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Abstract. Nowadays, Wireless Sensor Networks (WSN) are a very promising
research field since they find application in many different areas. Current
proposals for WSN system development are mainly focused on implementation
issues and they rarely rely on a Software Engincering methodology which
supports their entire development life-cycle. The Model-Driven Engineering
(MDE) approach can contribute to solve this problem by allowing designers to
model their systems at different abstraction levels, providing them with
automatic model transformations to incrementally refine abstract models into
more concrete ones. In this vein, this paper presents a MDE approach to WSN
application development. Three levels of abstraction have been defined which
allow designers to build: (1) domain-specific models, (2) component-based
architecture descriptions, and (3) platform-specific models. Automatic model
transformations between these three abstraction levels have been designed and,
in order to demonstrate the viability of the proposal, a real WSN application has
been developed using the implemented tools.

Keywords: Model-driven engineering, component-based sofiware architecture,
domain specific languages, wireless sensor networks, Eclipse platform.

1 Introduction

Recent technological advances have led to the emergence of Wireless Sensor
Networks (WSN). These systems are able to observe the physical world and to obtain
useful information from it. They can process the retrieved data, make decisions on it,
and carry out concrete operations on the environment {1]. Nowadays, Wireless Sensor
Networks find application in many different domains, such as: environmental
monitoring, tele-medicine, or precision agriculture, among others (2]. In 2003 the
MIT's Technology Review [3] published a study where WSN applications were cited
as “one of the top ten technologies that will change the world”. However, current
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techniques for implementing this kind of systems seem to be not powerful enough to
deal with their growing complexity.

Current proposals for WSN application development are mainly focused on
implementation issues. Actually, most of these systems are built from scratch
following an experience-based method, which advocates for selecting the most
appropriate target platform first, and then the WSN domain-specific operating system
(e.g. TinyOS [4]) and programming language (e.g. NesC [5)). The lack of a Software
Engineering methodology which supports the entire development life-cycle of these
applications, commonly results in highly platform-dependent designs, difficult to
maintain, scale and reuse.

The Model-Driven Engineering (MDE) approach can help reducing this
dependence of the software development process on the final execution platforms [6].
MDE revolves around models (defined at different levels of abstraction), and
automatic model transformations, aimed at incrementally refining models into final
application code. Models are defined in terms of formal meta-models (or modelling
languages). These include the concepts needed to describe a system (or a set of
systems) at a certain level of abstraction, and the relationships existing between them.
In order to describe the model transformations, that is, how abstract models are
refined into more concrete ones, a mapping between their corresponding meta-models
must be defined. Thus, applying a MDE approach requires defining both, the
appropriate meta-models and the corresponding model transformations.

This paper presents a MDE approach to WSN application development aimed at
improving the flexibility and reusability of their designs. Three meta-models have
been defined at different levels of abstraction together with the corresponding model
transformations. Designers model their systems using only the WSN domain concepts
included in the highest level meta-model. These initial models are then successively
refined through model transformations until the final application code is automatically
generated,

Before entering into details, the following section presents a motivation example
based on a real WSN application for precision agriculture, which highlights the lack
of flexibility and reusability of current WSN application designs. This is followed by
an outline of the research goals and process. Then, the rest of the paper is organized
as follows. First, Section 2 briefly presents the platform selected to implement the
tools developed as part of this work. Then, the different meta-models and model
transformations implemented as part of the proposal are presented in sections 3 to 6.
Section 7 reviews some related works and, finally, Section 8 presents the conclusions
and some future research lines.

1.1 A Motivation Example

The MITRA WSN application consists of thirty TinyOS-based nodes deployed in an
almond orchard located in the semiarid region of Murcia, in the southeast of Spain.
Given the of shortage water in this region, the prime objective of the system is to
regulate tree irrigation according to water stress, that is, to water the trees only when
it is needed. Water stress is measured using the heat pulse compensation method. This
method consists in generating a heat pulse through the axial line of the tree trunk and



181

measuring the sap temperature at two different points along this line. Similar
temperatures indicate a fast sap flow and this suggests that some watering is needed.

The MITRA application was initially developed using a traditional approach. A
new small electronic sap flow sensor was designed and the software to control both,
local data processing and wireless communications was implemented in NesC, a
component-based programming language for TinyOS-based WSN applications.

