UNIVERSIDAD POLITÉCNICA DE CARTAGENA
Escuela Técnica Superior de Ingeniería Industrial

APLICACIÓN DEL PENSAMIENTO LEAN A LA GESTIÓN DE PROYECTOS DE CONSTRUCCIÓN

TRABAJO FIN DE MASTER
MASTER EN INGENIERÍA INDUSTRIAL

Autor: Miguel López Pellicer
Director: Ana María Nieto Morote

Cartagena, Septiembre 2017
APLICACIÓN DEL PENSAMIENTO LEAN
A LA GESTIÓN DE PROYECTOS DE CONSTRUCCIÓN

TRABAJO FIN DE MASTER

Autor: Miguel López Pellicer

Director: Ana María Nieto Morote

Cartagena, Septiembre 2017
A mi inseparable compañera, Pilar,
a mis padres, mis hermanos, Angel y Pablo
Agradecimientos

En primer lugar, me gustaría agradecer este Trabajo Fin de Máster a mi directora de proyecto D. Ana María Nieto Morote. Agradecerle su atención e inestimable ayuda, así como su dedicación para que este proyecto saliera adelante.

Dar las gracias a la Universidad Politécnica de Cartagena que durante estos años me ha acogido y formado como estudiante y como persona, tan agradablemente. Y en especial al Departamento de Electrónica, Tecnología de Computadoras y Proyectos por brindarme la oportunidad de realizar este proyecto. Siempre quedará un recordatorio maravilloso de mi estancia aquí.

Agradecer este proyecto a Pilar, mi compañera, mi apoyo incondicional; gracias por tu aliento todos estos años. Sin ti no habría sido posible.

A mis amigos, por estar siempre a mi lado en todo momento. Siento no haber dedicado el tiempo que os merecéis.

Por último y no menos importante, dar las gracias a mi familia. A mis padres. A mis hermanos. Ángel y Pablo. Sois un espejo en el que mirarme.
Abstract

Interest in continuous improvement in the management of construction projects has increased significantly in recent years, mainly due to the elimination of activities that do not add value to the final product or intermediate products.

The philosophy of Lean Construction allows us to deal with the Project Management issues in an efficient way, allowing the client to extract the value throughout the project.

In the present project, the application of the Lean philosophy to the scope of Project Management according to the Project Management Institute is carried out, focusing on those that are more susceptible with the purpose of obtaining a methodology to approach the Project Management ensuring that all activities that do not add value to the client are eliminated.
Resumen

El interés por la mejora continua en la Gestión de Proyectos de Construcción ha aumentado significativamente en los últimos años, debido principalmente a la eliminación de las actividades que no agregan valor al producto final ni a los productos intermedios.

La filosofía del *Lean Construction* permite abordar la problemática de la Gestión de Proyectos de una forma eficiente, que permita al cliente extraer el valor a lo largo de todo el proyecto.

En el presente proyecto se lleva a cabo la aplicación de la filosofía Lean al ámbito de Gestión de Proyectos, centrándose en aquellas que sean más susceptibles en este campo con el fin de proponer una metodología para abordar la Gestión de Proyectos de forma que se eliminen todas aquellas actividades que no agreguen valor al cliente.
Índice General

Capítulo 1. Filosofía Lean

1.1.- Origen

1.2.- Principales conceptos

1.2.1.- Valor

1.2.2.- Desperdicio

1.2.3.- Flujo de valor

1.3.- Pilares del Lean

1.3.1.- La filosofía de mejora continua: el concepto Kaizen

1.3.2.- Gestión Total de la Calidad

1.3.3.- Just in Time

1.4.- Herramientas Lean

1.4.1.- Kanban

1.4.2.- Value Stream Mapping

1.4.3.- 5S

1.4.4.- SMED

1.4.5.- Heijunka

1.4.6.- TPM

1.4.7.- Jidoka
Capítulo 2. Marco de Gestión de Proyectos. Project Management Institute.............27

2.1 Introducción...27

2.2 Áreas de la Gestión de Proyectos..29
 2.2.1 Gestión de la Integración...29
 2.2.2 Gestión del Alcance..31
 2.2.3 Gestión del Tiempo...32
 2.2.4 Gestión de Costes..33
 2.2.5 Gestión de Calidad..35
 2.2.6 Gestión de los Recursos Humanos..36
 2.2.7 Gestión de las Comunicaciones..37
 2.2.8 Gestión de los Riesgos..38
 2.2.9 Gestión de las Adquisiciones..40
 2.2.10 Gestión de los Interesados..42

2.3 Documentos significativos de la Gestión de Proyectos.........................44

Capítulo 3 Lean Management..46

3.1 Lean Management...46

3.2 Lean Construction..48

3.3 Last Planner System...52

Capítulo 4. Aplicación de las Técnicas Lean a la Gestión de Proyectos...........57

4.1 Descripción del Proyecto...57
4.2 Gestión Lean de Tiempos

4.2 Kaizen

4.2 Estandarización de los Trabajos

4.3 SMED

4.4 Jidoka

4.5 VSM

4.6 Kanban

Conclusiones

Bibliografía
Índice de Figuras

Figura 1.1: Tablero Kanban..8

Figura 1.2: Etiqueta de actividad dentro del tablero Kanban..9

Figura 1.3: WIP, Lead Time Throughput ..10

Figura 1.4: VSM para fabricación de vigas metálicas..11

Figura 1.5: Secuenciación VSM..13

Figura 1.6: Lead Time vs Cycle Time. Recursos desbalanceados..16

Figura 1.7: Lead Time vs Cycle Time. Recursos nivelados..16

Figura 1.8: Puntos Kaizen del mapa de valor...17

Figura 1.9: 5S..18

Figura 1.10: 5S. Seiri. Ejemplo de aplicación..19

Figura 1.11: 5S. Seiton. Ejemplo de aplicación..20

Figura 1.12: 5S. Seiton. Ejemplo de aplicación..20

Figura 1.13: Etapas de implementación de SMED...22

Figura 1.14. Comparativa de producción nivelada y sin nivelar..23

Figura 2.1. Etapas del ciclo de vida de un proyecto...30

Figura 2.2. Interrelación de las etapas de un proyecto..30

Figura 2.3. Procesos de la Gestión de Integración...32

Figura 2.4. Procesos de la Gestión del Alcance ..33

Figura 2.5. Procesos de la Gestión del Tiempo..34
Figura 2.6. Procesos de la Gestión de Costos .. 36
Figura 2.7. Procesos de la Gestión de Calidad ... 37
Figura 2.8. Procesos de la Gestión de Recursos Humanos ... 38
Figura 2.9. Procesos de la Gestión de Comunicaciones ... 40
Figura 2.10. Procesos de la Gestión de Riesgos .. 41
Figura 2.11. Procesos de la Gestión de Adquisiciones .. 43
Figura 2.12. Procesos de la Gestión de Intereses ... 45
Figura 3.1. Beneficios de la implantación Lean en España ... 50
Figura 3.2. Factores de éxito en la implantación de Lean en España 51
Figura 3.3. Enfoque planificación LPS vs planificación tradicional 54
Figura 3.4. Esquema de un sistema LPS. ... 55
Figura 3.5. Plantilla programa intermedio ... 56
Figura 3.6. Ejemplo de medición del PAC ... 57
Figura 4.1. Cronograma del Proyecto ... 57
Figura 4.2. Estructura de desglose de la organización ... 57
Figura 4.3. Ficha de trabajo. Fuente: Elaboración propia ... 61
Figura 4.4. EDT Proyecto nave industrial ... 63
Figura 4.5. Diagrama de la Gestión de las adquisidores para las instalaciones 70
Figura 4.6. Mapa de cadena de valor de la gestión logística de adquisiciones. Estado actual ... 72
Índice de Tablas

Tabla 1.1: Simbología VSM..12
Tabla 1.2: Indicadores VSM...14
Tabla 1.3: 5S. Significado y descripción..18
Tabla 3.1. Informe beneficios del Lean Construction...50
Tabla 3.2. Recomendaciones para la implantación de Lean Construction.................................52
Tabla 4.1. Estimación duración actividades..62
Tabla 4.2. Métricas de calidad...64
Preámbulo

Existem al menos un rincón del universo que con toda seguridad puedes mejorar; y eres tú mismo.

Aldous Huxley (1894-1963)

El Lean Lexicon define *Lean Production* como un sistema de negocio, desarrollado por Toyota tras la Segunda Guerra Mundial, con el fin de organizar y gestionar el desarrollo de un producto, integrando las operaciones y relaciones con agentes exteriores, con el fin de optimizar los recursos humanos, espaciales, capitales y tiempos de producción, para su fabricación acorde con las especificaciones del cliente. (Juan Felipe Pons, *Introducción al Lean Construction*, 2014).

La idea fundamental del concepto *Lean* es que la de eliminar toda aquella actividad que origina un desperdicio (*waste*), entendiéndolo como tal toda aquella que consume recursos y no aporta valor al producto final, y maximizar y potenciar todas las actividades que, en contrapartida, agregan valor a este producto final.

El concepto de *Lean* proviene del sistema integrado de producción de Toyota, TPS, y fue utilizado por primera vez 1988 por el ingeniero John Krafcik, investigador del *Massachusetts Institute of Technology* (MIT) que en sus tesis plasmó “la búsqueda del alto rendimiento” estudiando una comparativa de distintas plantas de ensamblaje de automóviles con el fin de conocer la productividad de cada una de ellas y el factor diferenciador entre sí.
Esta filosofía de producción es aplicada inicialmente al sector del automóvil (Lean Manufacturing) y posteriormente fue extendida a otras industrias y sectores. Fue a partir de 2007 y en EEUU donde se empezó a ver atisbos de esta metodología en la construcción, originando la filosofía que actualmente se conoce como Lean Construction.

El sistema Lean proporciona las herramientas para integrar los diferentes agentes que intervienen a lo largo del ciclo de vida del proyecto, adoptando una nueva visión en la Gestión de Proyectos, que permitirá obtener reducciones de costes, incremento en la productividad, cumplimentar plazos de entrega, una mejor gestión de los riesgos del proyecto y lo más importante: un mayor grado de satisfacción por parte del cliente.

De este modo, el Lean Construction pretende romper con el enfoque tradicional de la Gestión de Proyectos centrado en los procesos y etapas hasta la consecución de la finalización del proyecto que en la entrega de valor al cliente, trayendo consigo consecuencias tales como ejecuciones fuera de plazo, sobrecostes, reclamaciones por falta de calidad, y variabilidad de las condiciones iniciales. El cliente, como propietario del proyecto, tiene un papel crucial dentro del ciclo de vida del proyecto y es que establecerá el valor por el que se regirá el proyecto.

El conjunto de principios, conceptos y herramientas que permite lograr de forma exitosa todos los objetivos del proyecto, con la aportación de valor al cliente, es lo que se conoce como Lean Construction.

Objetivos

El presente proyecto se ubica en el ámbito de la Gestión de Proyectos. El objetivo principal del proyecto es la aplicación de la filosofía Lean a la Gestión de Proyectos de construcción dentro del marco desarrollado por el Project Management Institute (PMI). El resultado, pues, es una nueva metodología de Gestión de Proyectos en el que se minimicen los desperdicios y se optimice el flujo del valor aplicado a un caso real.

Además, este proyecto tiene como objetivos secundarios: (1) la investigación y puesta al día de las técnicas de Lean que sean susceptibles de aplicación a la Gestión de Proyectos de Construcción, (2) Descripción del marco de actuación de Gestión de Proyectos, (3) Desarrollo y descripción de una metodología de Gestión Lean, (4) Resolución de un caso con la metodología propuesta y (5) Valoración de los resultados obtenidos.
Organización de la Memoria

Con respecto al objetivo (1) se ha desarrollado un primer capítulo denominado *Filosofía Lean*. En el mismo se exponen las herramientas más comúnmente conocidas, centrándose en aquellas que sean especialmente aplicables a la Gestión de Proyectos de Construcción.

Para alcanzar el objetivo (2) se ha redactado el segundo capítulo *Marco de Gestión de Proyectos. Project Management Institute*, con el fin de describir las distintas áreas de la Gestión de Proyectos y la interrelación que hay entre ellas a lo largo del ciclo de vida de un proyecto.

Se ha llevado a cabo un desarrollo de la filosofía de Gestión *Lean* al ámbito de la Gestión de Proyectos de Construcción del objetivo (3). El tercer capítulo, *Lean Management*, detalla la metodología obtenida.

A partir de la metodología desarrollada en el apartado anterior, y con el fin de alcanzar el objetivo (4), se resolverá un caso de la gestión de un proyecto de construcción, que abarcará el cuarto capítulo de la presente memoria y que se titula *Aplicación de las técnicas Lean de Gestión de Proyectos*.

Finalmente, la valoración y discusión de los resultados, que es el objetivo (5) del presente proyecto, han sido detalladas en último capítulo bajo el título de *Conclusiones y Trabajos futuros*. En él se valora y discute la utilización de técnicas *Lean* en el marco de la Gestión de Proyectos, en base a los resultados del caso de aplicación.
Capítulo 1

Filosofía Lean

El presente capítulo versa sobre la descripción de las técnicas Lean. Partiendo del origen y conceptos de la filosofía Lean, se puntualizarán los pilares sobre los que se sustenta esta filosofía, para finalmente, describir las técnicas más comúnmente empleadas de la misma.

1.1.- Origen

Según el Lean Enterprise Institute la idea central de la filosofía Lean es la creación de un modelo para la eliminación de desperdicios, entendiendo como tal toda acción que consume recursos y no aporta valor, desde el punto de vista del cliente, al producto final.

Esta metodología de mejora de los procesos productivos fue concebida inicialmente en Japón por Taiichi Ohno, director de Toyota. Ohno desarrolló su carrera profesional en la industria de la automoción desde 1937 y observó que antes de la guerra, la productividad japonesa era muy inferior a la estadounidense. Gracias a los acuerdos de cooperación entre Japón y Estados Unidos como consecuencia de la derrota japonesa en la II Guerra Mundial, Ohno visitó Estados Unidos, donde estudió a los principales pioneros de la productividad y la organización industrial como Frederick Taylor y Henry Ford. Ohno se mostró impresionado por el enfoque excesivo que la industria estadounidense ponía en la producción en masa de grandes volúmenes en perjuicio de la variedad, y el nivel de desperdicio que generaban las industrias.
1.2.- Principales conceptos

A continuación se describen los tres principales conceptos que definen la filosofía Lean: Valor, Desperdicio, Flujo de valor.

1.2.1.- Valor

El valor hace referencia a la percepción que tiene el cliente por un producto o servicio. Se define como valor a todo aquello que hace cumplir con los requisitos del cliente a un nivel de calidad, coste y plazo por el que está dispuesto a pagar. (Lledó, 2006).

1.2.2.- Desperdicio

Se entiende por desperdicio o *muda* cualquier actividad que consume recursos y no crea valor al producto final desde la perspectiva del cliente. (Lledó, 2006).

El objetivo de la metodología Lean es la de aplicar herramientas que ayuden a la eliminación de todas las operaciones que no agregan valor al producto o proceso. Como se ha indicado anteriormente, estas técnicas tuvieron su origen en la industria de la automoción y se han ido extendiendo progresivamente al resto de los sectores industriales. Estos desperdicios, o *mudas*, se pueden agrupar en los siguientes ítems:

Sobreproducción. Consiste en producir más cantidad de lo realmente se necesita o antes de que el cliente los necesite y es considerado el peor desperdicio pues origina la aparición del resto de mudas. Puede ser producto de una mala previsión de ventas, o en la idea errónea de que maximizar la producción con una metodología “push” sobre el mercado para lograr beneficios a corto plazo.

Tiempo de espera. Tiempo aplicado a períodos de inactividad de un proceso y que no añade valor. Suelen estar ligados a procesos de preparación y ensamblaje, tiempos de colas y reparaciones por mantenimiento.

