Estudio de viabilidad económica para almacenamiento de energía eléctrica en acumuladores electroquímicos.

TRABAJO FIN DE GRADO

GRADO EN INGENIERÍA ELÉCTRICA

Autor: Antonio Andreo Pérez
Director: Juan Martínez Tudela
Codirector: Javier Molina Vilaplana

Cartagena, Septiembre 2016
Agradecimientos

A mis directores de proyecto por su gran ayuda y asesoramiento.

A mis compañeros de piso, cuya alegría y aporte de motivación resultan absolutamente imprescindibles.

Y fundamentalmente a mi familia, el gran apoyo gracias al cual he podido conseguir esta gran meta, la finalización de mis estudios de grado.
ÍNDICE

1. INTRODUCCIÓN ..5
 1.1. ¿Qué es una batería o acumulador de plomo ácido y de qué se componen?5
 1.1.1 Componentes de la batería de plomo ácido ...5
 1.1.2 Funcionamiento de la batería ...7
 1.1.3 Clasificación y tipos de baterías ..7
 1.2. ¿Qué es y cómo funciona Stateflow? ...9
 1.2.1 Creación de un modelo con stateflow (simulink) ...12
2. OBJETIVO DEL PROYECTO ..13
 2.1. Resumen ..13
 2.2. Función de Simulink y Stateflow ...14
3. MEMORIA ...15
 3.1. Memoria descriptiva ..15
 3.1.1 Localización ..15
 3.1.2 Inventariado de la maquinaria del proceso productivo, cuantificación de los consumos eléctricos y determinación de las horas de duración de los mismos ...16
 3.1.3 Determinación de los elementos de la instalación ...18
 3.1.3.1 Elección de las baterías ...18
 3.1.3.2 Elección del cargador de baterías ..19
 3.1.3.3 Elección de los inversores ..20
 3.1.3.4 Elección de los conductores y protecciones ..22
 - Características de la instalación: ..23
 - Origen de la instalación ...23
 - Cuadro general de distribución ..23
 - Instalación de puesta a tierra ...25
 3.1.3.5 Cuadros eléctricos ..26
 - Elección de la envolvente y su contenido para el inversor cargador27
 - Envolvente elegida ..27
 - Elementos de la envolvente ..28
 3.1.3.6 Contactores elegidos ..30
 3.1.4 Elección de la tarifa eléctrica ...31
 3.1.5 Esquema explicativo de funcionamiento de la instalación mediante Fluidsim33
 3.1.6 Elemento regulador simulado a través de Stateflow ...40
3.1.6.1 Funcionamiento interno del modelo de batería ... 44
 - Modelo de plomo-ácido ... 45
3.1.6.2 Funcionamiento interno del bloque chart de Stateflow ... 46
3.1.6.3 Comprobación de los resultados en Simulink ... 51
3.2. Cálculos justificativos .. 57
 3.2.1 Cálculo de las baterías ... 57
 3.2.2 Cálculo del cargador de baterías ... 59
 3.2.3 Cálculo de los inversores ... 59
 3.2.4 Criterios aplicados y bases de cálculo para los conductores .. 60
 - Intensidad máxima admisible .. 60
 - Caída de tensión .. 60
 3.2.5 Cálculos de secciones y protecciones .. 63
 - Sección de las líneas ... 63
 - Cálculo de los dispositivos de protección ... 65
 - Cálculos de puesta a tierra ... 71
 3.2.6 Cálculo de la hipotética facturación eléctrica .. 73
4. PLANOS DE LA INSTALACIÓN .. 79
5. PRESUPUESTO .. 85
ANEXO 1: SEGURIDAD EN EL MANEJO DE LOS ACUMULADORES 86
ANEXO 2: MANTENIMIENTO DE LOS ACUMULADORES .. 92
ANEXO 3: MEDIOAMBIENTE Y GESTIÓN DE LOS DESECHOS ... 92
ANEXO 4: ESTUDIO DE VIABILIDAD ... 95
ANEXO 5: GLOSARIO DE IMÁGENES Y TABLAS .. 96
 - Especificaciones técnicas de los elementos de la instalación .. 96
ANEXO 6: BIBLIOGRAFÍA .. 102
1. INTRODUCCIÓN

1.1. ¿Qué es una batería o acumulador de plomo ácido y de qué se componen?
Una batería o acumulador eléctrico es un dispositivo electroquímico que permite almacenar energía en forma química mediante el proceso de carga, y liberarla como energía eléctrica, durante la descarga, mediante reacciones químicas reversibles cuando se conecta con un circuito de consumo externo.
Todas las baterías son similares en su construcción y están formadas por un número de celdas compuestas de electrodos positivos y negativos, separadores y de electrolito. El tamaño, el diseño interno y los materiales utilizados controlan la cantidad de energía disponible de cada celda.

El tipo de acumulador más usado en la actualidad, dado su bajo costo, es la batería de plomo ácido. En ella, los dos electrodos están hechos de plomo y el electrolito es una solución de agua destilada y ácido sulfúrico.
Las baterías de plomo ácido usadas corresponden a baterías que no son susceptibles de recarga o que no son utilizables a consecuencia de rotura, corte, desgaste o cualquier otro motivo. Estas baterías contienen componentes potencialmente contaminantes, lo cual hace necesario establecer medidas para su manejo adecuado una vez que termine su vida útil.

1.1.1 Componentes de la batería de plomo ácido
A continuación, se representa una batería de plomo ácido, donde se distinguen los siguientes componentes:

![Diagrama de la batería de plomo ácido]
• **Electrolito:** Solución diluida de ácido sulfúrico en agua (33,5% aproximadamente) que puede encontrarse en tres estados: líquido, gelificado o absorbido.

• **Placas o electrodos:** Estas se componen de la materia activa y la rejilla. La materia activa que rellena las rejillas de las placas positivas es dióxido de plomo, en tanto la materia activa de las placas negativas es plomo esponjoso. En estas últimas también se emplean pequeñas cantidades de sustancias tales como sulfato de bario, negro de humo y lignina. Se distinguen las placas Planté y las placas empastadas; estas últimas pueden ser planas o tubulares.

• **Rejillas:** La rejilla es el elemento estructural que soporta la materia activa. Su construcción es a base de una aleación de plomo con algún agente endurecedor como el antimonio o el calcio. Otros metales como el arsenico, el estaño, el selenio y la plata son también utilizados en pequeñas cantidades en las aleaciones. Las rejillas se fabrican en forma plana o tubular.

• **Separadores:** Los separadores son elementos de material microporoso que se colocan entre las placas de polaridad opuesta para evitar un corto circuito. Entre los materiales utilizados en los separadores tipo hoja se encuentran los celulósicos, los de fibra de vidrio y los de PVC. Los materiales utilizados en los separadores tipo sobre son poliméricos siendo el más utilizado el PE.

• **Carcasa:** Es fabricada generalmente de PP y en algunos casos de ebonita (caucho endurecido); en algunas baterías estacionarias se utiliza el estireno acrilonitrilo (SAN) que es transparente y permite ver el nivel del electrolito. En el fondo de la carcasa o caja hay un espacio vacío que actúa como cámara colectora de materia activa que se desprende de las placas.

• **Conectores:** Piezas destinadas a conectar eléctricamente los elementos internos de una batería; están hechos con aleaciones de plomo-antimonio o plomo-cobre.

• **Terminales:** Bornes o postes de la batería a los cuales se conecta el circuito externo. Generalmente las terminales se fabrican con aleaciones de plomo.

Los acumuladores de plomo tienen numerosas aplicaciones y sus pesos abarcan, por ejemplo, desde 0,3 kg (baterías para sistemas de alimentación ininterrumpida) hasta 10.000 kg (banco de baterías que proporcionan energía de respaldo a equipos de telecomunicaciones). Las de mayor consumo en número son las baterías de automóviles que pesan en promedio 18 kg.
1.1.2 Funcionamiento de la batería

Cuando la batería está cargada, el electrodo positivo tiene un depósito de dióxido de plomo y el electrodo negativo de plomo. En la descarga se produce la disociación del ácido sulfúrico de manera que el dióxido de plomo y el plomo se transforman gradualmente en sulfato de plomo. También se forma agua, con lo cual el electrolito va disminuyendo su densidad y quedando menos ácido. De esta manera, cuando el acumulador está descargado, la masa activa de las placas es en gran parte sulfato de plomo y el electrolito está constituido por una disolución de ácido sulfúrico, cuya densidad ha disminuido aproximadamente desde 1,28 g/cm³ a 1,10 g/cm³.

Durante la carga, el paso de la corriente hace que en las placas se produzca la disociación del sulfato de plomo, mientras que en el electrolito se produce la electrólisis del agua conduciendo a la liberación de hidrógeno y oxígeno, y la consiguiente disminución del volumen de agua. En esta situación el sulfato de plomo de la placa positiva se transforma en dióxido de plomo y el de la placa negativa en plomo; además se forma ácido sulfúrico nuevamente y aumenta la densidad del electrolito.

1.1.3 Clasificación y tipos de baterías

Las baterías se clasifican según su aplicación o según su construcción.

Según su uso, las baterías de plomo ácido se clasifican en:

- **Baterías de arranque o SLI**: diseñadas especialmente para arrancar los motores de combustión, son utilizadas en automóviles, camiones, motos, tractores, embarcaciones y aeronaves, entre otros. Las baterías de arranque están diseñadas para suministrar gran intensidad de corriente en pocos segundos y resistir profundidades de descarga no mayores del 10-20%.

- **Baterías de tracción**: especialmente construidas para suministrar energía a vehículos eléctricos tales como grúas horquillas, apiladores eléctricos, carros de golf y sillas de ruedas. Las baterías de tracción están diseñadas para suministrar cantidades relativamente bajas de corriente por largos períodos de tiempo, soportando un elevado número de ciclos profundos de carga y descarga.

- **Baterías estacionarias o de reserva**: diseñadas para aplicaciones en sistemas de alarma de incendios, alumbrado de emergencia, sistemas de alimentación ininterrumpida (o UPS) y telecomunicaciones, entre otros. Las baterías estacionarias están constantemente siendo cargadas (carga de flotación) para compensar la pérdida de capacidad debido a la autodescarga, y están construidas para resistir descargas profundas esporádicas.
Alternativamente, se pueden clasificar en baterías de arranque y baterías de ciclo profundo, siendo estas últimas aquellas que están especialmente diseñadas para soportar un alto número de descargas de hasta un 80%.

Las baterías “marinas” son un híbrido entre ambos tipos de batería.

Según la tecnología de fabricación empleada, se distinguen:

• **Batería abierta o ventilada**: Las baterías abiertas son las más convencionales y se caracterizan por tener orificios de acceso a su interior con tapones removibles, los cuales permiten la verificación del nivel y gravedad específica del electrolito, la eventual reposición del agua perdida, y que los gases producidos en su interior pueden escapar a la atmósfera. Invariablemente, el electrolito en estas baterías se encuentra en estado líquido.

Las baterías abiertas, dependiendo del fabricante, pueden suministrarse en las siguientes condiciones: cargadas y llenas con electrolito o cargadas y secas (sin electrolito). Las baterías abiertas de plomo calcio son clasificadas como “libre mantenimiento” y las de plomo selenio como “bajo mantenimiento”.

• **Batería sellada o regulada por válvula (VRLA)**: Batería en la que el escape de los gases producidos por la electrólisis del electrolito es controlado automáticamente por una válvula sensitiva a la presión. Las baterías selladas emplean placas de plomo calcio y son de “libre mantenimiento” (SMF) o “sin mantenimiento”. Según el estado en que se encuentre el electrolito, las baterías selladas se clasifican en: baterías de gel y baterías de electrolito absorbido (o AGM).

Las baterías de recombinación (de gel o AGM) son aquellas donde, mediante un proceso electroquímico, el oxígeno y el hidrógeno producidos internamente vuelven a combinarse formando agua para reincorporarse de nuevo a su celda; la recombinación tiene típicamente una eficiencia del 99%, luego casi no hay pérdida de agua.

Las baterías selladas ofrecen algunas ventajas técnicas sobre las abiertas, tales como la ausencia de fugas de electrolito, mínima emisión de gases, nula posibilidad de contaminación del electrolito y bajos requerimientos de mantenimiento. Sin embargo, también presentan limitaciones tales como un menor número de ciclos, la imposibilidad de reponer el agua perdida por exceso de sobrecarga, la imposibilidad de verificar en forma confiable su estado de carga, y en algunos casos su mayor sensibilidad a la temperatura de operación.
1.2. ¿Qué es y cómo funciona Stateflow?

Stateflow es una librería de Matlab que permite modelar sistemas de eventos discretos dentro de Simulink, utilizando cartas de estado (statecharts).

Las cartas de estado fueron introducidas por David Harel (Harel, 1987) y son una generalización de las máquinas de estados. La librería de Stateflow posee un único elemento o bloque, denominado Chart, que sirve para representar un sistema de eventos discretos. El bloque Chart se puede conectar con otros bloques de Simulink, de tiempo continuo o discreto, para formar modelos de sistemas híbridos que pueden ser muy útiles en la investigación del comportamiento de tales sistemas mediante simulación.

Una carta de estados (statechart) es un gráfico formado por elementos gráficos sobre los que van escritos ciertos elementos de texto escritos en un lenguaje especial. Entre ellos, hay unos elementos de texto especiales que son los datos y los eventos. La carta es como la hoja de papel en la que se representan los elementos. Cada carta representa un sistema de eventos discretos y constituye un bloque de Simulink que puede conectarse con otras cartas o con otros bloques de Simulink.

Elementos gráficos

- Estados
- Transiciones
- Uniones

Elementos de texto

- Datos
- Eventos

Estados

Los estados tienen forma de rectángulo con los bordes redondeados y representan estados (a veces llamados modos o fases) del sistema de eventos discretos. No debemos confundir estos estados con los estados del clásico modelo de estado de un sistema de control. Los estados aquí considerados representan los modos o formas de evolución del sistema al reaccionar frente a los eventos.

Junto a la esquina superior izquierda, cada rectángulo lleva un texto con un nombre que idéntica al estado. Tras el nombre del estado y el separador opcional "/", pueden aparecer otros textos indicando las acciones que llevará a cabo el sistema cuando esté en ese estado. La sintaxis de Stateflow permite especificar el instante en que se iniciará la acción y la duración de ésta:
• **entry:** la acción se inicia al entrar en este estado.
• **exit:** la acción se inicia al salir de este estado.
• **during:** la acción se inicia al entrar en este estado y permanece activa durante el tiempo que dura el estado.
• **on event e:** La acción se inicia si, estando en este estado, se produce el evento e. Posibles acciones son cambiar el valor de una salida o efectuar una llamada a una función de Matlab.

![Diagrama de estados y transiciones](attachment:diagrama.png)

Un estado puede contener otros estados, o subestados, dentro de s. Entonces dicho estado se llama estado padre, o súper estado, y los subestados se llaman estados hijos. Hay dos posibles formas de descomposición de un estado (padre) en subestados (hijos). Un estado (padre) tiene descomposición AND si los estados hijos se activan simultáneamente al activarse el estado padre y entonces los estados hijos se marcan con línea discontinua.

Un estado (padre) tiene descomposición OR (exclusiva) si únicamente puede estar activo uno de los estados hijos al activarse el estado padre y entonces los estados hijos se marcan con línea continua.

Transiciones
Las transiciones tienen forma de flecha y representan las transiciones o saltos entre estados, asociados a eventos, que se producen en el sistema de eventos discretos. Cada transición representa un evento e del sistema y se dibuja como una flecha que va desde el borde de un estado S1 hasta el borde de otro estado S2. Si el sistema está en el estado S1 y se produce el evento e, entonces el sistema pasa al estado S2. El disparo de una transición puede implicar la ejecución de una o más acciones.
Una transición especial es la llamada transición por defecto (default-transition), que sirve para señalar el estado inicial del sistema, es decir, el primer estado en el que entrara el sistema al iniciar su evolución, y también el estado hijo inicial dentro de un estado padre.

Se reconoce por su forma ya que en el extremo opuesto a la derecha lleva un pequeño círculo negro.

Cada transición puede tener un texto escrito junto a ella que indica el evento que ha de producirse para que se dispare la transición, así como las acciones que entonces el sistema ejecutará. Este texto se divide en tres partes, todas ellas opcionales:

- \textbf{e} (en donde e es el nombre de un evento): la transición se dispara al producirse el evento.

- \textbf{e en el sistema}. Si no hay nombre de evento entonces la transición se disparara ante cualquier evento del sistema.

- \textbf{[C]} (en donde c es una condición): la transición se dispara si la condición c (expresión booleana) es verdadera y se produce el evento e. Si esta parte no existe, se asume que C es cierta. Si la parte e del texto no existe, se disparará, bajo la misma condición, siempre y cuando se produzca un evento cualquiera en el sistema.

Uniones

Las uniones tienen forma de pequeño círculo. Hay dos tipos de uniones: uniones conectivas (connective junctions) y uniones de historia (history junctions).

Las uniones conectivas son puntos de bifurcación de la carta de estados y representan puntos de decisión del sistema de eventos discretos. Permiten conectar una transición de entrada con varias transiciones de salida. Su empleo puede a veces simplificar la carta de estados y hacer que el código generado sea más eficiente.
1.2.1 Creación de un modelo con stateflow (simulink)

- Entrada de Simulink
- Salida de Simulink
- Dato Local
- Constante
- Dato temporal
- Workspace

Los datos declarados como entrada o salida de Simulink generan automáticamente una entrada o una salida en el bloque Chart creado por Stateflow en Simulink. Los de los tipos local, constante y temporal pueden definirse para toda la carta o dentro de un estado individual.

Los datos temporales son solo válidos mientras el estado padre se está ejecutando y son reinicializados cada vez que éste se activa. El tipo workspace es una construcción especial que permite utilizar el entorno de trabajo (workspace) de Matlab para compartir datos a través de toda la simulación.

Los datos por defecto, se almacenan en memoria en formato doble de C pero se puede cambiar a otros formatos. Cada dato tiene asociado un valor inicial y un intervalo de posibles valores.

A continuación, se muestra un ejemplo de archivo de simulink con la integración de un bloque chart de stateflow:
2. OBJETIVO DEL PROYECTO

2.1. Resumen

La dificultad para almacenar la energía eléctrica en grandes cantidades obliga al sistema eléctrico a generar en cada momento la cantidad exacta de energía eléctrica que previsionalmente se va a consumir, la cual viene determinada por la curva de carga diaria prevista.

La demanda de energía eléctrica debido a los hábitos de consumo es variable en el tiempo, concentrándose en unas pocas horas denominadas horas punta grandes consumos, por el contrario en las horas denominadas valle el consumo desciende considerablemente, estos fuertes desequilibrios motivan la existencia de diferentes precios de la electricidad en las 24 horas de un día, ya que con el fin de equilibrar la curva de carga diaria se penaliza el consumo en horas punta encareciendo el precio del kWh y se bonifica el consumo en horas valle abaratando el precio del kWh.

Con esta estrategia no se consigue equilibrar suficientemente la curva de carga diaria, por lo que las compañías eléctricas recurren a la acumulación mediante centrales de bombeo, convirtiendo la energía eléctrica producida en horas valle en energía potencial gravitatoria, que posteriormente se transformará de nuevo en electricidad en las horas punta, esta solución no es rentable desde el punto de vista energético ya que su rendimiento es negativo, puesto que en la doble transformación se consume más energía que la obtenida en su transformación de gravitatoria a eléctrica, la rentabilidad solamente se justifica por el diferencial de precio del kWh de horas punta respecto del kWh de horas valle.

Los hábitos de consumo no son los únicos que distorsionan los desequilibrios entre producción y demanda, la incorporación en la generación eléctrica de la energía eólica ha aumentado la necesidad de almacenamiento, debido a la circunstancia paradójica de que las mayores velocidades de viento y por tanto las mayores producciones tienen lugar durante la noche, en las horas valle, sobre todo en los meses de marzo y abril, por tanto si no se tiene suficiente capacidad de almacenamiento hay que parar los aerogeneradores, ya que la parada de las centrales convencionales, sobre todo las nucleares suponen unos perjuicios económicos y técnicos difícilmente asumibles.

Tras el planteamiento del problema sobre el equilibrio entre producción y demanda, así como las soluciones que se han dado hasta ahora, este proyecto plantea otra solución, el almacenamiento distribuido. Dicho almacenamiento se hará mediante baterías de ácido plomo, ya que es una tecnología madura y que presenta buenas condiciones de rendimiento y durabilidad en óptimas condiciones de utilización, además en los últimos años, gracias a la proliferación de las instalaciones fotovoltaicas aisladas de la red, se han abaratado mucho los costes de adquisición y mantenimiento de estos acumuladores electroquímicos.

La finalidad de este almacenamiento es abaratar los costes de producción de una empresa cuya actividad y por tanto sus consumos de electricidad tienen lugar durante las horas en las que el precio del kWh alcanza su valor más elevado.
El abaratamiento se conseguirá almacenando la mayor cantidad de energía posible durante las horas valle en las que el precio del kwh es el más bajo, y consumir esa energía almacenada durante el resto de horas en las que el precio es más caro. Con el diferencial de precios se deberá conseguir amortizar la inversión y abaratar los costes de producción, consiguiendo que las unidades de producción sean más competitivas.

Es por tanto el objetivo de este proyecto diseñar dicha instalación, investigar las ventajas y desventajas que este tipo de tecnología presenta y obtener un presupuesto aproximado de los componentes necesarios.

