UNIVERSIDAD POLITÉCNICA DE CARTAGENA

Escuela Técnica Superior de Ingeniería Industrial

Distintas aplicaciones de bombas de calor acopladas al terreno en la zona geotérmica de la comarca de Cartagena

TRABAJO FIN DE MÁSTER

MÁSTER EN ENERGÍAS RENOVABLES

Autor: Antonio Mínguez Parra

Director: Dr. Salvador Ángel Gómez Lopera

Cartagena, Septiembre 2015
INDICE:

1. OBJETIVOS DEL PROYECTO .. 7

2. CONCEPTOS SOBRE GEOTERMIA .. 9
 2.1. CONCEPTOS Y DEFINICIÓN ... 9
 2.2. TIPOS Y APLICACIONES DE LA ENERGÍA GEOTÉRMICA 11
 2.3. GEOTERMIA DE MUY BAJA ENALPÍA .. 15
 2.3.1. Generalidades y conceptos importantes .. 15
 2.3.2. Tipos de aprovechamiento geotérmicos de muy baja entalpía 17
 2.4. ENERGÍA GEOTÉRMICA EN ESPAÑA .. 21

3. BOMBAS DE CALOR ... 24
 3.1. BOMBAS DE CALOR CONVENCIONALES ... 24
 3.2. BOMBAS DE CALOR GEOTÉRMICAS .. 29
 3.3. TIPOS DE BOMBA DE CALOR GEOTÉRMICO 32
 3.3.1. Según el tipo de fuente o sumidero de calor y el fluido de distribución local 32
 3.3.2. Según la distribución del sistema colector del terreno 33
 3.3.3. Según los pasos de intercambio de calor .. 35
 3.3.4. Según la energía de compresión .. 36

4. MARCO LEGAL Y NORMATIVA APLICABLE .. 39

5. ESTUDIO DEL CASO ... 43
 5.1. PROPIEDADES DE CONSTRUCCIÓN .. 43
5.2. EMPLAZAMIENTO DE LA VIVIENDA...46

6. MODELO DE CAPACIDAD DE RESISTENCIA TENIENDO EN CUENTA LA TRANSFERENCIA DE CALOR EN EL SUELO POR CONDUCCIÓN DE CALOR.......49

 6.1. HERRAMIENTAS DE CÁLCULO...49

 6.2. MODELO DE CAPACIDAD DE RESISTENCIA ..50

7. CONCLUSIONES ..68

Bibliografía ...70
Figura 1 Estructura interna de la Tierra [13]. ... 9
Figura 2 Diferentes tipos de energía geotérmica [13]. .. 13
Figura 3 Emisiones de CO$_2$ con diferentes fuentes de energía en una vivienda-tipo de 150 m2 [11]. ... 14
Figura 4 Estabilización de temperatura con la profundidad en el subsuelo [11]. 16
Figura 5 Sistema geotérmico de tipo abierto [16]. ... 18
Figura 6 Sistemas geotérmicos cerrado de tipo horizontal [14]. 19
Figura 7 Sistema geotérmico cerrado de tipo vertical [14]. .. 20
Figura 8 Esquema doble de funcionamiento del grupo evaporador-condensador. Ciclos de verano e invierno [12]. ... 25
Figura 9 Funcionamiento de la bomba de calor reversible. Ciclos de verano e invierno [12]. ... 26
Figura 10 Sección de una válvula de cuatro vías y situación de verano e invierno de la misma [12].. 27
Figura 11 Esquema de funcionamiento de una bomba de calor de absorción aire-aire [12]. ... 28
Figura 12 Funcionamiento esquemático de una bomba de calor [1]. 29
Figura 13 Esquema de funcionamiento de la bomba de calor geotérmica [1]. 30
Figura 14 Ciclo frigorífico de la bomba de calor [3]. .. 31
Figura 15 Bomba de calor con fuente fría el agua (pozo) o con fuente fría el suelo [3]. 32
Figura 16 Configuración habitual de la bomba de calor [3] .. 35
Figura 17 Expansión directa de la bomba de calor [3] .. 36
Figura 18 Esquema de la vivienda [20]. ... 44
Figura 19 Propiedades de construcción [20].

Figura 20 Emplazamiento de la vivienda [21].

Figura 21 Situación de la vivienda [21].

Figura 22 Esquema Modelo de Capacidad de Resistencia [20].

Figura 23 Mapa GIS Calor de Extracción de la Región de Murcia [22].

Figura 24 Temperatura del suelo no perturbado vertical, realizado dentro de la tubería BHE y la ecuación lineal de datos de registro.

