESO: 0.37 Kg
CORTAR SEGÚN MODELO 3D CAD

MARCAR REFERENCIAS (SIN CORTAR)

DIÁMETRO Ø 50

115.8

45

BG-1148

DIRECCIÓN

BASTIDOR - TUBO 39 SIMÉTRICO

BG-1148

A

Especf. Tubo 39

Especf. 1/2

Especf. 1

Especf. 1 1/2

Especf. 2

Especf. 2 1/2

Especf. 3

Especf. 3 1/2

Especf. 4

Especf. 4 1/2

Especf. 5
<table>
<thead>
<tr>
<th>Tolerancias lineales no marcadas</th>
<th>Pieza de referencia</th>
</tr>
</thead>
<tbody>
<tr>
<td>$0.5 < X \leq 6$</td>
<td>E355 D50 x 3mm ESTFRI0 - SI/SOLDADURA</td>
</tr>
<tr>
<td>$6 < X \leq 30$</td>
<td>0.05</td>
</tr>
<tr>
<td>$30 < X \leq 120$</td>
<td>0.1</td>
</tr>
<tr>
<td>$120 < X \leq 315$</td>
<td>0.15</td>
</tr>
<tr>
<td>$315 < X \leq 1000$</td>
<td>0.2</td>
</tr>
<tr>
<td>$X > 1000$</td>
<td>0.3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MATERIAL</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>NORMA</td>
<td>-</td>
</tr>
<tr>
<td>CARACTER</td>
<td>1</td>
</tr>
<tr>
<td>PESO</td>
<td>0.37Kg</td>
</tr>
</tbody>
</table>

Apuntes
- MARCAR REFERENCIAS (SIN CORTAR)
- CORTAR SEGÚN MODELO 3D CAD

Descripción
- BASTIDOR - TUBO 35 SIMÉTRICO
- BG-1152

Referencia
- BG-4x4
MARCAR REFERENCIAS (SIN CORTAR)

CORTAR SEGÚN MODELO 3D CAD

BASTIDOR - TUBO 36 SIMÉTRICO

MATERIAL: E355 D50 x 3mm

ESPECIFICACIONES:

- 0.5 < X ≤ 6: ± 0.05
- 6 < X ≤ 30: ± 0.1
- 30 < X ≤ 120: ± 0.15
- 120 < X ≤ 315: ± 0.2
- 315 < X ≤ 1000: ± 0.3

PROYECTO: BG-4x4

REFERENCIA: BG-1151
BASTIDOR - TUBO 45 SIMÉTRICO

E355 D50x3mm ESTFRIÓ - S/СOLDADURA

<table>
<thead>
<tr>
<th>DEBIDO</th>
<th>RESEVER</th>
<th>NÚM.</th>
<th>TOLERANCIAS LÍNEALES NO INCIDIDAS</th>
<th>PIEZA DE REFERENCIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5 < X ≤ 6</td>
<td>±0.05</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 < X ≤ 30</td>
<td>±0.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30 < X ≤ 120</td>
<td>±0.15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>120 < X ≤ 315</td>
<td>±0.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>315 < X ≤ 1000</td>
<td>±0.3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MATERIAL
E355 D50x3mm

NORMA -

ÁREA DE SUPERFICIE -

PROYECTO
BG-4x4

NÚMERO
BG-1162

ALTO
A4

ESCALA
1:12

SAZÓN
BASTIDOR - TUBO 45 SIMÉTRICO

FECHA
15/09/2017

NOMBRE
JD MUÑOZ

CORTAR SEGÚN MODELO 3D CAD

MARCAR REFERENCIAS (SIN CORTAR)
ELEGIR UNA ESCALA

0.5 < X ≤ 6 ± 0.05
6 ≤ 30 ± 0.1
30 ≤ 120 ± 0.15
120 ≤ 315 ± 0.2
315 ≤ 1000 ± 0.3

MATERIAL:

E355 D50x3mm ESTRECHO - S/SOLDADURA

NORMA: -

CANTIDAD: 1

MATERIAL SUPERFICIAL: -

PROYECTO:

BG-4x4

DESIGNACIÓN:

BASTIDOR - TUBO 46

BG-1164 A

DIÁMETRO:

50

CORTAR SEGÚN MODELO 3D CAD

MARCAR REFERENCIAS (SIN CORTAR)
CORTAR SEGÚN MODELO 3D CAD

MARCAR REFERENCIAS (SIN CORTAR)

BASTIDOR - TUBO 46 SIMÉTRICO

0.5 < X ≤ 6 ≤ 0.05
6 < X ≤ 30 ≤ 0.1
30 < X ≤ 120 ≤ 0.15
120 < X ≤ 315 ≤ 0.2
315 < X ≤ 1000 ≤ 0.3

MATERIAL: E355 D50 x 3mm ESTFRIO - S/SOLDADURA

NORMA: -
CANTIDAD: 1
PESO: 0.97 Kg

DESIGNACIÓN: A4
PROYECTO: BG-4x4

REFERENCIA: BG-1165
MATERIAL: A
<table>
<thead>
<tr>
<th>Dibujo</th>
<th>Fecha</th>
<th>Nombre</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>15/09/2017</td>
<td>JD Muñoz</td>
</tr>
</tbody>
</table>

Tolerancias, líneas e indicaciones:

<table>
<thead>
<tr>
<th>Rango</th>
<th>Tolerancia</th>
</tr>
</thead>
<tbody>
<tr>
<td>$0.5 < X \leq 6$</td>
<td>± 0.05</td>
</tr>
<tr>
<td>$6 < X \leq 30$</td>
<td>± 0.1</td>
</tr>
<tr>
<td>$30 < X \leq 120$</td>
<td>± 0.15</td>
</tr>
<tr>
<td>$120 < X \leq 315$</td>
<td>± 0.2</td>
</tr>
<tr>
<td>$315 < X \leq 1000$</td>
<td>± 0.3</td>
</tr>
</tbody>
</table>

Pieza de referencia:

- **Material:** E355 D50x3mm ESTRIFO - SI/SOLDADURA
- **Norma:** –
- **Cantidades:** 1
- **Peso:** 0.95Kg
- **Acabado superficial:** –
- **Proyecto:** BG-4x4

Denominación:

- **BASTIDOR - TUBO 45**
- **Referencia:** BG-1166
- **Nivel:** A

Dimensiones:

- Ø 50
- BG-1166
- 283,3
- 59
- 57
- 62

Instrucciones:

- Cortar según modelo 3D CAD
- Marcar referencias (sin cortar)
Marcar referencias (sin cortar)

Cortar según modelo 3D CAD

D355 050x3mm ESTRECHO - S/SOLDADURA

MATERIAL

0.5 < X ≤ 6 ± 0.05
6 < X ≤ 30 ± 0.1
30 < X ≤ 120 ± 0.15
120 < X ≤ 315 ± 0.2
315 < X ≤ 1000 ± 0.3

NORMA -
CARACTER 1
PECHO 158Kg

ACABADO SUPERFICIAL -

BASTIDOR - TUBO 47

DESIGNACIÓN

BG-4x4

PROYEC TO

BG-1167

REF ERENCIA

A

MATERIAL

SISTEMA (AU)

HECHos

NÚMERO
CORTAR SEGÚN MODELO 3D CAD

MARCAR REFERENCIAS (SIN CORTAR)

DIAMETRO Ø 50

0.5 < X ≤ 6 ± 0.05
6 < X ≤ 30 ± 0.1
30 < X ≤ 120 ± 0.15
120 < X ≤ 315 ± 0.2
315 < X ≤ 1000 ± 0.3

MATERIAL
E355 D50x3mm ESTEREO - S/SOLDADURA

NORMA
- CAPTACHO 1
PESO 158Kg

ACABADO SUPERFICIA
-

PROYECTO
BG-4x4

DESIGNACIÓN
BASTIDOR - TUBO 47 SIMÉTRICO

REFERENCE
BG-1168

A
CORTAR SEGÚN MODELO 3D CAD

MARCAR REFERENCIAS
(SIN CORTAR)

0.5 < X ≤ 6 ± 0.05
6 < X ≤ 30 ± 0.1
30 < X ≤ 120 ± 0.15
120 < X ≤ 315 ± 0.2
315 < X ≤ 1000 ± 0.3

MATERIAL:
E355 D50 x 3 mm EST. FRO. - SIS S. S. D. A.