2.2. Función de Simulink y Stateflow

Junto con el estudio mencionado, este proyecto tiene también como objetivo, diseñar un algoritmo mediante el programa de automatización “Stateflow” e integrarlo dentro del entorno de MATLAB, “Simulink”.

La finalidad de todo ello es realizar una demostración de cómo actuaría el componente de regulación del proceso de carga y descarga, mediante la implementación de un modelo matemático capaz de comportarse de forma similar al conjunto de acumuladores de nuestro estudio.

Este componente de regulación gobernaría el acceso de nuestra instalación a la red eléctrica, siendo capaz de conectar inversores cargadores y baterías tanto a las cargas, como a la red, en función del período horario en cada momento y del estado de carga de las baterías fundamentalmente.

Este proyecto se limitará únicamente a la simulación de este componente, conectando el modelo representativo de las baterías con el automatismo de stateflow, pero sin llegar a definir su diseño real, el cual quedaría reflejado en “posibles líneas futuras de investigación” y que estaría formado fundamentalmente por un autómata y diversos sistemas de adquisición de datos.
3. MEMORIA

3.1. Memoria descriptiva

3.1.1 Localización

La instalación sobre la que versa el siguiente proyecto se encuentra en la localidad murciana de San José de la Vega, y pertenece a la empresa FRUTOSANJO S.L, empresa cuya principal ocupación se destina a la comercialización de cítricos.

A continuación se muestran las perspectivas a pie de calle de las instalaciones y su vista aérea:
3.1.2 Inventariado de la maquinaria del proceso productivo, cuantificación de los consumos eléctricos y determinación de las horas de duración de los mismos

Durante este punto, se expondrá en diversas tablas, todo aquel componente de la instalación que necesite de energía eléctrica para llevar a cabo su función dentro de la misma.

De igual forma se expondrá su potencia en kilowatios, el número de horas aproximadamente que dicho aparato es utilizado, y finalmente el consumo de energía en kWh que ello implica siempre teniendo en cuenta el periodo horario que tratamos, esto es, el período de tiempo que los componentes deberían abastecerse a partir de la energía almacenada, como se verá más adelante, en los acumuladores.

Cabe mencionar que, durante el resto del tiempo, es decir, durante el periodo “valle”, la posible maquinaria que siga consumiendo energía lo hará directamente de la red eléctrica general.

Consumos eléctricos de la empresa (Período 8:00 h – 23:59 h):

-Maquinaria

<table>
<thead>
<tr>
<th>Número</th>
<th>Máquina</th>
<th>P (cv)</th>
<th>P (kW)</th>
<th>Horas</th>
<th>Consumo total (kWh)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Calibrador 1</td>
<td>1.5</td>
<td>0.75 x 0.37</td>
<td>9</td>
<td>2.5</td>
</tr>
<tr>
<td>1</td>
<td>Calibrador 2</td>
<td>1</td>
<td>0.75</td>
<td>9</td>
<td>6.75</td>
</tr>
<tr>
<td>1</td>
<td>Enceradora</td>
<td>1.5</td>
<td>1.1</td>
<td>4</td>
<td>4.4</td>
</tr>
<tr>
<td>1</td>
<td>Lavadora Cítricos</td>
<td>1</td>
<td>0.75</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>Secadora</td>
<td>1</td>
<td>0.75</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>Cinta transportadora</td>
<td>1</td>
<td>0.75</td>
<td>9</td>
<td>13.5</td>
</tr>
<tr>
<td>1</td>
<td>Carro Salida de Cajas</td>
<td>1</td>
<td>0.75</td>
<td>9</td>
<td>6.75</td>
</tr>
<tr>
<td>1</td>
<td>Túnel de secado</td>
<td>1.5</td>
<td>1.1</td>
<td>4</td>
<td>4.4</td>
</tr>
<tr>
<td>1</td>
<td>Elevador</td>
<td>1</td>
<td>0.75</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>Flejadora</td>
<td>2</td>
<td></td>
<td>3</td>
<td>6</td>
</tr>
</tbody>
</table>

9.72kW TOTAL 53.3 Kwh

<table>
<thead>
<tr>
<th>Número</th>
<th>Máquina</th>
<th>P.total instalada (W)</th>
<th>P.máxima admisible (W)</th>
<th>P.Simultánea (coef.sim.0.1) (W)</th>
<th>Horas</th>
<th>Consumo total (kWh)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Cámara frigorífica</td>
<td>29474</td>
<td>39282</td>
<td>29474 x 0.1</td>
<td>16</td>
<td>47.16</td>
</tr>
</tbody>
</table>
Componentes Eléctricos (Administración):

<table>
<thead>
<tr>
<th>Número</th>
<th>Máquina</th>
<th>P (W)</th>
<th>Horas</th>
<th>Consumo total (kWh)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Ordenador</td>
<td>320</td>
<td>9</td>
<td>5.76</td>
</tr>
<tr>
<td>1</td>
<td>Impresora</td>
<td>150</td>
<td>9</td>
<td>1.35</td>
</tr>
<tr>
<td>1</td>
<td>Fax</td>
<td>150</td>
<td>9</td>
<td>1.35</td>
</tr>
<tr>
<td>2</td>
<td>Teléfono fijo</td>
<td>25</td>
<td>9</td>
<td>0.45</td>
</tr>
<tr>
<td>1</td>
<td>Ap. Aire Acondicionado</td>
<td>2000</td>
<td>9</td>
<td>18</td>
</tr>
<tr>
<td>1</td>
<td>Modem ADSL</td>
<td>30</td>
<td>16</td>
<td>0.48</td>
</tr>
<tr>
<td></td>
<td>3.02 kW TOTAL</td>
<td></td>
<td></td>
<td>27.39 kWh</td>
</tr>
</tbody>
</table>

Alumbrado:

<table>
<thead>
<tr>
<th>Número</th>
<th>Zona</th>
<th>P (W)</th>
<th>Horas</th>
<th>Consumo total (kWh)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Oficina</td>
<td>60</td>
<td>4</td>
<td>1.2</td>
</tr>
<tr>
<td>8</td>
<td>Alumbrado interior nave</td>
<td>300</td>
<td>9</td>
<td>21.6</td>
</tr>
<tr>
<td></td>
<td>2.7 kW TOTAL</td>
<td></td>
<td></td>
<td>22.8 kWh</td>
</tr>
</tbody>
</table>

El total de energía consumida en la instalación será de:
TOTAL = 53.3 kWh + 47.16 kWh + 27.39 kWh + 22.8 kWh = 150.65 kWh

Y la potencia total simultánea de todos los aparatos eléctricos en la instalación será de:
TOTAL = 9.72 kW + 2.95 kW + 3.02 kW + 2.7 kW = 18.39 kW
3.1.3 Determinación de los elementos de la instalación

3.1.3.1 Elección de las baterías

La batería elegida es la siguiente:

Esta batería es definida por el fabricante como batería estacionaria, con las consiguientes características que poseen este tipo de baterías y que quedaron fielmente expuestas en el primer capítulo de introducción en el apartado de tipos de baterías.

Entre dichas propiedades, destacan para nuestro interés el escaso mantenimiento requerido, la posibilidad de altas descargas y la mayor vida útil que presenta este tipo de baterías.

Un esquema simple de su forma de conexión sería el siguiente:
Se colocarán de esta forma los 50 elementos, dispuestos en conexión serie, dando lugar a un total de 600 V y 660 Ah.

Más adelante en el cálculo del elemento cargador de baterías, se verá que resulta conveniente disponer de estos 50 elementos en serie, con el consiguiente aumento de tensión que ello conlleva y que nos permite que la capacidad necesaria sea menor, por lo que la intensidad que es necesario aplicar para conseguir completar dicha capacidad en 8 horas es sustancialmente menor que empleando tensiones más bajas, donde esta intensidad supera los límites máximos de corriente que pueden soportar tanto las baterías como el elemento cargador a instalar.

3.1.3.2 Elección del cargador de baterías

El cargador de baterías será el encargado de recargar todas y cada una de las baterías de la instalación en tiempo y forma adecuados, según nuestros objetivos.

El cargador de baterías elegido será un inversor cargador reversible de baterías trifásico, como el que puede verse a continuación:
3.1.3.3 Elección de los inversores

El inversor será el aparato encargado de transformar la electricidad procedente de las baterías, cuya onda es continua, a una forma de onda alterna a niveles de tensión que permitan que esta energía pueda ser utilizada por los diversos aparatos y maquinaria descritos anteriormente en nuestra instalación.

Cuyo precio ronda los 39.000 euros.
1º Inversor monofásico:

El inversor a utilizar será el siguiente:

Inversor de Conexión a Red FRONIUS Primo 6.0-1 6kW

Capaz de soportar los 600 V requeridos por nuestras baterías, tal como se indica más adelante en el anexo de especificaciones.

2º Inversor trifásico:

El inversor a utilizar será el siguiente:

Inversor a red trifásico 9000W modelo Sunny Tripower 9000TL-20 de la marca SMA

Siendo este inversor capaz de soportar los 600 V requeridos por nuestras baterías, tal como se indica más adelante en el anexo de especificaciones.
3.1.3.4 Elección de los conductores y protecciones

A continuación, se detallarán el tipo de conductor a colocar en cada parte de la instalación, así como el tipo de contactor necesario para gobernar el circuito mediante el elemento regulador que simularemos con Stateflow.

Estos contactores deberán abrir o cerrar partes del circuito en función del estado de carga de las baterías y del período horario, para impedir que se pueda realizar la carga de las baterías en horario inadecuado y activar las salidas de los inversores elegidos hacia los consumos.

Conductor de conexión entre baterías:

Para este tipo de baterías y, como especifica el fabricante, los conectores para realizar las conexiones entre vasos van incluidos en el paquete de compra de los acumuladores, por lo que el propio fabricante se asegura de su grosor.

Conductor de conexión entre baterías e inversores de consumo:

Qué cable usar para conectar las baterías?

Como indica el fabricante, para realizar las conexiones entre los inversores de consumo y el conjunto de acumuladores necesitamos un cable de 35 mm como el que se muestra a continuación, el cual con sus 160 A de intensidad máxima y 1000 V de tensión máxima cumplen con nuestras necesidades.
Para el cálculo y selección del resto de conductores, así como para las protecciones necesarias en una hipotética instalación a montar, se ha hecho uso del programa de diseño CYPELEC REBT, mediante el cual se han obtenido los siguientes resultados:

- Características de la instalación:

- Origen de la instalación

El origen de la instalación vendrá determinado por una intensidad de cortocircuito trifásica en cabecera de: 12.00 kA.

El tipo de línea de alimentación será: RZ1-K (AS) 5(1x70).

- Cuadro general de distribución

<table>
<thead>
<tr>
<th>Esquemas</th>
<th>Polaridad</th>
<th>P Demandada (kW)</th>
<th>f.d.p</th>
<th>Longitud (m)</th>
<th>Componentes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inversor Cargador</td>
<td>3F+N</td>
<td>50.00</td>
<td>1.00</td>
<td>10.00</td>
<td>Magnetotérmico, Doméstico o análogo (IEC 60898); Ic: 100 A; Icu: 15 kA; Curva: C Limitador de sobretensiones transitorias, Tipo 1+2; Iimp: 100 kA; Usp: 2.5 kV Diferencial, Instantáneo; In: 125.00 A; Sensibilidad: 30 mA; Clase: A Cable, RZ1-K (AS) 5(1x25)</td>
</tr>
<tr>
<td>Alumbrado Nave</td>
<td>F+N</td>
<td>4.00</td>
<td>1.00</td>
<td>30.00</td>
<td>Cable, RZ1-K (AS) 3(1x4)</td>
</tr>
<tr>
<td>Alumbrado Oficina</td>
<td>F+N</td>
<td>1.00</td>
<td>1.00</td>
<td>20.00</td>
<td>Cable, RZ1-K (AS) 3(1x1.5)</td>
</tr>
<tr>
<td>Toma de uso general</td>
<td>F+N</td>
<td>2.00</td>
<td>1.00</td>
<td>15.00</td>
<td>Cable, RZ1-K (AS) 3(1x10)</td>
</tr>
<tr>
<td>Toma de uso general 2</td>
<td>F+N</td>
<td>2.00</td>
<td>1.00</td>
<td>15.00</td>
<td>Cable, RZ1-K (AS) 3(1x10)</td>
</tr>
<tr>
<td>Toma de uso general 3</td>
<td>F+N</td>
<td>2.00</td>
<td>1.00</td>
<td>15.00</td>
<td>Cable, RZ1-K (AS) 3(1x10)</td>
</tr>
<tr>
<td>Toma de uso general 4</td>
<td>F+N</td>
<td>2.00</td>
<td>1.00</td>
<td>15.00</td>
<td>Cable, RZ1-K (AS) 3(1x10)</td>
</tr>
<tr>
<td>Toma Aire Acondicionado</td>
<td>F+N</td>
<td>4.00</td>
<td>1.00</td>
<td>20.00</td>
<td>Cable, RZ1-K (AS) 3(1x10)</td>
</tr>
<tr>
<td>Calibrador 1</td>
<td>3F+N</td>
<td>0.28</td>
<td>1.00</td>
<td>20.00</td>
<td>Cable, RZ1-K (AS) 5(1x1.5)</td>
</tr>
<tr>
<td>Calibrador 2</td>
<td>3F+N</td>
<td>0.75</td>
<td>1.00</td>
<td>20.00</td>
<td>Cable, RZ1-K (AS) 5(1x1.5)</td>
</tr>
<tr>
<td>Enceeradora</td>
<td>3F+N</td>
<td>1.10</td>
<td>1.00</td>
<td>20.00</td>
<td>Cable, RZ1-K (AS) 5(1x1.5)</td>
</tr>
<tr>
<td>Lavadora de cítricos</td>
<td>3F+N</td>
<td>0.75</td>
<td>1.00</td>
<td>20.00</td>
<td>Cable, RZ1-K (AS) 5(1x1.5)</td>
</tr>
<tr>
<td>Secadora</td>
<td>3F+N</td>
<td>0.75</td>
<td>1.00</td>
<td>20.00</td>
<td>Cable, RZ1-K (AS) 5(1x1.5)</td>
</tr>
<tr>
<td>Cinta transportadora 1</td>
<td>3F+N</td>
<td>0.75</td>
<td>1.00</td>
<td>20.00</td>
<td>Cable, RZ1-K (AS) 5(1x1.5)</td>
</tr>
<tr>
<td>Cinta transportadora 2</td>
<td>3F+N</td>
<td>0.75</td>
<td>1.00</td>
<td>20.00</td>
<td>Cable, RZ1-K (AS) 5(1x1.5)</td>
</tr>
<tr>
<td>Carro Salida de Cajas</td>
<td>3F+N</td>
<td>0.75</td>
<td>1.00</td>
<td>20.00</td>
<td>Cable, RZ1-K (AS) 5(1x1.5)</td>
</tr>
<tr>
<td>Túnel de secado</td>
<td>3F+N</td>
<td>1.10</td>
<td>1.00</td>
<td>20.00</td>
<td>Cable, RZ1-K (AS) 5(1x1.5)</td>
</tr>
<tr>
<td>Elevador</td>
<td>3F+N</td>
<td>0.75</td>
<td>1.00</td>
<td>20.00</td>
<td>Cable, RZ1-K (AS) 5(1x1.5)</td>
</tr>
<tr>
<td>Flejadora</td>
<td>3F+N</td>
<td>2.00</td>
<td>1.00</td>
<td>20.00</td>
<td>Cable, RZ1-K (AS) 5(1x1.5)</td>
</tr>
<tr>
<td>Cámara Frigorífica</td>
<td>3F+N</td>
<td>2.95</td>
<td>1.00</td>
<td>30.00</td>
<td>Cable, RZ1-K (AS) 5(1x1.5)</td>
</tr>
</tbody>
</table>
Canalizaciones
La ejecución de las canalizaciones y su tendido se harán de acuerdo con lo expresado en los documentos del presente proyecto.

<table>
<thead>
<tr>
<th>Esquemas</th>
<th>Tipo de instalación</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inversor Cargador</td>
<td>B1: Conductores aislados, pared de madera</td>
</tr>
<tr>
<td></td>
<td>Temperatura: 40.00 °C</td>
</tr>
<tr>
<td></td>
<td>Tubo 50 mm</td>
</tr>
<tr>
<td>Alumbrado Nave</td>
<td>B1: Conductores aislados, pared de madera</td>
</tr>
<tr>
<td></td>
<td>Temperatura: 40.00 °C</td>
</tr>
<tr>
<td></td>
<td>Tubo 20 mm</td>
</tr>
<tr>
<td>Alumbrado Oficina</td>
<td>B1: Conductores aislados, pared de madera</td>
</tr>
<tr>
<td></td>
<td>Temperatura: 40.00 °C</td>
</tr>
<tr>
<td></td>
<td>Tubo 16 mm</td>
</tr>
<tr>
<td>Toma de uso general</td>
<td>B1: Conductores aislados, pared de madera</td>
</tr>
<tr>
<td></td>
<td>Temperatura: 40.00 °C</td>
</tr>
<tr>
<td></td>
<td>Tubo 32 mm</td>
</tr>
<tr>
<td>Toma de uso general 2</td>
<td>B1: Conductores aislados, pared de madera</td>
</tr>
<tr>
<td></td>
<td>Temperatura: 40.00 °C</td>
</tr>
<tr>
<td></td>
<td>Tubo 32 mm</td>
</tr>
<tr>
<td>Toma de uso general 3</td>
<td>B1: Conductores aislados, pared de madera</td>
</tr>
<tr>
<td></td>
<td>Temperatura: 40.00 °C</td>
</tr>
<tr>
<td></td>
<td>Tubo 32 mm</td>
</tr>
<tr>
<td>Toma de uso general 4</td>
<td>B1: Conductores aislados, pared de madera</td>
</tr>
<tr>
<td></td>
<td>Temperatura: 40.00 °C</td>
</tr>
<tr>
<td></td>
<td>Tubo 32 mm</td>
</tr>
<tr>
<td>Toma Aire Acondicionado</td>
<td>B1: Conductores aislados, pared de madera</td>
</tr>
<tr>
<td></td>
<td>Temperatura: 40.00 °C</td>
</tr>
<tr>
<td></td>
<td>Tubo 32 mm</td>
</tr>
<tr>
<td>Calibrador 1</td>
<td>B1: Conductores aislados, pared de madera</td>
</tr>
<tr>
<td></td>
<td>Temperatura: 40.00 °C</td>
</tr>
<tr>
<td></td>
<td>Tubo 16 mm</td>
</tr>
<tr>
<td>Calibrador 2</td>
<td>B1: Conductores aislados, pared de madera</td>
</tr>
<tr>
<td></td>
<td>Temperatura: 40.00 °C</td>
</tr>
<tr>
<td></td>
<td>Tubo 16 mm</td>
</tr>
<tr>
<td>Enceradora</td>
<td>B1: Conductores aislados, pared de madera</td>
</tr>
<tr>
<td></td>
<td>Temperatura: 40.00 °C</td>
</tr>
<tr>
<td></td>
<td>Tubo 16 mm</td>
</tr>
<tr>
<td>Lavadora de cítricos</td>
<td>B1: Conductores aislados, pared de madera</td>
</tr>
<tr>
<td></td>
<td>Temperatura: 40.00 °C</td>
</tr>
<tr>
<td></td>
<td>Tubo 16 mm</td>
</tr>
<tr>
<td>Secadora</td>
<td>B1: Conductores aislados, pared de madera</td>
</tr>
<tr>
<td></td>
<td>Temperatura: 40.00 °C</td>
</tr>
<tr>
<td></td>
<td>Tubo 16 mm</td>
</tr>
<tr>
<td>Cinta transportadora 1</td>
<td>B1: Conductores aislados, pared de madera</td>
</tr>
<tr>
<td></td>
<td>Temperatura: 40.00 °C</td>
</tr>
<tr>
<td></td>
<td>Tubo 16 mm</td>
</tr>
<tr>
<td>Cinta transportadora 2</td>
<td>B1: Conductores aislados, pared de madera</td>
</tr>
<tr>
<td></td>
<td>Temperatura: 40.00 °C</td>
</tr>
<tr>
<td></td>
<td>Tubo 16 mm</td>
</tr>
<tr>
<td>Carro Salida de Cajas</td>
<td>B1: Conductores aislados, pared de madera</td>
</tr>
<tr>
<td></td>
<td>Temperatura: 40.00 °C</td>
</tr>
<tr>
<td></td>
<td>Tubo 16 mm</td>
</tr>
</tbody>
</table>
Esquemas

<table>
<thead>
<tr>
<th>Esquemas</th>
<th>Tipo de instalación</th>
</tr>
</thead>
<tbody>
<tr>
<td>Túnel de secado</td>
<td>B1: Conductores aislados, pared de madera</td>
</tr>
<tr>
<td></td>
<td>Temperatura: 40.00 °C</td>
</tr>
<tr>
<td></td>
<td>Tubo 16 mm</td>
</tr>
<tr>
<td>Elevador</td>
<td>B1: Conductores aislados, pared de madera</td>
</tr>
<tr>
<td></td>
<td>Temperatura: 40.00 °C</td>
</tr>
<tr>
<td></td>
<td>Tubo 16 mm</td>
</tr>
<tr>
<td>Flejadora</td>
<td>B1: Conductores aislados, pared de madera</td>
</tr>
<tr>
<td></td>
<td>Temperatura: 40.00 °C</td>
</tr>
<tr>
<td></td>
<td>Tubo 16 mm</td>
</tr>
<tr>
<td>Cámara Frigorífica</td>
<td>B1: Conductores aislados, pared de madera</td>
</tr>
<tr>
<td></td>
<td>Temperatura: 40.00 °C</td>
</tr>
<tr>
<td></td>
<td>Tubo 16 mm</td>
</tr>
</tbody>
</table>

Instalación de puesta a tierra

La instalación de puesta a tierra de la obra se efectuará de acuerdo con la reglamentación vigente, concretamente lo especificado en el Reglamento Electrotécnico para Baja Tensión en su Instrucción 18, quedando sujeta a la misma las tomas de tierra y los conductores de protección.