The resulting system was highly dependent on the TinyOS-NesC platform and on
the custom sap sensor. The lack of flexibility of the design required several changes,
both in hardware and in software, 1o cope with every small change in the application.

This led us to search for a more flexible design solution, as described in the following
subsection.

1.2 Research Goals and Progress

As stated before, the main goal of this research is to define a new model-driven
methodology for WSN application development which allows developers to build
more flexible and reusable designs. This goal was initially address considering the
following sub-goals:

SG1. Define a WSN Domain-Specific Language (DSL) which enables the
description of this kind of applications at a very high level of abstraction.
Models built using this WSN DSL should pick up all functional and non-
functional system requirements, but they should not include any design or
implementation decisions. For this DSL to be really useful, a model editor
(preferably a graphical one) must be implemented to support new Domain
Model (DM) creation and validation,

SG2. Define the NesC [5] meta-model from the current language specification. A
graphical modelling tool for creating new NesC component-based models
would be desirable, but not required since NesC models will be automatically
generated from WSN DSL ones.

SG3. Define a model-to-model (M2M) transformation which maps the concepts
included in the WSN DSL to those included in the NesC meta-model.

SG4. Define a model-to-text (M2T) transformation which automatically generates
NesC code from NesC models.

SG1 and SG2 were addressed in parallel by different teams. When these targets
were completed (fully implemented and tested), part of the team working on the NesC
meta-model started working on the M2T transformation (SG4), while the rest of the
people involved in the research started working on the M2M transformation (8G3).

While the M2T transformation was successfully completed quite fast, the
transformation between the WSN DSL and the NesC meta-model seemed a really
hard problem to solve. This was mainly due to the huge semantic distance existing
between the concepts included in both meta-models. At this point, two options were
considered: (1) to introduce some lower abstraction concepts regarding system design
into the DSL, or (2) to define an additional abstraction level between the two meta-
models.
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Option (1) meant reducing the abstraction level of the DSL and forcing developers
to include design decision within their models. In contrast, option (2) offered evident
advantages and just a few drawbacks. On the one hand, the use of an intermediate
meta-model could help bridging the gap between WSN domain concepts and NesC
primitives. As a consequence, and despite the need of defining two M2M
transformations instead of one, the complexity of these transformations would be
significantly lower. On the other hand, this intermediate meta-model could serve as an
appropriate architecture description language for defining the system in terms of its
components and the relationships existing between them.

With this aim in mind, a subset of the UML 2.0 [7] meta-model, including
components (for describing the system structure) and state-machine and activity
diagrams (for describing component behaviour), was defined to mediate between the
WSN DSL and the NesC meta-model.

Fig. 1 (left) outlines the elements of the proposal, that is, the set of meta-models
and model-transformations defined to obtain NesC code from WSN Domain Models
(DM). The intermediate architecture description language has been highlighted in
order to emphasize its key role in the process.

Domain-specific Models (DM)
WSAN DSL DM, DM, | ... | DM, built using a DSL with an
associated custom notation

MM pa, |pa, bz, DM-To-PIM transformations
transformation
y
: Platform-Independent Models {PIM)
X Re'dt’l&elflzsgt Component-Based PIM Describe the system architecture
: 0 - in terms of components
Mam 125, 128, 25, PIM-To-PSM transformations
transformation
: L4
' NesC Platform-Specific Madels (PSM)
B Meta-Model PSM,| |PSM,| ... PSM,, (one for each target platform)
mfomarion .:520' szc, s2¢, FSM-To-Code transformations
Code automatically
NesC code G ' C I | Cm I generated for each platform

Fig. 1. (Left) Meta-models and model transformations included in the proposed MDE approach
to WSN development. (Right) Models defined using the intermediate meta-model and the meta-
model itself can be fully reused if new PSMs/DSLs were addressed in the future.

In addition to the already mentioned benefits of including an intermediate
abstraction level, it is worth noting that models defined at this level can be fully
reused if new target platforms were considered in the future. Furthermore, if new
domains were addressed, the meta-model itself could be reused since it has been
designed to be not only platform-independent but also domain-independent. This idea
is illustrated in Fig. 1 (right).
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2 The Eclipse Platform: The Selected MDE Environment

environment offers one of the most widely used implementation of the OMG standard
Meta-Object Facility (MOF) (8], called Eclipse Modelling Framework (EMF) [9].