Transporte. Referido al movimiento innecesario de materiales de una operación sin ser necesarios. Suelen estar relacionados con malas ubicaciones de herramientas o equipos y genera una disminución en la productividad.
Sobreprocesamiento. Todas aquellas tareas tales como retrabajos, reprocesos, obstáculos en los flujos de información o una excesiva burocracia se incluyen en este tipo de muda y son acciones que ralentizan la cadena de valor.

Movimientos. El desperdicio del movimiento humano ocasiona una menor producción por unidad de tiempo y provoca cansancio, bajos niveles de productividad, con la consecuente disminución de valor.

Calidad. Relacionados con la fabricación de productos fuera de especificaciones para el cliente, y compromete a materiales tiempo y energía involucrado en el proceso de fabricación. Supone un sobrecosto y una mala imagen de la organización.

Inventario. Hace referencia al almacenamiento prolongado de materias primas, productos intermedios o finales que da lugar a que esté fuera de los requisitos que el cliente exige.

Se puede considerar que Lean es básicamente todo lo concerniente a la obtención de los productos correctos en el lugar correcto, en el momento adecuado, en la cantidad correcta, minimizando el despilfarro, siendo flexible y estando abierto al cambio.

1.2.3.- Flujo de valor

Se define flujo como la integración de los procesos según una secuencia, de forma que el producto avanza progresivamente entre las operaciones necesarias para la elaboración de un producto al cliente final. (Lledó, 2006).

Muchas de las actividades que se llevan a cabo para elaborar el producto final no agregan valor adicional al cliente, por lo que es necesario tener bien identificado el flujo o cadena de valor y eliminar todas aquellas actividades que supongan un desperdicio.

1.3.- Pilares del Lean

1.3.1.- La filosofía de mejora continua: el concepto Kaizen

La expresión *kaizen* tiene su origen en las palabras japonesas “kai” y “zen” que en conjunto significa la acción del cambio y la mejora continua. Adoptar el Kaizen es
asumir la cultura de mejora continua que se centra en la eliminación de desperdicios y despilfarros en el sistema productivo (Lefcovich, 1999).

El *kaizen* incorpora la idea de que la metodología de desarrollo de los procesos productivos merece ser mejorada de manera constante, siendo la complacencia el enemigo número uno de esta filosofía. Teniendo en cuenta que la mejora continua requiere la aplicación de toda una nueva cultura laboral y organizacional, establece un proceso de enseñanza continua que permite modificar las percepciones, creencias y actitudes de los empleados.

Desarrollar un estado de aprendizaje y mejora continua permite a los empleados tener una mayor percepción de los problemas que se presentan en el entorno empresarial, y dotarles de confianza para ofrecer soluciones para erradicarlos. El papel que juegan los empleados en la mejora continua es fundamental, y es responsabilidad de la alta gerencia la capacitación de los mismos y su involucración en el proceso de mejora de la empresa. Por un lado, el conocimiento y la experiencia del trabajador en el desempeño de una tarea se han de combinar con la visión estratégica de los altos cargos con el fin de aunar esfuerzos en la implementación de la mejora continua.

La aplicación del kaizen consiste básicamente en cuatro pasos:

1. Planeamiento estratégico
2. Identificación y diagnóstico de problemas
3. Solución de la causa raíz
4. Mantener los resultados

La filosofía de mejora continua se entiende como un proceso cíclico en el que una vez alcanzados los primeros objetivos, se deben establecer nuevas metas que permitan reiniciar el proceso, así como mantener los logros que ya se han alcanzado.

1.3.2.- Gestión Total de la Calidad

La Gestión Total de la Calidad es una filosofía empresarial basada en la búsqueda de la satisfacción del cliente. Implica una actitud por parte de la compañía orientada a proporcionar valor al producto o servicio al cliente final. (Millán, 2008).

Los orígenes de la Gestión Total de la Calidad datan de los años 50, y tiene como principal referencia al estadista W. Edwards Deming. Basó los principios de esta filosofía en el control estadístico de procesos con el fin de establecer un sistema de medida y control de las desviaciones respecto a las especificaciones del cliente.
Actualmente, la Gestión Total de la Calidad, se considera como una parte integrante de la estrategia empresarial para la búsqueda de la ventaja competitiva. Un punto fundamental de la Gestión Total de la Calidad es el enfoque hacia el cliente en todas las actividades que se desarrollen dentro del entorno empresarial.

Una adecuada Gestión Total de la Calidad empieza por realizar una planificación previa de la misma. Implica el desarrollo de los productos y procesos que vayan a satisfacer las necesidades del cliente. Es fundamental determinar quiénes son los clientes y cuáles son sus necesidades, para, posteriormente, atendiendo a los resultados de la fase anterior, diseñar el producto o servicio de acuerdo a sus necesidades. Una vez definido el producto, se configura el proceso productivo que permita la fabricación del mismo dentro de las especificaciones del cliente.

El siguiente paso para lograr una Gestión Total de la Calidad es hacer un control del proceso en base a las desviaciones de calidad respecto a los estándares establecidos. Para ello se establece un sistema de medición de los parámetros críticos de calidad (CTQ, Critical To Quality), y en caso de haber desviaciones, se elaborará e implementará un plan de acción para corregirlo.

Finalmente, la última fase para obtener una Gestión Total de la Calidad, es la mejora de la calidad, entendiendo como tal a la actividad sistemática y organizada destinada a corregir los errores originados en la etapa de planificación. Para ello, es necesario establecer una infraestructura que sea capaz de identificar, priorizar y ejecutar las mejoras en el sistema con tal de satisfacer las necesidades del cliente.

Estas tres fases constituyen la trilogía de Juran, y suponen los tres pilares básicos de la Gestión Total de la Calidad. Para que este mecanismo se pueda llevar a cabo no solamente es necesario lograr la implicación de la alta gerencia de las organizaciones, sino que se hace imprescindible que la dirección estratégica tenga constancia. Es necesario en todo momento que el cliente sea capaz de apreciar las mejoras de calidad, pues esto crea un valor añadido del producto final.

1.3.3.- Just in Time

Just in Time (JIT) se define actualmente como un sistema de manufactura donde las actividades se desarrollan tal que los componentes y materiales requeridos en los procesos de producción estén en el lugar correspondiente, en el momento exacto en que se necesitan.
Capítulo 1. Filosofía Lean

Taiichi Ohno, el hombre que fue pionero en la implantación de JIT en Toyota, desarrolló este concepto dada la necesidad de tener un sistema eficiente de producir en pequeñas cantidades de automóviles, de diferentes modelos. Esta manera de producir era completamente diferente a la utilizada en los EEUU, donde se hacen grandes cantidades de automóviles del mismo modelo.

Para alcanzar sus objetivos, Ohno se dio cuenta que la cantidad exacta de unidades requeridas debían manejarse en el tiempo apropiado, en las sucesivas etapas del proyecto. La implementación del JIT trajo consigo la reducción de inventario y la disminución de los ciclos de producción. Los objetivos que persigue un programa JIT incluyen producir a la medida exacta de la demanda, y eliminar desperdicios de todo tipo. Los elementos que forman parte de la filosofía JIT se describen a continuación.

Reducción de inventarios

Un inventario en proceso es sinónimo de un error administrativo, un producto en espera o un cliente que hace fila dentro del sistema, y refleja una desincronización en las operaciones. Las causas de un exceso de inventario pueden ser muy diversas: Lotes muy grandes, problemas de calidad, Lead Time muy alto, etc. La metodología JIT propone lograr un bajo nivel de inventario a través de lotes pequeños, y midiendo los tiempos de preparación para entregar al cliente el producto una vez finalizado.

Sistemas Pull

Un sistema “pull” consiste en que un producto en proceso no sea pasado a la siguiente operación hasta que se libere. De esta forma se produce lo que se demanda, evitando cuellos de botella.

Minimizar los tiempos de preparación

Disminuir los tiempos de preparación interno mejorando la calidad del mantenimiento preventivo y disminuyendo los tiempos de reparación de las máquinas cuando se produzca.

Equilibrio de operaciones

Para llevar a cabo un equilibrio de operaciones es necesario extraer la información de un Key Performance Indicator (KPI). Cuando la fabricación es seriada se suele emplear el indicador que se expresa a continuación
De esta forma es fácil localizar los cuellos de botella y buscar soluciones que no interrumpa la producción

Layout

La distribución en planta, o Layout, es un factor fundamental en la filosofía JIT, pues trata de configurar el espacio productivo de manera que se minimicen los trayectos de materia prima, productos y personas.

Fabricación en lotes pequeños

Como resultado de reducir los tiempos de preparación es posible la posibilidad de manejar lotes pequeños de tamaño óptimo que se adecue a las necesidades del cliente.

Para reducir inventarios y producir artículos dentro de especificaciones en el tiempo exacto, se requiere información acerca del tiempo y el volumen de los requerimientos de producción. El JIT facilita esta información a través de una orientación “pull” en lugar de una orientación convencional “push”. En una orientación “push” se inicia un lote de fabricación. Una vez completada la primera estación de trabajo, este se mueve al siguiente punto; y así sucesivamente hasta el final de la estación de trabajo. Como puede observarse, el trabajo es mandado al completarse el trabajo de la estación precedente, y no en relación a las necesidades de la siguiente estación de trabajo. Por el contrario, un sistema “pull” la estación precedente de trabajo dispone de la cantidad exacta para que necesita la estación siguiente. De acuerdo con esta orientación una orden es iniciada por la necesidad de la siguiente estación de trabajo, durante toda la cadena de ensamblaje incluyendo a vendedores y proveedores.

1.4.- Herramientas Lean

1.4.1- Kanban

Kanban, cuya traducción del japonés es “tarjeta”, es una herramienta Lean basada en la gestión de señales para facilitar la comunicación e intercambio de información entre los diferentes operarios de un sistema de producción o entre clientes y proveedores.
Fue desarrollada inicialmente por la compañía Toyota en el año 1950 para asegurar la producción JIT.

Kanban es una herramienta que permite visualizar el flujo de las operaciones, con el fin de limitar en el trabajo en curso (Work In Progress, WIP) estableciendo restricciones al número de actividades que se pueden desarrollar de forma simultánea. Se enfoca en la medida del tiempo necesario para completar una operación, conocido como Lead Time, optimizando el proceso para que el tiempo necesario para su ejecución sea mínimo.

La implementación de Kanban en un sistema de producción empieza con lo que se conoce como el tablero Kanban, y consiste en la visualización de forma clara y concisa de las tareas del flujo de trabajo sobre unas etiquetas colocadas en el tablero Kanban. De esta forma, se pretende minimizar la duplicidad de trabajos, los retrasos o los “cuellos de botella”.

Convencionalmente el tablero se divide en tres partes: tareas pendientes, tareas en curso y tareas finalizadas. La Figura 1.1 muestra un ejemplo de un tablero Kanban.

![Figura 1.1: Tablero Kanban](image)

La división de este tablero se puede adecuar a las necesidades de cada proyecto en particular. Sobre este tablero se describen las tareas que se van a realizar, y su posición cambiará según en el estado en el que encuentre. La Figura 1.2 muestra un modelo de etiqueta aplicable a las tareas de un proyecto de construcción dentro del tablero Kanban.
Figura 1.2: Etiqueta de actividad dentro del tablero Kanban

Una vez establecidas y secuenciadas las tareas dentro del tablero Kanban es necesario calcular el límite \(WIP \), siendo este el número máximo admisible de tareas que se pueden desarrollar en cada fase del ciclo de trabajo de un tablero Kanban. \((Pellicer, E. 2012)\).

El objetivo que persigue este indicador es establecer los límites de tareas en cada columna del tablero, con el fin de evitar la acumulación excesiva de trabajo y perjudicar al resto de tareas planificadas. Según Eugenio Pellicer, de la UPV, la finalidad de este indicador es la de enfocar al equipo de trabajo a la finalización de las tareas, en lugar de iniciar tareas nuevas. Ajustar este valor dentro de unos límites tiene un impacto en la continuidad del flujo de actividades, y aunque estos límites suelen estar basados a priori en la experiencia, se puede tomar como aproximación la siguiente expresión:

\[
WIP = 2n - 1
\]

siendo \(n \) el número de miembros del equipo.

Un \(WIP \) alto tiene el riesgo de la iniciación de muchas actividades y la finalización de pocas, empleando los recursos en tareas simultáneas. En contrapartida, un \(WIP \) bajo implica la realización rápida de las tareas, que posiblemente involucre miembros del sin asignación de tareas.

Orientar el \(WIP \) a la baja permite detectar y eliminar los cuellos de botella de los procesos, ya que tan pronto como sea detectado se resolverá, ya que de lo contrario no se puede comenzar la tarea siguiente. Un menor \(WIP \) implica una mayor colaboración
dentro del equipo de trabajo, ya que un grupo reducido de personas son las encargadas de resolver un único problema, en lugar de resolver varios problemas a la vez.

Otros indicadores del tablero Kanban que arrojan una información muy valiosa sería el Lead Time, que es el tiempo medio que tarda una tarea en ser procesada y recorrer el tablero Kanban desde el inicio hasta su estado de finalización, y el Throughput, que es el número de tareas finalizadas por unidad de tiempo. Por lo tanto, se debe maximizar todo lo posible el Throughput y minimizar el Lead Time.

De especial interés es la expresión que proponen John Little y Stephen Graves, 2000, que relaciona el Lead Time, el WIP y el Throughput, conocida como la Ley de Little.

\[
\text{Lead Time} = \frac{\text{WIP}}{\text{Throughput}}
\]

Esta ley nos informa sobre las tareas retrasan la finalización del trabajo y nos permite aproximar cual ha de ser el WIP óptimo para que los flujos de trabajo no paren. Una representación gráfica de las variables anteriormente mencionadas se muestra en la Figura 1.3.

Con la correcta aplicación de esta herramienta se puede lograr una mejora en la gestión y organización del trabajo, consiguiendo:

- Nivelar la capacidad de los recursos.
- Descubrir los obstáculos del flujo de trabajo.
- Prevenir la entrada de trabajo innecesario.
- Manejar mejor el riesgo.
- Evitar los retrasos.
- Agilización de la información.
- Disminución de los tiempos de respuesta y entrega.

1.4.2.- Value Stream Mapping

Value Stream Mapping (VSM) o mapa de valor es una técnica *Lean* gráfica que permite visualizar todo un proceso, detallar y entender completamente el flujo tanto de información como de materiales desde el proveedor hasta el cliente. Permite detectar todas aquellas actividades que no agregan valor al proceso para posteriormente eliminarlas. VSM es una de las técnicas más utilizadas para establecer planes de mejora dado que enfoca el diagnóstico del proceso (VSM actual) frente a un plan estratégico de mejora (VSM futuro) (*Cabrera, 2015*).

Un ejemplo de un VSM de la fabricación de vigas para estructuras metálicas se puede observar en la Figura 1.4.

![Value Stream Mapping Diagram](attachment:image.png)

El paso previo para la implementación de esta herramienta consiste en hacer una división de las distintas familias de productos que están sujetas a procesos de producción similares. Es aconsejable empezar por aquellas familias que tengan un mayor impacto en el negocio.
El primer paso para implementar un VSM es la definición del diagrama actual de flujo de proceso desde la llegada de materiales desde el proveedor hasta la elaboración y venta del producto al cliente. La simbología empleada en un VSM no está sujeta a ninguna norma, por lo que cada usuario puede elegir la combinación de elementos que considere adecuada para plasmar toda la información. En la Tabla 1.1 se detallan los símbolos que comúnmente son empleados para la elaboración de un VSM.