La resistencia de un electrodo depende de sus dimensiones, de su forma y de la resistividad del terreno.

El tipo y profundidad de enterramiento de las tomas de tierra deben ser tales que la posible pérdida de humedad del suelo, la presencia de hielo u otros efectos climáticos, no aumenten la resistencia de la toma de tierra por encima del valor previsto. La profundidad nunca será inferior a 0.5 m. Además, en los lugares en los que exista riesgo continuado de heladas, se recomienda una profundidad mínima de enterramiento de la parte superior del electrodo de 0.8 m.

ESQUEMA DE CONEXIÓN A TIERRA

La instalación está alimentada por una red de distribución según el esquema de conexión a tierra TT (-neutro a tierra).

RESISTENCIA DE LA PUESTA A TIERRA DE LAS MASAS

Las características del terreno son las que se especifican a continuación:

- **Constitución:** Terreno sin especificar
- **Resistividad:** 15.00 Ω

RESISTENCIA DE LA PUESTA A TIERRA DEL NEUTRO

Las características del terreno son las que se especifican a continuación:

- **Constitución:** Terreno sin especificar
- **Resistividad:** 10.00 Ω
TOMA DE TIERRA
No se especifica.

CONDUCTORES DE PROTECCIÓN
Los conductores de protección discurrirán por la misma canalización sus correspondientes circuitos y presentarán las secciones exigidas por la Instrucción ITC-BT 18 del REBT.

3.1.3.5 Cuadros eléctricos

Para esta hipotética instalación, se presentan cuatro posibles cuadros eléctricos:

-Cuadro general.
- Magnetotérmico, 3P + N ; In: 160 A; Im: 1280 A; Icu: 15 kA;
 - Diferencial 4P; In: 160.00 A; Sensibilidad: 300 mA; Clase: AC

-Cuadro para el inversor cargador.
- Magnetotérmico, Doméstico o análogo (IEC 60898); In: 100 A; Icu: 15 kA; Curva: C
 - Diferencial, Instantáneo; In: 125.00 A; Sensibilidad: 30 mA; Clase: A
 - Limitador de sobretensiones transitorias, Tipo 1+2; limp: 100 kA; Up: 2.5 kV

-Cuadro para los consumos monofásicos.
 - Magnetotérmico, Doméstico o análogo (IEC 60898); In: 20 A; Icu: 10 kA; Curva: C
 - Diferencial, Selectivo; In: 160.00 A; Sensibilidad: 300 mA; Clase: AC
 - Magnetotérmico, Doméstico o análogo (IEC 60898); In: 50 A; Icu: 10 kA; Curva: C
 - Diferencial, Instantáneo; In: 63.00 A; Sensibilidad: 30 mA; Clase: AC

-Cuadro para los consumos trifásicos.
 - Magnetotérmico, Doméstico o análogo (IEC 60898); In: 16 A; Icu: 15 kA; Curva: C
 - Diferencial, Instantáneo; In: 25.00 A; Sensibilidad: 100 mA; Clase: AC

Su posible configuración interna se encuentra en el punto 4 (planos) de este documento.
-Elección de la envolvente y su contenido para el inversor cargador

En este punto cabe destacar lo siguiente. Dado que este estudio se ocupa principalmente de conseguir un presupuesto para, a la hora de llevar a cabo la construcción de una instalación similar, poder decidir si incluir o no un sistema como que se describe para esa instalación, nos limitaremos a tratar aquellos elementos cuya presencia no sea de obligado cumplimiento en una instalación eléctrica normal, es decir, solo tendremos en cuenta, como en este caso, aquel elemento diferenciador de una instalación normal.

Nos referimos al cuadro del inversor y sus componentes, dado que los demás cuadros sí que estarían en la instalación aun sin incluir un sistema de acumuladores como el descrito.

Por tanto, en la siguiente descripción y en el presupuesto total, solo tendremos en cuenta el coste de este cuadro.
Además, los conductores empleados para conectar los inversores al resto de la instalación (no así los conductores para inversores de consumo y baterías) suponen un coste despreciable frente al desembolso necesario para esta instalación, por lo que tampoco serán tenidos en cuenta en el coste total.

-Envolvente elegida

La elección de la envolvente se refleja a continuación en el modelo señalado, perteneciente a la empresa Cahors Española:

<table>
<thead>
<tr>
<th>CONCEPTO CON JUNTA</th>
<th>CODIGO TELEMATEL 114+</th>
<th>PRECIO EUROs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ref.</td>
<td>Módulo</td>
<td>Protec.</td>
</tr>
<tr>
<td>234.135-J</td>
<td>MO330</td>
<td>IP55</td>
</tr>
<tr>
<td>234.145-J</td>
<td>MO340</td>
<td>315x360x178</td>
</tr>
<tr>
<td>234.155-J</td>
<td>MO345</td>
<td>315x405x178</td>
</tr>
<tr>
<td>234.173-J</td>
<td>MO7030</td>
<td>630x270x178</td>
</tr>
<tr>
<td>234.173-AJ</td>
<td>MO7030-A</td>
<td>630x270x202</td>
</tr>
<tr>
<td>234.174-J</td>
<td>MO7040</td>
<td>630x360x171</td>
</tr>
<tr>
<td>234.174-AJ</td>
<td>MO7040-A</td>
<td>630x360x202</td>
</tr>
<tr>
<td>234.175-AJ</td>
<td>MO7045-A</td>
<td>630x405x202</td>
</tr>
<tr>
<td>234.176-J</td>
<td>MO7060</td>
<td>630x540x171</td>
</tr>
<tr>
<td>234.176-AJ</td>
<td>MO7060-A</td>
<td>630x540x202</td>
</tr>
</tbody>
</table>

Cuyas medidas son ligeramente mayores a las calculadas mediante cypelec rebt y que se encuentran en la parte correspondiente a planos.
-Elementos de la envolvente

Magnetotérmico elegido:

Este modelo protegerá la línea del inversor cargador frente a posibles sobrecargas. Modelo que satisface totalmente las necesidades de la línea.

Elemento diferencial elegido:

Este modelo protegerá la línea del inversor cargador frente a posibles derivaciones indebidas y malos contactos. Modelo que satisface totalmente las necesidades de la línea.
Limitador de sobretensiones elegido:

SPN802

Este modelo protegerá la línea del inversor cargador ante las posibles sobretensiones que pudieran producirse.

Carril elegido:

El carril elegido posee las dimensiones adecuadas para la óptima colocación de los elementos en el interior del cuadro eléctrico.
3.1.3.6 Contactores elegidos

A continuación, se mostrarán brevemente los dos tipos de contactores a incorporar en la instalación.

Según los esquemas que se mostrarán más adelante, en el punto 3.1.5 se incorporarán en un circuito por el que circule corriente alterna, o en uno por el que circule corriente continua.

- **Contactor de corriente alterna:**

![Contactor trifásico 95A 110Vac contacto auxiliar NA+NC](image)

Contactor trifásico 95A 110Vac contacto auxiliar NA+NC

Modelo CJX2-D9511F7

Condición Nueva

Contactor trifásico eléctrico dotado de contactos de alta capacidad, con un 85% de plata, para mando de motores eléctricos, calefacción, iluminación, ventilación, e usos generales, de 3 polos con una capacidad de corriente de 95A categoría AC3 o 125A categoría AC1, con bobina 110Vac, el contacto está equipado con 2 contactos auxiliares, uno abierto (NA) y otro cerrado (NC).

60,69 €
73,43 € IVA incl.

Se necesitarán 8 contactores como el mostrado para nuestra instalación.

- **Contactor de corriente continua:**

![Contactor de Alto Voltaje DH200H](image)

Contactor de Alto Voltaje DH200H

CARACTERÍSTICAS
- Corriente nominal 500A (Continúa actual), 200A corriente de corte pequeño volumen.
- Desconecta cargas de CC, tanto en baja tensión y alta 12-900 VDC.
- Potencia de la bobina es muy baja, una función de economizador bobina only 1,7W.
- Aplicación: Para el Sistema Eléctrico de Control, Comunicación fuente de alimentación, el sistema solar, canteros pesados, vehículos de emergencia, embarcaciones, tren ligero, minería, el sistema de carga, tren, UPS etc.
- Aprobaciones de seguridad: UL, CCC.
Se necesitarán 8 contactores como el mostrado para nuestra instalación.

Las especificaciones de ambos contactores pueden encontrarse en su respectivo anexo.

3.1.4 Elección de la tarifa eléctrica

La tarifa eléctrica actual y la potencia contratada inicialmente en la instalación que tratamos son las siguientes:

Potencia contratada: 13,2 kW
Tipo discriminación horaria: 2P
Peaje de acceso a la red (ATR): 2.1DHA
Precios de peajes de acceso: B.O.E. del 01/02/2014

Cuyas características más detalladamente pueden verse a continuación:

Tarifas BT 2.XDHA

Con Discriminación horaria nocturna.
Tanto la tarifa 2.0A como 2.1A pueden contratarse con discriminación horaria de dos periodos o discriminación en horario nocturno.
En este caso los precios en cada periodo son:

<table>
<thead>
<tr>
<th>Tarifa 2.0DHA</th>
<th>Período 1</th>
<th>Período 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>TERMINO DE POTENCIA (€/kW, año)</td>
<td>38,043426</td>
<td>38,043426</td>
</tr>
<tr>
<td>TERMINO DE ENERGIA (€/kWh)</td>
<td>0.062012</td>
<td>0.002215</td>
</tr>
</tbody>
</table>

Precios de la tarifa de acceso 2.0DHA vigente desde febrero 2014.

<table>
<thead>
<tr>
<th>Tarifa 2.1DHA</th>
<th>Período 1</th>
<th>Período 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>TERMINO DE POTENCIA (€/kW, año)</td>
<td>44,444710</td>
<td>44,444710</td>
</tr>
<tr>
<td>TERMINO DE ENERGIA (€/kW-h)</td>
<td>0.074568</td>
<td>0.013192</td>
</tr>
</tbody>
</table>

Precios de la tarifa de acceso 2.1DHA vigente desde febrero 2014.

De tal forma que, si cogemos una factura representativa del consumo medio de la instalación en 52 días y comprobamos cada una de las partes de la facturación, obtenemos el siguiente coste eléctrico:
El total en la factura eléctrica asciende a 1857.68 euros.

Cabe mencionar en esta parte lo siguiente:

Si bien es cierto que al dividir el total de kWh de la factura entre el número de días, el resultado es mayor de 200 kWh cada día, también debemos tener en cuenta que hay elementos como la cámara frigorífica y el router wifi que consumirían directamente de la red durante las 8 horas del período valle también, además de otros aparatos electrónicos posibles y no contemplados, lo cual significa un consumo diario adicional a los 150 kWh contemplados al inicio de este proyecto.

Por consiguiente, la nueva tarifa eléctrica que se propone, con el fin de llevar a cabo el estudio que abordamos, sería la tarifa 3.0 A con discriminación horaria de 3 períodos.

Sus principales características son las siguientes:
Dicha tarifa permite distinguir entre tres períodos horarios bien definidos, cuyos precios para el término de potencia y el término de energía son sustancialmente diferentes.
De modo que, si recargamos nuestras baterías exclusivamente en el período “valle”, el ahorro que tendríamos sería importante.

La potencia contratada sería aproximadamente de **55 kW**.
Este nivel de potencia contratada debería ser suficiente para abastecer a nuestro inversor cargador de 50 kW y la potencia de la cámara frigorífica en las horas valle.

3.1.5 Esquema explicativo de funcionamiento de la instalación mediante Fluidsim

A continuación, y antes de exponer la idea del automatismo realizado mediante stateflow, el cual servirá para automatizar el proceso de carga y descarga de las baterías, se muestra brevemente unos esquemas diseñados mediante el programa de automatización fluidsim que, si bien no reproducen la realidad de la instalación de forma exacta, si constituyen una muy útil herramienta para comprender de forma gráfica y explicativa, a grandes rasgos como se desarrollan las diferentes casuísticas posibles dentro de la instalación.

Es importante señalar que, mediante este automatismo y los numerosos contactores que se dispongan por la instalación se dará lugar, fundamentalmente, a 4 circuitos diferentes en la instalación, según el modo de operación en funcionamiento en cada momento (Modo día, noche, stop o problema de baterías).
El esquema general diseñado es el siguiente:

Donde podemos distinguir el elemento regulador en la parte de arriba, y el equivalente de la instalación en la parte de abajo.
En dicho elemento regulador, se han colocado diversos interruptores que simulen la toma de decisiones del mismo, siendo en este caso el diseñador quien va simulando cada caso por sí mismo, con el objetivo de ilustrar al lector y representar los diferentes modos de utilización de forma sencilla.

En primer lugar, conectamos el automatismo:
Y a continuación, los diferentes modos y sus respectivos circuitos son los siguientes:
En este modo, todos los componentes, tanto la maquinaria como los consumos de oficina y las baterías (a través del inversor cargador) están conectados a la red dado que se está en el período horario de carga (período valle) y las baterías se encuentran en carga. El resto elementos también se conectan, aunque realmente lo único que vaya a estar funcionando sea la cámara frigorífica.
En este caso nos encontramos en período de consumo, es decir, la instalación se desconecta de la red y pasa a depender en exclusiva de las baterías, que deberán contener la energía necesaria para llevar a cabo las labores de la empresa en la jornada diaria.

En este sistema no entran en juego las protecciones de los cuadros monofásico y trifásico, al ser la energía que proviene corriente continua, de modo que, en caso de falla, actuarían las protecciones internas de los inversores, los cuales están preparados con protecciones internas para cortar el suministro si fuera necesario.
Para asegurar el funcionamiento de la maquinaria en cualquier caso frente a imprevistos, se ha añadido al automatismo un modo de problemas en baterías, en el cual, frente a múltiples fallos en las baterías, por avería, por corte del suministro y a causa de ello baja carga de las mismas, o posibles fallos en inversores, etc... se asegura que al menos la maquinaria esencial pueda estar conectada directamente a la red, incluso fuera de período valle de recarga, con el consiguiente sobrecoste que ello ocasionaría.

Lo ideal es que este modo no debiera ser empleado más que en los estrictamente necesarios momentos.
Además de todos lo citado, se incluye también, por supuesto, un modo parada o desconexión, mediante el cual, a causa de desconexión voluntaria frente a fallos posibles o emergencias, se puede desconectar manualmente toda la instalación.
3.1.6 Elemento regulador simulado a través de Stateflow

Una vez visto y entendido el esquema explicativo diseñado mediante fluidsim, podemos tratar el verdadero modelo que simula el hipotético elemento regulador que gobernaría la instalación.

Se intentará describir con la mayor claridad posible las partes que componen el mismo.

Para comenzar, el modelo final diseñado queda de la siguiente forma:

El cual se compone de las siguientes partes:
1. Interruptor de start/off:

Es un simple interruptor switch que conecta dos entradas a stateflow, 1 para activar el sistema y 0 para desactivarlo.

2. Hora:

Se trata de un simple bloque constante, el cual contiene en su interior la llamada al cuarto elemento del vector t. Sencillamente, al inicio de la simulación se guarda en la variable t el dato de la fecha y hora mediante la función “clock” de simulink, quedando en la cuarta posición del vector formado el dato de la hora en ese preciso instante en forma de número entero. Esto es tremendamente útil, ya que poseemos el dato de la hora en formato entero, muy sencillo de utilizar por stateflow. Con el fin de comprobar los resultados en horas nocturnas, también aparece una constante con el valor 5 para conectar en la entrada de la variable t.

3. Bloque chart de stateflow (Elemento regulador):

Es el elemento que gobierna todo el sistema. Se trata de un subsistema de estados donde se produce la transición entre dichos estados dependiendo de los valores de entrada al sistema. Estos valores son la activación start, la hora, el estado de carga SOC, la intensidad de las baterías y su tensión. En función del estado activo en cada momento, el sistema devuelve un valor concreto para la salida. Dichas salidas se componen de cuatro LEDs informativos del estado o modo activo y un valor concreto para cada modo.
4. LEDs de notificación:

Se trata de cuatro funciones LEDs pertenecientes a una biblioteca especial de simulink denominada stmrapid32. Estas funciones permiten seleccionar el color mostrado y se activan cuando reciben por su entrada un valor 1. Del mismo modo son desactivadas con un valor 0.
5. Modelo de batería de simulink:

Este modelo de batería, disponible en la biblioteca Simscape de Simulink, resulta muy útil para simular el comportamiento de varios tipos de baterías, entre los que se encuentra la batería de plomo ácido. Básicamente, el modelo ofrece la posibilidad de ajustar la tensión, intensidad y estado de carga de la batería, entre otras funcionalidades, permite conectar un circuito eléctrico a su entrada, y devuelve las tres variables ajustadas, tensión, intensidad y SOC, con su respectiva modificación en función del circuito eléctrico conectado.

Más adelante se explicará con más detalle el funcionamiento interno del modelo.

6. Indicador de corriente:

Este elemento no es más que un bloque display que nos permite ver de forma digital la intensidad que en cada instante está entrando o saliendo de las baterías.

7. Consumos de la batería:

Se trata de una fuente de corriente controlada conectada a la batería. Por medio de ella, podemos ajustar a voluntad la intensidad que entra o sale del modelo dependiendo del signo que coloquemos al valor correspondiente, de esta forma, simulamos los consumos que pudieran estar consumiendo energía o, del mismo modo, la corriente proveniente del cargador.

8. Bloque de retardo:

Dado que nuestro sistema se realimenta a sí mismo a través del dato de las intensidades para decidir entre un modo de operación u otro y a su vez depende de la elección de este modo para determinar la intensidad, es necesario colocar este bloque de retardo que evite que el sistema caiga en un “loop” (bucle) infinito, del cual no fuera capaz de salir. Básicamente, lo que hace es otorgar un cierto valor inicial al circuito con un retardo para que el resto del sistema sea capaz de proceder, tras lo cual se reajustan los valores de forma normal.

9. Bloque merge:

Este bloque permite la conexión de las cuatro entradas provenientes del circuito switch de operación e introducirlas mediante una sola salida en la fuente de intensidad controlada. Permite de esta forma que solo entre en la fuente el último dato actualizado de intensidad proveniente del bloque switch, es decir, proporciona un valor de intensidad determinado en función del modo en que el sistema esté operando en ese momento, permitiendo además su actualización en cuanto el modo de operación cambiase.
10. Bloque de subsistema acción switch case:

Este bloque está formado por cuatro subsistemas de acción del tipo switch case, los cuales son conectados tanto a bloques constantes con el valor de las intensidades a proporcionar como al bloque gobernador switch case (forman un equipo conjunto la mayoría de las veces).

Estos subsistemas de acción tienen la función de proporcionar el dato de la constante acoplada a ellos solo en el caso en que la puerta del bloque switch case en la que se encuentren conectados esté activa.
De esta forma, si la puerta case 1 del bloque es la que se encuentra activa, el subsistema llamado KM1 será el único de los cuatro que permita avanzar al valor de su constante asociada que en este caso es -60 A, tras lo cual dicho valor entrará a la fuente, y la batería procederá a recargarse a 60 A de intensidad.
Cabe destacar los nombres otorgados a los subsistemas, los cuales son los nombres que tendrán los contactores pertinentes en la hipotética instalación.
Esto es así porque, en la hipotética instalación, el bloque switch case activaría, volviendo al ejemplo anterior, la bobina KM1, activando así los contactores KM1 que permitirían la conexión del circuito de recarga, es decir, permitirían la conexión del inversor cargador a las baterías, teniendo exactamente el mismo efecto que el mostrado en esta simulación, es decir, el efecto de suministrar una intensidad de recarga a las baterías.

11. Bloque switch case:

Finalmente, este bloque activa una de sus salidas en función del valor que se le proporcione por entrada, en este caso, cada una de las salidas se activa en función de si el valor de entrada es 1, 2, 3 ó 4, valores que, como se verá más adelante, serán suministrados por el bloque chart de stateflow en función del modo de operación, modo 1, 2, 3 ó 4.

3.1.6.1 Funcionamiento interno del modelo de batería

Descripción

El bloque de la batería implementa un modelo dinámico genérico parametrizado para representar tipos más populares de baterías recargables.