Figura 25 Esquema de la bomba de calor geotérmica Caso 1 [20].

Figura 26 Esquema de la bomba de calor geotérmica Caso 2 [20].

Figura 27 Esquema de la bomba de calor geotérmica Caso 3 [20].

Figura 28 Distribución de la temperatura con la profundidad en el Caso 1 primer año.

Figura 29 Distribución de la temperatura con la profundidad en el Caso 1 sexto año.

Figura 30 Distribución de la temperatura con la profundidad en el Caso 1 vigésimo año.

Figura 31 Distribución de la temperatura con la profundidad Caso 2 primer año.

Figura 32 Distribución de la temperatura con la profundidad Caso 2 sexto año.

Figura 33 Distribución de la temperatura con la profundidad Caso 2 vigésimo año.

Figura 34 Distribución de la temperatura con la profundidad Caso 3 primer año.

Figura 35 Distribución de la temperatura con la profundidad Caso 3 sexto año.

Figura 36 Distribución de la temperatura con la profundidad Caso 3 vigésimo año.
1. OBJETIVOS DEL PROYECTO
1. OBJETIVOS DEL PROYECTO

Los objetivos específicos del presente Trabajo de Fin de Máster es realizar un estudio de una instalación geotérmica para la climatización de una vivienda. Dicho estudio constará de la comparación entre la instalación con uno, dos y tres pozos de captación de calor del suelo, que utilizaremos para la climatización de dicha vivienda.

La calefacción, refrigeración y suministro de ACS representan el 68% del consumo energético de una vivienda, que corresponde a un total del 30% del consumo energético del país.

La energía geotérmica de Muy Baja Entalpía ha ganado atención como fuente de energía renovable para climatización de viviendas y representa una creciente oportunidad de inversión.

Aunque la acumulación del calor en el subsuelo ocurre de forma natural, la consideración crucial es cuánto de ese potencial ‘puede ser explotado económicamente y de forma práctica para calefacción y refrigeración.

El sistema geotérmico consistirá en un campo de perforaciones siguiendo la directriz alemana VDI 4640 y las preceptivas leyes españolas.

En el presente proyecto se expondrá primeramente y de manera somera en que consiste la energía geotérmica (en especial en su variante de muy baja entalpía), para a continuación, explicar de manera más detallada las fases del presente estudio de aprovechamiento geotérmico aplicado a la climatización.

Por último y una vez realizado el estudio de los pozos de captación, y obtenidos los resultados procederemos a seleccionar el método que mejor se adapte, y realizaremos nuestras propias conclusiones.
2. CONCEPTOS SOBRE GEOTERMIA
2. CONCEPTOS SOBRE GEOTERMIA

2.1. CONCEPTOS Y DEFINICIÓN

Al realizar el estudio etimológico del vocablo geotermia se concluye que se trata de un vocablo de origen griego compuesto por dos conceptos. El primero de ellos deriva del término “geos” que viene a significar “tierra” y el segundo es “thermos” cuyo significado es “calor”, de modo que a través de este estudio filológico del término se llega a la conclusión de que geotermia significa: “El calor de la tierra”. Se emplea indistintamente para designar tanto a la ciencia que estudia los fenómenos térmicos internos del planeta como al conjunto de procesos industriales que intentan explotar ese calor para producir energía eléctrica y/o calor útil al ser humano.

![Estructura interna de la Tierra](image)

Figura 1 Estructura interna de la Tierra [13].

Desde el centro hasta la superficie, el globo terrestre está constituido por tres capas sucesivas de temperaturas decreciente:

- El núcleo, sólido en su parte interna y líquida en su parte exterior. Su temperatura puede alcanzar los 4.200 ºC.
- El manto que lo envuelve, con temperaturas que van desde los 3.000 ºC a 1.000 ºC. De textura plástica hacia el centro, se vuelve sólido hacia la superficie.
La corteza, que corresponde a la envoltura superficial. Su temperatura varía desde los 1.000 ºC en su contacto con el manto, hasta los 15-20 ºC de la superficie terrestre. Su espesor varía desde 5 a 20 km en las profundidades oceánicas, y desde 30 a 70 km bajo los continentes. Con la parte sólida del manto constituye la litosfera, fragmentada en varias placas litosféricas que se desplazan lentamente, unas con relación a otras, pudiendo dar lugar a importantes anomalías térmicas en sus bordes.

El resultado de esta estructura interna es que el 99% de la masa de la Tierra está sometida a una temperatura superior a los 1.000 ºC, y únicamente un 0,1% de la misma soporta temperaturas inferiores a los 100 ºC.