<table>
<thead>
<tr>
<th>Símbolo</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Fuentes externas: Representa a clientes y proveedores</td>
</tr>
<tr>
<td></td>
<td>Flecha de traslado: Representa el traslado de materias primas y producto terminado</td>
</tr>
<tr>
<td></td>
<td>Transporte mediante camión de carga</td>
</tr>
<tr>
<td></td>
<td>Operación de proceso.</td>
</tr>
<tr>
<td></td>
<td>Casillero de datos con los indicadores de proceso: velocidad de las máquinas, OEE, etc.</td>
</tr>
<tr>
<td></td>
<td>Flecha para conectar un flujo de materiales con secuencia FIFO (First In, First Out)</td>
</tr>
<tr>
<td></td>
<td>Inventario: De materia prima, producto en proceso o producto terminado.</td>
</tr>
<tr>
<td></td>
<td>Relámpago Kaizen: Representa los puntos del mapa donde deben realizarse eventos de mejora</td>
</tr>
</tbody>
</table>
La clave para realizar un VSM de un proceso es comprender la perspectiva del cliente, con el fin de dibujar la cadena de valor reduciendo los desperdicios, para producir con una mejor efectividad y menor costo, y que sea el cliente el que reciba el producto dentro de unas especificaciones de calidad, en el momento que lo requiere y al precio correcto. De esta forma, el cliente es parte de la cadena de valor y del proceso de mejora continua.

Con ayuda de la Figura 1.5 se describen los pasos de secuenciación de un VSM.

Figura 1.5: Secuenciación VSM. Fuente: Lean Solution, 2017.

1. Dibujar los iconos de cliente, proveedor y planificación de la producción.
2. Ingresar los requisitos del cliente por mes/semana/día.
3. Calcular la producción diaria.
4. Dibujar el ícono de transporte del proveedor a la planta.
5. Dibujar el ícono de transporte de entrega del producto al cliente.
6. Agregar las cajas de los procesos secuenciados de izquierda a derecho.
7. Agregar los datos de cada proceso y las líneas de tiempo.
Para la elaboración del último paso es necesario introducir una serie de indicadores que informan sobre los tiempos y recursos empleados en cada proceso como se muestra en la Tabla 1.2.

<table>
<thead>
<tr>
<th>Indicador</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tiempo de Ciclo (CT)</td>
<td>Tiempo que pasa entre la fabricación de una pieza o producto completo a la siguiente</td>
</tr>
<tr>
<td>Tiempo de valor agregado (VA)</td>
<td>Tiempo de trabajo dedicado a tareas de producción. “Tiempo que el cliente está dispuesto a pagar”</td>
</tr>
<tr>
<td>Tiempo cambio de modelo (C/O)</td>
<td>Tiempo para cambiar de un tipo de proceso a otro (cambio de color, formato, etc)</td>
</tr>
<tr>
<td>Número de personas (NP)</td>
<td>Número de personas requeridas para realizar un proceso en particular</td>
</tr>
<tr>
<td>Tiempo disponible para trabajar (EN)</td>
<td>Tiempo de trabajo disponible para el empleado, restando los descansos, reuniones, etc.</td>
</tr>
<tr>
<td>Lead Time (LT)</td>
<td>Tiempo que necesite una pieza o producto para recorrer un proceso o cadena de valor de principio a fin</td>
</tr>
<tr>
<td>Uptime (U)</td>
<td>Porcentaje del Tiempo de funcionamiento de las máquinas. Está ligado a la fiabilidad de las mismas</td>
</tr>
</tbody>
</table>

Los niveles de inventario dentro de un VSM se pueden traducir en tiempo con la conversión que se propone en la siguiente expresión:

\[
NI_t = \frac{IT_t}{T_d}
\]

donde:

\(NI_t\) = Nivel de Inventario en base de tiempo

\(I\) = Inventario, en unidades

\(T_t\) = Tiempo Takt

\(T_d\) = Tiempo disponible diario

El *Tiempo Takt* se define como el ritmo al cual el proceso debe estar avanzando, para satisfacer la demanda del cliente. Consiste en sincronizar el ritmo de producción con el ritmo de ventas. Se puede expresar como:
\[T_i = \frac{T_d}{D_d} \]

siendo

\[T_d = \text{Tiempo disponible diario} \]
\[D_d = \text{Demanda del cliente por día} \]

Sustituyendo esta expresión en la anterior, el nivel de inventario en base tiempo se puede escribir como:

\[NI_i = \frac{I}{D_d} \]

El parámetro \(NI_i \) debe ser lo más próximo a la unidad, lo que supondría que el nivel de producción se aproxima a la demanda diaria del cliente.

Una vez introducidos todos los indicadores en el VSM inicial se ha de verificar que los resultados son representativos con la realidad del sistema productivo. Todos los datos que alimentan al VSM inicial han de ser fidedignos, ya que de no ser así, propuestas de modificación futuras seguirán siendo un desperdicio.

Una vez finalizado el VSM inicial se ha de crear el mapa del estado futuro de la cadena de valor, eliminando los desperdicios del mapa inicial. Para ello es conveniente emplear alguna de las herramientas Lean como Kanban, SMED, 5S, Poka Yoke, etc. El propósito del nuevo VSM ha de ser crear una cadena de flujo de valor bajo la premisa de aproximar la producción al \textit{Takt Time}, o lo que es lo mismo, ajustar la producción a las especificaciones del cliente. La Figura 1.6 muestra una comparativa entre en \textit{Cycle Time} y \textit{Takt Time} de un proceso productivo que cuenta con cinco etapas.
De la Figura 1.6 se puede concluir que los procesos B y E son cuellos de botella ya que su Cycle Time es superior al Takt Time, mientras que los Cycle Time del resto de procesos se ajustan a las demandas del cliente. Esta gráfica muestra que los procesos están desbalanceados en los tiempos que consumen, y que será necesario nivelar los recursos para poder ajustarse al Takt Time como se muestra en la Figura 1.7.
Los puntos de mejora del sistema deben quedarse marcados con un símbolo *Kaizen* dentro del mapa de valor mostrado en la Figura 1.8. Las modificaciones que se propongan pueden ser de diversa índole, no solo una nivelación de recursos. Abarca áreas como la gestión de inventario inicial, intermedio y final, la reducción de tiempos muertos en las etapas de los procesos productivos, cambios de distribución (*Layout*) que aumenten el flujo de valor, subcontratación de servicios de logística o mantenimiento, búsqueda alternativa de fuentes de suministro. Todas la propuestas de mejora que se obtienen de un VSM tienen un foco común: *Interrumpir y maximizar* el flujo de valor para satisfacer las necesidades del cliente.

![Diagrama de Value Stream Mapping](image)

Figura 1.8: Puntos *Kaizen* del mapa de valor. Fuente: Cox, R. 2012.

1.4.3.- 5S

El método de las 5S es una técnica de trabajo ligada a la filosofía de la calidad total que propuso el estadista W. E. Deming. Consiste en un método de gestión que busca crear un entorno que permita optimizar los recursos, el tiempo y la productividad dentro de un entorno de trabajo.
El nombre es debido a cinco estrategias cuyo origen son palabras japonesas que empiezan por S. La Tabla 1.3 y la Figura 1.9 ponen de manifiesto el significado de estas palabras.

<table>
<thead>
<tr>
<th>5S</th>
<th>Significado</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seiri</td>
<td>Separar</td>
<td>Distinguir entre lo que es necesario y lo que no es</td>
</tr>
<tr>
<td>Seiton</td>
<td>Organizar</td>
<td>Un lugar para cada cosa y cada cosa en un lugar</td>
</tr>
<tr>
<td>Seiso</td>
<td>Limpiar</td>
<td>No limpiar más, sino evitar que se produzca suciedad</td>
</tr>
<tr>
<td>Seiketsu</td>
<td>Estandarizar</td>
<td>Mantener lo obtenido en las acciones anteriores</td>
</tr>
<tr>
<td>Shitsuke</td>
<td>Autodisciplina</td>
<td>Convertir en hábito los métodos establecidos</td>
</tr>
</tbody>
</table>

Los objetivos principales que persigue con la implementación de este método son:

- Eliminar desperdicios
- Reducir pérdidas de materiales o herramientas
- Optimizar los espacios
- Generar una cultura de orden y disciplina
- Tiempos de respuesta más cortos

Los resultados que proporciona la herramienta 5S es un área de trabajo más productiva y segura, disminuir los plazos de entrega, mejor realización de las tareas de mantenimiento y reparación. A continuación se describe brevemente en que consiste cada una de estas prácticas.
Separar

Esta tarea consiste en realizar una clasificación de los recursos y materiales que realmente son necesarios para el desarrollo de las tareas. El objetivo es establecer un área de trabajo segura y cómoda, contando con únicamente las herramientas útiles y desechando todas aquellas que no sean necesarias. Esto permite:

- Liberar espacio en el lugar de trabajo
- Reducir los tiempos de búsqueda de material y herramientas
- Mejor control del stock de materiales

Un ejemplo de aplicación se puede ver en la Figura 1.10. En este caso sería conveniente realizar una separación de materiales que no van a ser utilizados como los palés retornables o los escombros, y separarlo de lo que si van a ser utilizados, como es el caso de los acopios. De esta forma se obtiene un terreno más transitable y seguro.

![Figura 1.10: 5S. Seiri. Ejemplo de aplicación. Fuente: González, D. 2013.](image)

Organizar

Tras ser despejada el área de trabajo, el siguiente paso es colocar cada elemento en un lugar específico, manteniendo esta ubicación en todo momento. De esta forma se consigue evitar pérdidas de materiales y herramientas y facilitar el acceso a cada uno de los elementos para el desarrollo de tareas.

La Figura 1.11 muestra un ejemplo de aplicación de la organización como herramienta de las 5S. En este caso se dispone de zonas específicas para cada elemento.
de forma que sea fácilmente accesible, pese a tratarse de un espacio abierto y de carácter cambiante conforme al avance del proyecto.

Limpiar

Una vez finalizadas las dos etapas anteriores, el siguiente paso consiste en limpiar la zona de trabajo para mantener en óptimas condiciones las herramientas y equipos de trabajo. Este proceso implica entender la limpieza como una actividad propia dentro del mantenimiento industrial. En la Figura 1.12 se puede observar la diferencia de las tareas de limpieza sumadas a las de separar y organizar, permitiendo realizar el trabajo en mejores condiciones.

Estandarizar

Una vez implementadas las tres fases anteriores, el siguiente paso es mantener lo que se ha conseguido hasta el momento. Con el fin de lograrlo, se crean procedimientos y normas de cumplimiento para todos los trabajadores. Los beneficios de esta cuarta etapa son:

- Mantener el conocimiento adquirido y aplicado de trabajos previos
- Incrementar la productividad de la planta
- Evitar errores de limpieza o desorden en el lugar de trabajo

Autodisciplina

Finalmente, en esta fase se pretende establecer la costumbre hacia la aplicación y de los estándares establecidos. Implica un compromiso de cada uno de los miembros del equipo y es fundamental porque sin ella las acciones anteriormente mencionadas dejarían de ejecutarse.

Con el fin de asegurar el cumplimiento de estos estándares, es común establecer un sistema de gestión de calidad sobre los trabajos que se realizan basado en auditorías externas o internas.

1.4.4.- SMED

SMED es el acrónimo en inglés de Single Minute Exchange of Die, y es empleada en la industria de fabricación para agilizar los cambios de utillaje o formato (Womack. 1996). El tiempo de cambio de una tipología de fabricación a otra comienza justo en la finalización del último producto de la serie y termina cuando se obtiene una pieza dentro de las especificaciones del cliente de la serie siguiente.

Durante este periodo, todas aquellas operaciones realizadas con la máquina parada se denominan internas, mientras que las que se realizan con la maquina en funcionamiento se denominan externas. De este modo el tiempo de preparación será la suma del tiempo de operación interna y externa como se muestra en la Figura 1.13.

El objetivo de este método es reducir el Lead Time, ya que todos los tiempos de preparación entre lotes se consideran desperdicios y su eliminación mejora la productividad del sistema. La implementación de este método se realiza en tres fases:

- Fase 1: Diferenciar entre operaciones internas y externas
- Fase 2: Reducir los tiempos de preparación internos con mejoras
- Fase 3: Reducción de los tiempos de preparación internos y externos con mejoras

1.4.5.- Heijunka

Heijunka significa nivelación de la producción, y consiste en adaptar el flujo de producción a la demanda que exige el cliente. Supone la eliminación de los desniveles de carga de trabajo mediante una producción continua y eficiente. De esta forma se consigue:

- Amortiguar las variaciones de la demanda producido por pequeños lotes o varios modelos diferentes.
- Optimizar los recursos humanos disponibles.
- Reducir despilfyros.
- Mejorar la respuesta frente al cliente.
- Reducción de stock de materia prima.
- Reducción de producto acabado.

La Figura 1.14 muestra una comparativa de fabricación mediante la nivelación de recursos frente a una fabricación tradicional para tres productos distintos.
El objetivo final de esta herramienta es obtener la cantidad de recursos necesaria y suficiente para adaptar el *Lead Time* al *Takt Time*. Como se puede apreciar en la Figura 1.14, una producción nivelada permite que la fabricación sea coherente con la demanda del cliente, mientras que una producción sin nivelar emite lotes de fabricación al mercado en períodos descoordinados a la demanda del cliente.

1.4.6.- TPM

TPM (*Total Productive Maintenance*) es una filosofía de mantenimiento cuyo objetivo es la eliminación de las pérdidas de producción como consecuencia de la indisponibilidad de los equipos debido al mal estado de los mismos. Se trata de mantener los equipos a una disponibilidad tal que permita producir a su capacidad máxima, sin que se produzcan averías, mermas, tiempos muertos o defectos debido al mal estado de un equipo.

Tradicionalmente el mantenimiento se ha visto como una parte separada y externa al proceso de producción. TPM surge a partir de la integración del departamento de mantenimiento y el de operaciones para asociar la disponibilidad a la producción. Desde la filosofía de TPM se considera que un equipo parado, que no trabaja a su capacidad máxima o que fabrica productos fuera de especificaciones produce pérdidas en la empresa. TPM identifica seis grandes fuentes de desperdicio,
que denomina las seis grandes pérdidas, que reducen la efectividad del sistema productivo.

1. Fallos del equipo, que producen su indisponibilidad.
2. Puesta a punto y ajuste de máquina que producen pérdidas al iniciar una nueva operación.
3. Microparadas, durante la operación del equipo, bien sea problemas en la instrumentación, pequeñas obstrucciones, etc.
4. Mermas, o velocidad de operación reducida. Cualquier velocidad de trabajo inferior a la máxima es una pérdida en el sistema productivo.
5. Defectos en el proceso que produce pérdidas productivas al tener que rehacer o desechar productos defectuosos.
6. Pérdidas de tiempo propias de la puesta en marcha o periodo de pruebas y validaciones.

Desde un punto de vista práctico, implementar un sistema TPM en una organización implica que el mantenimiento de los equipos está perfectamente integrado en el sistema de producción. Esto implica que determinados trabajos propios del mantenimiento, como limpiezas, ajustes, variación de parámetros, sean transferidos a los operarios de producción, creando un sentimiento de pertenencia del operario al equipo.

La implicación del operador en las tareas de mantenimiento logra un mejor entendimiento de la máquina que opera, sus características, criticidad, y facilita el aprendizaje y transferencia de experiencias y conocimientos.

El Japan Institute of Plant Maintenance (JIPM) desarrolló un método de implementación de TPM en un entorno productivo en seis pasos.

Fase I. Limpieza inicial

En esta fase se busca limpiar la máquina de polvo y suciedad y se reparan todos los defectos encontrados

Fase II. Medidas para descubrir fuentes de suciedad y fallos

Una vez limpia la máquina se deben encontrar las causas de suciedad y funcionamiento irregular (fugas, choques, etc). Se deben mejorar los accesos a partes difíciles de limpiar y lubricar.