El circuito equivalente de la batería se muestra a continuación:
Modelo de plomo-ácido

- **Modelo de descarga** ($i^* > 0$)

 \[
 f_1(it, i^*, i, Exp) = E_0 - K \cdot \frac{Q}{Q - it} \cdot i^* - K \cdot \frac{Q}{Q - it} \cdot it + \text{Laplace}^{-1}\left(\frac{Exp(s)}{Sel(s)} \cdot 0\right)
 \]

- **Modelo de carga** ($i^* < 0$)

 \[
 f_2(it, i^*, i, Exp) = E_0 - K \cdot \frac{Q}{it + 0.1 \cdot Q} \cdot i^* - K \cdot \frac{Q}{Q - it} \cdot it + \text{Laplace}^{-1}\left(\frac{Exp(s)}{Sel(s)} \cdot \frac{1}{s}\right)
 \]

donde,

- $E_0 = \text{constante del voltaje (V)}$
- $Exp(s) = \text{dinamización de la zona exponenciales (V)}$
- $Sel(s) = \text{Representa el modo de batería. Sel(s) = 0 durante la descarga de la batería, Sel(s) = 1 durante la carga de la batería.}$
- $K = \text{constante de polarización (Ah}^{-1}\text{) o resistencia a la polarización (Ohms)}$
3.1.6.2 Funcionamiento interno del bloque chart de Stateflow

El bloque chart, está compuesto, como se dijo anteriormente de cuatro estados o modos de operación y de las correspondientes condiciones para pasar de un estado a otro, tal como se ilustra a continuación:

Los estados de que está compuesto el bloque son los siguientes:
Modo Carga-Noche

Al entrar en funcionamiento este modo, la salida luzcarga obtiene un valor 1, que activará su LED correspondiente, y la salida “modo”, tendrá un valor 1. Al salir de este modo, la variable luzcarga tornará al valor 0.

Las condiciones para abandonar este modo son las siguientes:

Modo carga → Modo descarga \[\text{SOC}>0.35\&\&[t==8\ |\ |t>8\&\&\ t<24]\]

El modo descarga entrará en funcionamiento si se cumple que el estado de carga sea mayor que el mínimo impuesto (65 % de profundidad de descarga) y además se esté en período de descarga.

Modo carga → Modo off \[\text{start==0}\]

El modo off será activado si el interruptor start es desactivado.

Modo carga → Modo problemas – carga completa

\[[v<520\ |\ v>680\ &\&\ start==1]\ |\ [[i>100]\ |\ [\text{SOC==1}\&\&[t==0\ |\ |t>0\&\&t<8]]]]\]

El modo problemas - carga completa será activado si la tensión cae por debajo de un cierto nivel o excede en exceso una tensión máxima o si la intensidad de la batería es superior al máximo permitido (cosa improbable ya que estamos recargando) o si resulta que seguimos en horario de carga pero la batería ya está completamente cargada.
modo descarga – día

DESCARGA

entry: luzdescarga = 1;
modo = 2;
exit: luzdescarga = 0;

Al entrar en funcionamiento este modo, la salida luzdescarga obtiene un valor 1, que activará su LED correspondiente, y la salida “modo”, tendrá un valor 2. Al salir de este modo, la variable luzdescarga tornará al valor 0.

Las condiciones para abandonar este modo son las siguientes:

Modo descarga ➔ Modo carga \[\text{SOC}<1 && ([t]==0 || [t]>0&&t<8])\]

Es decir, el modo carga será activado si el estado de carga es menor que 1 y si estamos en horario de carga, es decir, de 12 de la noche (12 incluido) a 8 de la mañana (8 no incluido).

Modo descarga ➔ Modo off \[\text{start} ==0\]

El modo off será activado si el interruptor start es desactivado.

Modo descarga ➔ Modo problemas – carga completa

\[\text{SOC}<0.35 && \text{start} ==1 && [t]==8 || [t]>8&& t<24] || [v<520 || v>680 && \text{start} ==1] || [i>100]\]

El modo problemas – carga completa será activado si ocurre simultáneamente que el estado de carga sea menor del mínimo, el interruptor de start esté encendido y se esté en el período de descarga, es decir, que haya que solicitar energía de las baterías pero estén descargadas por el motivo que sea. O también que la tensión y/o la intensidad de las baterías no esté en el rango adecuado.
Modo Off

Este modo es el modo inicial, es decir, al activar el automatismo, el primer modo que comenzará a funcionar será este, hasta que una de las condiciones de cambio de modo se cumpla.

Al entrar en funcionamiento este modo, la salida luzoff obtiene un valor 1, que activará su LED correspondiente, y la salida “modo”, tendrá un valor 3.

Al salir de este modo, la variable luzoff tornará al valor 0.

Las condiciones para abandonar este modo son las siguientes:

Modo off → Modo carga

$$[\text{SOC}<1 \land \text{start}==1 \land [t==0 \lor [t>0\land t<8]]]$$

El modo carga entrará en funcionamiento si se cumple simultáneamente que el estado de carga sea menor que 1, el interruptor start esté activado y sea el periodo de carga estipulado.

Modo off → Modo descarga

$$[\text{SOC}>0.35\land \text{start}==1\land [t==8 \lor [t>8\land t<24]]]$$

El modo descarga se activará si ocurre que el estado de carga sea mayor que el mínimo, el interruptor start esté activado y sea horario de descarga.

Modo off → Modo problemas – carga completa

$$[[\text{SOC}<0.35\land \text{start}==1 \land [t==8 \land [t>8\land t<24]]] \lor [[\text{SOC}=1\land \text{start}==1\land [t==0 \lor [t>0]\land t<8]]] \lor [[v<520 \lor v>680] \land \text{start}==1] \lor [[i>100]\land \text{start}==1]]$$

El modo problemas – carga completa se activará si ocurre que el estado de carga sea menor que el mínimo y el interruptor start esté activado durante el período de descarga o al contrario, que el estado de carga esté en 1 mientras que sea horario de carga (Batería completa) o también que los niveles de tensión e intensidad no estén en el rango permitido estando el interruptor start activo.
Modo problemas – carga completa

PROBLEMA

entry: luzproblema = 1;
modo = 4;
exit: luzproblema = 0;

Al entrar en funcionamiento este modo, la salida luzproblema obtiene un valor 1, que activará su LED correspondiente, y la salida “modo”, tendrá un valor 4.
Al salir de este modo, la variable luzproblema tornará al valor 0.

Las condiciones para abandonar este modo son las siguientes:

Modo problemas – carga completa → Modo carga

\[\text{SOC} < 1 \&\& \text{start} = 1 \&\& [t=0 \&\& t<8] \&\& [v>520 \&\& v<680 \&\& \text{start} = 1] \&\& [i<100] \]

El modo carga empezará a funcionar si se cumple que el estado de carga sea menor que 1, estando el interruptor start activo, durante el período de carga y si los niveles de tensión e intensidad son los adecuados.

Modo problemas – carga completa → Modo descarga

\[\text{SOC} > 0.35 \&\& \text{start} = 1 \&\& [t=8 \&\& t<24] \&\& [v>520 \&\& v<680 \&\& \text{start} = 1] \&\& [i<100] \]

El modo descarga se activará cuando el estado de carga sea mayor que el mínimo, estando el interruptor start activo, durante el periodo de descarga y si los niveles de tensión e intensidad son los adecuados.

Modo problemas – carga completa → Modo off \[\text{start} = 0\]

El modo off será activado si el interruptor start es desactivado.

Por último, y una vez explicados todos los modos de operación, pasamos a comprobar si se cumplen las expectativas en cuanto al sistema:
3.1.6.3 Comprobación de los resultados en Simulink

En primer lugar, vemos el sistema apagado:

Si configuramos el bloque batería para que se encuentre totalmente cargada y además le introducimos el dato de hora las 5 de la mañana, es decir, en periodo de carga...
Al conectar el sistema, ocurre lo siguiente:

El sistema entra en modo problema – carga completa dado que la batería está cargada y aún estamos en período de carga.

El osciloscopio nos muestra las siguientes gráficas:

Donde el estado de carga sigue en 1 al no entrar ni salir ningún valor de intensidad.

Si ahora cambiamos la hora, aprovechando que la batería está cargada, ocurre lo siguiente:
Al entrar en período de descarga, el sistema comienza a descargar las baterías, con un consumo hipotético equivalente de la instalación de 30 A como puede comprobarse en el display.

Tras cierto tiempo, las baterías llegan al 35 % de estado de carga, y el sistema entra en modo problemas dado que, en la simulación sigue siendo hora de descarga. (Se supone que en la realidad nunca llegaría al 35 % de estado de carga, recuperando el 100% durante la noche).

Y el osciloscopio nos mostraría por pantalla lo siguiente:
La batería partiría desde SOC 1 hasta 0.35, momento en que la intensidad de 30 A demandada pasaría a valer 0, en espera del horario de carga.

Como curiosidad, mencionar que el tiempo de descarga a 30 A sería, como muestra la simulación de aproximadamente 5.3×10^4 segundos, es decir unas 15 horas, tiempo más que suficiente considerando que en absoluto la demanda va alcanzar los 30 A por segundo.
De esta forma, se debería cubrir la demanda de sobre en las 16 horas que dura el período de descarga.

Si a continuación situamos el SOC en 35 %, colocamos de nuevo el reloj a las 5 de la mañana y volvemos a simular, obtendríamos los siguientes resultados:
Rápidamente las baterías comenzarían a cargarse con una corriente de -60 A, hasta que el SOC llegara a valor 1.

El osciloscopio nos mostraría lo siguiente:
El estado de carga comienza a ascender hasta que alcanza su máximo, momento en el cual la intensidad pasa de -60 A hasta 0 A.

Como curiosidad, y para certificar la viabilidad de este planteamiento, el tiempo que tarda en recargarse las baterías es de 2.75×10^4 segundos, como puede apreciarse, es decir, 7.63 horas, corroborándose pues que el tiempo está en torno a las 8 horas, algo inferior de hecho.

Otro punto a destacar es que la intensidad impuesta en el modelo es de 60 A de carga, y no 82.5 A como se comenta en este proyecto. Esto es así puesto que esta sería la intensidad necesaria para recargar desde estado de carga 0, pero en la realidad el estado de carga inicial siempre debería ser de 0.35, por tanto, para tener las baterías listas en 8 horas, podemos bajar el nivel de intensidad requerida.
3.2. Cálculos justificativos

3.2.1 Cálculo de las baterías

Pasamos al cálculo de la cantidad de elementos que deben de conformar nuestro banco de baterías de plomo ácido.

Para ello, emplearemos la sistemática siguiente:

1º Determinación de la intensidad máxima por hora:

Con el fin de reducir lo máximo posible la capacidad necesaria en amperios hora, emplearemos una tensión superior a los niveles normales de tensión para instalaciones de baterías. Dicho esto, supondremos la colocación (más adelante lo aseguraremos) de 50 elementos de 12 V cada uno en conexión serie, con el fin de aumentar la tensión del conjunto a unos 600 V:

$$ I_{\text{max}} = \frac{P_{\text{max}}}{V_{\text{batería}}} = \frac{150000\text{W}h/\text{dia}}{600\text{V}} = 250\text{Ah/dia} $$

La Intensidad máxima obtenida se suele multiplicar por un factor de seguridad que puede ser del 10, 15, ó 20%, dependiendo del criterio del diseñador.

$$ I'_{\text{max}} = 1.2 \cdot 250 = 300\text{Ah/ dia} $$

2º Cálculo del consumo máximo de nuestra instalación:

$$ C_{\text{max}} = \frac{I'_{\text{max}}}{k_t} $$, siendo k_t un factor que se obtiene de la siguiente manera:

$$ k_t = \left[1 - (k_b + k_c + k_r + k_s) \times (1 - \frac{k_d \times D_{\text{aux}}}{P_D}) \right] $$

donde:

- k_b: Pérdidas debidas al rendimiento de la batería su valor puede ser del 5%, aunque se puede escoger un valor del 10% para el caso de acumuladores viejos o con fuertes descargas a baja temperatura.

- k_c: Pérdidas debidas al rendimiento del inversor si lo hay. Los valores por defecto suelen oscilar entre 20 y 50%, aunque en este caso, serán del 10% al suponer un rendimiento del 90% del inversor.

- k_r: Pérdidas debidas al regulador, suele ser facilitado por el fabricante, su valor por defecto se estima en un 10%.
kx: Otras pérdidas, por caídas de tensión, efecto joule, etc...
Se estiman en un 10%.

ka: Pérdidas de auto-descarga diaria de la batería, suele facilitarlo el fabricante, su valor por defecto es 0.002 para baterías de baja auto-descarga Ni-Cd, 0.005 para baterías estacionarias de Pb-ácido (las más habituales), y 0.012 para baterías de alta auto-descarga.

Dau: Días de autonomía o de baja insolación.

PD: Profundidad de descarga de la batería, su valor lo determina el fabricante, por defecto se estiman entre el 60% y el 70%.

Los valores que tomaremos pues, para cada una de estas variables serán los siguientes:
Ka = 0.005
Kb = 0.05
Kc = 0.05
Kr = 0.1
Kx = 0.1

Una vez obtenidos los valores, los introducimos en la ecuación:

\[k_i = \left[1 - \left(0.05 + 0.05 + 0.1 + 0.1 \right) \cdot \left(1 - \frac{0.005 \cdot 1}{0.65} \right) \right] = 0.7025 \]

Una vez obtenido, calculamos el consumo:

\[C_{max} = \frac{I_{max}}{k_i} = \frac{300}{0.7025} = 427.05 \text{Ah/día} \]

3º Determinación de la capacidad máxima por hora:

A continuación, en base a la profundidad de descarga que hemos seleccionado, calculamos la capacidad máxima de que debe disponer el acumulador en su conjunto:

\[C_{acumulador} = \frac{C_{max} \cdot D_{au}}{P_D} = \frac{427.05 \cdot 1}{0.65} = 657 \text{Ah} \]

Y, en base a esta capacidad, determinamos el número de elementos en serie y paralelo necesarios de la batería elegida:

\[N_{serie}^o = \frac{V_{bat}}{V_{h \text{ elemento}}} = \frac{600}{12} = 50 \]
Colocando pues 50 elementos de 660 Ah, sumamos una tensión de 600 V y una capacidad de 660 Ah.

3.2.2 Cálculo del cargador de baterías

Para elegir un cargador adecuado para nuestra instalación, debemos tener en cuenta, fundamentalmente, qué potencia necesitamos para poder cargar todas las baterías presentes en el período de 8 horas, número de horas que dura el período valle y que, como veremos más adelante, será el tiempo de carga diario de nuestras baterías.

De modo que, si queremos cargar 660 Ah en 8 horas:

\[
\frac{660\text{Ah}}{8h} = 82.5\text{A}
\]

Debemos suministrar 82.5 A al conjunto de baterías especificado.

Dado que las baterías se encuentran a una tensión de 600 V:

\[82.5\text{A} \times 600\text{V} = 49500\text{W} \approx 50\text{kW}\]

Necesitamos un cargador de baterías de unos 50 kW de potencia aproximadamente que nos permita recargar nuestras baterías en el tiempo especificado.

3.2.3 Cálculo de los inversores

Para determinar el tipo y cantidad de inversores a colocar, debemos saber la máxima cantidad de potencia que nuestra instalación va a requerir en un instante y que, por tanto, los inversores deben ser capaces de proporcionar. Para ello, vamos a separar nuestros consumos en dos tipos, consumos trifásicos y consumos monofásicos:

-Consumos trifásicos: Maquinaria + Cámara frigorífica

\[9.72\text{kW} + 2.95\text{kW} = 12.67\text{kW}\]

-Consumos monofásicos: Componentes electrónicos oficina + alumbrado:

\[3.02\text{kW} + 2.7\text{kW} = 5.72\text{kW}\]
Dado que en ambos, y sobre todo en los consumos trifásicos, normalmente no se requerirá de toda la potencia disponible en el mismo instante, aplicaremos al igual que en el diseño de las viviendas, un coeficiente de simultaneidad a cada uno de ellos:

Coeficiente consumos trifásicos: Emplearemos un coeficiente de 0.6 dada la gran variedad de maquinaria de diferente uso existente.

Coeficiente consumos monofásicos: Emplearemos un coeficiente de 0.85, dado que en este caso es más probable que se use la gran mayoría de los aparatos electrónicos y la práctica totalidad del alumbrado al mismo tiempo.

De modo que los consumos de potencia instantánea a tener en cuenta en el futuro, serán los siguientes:

- Consumos trifásicos: \(0.6 \times 12.67 = 7.602\ kW\).
- Consumos monofásicos: \(0.85 \times 5.72 = 4.86\ kW\).

En definitiva, nuestra potencia máxima instantánea no debería ser superior a estos niveles. El número y tipo de inversores a utilizar queda de la siguiente forma:
- 1 Inversor monofásico de potencia mínima 5 kW.
- 1 Inversor trifásico de potencia mínima 8 kW.

3.2.4 Criterios aplicados y bases de cálculo para los conductores

- **Intensidad máxima admisible**
 En el cálculo de las instalaciones se comprobará que las intensidades máximas de las líneas son inferiores a las admitidas por el Reglamento de Baja Tensión, teniendo en cuenta los factores de corrección según el tipo de instalación y sus condiciones particulares.

 1. Intensidad nominal en servicio monofásico:
 \[
 I_n = \frac{P}{U_f \cos \phi}
 \]

 1. Intensidad nominal en servicio trifásico:
 \[
 I_n = \frac{P}{\sqrt{3}U_f \cos \phi}
 \]

- **Caída de tensión**
 En circuitos interiores de la instalación, la caída de tensión no superará un porcentaje del 3% de la tensión nominal para circuitos de alumbrado y del 5% para el resto de circuitos, siendo admisible la compensación de caída de tensión junto con las correspondientes derivaciones individuales, de manera que conjuntamente no se supere un porcentaje del 4,5% de la tensión nominal para los circuitos de alumbrado y del 6,5% para el resto de circuitos.
Las fórmulas empleadas serán las siguientes:

$$\Delta U = RI\cos \varphi + XI\sin \varphi$$

Caída de tensión en monofásico: \(\Delta U_1 = 2 \times \Delta U \)

Caída de tensión en trifásico: \(\Delta U_{III} = \sqrt{3} \times \Delta U \)

Con:

- \(I \) Intensidad calculada (A)
- \(R \) Resistencia de la línea (W), ver apartado (A)
- \(X \) Reactancia de la línea (W), ver apartado (C)
- \(j \) Ángulo correspondiente al factor de potencia de la carga;

A) RESISTENCIA DEL CONDUCTOR EN CORRIENTE ALTERNA

Si tenemos en cuenta que el valor de la resistencia de un cable se calcula como:

$$R = R_{tca} = R_{tcc}(1 + Y_s + Y_p) = cR_{tcc}$$

$$R_{tcc} = R_{20cc}[1 + \alpha(\theta - 20)]$$

$$R_{20cc} = \rho_{20} L / S$$

Con:

- \(R_{tcc} \) Resistencia del conductor en corriente contínua a la temperatura \(\theta \) (Ω)
- \(R_{20cc} \) Resistencia del conductor en corriente continua a la temperatura de 20°C (Ω)
- \(Y_s \) Incremento de la resistencia debido al efecto piel;
- \(Y_p \) Incremento de la resistencia debido al efecto proximidad;
- \(\alpha \) Coeficiente de variación de resistencia específica por temperatura del conductor en °C⁻¹
- \(\theta \) Temperatura máxima en servicio prevista en el cable (°C), ver apartado (B)
- \(\rho_{20} \) Resistividad del conductor a 20°C (Ω mm² / m)
- \(S \) Sección del conductor (mm²)
- \(L \) Longitud de la línea (m)
El efecto piel y el efecto proximidad son mucho más pronunciados en los conductores de gran sección. Su cálculo riguroso se detalla en la norma UNE 21144. No obstante y de forma aproximada para instalaciones de enlace e instalaciones interiores en baja tensión es factible suponer un incremento de resistencia inferior al 2% en alterna respecto del valor en continua.

\[c = (1 + Ys + Yp) \cong 1.02 \]

B) TEMPERATURA ESTIMADA EN EL CONDUCTOR

Para calcular la temperatura máxima prevista en servicio de un cable se puede utilizar el siguiente razonamiento: su incremento de temperatura respecto de la temperatura ambiente \(T_0 \) (25°C para cables enterrados y 40°C para cables al aire), es proporcional al cuadrado del valor eficaz de la intensidad. Por tanto:

\[T = T_0 + (T_{\text{máx}} - T_0) \left(\frac{I}{I_{\text{máx}}} \right)^2 \]

Con:
- \(T \): Temperatura real estimada en el conductor (°C)
- \(T_{\text{máx}} \): Temperatura máxima admisible para el conductor según su tipo de aislamiento (°C)
- \(T_0 \): Temperatura ambiente del conductor (°C)
- \(I \): Intensidad prevista para el conductor (A)
- \(I_{\text{máx}} \): Intensidad máxima admisible para el conductor según el tipo de instalación (A)

C) REACTANCIA DEL CABLE (Según el criterio de la Guía-BT-Anexo 2)

La reactancia de los conductores varía con el diámetro y la separación entre conductores. En ausencia de datos se puede estimar la reactancia como un incremento adicional de la resistencia de acuerdo a la siguiente tabla:

<table>
<thead>
<tr>
<th>Sección</th>
<th>Reactancia inductiva (X)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S ≤ 120 mm²</td>
<td>(X \cong 0)</td>
</tr>
<tr>
<td>S = 150 mm²</td>
<td>(X \cong 0.15 , R)</td>
</tr>
<tr>
<td>S = 185 mm²</td>
<td>(X \cong 0.20 , R)</td>
</tr>
<tr>
<td>S = 240 mm²</td>
<td>(X \cong 0.25 , R)</td>
</tr>
</tbody>
</table>
Para secciones menores de o iguales a 120 mm², la contribución a la caída de tensión por efecto de la inductancia es despreciable frente al efecto de la resistencia.