NORMA: -
CARACTER: 1
PESO: 177 Kg

ACABADO SUPERFICIAL: -

PROYECTO: BG-4x4

BASTIDOR - TUBO 82 SIMÉTRICO

BG-1169 A
CORTAR SEGÚN MODELO 3D CAD

MARCAR REFERENCIAS (SIN CORTAR)

0.5 < X ≤ 6 ± 0.05
6 < X ≤ 30 ± 0.1
30 < X ≤ 120 ± 0.15
120 < X ≤ 315 ± 0.2
315 < X ≤ 1000 ± 0.3

MATERIAL:
E355 D50x3mm ESTRECHO - S/SOLDADURA

BASTIDOR - TUBO 82

BG-1170 A
BASTIDOR - TUBO 87 SIMÉTRICO

MATERIAL: E355 D50x3mm ESTRENIO - S/SOLDADURA

0.5 ≤ X ≤ 6 ± 0.05
6 ≤ X ≤ 30 ± 0.1
30 ≤ X ≤ 120 ± 0.15
120 ≤ X ≤ 315 ± 0.2
315 ≤ X ≤ 1000 ± 0.3

REFERENCIA: BG-1175

PROYECTO: BG-4x4

PROPIETARIO: A4

REVISADO: 12

 мероприятия NO HEICIONADAS

MARCAR REFERENCIAS
(SIN CORTAR)

CORTAR SEGÚN
MODELO 3D CAD

Φ 50

135.7
BASTIDOR - TUBO 89 SIMÉTRICO

MATERIAL: E355 D50x3mm ESTRÍO - S/SOLIDADURA

NORMA: -
CANTIDAD: 1
PESO: 0.16Kg

TOLE. LÍNEAS: -
TOLE. AREAS: -

BG-4x4

DESIGNACIÓN: A4
Escala: 1:2

15/09/2017
JD MUÑOZ

0.5 < X ≤ 6 ± 0.05
6 < X ≤ 30 ± 0.1
30 < X ≤ 120 ± 0.15
120 < X ≤ 315 ± 0.2
315 < X ≤ 1000 ± 0.3

CORTAR SEGÚN MODELO 3D CAD

MARCAR REFERENCIA (SIN CORTAR)
<table>
<thead>
<tr>
<th>MATERIALE</th>
<th>E355 D50x3mm ESTFRIO - S/SOLDADURA</th>
</tr>
</thead>
<tbody>
<tr>
<td>NORMA</td>
<td>-</td>
</tr>
<tr>
<td>CANTIDAD</td>
<td>1</td>
</tr>
<tr>
<td>PESO</td>
<td>22Kg</td>
</tr>
</tbody>
</table>

TOLERANCIAS LÍNEALES NO INDICADAS

<table>
<thead>
<tr>
<th>X</th>
<th>Tolerancia</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5 < X ≤ 6</td>
<td>± 0.05</td>
</tr>
<tr>
<td>6 < X ≤ 30</td>
<td>± 0.1</td>
</tr>
<tr>
<td>30 < X ≤ 120</td>
<td>± 0.15</td>
</tr>
<tr>
<td>120 < X ≤ 315</td>
<td>± 0.2</td>
</tr>
<tr>
<td>315 < X ≤ 1000</td>
<td>± 0.3</td>
</tr>
</tbody>
</table>

BASTIDOR - TUBO 90

<table>
<thead>
<tr>
<th>REFERENCIA</th>
<th>BG-1178</th>
</tr>
</thead>
<tbody>
<tr>
<td>MARCA</td>
<td>A</td>
</tr>
</tbody>
</table>
BASTIDOR - TUBO 88

BG-1179

MATERIAL: E355 D50x3mm ESTEREO - S/SOLDADURA

PIEZA DE REFERENCIA: BG-4x4

TOLERANCIAS LÍNEALES NO MARCADA:

- 0.5 < X ≤ 6 ± 0.05
- 6 < X ≤ 30 ± 0.1
- 30 < X ≤ 120 ± 0.15
- 120 < X ≤ 315 ± 0.2
- 315 < X ≤ 1000 ± 0.3

NORMA: -
CANTIDAD: 1
PESO: 0.16Kg

MÁQUINA: -
PROYECTO: -

DESEARROLLO: A4
ESCALA: 1:12

REVISADO: -
REVISION: -

FIRMADO: -
FIRMADO: -