Fase III. Procedimiento de limpieza y lubricación
En esta fase se han de preparar procedimientos estandarizados para la lubricación, limpieza y pequeños ajustes de componentes de las máquinas.

Fase IV. Inspecciones generales

Una vez que el personal se responsabilice de la limpieza, lubricación y ajustes menores, se entrena al operario de producción para realizar inspecciones periódicas en búsqueda de fallos.

Fase V. Inspecciones autónomas

En esta fase se elaboran listas de chequeo que se llenarán cada vez que se vaya a operar la máquina, con el fin de garantizar que la máquina opera dentro de sus parámetros nominales de funcionamiento.

Fase VI. Mejora continua

La última fase tiene como objetivo desarrollar una cultura hacia la mejora continua en toda la empresa de forma sistemática, mediante el análisis de fallos, tiempos de parada, introduciendo mejoras en el sistema, y todo ello desde el equipo de producción.

1.4.7.- Jidoka

Jidoka es una palabra de origen japonés se puede traducir como “autonomía”, o “automatización para supervisión”. La idea es que los trabajadores no tengan que supervisar constantemente el funcionamiento de las máquinas, sino de dotar de mecanismos que hagan este control automático y que el trabajador sólo tenga que intervenir ante un mal funcionamiento. De esta forma, se consigue no propagar un defecto aguas abajo del proceso productivo.

El concepto de **Jidoka** fue revolucionario puesto que rompe con el esquema de organizativo del Taylorismo, donde solo los altos cargos tenían la potestad de interrumpir el sistema productivo y los trabajadores se limitaban a seguir las órdenes de estos. Con esta nueva filosofía el trabajador adquiere una cualificación en cuanto al entendimiento del proceso productivo y los componentes que lo forman y, además, se ve involucrado en la toma de decisiones en sus labores diarias.
Otro aspecto revolucionario del sistema *Jidoka* es la creación de un sistema de fabricación FTT (*First Time Through*) o piezas bien a la primera dentro del marco de la gestión de calidad. Convencionalmente, la tareas de eliminación de productos fuera de especificaciones se realizan mediante labores de inspección, como consecuencia de la premisa de que de la inviabilidad de eliminar defectos. La idea de *Jidoka* radica en que la calidad no se controla, se produce. La aparición de defectos está ligada al sistema, y será necesario modificar el sistema productivo para que dichos defectos no aparezcan y, de este modo, no rechazar nada.

Esta herramienta permite disponer de técnicas para la identificación y reducción de defectos en el momento de su origen, evitando que avancen en el proceso productivo. Se pueden implementar por medio de señales visuales que indican el estado de un equipo o bien dotar dicho equipo de un sistema que provoque el paro ante la detección de un elemento producido fuera de especificaciones.

En definitiva, con esta herramienta no se trata de establecer puntos de control en un sistema productivo, sino de modificar el mismo para que dicho control sea automático y que el esfuerzo de los operarios esté centrado en tareas productivas y no de inspección.
Capítulo 2

Marco de Gestión de Proyectos. Project Management Institute

Para la aplicación de las técnicas Lean a la Gestión de Proyectos es necesario establecer un marco de actuación previo, con el fin de establecer la interrelación de las distintas áreas de la Gestión de Proyectos a lo largo del ciclo de vida del mismo en cuanto a sus flujos de información y documentos. Para ello se ha escogido el marco de Gestión de Proyectos que propone el Project Management Institute (PMI en adelante), siguiendo la metodología planteada en su “Guía de los Fundamentos de Dirección de Proyectos”.

2.1 Introducción

Un proyecto es un esfuerzo temporal que se lleva a cabo para crear un producto, servicio o resultado único con el fin de satisfacer una necesidad. La naturaleza temporal de los proyectos implica que tiene un principio y fin definidos. El fin se alcanza cuando se logran los objetivos del proyecto para el que fue concebido o bien cuando ya no existe la necesidad de continuar con la consecución de los objetivos.

El ciclo de vida de un proyecto es la serie de fases por la que atraviesa desde su inicio hasta su cierre y proporciona el marco de referencia básico para dirigir el proyecto, independientemente del trabajo específico involucrado. Pese a que los proyectos varían en tamaño y complejidad, todos los proyectos pueden configurarse bajo el esquema que se expone en la Figura 2.1.
Como se ha mencionado anteriormente, todo proyecto tiene un comienzo y un final entre las que se encuentran las fases de planificación, ejecución y control. La primera etapa tras el inicio del proyecto, que se formaliza con el acta de constitución del proyecto, consiste en la planificación. Dentro de esta etapa se distinguen las distintas áreas de la Gestión de Proyectos e involucra todos aquellos documentos que especifican como se va a realizar la ejecución del proyecto.

En la etapa de ejecución, se realizan todas las actividades que han sido configuradas en la etapa de planificación. Para llevar a cabo el seguimiento del proyecto es necesaria una etapa de control. Cualquier desviación respecto a la planificación establecida debe ser corregida con el fin de no comprometer la integridad del proyecto.

Uno de los errores comunes a la hora de planificar y ejecutar proyectos es ordenarlos de forma secuencial y no superpuesta. Es por eso que la gestión que la administración de los proyectos de manera eficiente requiere un aprovechamiento mejorado de uso del tiempo, a través de la superposición de las actividades, como se muestra en la Figura 2.2.

Los procesos de la dirección de proyectos identificados según la guía del PMBOK se agrupan a su vez en diez Áreas de Conocimientos diferenciadas. Un Área de Conocimiento representa un conjunto completo de conceptos, términos y actividades que conforman un ámbito profesional. Las Áreas de Conocimiento son:
- Gestión de la Integración
- Gestión de Alcance
- Gestión del Tiempo
- Gestión de Costos
- Gestión de Calidad
- Gestión de los Recursos Humanos
- Gestión de las Comunicaciones
- Gestión de los Riesgos
- Gestión de las Adquisiciones
- Gestión de los Interesados

A continuación se describen cada una de las Áreas de Conocimiento de la Gestión de Proyectos, así como la interrelación que hay entre ellas.

2.2 Áreas de la Gestión de Proyectos

2.2.1 Gestión de la Integración

La Gestión de la Integración del Proyecto incluye los procesos y actividades necesarios para identificar, definir, combinar, unificar y coordinar los diversos procesos y actividades del proyecto. Implica tomar decisiones en cuanto a la asignación de recursos, equilibrar objetivos y alternativas contrapuestas y manejar las interdependencias entre las Áreas de Conocimiento de la dirección de proyectos. La Figura 2.3 muestra los procesos de la Gestión de Integración del Proyecto y su relación con otras áreas de la Gestión de Proyectos. En blanco se muestran los procesos de las distintas Áreas de la Gestión de Proyectos y en rojo los documentos que se obtienen de cada proceso.
Desarrollar el Acta de Constitución del Proyecto. Es el proceso de elaborar el documento que autoriza formalmente la existencia de un proyecto y confiere al director del proyecto la autoridad para asignar los recursos de la organización para desarrollar las actividades.

Desarrollar el Plan para la Dirección del Proyecto. Es el proceso de definir, preparar y coordinar todos los planes secundarios e incorporarlos en un plan integral para la dirección del proyecto. Las líneas base y planes secundarios integrados del proyecto pueden incluirse dentro del Plan para la Dirección del Proyecto.

Dirigir y Gestionar el Trabajo del Proyecto. Es el proceso de liderar y llevar cabo el trabajo definido en el plan para la dirección del proyecto, así como implementar los cambios aprobados.

Monitorear y Controlar el Trabajo del Proyecto. Es el proceso de dar seguimiento, revisar e informar del avance del proyecto con respecto a los objetivos de desempeño definidos en el plan para la dirección del proyecto.

Realizar el Control Integrado de Cambios. Es el proceso de analizar todas las solicitudes de cambio, aprobar y gestionar los cambios a los entregables y documentos del proyecto.

Cerrar el Proyecto o Fase: Este último proceso consiste en finalizar todas las actividades para completar formalmente el proyecto o una fase del mismo.
2.2.2 Gestión del Alcance

La Gestión del Alcance del Proyecto incluye los procesos necesarios para garantizar que el proyecto incluya todo el trabajo requerido y únicamente el trabajo para completar el proyecto. El enfoque primordial es definir y controlar qué se incluye y qué no se incluye en el proyecto. A continuación se describen los procesos que forman parte de la Gestión del Alcance y cuya relación con otras áreas se muestra en Figura 2.4.

Planificar la Gestión del Alcance. Es el proceso de crear un Plan de Gestión del Alcance que documete cómo se va a definir, validar y controlar el alcance del proyecto.

Recopilar Requisitos. Es el proceso de determinar, documentar y gestionar las necesidades y los requisitos de los interesados. Para ello se configura un documento que vincula los requisitos del proyecto desde su origen hasta los entregables que lo satisfacen.

Definir el Alcance. Es el proceso de desarrollar una descripción detallada del proyecto y del producto, y como tal se refleja en el Enunciado del Alcance.
Crear la EDT/WBS. Es el proceso de subdividir los entregables y el trabajo del proyecto en componentes más pequeños y más fáciles de manejar.

Validar el alcance. Es el proceso de formalizar la aceptación de los entregables del proyecto que se hayan completado.

Controlar el alcance. Es el proceso de monitorear el estado del proyecto y de la línea base del alcance y de gestionar sus cambios.

Los procesos que se utilizan para gestionar el alcance del proyecto, así como las herramientas y técnicas de apoyo, pueden variar según el proyecto. La línea base del alcance del proyecto es la versión aprobada del enunciado del alcance del proyecto, la estructura de desglose de trabajo (EDT/WBS) y su diccionario asociado.

2.2.3 Gestión del Tiempo

La Gestión del Tiempo del Proyecto incluye los procesos requeridos para gestionar la terminación en plazo del proyecto. El objetivo primordial es establecer las actividades necesarias y su relación entre ellas para cumplir con los plazos de los entregables. Los procesos que forman parte de la Gestión del Tiempo son los mostrados en la Figura 2.5

![Diagrama de Gestión del Tiempo](image)

Figura 2.5. Procesos de la Gestión del Tiempo
Planificar la Gestión del Cronograma. Proceso por medio del cual se establecen las políticas, procedimientos y la documentación para planificar, desarrollar, gestionar, ejecutar y controlar el cronograma del proyecto. Toda esta información queda registrada en el Plan de Gestión del Cronograma.

Definir las Actividades. Proceso de identificar y documentar las acciones específicas que se deben realizar para generar los entregables del proyecto.

Secuenciar las Actividades. Proceso de identificar y documentar las relaciones existentes entre las actividades del proyecto.

Estimar los recursos de las Actividades. Proceso de estimar el tipo y las cantidades de materiales, recursos humanos, equipos o suministros requeridos para ejecutar cada una de las actividades.

Los procesos de Gestión del Tiempo del Proyecto, así como sus herramientas y técnicas asociadas, se documentan en el Plan de Gestión del Cronograma. El plan de gestión del cronograma identifica un método de programación y establece los criterios para desarrollar y controlar el cronograma, con la ayuda de herramientas de programación, permitiendo así secuenciar las actividades, estimar recursos y su duración.

Conforme se van ejecutando las actividades del proyecto, la mayor parte del esfuerzo se empleará en el proceso de Controlar el Cronograma, mediante los indicadores correspondientes, para asegurar que el trabajo se completa puntualmente.

2.2.4 Gestión de Costes

La Gestión de los Costes del Proyecto incluye los procesos relacionados con planificar, estimar, presupuestar, financiar, obtener financiamiento, gestionar y controlar los costos de modo que se complete el proyecto dentro del presupuesto aprobado inicialmente. La Figura 2.6 muestra una descripción general de los procesos de la Gestión de Costes.
Planificar la Gestión de Costos. Es el proceso que establece las políticas, los procedimientos y la documentación necesarios para planificar, gestionar ejecutar el gasto y controlar los costos del proyecto, y queda formalmente registrado en el Plan de Gestión de Costos.

Estimar los Costes. Consiste en desarrollar una aproximación de los recursos financieros necesarios para completar las actividades del proyecto.

Determinar el presupuesto. Es el proceso que consiste en sumar los costos estimados de las actividades individuales o de los paquetes de trabajo para establecer una línea base de costo autorizada. Una vez determinado el presupuesto se obtiene la Línea Base de Costos del Proyecto y los requisitos para su financiación.

Controlar los Costes. Monitorear el estado del proyecto para actualizar los costes del mismo y gestionar posibles cambios a la línea base de costes, todos ellos reflejados en los correspondientes informes de desempeño.

La Gestión de Costes se ocupa principalmente del coste de los recursos necesarios para completar las actividades del proyecto. La Gestión de Costes debe tener en
cuenta el efecto de las decisiones tomadas en las primeras fases del proyecto, ya que establece el marco de referencia para el resto de procesos.

2.2.5 Gestión de Calidad

La Gestión de la Calidad del Proyecto incluye los procesos y actividades de la organización para establecer las políticas de calidades, los objetivos y las responsabilidades de calidad para que el proyecto satisfaga las necesidades de las que fue acometido. La Gestión de la Calidad del Proyecto utiliza políticas y procedimientos para implementar el sistema de gestión de calidad de la organización, apoyando las actividades de mejora continua, para asegurar que se alcancen y validen los requisitos del proyecto. Consta de los procesos que se muestran en la Figura 2.7.

![Diagrama de Procesos de la Gestión de Calidad]

Figura 2.7. Procesos de la Gestión de Calidad

Planificar la Gestión de la Calidad. Es el proceso de identificar los requisitos y estándares de calidad para el proyecto y sus entregables, así como documentar el cumplimiento de los mismos en el Plan de Gestión de Calidad.

Realizar el Aseguramiento de la Calidad. En este proceso se audita los requisitos de calidad para y los resultados se comparan con las normas de calidad previamente establecidas.
Control de la Calidad. En esta última etapa se monitorea y registran los resultados de la ejecución de las actividades de control de calidad, con el fin evaluar el desempeño y recomendar los cambios necesarios. La validación y aceptación de los entregables por parte del cliente es un indicativo de asegurar la calidad en el proyecto.

La Gestión de la Calidad del Proyecto aborda la calidad tanto de la gestión del proyecto como de sus entregables. Las medidas y técnicas son específicas para el tipo de entregables de cada proyecto. En el contexto de lograr una compatibilidad con las normas internacionales los enfoques de las normas de calidad deben estar dirigidos a la obtener la satisfacción del cliente.

2.2.6 Gestión de los Recursos Humanos

La Gestión de los Recursos Humanos del Proyecto incluye los procesos que organizan, gestionan y conducen al equipo del proyecto. El equipo del proyecto está compuesto por las personas a las que se han asignado roles y responsabilidad para completar el mismo. Los miembros del equipo del proyecto pueden tener diferentes conjuntos de habilidades, y se pueden incorporar o como personal del proyecto. La Figura 2.8 proporciona una descripción general de los procesos de la Gestión de los Recursos Humanos.

Figura 2.8. Procesos de la Gestión de Recursos Humanos
Planificar la Gestión de los Recursos Humanos. Es el proceso de identificar y documentar los roles y responsabilidades, así como de crear un plan para la gestión del personal denominado Plan para la Gestión de Recursos Humanos.

Adquirir el equipo del Proyecto. El proceso de confirmar la disponibilidad de los recursos humanos y conseguir el equipo necesario para completar el proyecto.

Desarrollar el Equipo del Proyecto. El proceso de mejorar las competencias, la interacción entre los miembros del equipo para lograr un correcto desempeño del proyecto.

Dirigir el equipo del Proyecto. El proceso de realizar el seguimiento del desempeño de los miembros del equipo, resolver problemas y gestionar los cambios a fin de optimizar el desempeño del proyecto.