3.2.5 Cálculos de secciones y protecciones

- Sección de las líneas

Para el cálculo de los circuitos se han tenido en cuenta los siguientes factores:

Caída de tensión:
- Circuitos interiores de la instalación: 3%: para circuitos de alumbrado.
- 5%: para el resto de circuitos.

Caída de tensión acumulada:
- Circuitos interiores de la instalación: 4.5%: para circuitos de alumbrado.
- 6.5%: para el resto de circuitos.

Los resultados obtenidos para la caída de tensión se resumen en las siguientes tablas:

<table>
<thead>
<tr>
<th>Esquemas</th>
<th>Polaridad</th>
<th>P Demandada (kW)</th>
<th>f.d.p</th>
<th>Longitud (m)</th>
<th>Línea</th>
<th>I_z (A)</th>
<th>I_B (A)</th>
<th>c.d.t (%)</th>
<th>c.d.t Acum (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3F+N</td>
<td></td>
<td>72.06</td>
<td>1.00</td>
<td>10.00</td>
<td>RZ1-K (AS) 5(1x70)</td>
<td>202.02</td>
<td>104.64</td>
<td>0.13</td>
<td>-</td>
</tr>
</tbody>
</table>

Cálculos de factores de corrección por canalización.

Los siguientes factores de corrección calculados según el tipo de instalación ya están contemplados en los valores de intensidad máxima admisible (I_z) de la tabla anterior.

<table>
<thead>
<tr>
<th>Esquema</th>
<th>Tipo de instalación</th>
<th>Temperatura</th>
<th>Resistividad térmica</th>
<th>Profundidad</th>
<th>Agrupamiento</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1: Conductores aislados, pared de madera</td>
<td>40.00 °C</td>
<td>0.91</td>
<td>-</td>
<td>-</td>
<td>1.00</td>
</tr>
</tbody>
</table>
Cálculos de factores de corrección por canalización.

Los siguientes factores de corrección calculados según el tipo de instalación ya están contemplados en los valores de intensidad máxima admisible (Iz) de la tabla anterior.

<table>
<thead>
<tr>
<th>Esquemas</th>
<th>Tipo de instalación</th>
<th>Factor de corrección</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inversor Cargador</td>
<td>B1: Conductores aislados, pared de madera Temperatura: 40.00 °C Tubo 50 mm</td>
<td>0.91</td>
</tr>
<tr>
<td>Alumbrado Nave</td>
<td>B1: Conductores aislados, pared de madera Temperatura: 40.00 °C Tubo 20 mm</td>
<td>0.91</td>
</tr>
<tr>
<td>Alumbrado Oficina</td>
<td>B1: Conductores aislados, pared de madera Temperatura: 40.00 °C Tubo 16 mm</td>
<td>0.91</td>
</tr>
</tbody>
</table>
Esquemas

<table>
<thead>
<tr>
<th>Esquemas</th>
<th>Tipo de instalación</th>
<th>Factor de corrección</th>
</tr>
</thead>
<tbody>
<tr>
<td>Toma de uso general</td>
<td>B1: Conductores aislados, pared de madera</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Temperatura: 40.00 °C</td>
<td>0.91</td>
</tr>
<tr>
<td></td>
<td>Tubo: 32 mm</td>
<td>-</td>
</tr>
<tr>
<td>Toma de uso general 2</td>
<td>B1: Conductores aislados, pared de madera</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Temperatura: 40.00 °C</td>
<td>0.91</td>
</tr>
<tr>
<td></td>
<td>Tubo: 32 mm</td>
<td>-</td>
</tr>
<tr>
<td>Toma de uso general 3</td>
<td>B1: Conductores aislados, pared de madera</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Temperatura: 40.00 °C</td>
<td>0.91</td>
</tr>
<tr>
<td></td>
<td>Tubo: 32 mm</td>
<td>-</td>
</tr>
<tr>
<td>Toma de uso general 4</td>
<td>B1: Conductores aislados, pared de madera</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Temperatura: 40.00 °C</td>
<td>0.91</td>
</tr>
<tr>
<td></td>
<td>Tubo: 32 mm</td>
<td>-</td>
</tr>
<tr>
<td>Toma Aire Acondicionado</td>
<td>B1: Conductores aislados, pared de madera</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Temperatura: 40.00 °C</td>
<td>0.91</td>
</tr>
<tr>
<td></td>
<td>Tubo: 32 mm</td>
<td>-</td>
</tr>
<tr>
<td>Calibrador 1</td>
<td>B1: Conductores aislados, pared de madera</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Temperatura: 40.00 °C</td>
<td>0.91</td>
</tr>
<tr>
<td></td>
<td>Tubo: 16 mm</td>
<td>-</td>
</tr>
<tr>
<td>Calibrador 2</td>
<td>B1: Conductores aislados, pared de madera</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Temperatura: 40.00 °C</td>
<td>0.91</td>
</tr>
<tr>
<td></td>
<td>Tubo: 16 mm</td>
<td>-</td>
</tr>
<tr>
<td>Enceradora</td>
<td>B1: Conductores aislados, pared de madera</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Temperatura: 40.00 °C</td>
<td>0.91</td>
</tr>
<tr>
<td></td>
<td>Tubo: 16 mm</td>
<td>-</td>
</tr>
<tr>
<td>Lavadora de cítricos</td>
<td>B1: Conductores aislados, pared de madera</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Temperatura: 40.00 °C</td>
<td>0.91</td>
</tr>
<tr>
<td></td>
<td>Tubo: 16 mm</td>
<td>-</td>
</tr>
<tr>
<td>Secadora</td>
<td>B1: Conductores aislados, pared de madera</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Temperatura: 40.00 °C</td>
<td>0.91</td>
</tr>
<tr>
<td></td>
<td>Tubo: 16 mm</td>
<td>-</td>
</tr>
<tr>
<td>Cinta transportadora 1</td>
<td>B1: Conductores aislados, pared de madera</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Temperatura: 40.00 °C</td>
<td>0.91</td>
</tr>
<tr>
<td></td>
<td>Tubo: 16 mm</td>
<td>-</td>
</tr>
<tr>
<td>Cinta transportadora 2</td>
<td>B1: Conductores aislados, pared de madera</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Temperatura: 40.00 °C</td>
<td>0.91</td>
</tr>
<tr>
<td></td>
<td>Tubo: 16 mm</td>
<td>-</td>
</tr>
<tr>
<td>Carro Salida de Cajas</td>
<td>B1: Conductores aislados, pared de madera</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Temperatura: 40.00 °C</td>
<td>0.91</td>
</tr>
<tr>
<td></td>
<td>Tubo: 16 mm</td>
<td>-</td>
</tr>
<tr>
<td>Tunel secado</td>
<td>B1: Conductores aislados, pared de madera</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Temperatura: 40.00 °C</td>
<td>0.91</td>
</tr>
<tr>
<td></td>
<td>Tubo: 16 mm</td>
<td>-</td>
</tr>
<tr>
<td>Elevador</td>
<td>B1: Conductores aislados, pared de madera</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Temperatura: 40.00 °C</td>
<td>0.91</td>
</tr>
<tr>
<td></td>
<td>Tubo: 16 mm</td>
<td>-</td>
</tr>
<tr>
<td>Flejadora</td>
<td>B1: Conductores aislados, pared de madera</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Temperatura: 40.00 °C</td>
<td>0.91</td>
</tr>
<tr>
<td></td>
<td>Tubo: 16 mm</td>
<td>-</td>
</tr>
<tr>
<td>Cámara Frigorífica</td>
<td>B1: Conductores aislados, pared de madera</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Temperatura: 40.00 °C</td>
<td>0.91</td>
</tr>
<tr>
<td></td>
<td>Tubo: 16 mm</td>
<td>-</td>
</tr>
</tbody>
</table>

- **Cálculo de los dispositivos de protección**

Sobrecarga

Las características de funcionamiento de un dispositivo que protege un cable contra sobrecargas deben satisfacer las siguientes dos condiciones:

\[
I_B \leq I_n \leq I_Z
\]

\[
I_Z \leq 1.45 \times I_2
\]
Con:

- I_b: Intensidad de diseño del circuito
- I_n: Intensidad asignada del dispositivo de protección
- I_z: Intensidad permanente admisible del cable
- I_2: Intensidad efectiva asegurada en funcionamiento en el tiempo convencional del dispositivo de protección

Cortocircuito

Para que la línea quede protegida a cortocircuito, el poder de corte de la protección debe ser mayor al valor de la intensidad máxima de cortocircuito:

$$I_{cu} > I_{cc,\text{máx}}$$

$$I_{cs} > I_{cc,\text{máx}}$$

Con:

- $I_{cc,\text{máx}}$: Máxima intensidad de cortocircuito prevista
- I_{cu}: Poder de corte último
- I_{cs}: Poder de corte de servicio

Además, la protección debe ser capaz de disparar en un tiempo menor al tiempo que tardan los aislamientos del conductor en dañarse por la elevación de la temperatura. Esto debe suceder tanto en el caso del cortocircuito máximo, como en el caso del cortocircuito mínimo:

$$t_{cc} < t_{\text{cable}}$$

Para cortocircuitos de duración hasta 5 s, el tiempo t, en el cual una determinada intensidad de cortocircuito incrementará la temperatura del aislamiento de los conductores desde la máxima temperatura permisible en funcionamiento normal hasta la temperatura límite puede, como aproximación, calcularse desde la fórmula:

$$t = \left(k \cdot \frac{S}{I_{cc}} \right)^2$$

Con:

- I_{cc}: Intensidad de cortocircuito
- t_{cc}: Tiempo de duración del cortocircuito
Sección del cable

Factor que tiene en cuenta la resistividad, el coeficiente de temperatura y la capacidad calorífica del material del conductor, y las oportunas temperaturas iniciales y finales. Para aislamientos de conductor de uso corriente, los valores de k para conductores de línea se muestran en la tabla 43A

Tiempo que tarda el conductor en alcanzar su temperatura límite admisible

Para tiempos de trabajo de los dispositivos de protección < 0.10 s donde la asimetría de la intensidad es importante y para dispositivos limitadores de intensidad $k^2 S^2$ debe ser más grande que el valor de la energía que se deja pasar ($I^2 t$) indicado por el fabricante del dispositivo de protección.

Con:

$I^2 t$ Energía específica pasante del dispositivo de protección
S Tiempo de duración del cortocircuito

Los dispositivos de protección contra sobretensiones de origen atmosférico deben seleccionarse de forma que su nivel de protección sea inferior a la tensión soportada a impulso de la categoría de los equipos y materiales que se prevé que se vayan a instalar.

El cálculo de los dispositivos de protección contra sobrecarga, cortocircuito y sobretensiones de la instalación se resume en las siguientes tablas:

Línea de conexión

Sobrecarga

<table>
<thead>
<tr>
<th>Esquemas</th>
<th>Polaridad</th>
<th>P Demandada (kW)</th>
<th>I_B (A)</th>
<th>Protecciones</th>
<th>I_z (A)</th>
<th>I_2 (A)</th>
<th>$1.45 \times I_z$ (A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3F+N</td>
<td>72.06</td>
<td>104.64</td>
<td>-</td>
<td>-</td>
<td>202.02</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Cortocircuito

<table>
<thead>
<tr>
<th>Esquemas</th>
<th>Polaridad</th>
<th>Protecciones</th>
<th>I_{cu} (kA)</th>
<th>I_{cs} (kA)</th>
<th>I_{cc} máx (kA)</th>
<th>I_{cc} mín (kA)</th>
<th>T_{cable}</th>
<th>T_p</th>
</tr>
</thead>
<tbody>
<tr>
<td>3F+N</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>
Sobrecarga

<table>
<thead>
<tr>
<th>Esquemas</th>
<th>Polaridad</th>
<th>P_{Demanda} (kW)</th>
<th>I_b (A)</th>
<th>Protecciones</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inversor Cargador</td>
<td>3F+N</td>
<td>50.00</td>
<td>72.17</td>
<td>Magnetotérmico, Doméstico o análogo (IEC 60898); In: 100 A; Icu: 15 kA; Curva: C</td>
</tr>
<tr>
<td>Alumbrado Nave</td>
<td>F+N</td>
<td>4.00</td>
<td>17.32</td>
<td>Magnetotérmico, Doméstico o análogo (IEC 60898); In: 20 A; Icu: 10 kA; Curva: C</td>
</tr>
<tr>
<td>Alumbrado Oficina</td>
<td>F+N</td>
<td>1.00</td>
<td>4.33</td>
<td>Magnetotérmico, Doméstico o análogo (IEC 60898); In: 20 A; Icu: 10 kA; Curva: C</td>
</tr>
<tr>
<td>Toma de uso general</td>
<td>F+N</td>
<td>2.00</td>
<td>8.66</td>
<td>Magnetotérmico, Doméstico o análogo (IEC 60898); In: 50 A; Icu: 10 kA; Curva: C</td>
</tr>
<tr>
<td>Toma de uso general 2</td>
<td>F+N</td>
<td>2.00</td>
<td>8.66</td>
<td>Magnetotérmico, Doméstico o análogo (IEC 60898); In: 50 A; Icu: 10 kA; Curva: C</td>
</tr>
<tr>
<td>Toma de uso general 3</td>
<td>F+N</td>
<td>2.00</td>
<td>8.66</td>
<td>Magnetotérmico, Doméstico o análogo (IEC 60898); In: 50 A; Icu: 10 kA; Curva: C</td>
</tr>
<tr>
<td>Toma de uso general 4</td>
<td>F+N</td>
<td>2.00</td>
<td>8.66</td>
<td>Magnetotérmico, Doméstico o análogo (IEC 60898); In: 50 A; Icu: 10 kA; Curva: C</td>
</tr>
<tr>
<td>Toma Aire Acondicionado</td>
<td>F+N</td>
<td>4.00</td>
<td>17.32</td>
<td>Magnetotérmico, Doméstico o análogo (IEC 60898); In: 50 A; Icu: 10 kA; Curva: C</td>
</tr>
<tr>
<td>Calibrador 1</td>
<td>3F+N</td>
<td>0.28</td>
<td>0.50</td>
<td>Magnetotérmico, Doméstico o análogo (IEC 60898); In: 16 A; Icu: 15 kA; Curva: C</td>
</tr>
<tr>
<td>Calibrador 2</td>
<td>3F+N</td>
<td>0.75</td>
<td>1.35</td>
<td>Magnetotérmico, Doméstico o análogo (IEC 60898); In: 16 A; Icu: 15 kA; Curva: C</td>
</tr>
<tr>
<td>Enceradora</td>
<td>3F+N</td>
<td>1.10</td>
<td>1.98</td>
<td>Magnetotérmico, Doméstico o análogo (IEC 60898); In: 16 A; Icu: 15 kA; Curva: C</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th>I_2 (A)</th>
<th>$1.45 \times I_2$ (A)</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Inversor Cargador</td>
<td></td>
<td></td>
<td>106.47</td>
<td>154.38</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alumbrado Nave</td>
<td></td>
<td></td>
<td>38.22</td>
<td>55.42</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alumbrado Oficina</td>
<td></td>
<td></td>
<td>20.93</td>
<td>30.35</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Toma de uso general</td>
<td></td>
<td></td>
<td>68.25</td>
<td>98.96</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Toma de uso general 2</td>
<td></td>
<td></td>
<td>68.25</td>
<td>98.96</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Toma de uso general 3</td>
<td></td>
<td></td>
<td>68.25</td>
<td>98.96</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Toma de uso general 4</td>
<td></td>
<td></td>
<td>68.25</td>
<td>98.96</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Toma Aire Acondicionado</td>
<td></td>
<td></td>
<td>68.25</td>
<td>98.96</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calibrador 1</td>
<td></td>
<td></td>
<td>18.20</td>
<td>26.39</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calibrador 2</td>
<td></td>
<td></td>
<td>18.20</td>
<td>26.39</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enceradora</td>
<td></td>
<td></td>
<td>18.20</td>
<td>26.39</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Esquemas</td>
<td>Polaridad</td>
<td>P Demandada (kW)</td>
<td>I_b (A)</td>
<td>Protecciones</td>
<td>I_z (A)</td>
<td>I_2 (A)</td>
<td>$1.45 \times I_z$ (A)</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>-----------</td>
<td>-----------------</td>
<td>-----------</td>
<td>---</td>
<td>------------</td>
<td>-----------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>Lavadora de cítricos</td>
<td>3F+N</td>
<td>0.75</td>
<td>1.35</td>
<td>Magnetotérmico, Doméstico o análogo (IEC 60898); In: 16 A; Icu: 15 kA; Curva: C</td>
<td>18.20</td>
<td>23.20</td>
<td>26.39</td>
</tr>
<tr>
<td>Secadora</td>
<td>3F+N</td>
<td>0.75</td>
<td>1.35</td>
<td>Magnetotérmico, Doméstico o análogo (IEC 60898); In: 16 A; Icu: 15 kA; Curva: C</td>
<td>18.20</td>
<td>23.20</td>
<td>26.39</td>
</tr>
<tr>
<td>Cinta transportadora 1</td>
<td>3F+N</td>
<td>0.75</td>
<td>1.35</td>
<td>Magnetotérmico, Doméstico o análogo (IEC 60898); In: 16 A; Icu: 15 kA; Curva: C</td>
<td>18.20</td>
<td>23.20</td>
<td>26.39</td>
</tr>
<tr>
<td>Cinta transportadora 2</td>
<td>3F+N</td>
<td>0.75</td>
<td>1.35</td>
<td>Magnetotérmico, Doméstico o análogo (IEC 60898); In: 16 A; Icu: 15 kA; Curva: C</td>
<td>18.20</td>
<td>23.20</td>
<td>26.39</td>
</tr>
<tr>
<td>Carro Salida de Cajas</td>
<td>3F+N</td>
<td>0.75</td>
<td>1.35</td>
<td>Magnetotérmico, Doméstico o análogo (IEC 60898); In: 16 A; Icu: 15 kA; Curva: C</td>
<td>18.20</td>
<td>23.20</td>
<td>26.39</td>
</tr>
<tr>
<td>Tunel de secado</td>
<td>3F+N</td>
<td>1.10</td>
<td>1.98</td>
<td>Magnetotérmico, Doméstico o análogo (IEC 60898); In: 16 A; Icu: 15 kA; Curva: C</td>
<td>18.20</td>
<td>23.20</td>
<td>26.39</td>
</tr>
<tr>
<td>Elevador</td>
<td>3F+N</td>
<td>0.75</td>
<td>1.35</td>
<td>Magnetotérmico, Doméstico o análogo (IEC 60898); In: 16 A; Icu: 15 kA; Curva: C</td>
<td>18.20</td>
<td>23.20</td>
<td>26.39</td>
</tr>
<tr>
<td>Flejadora</td>
<td>3F+N</td>
<td>2.00</td>
<td>3.61</td>
<td>Magnetotérmico, Doméstico o análogo (IEC 60898); In: 16 A; Icu: 15 kA; Curva: C</td>
<td>18.20</td>
<td>23.20</td>
<td>26.39</td>
</tr>
<tr>
<td>Cámara Frigorífica</td>
<td>3F+N</td>
<td>2.95</td>
<td>5.32</td>
<td>Magnetotérmico, Doméstico o análogo (IEC 60898); In: 16 A; Icu: 15 kA; Curva: C</td>
<td>18.20</td>
<td>23.20</td>
<td>26.39</td>
</tr>
</tbody>
</table>
Cortocircuito