Although EMF currently supports only a subset of MOF, called EMOF
(Essential MOF), it allows designers to create, manipulate and store both models
and meta-models. This is the reason why many MDE-related inijtiatives are
currently being developed around Eclipse and EMF., Among them, and directly
related to the tools implemented as part of this research, it is worth mentioning the
following ones:

¢ The Graphical Modelling Framework (GMF) [10], which enables the implement-
tation of graphical modelling tools from any EMF meta-model.

¢ The Eclipse Modelling Framework Technologies (EMFT) (11] which enables,
among other things, the definition and evaluation of OCL queries and constraints
on EMF models.

® The Atlas Transformation Language (ATL) [12], which provides the standard
Eclipse solution for model-to-model transformations,

® MOFScript [13], which supports text (and more specifically code) generation from
MOF-based models.

All these Eclipse plug-ins will be briefly detailed in the sections where the tools
implemented as part of this work are presented.

3 Defining a WSN Domain-Specific Modelling Language

The definition of a WSN domain-specific modelling language (meta-model) is aimed
at helping domain experts 1o describe their systems using only the WSN concepts they
are familiar with. At this initial Stage, no design decisions or concerns about the final
target platform must be taken into account. Conversely, models at this level must
provide a clear picture of system defined at a high level of abstraction. For instance, a
WSN domain-specific model should supply information about the overall system
functionality, how this functionality is partitioned into the different nodes, how this
nodes are grouped and physically distributed, which information do they get from the
environment, how do they communicate with each other and how frequently, where is
the data processed/stored (locally or remotely), how it is presented to the user, etc.

The WSN Domain-Specific Language (DSL) presented in this paper has been
designed to help domain experts to include all this information in their models. Thus,
it provides the concepts most commonly used by the WSN community, together with
the relationships that may appear between these concepts (see Fi 8. 2).
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Fig. 2. WSN Domain Specific Language (WSN DSL)

Both structural and behavioural elements have been included in the meta-model.
The structure of a WSN application is defined in terms of Regions connected by
means of WirelessLinks. All the nodes performing similar tasks are grouped into
a logical NodeGroup, while all the NodeGroups physically deployed together are
considered to belong to the same Region.

The common Behaviour of the nodes belonging to the same NodeGroup is
defined in terms of FunctionalUnits, The meta-model includes an enumerated
set of predefined functional units (FunctionalUnitType) which contains, among
others, data management (read/write from/to sensors/ports/memory), expressions
calculation, timers, etc. FunctionalUnits can be linked together by means of
UnitLinks and with external Resources (ie. Ports and Sensors) by means
of ResourceLinks. All these links logether define the data-flow behaviour of the
NodeGroup. Timers model explicitly internal node control-flow behaviour, while
the external synchronization mechanisms regarding inter-node message passing is
only implicitly represented in the models,

All the concepts and relationships included in this meta-model are quite useless if
no tool is provided to support the creation and validation of new models from it. The
following section presents the graphical notation and the modelling facility
implemented on top of the WSN DSL previously described.



185

3.1 The WSN Graphical Modelling Tool

As previously stated, all the tools implemented as part of this work have been
developed using the MDE facilities provided by the Eclipse Platform. In particular,
the WSN DSL has been defined as an EMF [9] meta-model, and the graphical
modelling tool, implemented to help domain experts 1o create new WSN models, has
been developed using the GMF [10] Eclipse plug-in.

GMF allows designers: (1) to create a graphical representation for each domain
concept appearing in a EMF meta-model, (2) to define a tool palette for creating and
adding these graphical concepts to their models, and (3) to define a mapping between
all the previous artefacts, i.e. meta-model concepts, their graphical representations,
and the corresponding creation tools.

In addition, GMF can be used in conjunction with the EMFT [1 1] Eclipse plug-in
to define new restrictions which can not be included in the meta-model (given the
limitations of using class diagrams). These restrictions are defined as OCL constraints
and they are validated at modelling time using the EMFT plug-in facilities.

The MITRA system, previously described in the introduction, has been depicted
using the implemented WSN graphical modelling tool. As shown in Fig. 3, the model
includes two regions. The first one contains two NodeGroups, one representing the
MITRA nodes deployed in the almond orchard (SAP Monitoring NodeGroup) and
another representing the Irrigation Control NodeGroup (containing only one node).
The second region contains only one Sink NodeGroup with a single node, The
behaviour of each of these NodeGroups has been defined following this three-step
process:

1. Select the sensors to be read from those available in the selected NodeDefinition.

2. Select the activities performed by the NodeGroup from the enumerated set
included in the WSN DSL, and

3. Link all these elements together to fulfil the system requirements, respecting the
syntactic rules defined by the meta-model and the additional OCL rules included in
the GMF application.