El equipo de dirección del proyecto es un subgroup del equipo del proyecto y es responsable de las actividades de dirección y liderazgo del proyecto, tales como iniciar, planificar, monitorear, controlar y cerrar las distintas fases del proyecto.

2.2.7 Gestión de las Comunicaciones

La Gestión de las Comunicaciones del Proyecto incluye los procesos requeridos para asegurar que la planificación, recopilación, creación, distribución, almacenamiento, recuperación, gestión, control, monitoreo, y disposición final de la información del proyecto sean continuos y adecuados. Una comunicación eficaz crea un puente entre diferentes interesados que pueden tener diferentes antecedentes culturales y organizacionales, diferentes niveles de experiencia, y diferentes perspectivas e intereses, lo cual impacta o influye en la ejecución o resultado del proyecto. La Figura 2.9 proporciona una descripción general de los procesos de la Gestión de las Comunicaciones.
Figura 2.9. Procesos de la Gestión de Comunicaciones

Planificar la Gestión de las Comunicaciones. Es el proceso de desarrollar un enfoque y un plan adecuado para las comunicaciones del proyecto sobre la base de las necesidades y requisitos de información de los interesados y de los activos de la organización disponibles.

Planificar la Gestión de las Comunicaciones. El proceso de desarrollar un enfoque y un plan adecuados para las comunicaciones del proyecto sobre la base de las necesidades y requisitos de información de los interesados y de los activos de la organización. La forma de proceder a la Gestión de las Comunicaciones se refleja en el Plan para la Gestión de Comunicaciones.

Gestionar las Comunicaciones. El proceso de crear, recopilar, distribuir, almacenar, recuperar y realizar la disposición final de la información del proyecto de acuerdo con el plan de gestión de las comunicaciones.

Controlar las Comunicaciones. El proceso de monitorear y controlar las comunicaciones a lo largo de todo el ciclo de vida del proyecto para asegurar que se satisfagan las necesidades de la información de los interesados del proyecto. Cualquier cambio en la forma de realizar las comunicaciones se realizará a través de una solicitud de cambio.

2.2.8 Gestión de los Riesgos

La Gestión de los Riesgos del Proyecto incluye los procesos para llevar a cabo la planificación de la gestión de riesgos, así como la identificación, análisis, planificación de respuesta y control de los riesgos de un proyecto. Los objetivos de la gestión de los
riesgos del proyecto consisten en aumentar la probabilidad y el impacto de los eventos positivos, y disminuir la probabilidad y el impacto de los riesgos negativos en el proyecto.

La Figura 2.10 brinda una descripción general de los procesos de la Gestión de Riesgos del Proyecto.

Figura 2.10. Procesos de la Gestión de Riesgos

Planificar la Gestión de los Riesgos. El proceso de definir cómo realizar las actividades de gestión de riesgos de un proyecto, cuyas bases se encuentran en el Plan de Gestión de Riesgos.

Identificar los Riesgos. El proceso de determinar los riesgos que pueden afectar al proyecto y documentar sus características, creando así un Registro de Riesgos.

Realizar el Análisis Cualitativo de Riesgos. El proceso de priorizar riesgos para análisis o acción posterior, evaluando y combinando la probabilidad de ocurrencia de dichos riesgos.

Realizar el Análisis Cuantitativo de Riesgos. El proceso de analizar numéricamente el efecto de los riesgos identificados sobre los objetivos generales del proyecto.
Planificar la Respuesta a los Riesgos. El proceso de desarrollar opciones y acciones para mejorar las oportunidades y reducir las amenazas a los objetivos del proyecto.

Controlar los Riesgos. El proceso de implementar los planes de respuesta a los riesgos, dar seguimiento a los riesgos identificados, monitorear los riesgos residuales, identificar nuevos riesgos y evaluar la efectividad del proceso de gestión de los riesgos a través del proyecto.

El riesgo de un proyecto es un evento o condición que, de producirse, tiene un efecto positivo o negativo en uno o más de los objetivos del proyecto, tales como el alcance, el cronograma el costo y la calidad. Un riesgo puede tener una o más causas y, de materializarse, uno o más impactos. Una causa puede ser un requisito especificado o potencial, un supuesto, una restricción o una condición que crea la posibilidad de consecuencias tanto negativas como positivas. Los riesgos del proyecto tienen su origen en la incertidumbre que está presente en todos los proyectos. Los riesgos conocidos son aquellos que han sido identificados y analizados, lo que hace posible planificar respuestas para tales riesgos. A los riesgos conocidos que no se pueden gestionar de manera proactiva se les debe asignar una reserva de contingencia y por lo tanto se les puede asignar una reserva de gestión. Un riesgo negativo del proyecto que se ha materializado se considera un problema.

Los riesgos positivos y negativos se les conocen normalmente como oportunidades y amenazas. El proyecto puede aceptarse si los riesgos se encuentran dentro de las tolerancias y están en equilibrio con el beneficio que puede obtenerse al asumirlos. Los riesgos positivos que ofrecen oportunidades dentro de los límites de la tolerancia al riesgo se pueden emprender a fin de generar un mayor valor.

2.2.9 Gestión de las Adquisiciones

La Gestión de las Adquisiciones del Proyecto incluye los procesos necesarios para comprar o adquirir productos, servicios, o resultados que es preciso obtener fuera del equipo del proyecto. La organización puede ser la compradora o vendedora de los productos, servicios o resultados de un proyecto.

La Gestión de las Adquisiciones del Proyecto incluye el control de cualquier contrato emitido por una organización externa que esté adquiriendo entregables del proyecto a la organización ejecutora, así como la administración de las obligaciones contraídas por el equipo del proyecto en virtud del contrato.
La Figura 2.11 presenta una descripción general de los procesos de la Gestión de Adquisiciones.

Figura 2.11. Procesos de la Gestión de Adquisiciones

Planificar la Gestión de las Adquisiciones. El proceso de documentar las decisiones de adquisiciones del proyecto, especificar el enfoque e identificar a los proveedores potenciales. El documento que refleja esta información es el Plan de Gestión de Adquisiciones.

Efectuar las Adquisiciones. El proceso de obtener respuestas de los proveedores, seleccionarlos y adjudicarles un contrato.

Controlar las Adquisiciones. El proceso de gestionar las relaciones de adquisiciones, monitorear la ejecución de los contratos y efectuar cambios y correcciones según corresponda a través de informes de desempeño.

Cerrar las Adquisiciones. El proceso de finalizar cada adquisición para el proyecto.

Los procesos de Gestión de las Adquisiciones del Proyecto involucran acuerdos, incluidos en los contratos, que son documentos legales que se establecen entre un comprador y un vendedor. Un contrato representa un acuerdo vinculante para las
partes en virtud del cual el vendedor se obliga a proporcionar algún valor y el comprador se obliga a proporcionar dinero o cualquier otra compensación de valor. Incluye además los términos y condiciones por el comprador respecto al vendedor. Es responsabilidad del equipo de dirección del proyecto garantizar que todas las adquisiciones satisfagan las necesidades específicas del proyecto y que a la vez se respeten las políticas de la organización en materia de adquisiciones.

Las diferentes actividades involucradas en los procesos de Gestión de las Adquisiciones del Proyecto conforman el ciclo de vida de un acuerdo. Mediante la gestión activa del ciclo de vida del acuerdo y redacción cuidadosa de los términos y condiciones de una adquisición, algunos de los riesgos identificables del proyecto se pueden compartir o transferir a un vendedor. Establecer un acuerdo sobre productos o servicios es un método para asignar la responsabilidad de gestionar o compartir riesgos potenciales.

2.2.10 Gestión de los Interesados

La Gestión de los Interesados del Proyecto incluye los procesos necesarios para identificar a las personas, grupos u organizaciones que pueden afectar o ser afectados por el proyecto, para analizar las expectativas de los interesados y su impacto en el proyecto, y para desarrollar estrategias de gestión adecuadas a fin de lograr la participación eficaz de los interesados en las decisiones y en la ejecución del proyecto. La gestión de los de los interesados también se centra en la comunicación continua con los interesados para comprender sus necesidades y expectativas, abordando los incidentes en el momento en que ocurren, gestionando conflictos de intereses y fomentando una adecuada participación de los interesados en las decisiones y actividades del proyecto.

La Figura 2.12 brinda una descripción general de los procesos de Gestión de los Interesados del Proyecto.
Figura 2.12. Procesos de la Gestión de Interesados

Identificar a los Interesados. El proceso de identificar las personas, grupos u organizaciones que podrían afectar o ser afectados por una decisión, actividad o resultado del proyecto, así como de analizar y documentar información relevante relativa a sus intereses, participación interdependencias, influencia y posible impacto en el éxito del proyecto, creando un Registro de Interesados.

Planificar la Gestión de los Interesados. El proceso de desarrollar estrategias de gestión adecuadas para lograr la participación eficaz de los interesados a lo largo del ciclo de vida del proyecto, con base en el análisis de sus necesidades, intereses y el posible impacto sobre el éxito del proyecto, creando un Plan de Gestión de Interesados.

Gestionar la Participación de los Interesados. El proceso de desarrollar estrategias de gestión adecuadas para lograr la participación eficaz de los interesados a lo largo del ciclo de vida del proyecto. Cualquier controversia que se desarrolle entre los interesados del proyecto quedará reflejada en el Registro de Incidencias.

Controlar la Participación de los Interesados. El proceso de monitorear globalmente las relaciones de los interesados del proyecto y ajustar las estrategias y los planes para...
involucrar a los interesados a través de informes de desempeño y solicitudes de cambio.

2.3 Documentos significativos de la Gestión de Proyectos

A continuación se muestra un glosario de términos referente a los documentos más importantes que se generan en las distintas Áreas de Gestión del Proyecto según el PMI.

Acta de Constitución del Proyecto. Un documento emitido por el iniciador del proyecto o patrocinador, que autoriza formalmente la existencia de un proyecto y confiere al director de proyecto la autoridad para aplicar los recursos de la organización a las actividades del proyecto.

Plan de Dirección del Proyecto. Documento que describe el modo en que el proyecto será ejecutado monitoreado y controlado.

Plan de Gestión de Alcance. Es un componente del plan para la dirección del proyecto que describe el modo en que el alcance será definido, desarrollado, monitoreado, controlado y verificado.

Plan de Gestión de Interesados. Es plan subsidiario del plan para la dirección del proyecto que define los procesos, procedimientos, herramientas y técnicas para lograr la participación efectiva de los interesados en las decisiones y la ejecución del proyecto en base al análisis de sus necesidades, intereses y posible impacto.

Plan de Gestión de Calidad. Un componente del plan para la dirección del proyecto o programa que describe cómo se implementarán las políticas de calidad de una organización.

Plan de Gestión de Adquisiciones. Un componente del plan para la dirección del proyecto o programa que describe cómo un equipo de proyecto adquirirá bienes y servicios desde fuera de la organización ejecutante.

Plan de Gestión de Comunicaciones. Un componente del plan para la dirección del proyecto, programa o portafolio que describe cómo, cuándo y por medio de quién se administrará y difundirá la información del proyecto.
Plan de Gestión de Costos. Un componente del plan para la dirección del proyecto o programa que describe la forma en que los costos serán planificados, estructurados y controlados.

Plan de Gestión de Recursos Humanos. Un componente del plan para la dirección del proyecto que describe cómo los roles y responsabilidades, las relaciones de comunicación y la gestión de personal serán tratados y estructurados.

Plan de Gestión de Requisitos. Un componente del plan para la dirección de un proyecto o programa que describe cómo serán analizados, documentados y gestionados los requisitos.

Plan de Gestión de Riesgos. Un componente del plan para la dirección del proyecto, programa o portafolio que describe el modo en que las actividades de gestión de riesgos serán estructuradas y llevadas a cabo.

Plan de Gestión de Cronograma. Un componente del plan para la dirección del proyecto que establece los criterios y las actividades para desarrollar, monitorear y controlar el cronograma

Entregable. Cualquier producto, resultado o capacidad de prestar un servicio único y verificable que debe producirse para terminar un proceso, fase o proyecto.

Matriz de Trazabilidad de Requisitos. Cuadrícula que vincula los requisitos del proyecto desde su origen hasta los entregables que los satisfacen.

Informe de Desempeño del Trabajo. Datos del desempeño recopilados de los procesos de control de las diferentes áreas de la Gestión de Proyectos. El registro de esta información en documentos del proyecto permite generar decisiones sobre el rumbo del proyecto.

Solicitud de Cambio. Propuesta formal para la modificación de un documento, entregable o línea base.
Capítulo 3

Lean Management

En este capítulo se describe la metodología de excelencia empresarial *Lean Management*, así como su aplicación al sector de la Gestión de Proyectos de Construcción bajo la denominación de *Lean Construction*. Partiendo del origen de esta nueva filosofía se describe una de las herramientas más empleadas en este sector: *Last Planner System*.

3.1 Lean Management

Lean Management o Gestión Lean es una evolución natural de la cultura *Lean Manufacturing* iniciada en Japón en los años 70 a partir del *Toyota Production System*, donde desarrollaron un sistema de producción sin despilfarro que pudiera responder rápidamente a los cambios del mercado.

La gestión de la actividad empresarial actual, caracterizada por una fuerte competencia, se centra en obtener aquello que es necesario para entregar al cliente, eliminando todas aquellas actividades que no aportan valor desde el punto de vista de la demanda del mercado. (Cuatrecasas, 2015).

El modelo que proponía Henry Ford (1924) asocia la productividad a la producción de gran escala, con una gran rigidez para adaptarse a las necesidades cambiantes de los mercados, no solo por la poca variedad de la oferta, sino por el carácter especialista de sus trabajadores.

Esta producción en grandes lotes requiere mucho espacio no productivo para llevar a cabo los procesos y el almacenamiento de stock. Grandes volúmenes de
productos requieren grandes volúmenes de materia prima que deben ser distribuidos dentro del entorno industrial, lo que provoca ralentizaciones en el avance de los procesos.

Esta filosofía de gestión empresarial presenta no se enfoca en la satisfacción de la demanda del mercado, del cliente y sus necesidades, sino que están centradas en la propia organización en las metas de crecer, aumentar capacidad, reducir costes, etc.

Para hacer frente a este modelo de fabricación en grandes lotes que colapsaba el mercado surge la necesidad de una mayor eficiencia en los procesos productivos con el fin de que nuevas empresas se hagan hueco en el mercado. Tal es el caso de Toyota que, debido a las limitaciones de inversiones y recursos, han de centrar sus esfuerzos en eliminar actividades improductivas y con ello los sobrecostes dentro de su sistema productivo.

Todas aquellas actividades que no agregan valor, los wastes, en todas sus tipologías deben ser eliminadas del sistema productivo con el fin de aumentar la cadena de valor desde la perspectiva del cliente.

Esta problemática, analizada desde la perspectiva económica, implica que el sistema tradicional requiere una gran cantidad de capital invertido, capital que es infrautilizado si el objetivo es la acometividad. Por un lado, el capital fijo en la producción de gran escala exige una maquinaria, instalaciones y equipamientos de gran tamaño, con el consiguiente gran inversión de recursos financieros. Por otro lado, el capital circulante es muy elevado para conseguir una fabricación a gran escala, puesto se requiere una gran cantidad de materiales, energía, salarios, etc. A esto además hay que sumarle el hecho de que la producción a gran escala implica que el capital circulante este la mayor parte del tiempo parado que no avanzando por los procesos.

La eliminación de aquellas actividades que no contribuyen a generar valor en el producto final conduce a costes inútiles y demoran el Lead Time. La importancia de este término quedó manifestada en las palabras de Taïchi Ono, ingeniero responsable del Toyota Production System: “Lo único que estamos haciendo es observar el ciclo de caja, desde el momento en el que cliente nos hace un pedido hasta el momento en que cogemos el dinero en efectivo. Y estamos reduciendo este período de tiempo eliminando las pérdidas que no suponen ningún valor. Lo importante es que el producto no se detenga y fluya sin cesar.
Cuando el producto se detiene dentro del sistema productivo, es decir, no fluye, se habla de stock y este tiempo supondrá un aumento del período de tiempo que hay entre la inversión del capital circulante y su recuperación. Por lo tanto, el stock es un elemento que se ha de reducir al máximo.