<table>
<thead>
<tr>
<th>Esquemas</th>
<th>Polarisación</th>
<th>Protecciones</th>
<th>I_{cu} (kA)</th>
<th>I_{cs} (kA)</th>
<th>$I_{cc_{ máx}}$ (kA)</th>
<th>$T_{cc_{máx}}$ (s)</th>
<th>$T_{cc_{mín}}$ (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inversor Cargador</td>
<td>3F+N</td>
<td>Magnetotérmico, Doméstico o análogo (IEC 60898); In: 100 A; Icu: 15 kA; Curva: C</td>
<td>15.00</td>
<td>11.01</td>
<td>3.36</td>
<td>0.11</td>
<td><0.10</td>
</tr>
<tr>
<td>Alumbrado Nave</td>
<td>F+N</td>
<td>Magnetotérmico, Doméstico o análogo (IEC 60898); In: 20 A; Icu: 10 kA; Curva: C</td>
<td>10.00</td>
<td>4.13</td>
<td>0.65</td>
<td>0.02</td>
<td><0.10</td>
</tr>
<tr>
<td>Alumbrado Oficina</td>
<td>F+N</td>
<td>Magnetotérmico, Doméstico o análogo (IEC 60898); In: 20 A; Icu: 10 kA; Curva: C</td>
<td>10.00</td>
<td>4.13</td>
<td>0.41</td>
<td>0.00</td>
<td><0.10</td>
</tr>
<tr>
<td>Toma de uso general</td>
<td>F+N</td>
<td>Magnetotérmico, Doméstico o análogo (IEC 60898); In: 50 A; Icu: 10 kA; Curva: C</td>
<td>10.00</td>
<td>4.89</td>
<td>1.91</td>
<td>0.09</td>
<td><0.10</td>
</tr>
<tr>
<td>Toma de uso general 2</td>
<td>F+N</td>
<td>Magnetotérmico, Doméstico o análogo (IEC 60898); In: 50 A; Icu: 10 kA; Curva: C</td>
<td>10.00</td>
<td>4.89</td>
<td>1.91</td>
<td>0.09</td>
<td><0.10</td>
</tr>
<tr>
<td>Toma de uso general 3</td>
<td>F+N</td>
<td>Magnetotérmico, Doméstico o análogo (IEC 60898); In: 50 A; Icu: 10 kA; Curva: C</td>
<td>10.00</td>
<td>4.89</td>
<td>1.91</td>
<td>0.09</td>
<td><0.10</td>
</tr>
<tr>
<td>Toma de uso general 4</td>
<td>F+N</td>
<td>Magnetotérmico, Doméstico o análogo (IEC 60898); In: 50 A; Icu: 10 kA; Curva: C</td>
<td>10.00</td>
<td>4.89</td>
<td>1.91</td>
<td>0.09</td>
<td><0.10</td>
</tr>
<tr>
<td>Toma Aire Acondicionado</td>
<td>F+N</td>
<td>Magnetotérmico, Doméstico o análogo (IEC 60898); In: 50 A; Icu: 10 kA; Curva: C</td>
<td>10.00</td>
<td>4.89</td>
<td>1.66</td>
<td>0.09</td>
<td><0.10</td>
</tr>
<tr>
<td>Calibrador 1</td>
<td>3F+N</td>
<td>Magnetotérmico, Doméstico o análogo (IEC 60898); In: 16 A; Icu: 15 kA; Curva: C</td>
<td>15.00</td>
<td>1.86</td>
<td>0.27</td>
<td>0.01</td>
<td><0.10</td>
</tr>
<tr>
<td>Calibrador 2</td>
<td>3F+N</td>
<td>Magnetotérmico, Doméstico o análogo (IEC 60898); In: 16 A; Icu: 15 kA; Curva: C</td>
<td>15.00</td>
<td>1.86</td>
<td>0.27</td>
<td>0.01</td>
<td><0.10</td>
</tr>
<tr>
<td>Enceradora</td>
<td>3F+N</td>
<td>Magnetotérmico, Doméstico o análogo (IEC 60898); In: 16 A; Icu: 15 kA; Curva: C</td>
<td>15.00</td>
<td>1.86</td>
<td>0.27</td>
<td>0.01</td>
<td><0.10</td>
</tr>
<tr>
<td>Lavadora de cítricos</td>
<td>3F+N</td>
<td>Magnetotérmico, Doméstico o análogo (IEC 60898); In: 16 A; Icu: 15 kA; Curva: C</td>
<td>15.00</td>
<td>1.86</td>
<td>0.27</td>
<td>0.01</td>
<td><0.10</td>
</tr>
<tr>
<td>Secadora</td>
<td>3F+N</td>
<td>Magnetotérmico, Doméstico o análogo (IEC 60898); In: 16 A; Icu: 15 kA; Curva: C</td>
<td>15.00</td>
<td>1.86</td>
<td>0.27</td>
<td>0.01</td>
<td><0.10</td>
</tr>
<tr>
<td>Cinta transportadora 1</td>
<td>3F+N</td>
<td>Magnetotérmico, Doméstico o análogo (IEC 60898); In: 16 A; Icu: 15 kA; Curva: C</td>
<td>15.00</td>
<td>1.86</td>
<td>0.27</td>
<td>0.01</td>
<td><0.10</td>
</tr>
<tr>
<td>Cinta transportadora 2</td>
<td>3F+N</td>
<td>Magnetotérmico, Doméstico o análogo (IEC 60898); In: 16 A; Icu: 15 kA; Curva: C</td>
<td>15.00</td>
<td>1.86</td>
<td>0.27</td>
<td>0.01</td>
<td><0.10</td>
</tr>
<tr>
<td>Carro Salida de Cajas</td>
<td>3F+N</td>
<td>Magnetotérmico, Doméstico o análogo (IEC 60898); In: 16 A; Icu: 15 kA; Curva: C</td>
<td>15.00</td>
<td>1.86</td>
<td>0.27</td>
<td>0.01</td>
<td><0.10</td>
</tr>
<tr>
<td>Tunel de secado</td>
<td>3F+N</td>
<td>Magnetotérmico, Doméstico o análogo (IEC 60898); In: 16 A; Icu: 15 kA; Curva: C</td>
<td>15.00</td>
<td>1.86</td>
<td>0.27</td>
<td>0.01</td>
<td><0.10</td>
</tr>
</tbody>
</table>
ESTUDIO DE VIABILIDAD ECONÓMICA PARA ALMACENAMIENTO DE ENERGÍA ELÉCTRICA EN ACUMULADORES ELECTROQUÍMICOS

Esquemas

<table>
<thead>
<tr>
<th>Esquemas</th>
<th>Polaridad</th>
<th>Protecciones</th>
<th>I_{cu} (kA)</th>
<th>I_{cc} máx min (kA)</th>
<th>T_{cable} $CC_{máx}$ $CC_{mín}$ (s)</th>
<th>T_{p} $CC_{máx}$ $CC_{mín}$ (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elevador</td>
<td>3F+N</td>
<td>Magnetotérmico, Doméstico o análogo (IEC 60898); In: 16 A; Icu: 15 kA; Curva: C</td>
<td>15.00</td>
<td>-</td>
<td>1.86 0.27 0.01 0.62 <0.10</td>
<td>0.10 0.10</td>
</tr>
<tr>
<td>Flejadora</td>
<td>3F+N</td>
<td>Magnetotérmico, Doméstico o análogo (IEC 60898); In: 16 A; Icu: 15 kA; Curva: C</td>
<td>15.00</td>
<td>-</td>
<td>1.86 0.27 0.01 0.62 <0.10</td>
<td>0.10 0.10</td>
</tr>
<tr>
<td>Cámara Frigorífica</td>
<td>3F+N</td>
<td>Magnetotérmico, Doméstico o análogo (IEC 60898); In: 16 A; Icu: 15 kA; Curva: C</td>
<td>15.00</td>
<td>-</td>
<td>1.86 0.27 0.01 0.62 <0.10</td>
<td>0.10 0.10</td>
</tr>
</tbody>
</table>

Sobretensiones

<table>
<thead>
<tr>
<th>Esquemas</th>
<th>Polaridad</th>
<th>Protecciones</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inversor</td>
<td>3F+N</td>
<td>Limitador de sobretensiones transitorias, Tipo 1+2; I_{imp}: 100 kA; U_p: 2.5 kV</td>
</tr>
<tr>
<td>Cargador</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Cálculos de puesta a tierra

Resistencia de la puesta a tierra de las masas

Se considera una resistencia de la instalación de puesta a tierra de: 15.00 W.

Resistencia de la puesta a tierra del neutro

Se considera una resistencia de la instalación de puesta a tierra de: 10.00 W.

Protección contra contactos indirectos

- Esquema de conexión a tierra TT

El corte automático de la alimentación está prescrito cuando, en caso de defecto y debido al valor y duración de la tensión de contacto, puede producirse un efecto peligroso sobre las personas o animales domésticos.

Debe existir una adecuada coordinación entre el esquema de conexión a tierra TT y las características de los dispositivos de protección.

La intensidad de defecto se puede calcular mediante la expresión:
$I_d = \frac{U_0}{R_A + R_B}$

Con:
- I_d: Corriente de defecto
- U_0: Tensión entre fase y neutro
- R_A: Suma de las resistencias de la toma de tierra y de los conductores de protección de las masas
- R_B: Resistencia de la toma de tierra del neutro, sea del transformador o de la línea de alimentación

La intensidad diferencial residual o sensibilidad de los diferenciales debe ser tal que garantice el funcionamiento del dispositivo para la intensidad de defecto del esquema eléctrico.

<table>
<thead>
<tr>
<th>Esquemas</th>
<th>Polaridad</th>
<th>I_d (A)</th>
<th>Protecciones</th>
<th>I_d (A)</th>
<th>I_{MN} (A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inversor Cargador</td>
<td>3F+N</td>
<td>72.17</td>
<td>Diferencial, Instantáneo; In: 125.00 A; Sensibilidad: 30 mA; Clase: A</td>
<td>9.23</td>
<td>0.03</td>
</tr>
<tr>
<td>Alumbrado Nave</td>
<td>F+N</td>
<td>17.32</td>
<td>Diferencial, Selectivo; In: 160.00 A; Sensibilidad: 300 mA; Clase: AC</td>
<td>9.16</td>
<td>0.30</td>
</tr>
<tr>
<td>Alumbrado Oficina</td>
<td>F+N</td>
<td>4.33</td>
<td>Diferencial, Selectivo; In: 160.00 A; Sensibilidad: 300 mA; Clase: AC</td>
<td>9.11</td>
<td>0.30</td>
</tr>
<tr>
<td>Toma de uso general</td>
<td>F+N</td>
<td>8.66</td>
<td>Diferencial, Instantáneo; In: 63.00 A; Sensibilidad: 30 mA; Clase: AC</td>
<td>9.22</td>
<td>0.03</td>
</tr>
<tr>
<td>Toma de uso general 2</td>
<td>F+N</td>
<td>8.66</td>
<td>Diferencial, Instantáneo; In: 63.00 A; Sensibilidad: 30 mA; Clase: AC</td>
<td>9.22</td>
<td>0.03</td>
</tr>
<tr>
<td>Toma de uso general 3</td>
<td>F+N</td>
<td>8.66</td>
<td>Diferencial, Instantáneo; In: 63.00 A; Sensibilidad: 30 mA; Clase: AC</td>
<td>9.22</td>
<td>0.03</td>
</tr>
<tr>
<td>Toma de uso general 4</td>
<td>F+N</td>
<td>8.66</td>
<td>Diferencial, Instantáneo; In: 63.00 A; Sensibilidad: 30 mA; Clase: AC</td>
<td>9.22</td>
<td>0.03</td>
</tr>
<tr>
<td>Toma Aire Acondicionado</td>
<td>F+N</td>
<td>17.32</td>
<td>Diferencial, Instantáneo; In: 63.00 A; Sensibilidad: 30 mA; Clase: AC</td>
<td>9.21</td>
<td>0.03</td>
</tr>
<tr>
<td>Calibrador 1</td>
<td>3F+N</td>
<td>0.50</td>
<td>Diferencial, Instantáneo; In: 25.00 A; Sensibilidad: 100 mA; Clase: AC</td>
<td>9.07</td>
<td>0.10</td>
</tr>
<tr>
<td>Calibrador 2</td>
<td>3F+N</td>
<td>1.35</td>
<td>Diferencial, Instantáneo; In: 25.00 A; Sensibilidad: 100 mA; Clase: AC</td>
<td>9.07</td>
<td>0.10</td>
</tr>
<tr>
<td>Enceradora</td>
<td>3F+N</td>
<td>1.98</td>
<td>Diferencial, Instantáneo; In: 25.00 A; Sensibilidad: 100 mA; Clase: AC</td>
<td>9.07</td>
<td>0.10</td>
</tr>
<tr>
<td>Lavadora de cítricos</td>
<td>3F+N</td>
<td>1.35</td>
<td>Diferencial, Instantáneo; In: 25.00 A; Sensibilidad: 100 mA; Clase: AC</td>
<td>9.07</td>
<td>0.10</td>
</tr>
<tr>
<td>Secadora</td>
<td>3F+N</td>
<td>1.35</td>
<td>Diferencial, Instantáneo; In: 25.00 A; Sensibilidad: 100 mA; Clase: AC</td>
<td>9.07</td>
<td>0.10</td>
</tr>
<tr>
<td>Cinta transportadora 1</td>
<td>3F+N</td>
<td>1.35</td>
<td>Diferencial, Instantáneo; In: 25.00 A; Sensibilidad: 100 mA; Clase: AC</td>
<td>9.07</td>
<td>0.10</td>
</tr>
<tr>
<td>Cinta transportadora 2</td>
<td>3F+N</td>
<td>1.35</td>
<td>Diferencial, Instantáneo; In: 25.00 A; Sensibilidad: 100 mA; Clase: AC</td>
<td>9.07</td>
<td>0.10</td>
</tr>
</tbody>
</table>
Con:

I_{AN} Corriente diferencial-residual asignada al DDR.

Por otro lado, esta sensibilidad debe permitir la circulación de la intensidad de fugas de la instalación debida a las capacidades parásitas de los cables. Así, la intensidad de no disparo del diferencial debe tener un valor superior a la intensidad de fugas en el punto de instalación. La norma indica como intensidad mínima de no disparo la mitad de la sensibilidad.

<table>
<thead>
<tr>
<th>Esquemas</th>
<th>Polaridad</th>
<th>I_{B} (A)</th>
<th>Protecciones</th>
<th>I_{ID} (A)</th>
<th>I_{IN} (A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carro Salida de Cajas</td>
<td>3F+N</td>
<td>1.35</td>
<td>Diferencial, Instantáneo; In: 25.00 A; Sensibilidad: 100 mA; Clase: AC</td>
<td>9.07</td>
<td>0.10</td>
</tr>
<tr>
<td>Tunel de secado</td>
<td>3F+N</td>
<td>1.98</td>
<td>Diferencial, Instantáneo; In: 25.00 A; Sensibilidad: 100 mA; Clase: AC</td>
<td>9.07</td>
<td>0.10</td>
</tr>
<tr>
<td>Elevador</td>
<td>3F+N</td>
<td>1.35</td>
<td>Diferencial, Instantáneo; In: 25.00 A; Sensibilidad: 100 mA; Clase: AC</td>
<td>9.07</td>
<td>0.10</td>
</tr>
<tr>
<td>Flejadora</td>
<td>3F+N</td>
<td>3.61</td>
<td>Diferencial, Instantáneo; In: 25.00 A; Sensibilidad: 100 mA; Clase: AC</td>
<td>9.07</td>
<td>0.10</td>
</tr>
<tr>
<td>Cámara Frigorífica</td>
<td>3F+N</td>
<td>5.32</td>
<td>Diferencial, Instantáneo; In: 25.00 A; Sensibilidad: 100 mA; Clase: AC</td>
<td>9.02</td>
<td>0.10</td>
</tr>
</tbody>
</table>

3.2.6 Cálculo de la hipotética facturación eléctrica

La tarifa seleccionada, la 3.0A, al ser superior a 10 kW, se engloba en el tipo de tarifa sin derecho a PVPC, de modo que está sujeta a la siguiente norma de facturación:

Los precios del PVPC (Peajes y costes de comercialización) son los siguientes:

Para una mejor visualización, se vuelven a mostrar:
Emplearemos pues estos peajes con el consiguiente recargo del 20 % en aquellos costes no correspondientes a peajes:

-Coste kWh valle = **0.00467 euros/kWh**

-Término de potencia (valle) = 16.291555 euros /kW año /365 días = **0.04463 euros/kW día**

-Consumo en hora valle:

Baterías → 660 Ah x 600 V = 396 kWh /día
Cámara frigorífica y modem ADSL en horas valle → 2947.4 W + 30 W = 2977.4 W
2977.4 W x 8 horas = 23.8192 kWh/día

En los 52 días que contemplaba la anterior factura, hay presentes días festivos y domingos, con lo cual estos 52 días, quedan en unos 45 días de consumo auténtico.

De modo que: 396 kWh/día x 45 días = 17820 kWh.
23.8192 kWh/día x 52 días = 1238.60 kWh (La cámara frigorífica nunca para).
17820 kWh + 1238.60 kWh = **19058.6 kWh** de consumo total durante el período de 52 días.

Con estos datos, ya podemos calcular nuestra factura eléctrica, la cual consta de los siguientes componentes:
CTP = 55 kW x 52 días x 0.04463 euros/kW día = \textbf{127.64 euros}.

CTE = 19058.6 kWh x (0.000886 euros/kWh + 1.2 x 0.00467 euros/kWh) = \textbf{123.69 euros}.
Complemento por discriminación horaria:

Los valores tomados son los siguientes:

- **Tej = 0.00467 euros/kWh** (Tomamos este valor por ser el término de energía del único periodo en el que, teóricamente, se va a producir consumo eléctrico.)
- **Ei = 19058.6 kWh**
- **Ci = -43 %** (Bonificación consumiendo solo en período valle)

Finalmente:

\[
CH = \frac{0.00467 \times 19058.6 \times (-43)}{100} = -38.27 \text{ euros}
\]
Dado que en nuestra instalación, prácticamente los únicos consumos serán el inversor cargador, cuyo factor de potencia es de 1 aproximadamente y la máquina frigorífica durante las horas de periodo valle, supondremos que el factor de potencia total de la instalación no será superior a 0.95.
Por tanto, supondremos que obtendremos la siguiente bonificación por energía reactiva:

\[CR = -\frac{220}{100} \times (CTP + CTE) = -0.022 \times (127.64 + 123.69) = -5.53 \text{ euros} \]

Impuesto sobre la electricidad:

\[IE = 0.04864 \times 1.05113 \times (127.64 + 123.69 - 38.27 - 5.53) = 10.61 \text{ euros}. \]

Alquiler de los equipos de medida:

\[\text{AEM} = (2.79 \text{ euros/mes}) / 30 \text{ días} \times 52 \text{ días} = 4.84 \text{ euros}. \]

Impuesto sobre el valor añadido (IVA):

\[\text{IVA} = 0.21 \times (127.64 + 123.69 -38.27 -5.53 +10.61 + 4.84) = 46.83 \text{ euros}. \]

Sumando todos y cada uno de los términos contemplados, el coste de una hipotética factura sería el siguiente:

\[\text{FACTURA} = 127.64 + 123.69 - 38.27 - 5.53 + 10.61 + 4.84 + 46.83 = 269.81 \text{ euros}. \]
4. PLANOS DE LA INSTALACIÓN

A continuación se muestran los planos obtenidos del programa cypelec rebt, donde pueden verse las diversas líneas de la instalación y sus propiedades sin incluir los inversores ni las baterías.

Se ha diseñado la instalación así como los cuadros teniendo en cuenta exclusivamente la parte de alterna.

ESQUEMA UNIFILAR DE LA LÍNEA GENERAL
ESQUEMA UNIFILAR DE LA MAQUINARIA

<table>
<thead>
<tr>
<th>Referencia</th>
<th>Toma de uso general</th>
<th>Toma de uso general 2</th>
<th>Toma de uso general 3</th>
<th>Toma de uso general 4</th>
<th>Toma Aire Acondicionado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potencia demandada</td>
<td>2.00 kW</td>
<td>2.00 kW</td>
<td>2.00 kW</td>
<td>2.00 kW</td>
<td>4.00 kW</td>
</tr>
</tbody>
</table>

ESQUEMA UNIFILAR CONSUMOS MONOFÁSICOS OFICINA
ESQUEMA UNIFILAR CONSUMOS MONOFÁSICOS ALUMBRADO
ESTUDIO DE VIABILIDAD ECONÓMICA PARA ALMACENAMIENTO DE ENERGÍA ELÉCTRICA EN ACUMULADORES ELECTROQUÍMICOS

ESQUEMA UNIFILAR LÍNEA INVERSOR CARGADOR
ESTUDIO DE VIABILIDAD ECONÓMICA PARA ALMACENAMIENTO DE ENERGÍA ELÉCTRICA EN ACUMULADORES ELECTROQUÍMICOS

Cuadro General

Representación Cuadro General

Inversor Cargador

Representación Cuadro Inversor Cargador
ESTUDIO DE VIABILIDAD ECONÓMICA PARA ALMACENAMIENTO DE ENERGÍA ELÉCTRICA EN ACUMULADORES ELECTROQUÍMICOS

REPRESENTACIÓN CUADRO CONSUMOS TRIFÁSICOS

REPRESENTACIÓN CUADRO CONSUMOS MONOFÁSICOS
LEYENDA DE LOS CUADROS CORRESPONDIENTE

5. PRESUPUESTO

A continuación se detalla el presupuesto global de la instalación, como se dijo anteriormente teniendo solo en cuenta aquellos costes adicionales a una instalación normal como la que ya existe, con el fin de comprobar si es o no rentable la modificación de una instalación ya existente o la construcción de una nueva instalación siguiendo el criterio mostrado en este documento.

<table>
<thead>
<tr>
<th>Número unidades</th>
<th>Elemento</th>
<th>Precio (€)</th>
<th>Total (€)</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>Acumuladores</td>
<td>1095,00</td>
<td>54750,00</td>
</tr>
<tr>
<td>1</td>
<td>Inversor cargador</td>
<td>39000,00</td>
<td>39000,00</td>
</tr>
<tr>
<td>1</td>
<td>Inversor monofásico</td>
<td>1683,53</td>
<td>1683,53</td>
</tr>
<tr>
<td>1</td>
<td>Inversor trifásico</td>
<td>2449,00</td>
<td>2449,00</td>
</tr>
<tr>
<td>40 (m)</td>
<td>Cable inversor</td>
<td>5,80</td>
<td>232,00</td>
</tr>
<tr>
<td>1</td>
<td>Envolvente C. Inv.</td>
<td>66,50</td>
<td>66,50</td>
</tr>
<tr>
<td>1</td>
<td>Int. Magnetotérmico</td>
<td>532,95</td>
<td>532,95</td>
</tr>
<tr>
<td>1</td>
<td>E. Diferencial</td>
<td>296,31</td>
<td>296,31</td>
</tr>
<tr>
<td>1</td>
<td>Lim. Sobretensiones</td>
<td>1350,93</td>
<td>1350,93</td>
</tr>
<tr>
<td>1</td>
<td>Carril cuadro inv.</td>
<td>3,92</td>
<td>3,92</td>
</tr>
<tr>
<td>8</td>
<td>Contactor AC Trif.</td>
<td>60,69</td>
<td>485,52</td>
</tr>
<tr>
<td>8</td>
<td>Contactor CC Monof.</td>
<td>100,00</td>
<td>800,00</td>
</tr>
</tbody>
</table>

TOTAL DE LA INSTALACIÓN CONTEMPLADO 101650,66

El total de la instalación arroja un coste de 101650,66 euros de presupuesto.
ANEXO 1: SEGURIDAD EN EL MANEJO DE LOS ACUMULADORES

El propósito fundamental de las normas y consideraciones que se tienen en cuenta en este punto es, fundamentalmente, asegurar la seguridad del personal que pueda tener acceso a los acumuladores de plomo ácido presentes en nuestras instalaciones. En toda actividad donde se empleen acumuladores de este tipo, es necesario tener en cuenta los riesgos que conlleva la presencia de los mismos en la instalación, y como subsanarlos.