The following section describes how these WSN graphical models are automati-
cally transformed into UML-based Plaiform-Independent Models (PIMs). Both the
reduced set of the UML 2.0 meta-model, selected as the intermediate architecture
description language, and the model-to-model transformation used to refine domain-
specific models to the PIM level, are presented.

4 From Domain-Specific Models to UML-Based PIMs

As previously discussed in the introduction, we have chosen a simplified version of
the standard UML 2.0 [7] meta-model as the intermediate specification language. This
intermediate abstraction level is aimed at bridging the semantic gap existing between
the domain and the platform meta-models, reducing the complexity of the required
model transformations.
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Fig. 3. MITRA System model depicted using the WSN DSL graphical modelling tool

The intermediate Tmeta-model has been defined taking some of the elements
included in the UML 2.0 meta-model and, more specifically, some of the concepts
defined within the component, state-machine, and aclivity diagrams. Components are
used to specify the System structure, while state-machines and activity diagrams are
used to define Ccomponent control-flow and data-flow behaviour, respectively.

complex components, ports, port links, interfaces and services. The state-machine part
includes states, pseudo-states (initial, Join, and fork), orthogonal regjons, transitions

correctness of these intermediate models and which allows designers to manually
introduce slight variations into them to test different architectural configurations.
Regarding the Model-to-Mode] (M2M) transformation required to refine DSL

models into component-based PIMs, it has been implemented using the Eclipse Atlas
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wider range of TinyOS-based target platforms and configuration modes. However,
our proposal is not TinyOS (or any other platform) dependent, enabling higher level
WSN application designs. Currently we support TinyOS-NesC code generation like
GRATIS 11, although the proposal could be easily extended to different target
platforms, as stated in the introduction (see Fig. 1).

The Abstract Task Graph (ATaG) [18] offers a DSL for graphically describing
WSN applications in terms of the tasks they must perform and the data their nodes
must collect. The data-driven diagrams depicted using this DSL provide a platform-
independent model of the system under development (nodes, tasks, data types, elc, are
abstract to keep this platform independence). These models are similar 1o the activity

platform, offering only a semi-automated solution,

Finally, CADENA [19] offers a very complete and sophisticated environment for
general purpose application development. CADENA provides designers with an end-
to-end model-driven environment which supports the entire application development
life cycle. This tool offers, among others, a NesC plug-in which provides a graphical
modelling tool (similar to the one offered by GRATIS IT), and automatic NesC code
generation facilities. WSN applications can also be modeiied at a higher level of
abstraction using CADENA general-purpose artefacts “adapted” to the WSN domain.
However, adapting a general-purpose language or tool 1o a specific domain can be a
hard work and the result could be never as good (in terms of precision, efficiency,
elc.) as the one obtained by defining a DSL.

8 Conclusions and Future Research

The work presented in this paper offers a new model-driven approach to WSN
application development. The proposal presents a high level of abstraction domain-
specific language, which allows designers to model their systems in a platform-
independent way, obtaining more flexible and reusable designs. Two additional

abstraction levels have been defined which deal with the system architecture from a
platform-independent and platform-specific point of view. Automatic model

agriculture with successful results. The re-engineered application is fully functional
and, although it is not code-optimized, the effort and the time-to-market to produce
the new solution have been sensibly reduced, Actually, different solutions have been
effortlessly generated thanks to the implemented infrastructure, allowing us to test
new sensors and different network topologies and communication protocols.
Currently, we are working on improving the NesC meta-model and the ATL
transformation from PIMs to NesC models in order to keep all the behavioural
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information during the whole development process. This will allow us to simplify the
final code generation step using only NesC models as input. We are also working on
the integration of requirements from the very early stages of the proposed MDE
approach. Actually, we have developed a Requirements Engineering Meta-Model
(REMM) and a graphical requirements modelling tool aimed at defining reusable
requirements catalogues [20)]. Currently we are building a catalogue of functional and
non-functional WSN requirements together with a tracing tool. We are also very
interested in proving the benefits of our intermediate meta-model for different target
platforms and domain applications. Thus, we plan to define new DSLs for other
domains in which our research team has also some experience, such as computer
vision and robotics. The wide variety of platforms currently available for this kind of
systems, and the fact that some applications incorporate concepts from both domains
(i.e. industrial inspection), make this future research both challenging and promising.
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Appendix A: Excerpt of the MOF Script M2T Transformation