Efectivamente esta es la definición aceptada comúnmente para el término estudiado y a continuación se explicará de manera un poco más científica el sustento del mismo. Los orígenes de este calor interno terrestre pueden ser de muy distinta índole, siendo los principales y más influyentes los mostrados a continuación:

- Desintegración de isótopos radiactivos de larga vida, presentes tanto en la corteza como en el manto. Los más significativos son 235U, 238U, 40K y 262K.
- Movimientos diferenciales entre las capas principales que constituyen el globo terráqueo, siendo las de mayor importancia las producidas entre el manto y el núcleo.
- Calor inicial liberado en la formación del planeta (cifrada en unos 4600 millones de años) y que aún se está liberando y llegando a la superficie.
- Cristalización de la parte externa (y líquida) del núcleo, proceso en el cual se libera continuamente calor, especialmente en la zona de transmisión al núcleo interno (y sólido).

Mediante numerosos estudios científicos realizados desde principios de siglo se ha puesto de manifiesto un importantísimo flujo térmico desde el interior de la Tierra hacia su exterior. En estos trabajos de investigación se ha cuantificado que la energía que llega a la superficie de la Tierra por radiación, convección y conducción es de un total de 42×10^{12} W, de los cuales 8×10^{12} W son originarios de la corteza, 32.3×10^{12} W del manto y 1.7×10^{12} W son provenientes del núcleo, divisiones de la Tierra que respectivamente significan un 2%, 82% y 16% del total del volumen del planeta.
Una vez fijado el concepto de geotermia, es posible pasar al siguiente concepto, de aplicación más práctica e ingenieril que es la Energía Geotérmica. La definición generalmente aceptada para este término es facilitado en la norma alemana relativa a geotermia (VDI 4640), a saber: “La Energía Geotérmica es la energía almacenada en forma de calor por debajo de la superficie sólida de la Tierra”.

En esta definición de energía geotérmica se dejan fuera de la misma el calor presente en masas de agua, ya sean marinas, continentales o superficiales; haciendo por tanto referencia dicha definición al calor almacenado en rocas, suelos y aguas subterráneas, independientemente de su procedencia o temperatura.

2.2. TIPOS Y APLICACIONES DE LA ENERGÍA GEOTÉRMICA

Las aplicaciones que se pueden dar a un fluido geotermal dependen de su contenido en calor, o lo que es lo mismo, de su entalpía.

Entalpía es la cantidad de energía térmica que un fluido, o un objeto, pueden intercambiar con su entorno. Se expresa en Kj/Kg o en Kcal/Kg.

Como no existen apartados que determinen directamente la entalpía de un fluido en el subsuelo, pero sí existen sondas térmicas que miden la temperatura, y como la entalpía y la temperatura pueden considerarse, más o menos, proporcionales, la práctica habitual ha generalizado el empleo de las temperaturas de los fluidos geotermales en lugar de sus contenidos en calor, pues, al fin y al cabo, son las temperaturas las que determinan su futura aplicación industrial.

En la Tabla 1 se muestran las aplicaciones más importantes de la energía geotérmica con los rangos de temperatura de utilización, y en su parte inferior se establece una agrupación de la energía geotérmica, entre diferentes intervalos de temperatura, en cuatro grandes tipos: muy baja, baja, media y alta temperatura.

Diferentes autores establecen límites de temperatura distintos para estos intervalos. La división que aparece en la tabla es la que establece el “Código Minero” en Francia, y se puede aplicar tanto a la energía geotérmica, como a las explotaciones, los yacimientos y los recursos geotérmicos.
Así pues, se establecen las cuatro categorías siguientes para la energía geotérmica:

- **Alta temperatura:** más de 150ºC.

Una temperatura superior a 150ºC permite transformar directamente el vapor de agua en energía eléctrica.

- **Media temperatura:** entre 90 y 150ºC.

Permite producir energía eléctrica utilizando un fluido de intercambio, que es el que alimenta las centrales.

- **Baja temperatura:** entre 30 y 90ºC.

Su contenido en calor es insuficiente para producir energía eléctrica, pero es adecuado para calefacción de edificios y en determinados procesos industriales y agrícolas.
• **Muy baja temperatura: menos de 30ºC.**

Puede ser utilizada para calefacción y climatización, necesitando emplear bombas de calor.

Ninguna instalación que emplee energía geotérmica precisa quemas combustibles, por consiguiente, no contribuye a la emisión de gases de efecto invernadero.