Riesgos y medidas de seguridad

Las baterías poseen dos sustancias peligrosas: el electrolito ácido y el plomo. El primero es corrosivo, tiene alto contenido de plomo disuelto y en forma de partículas, y puede causar quemaduras en la piel y los ojos. El plomo y sus compuestos (dióxido de plomo y sulfato de plomo entre otros) son altamente tóxicos para la salud humana, ingresan al organismo por ingestión o inhalación y se transportan por la corriente sanguínea acumulándose en todos los órganos, especialmente en los huesos. La exposición prolongada puede afectar el sistema nervioso central, cuyos efectos van desde sutiles cambios psicológicos y de comportamiento, hasta graves efectos neurológicos, siendo los niños la población en mayor riesgo.

Cuando el plomo entra al medio ambiente no se degrada, pero los compuestos de plomo son transformados por la luz natural, el aire y el agua. El plomo puede permanecer adherido a partículas del suelo o de sedimento en el agua durante muchos años. Los riesgos más importantes y sus efectos son:

- **Inhalación:**
 - Ácido sulfúrico: Respirar vapores o niebla de ácido sulfúrico puede causar irritación en las vías respiratorias.
 - Compuestos de plomo: La inhalación del polvo o vapores puede causar irritación en vías respiratorias y pulmones.

- **Ingestión:**
 - Ácido sulfúrico: Puede causar una irritación severa en boca, garganta, esófago y estómago.
 - Compuestos de plomo: Su ingestión puede causar severo dolor abdominal, nausea, vómito, diarrea y calambres. La ingestión aguda puede llevar rápidamente a toxicidad sistémica.

- **Contacto con la piel:**
 - Ácido sulfúrico: El ácido sulfúrico causa quemaduras, úlceras e irritación severa.
 - Compuestos de plomo: No se absorben por la piel.

- **Contacto con los ojos:**
 - Ácido sulfúrico: Causa irritación severa, quemaduras, daño a las córneas y ceguera.
 - Compuestos de plomo: Pueden causar irritación.
• **Sobre exposición aguda (por una vez):**
 - Ácido sulfúrico: Irritación severa de la piel, daño a las córneas que puede causar ceguera, e irritación al tracto respiratorio superior.
 - Compuestos de plomo: Síntomas de toxicidad incluyen dolor de cabeza, fatiga, dolor abdominal, pérdida de apetito, dolor muscular y debilidad, cambios de patrones de sueño e irritabilidad.

• **Sobre exposición crónica (largo plazo):**
 Ácido sulfúrico: Posible erosión del esmalte de los dientes, inflamación de nariz, garganta y tubos bronquiales.
 Compuestos de plomo: Anemia; neuropatía, particularmente de los nervios motores, caída de la muñeca; daño a los riñones y cambios reproductivos en hombres y mujeres.

• **Carcinogenicidad:**
 - Ácido sulfúrico: La Agencia Internacional para la Investigación del Cáncer (IARC) ha clasificado la exposición ocupacional a vapores de ácidos inorgánicos fuertes que contienen ácido sulfúrico, como carcinogénica para los humanos (Grupo 1). Esta clasificación no aplica al electrolito de las baterías, sin embargo, las recargas con corrientes excesivas durante periodos de tiempo prolongados, de baterías sin las tapas de venteo bien puestas, puede crear una atmósfera de neblina de ácido inorgánico fuerte con contenido de ácido sulfúrico.

• **Fuego y explosión:**
 La liberación de hidrógeno, incluso con la batería en estado de reposo, es inherente a la reacción química que se produce en aquella, por lo tanto, la emanación de este gas inflamable es inevitable. La emanación de hidrógeno y proximidad de un foco de ignición (cigarrillo encendido, flama o chispa) pueden causar la explosión de una batería con la proyección violenta tanto de fragmentos de la caja como del electrolito líquido corrosivo. Las chispas se pueden producir internamente en el seno de la batería por cortocircuitos causados por un deficiente estado de la misma, ya sea por desprendimiento de materia activa, por acumulación de algunas impurezas, por comunicación entre los apoyos o por deformaciones de éstas, así como por avería en algún separador; circunstancias que pueden deberse a defectos de fabricación, mantenimiento incompleto o al trato dispensado a la batería. Las chispas externas tienen lugar por la manipulación de herramientas durante el montaje o desmontaje, la conexión de pinzas de cables de emergencia, la electricidad estática, las abrazaderas flojas, la carga insuficiente, la sobrecarga y por dejar objetos metálicos encima de la batería.

• **Reactividad:**
 - Ácido sulfúrico: El contacto del electrolito con combustibles y materiales orgánicos puede causar fuego y explosión. También reacciona violentamente con agentes reductores fuertes, metales, gas trióxido de azufre, oxidantes fuertes y agua. El contacto con metales puede producir humos tóxicos de dióxido de azufre y puede liberar gas hidrógeno inflamable.
 - Compuestos de plomo: Se debe evitar el contacto con ácidos fuertes, bases, haluros, halogenados, nitrato de potasio, permanganato, peróxidos y agentes reductores.
En consideración a toda esta serie de riesgos que representan las baterías de plomo ácido se aconseja adoptar, durante su almacenamiento y manipulación, las medidas de seguridad que se indican a continuación, además de todas las indicadas por el fabricante o proveedor.

Equipo cargador

La mayoría de cargadores existentes son automáticos. Si no lo son, debe regularse la capacidad de carga de las baterías. Se debe verificar el buen funcionamiento del cargador y controlar la intensidad de la corriente de carga. La operación de carga se debe hacer empezando por revisar el estado de los tapones de respiración por si hubiera obstrucción en su orificio. Al mismo tiempo se debe verificar el nivel del electrolito y rellenar con agua destilada o desmineralizada si fuera necesario.

Se pueden dejar quitados o ligeramente desenroscados los tapones de las celdas de la batería según las instrucciones del fabricante, luego se conectan los polos correspondientes de la batería y del cargador, cuidando la coincidencia de la polaridad de ambos y finalmente se conecta el cargador a una toma de corriente alterna.

La desconexión se realiza desconectando en primer lugar el cargador de la red eléctrica, después se desconectan los conectores de la batería y finalmente se recolocan los tapones. Es preferible disponer de terminales de cable con atornillado protegido, en vez de conectores de pinzas de cocodrilo.

Para realizar estas operaciones es preciso seguir las instrucciones del fabricante. Respecto a la recomendación de quitar los tapones de la batería para la operación de carga tiene partidarios a favor y en contra. Los fabricantes de baterías generalmente recomiendan mantener cerrados los tapones. La reglamentación OSHA 1926.403 de EE.UU. indica que "cuando se carga una batería, los tapones de respiración se deberán mantener en su sitio para evitar salpicaduras de electrolito, asegurando el buen funcionamiento de los tapones de respiración". A continuación, se indican consideraciones de interés al respecto, en función de si se quitan o no los tapones durante la carga.

Tapones quitados. La principal ventaja es una segura eliminación del hidrógeno generado a la atmósfera. Los inconvenientes son los siguientes: El desprendimiento importante de hidrógeno al final de la carga produce una ebullición que provoca salpicaduras de pequeñas gotitas de electrolito al exterior y hace perder capacidad a la batería. A su vez estas proyecciones de ácido pueden dar lugar a una corrosión de los terminales de cable o de partes metálicas exteriores a la batería. El orificio dejado abierto puede ser origen de una explosión de la caja de la batería si se aproximara un foco de ignición, por ejemplo, una llama de un encendedor para ver el nivel del electrolito. También pueden caer partículas conductoras dentro de la batería y ocasionar cortocircuito entre las placas y dejarla fuera de servicio.

Tapones puestos. El inconveniente mayor reside en el riesgo de estallido de la batería por sobrepresión interna de los gases desprendidos. Este riesgo puede estar paliado por la existencia en las baterías de plomo-ácido de un pequeño orificio en la rosca fileteada del tapón.
De ahí la importancia de revisar que no estén obturados esos orificios por polvo, suciedad o depósitos de sulfato.

De estas consideraciones se puede concluir que para regímenes de carga lenta en que se desprende poco hidrógeno y oxígeno se pueden dejar los tapones puestos, vigilando que no haya obturaciones en su orificio de respiración y sobretodo utilizar cargadores con control del final de carga.

En recargas rápidas, como es el caso que nos ocupa, se desprenden o se podrían despedir cantidades importantes de gases y se podría temer el estallido si hubiera obstrucción de los orificios, por lo cual se debería tener la batería muy limpia, revisar los orificios o al menos aflojar los tapones para evacuar los gases a través del fileteado de la rosca.

Ante dudas en la operación de carga atenerse a las instrucciones del fabricante, las cuales deberían ser expuestas en un cartel junto al cargador.

Protección contra incendios

Un local destinado a carga de baterías, perteneciente a un establecimiento industrial debe cumplir el Real Decreto 786/2001, Reglamento de Seguridad contra incendios en los establecimientos industriales. La caracterización del establecimiento industrial en el que se dispone de un local de carga de baterías, que por la resistencia al fuego de sus paredes y sus cerramientos se pueda considerar un sector de incendio, a efecto de aplicar las medidas de protección contra incendios, se debería realizar según el Apéndice 1 de ese Reglamento, basándose en: a) su configuración y ubicación con relación a su entorno y b) su nivel de riesgo intrínseco. El primer aspecto se analiza con las explicaciones dadas y con los esquemas expuestos en ese Apéndice 1. El nivel de riesgo intrínseco se calcularía con las fórmulas indicadas en el punto 3.2, apartado 1 del Apéndice 1, teniendo en consideración todos los elementos combustibles existentes en el local de las baterías.

Los locales de carga de baterías que no pertenezcan a establecimientos industriales normalmente se pueden encontrar en edificios a los que se aplicarían las Normas Básicas de la Edificación NBE-CPI/82, 91 y 96, según el año que le corresponda.

Ventilación

La ventilación en un local de carga de baterías debe ser suficiente para evitar el sobrecalentamiento de las baterías y de los cargadores, para que la concentración de hidrógeno sea inferior al límite inferior de explosividad y para que la concentración de vapores de ácido sulfúrico sea inferior al valor límite ambiental de exposición diaria establecido (1 mg/m3). Para evitar o disminuir esos riesgos, estos locales no se deberán ubicar en subterráneos.
Nuestro local cumple con esta exigencia. Las baterías se instalarían en una zona acondicionada para ello en el interior de la nave.

La ventilación se hará de forma que no afecte o produzca molestias a terceras personas. Dicha ventilación se producirá durante el día de forma natural, gracias a las grandes puertas de que dispone la nave, que permanecen abiertas durante la realización de las actividades laborales y que renuevan el aire en el interior de las instalaciones.

Los ventiladores con motores de protección antideflagrante, situados a la altura de las baterías pueden ayudar a mantener la temperatura de las baterías por debajo de 50 °C. Para un servicio y duración normal de las baterías no se deben hacer operaciones de carga o descarga por encima de ese valor.

Derrames de ácido

Se debe disponer de agua corriente para la limpieza de las baterías y de los posibles derrames de ácido en el suelo. Éste debería ser de un material resistente a los ácidos. El suelo debería tener una ligera pendiente para asegurar el desagüe de derrames y agua de limpieza a un sumidero en donde se pueda neutralizar la disolución ácida antes de la descarga a una depuradora de aguas residuales. La neutralización de los derrames de ácido sulfúrico se puede hacer con bicarbonato sódico (NaHCO₃), carbonato sódico (Na₂CO₃). No es recomendable emplear bases fuertes como el hidróxido sódico (NaOH).

El electrolito de la batería está compuesto de una disolución de ácido sulfúrico en agua con una concentración aproximada del 40% en peso de ácido. Es muy corrosivo y se debe almacenar en recipientes de plomo, vidrio o de plásticos resistentes. La mezcla de ácido concentrado y agua no es necesario hacerla en la mayoría de los talleres de baterías y requeriría unas medidas similares a las de la sosa cáustica por ser también corrosivo. Se debe recordar que jamás se debe añadir agua al ácido concentrado por su violenta reacción con proyección peligrosa del líquido. La operación se debe hacer añadiendo lentamente el ácido sobre el agua, al tiempo que se remueve constantemente la mezcla para evitar que el ácido concentrado, más pesado, se deposite en el fondo y para que se disipe el calor generado en la reacción. En los locales en que se manejen recipientes tipo garrafas, se debería tener un soporte para facilitar la inclinación de los mismos o un sistema de trasvase por sifón.

Estos recipientes deben tener un respiradero para asegurar un trasvase sin interrupciones ni salpicaduras. Además, no se deben mover sin su envoltura o caja de protección, ni estar almacenados en lugares de excesivo calor o con los rayos directos del sol.
Equipos de protección colectiva e individual

El mayor riesgo con el ácido de la batería se da en caso de salpicadura a los ojos. Se debe actuar de inmediato, rocizando agua corriente sobre la parte afectada al menos durante varios minutos y con examen médico lo antes posible. No se debe utilizar disolución neutralizadora. Debería procurarse atención médica inmediata. Si el contacto del ácido es con la piel también se debe lavar con abundante cantidad de agua. En caso de resultar con quemadura se debe seguir tratamiento médico. Como medida de protección en las situaciones de proyección de ácido, se requiere disponer de ducha y fuente lavaojos a una distancia máxima de 10 m de los puestos de trabajo, libres de obstáculos y debidamente señalizadas. Se deberán probar como mínimo una vez por semana y repararse de inmediato en caso de observarse alguna deficiencia.

En el local, el personal debe disponer para las operaciones con líquidos corrosivos de la ropa apropiada y de equipos de protección y primeros auxilios para ojos y cara, manos, pies y piernas, etc. Los equipos de protección individual se concretan en mandiles, guantes cubrebrazos resistentes a los ácidos, pantallas faciales (o gafas de seguridad según la operación) y botas de seguridad. Las salpicaduras menores de ácido sobre la ropa de trabajo se pueden neutralizar con una disolución débil de amoniacio (hidróxido amónico) o una disolución de bicarbonato sódico.

El amoniacio no deja residuo al secar. Para salpicaduras de mayor extensión se requiere cambio de ropa y su lavado rápido para eliminar el ácido y evitar daños al tejido. Existen prendas y calzado resistentes a los ácidos.

Señalización

Se debe señalar en el interior del local y en las puertas de entrada la prohibición de fumar e introducir útiles con llama. Para inspeccionar el nivel del electrolito utilizar linternas antideflagrantes. Señalar también el riesgo de salpicaduras de líquido corrosivo y los riesgos mecánicos existentes en las operaciones con los equipos de elevación y transporte. La señalización deberá estar normalizada según establece el Real Decreto 485/1997 sobre disposiciones mínimas en materia de señalización de seguridat y salud en el trabajo.

Formación del personal

Se deberá asegurar que todo el personal afectado por estas operaciones y los consiguientes riesgos esté debidamente informado de los mismos y las medidas preventivas, y formado para realizar las diferentes intervenciones habituales, ocasionales o excepcionales ante situaciones de emergencia.

Plan de emergencia

El plan de emergencia obligatorio del centro de trabajo debería contemplar los aspectos específicos de las situaciones críticas que pueden concurrir en tales locales.
ANEXO 2: MANTENIMIENTO DE LOS ACUMULADORES

Para tener las baterías a su máxima capacidad durante toda su vida útil, éstas requieren de un mantenimiento continuo que comprende mediciones de voltaje, densidad y temperatura, y pruebas de descarga, realizadas según las frecuencias recomendadas por proveedores o fabricantes. Cuando se realicen tales verificaciones se deberá, además:

- Comprobar que no hay daños en la caja o fugas de electrolito. Las baterías deberán mantenerse limpias y secas. Si hay electrolito, se deberá limpiar con una solución de bicarbonato de sodio.

- Limpiar y mantener ajustadas las conexiones de los cables. Los terminales deberán mantenerse libre de corrosión. De existir, los terminales se podrán limpiar con la solución de bicarbonato de sodio seguido por agua limpia y luego por un trapo seco.

- De resultar necesario, y si corresponde (las baterías VRLA no necesitan la reposición de agua), se deberá ajustar el nivel del electrolito utilizando agua desmineralizada o destilada (el agua potable tiene impurezas que contribuyen al envejecimiento de la batería). Bajo condiciones difíciles, alta temperatura ambiente por ejemplo, el nivel del electrolito deberá comprobarse con tanta frecuencia como resulte necesario.

ANEXO 3: MEDIOAMBIENTE Y GESTIÓN DE LOS DESECHOS

En esta parte abordaremos el tema de la gestión y recogida de los posibles residuos generados por los acumuladores y de los propios acumuladores una vez que han sido usados y han llegado al final de su vida útil.

Para establecer en este documento la normativa pertinente, nos basaremos fundamentalmente en el Real Decreto 710/2015, de 24 de julio, por el que se modifica el Real Decreto 106/2008, de 1 de febrero, sobre pilas y acumuladores y la gestión ambiental de sus residuos y en el propio REAL DECRETO 106/2008, de 1 de febrero, sobre pilas y acumuladores y la gestión ambiental de sus residuos.

1. En aplicación del artículo 31 de la Ley 22/2011, de 28 de julio, todo productor estará obligado, a hacerse cargo de la recogida y gestión de las cantidades y tipos de pilas, acumuladores y baterías usados que haya puesto en el mercado, para su venta al usuario final en territorio español, cualquiera que haya sido la modalidad de venta, ya sea directa, electrónica, por correo o automática. Dicha recogida y gestión se deberá llevar a cabo en la forma establecida en este real decreto. A estos efectos se considerarán, al menos, los siguientes tipos de pilas, acumuladores y baterías:
 a) Pilas botón.
 b) Pilas estándar.
c) Acumuladores portátiles.
d) Pilas, acumuladores y baterías de automoción.
e) Pilas, acumuladores y baterías industriales con cadmio.
f) Pilas, acumuladores y baterías industriales con plomo.
g) Pilas, acumuladores y baterías industriales sin cadmio y sin plomo.
h) Otros tipos.

2. En aplicación de los artículos 31 y 32 de la Ley 22/2011, de 28 de julio, el productor deberá hacerse cargo, de forma individual o de forma colectiva, de la recogida y gestión a que se refiere el apartado anterior, siguiendo alguna o varias de las siguientes posibilidades:
 a) Estableciendo su propio sistema individual de responsabilidad ampliada, estos sistemas podrán suscribir acuerdos voluntarios en la forma establecida en el artículo 20.
 b) Participando en un sistema colectivo de responsabilidad ampliada.
 c) Estableciendo un sistema de depósito, devolución y retorno de las mismas pilas, acumuladores y baterías usados que haya puesto en el mercado, bien como modalidad de sistema individual de responsabilidad ampliada, o también junto a otros productores dentro de un sistema colectivo de responsabilidad ampliada.
 d) Contribuyendo económicamente a los sistemas públicos de gestión implantados, de forma proporcional a las cantidades de producto que pongan en el mercado y atendiendo a los costes efectivos de su gestión.

3. Los sistemas por los que opten los productores, entre los indicados en el apartado anterior, deberán estar dotados de los medios adecuados y de una red de puntos de recogida selectiva periódica, que sea suficientes para cubrir todo el territorio en el que se hayan comercializado sus productos y de una red de puntos de recogida selectiva periódica, que sea suficiente a juicio de la autoridad competente de la comunidad autónoma que reciba la comunicación o les conceda la autorización, previo informe de la Comisión de coordinación en materia de residuos, de conformidad con el artículo 32.3 de la Ley 22/2011, de 28 de julio. **Una vez recogidos y clasificados, los residuos de pilas y acumuladores serán trasladados a plantas autorizadas de tratamiento y reciclaje.**

La recogida de los residuos de pilas o acumuladores portátiles deberá realizarse mediante procedimientos específicos de recogida selectiva. Para ello, se crearán redes de puntos de recogida selectiva distribuidos de acuerdo a la densidad de población y en número suficiente, accesibles y cercanos al poseedor o usuario final; **en cualquier caso, la entrega por el poseedor o usuario final será sin coste alguno para éstos, que no estarán obligados a la adquisición de pilas o acumuladores portátiles nuevos.**

La recogida de los residuos de pilas, **acumuladores industriales** o de automoción y su traslado a las plantas de tratamiento y reciclaje deberán realizarlos preferentemente los propios productores a través del sistema de responsabilidad ampliada en el que participen o bien mediante los servicios de las empresas de gestión con las que contraten, previa autorización o comunicación de conformidad con la Ley 22/2011, de 28 de julio.
Las operaciones de recogida, almacenamiento y transporte de estos residuos deberán ser gratuitas para el poseedor o usuario final. Estos productores podrán suscribir acuerdos voluntarios con otros operadores económicos, o con terceros, para facilitar los servicios de recogida y traslado a las instalaciones autorizadas que correspondan, para su correcta gestión ambiental.