This excerpt of the implemented MOFScript transformation is the module in charge
of generating the code for all the NesC interfaces defined in NesC models.

texttransformation NesCM2T {in mm: "NesC*) {

module: :createInterfaces () {
self. objectsOfType (mm. Interface)->forZach(::mm. Interface){
file £ ( i.name + ".ne" )
f.println ( "interface " + i.name + “{~ )
var count:integer
// Adds the interface command prolotypes
i.prototypes->forEach( p:mm, CommandPrototype ) {
if ¢ P.isAsynchronous==true ) f.print ("async command *)
else f.print ( *command * )
f.print ( p.returnType + " “ + p.name + (")
count = p.arguments.size()
p.arguments->forEach ( v:mm.Variable) ({
f.print ( v.type + " = 4 v.name )
if ( count > 1 ) {f.print (*, =) count=count-1}
} f.println ( °);" )
} // Event protorypes are similarly added ...
}}

Appendix B: Excerpt of the Generated NesC Code

This excerpt of the generated NesC code corresponds to the MitraM module defined
in the NesC component model (see Fig. 5).

includes MitraMsg;
module MitraM |
uses {
interface StdControl as CommControl;
interface StdControl as TimerControl;
interface StdControl as ADCControl;
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interface SendMsg as Send;
interface ADC;
interface Timer as Timerl;
interface Timer as Timer2;
interface Timer as Timer3;
interface Timer as Timerd; }

provides ({
interface StdControl; }

}
implementation {

TOS_Msg msg_global;

uint8_t counter=1;

uintlé_t readingi, reading2;

command result_t StdControl.start{) {
call ADCControl.start();
call TimerControl.start();
call CommControl.start{};
call Timer4.start(TIMER_REPEAT, 1024*60*60+3) ;
initialize_cycle();
return SUCCESS; }

event result_t Timerl.fired{) {
SENSOR_SEND_PULSE ();
call Timer2.start(TIMER_ONE_SHOT, 1024*60*15);
return SUCCESS:; )

event result_t Timer4.fired(){
# Builds a message containing sap measures and sends it to the sink node via wireless.
struct MitraMsg *message =

(struct MitraMsg *}msg_global.data;
message->RAM1 = readingl;
message->RAM2 = reading?;
call Send.send(TOS_BCAST_ADDR,
sizeof (struct MitraMsg),&msg_global));

return SUCCESS:;}
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meta-model. One-to-one transformations are desirable but commonly they are only
possible when the conceplts included in the two meta-models are semantically close.

In this case, the transformation from the WSN DSL and the intermediate UML-
based meta-model requires some relatively complex mappings, although some of
them are also quite direct. Some of the rules, included in this ATL model
transformation, are outlined next:

* Each NodeGroups is mapped (0 a Component.

* Given the data-flow oriented behaviour of WSN NodeGroups, a very simple
StateMachine is associated to each Component including only an Initial
PseudoState, and two States: Working and Final.

° Uncoupled sets of aActivi tyUnits are placed into different
OrthogonalRegions in the Working State, since these activities are
executed in parallel. This is the most complex transformation rule since it requires
detecting unconnected graphs of activities,

* Each Timer FunctionalUnit js mapped to a UML TimerActivi ty.

* All the messages sent via wireless from a NodeGroup to another are modeliled as
UML SendSignalActions.

® Signals send by each NodeGroup to an Output resource (Ports) are converted into
UML sendSignalactions and, conversely, signals received from input
resources (Sensors) are transformed into UML AcceptEventActions.