Basada en la filosofía Lean Management, y con el fin de eliminar el desperdicio en el área de la Gestión de Proyecto de Construcción surge una metodología: *Lean Construction*.

3.2 Lean Construction

Lean Construction es un enfoque basado en la gestión de la producción para la entrega de un proyecto (Pons, 2014). La gestión de la producción *Lean* ha provocado una revolución en el diseño, suministro y montaje del sector industrial. Aplicado a la Gestión de Proyectos de Construcción, *Lean Construction* ofrece una nueva filosofía para maximizar el valor y minimizar los desperdicios en el proceso de gestión y ejecución de proyectos.

1. Un proyecto de edificación tiene naturaleza única
2. Es algo único que cada vez se ejecuta en un lugar diferente
3. Se lleva a cabo a través de una organización temporal, que en cada fase necesita medios y recursos diferentes

Estos tres puntos son lo que hacen que el *Lean Construction* no alcance los niveles de productividad propios de la industria manufacturera. No obstante, un informe sobre el estado del *Lean Construction* en EEUU (2012) y su correlativo en el año siguiente (2013) de McGraw Hill Construction revela que aquellas empresas que ya han utilizado prácticas *Lean* entre el 70% y el 85% han alcanzado un alto nivel de beneficios, resumidos en la Tabla 3.1.
Tabla 3.1. Informe beneficios del *Lean Construction*. Fuente: Pons, 2014
Informe sobre el estado de *Lean* en la Construcción en EE. UU. (2012)
Mayor cumplimiento del presupuesto
Menor número de cambios de órdenes y pedidos
Rendimiento más alto de entregas a tiempo
Menor número de accidentes
Menor número de demandas y reclamaciones
Mayor entrega de valor al cliente
Mayor grado de colaboración
Informe de McGraw Hill Construcción sobre la aplicación de *Lean Construction* (2013)
Mayor calidad en la construcción.
Mayor satisfacción del cliente.
Mayor productividad.
Mejora de la seguridad.
Reducción de plazos de entrega.
Mayor beneficio y reducción de costes.
Mejor gestión del riesgo.

En España, la Escuela de Organización Industrial (EOI) realizó un estudio sobre la implantación del *Lean Manufacturing* en España, pues no se disponen aún de estudios sobre *Lean Construction*. Para dicho estudio se hicieron encuestas a directivos de 17 sectores, incluyendo la construcción, el automóvil, y la industria farmacéutica.

En dicho estudio la Fundación EOI confirmó el hecho de que la implantación del sistema *Lean* proporciona mejoras en las empresas y es una herramienta clave para la competitividad de las empresas. Figura 3.1.

![Figura 3.1. Beneficios de la implantación *Lean* en España. Fuente: Fundación EOI](image)

Alrededor del 90% de las empresas consultadas destacaron las mejoras que se obtenían en factores como la flexibilidad, el aprovechamiento de los recursos humanos...
y la reducción de costes. Además, el 80% de los encuestados que no están usando las técnicas *Lean* afirman que algún día se incorporarán a la empresa.

Por otro lado, categoriza los factores de éxitos que hacen posibles la implementación de un sistema *Lean* en la empresa. Figura 3.2.

![Figura 3.2. Factores de éxito en la implantación de *Lean* en España. Fuente: Fundación EOI.](image)

Destaca como factor clave el compromiso de la dirección, y la motivación del personal.

El sector de la construcción necesita un cambio de actitud, a nivel de gestión por parte de las empresas, pues es un sector que históricamente no hace fuertes inversiones en formación y servicios externos de consultoría con asesores expertos en implantación de sistemas *Lean*. El estudio anteriormente citado de McGrawHill Construction (2013) proporciona las recomendaciones de la Tabla 3.2 para la implementación de *Lean Construction*.

<table>
<thead>
<tr>
<th>Recomendaciones generales</th>
<th>Recomendaciones para el constructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proporcionar educación sobre la necesidad de una mayor eficiencia. Las asociaciones del sector tienen que ofrecer más información sobre Lean Construction, patrocinando la investigación y promocionando la filosofía de la mejora continua.</td>
<td>Adoptar un enfoque de colaboración hacia Lean para maximizar las ganancias. Las empresas deben aprender a trabajar de manera colaborativa para sacarle el mayor beneficio posible a la aplicación de la filosofía y las técnicas Lean.</td>
</tr>
<tr>
<td>Crear un software que apoya la necesidad de la colaboración interna y externa. Las empresas de software tienen la oportunidad de crear mejores herramientas para apoyar la tendencia de Lean hacia una forma de trabajar más colaborativa.</td>
<td>Promover y planificar el cambio cultural necesario para una adopción plena de Lean. Las empresas que quieran implantar Lean Construction necesitan tener en cuenta cómo atraer el interés de sus empleados, como parte de su estrategia.</td>
</tr>
<tr>
<td>Seguir y compartir datos hasta el nivel más bajo posible de la organización. Las empresas que quieran mejorar la eficiencia se beneficiarán más si comprenden y analizan los procesos a nivel de operario, siguiendo cada paso del proceso para ver dónde pueden hacerse las mejoras.</td>
<td></td>
</tr>
</tbody>
</table>

El *Lean Construction Institute* plantea dos escenarios para la implementación de esta filosofía:

Un primer escenario que establezca una base de conocimiento y capacitación a través de formación para la implementación del *Lean Construction* en la empresa. Para ello se requiere un compromiso por parte de los directivos de las empresas y cree una cultura de mejora continua entre sus trabajadores.

El segundo escenario es el que pretende impulsar un cambio acelerado a través de la implicación política de las diferentes organizaciones dentro de la industria de la construcción y de las universidades para crear profesionales en este ámbito.
3.3 Last Planner System

La gestión tradicional de proyectos, como la propuesta por el Project Management Institute, se centra en el método de la ruta crítica y focalizada en actividades individuales hasta la finalización del proyecto. Este enfoque está fundamentado en el supuesto tático de que el proyecto optimizará al minimizar el tiempo y el coste necesario para completar cada tarea de manera aislada. (Pons, 2014)

Con la llegada de la filosofía Lean se hace necesario establecer una nueva metodología de gestión más eficiente de los proyectos de construcción, de manera que se eliminen los elementos que no agregan valor. (Pellicer, 2011).

El sistema Last Planner System (LPS), o último planificador es un esfuerzo por incorporar los conceptos de Lean en las prácticas de gestión de proyectos de construcción. El objetivo es mejorar la fiabilidad en la planificación y con ello mejorar el desempeño a lo largo del ciclo de vida del proyecto. El LPS es la posiblemente la técnica más divulgada dentro de la filosofía Lean Construction y fue desarrollada en EEUU por miembros del lean Construction Institute (Ballard, 2003).

Bajo esta metodología, la planificación en la construcción es realizada por diferentes personas en la fase inicial del proyecto. Al planificar el proyecto, se focalizan los objetivos generales, las metas y estudia si son alcanzables. Posteriormente, en la fase de ejecución del proyecto se designa a un responsable que establece los trabajos a realizar para cumplir las metas estipuladas en la fase de planificación, definiendo lo que debería hacerse en cada fase del proceso. Pero no todas las actividades que deberían realizarse pueden ser realizadas, ya que poseen ciertas restricciones que lo impiden. Solo tras la liberación de las restricciones que posee una actividad podrá ejecutarse, por lo que debe ser hecho se debe contrastar con lo que puede ser hecho.

Con el fin de facilitar la explicación se emplea la teoría de conjuntos. Figura 3.3. Lo “Qué se hará” es un subconjunto de lo que “Puede hacerse” y a su vez es subconjunto de lo “Debería hacerse”.

52
Por el contrario, si lo que puede ser hecho es subconjunto de lo que se hará, no se cumplirá la programación. Para programar las actividades a corto plazo no basta con ver el programa lo que “Debería hacerse”, ya que hay que tener en cuenta también los factores externos que influyen en una obra y su estado real.

El proceso de planificación debe centrarse primordialmente en lo que “Puede hacerse”, ya que las actividades englobadas en este subconjunto son las que verdaderamente posibilitan el avance del proyecto. Para ello los planificadores han de centrar sus esfuerzos en liberar las restricciones que impiden que la tarea pueda iniciarse o continuar. Los proyectos de construcción requieren planificación por parte de diferentes puestos de la organización durante las distintas fases del ciclo de vida del proyecto. El LPS define los criterios de asignación de compromisos de producción con el fin de anticiparse a las incertidumbres de las actividades. Un esquema del proceso de aplicación del sistema LPS se muestra en la Figura 3.4.
A continuación se analizan los distintos niveles de programación en los que se divide la planificación de las tareas.

Programa Maestro

El programa maestro define las actividades que se enmarcan dentro del subconjunto de “Debería hacerse” e incorpora la planificación de todas las actividades del proyecto. En él se establecen las interdependencias temporales, se fijan los hitos para el cumplimiento del alcance.

Para la adecuada elaboración del plan maestro es fundamental identificar a los responsables del cumplimiento de cada parte del programa y contar con la colaboración de proveedores y subcontratistas en las actividades que se les requiera. Además, se deben incluir las relaciones entre los responsables de las tareas.

Programa de Fase

El programa de fase constituye el segundo nivel de la planificación y consiste en una división del programa maestro en distintas fases preparada por los responsables de administrar las tareas propias de cada fase. Su aplicación es propia de proyectos de gran envergadura pues ayuda a facilitar la consecución de hitos en cada una de las fases en la que se ha subdividido el plan maestro.
Programa Intermedio

La programación intermedia se focaliza en la planificación a medio plazo, pudiendo variar este desde 4 hasta 16 semanas, según las necesidades de cada proyecto. El programa intermedio define las actividades que “Pueden hacerse”. Se incorporan los suministros necesarios para el desarrollo de las actividades y los responsables de ellas. Con el fin de monitorizar la programación intermedia la Figura 3.5 proporciona una plantilla para la toma de datos.

![Figura 3.5. Plantilla programa intermedio. Fuente: Díaz, 2007](image)

El programa intermedio es capaz de identificar los recursos necesarios para el desarrollo de las actividades, así como los responsables para su cumplimiento. Además, en la plantilla se incluye un apartado de restricciones donde se detallan los cuellos de botella que impiden la finalización o avance de las actividades. El objetivo principal de la programación intermedia es establecer de forma clara lo que “Puede hacerse” y eliminar las restricciones existentes para no introducir retrasos en la programación.

En esta fase se identifican problemas que no se consiguen detectar en el programa maestro antes de ser introducidos en la fase de programación semanal.

Programa Semanal

Finalmente, la programación semanal recoge todas las actividades que “Se harán” durante la siguiente semana en función de los objetivos cumplidos en la semana finalizada, y lo previsto en la programación intermedia. Las actividades de este subconjunto se determinan a partir de reuniones semanales, denominadas *Pull Sessions*, en las que se estudia el cumplimiento de las actividades de la semana vencida y se planifican las de la semana a venir.
El primer punto a tratar en estas reuniones es el cumplimiento de las actividades de la semana vencida, determinando las causas del no cumplimiento de lo planificado. Posteriormente se calcula el PAC (Porcentaje de Actividades Completadas) como cociente del número de actividades finalizadas que fueron programadas y el total de actividades programadas para la misma semana. Si la actividad se considera completada totalmente se le asigna un 1 y si la actividad no se encuentra terminada según lo programado se le asigna un 0. En la Figura 3.6 se puede ver un ejemplo de medición del PAC.

![Tabla de programación de obra gruesa](image)

Figura 3.6. Ejemplo de medición del PAC

Este proceso iterativo de seguimiento de las causas de no cumplimiento de la finalización de las actividades provoca una retroalimentación que puede introducir modificaciones en el programa intermedio y maestro.
Capítulo 4

Aplicación de las Técnicas Lean a la Gestión de Proyectos

Una vez descritas en los capítulos anteriores las técnicas Lean de Gestión de Proyectos dentro del marco del Project Management Institute, en este último capítulo se resolverá un caso de un proyecto real con las técnicas Lean. Para ello, se tomará como punto de partida el proyecto realizado por Álvarez et al sobre la construcción de una nave industrial, identificando los puntos que no agregan valor al proyecto y, con ayuda de las técnicas expuestas en los capítulos anteriores, eliminarlos.

4.1 Descripción del Proyecto

La empresa de CONSTRUCCIONES S.A N.I.F A00000000 dedicada a la construcción, pretende construir una nave industrial cuya finalidad es realizar actividades de calderería.

La nave que se quiere construir es de 20 m de ancho, 35 m de largo y 9 m de alto, con un volumen total de 6300 m³. La nave será de una planta con cubierta a dos aguas y dispondrá de oficinas y un taller de calderería con las máquinas necesarias para llevar a cabo las labores habituales del taller. El solar está situado en el Polígono Industrial de Tremañes (Gijón, Asturias). La construcción está prevista que comience el día 01/01/2015 y finalice el 30/03/2015, con una duración de la obra de 63 días y un presupuesto estimado de 240.000€ aproximadamente.

Con vistas a seguir realizando obras de construcción, la constructora pretende llevar a cabo el proyecto para enriquecer industrialmente la zona, crear lazos comerciales con nuevos socios.
El objetivo del proyecto es crear una nave industrial que sirva de taller de calderería, así como el estudio de implantación de los materiales y máquinas necesarios para desarrollar la actividad.

El cronograma en el que se suceden las actividades de la construcción de la nave industrial con taller de calderería se muestra en la Figura 4.1.
Figura 4.1. Cronograma del Proyecto
La estructura de desglose de la organización es la mostrada en la Figura 4.2.

Figura 4.2. Estructura de desglose de la organización

El encargado de la dirección del proyecto es un PMP (*Project Manager Professional*). Sobre él recae la responsabilidad del área de arquitectura e ingeniería, el jefe de obra y el área administrativa y de RRHH.

El jefe de obra es el encargado de la supervisión del control de la obra y bajo su mando se encuentra el personal de producción y responsables de máquina, cuyos objetivos son la elaboración de los paquetes de trabajo y la correcta utilización de máquinas en obra. Además el jefe de obra es el nexo de unión del PMP y la dirección facultativa, que es la responsable de dirigir la obra así como controlar la calidad de los materiales y las materias de seguridad y salud.

El área de arquitectura e ingeniería detalla el estudio de implantación del proyecto junto con el Project Manager.

El área administrativa ejecuta las órdenes de los accionistas y el departamento de RRHH recluta al personal necesario, determinando las condiciones y conocimientos exigibles a cada categoría profesional.
A continuación se muestran algunas propuestas basadas en la filosofía *Lean Management* con el fin de aumentar la cadena de valor del proyecto.

4.2 Gestión Lean de Tiempos

La aplicación de los principios del pensamiento *Lean* a la gestión de tiempos de un proyecto se centra en la eliminación de los baches de tiempos, entendiendo como tal, el conjunto de procesos, procedimientos y elementos organizacionales que son un obstáculo para que el valor del proyecto fluya. (Nieto A, Ruz F). A continuación se estudian los distintos tipos de baches en el tiempo y el modo de eliminarlos dentro de un proyecto de construcción.