Las instalaciones que emplean bombas de calor geotérmicas para calefacción, refrigeración y producción de agua caliente sanitaria sólo consumen energía eléctrica para el funcionamiento de los compresores eléctricos, de las bombas de circulación. Las emisiones equivalentes de gases son únicamente las correspondientes a la producción en origen de esa energía, muy inferiores a las de los sistemas tradicionales, pues el consumo de electricidad se reduce notablemente. En la Figura 3 se pueden apreciar las emisiones de CO₂ que produce la calefacción de una vivienda-tipo de 150 m² con diferentes tipos de energía.
Figura 3 Emisiones de CO$_2$ con diferentes fuentes de energía en una vivienda-tipo de 150 m2 [11].

Las bombas de calor geotérmicas utilizan sistemas de refrigeración sellados en fábrica, con menos cantidad de refrigerante que los sistemas de aire acondicionado, que rara vez o nunca son recargados, por lo que contribuyen a la destrucción de la capa de ozono.

El resto de aplicaciones directas del calor y en la producción de energía eléctrica, las emisiones pueden llegar a ser casi nulas, reinyectando las aguas geotérmicas a sus acuíferos.

Las instalaciones para redes de calefacción local y las que trabajan con bombas de calor no producen impacto visual, son invisibles. Sólo una tapadera metálica o una pequeña estructura superficial señalan la ubicación de los sondeos en el subsuelo. Las instalaciones para calefacción se encuentran en sótanos de los edificios o viviendas a los que abastecen.
2.3. GEOTERMIA DE MUY BAJA ENALPÍA

Tal y como se ha explicado en la clasificación de la propuesta para la energía geotérmica, el presente proyecto se encuadra dentro del grupo de los denominados aprovechamientos geotérmicos de muy baja entalpía, pues se trata de un proyecto de climatización mediante el empleo de un sistema geotérmico basado en la utilización de una bomba de calor con uno, dos o tres pozos.

2.3.1. Generalidades y conceptos importantes

Los recursos geotérmicos de muy baja entalpía se encuentran disponibles en la totalidad de la corteza terrestre [10]. Por lo tanto las aplicaciones geotérmicas derivadas de su aprovechamiento, son igualmente realizables y aplicables en la práctica totalidad del suelo continental pues en todo él es posible captar el calor almacenado en las capas superficiales del subsuelo o a relativamente pocos metros de profundidad, así como en acuíferos poco profundos para su posterior utilización en aplicaciones de climatización.

No obstante esta potencialidad en las posibilidades de realización de proyectos geotérmicos de baja entalpía no es tal, pues aun siendo las variables teóricas favorables en cualquier caso, los parámetros técnicos y económicos son los que finalmente decidirán sobre el interés de viabilidad de cualquier proyecto geotérmico, como lo son en todo proyecto de cualquier clase.

Los sistemas de climatización geotérmicos de muy baja entalpía o temperatura tienen su fundamento en la estabilidad térmica del terreno, ya que las inclemencias meteorológicas sólo son perceptibles en los primeros metros del subsuelo, siendo constante la temperatura del mismo a profundidades alrededor de los 15 metros. A partir de esta estabilización térmica a los 15 metros, la temperatura del subsuelo como es evidente permanece prácticamente constante, estando únicamente afectada por el gradiente geotérmico que la eleva a razón de unos 3°C cada 100 metros de profundidad.
La temperatura a la cual se estabiliza el subsuelo no es única e invariable para todos los emplazamientos del planeta, produciéndose importantes variaciones de su valor en función de la localización geográfica de la medición realizada. El valor de esta temperatura de estabilización suele ser ligeramente superior a la media anual en superficie de la zona en cuestión y permite realizar un intercambio térmico con el terreno que eleva los rendimientos de las instalaciones de climatización al disminuir los saltos térmicos en las bombas de calor.

Es preciso recalcar la importancia de un correcto dimensionamiento en el proyecto geotérmico pues el intercambio de calor con el subsuelo ha de ser cíclico en el tiempo. Es decir se ha de producir un equilibrio entre el calor captado del subsuelo en la época invernal (necesidades de calefacción por parte del sistema) y el calor cedido al subsuelo en las épocas estivales (necesidades de refrigeración en el sistema). Si este equilibrio no se produce de esta forma mediante disipación y aportación natural del calor por corrientes de agua subterráneas se corre el riesgo de saturar el terreno, es decir, de colapsar térmicamente el subsuelo de modo que no será posible realizar intercambio térmico alguno con el mismo, lo cual significa de inmediato el fracaso rotundo de la instalación geotérmica.
2.3.2. Tipos de aprovechamiento geotérmicos de muy baja entalpía

Dentro de las posibilidades de aprovechamientos geotérmicos de muy baja entalpía hay dos grupos fundamentales, los denominados sistemas abiertos y los sistemas cerrados, siendo preciso distinguir dentro de estos últimos los sistemas horizontales y los verticales.