° Each AcceptEventaction requires adding a new Event io the
StateMachine and an InternalTransition in the Working state fired
by this event,

The result of applying the ATL transformation on the initial MITRA DSL model is
a UML-like platform-independent component model, which describes the system
structure and behaviour in terms of its components and the relationships existing
between them. Although, as stated before, we have not implemented a graphical
model editor for this intermediate level, the following figure (created using a basic

SensorEvent/
SensorReadyTransition

SAP_Monitoring_NodeGroup: Working State ()
(

<<Store>>
datal
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<<Storos>
data2

Sensor Receivo(data2) T Comm Send Radio

1 Atter 15 | Atier 180
| i ﬂg O
kScnsor Received (data1) Sonsor Got SAP2

Fig. 4. Behaviour of the SAP monitoring Component
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drawing tool) has been depicted using the UML graphical notation in order to provide
an easier 10 understand representation of part of the resulting model, and more
precisely, the behaviour of the SAP Monitoring Component (NodeGroup).

As it can be readily appreciated in Fig. 4, the transformation has divided the Working
State of the SAP Monitoring Component into two OrthogonalRegions. These
regions contain the two uncoupled sets of activities identified in the NodeGroup
(see Fig. 3), one describing the sensing loop and another describing how the collected data
is sent to the Sink NodeGroup via wireless. Similarly, the Working State of the Sink
Component is also divided into two OrthogonalRegions, one including the
activities related to data collection (from SAP monitoring nodes), irigation need
estimation, and control message delivery (to the Irrigation Control NodeGroup), and
another including data retrieval and display activities,

The following section describes how these intermediate models are automatically
transformed into TinyOS-NesC Platform-Specific Models (PSMs), applying a new
ATL model-to-mode] transformation.

5 From PIMs to NesC Component Models

Nowadays, Tiny0Os [4] is the most widely used operating system for WSN application
development and, accordingly, a wide variety of tools supporting it can be currently
found in the marketplace. Among them, the solution developed by the T inyOS team is
the NesC [5] component-based Programming language, also extensively used,

A NesC meta-mode] has been implemented, according to the NesC 1.1
specification, 10 support the last stage of the proposed MDE approach. This meta-
model comprises the following concepts: Modules (which define component
implementation), Configurations (which define component groups and
Wirings between them), and Interfaces (which include a list of
CommandPrototypes and EventPrototypes). Modules must implement all
the Commands included in the interfaces they provide and all the Events in the
interfaces they use,

NesC applications are designed following a quite regular component pattern and
thus, the rules needed to define the ATL transformation between PIMs and NesC
models are not very complex. Some of these rules are outlined next;

* A different NesC model is created for each Component in the PIM.

* All TimerActivities defined in the PIM are implemented by a unique
predefined NesC module, called TimerC. This module provides a parameterized
Timer interface which includes a fired event.

¢ Conversely, all SendSignalactions are implemented by a unique predefined
GenericComm module which provides different interfaces for each type of
message. All these interfaces include a SendMsg event.

® A Main module must be necessarily included in the design since it is invoked when
the application starts. This module is in charge of initializing the rest of modules,

* A top level Configuration module must be defined to wire all the previously
defined components,
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Fig. 5 presents the NesC model associated to the sap monitoring component
defined in the PIM. Like in the previous case, this graphical representation has been
manually depicted using a conventional drawing tool, since a graphical NesC model
editor has not been implemented yet. However, the depicted model faithfully

represents the model obtained as the result of applying the implemented ATL
transformation.

StgControl A é

Timar|

e - - .o SICoO . ADCControl
:E?r!@malse'n.sofc-f —o— o

o8 s § e »'lkff __| ‘ MitraM L TimerC
Sond /L Cﬁmj':onud Timard
T mesc prodetncd mocuios )

- SendMsg TS!GCMW

(= _-; Seif prodatined modulos

GenericComm
D Genaratod modulos as Comm

Fig. 5. NesC component model for the sap monitoring nodes

NesC models, described according to the implemented NesC meta-model, only
enable the description of components and their interconnections, and do not include
any of the behavioural information described in the more abstract models, As
explained in the following section, this requires using NesC models and PIMs in order
to generate the final application code. Some improvements in the NesC meta-model
and in the ATL transformation from PIMs to NesC models are currently being
developed to address this limitation, as later commented in the conclusions.

6 Code Generation

The final step of the proposed MDE methodology for WSN system development is to
obtain the final application code from the previous models. In this case, the
transformation is not Model-to-Model (M2M) but Model-10-Text (M2T). M2T
transformations define how model elements are converted into text patterns (in this
particular case, into code), while M2M transformations define meta-model mappings,
that is, how the elements (concepts and relationships between them) included in one
of the meta-models are transformed into elements included in the other.