Un primer punto de pérdida de tiempo en Proyectos de Construcción es la parálisis o demora en la toma de decisiones. Surge principalmente por temor a tomar decisiones ante elementos inesperados que surgen a lo largo del desarrollo del proyecto. Con el fin de evitar se pueden tomar las siguientes medidas:

- Asumir situaciones de riesgo e incertidumbre
- Estudiar detalladamente la naturaleza del problema
- Planificar un sistema ágil de gestión para este tipo de situaciones

En muchas ocasiones los sobreprocesos de información suponen un gran desperdicio de tiempo que puede eliminarse. Para ello una se plantea numerosas soluciones:

- Distribuir una copia del documento a todos los revisores de forma simultánea
- Iniciar una aprobación automática en caso de ausencia de respuesta en un plazo determinado
- Responsabilizar del incumplimiento de plazos de revisión

Otro punto de eliminación de tiempos innecesarios puede ser las reuniones. En algunas de las reuniones que se celebren no están claramente definidos los temas a tratar o el tiempo previsto es excesivo. Para optimizar el tiempo de reuniones se plantean las siguientes propuestas

- Asegurar que la reunión es necesaria y que asiste únicamente las personas involucradas
- Aclarar los puntos de la reunión en la convocatoria de la misma
- Resumir los resultados al finalizar la reunión y publicar los resultados en actas
• Hacer reuniones lo más breves posibles

La metodología Lean aplicada a la gestión de tiempos aboga por simplificar el liderazgo del proyecto para satisfacer a las partes interesadas en el menor tiempo posible, mientras se minimizan los desperdicios.

La gestión de tiempos según el PMI apuesta por la creación de un listado de actividades y una secuenciación a lo largo del ciclo de ejecución del proyecto, creando de este modo un diagrama Gantt como el mostrado en la Figura 4.1. Durante la fase de control dentro de la gestión de tiempos existen unos indicadores que informan del avance del proyecto respecto a la línea base de tiempos. A continuación se describen brevemente los indicadores que el PMI emplea durante esta fase.

Valor planificado. El valor planificado (PV) es el presupuesto autorizado que se ha asignado al trabajo programado. Es el presupuesto autorizado asignado al trabajo que debe ejecutarse para completar una actividad o un componente de la estructura de desglose del trabajo, sin contar con la reserva de gestión. Este presupuesto se adjudica por fase a lo largo del proyecto, pero para un momento determinado, el valor planificado establece el trabajo físico que se debería haber llevado a cabo hasta ese momento.

Valor ganado. El valor ganado (EV) es la medida del trabajo realizado en términos de presupuesto autorizado para dicho trabajo. Es el presupuesto asociado con el trabajo autorizado que se ha completado.

Índice de desempeño del cronograma. El índice de desempeño del cronograma (SPI) es una medida de eficiencia del cronograma que se expresa como la razón entre el valor ganado y el valor planificado. Refleja la medida de la eficiencia con que el equipo del proyecto está utilizando su tiempo. Un valor de SPI inferior a 1,0 indica que la cantidad de trabajo llevada a cabo es menor que la prevista. Un valor de SPI superior a 1,0 indica que la cantidad de trabajo efectuada es mayor a la prevista. Puesto que el SPI mide todo el trabajo del proyecto, se debe analizar asimismo el desempeño en la ruta crítica, para así determinar si el proyecto terminará antes o después de la fecha de finalización programada.

Como se puede observar, estos indicadores informan del avance o retraso del trabajo realizado conforme a la línea base del cronograma, tomando siempre las decisiones en base a los resultados que arrojan estos indicadores. En la casuística de que el resultado suponga un retraso en cuanto a la línea base del cronograma las
acciones que se toman suelen ser precipitadas, incurriendo en un sobrecosto con el fin de alinear el cauce del avance del proyecto con la planificación que se estableció inicialmente.

La falta de retroalimentación dinámica de este sistema hace que no sea un sistema óptimo. En contrapartida, bajo una planificación basada en la metodología Last Planner System se pueden eliminar estos problemas de tiempos que no agregan valor al proyecto.

En primer lugar, con el Programa Intermedio se analizan las actividades que se van a proyectar en el horizonte de planificación de una semana, permitiendo la anticipación a posibles retrasos de las actividades por diversas causas (falta de materiales, falta de personal, maquinaria no disponible, etc). En segundo lugar, este Programa Intermedio recoge las causas de la no finalización de una tarea en su plazo planificado. Esta información precisa agiliza los trámites para la finalización de la tarea en la próxima semana de trabajo.

4.2 Kaizen

En las empresas dedicadas al sector de la construcción una buena referencia para el desarrollo e implementación de la mejora continua puede ser el sistema de gestión ISO 9001. La ISO 9001 exige una clara identificación y descripción de los procesos de empresa, por lo que la elaboración de unos procedimientos en concordancia con los sistemas de gestión de calidad puede ser la base sobre la que aplicar la mejora continua. Sobre estos procesos se pueden aplicar todas las herramientas y técnicas específicas de la mejora continua, pero el Kaizen se logra a través de acciones diarias, por pequeñas que sean, que permitan que los procesos y la empresa sean más competitiva de cara a la satisfacción del cliente.

En este ámbito, puede llevarse a cabo por parte del equipo de obra, la anotación y registro de todas aquellas acciones que se han realizado en el ámbito de la obra y que han representado mejoras en el desarrollo de los trabajos. De esta forma, la experiencia adquirida puede ponerse en común a todos los miembros de la organización, simplificando la búsqueda de soluciones en incorporándola a la metodología de los trabajos. El PMI hace referencia a estas actividades como lecciones aprendidas. Se puede identificar en cualquier momento y debe ser registrado en el conjunto de obras de la empresa para, posteriormente, incluir en los procedimientos las que se consideren más adecuadas.
Este proceso de aportación de ideas no se ha de limitar al equipo de ejecución de la obra, sino que debe ser de aplicación para todos los trabajadores. Mediante la instalación de buzones de sugerencias, o la incentivación para aquellas ideas que aporten mejoras en el desempeño de los trabajos. Es una forma de implicar a todos los miembros además de comprometerlos en la consecución de mejoras y, por lo tanto, en la reducción de los desperdicios o ineficiencias.

4.2 Estandarización de los Trabajos

A través de la estandarización de los procesos se busca que las operaciones se hagan siempre de la misma manera y además que se sepa en cada momento qué se tiene que hacer. Consiste en proporcionar los medios por los cuales, los trabajos se realicen siempre de la misma forma.

Para ello es habitual la existencia de plantillas especializadas para cada trabajo acorde a los procedimientos previamente redactados, en las que se indique las medidas de seguridad a tomar, la duración estimada de la actividad para cada tarea, lo materiales previos necesarios y la limpieza posterior a la finalización del trabajo. En la Figura 4.3 se incluye una ficha a modo de ejemplo para la estandarización de corte de un tablero.

![Diagrama de estandarización de operaciones]

Figura 4.3. Ficha de trabajo. Fuente: Elaboración propia.
Capítulo 4. Aplicación de las técnicas Lean a la Gestión de Proyectos

En el caso del proyecto de la nave real existe una estimación aproximada de la duración de las actividades con el método de los tres valores, cuyos valores se reflejan en la Tabla 4.1.

 Mediante los procedimientos estandarizados se puede calcular de una forma más precisa el tiempo de duración de cada actividad dentro del proyecto, pues toda actividad puede ser desglosada en un conjunto de tareas estrictamente detalladas en los procedimientos, incluyendo un tiempo de realización concreto.

Con ayuda de estos procedimientos antes del inicio de cada tarea el operario dispondrá de la información necesaria para desarrollar la tarea en un tiempo acotado, y contará con las herramientas necesarias antes del inicio de la misma.

Actividades	Duración peor	Duración más probable	Duración promedio	Desviación típica	Varianza	¿Camino Crítico?
Explanación	4	10	7,5	10,3	1,083	1,774
Excavación zapatas	5,6	4	3	4,1	0,435	0,188
Excavación saneamiento	4,2	3	2,26	3,1	0,325	0,106
Hormigón de Implicencia	2,8	2	1,5	2,1	0,217	0,047
Hormigón armado zapatas y vigas de acero	4,2	3	2,26	3,1	0,325	0,106
Arcadas	6,6	4	3	4,1	0,435	0,188
Piedra de saneamiento	4,2	3	2,26	3,1	0,325	0,106
Carasones	4,2	3	2,26	3,1	0,325	0,106
Bajantes	2,8	2	1,5	2,1	0,217	0,047
Placas de antejo	2,8	2	1,5	2,1	0,217	0,047
Pórticos	5,6	4	3	4,1	0,435	0,188
Resto de perfíles estructurales	4,2	3	2,26	3,1	0,325	0,106
Placa develad	2,8	2	1,5	2,1	0,217	0,047
Tablero de muro de yeso	4,2	3	2,26	3,1	0,325	0,106
Suelas	4,2	3	2,26	3,1	0,325	0,106
Carrocería exterior; H. A prebajante	4,2	3	2,26	3,1	0,325	0,106
Puertas y ventanas exterior	2,8	2	1,5	2,1	0,217	0,047
Puertas interiores	1,4	1	0,75	1,0	0,108	0,012
Escalera	1,4	1	0,75	1,0	0,108	0,012
Formación de cubiertas	7	5	3,75	5,1	0,542	0,283
Retén de cubiertas	4,2	3	2,26	3,1	0,325	0,106
Puesta a tierra	4,2	3	2,26	3,1	0,325	0,106
Acometida y contador	4,2	3	2,26	3,1	0,325	0,106
Resto de instalación eléctrica	1,4	1	0,75	1,0	0,108	0,012
Fontanería	4,2	3	2,26	3,1	0,325	0,106
Calidad	2,8	2	1,5	2,1	0,217	0,047
Pintura	2,8	2	1,5	2,1	0,217	0,047
Ventilación	2,8	2	1,5	2,1	0,217	0,047
Urbanización	5,6	4	3	4,1	0,435	0,188
Instalación de maquinaria	11,2	8	8	8,2	0,887	0,751
Pruebas de funcionamiento	5,6	4	3	4,1	0,435	0,188

Varianza total: 3,457
4.3 SMED

Esta técnica propia del Lean aplicado a los procesos de fabricación, el Lean Manufacturing, es de compleja implementación en los proyectos de construcción. No obstante, sus principios de funcionamiento sí que pueden aplicarse a la realización de muchas tareas de forma que mejoren las transiciones en la ejecución de las tareas.

Como ejemplo de aplicación de esta técnica sería la adecuación de los andamios para pasar de una fase de construcción a otra. Durante la fase de estructura los andamios cumplen una función principalmente de proyección mientras que en la fase de albañilería pasan a ser la superficie de trabajo desde donde se ejecutan los trabajos. En esta transición se debe realizar una serie de trabajos de adaptación para su nuevo uso, añadiendo elementos y modificando la posición de otros hasta que está en condiciones de ser usados para las nuevas. Estos trabajados de adaptación pueden realizarse con las técnicas SMED, planificando con antelación los trabajos necesarios para la modificación e identificando los trabajos externos. Estos montajes externos pueden realizarse previamente y se incorporarán al conjunto de elementos necesarios, reduciendo así al mínimo el tiempo de transición entre fases.

En nuestro cometido, esta técnica es de aplicación en los puntos 1.3 a 1.6 de la estructura de desglose de trabajos (EDT), tal y como se muestra en la Figura 4.4.

Figura 4.4. EDT Proyecto nave industrial
Los campos a los que hace referencia son los siguientes:

- 1.3 Estructura metálica
- 1.4 Albañilería
- 1.5 Carpintería exterior
- 1.6 Cubierta

Realizando un estudio previo de la disposición de los andamios conforme a la realización de las actividades de los citados campos se pueden eliminar tiempos muertos en el proceso de desensamblaje y ensamblaje de andamios durante la obra.

4.4 Jidoka

Dado el elevado grado de intervención manual presente en los proyectos de construcción, la herramienta del *Jidoka* es de difícil implementación. No obstante se puede adaptar a este sector para la ejecución de las distintas tareas.

Un primer paso sería establecer y transmitir de forma clara y concisa los criterios objetivos de calidad a los operarios de manera que sean ellos mismos los que juzguen la idoneidad del trabajo realizado. Las métricas de calidad del proyecto de nave industrial se reflejan en la Tabla 4.2

<table>
<thead>
<tr>
<th>Código de la EDT</th>
<th>Verificar</th>
<th>Criterio de rechazo</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1 Nave Industrial</td>
<td>Dimensiones en planta, cotas</td>
<td>Errores superiores al 2.5%<sub>c</sub></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Variaciones superiores a ±100 mm</td>
</tr>
<tr>
<td>0.1.0 Movimiento de tierras</td>
<td>Nivelación de explanada</td>
<td>Desniveles superiores al 1%</td>
</tr>
<tr>
<td></td>
<td>Profundidad</td>
<td>Inferior al 5% de la proyectada</td>
</tr>
<tr>
<td></td>
<td>Limpieza de explanada</td>
<td>Existencias de residuos mayores de 10 cm de diámetro</td>
</tr>
<tr>
<td></td>
<td>Excavaciones</td>
<td>Variaciones superiores a ±50 mm</td>
</tr>
<tr>
<td></td>
<td>Relleno con tierra</td>
<td>Tongada superior a 20 cm</td>
</tr>
<tr>
<td>0.1.1 Cimentación</td>
<td>Hormigón de limpieza</td>
<td>Espesor de la capa inferior a 10 cm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Consistencia en el momento de descarga distinta de la especificada</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Amasados a los que se ha añadido alguna sustancia nociva</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Planeidad variaciones a ±16 mm, medidas con regla de 2m</td>
</tr>
<tr>
<td></td>
<td>Hormigón para zapatas</td>
<td>Variaciones de cota superiores a</td>
</tr>
<tr>
<td>0.1.2 Saneamiento</td>
<td>0.1.3 Estructura metálica</td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>--------------------------</td>
<td></td>
</tr>
<tr>
<td>Acometida general</td>
<td>Perfiles</td>
<td></td>
</tr>
<tr>
<td>Diferencias respecto a las especificaciones del proyecto. Falta de correspondencia entre tubo y la perforación al pozo</td>
<td>Variaciones superiores a ±3 mm en distancias entre ejes de hasta 3 m</td>
<td></td>
</tr>
<tr>
<td>Sumideros</td>
<td>Variaciones superiores a ±4 mm en distancias entre ejes de hasta 6 m</td>
<td></td>
</tr>
<tr>
<td>Falta de ajuste y sellado del sumidero al tubo de desagüe Colocación irregular y falta de estanqueidad</td>
<td>Variaciones superiores a ±6 mm en distancias entre ejes de hasta 4 m</td>
<td></td>
</tr>
<tr>
<td>Soldaduras</td>
<td>Placa alveolar</td>
<td></td>
</tr>
<tr>
<td>Cordón discontinuo Defectos, mordeduras, grietas Variaciones de espesor superiores a ±0.5 mm</td>
<td>Geometría y cotas distintas respecto a las especificaciones</td>
<td></td>
</tr>
<tr>
<td>Solera</td>
<td>Muros</td>
<td></td>
</tr>
<tr>
<td>Diferencias respecto a las cotas y disposiciones de armaduras Variaciones de canto superiores a ±5 mm Amasados con alguna sustancia nociva Juntas de retracción con separación superior a 16 m</td>
<td>Planeidad: Variaciones superiores a ±5mm Variaciones de altura superiores a ±15 mm Variaciones de altura total superiores</td>
<td></td>
</tr>
</tbody>
</table>
Además, una medida para evitar la propagación de errores en el puesto de trabajo sería la supervisión previa de los equipos a manejar empleando una lista de chequeo de sus componentes más críticos. Puede ser el caso de los paneles de encofrado que puedan presentar irregularidades en su superficie que puedan transmitirse al hormigón.

La implantación de soluciones Lean en este apartado pasa por identificar las fuentes de defectos conforme sean detectados y corregirlas inmediatamente de forma que no se propague a la fase siguiente del desarrollo de la obra. Para ello una solución sería la realización de un registro de aparición de defectos con las causas que pudieran originar y diariamente ser analizadas por el jefe de la obra para, posteriormente, establecer un plan de acción que elimine el defecto.