2.3.2.1. Sistema abierto

Se basa en la explotación de la capa freática existente mediante la realización de dos sondeos o pozos. Mediante el primero de los sondeos (denominado pozo de producción) se extrae agua del nivel freático y mediante el empleo de una bomba sumergida se conduce hasta la bomba de calor geotérmica. Una vez extraída la energía de esta agua captada, se pasa al segundo de los sondeos (o pozo de inyección) donde se devuelven al mismo acuífero en un punto situado aguas abajo del primero. También es posible realizar este tipo de aprovechamiento con un único pozo, el de producción, siendo el agua utilizada vertida directamente a un cauce fluvial o masa de agua.

Los pozos realizados para este tipo de aprovechamiento geotérmico requieren de cierta manutención y, evidentemente, únicamente pueden ser variables en lugares que satisfagan las condiciones hidrogeológicas requeridas. Fundamentalmente estos requisitos son dos:

- Suficiente permeabilidad para que sea posible obtener la cantidad de agua necesaria a poca profundidad y con caudal suficiente.
- Características químicas del agua adecuadas, especialmente en lo que a su contenido en metal se refiere para evitar problemas de obstrucción y corrosión.

Los sistemas abiertos de aprovechamiento geotérmico conllevan una importante ventaja económica frente al resto y resultan especialmente interesantes para la aplicación en grandes instalaciones, si bien tienen la cortapisa de necesitar unas características hidrogeológicas ciertamente exigentes.

En esquema general de este tipo de instalaciones geotérmicas se muestran en la Figura 5, donde se observan claramente los pozos de extracción e inyección.
2.3.2.2. Sistema cerrado con captación horizontal

Consiste en la disposición de un circuito hidráulico a pequeña profundidad en el que las tuberías van realizando bucles. Este tipo de sistema no requiere de la realización de perforaciones, únicamente precisa de un movimiento de tierras para conseguir una superficie de entre 1 y 2 m de profundidad en el que se dispondrá el circuito de sondas geotérmicas por el que circulará el fluido caloportador (agua con material anticongelante). Esta superficie ha de ser de aproximadamente 1,5 o 2 veces la superficie de la vivienda a calefactar y posteriormente no podrá ser utilizada para la plantación de grandes árboles ni se podrá impermeabilizar dicha superficie pues se pondría en serio riesgo la vida de la instalación.

Al estar los colectores ubicados prácticamente en superficie se ven altamente influenciadas por las condiciones climáticas y es el propio terreno el que actúa realizando el papel de acumulador de calor, pasando la energía geotérmica en sí a un papel en cierta manera secundario puesto que es la radiación solar la que realiza la recarga térmica principalmente.

Son las instalaciones más sencillas de realizar pues no precisan de maquinaria específica y las labores que requieren para su construcción son sencillas. Fundamentalmente las tuberías se disponen en el terreno formando bucles o "loops", y se conectan bien en paralelo o bien en serie (como en la instalación representada en la Figura 6). Un valor medio obtenible en este tipo de instalaciones es de 20-30 W/m² de terreno ocupado por el bucle realizado.
Existe una variante denominada “slinky” en la que los tubos describen una serie de espirales y presentan mejores rendimientos que las instalaciones de bucles horizontales tradicionales, si bien las servidumbres de terreno y altos requerimientos de espacio permanecen inalterados. Como es lógico existen una serie de especificaciones técnicas que deben cumplir los tubos empleados como colectores geotérmicos horizontales, en cuanto a materiales de fabricación y requisitos a cumplir en servicio.

2.3.2.3. Sistemas cerrados con captación vertical

Consiste en la realización de intercambiadores de calor en el interior de sondeos con profundidades comprendidas entre los 30 metros hasta más de 100 metros, en concreto se estima como límite de la geotermia de muy baja entalpía los 400 metros. Estos sondeos han de ser específicos de geotermia y se debe tender a minimizar el diámetro de perforación, no superando en ningún caso los 160 mm, si bien la tendencia actual del sector es a disminuir esta cota inferior hasta los 152 mm de diámetro. Esta acotación de diámetro obedece al efecto negativo que tiene el aumento de esta dimensión en el intercambio térmico, de modo que el diámetro de perforación deberá ser lo menor posible.