The final NesC M2T transformation has been implemented using the Eclipse
MOFSecript [13] plug-in. This tool enables the definition of M2T transformations for
MOF-based models. It provides, among others, the following facilities: model
checking, parsing and querying, output file management, code completion, etc.

In order to obtain the final application code, the NesC models obtained in the
previous step are not sufficient, since they do not contain complete information about
component behaviour, Thus, the MOFScript transformation has been designed to use
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both, NesC models and intermediate PIM models (containing component behaviour
specifications obtained from the initial DSL models). This limitation is currently
being addressed as described in the conclusions and future research section,.

Some of the rules included in the MOFScript transformation, are outlined next:

® The NesC component model enables the generation of a list of provided and
required interfaces (provides and uses clauses, respectively) included at the
beginning of the NesC file.

* The module implementation starts with a variable declaration section. One variable
is defined for each <<Store>> Activity defined in the PIM with a different
name, and also for each message the Component sends (receives) 10 (from) other
components via wireless.

* For each provided Interface in the NesC model, all its Commands must be
implemented. Conversely, for each required Interface, all its Events must be
handled. The sequence of NesC primitives associated to these Commands and
Events is extracted from the Activities defined in the PIM.

An excerpt of the implemented MOFScript transformation can be found in
Appendix A, and a piece of the generated NesC code in Appendix B, both of them
included at the end of the paper. The generated solution, obtained from the
corresponding PIM intermediate model (see Fig. 4) and the NesC component model
(see Fig. 5), has been successfully compiled and deployed on the MITRA WSN
system, demonstrating satisfactory results.

7 Related Work

Different approaches to WSN application development can be found in the literature.
Some of them offer a set of predefined components, built on top of a certain operative
system, and allow designers to build new ones by configuring and combining them.
This is the case of TinyDB [14], which defines a database of TinyOS [4] components
that can be distributed and run in different nodes of a WSN. The information obtained
by each node can be accessed from an external PC by means of SQL-like queries.
Also in this line, TinyCubus [15] offers a framework which enables to dynamically
select and interconnect predefined TinyOS components. These two proposals, as most
others, are totally focused on the implementation of platform-specific WSN
applications. These approaches require a deep knowledge of the target platform and,
in most cases, the resulting designs are too platform-dependent to be reused.

Trying to address this problem, and in the line of this paper, some proposals have
focused their attention on the model-driven approach. GRATIS II [16] offers a
graphical modelling tool for designing component-based NesC applications. The
underlying NesC meta-model has been defined using the Generic Modelling
Environment (GME) [17], a toolkit for defining domain-specific modelling and
programming languages. GRATIS II offers a solution similar to the one offered by the
final step of our proposal, that is, the one including our NesC meta-model and NesC
model-to-code transformation. Currently we do not offer a graphical modelling tool
for depicting NesC component models since these are automatically generated from
the higher level meta-model, and not depicted by the user like in GRATIS . Our
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NesC meta-model is also simpler than the one offered by GRATIS II, which covers a
wider range of TinyQS-based target platforms and configuration modes. However,
our proposal is not TinyOS (or any other platform) dependent, enabling higher level
WSN application designs. Currently we support TinyOS-NesC code generation like
GRATIS I, aithough the proposal could be easily extended to different target
platforms, as stated in the introduction (see Fig. 1).

The Abstract Task Graph (ATaG) [18] offers a DSL for graphically describing
WSN applications in terms of the tasks they must perform and the data their nodes
must collect. The data-driven diagrams depicted using this DSL provide a platform-
independent model of the system under development (nodes, tasks, data types, elc. are
abstract to keep this platform independence). These models are similar to the activity
diagrams included in our intermediate component-based architectural models.
However, ATaG is architecture-independent and thus, no design information can be
included within its models. Furthermore, the ATaG code generation requires the user
to provide the code of each abstract task included in the mode! for the current target
platform, offering only a semi-automated solution.

Finally, CADENA [19] offers a very complete and sophisticated environment for
general purpose application development. CADENA provides designers with an end-
to-end model-driven environment which Supports the entire application development
life cycle. This tool offers, among others, a NesC plug-in which provides a graphical
modelling tool (similar to the one offered by GRATIS II), and automatic NesC code
generation facilities. WSN applications can also be modeiied at a higher level of
abstraction using CADENA general-purpose artefacts “adapted” to the WSN domain.
However, adapting a general-purpose language or tool to a specific domain can be a
hard work and the result could be never as good (in terms of precision, efficiency,
etc.) as the one obtained by defining a DSL.