4.5 VSM

A continuación se expondrá un ejemplo de un mapa de valor para la Gestión de las Adquisiciones del Proyecto.

La Gestión de las Adquisiciones del proyecto consta de los siguientes procesos:

Efectuar las Adquisiciones: Obtener respuesta de los vendedores, seleccionar un vendedor y adjudicar el contrato.

Controlar las Adquisiciones: El Project Manager se encarga de gestionar las adquisiciones, monitoreando la ejecución de los contratos y efectuando cambios según corresponda.
Cerrar el contrato: El administrador y la empresa deben notificar formalmente que el contrato ha sido completado.

Los bienes y servicios que se adquieren deben cumplir con las exigencias expuestas en el contrato para su aceptación ya que es muy importante en el desarrollo de la obra.

Los tipos de contrato que se utilizaron fueron de precio fijo, por lo que es importante vigilar la ejecución del contrato, los costos incurridos y las solicitudes de cambio sobreestimadas.

La gestión de los proveedores es coordinada por el área de compras e informa directamente al Project Manager. Las adquisiciones deben ir coordinadas con el proyecto.

El enunciado del trabajo relativo a las adquisiciones es el que se describe a continuación.

Carpintería

El trabajo consiste en la instalación de una serie de puertas tanto interiores como exteriores y además la colocación de una escalera que de acceso a la entreplanta.

Los artículos necesarios a instalar son:

- 4 puertas abatibles con ventanas
- 1 Puerta basculante articulada para entrada de camiones de metal acabado en pintura mate.
- 1 Puerta de entrada
- 9 Ventanas oscilo-batientes.

La instalación de los componentes ha de llevarse a cabo entre el 25/02/2015 y el 27/02/2015 de acuerdo a los planos proporcionados. El margen de trabajo es ±1 día.

Fontanería

El trabajo consiste en la instalación de fontanería de la nave, correspondiente a:
- Tuberías de polipropileno III (PP-R), de 20 mm de diámetro y accesorios para su montaje, totalmente instalada y comprobada su estanqueidad.
- Aparatos sanitarios de porcelana vitrificada, de color blanco y dispondrán del correspondiente desagüe, válvulas y latiguillos de conexión.
- LLaves de corte para baños
- Desagües en PVC con bote sifónico (duchas, lavabos)
- Desagüe de inodorus con manguetón directamente a bajante y a distancia menor de 1 metro.

La instalación de los componentes debe llevarse a cabo entre el 27/02/2015 y el 03/03/2015 de acuerdo a los planos proporcionados. El margen de trabajo es ±1 día.

Electricidad

El trabajo consiste en la instalación de electricidad de la nave y los artículos necesarios son:

- Conductores con protección de 1000 V para la zona de fabricación y de 750 V en oficinas, bajo tubos blindados en montaje superficial y conductores aislados arados en colocación sobre bandeja.
- Todas las luminarias, elementos metálicos de cuadros y chasis de maquinaria deberán conectarse mediante una conexión equipotencial al circuito de tierra.
- Protección IP 44
- Cuadros de chapa de acero plegada de 2 mm de espesor con revestimiento epoxi sin rugosidades totalmente lisa y tratada con inacción antioxidante.
- Los interruptores diferenciales estarán constituidos por envolvente aislada con mecanismos de protección de corriente por defecto y desconexión Marca HAGER o similar.
- Los interruptores automáticos magnetotérmicos estarán constituidos por envolventes de material aislante con mecanismos de fijación a la caja. Marca HAGER o similar
- La zona de entreplanta se realizara con tubo flexible de PVC dispuesto en rozas por la tabiquería.
- En el vestuario la conexión es equipotencial entre canalizaciones metálicas masas de aparatos sanitarios metálicos y elementos conductores accesibles u otras masas. Estas conexiones se efectuaran con conductor de tierra de 2,5 mm2 bajo tubo de protección. La impedancia de la conexión ha de ser igual o menor de 0,2 Ohmios.
- Cada circuito está protegido por separado contra sobre intensidades con interruptores automáticos magneto térmicos.
- Colocación de tubos en horizontal y vertical, la conexión se realiza dentro de cajas de material aislante apropiado.
- Los tubos se colocan a la superficie y se fijan por medio de bridas o abrazaderas protegidas contra la corrosión y sólidamente sujetas. Distancia máxima de 0,8 m. Siempre que sea posible disponer los tubos a una altura mínima de 2,5 m sobre el suelo para protegerlos de daños mecánicos.
- La instalación a tierra se realiza con conductor de cobre de 35 mm2 de sección, conectado a un sistema de puesta a tierra efectiva, cuya resistencia ohmica no será en ningún momento superior a 37 Ohmios.
- Las picas verticales estarán constituidas por barras de acero de 14 mm de diámetro recubiertas con una capa exterior de cobre de espesor apropiado. La longitud de estos electrodos será de 2m.
- Circuitos y potencia adecuada para cumplir las exigencias eléctricas de la nave.
- Alumbrado exterior.
- Instalación cumpliendo el reglamento de baja tensión

La instalación de los componentes debe llevarse a cabo entre el 02/03/2015 y el 13/03/2015 de acuerdo a los planos proporcionados. El margen de trabajo es ±1 día.

Calefacción

El trabajo consiste en la instalación de la nave siendo necesario los siguientes artículos:

- Caldea para calefacción, con producción de agua caliente sanitaria
- Red de tuberías en cobre circuito de ida y retorno
- Termostato de ambiente regulador de instalación

La instalación de los componentes debe llevarse a cabo entre el 04/03/2015 y el 05/03/2015 de acuerdo a los planos proporcionados. El margen de trabajo es ±1 día.

Ventilación

El trabajo de la instalación de ventilación consiste en:
Capítulo 4. Aplicación de las técnicas Lean a la Gestión de Proyectos

- Colocar en cubierta dos aireadores estáticos de 3m de longitud y o25 m de garganta tipo PERFRISA MPM-250 o equivalente dispuestos en la cubierta.
- La ventilación de los vestuarios será de tipo natural mediante rejillas de lamas al exterior

La instalación de los componentes debe llevarse a cabo entre el 04/03/2015 y el 05/03/2015 de acuerdo a los planos proporcionados. El margen de trabajo es ±1 día.

Pintura

El trabajo consiste en pintar la nave de forma que satisfaga la normativa. Los artículos que se pintan son:

- Pintura plástica para paramentos horizontales y verticales
- Pintura esmalte sintético sobre elementos metálicos de cerrajería

La instalación de los componentes debe llevarse a cabo entre el 11/03/2015 y el 12/03/2015 de acuerdo a los planos proporcionados. El margen de trabajo es ±1 día.

El diagrama de Gantt de la Gestión de las Adquisiciones para las instalaciones se puede observar en la Figura 4.5.

![Diagrama de Gantt](attachment:diagrama.png)

Figura 4.5. Diagrama de la Gestión de las adquisiciones para las instalaciones
En la Figura 4.6 se esquematiza la cadena de valor de la Gestión de las Adquisiciones del proyecto.
MAPA DE CADENA DE VALOR DE LA GESTIÓN LOGÍSTICA DE ADQUISICIONES. ESTADO ACTUAL

Figura 4.6. Mapa de cadena de valor de la gestión logística de adquisiciones. Estado actual
Los símbolos de estallido *kaizen* representan los puntos de mejora dentro de la cadena de valor. A continuación se describen los mudas detectados y las soluciones propuestas para su eliminación.

MUDA 1. Espera en la firma de contratos

La formalización de contratos de adquisición de materiales puede producir esperas entre la decisión y ejecución de la compra. Esta espera no tendrá consecuencias si no supone ralentizaciones en la disposición de los materiales en la obra. Para ello es necesario tener en cuenta el tiempo de gestión de los contratos en la parte de planificación de las adquisiciones.

La mejor forma de abordar este problema es la identificación de fechas límites dentro del Plan de Gestión de Adquisiciones y una visualización del mismo a modo de gráfico de Gantt, conforme el avance del proyecto. Para ello hay que realizar una estimación de tiempos desde la disposición en obra, el transporte y suministro y la planificación.

MUDA 2. Almacenaje y acopios

En todo proyecto de construcción es necesario contar con una cantidad de materiales almacenada de manera que garantice una continuidad en las operaciones. Las cantidades sujeto de ser almacenadas están condicionadas por el espacio disponible y la lotificación según el proveedor.

Las soluciones para eliminar este *muda* van encaminadas a conseguir un flujo continuo de suministro de materiales, para establecer en la medida de lo posible un sistema *JIT*. En la medida de lo posible se tratará de facilitar las entregas en puntos próximos a donde van a ser utilizados. Un ejemplo de esto es la colocación de las bovedillas de los forjados directamente en el lugar de trabajo para minimizar la distancia recorrida dentro de la obra.

Además, todos los materiales que se puedan suministrar bajo la filosofía JIT, se harán bajo la misma. Tal es el caso del hormigón al corto periodo de puesta en obra no es posible su acopio, siendo necesario su fabricación en plantas especializadas y suministrarlo en la cantidad especificada. Como solución se plantea la elaboración similar a la existente del *BOM* en la industria (*Bill of Material*), el *BOQ* (*Bill of Quantities*) distinguiendo cuales son las mediciones de materiales que están sujetas a
Capítulo 4. Aplicación de las técnicas Lean a la Gestión de Proyectos

acopio en el almacén, estableciendo un stock de seguridad mínimo para evitar la rotura de la carga.

Una vez establecida esa lista, y teniendo en cuenta el tiempo de suministro y lotificación por parte del proveedor, se elabora una lista actualizable de fechas de suministro para acometer los trabajos en obra.

Asimismo, se propone una solución complementaria de tarjetas *kanban* para que informe de las necesidades de producción y de acopio de materiales.

MUDA 3. Transporte de materiales a los puntos de consumo

El transporte de materiales a los puntos de consumo es una acción que no agrega valor en el desarrollo de una obra de construcción.

Asumiendo que es necesario un almacén para el acopio de materiales la mejor forma de afrontar este desperdicio es mediante el análisis de recorridos dentro del entorno de trabajo como se observa en la Figura 4.7
Los diagramas de flujo son una forma de visualización del material en un proceso donde se muestran las ineficiencias del transporte. Para una optimización del mismo se debe empezar por reflejar el recorrido de una persona o material dentro de un proceso asignado. Una vez analizado el estado actual se deben proponer acciones, tales como acercamiento de los puntos de acopio, puntos intermedios de colocación de materiales, etc, que minimicen la distancia recorrida por el trabajador.

A partir de los mudas detectados y eliminados el nuevo mapa de valor queda tal y como se muestra en la Figura 4.8.
Figura 4.8. Mapa de cadena de valor de la gestión logística de adquisiciones. Estado futuro
4.6 Kanban

Partiendo de la filosofía Lean Management y como herramienta complementaria a una metodología de trabajo basada en LPS se propone la utilización de un tablero kanban para el seguimiento y control de las tareas propias del Plan Intermedio.

En el Capítulo 3 se estableció que el Plan Intermedio es la programación de todas las actividades a realizar en el horizonte de planificación de una semana, incluyendo las actividades pendientes de las semanas anteriores. Con la ayuda de un tablero kanban se puede establecer el “status” de cada actividad así como las restricciones que impiden avanzar en el Lead Time.

En una primera columna del tablero se colocan las actividades que quedan pendientes de finalización en esa semana y las que quedaron sin finalizar en la semana anterior.

En la columna central se sitúan las actividades que están en curso. Estas actividades son las que serán objeto de discusión en una reunión diaria entre el jefe de obra y los operarios especialistas para puntuizar los pasos que restan para la finalización de las tareas. En este punto, y para cada especialidad, será necesario establecer el WIP de tal modo que se agilice el Lead Time. Finalmente, en la última columna se colocan las actividades que han sido finalizadas. Un ejemplo del tablero kanban sería el mostrado en la Figura 4.9.

Figura 4.9. Tablero kanban
En definitiva, las acciones que se han llevado a cabo para eliminar los desperdicios en los pasos de la Gestión de Adquisiciones son:

- Identificar en las fases iniciales los materiales a emplear y estableciendo un calendario de fechas límites de suministros para eliminar las esperas en los procesos.
- Establecer el acopio de los materiales estrictamente necesarios, recurriendo al suministro directo siempre que sea posible.
- Establecer los puntos de suministro de materiales más próximos al lugar donde serán empleados en la obra.
- Análisis de recorridos internos dentro del entorno de trabajo para su posterior optimización
- Implementar un sistema *kanban* de manera que se ajuste la fabricación de productos elaborados en obra a las demandas reales.
- Inclusión de un sistema *MRP (Material Resource Planning)*, tal y como el *BOQ* que determine el stock mínimo de almacenamiento y los sistemas de logística con proveedores.
Conclusiones y Trabajos Futuros

Conclusiones

Convencionalmente la filosofía Lean tiene su campo de aplicación más extendido en el sector de la manufactura, pero es de recién incursión en la Gestión de los Proyectos de Construcción bajo la denominación de Lean Construction.

El interés por la eliminación de mudas dentro del sector de la Gestión de Proyectos de Construcción ha aumentado significativamente en los últimos años, tomando como herramienta de implementación la metodología de trabajo Last Planner System. La filosofía de Lean presenta, en general, bastantes herramientas para la eliminación de desperdicios dentro de la de Gestión de Proyectos de Construcción y es en este campo donde se sitúa este trabajo fin de máster, cuyo objetivo puede resumirse en la implementación de estas herramientas en el contexto de un proyecto real de construcción de una nave industrial.

Como consecuencia del trabajo desarrollado en pos de este objetivo, pueden numerarse las siguientes conclusiones y principales aportaciones:

1. Como toda actividad de investigación, ésta se ha iniciado con la puesta al día en las técnicas de la filosofía Lean.

2. Se ha expuesto el marco de Gestión de Proyectos según el Project Management Institute estableciendo de forma clara y concisa la relación que presenta entre sus diferentes áreas.

3. Se ha indagado en el estado del arte de la filosofía Lean Management y Lean Construction detallando la metodología de trabajo Last Planner System como principal herramienta para la eliminación de tiempos que no agregan valor al proyecto.
4.- Se ha expuesto un proyecto real de construcción de una nave industrial como ejemplo de aplicación de las técnicas Lean para la eliminación de desperdicios.

5.- Con el fin de obtener una paridad de los trabajos realizados durante la ejecución de las obras se han elaborado unas fichas de trabajo que serán específicas en función de la tarea a desempeñar.

6.- Para los trabajos donde es necesario la utilización de una máquina se utilizará una lista de chequeo para los componentes más susceptible de fallo.

7.- Se empleará una plantilla para puntualizar los focos de mejora dentro del puesto de trabajo

8.- Para evitar la propagación de defectos dentro de la ejecución de los trabajos en obra se configura una plantilla de registros de defectos

9.- Se ha elaborado un tablero kanban para la anotación del avance de los trabajos en obra por especialidades

10.- Finalmente, se ha desarrollado un mapa de cadena de valor para la Gestión de las Adquisiciones dentro del proyecto de construcción de la nave industrial. Con la ayuda de esta metodología se han localizado puntos de mejora dentro de la cadena de suministro de materiales.

Trabajos Futuros

Con el fin de proseguir la filosofía de mejora continua a continuación se exponen los puntos para posibles trabajos futuros.

1. Realizar la aplicación de las herramientas de la filosofía Lean desde un punto de vista de ejecución del proyecto, y no solo desde el punto meramente de gestión.

2. Realizar la gestión de un proyecto con la herramienta más comúnmente empleada dentro del Lean Construction: Last Planner System, y realizar la comparativa con la metodología que establece el Project Management Institute, por la más empleada convencionalmente.
Bibliografía