En la Figura 7 se muestra un ejemplo de la instalación geotérmica de captación vertical en la que se han realizado una perforación y su conducción hasta la sala técnica.
En el interior de la perforación se introducen sondas geotérmicas que pueden ser del tipo simple-U (es decir una tubería de ida y otra de retorno) o bien de tipo doble-U (con dos tuberías de ida y dos de retorno). En ambos casos circulará por su interior agua o bien agua mezclada con anticongelante como fluido caloportador y es preciso que se cumplan una serie de requisitos técnicos en los materiales para asegurar la calidad de la instalación, tanto en las sondas como en el fluido caloportador que circulará por ellas.

Asimismo hay que proceder al relleno de la perforación (excepto en casos muy concretos) con un material de tipo cemento bentonítico, si bien es especialmente recomendable emplear un cemento específico para aplicaciones geotérmicas de alta conductividad térmica. Es posible, y común, realizar varias perforaciones geotérmicas, teniendo así un campo de sondas geotérmicas, que mediante conexión y agrupación en colectores y/o distribuidores llegarán hasta la bomba de calor. Los valores de extracción obtenibles en estos sistemas varían de los 20 a los 70 W/m y cabe destacar el ilimitado uso futuro que se puede dar al terreno objeto de la captación geotérmica.
2.4. ENERGÍA GEOTÉRMICA EN ESPAÑA

En España no se explotan recursos geotérmicos de alta ni media temperatura, con los que se podría llegar a producir energía eléctrica. En la Tabla 2 se puede apreciar que el recurso geotérmico de mayor temperatura, 78ºC, se aprovecha en Montbrió del Camp, en Tarragona, para calefacción de invernaderos.

El motivo de tan escasa utilización de los recursos geotérmicos de más de 30ºC en España hay que atribuirlo a causas geológicas y económicas, pues investigación de recursos se ha venido realizando en el país desde 1974, por parte del Instituto Geológico y Minero de España (IGME), y de otras empresas del sector energético que han investigado la posibilidad de explotar recursos de alta temperatura, aunque fuese en yacimientos de roca seca caliente, para producción de energía eléctrica.

<table>
<thead>
<tr>
<th>LOCALIDAD</th>
<th>TIPO</th>
<th>TEMPERATURA (ºC)</th>
<th>CAPACIDAD (MW)</th>
<th>UTILIZACION ANUAL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Entrada</td>
<td>Salida</td>
<td>Energía (TJ/año)</td>
</tr>
<tr>
<td>Lérida</td>
<td>E</td>
<td>58</td>
<td>25</td>
<td>1,24</td>
</tr>
<tr>
<td>Anmedillo</td>
<td>E+B</td>
<td>50</td>
<td>30</td>
<td>0,92</td>
</tr>
<tr>
<td>Filero</td>
<td>E+B</td>
<td>52</td>
<td>30</td>
<td>0,73</td>
</tr>
<tr>
<td>Lugo</td>
<td>E+B</td>
<td>44</td>
<td>25</td>
<td>0,32</td>
</tr>
<tr>
<td>Orense</td>
<td>E</td>
<td>75</td>
<td>30</td>
<td>0,94</td>
</tr>
<tr>
<td>Archena</td>
<td>E+B</td>
<td>48</td>
<td>25</td>
<td>0,96</td>
</tr>
<tr>
<td>Sierra Almijila</td>
<td>E+B</td>
<td>52</td>
<td>30</td>
<td>0,74</td>
</tr>
<tr>
<td>Montbrió</td>
<td>E+B</td>
<td>42</td>
<td>18</td>
<td>1,50</td>
</tr>
<tr>
<td>Montbrió</td>
<td>I</td>
<td>78</td>
<td>25</td>
<td>1,33</td>
</tr>
<tr>
<td>Cartagena</td>
<td>I</td>
<td>38</td>
<td>18</td>
<td>12,55</td>
</tr>
<tr>
<td>Zuñar</td>
<td>I</td>
<td>45</td>
<td>20</td>
<td>1,05</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td></td>
<td>22,28</td>
</tr>
</tbody>
</table>

Tabla 2 Utilización de la energía geotérmica para calor directo en España [17].
Notas:

E = Calefacción de espacios particulares.

B = Baño y natación.

I = Calefacción de invernaderos y suelos.

Factor de capacidad = Utilización anual (TJ/año) / Capacidad (MWt) x 0.03171

La geología no ha dotado al país de condiciones favorables para ocupar un lugar destacado entre los países geotérmicos de la Unión Europea.
3. BOMBAS DE CALOR
3. BOMBAS DE CALOR

3.1. BOMBAS DE CALOR CONVENCIONALES

Las leyes que sobre la forma de comportarse de los gases enunciaron Boyle, Moriotte, Charles y Gay-Lussac, no son más que el reflejo de un principio ya conocido desde muy antiguo por los físicos y que puede enunciarse así: “Un gas se calienta cuando se comprome y se enfriá cuando se expande”. Este sencillo enunciado, casi evidente, es el origen de una de las máquinas con más difusión en la sociedad no sólo industrial, sino entre la mayor parte de la población.