8 Conclusions and Future Research

The work presented in this paper offers a new model-driven approach to WSN
application development. The proposal presents a high level of abstraction domain-
specific language, which allows designers to model their systems in a platform-
independent way, obtaining more flexible and reusable designs. Two additional
abstraction levels have been defined which deal with the system architecture from a
platform-independent and platform-specific point of view. Automatic model
transformations from the initial domain-specific models to the final application code
have been implemented using the Model-Driven Engineering facilities provided by
the free open-source Eclipse platform. Both the proposed approach and the tools
implemented to support it have been tested on a real WSN system related Lo precision
agriculture with successful results. The re-engineered application is fully functional
and, although it is not code-optimized, the effort and the time-to-market to produce
the new solution have been sensibly reduced. Actually, different solutions have been
effortlessly generated thanks to the implemented infrastructure, allowing us to test
Rew sensors and different network topologies and communication protocols,
Currently, we are working on improving the NesC meta-model and the ATL
transformation from PIMs to NesC models in order to keep all the behavioural
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information during the whole development process. This will allow us to simplify the
final code generation step using only NesC models as input. We are also working on
the integration of requirements from the very early stages of the proposed MDE
approach. Actually, we have developed a Requirements Engineering Meta-Model
(REMM) and a graphical requirements modelling tool aimed at defining reusable
requirements catalogues [20]. Currently we are building a catalogue of functional and
non-functional WSN requirements together with a tracing tool. We are also very
interested in proving the benefits of our intermediate meta-model for different target
platforms and domain applications. Thus, we plan to define new DSLs for other
domains in which our research team has also some experience, such as computer
vision and robotics. The wide variety of platforms currently available for this kind of
systems, and the fact that some applications incorporate concepts from both domains
(i.e. industrial inspection), make this future research both challenging and promising.
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Appendix A: Excerpt of the MOFScript M2T Transformation

This excerpt of the implemented MOFScript transformation is the module in charge
of generating the code for all the NesC interfaces defined in NesC models.

texttransformation NesCM2T (in mm: “NesC")} {

module: :createInterfaces () {

3

self.objectsOfType (mm. Interface)->forBach(i:mm. Interiace; {
file £ ( i.name + ".nc" )
f.println ( "interface * + i.name + "{" )
var count:integer
// Adds the interface command prototypes
i.prototypes->forEach( p:mm.CommandPrototype } {
if | P.isAsynchronous==true ) £.print ("async command *)
else f.print ( "command * )
£.print { P.returnType + " " + p.name + " (" )
count = p.arguments.size()
p.arguments->forEach ( v:mm.Variable) {
£.printc ( vV.type + * " + v.name )
if ( count > 1 ) {f.print (", =) count=count-1}
} £.println ( *);»"
} / Evemt prototypes are similarly added ...

Appendix B: Excerpt of the Generated NesC Code

This excerpt of the gencrated NesC code corresponds to the MitraM module defined
in the NesC component model (see Fig. 5).

includes MitraMsg;
module MitraM (

uses {
interface StdControl as CommControl;
interface StdControl as TimerControl;
interface StdControl as ADCControl;
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interface SendMsg as Send;
interface ADC;
interface Timer as Timerl;
interface Timer as Timer2:
interface Timer as Timer3;
interface Timer as Timerd; }

provides {
interface StdControl; }

}
implementation {

T0S_Msg msg_global:;

uint8_t counter=1;

uintlé_t readingi, reading?2;

command result_t StdControl.start () {
call ADCControl.start();
call TimerControl.start(});
call CommControl.start();
call Timerd.start (TIMER_REPEAT, 1024*60*60*%3);
initialize_cycle():
return SUCCESS;: )

event result_t Timerl.firved(} (
SENSOR_SEND_PULSE (}:
call Timer2.start(TIMER_ONE_SHOT, 1024*60*15);
return SUCCESS;)}

event result_t Timerd.fired()(
# Builds a message containing sap measures and sends it to the sink node via wireless.
struct MitraMsg *message =

{struct MitraMsg *)msg_global.data;
message->RAM1 = readingi;
message->RAM2 = reading2;
call Send.send(TOS_BCAST ADDR,
sizeof{struct MitraMsg) ,&msg_global));

return SUCCESS;)
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