Los productores de pilas, acumuladores o baterías industriales, o quienes actúen en su nombre, **quedan obligados** a aceptar, de los poseedores o usuarios finales, las pilas, acumuladores y baterías industriales usados que les entreguen, y ello **sin coste alguno** para dichos poseedores o usuarios finales. Estas obligaciones les son exigibles con independencia de la composición química u origen de estas pilas, acumuladores y baterías usadas. Las pilas, acumuladores y baterías industriales también podrán recogerlas operadores autorizados o registrados para ello, según establece la Ley 22/2011, de 28 de julio.

Especificaciones de los requisitos de tratamiento y reciclaje

Parte A: Tratamiento.

1. El tratamiento comprenderá, como mínimo, la extracción de todos los fluidos y ácidos.
2. El tratamiento y cualquier almacenamiento, incluido el almacenamiento provisional, en instalaciones de tratamiento se realizará en lugares impermeabilizados y convenientemente cubiertos o en contenedores adecuados.

Parte B: Reciclaje.

3. Los procesos de reciclaje deberán alcanzar los siguientes niveles de eficiencia mínimos en materia de reciclado:
 a) El reciclado del 65 por ciento en peso, como promedio, de pilas y acumuladores de plomo-ácido, incluido el reciclado del contenido de plomo en el mayor grado técnicamente posible sin que ello entrañe costes excesivos;
 b) el reciclado del 75 por ciento en peso, como promedio, de las pilas y acumuladores de níquel-cadmio, incluido el reciclado del contenido de cadmio en el mayor grado técnicamente posible sin que ello entrañe costes excesivos; y
 c) el reciclado del 50 por ciento en peso, como promedio, de las demás pilas y acumuladores.
ANEXO 4: ESTUDIO DE VIABILIDAD

En este punto comprobaremos definitivamente la viabilidad económica de este proyecto, teniendo en cuenta el ahorro producido y el presupuesto necesario.

-Comparación de resultados:

Si comparamos el precio de la factura real con la hipotética, para el período estimado de 52 días, observamos un ahorro de:

1857.68 euros – 269.81 euros = 1587.87 euros cada 2 meses aproximadamente.

Es decir, unos 793.94 euros de ahorro al mes aproximadamente.

Si tenemos en cuenta que el coste estimado para la instalación es de 101650,66 euros, se tardaría en amortizar la instalación, siempre y cuando que el ritmo de consumo continúe al ritmo actual, aproximadamente:

793.94 euros x 12 meses = 9527.28 euros de ahorro al año.

\[
\frac{101650.66 \text{ euros}}{9527.28 \text{ euros/año}} = 10.67 \text{ años}
\]

Es decir, teóricamente la instalación tardaría entre 10 y 11 años aproximadamente en amortizarse.

Dado que la duración de los componentes más caros como los acumuladores o el inversor cargador es superior, 20 años en el caso de los acumuladores, a partir del décimo año se empezaría a ganar dinero, y solo se debería reponer aquellos componentes que se fuesen degradando.

Por tanto, el presente estudio económico da por buena la inversión, calificándola como una interesante inversión a largo plazo muy a tener en cuenta, teniendo además en mente que los costes, tanto de los acumuladores como de la electrónica de potencia son cada vez más bajos, haciendo esta posible inversión aún más rentable.
ANEXO 5: GLOSARIO DE IMÁGENES Y TABLAS

-Especificaciones técnicas de los elementos de la instalación

Especificaciones de las baterías elegidas:

Características del producto

Batería solar VR OPZS 660Ah C100 (420Ah C10)

Para instalaciones de uso diario de grandes acumulaciones de energía.

Código del producto: da0538

Características:

- Medidas: 145 x 206 x 535 mm.
- Peso: 33,5 Kg cada vaso.
- Voltaje: 2V cada vaso (6 vasos en total: 12V).
- Tipo de batería: Estacionaria OPZS.
- Capacidad en C100: 660Ah, y en C10: 420Ah.
- Bajo mantenimiento y escasa autodescarga.
- Terminales de cobre de fácil conexión y conectores.
- Electrodo de placas tubulares hechas mediante una aleación de plomo-calcio - estáño para que la batería ofrezca una larga vida útil.
- Vida útil de 20 años.
- Resistente recipiente al impacto fabricado mediante vidrio transparente SAN.
- Conectores con tornillo M10 más seguros contra los contactos accidentales y contra cortocircuitos.
- Excelente duración de los ciclos de carga y descarga.
Especificaciones del cargador de baterías elegido:

<table>
<thead>
<tr>
<th>CARACTERÍSTICAS ELÉCTRICAS</th>
<th>Bat Gen 30</th>
<th>Bat Gen 50</th>
<th>Bat Gen 100</th>
<th>Bat Gen 150</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equipo</td>
<td>Bat Gen 30</td>
<td>Bat Gen 50</td>
<td>Bat Gen 100</td>
<td>Bat Gen 150</td>
</tr>
<tr>
<td>Modelos</td>
<td>30 kVA T</td>
<td>30 kVA TL</td>
<td>50 kVA T</td>
<td>50 kVA TL</td>
</tr>
<tr>
<td>Potencia continua de salida</td>
<td>30 kW AC</td>
<td>50 kW AC</td>
<td>100 kW AC</td>
<td>150 kW AC</td>
</tr>
<tr>
<td>Potencia Nominal DC</td>
<td>≥ 31 kW</td>
<td>≥ 52 kW</td>
<td>≥ 105 kW</td>
<td>≥ 158 kW</td>
</tr>
<tr>
<td>Tensión Nominal AC</td>
<td>380-400 V Trifásico</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frecuencia nominal</td>
<td>50/60 Hz</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Factor de potencia</td>
<td>1 ajustable ± 0.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Máximo corriente de línea AC</td>
<td>44 A</td>
<td>73 A</td>
<td>145 A</td>
<td>216 A</td>
</tr>
<tr>
<td>Distorsión corriente AC (1)</td>
<td><3% THD a potencia nominal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tensión de batería</td>
<td>300-720 VDC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Máxima tensión DC (2)</td>
<td>600 V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Máximo corriente DC</td>
<td>103 A</td>
<td>165 A</td>
<td>173 A</td>
<td>175 A</td>
</tr>
<tr>
<td>Nº máx. equipos en paralelo</td>
<td>N=20 kW</td>
<td>N=50 kW</td>
<td>N=100 kW</td>
<td>N=150 kW</td>
</tr>
<tr>
<td>Eficiencia pico</td>
<td>98%</td>
<td>98%</td>
<td>98%</td>
<td>98%</td>
</tr>
<tr>
<td>Capacidad de batería</td>
<td>150 Ah a 1000 Ah</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CARACTERÍSTICAS AMBIENTALES Y MECÁNICAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rango de temperatura ambiente (3)</td>
</tr>
<tr>
<td>Grado de protección ambiental</td>
</tr>
<tr>
<td>Peso aproximado Kg</td>
</tr>
<tr>
<td>Dimensiones (AnxAnxF) mm</td>
</tr>
<tr>
<td>Altitud de funcionamiento</td>
</tr>
<tr>
<td>Humedad relativa</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CARACTERÍSTICAS GENERALES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Método de refrigeración</td>
</tr>
<tr>
<td>Control de ventilador externo (6A Máx.)</td>
</tr>
<tr>
<td>Funcciones de protección</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
Especificaciones del inversor monofásico elegido:

- Máxima Corriente de Carga 18 A
- Máxima Tensión de Entrada 1.000 V
- Máximo Rendimiento 97,90%
- Potencia de Salida Nominal 6.000 W
- Rango de Temperatura de Trabajo -40 - +55 °C
- Tipo de Protección IP 65
- Alto x Ancho x Profundo (mm) 645 x 431 x 204 mm
- Factor de Potencia 0,85 - 1 ind. / cap.
- Medición de Aislamiento DC Si
- Rango de Funcionamiento del MPP 240 - 800 V
- Frecuencia de Trabajo 50 Hz / 60 Hz
- Máxima Corriente de Salida 30,3 A
- Humedad del Aire Admisible 0 - 100 %
- Tipo de Refrigeración Refrigeración de aire regulada
- Peso del Inversor de Red 21,5 kg
- Consumo Nocturno < 1 W
- Seccionador DC Si

Especificaciones del inversor trifásico elegido:

[Curva de rendimiento de inversor]

Accesorios

- Inversor RG 485
- Reder Control Module PNC 485

- No válido para todos los apéndices nacionales de la norma EN 50438
- De serie: Opcional: No disponible
- Datos provisionales: febrero de abril 2013
- Datos en condiciones nominales

Rentable
- Rendimiento máximo del 98 %
- Gestión de los puntos mediante OptiTrack: Global Peak
- Gestión activa de la temperatura gracias a OptiCool

Flexibilidad
- Tensión de entrada de CC hasta 1.000 V
- Funciones integradas de gestión de red
- Inyección de potencia reactiva
- Diseño de instalaciones adaptado a cada modelo con OptiTrack

Comunicativo
- SMA Webconnect
- Comunicación con Sunny Portal
- Fácil configuración por países
- Relé multifunción de serie

Sencillo
- Inyección trifásica
- Conexión del cableado sin necesidad de herramientas
- Sistema de conexión de CC SUNCLIX
- Interruptor seccionador de potencia de CC integrado ESS
- Sencillo montaje mural
<table>
<thead>
<tr>
<th>Sunny Tripower 7000W</th>
<th>Sunny Tripower 8000W</th>
<th>Sunny Tripower 9000W</th>
</tr>
</thead>
<tbody>
<tr>
<td>7175 W</td>
<td>8200 W</td>
<td>9225 W</td>
</tr>
<tr>
<td>1000 V</td>
<td>1000 V</td>
<td>1000 V</td>
</tr>
<tr>
<td>290 V - 380 V / 580 V</td>
<td>320 V - 380 V / 530 V</td>
<td>370 V - 380 V / 530 V</td>
</tr>
<tr>
<td>150 V / 188 V</td>
<td>150 V / 188 V</td>
<td>150 V / 188 V</td>
</tr>
<tr>
<td>15 A / 10 A</td>
<td>15 A / 10 A</td>
<td>15 A / 10 A</td>
</tr>
<tr>
<td>15 A / 10 A</td>
<td>15 A / 10 A</td>
<td>15 A / 10 A</td>
</tr>
<tr>
<td>2 / A; 2; B2</td>
<td>2 / A; 2; B2</td>
<td>2 / A; 2; B2</td>
</tr>
<tr>
<td>7000 W</td>
<td>8000 W</td>
<td>9000 W</td>
</tr>
<tr>
<td>7000 VA</td>
<td>8000 VA</td>
<td>9000 VA</td>
</tr>
<tr>
<td>3 / N / F; 220 / 380 V</td>
<td>3 / N / F; 220 / 380 V</td>
<td>3 / N / F; 220 / 380 V</td>
</tr>
<tr>
<td>3 / N / F; 220 / 400 V</td>
<td>3 / N / F; 220 / 400 V</td>
<td>3 / N / F; 220 / 400 V</td>
</tr>
<tr>
<td>3 / N / F; 240 / 415 V</td>
<td>3 / N / F; 240 / 415 V</td>
<td>3 / N / F; 240 / 415 V</td>
</tr>
<tr>
<td>160 V - 280 V</td>
<td>160 V - 280 V</td>
<td>160 V - 280 V</td>
</tr>
<tr>
<td>50 Hz, 60 Hz / -5 Hz ... +5 Hz</td>
<td>50 Hz, 60 Hz / -5 Hz ... +5 Hz</td>
<td>50 Hz, 60 Hz / -5 Hz ... +5 Hz</td>
</tr>
<tr>
<td>50 Hz / 230 V</td>
<td>50 Hz / 230 V</td>
<td>50 Hz / 230 V</td>
</tr>
<tr>
<td>10,2 A</td>
<td>11,6 A</td>
<td>13,1 A</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0,8 inductivo ... 0,8 capacitivo</td>
<td>0,8 inductivo ... 0,8 capacitivo</td>
<td>0,8 inductivo ... 0,8 capacitivo</td>
</tr>
<tr>
<td>3 / 3</td>
<td>3 / 3</td>
<td>3 / 3</td>
</tr>
<tr>
<td>98% / 97,6%</td>
<td>98% / 97,6%</td>
<td>98% / 97,6%</td>
</tr>
<tr>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>470 / 730 / 240 mm</td>
<td>470 / 730 / 240 mm</td>
<td>470 / 730 / 240 mm</td>
</tr>
<tr>
<td>(18,5 / 28,7 / 9,5 in)</td>
<td>(18,5 / 28,7 / 9,5 in)</td>
<td>(18,5 / 28,7 / 9,5 in)</td>
</tr>
<tr>
<td>37 kg (81,6 lb)</td>
<td>37 kg (81,6 lb)</td>
<td>37 kg (81,6 lb)</td>
</tr>
<tr>
<td>-25 °C ... +60 °C / (-13 °F ... +140 °F)</td>
<td>-25 °C ... +60 °C / (-13 °F ... +140 °F)</td>
<td>-25 °C ... +60 °C / (-13 °F ... +140 °F)</td>
</tr>
<tr>
<td>40 dB(A)</td>
<td>40 dB(A)</td>
<td>40 dB(A)</td>
</tr>
<tr>
<td>1 W</td>
<td>1 W</td>
<td>1 W</td>
</tr>
<tr>
<td>Sin transformador / OptiCool</td>
<td>Sin transformador / OptiCool</td>
<td>Sin transformador / OptiCool</td>
</tr>
<tr>
<td>IP03</td>
<td>IP03</td>
<td>IP03</td>
</tr>
<tr>
<td>4k4H</td>
<td>4k4H</td>
<td>4k4H</td>
</tr>
<tr>
<td>100%</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>STP 7000TL/20</td>
<td>STP 8000TL/20</td>
<td>STP 9000TL/20</td>
</tr>
</tbody>
</table>
Especificaciones del interruptor magnetotérmico elegido:

<table>
<thead>
<tr>
<th>4P</th>
<th>10</th>
<th>1</th>
<th>18849</th>
<th>B</th>
<th>351,33</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>1</td>
<td>1</td>
<td>18850</td>
<td>B</td>
<td>358,56</td>
</tr>
<tr>
<td>20</td>
<td>1</td>
<td>1</td>
<td>18851</td>
<td>B</td>
<td>366,89</td>
</tr>
<tr>
<td>25</td>
<td>1</td>
<td>1</td>
<td>18852</td>
<td>B</td>
<td>390,54</td>
</tr>
<tr>
<td>32</td>
<td>1</td>
<td>1</td>
<td>18853</td>
<td>B</td>
<td>413,59</td>
</tr>
<tr>
<td>40</td>
<td>1</td>
<td>1</td>
<td>18854</td>
<td>B</td>
<td>426,46</td>
</tr>
<tr>
<td>50</td>
<td>1</td>
<td>1</td>
<td>18855</td>
<td>B</td>
<td>456,32</td>
</tr>
<tr>
<td>63</td>
<td>1</td>
<td>1</td>
<td>18856</td>
<td>B</td>
<td>464,81</td>
</tr>
<tr>
<td>80</td>
<td>1</td>
<td>1</td>
<td>18858</td>
<td>A</td>
<td>517,30</td>
</tr>
<tr>
<td>100</td>
<td>1</td>
<td>1</td>
<td>18660</td>
<td>A</td>
<td>532,95</td>
</tr>
<tr>
<td>125</td>
<td>1</td>
<td>1</td>
<td>18662</td>
<td>A</td>
<td>539,09</td>
</tr>
</tbody>
</table>

Especificaciones del elemento diferencial elegido:

- Bloques diferenciales Vigi NG125
 - Añaden la función de protección diferencial a los magnetotérmicos NG125
 - Se fijan a la derecha de los NG125.
 - Se presentan en tres versiones:
 - Clase A: todas las sensibilidades fijas o regulables, hasta 125 A.
 - Clase A “s”.
- 3 sensibilidades fijas: 30, 300, 1000 mA. 4 sensibilidades regulables: 300-500-1000-3000 mA
- 4 versiones (en cuanto a retardo): fijo, instantáneo, fijo selectivo, regulable I/S, regulable I/S/R.

Características principales

<table>
<thead>
<tr>
<th>Característica</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corriente maxi de uso</td>
<td>125</td>
</tr>
<tr>
<td>Tipo</td>
<td>Instantáneo</td>
</tr>
<tr>
<td>Nº polos</td>
<td>4P</td>
</tr>
<tr>
<td>Tipo diferencial</td>
<td>Clase A</td>
</tr>
<tr>
<td>Sensibilidad</td>
<td>30 mA</td>
</tr>
</tbody>
</table>
Especificaciones del contactor de alterna elegido:

Contactor trifásico (3 polos) de 95A en categoría AC3 o bien 125A en categoría AC1, el contactor está equipado con contactos principales de alta robustez, fabricados con un 85% de plata, lo cual lo hace apto para aplicaciones exigentes para manejo de motores eléctricos, sistemas de calefacción, iluminación, ventilación y de uso en general. El contactor está equipado con 2 contactos auxiliares, uno abierto (NA) y otro cerrado (NC). La fijación del contactor se puede realizar mediante tornillos o bien por carril DIN.

Disponemos de una amplia gama de accesorios para el contactor.

Características generales contactor:
- Corriente asignada contactor en AC3: 95A.
- Número de polos contactor: 3.
- **Corriente máxima instantánea** (Ith contactor): 125A.
- **Tensión máxima contactor**: 660 V.
- Calidad de los contactos principales: 85% de plata (Ag).
- Potencia máxima contactor: 3 AC3 230V: 25 Kw.
- Potencia máxima contactor: 3 AC3 400V: 45 Kw.
- Tensión de mando contactor: 110 Vac 50/60 Hz.
- Contacto auxiliar integrado en el contactor: 1 Abierto (NA) y 1 cerrado (NC).
- Referencia fabricante: CIX2.9511-F7 similar a LC1-D9511-F7.

Especificaciones del contactor de continua elegido:

<table>
<thead>
<tr>
<th>ESPECIFICACIONES</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Producto no.</td>
<td>DH200A</td>
</tr>
<tr>
<td>Tipo contacto</td>
<td>SPST-NO</td>
</tr>
<tr>
<td>Contacto actual (corriente continua)</td>
<td>500A</td>
</tr>
<tr>
<td>Rango de corriente</td>
<td>200A</td>
</tr>
<tr>
<td>Voltaje de funcionamiento nominal de contacto</td>
<td>12 ~ 900V</td>
</tr>
<tr>
<td>El interruptor de máximo corriente</td>
<td>2000A(320VDC)</td>
</tr>
<tr>
<td>La caída de voltaje de contacto</td>
<td>80mV máx. 100</td>
</tr>
<tr>
<td>Pick-up (V)</td>
<td>(40~70) % de la bobina de voltaje clasificado</td>
</tr>
<tr>
<td>Drop-out (V)</td>
<td>(5~40) % de la bobina de voltaje clasificado</td>
</tr>
<tr>
<td>Clima máximo (incluye tiempo de rebote)</td>
<td>Máximo 20ms.</td>
</tr>
<tr>
<td>Contacto rebolar en cerrar</td>
<td>Máximo 7ms.</td>
</tr>
<tr>
<td>Tiempo de liberación</td>
<td>Máximo 12ms.</td>
</tr>
<tr>
<td>Vibración, Sinusoidal (10 ~ 2000Hz, pico)</td>
<td>≤ 20g</td>
</tr>
<tr>
<td>Shock(11ms, 1/2sine, Peak, Operating)</td>
<td>≤ 20g</td>
</tr>
<tr>
<td>Rango de temperatura ambiente</td>
<td>-40°C ~ + 85°C</td>
</tr>
<tr>
<td>Rango de temperatura ambiente de almacenamiento</td>
<td>-55 °C ~ + 120°C</td>
</tr>
<tr>
<td>Resistencia de aislamiento</td>
<td>Min 100MΩ @ 500VDC</td>
</tr>
</tbody>
</table>
ANEXO 6: BIBLIOGRAFÍA

-NTP 617: Locales de carga de baterías de acumuladores eléctricos de plomo-ácido sulfúrico Emilio Turmo Sierra.

-GUÍA TÉCNICA SOBRE MANEJO DE BATERÍAS DE PLOMO ÁCIDO USADAS Proyecto CONAMA / GTZ

-REAL DECRETO 106/2008, de 1 de febrero, sobre pilas y acumuladores y la gestión ambiental de sus residuos.

-Real Decreto 710/2015, de 24 de julio, por el que se modifica el Real Decreto 106/2008, de 1 de febrero, sobre pilas y acumuladores y la gestión ambiental de sus residuos.

-Información de tarifas eléctricas y modalidades de contratación 2008 IBERDROLA

-P02 Dimensionado de una instalación solar fotovoltaica aislada. Juan Martínez Tudela.

Enlaces:

https://es.mathworks.com/help/physmod/sps/powersys/ref/battery.html?sessionid=e3feac45f32705fa4159df7fbdab

http://cypelec-rebt.cype.es/cypelec_rebt_diseño_de_cuadros_electricos.htm

http://www.tarifa-electrica.es/bt_tres.php