En efecto, los clásicos frigoríficos, tanto domésticos como industriales, utilizan este principio. Los denominados comúnmente “refrigerador” o “nevera” son armarios o cajones aislados térmicamente para que el calor no penetre dentro de dicho armario. Cuando en él se introduce algún alimento, éste lleva consigo unas calorías desde el exterior.

Dentro del refrigerador se dispone de un panel de captación, que contiene en su interior un circuito hidráulico, por el que circula un líquido refrigerante o un gas licuado; este líquido tiende a evaporarse captando o “robando” rápidamente el calor introducido junto con el alimento. Una vez captado el calor en el líquido o gas, éste pasa a un compresor que lo comprime, consiguiendo así que aumente de temperatura. Aumentada su temperatura en la compresión, se traspasa por circulación al panel o circuito exterior (parte trasera de los refrigeradores). El calor que transporta el líquido invadirá la ausencia de éste en el ambiente exterior, disipándolo fuera del refrigerador. Este mecanismo es lo que se denomina una bomba de calor, y con ella se ha conseguido extraer el calor del interior del frigorífico y se ha disipado en el exterior. Del mismo modo, un acondicionador de aire extrae el calor desde el interior de un habitáculo, disipándolo en el exterior. Esa ausencia de calor es el concepto de refrigeración.

Si se consigue aprovechar el frío en el evaporador (válvula de expansión) para refrigerar un ambiente en verano, y el calor en el condensador (compresor) para calentar el mismo ambiente en invierno, se habrá conseguido alcanzar el concepto de climatización. La pregunta inmediata sería si para conseguir el doble efecto mencionado, se requerirían dos máquinas de funcionamiento inverso, lo cual presentaría inconvenientes de inversión
monetaria, de mantenimiento y de espacio físico, un problema fundamental en la capacidad de las viviendas actuales. Esto respondería a los esquemas que pueden verse en la Figura 8.

Figura 8 Esquema doble de funcionamiento del grupo evaporador-condensador. Ciclos de verano e invierno [12].

En dicha figura se han representado los dos ciclos precisos en la máquina descrita para conseguir los resultados de climatización previstos y que responderían al cuadro de funcionamiento siguiente:

<table>
<thead>
<tr>
<th></th>
<th>VERANO</th>
<th>INVIERO</th>
</tr>
</thead>
<tbody>
<tr>
<td>UNIDAD INTERIOR</td>
<td>EVAPORADOR</td>
<td>CONDENSADOR</td>
</tr>
<tr>
<td>UNIDAD EXTERIOR</td>
<td>CONDENSADOR</td>
<td>EVAPORADOR</td>
</tr>
</tbody>
</table>

Este tipo de funcionamiento, además de los inconvenientes descritos, presenta unas desventajas importantes:

- Bajo rendimiento, cuando las temperaturas exteriores son bajas.
- Formación de escarcha en el evaporador, que requeriría una inversión del proceso para el “desescarchado”.
- Golpe de líquido en el compresor.

Existe una posibilidad de evitar acudir a una dualidad de máquinas, aunando el proceso en una sola, según los esquemas de funcionamiento que pueden observarse en la Figura 9.
Como puede apreciarse en dicha figura, para suplir la necesidad de dos máquinas independientes, se precisa simplemente una válvula de expansión de doble sentido y una válvula de cuatro vías a la salida del compresor, que aunaría las dos funciones en un ciclo único. Esta válvula será la que se encargue de invertir el flujo del refrigerante; se accionaría por la propia presión del líquido refrigerante y estaría pilotada eléctricamente. La tubería superior sería la de descarga, mientras su enfrentada es la de aspiración y las otras dos van a las unidades interior y exterior. La situación de funcionamiento de una válvula de este tipo será la que se muestra en la Figura 10 Sección de una válvula de cuatro vías y situación de verano e invierno de la misma [12].

Figura 9 Funcionamiento de la bomba de calor reversible. Ciclos de verano e invierno [12].
Con este sencillo sistema se consigue reducir a una sola máquina la dualidad de funciones de la bomba de calor, invirtiendo el sentido de circulación del refrigerante y alterando las funciones del grupo compresor-evaporador, que configuran el mecanismo de una bomba de calor convencional.

La bomba de calor hasta aquí descrita es a convencional, denominada aire-aire, pues en ella, tanto el foco frío (medio exterior de intercambio de calor), como el foco interior de intercambio de calor, (punto de demanda), están constituidos por aire, bien atmosférico en el primer caso, bien el interior a climatizar en el segundo. Son las bombas de calor más extendidas comercialmente y de las que el mercado dispone en una amplia gama de potencias y prestaciones.

Estas bombas de calor requieren, aparte del consumo eléctrico en bombas de circulación, un aporte exterior de energía calorífica, como se puede apreciar en la Figura 12, en la que el calor aportado al refrigerante del circuito secundario proviene de una fuente eléctrica, aunque puede ser aportada desde la combustión de carburantes convencionales fósiles. Este calentamiento produce, en última instancia, una conducción
de calor hacia el punto de demanda, donde una corriente de aire se encarga de disiparlo en el habitáculo a calentar.

Figura 11 Esquema de funcionamiento de una bomba de calor de absorción aire-aire [12].

Pero el destino final del calor absorbido por el refrigerante del circuito secundario, puede ser destinado a calentar agua de calefacción para ser disipada por radiación desde los clásicos radiadores de agua o aceite en los puntos de demanda, o por un suelo radiante. De todas formas, el foco frío seguiría siendo el aire atmosférico, con los inconvenientes que se han descrito.
3.2. BOMBAS DE CALOR GEOTÉRMICAS

En general una bomba de calor es una máquina que transfiere el calor desde un foco frío a otro caliente utilizando una cantidad de trabajo relativamente pequeña.[1] Por tanto, la ventaja que poseen las bombas de calor frente a otros sistemas, reside en su capacidad de aprovechar la energía existente en el ambiente (foco frío), tanto en el aire como en el agua o en la tierra, y que le permite calefactar las dependencias interiores (foco caliente) con una aportación relativamente pequeña de energía eléctrica.

![Diagrama de bomba de calor](image1)

Figura 12 Funcionamiento esquemático de una bomba de calor [1].

Cuando se realiza la transferencia de calor en sentido inverso, es decir, desde el recinto que requiere frío hacia el ambiente que se encuentra a temperatura superior, la bomba de calor trabaja en modo refrigeración.
La bomba de calor geotérmica extrae la energía térmica del suelo en invierno transfiriéndola al interior, mientras que en verano extrae el calor interior y lo devuelve al subsuelo.

Tanto la potencia calorífica o frigorífica de la bomba de calor como la eficiencia energética (COP, Coefficient of Performance, razón de la potencia calorífica o frigorífica suministrada por la bomba de calor y su consumo eléctrico) pueden variar según la temperatura de trabajo, independientemente de las eficiencias mecánicas y térmicas de los distintos componentes de la máquina.

En la Figura 14 vemos la base física de la relación temperatura-prestaciones para una bomba de calor trabajando en modo calor, que queda reflejado en un Ciclo de Carnot. En la gráfica de la izquierda se ve el aumento de entalpía del refrigerante en la etapa de compresión [1-2], que corresponde al trabajo del compresor. Si logramos aumentar la temperatura de evaporación, y por lo tanto la presión (gráfica de la derecha), el compresor tiene que trabajar menos para llegar a la misma presión (y por lo tanto a la misma temperatura) en el condensador y el gasto de electricidad disminuye. En refrigeración se puede ahorrar energía del mismo modo bajando la temperatura del condensador. El suelo, comparado con el aire, ofrece una fuente de calor a mayor temperatura en invierno, cuando esté conectado al evaporador; en verano, cuando intercambia calor con el condensador, forma un sumidero de calor a menor temperatura.
Figura 14 Ciclo frigorífico de la bomba de calor [3].

Cuando la bomba de calor opera en modo calefacción, una buena parte del calor que se utiliza en la aplicación es calor extraído indirectamente del sol que previamente ha sido almacenado en el subsuelo. La parte de calor que proviene del gradiente geotérmico del subsuelo, es decir, del interior de la tierra, es relativamente pequeña o incluso nula.

Por tanto, un aumento del COP de la bomba implica automáticamente que se está utilizando una mayor proporción de energía renovable térmica, según la tipología y profundidad del circuito. En este sentido, la capacidad de producción de calor de origen renovable de una bomba de calor es muy grande en comparación con otras tecnologías, aunque usualmente se requiera para posibilitar tal flujo, de la introducción de una cierta cantidad de energía ya sea eléctrica o térmica.

En refrigeración el énfasis debe ponerse en que el uso del suelo como sumidero de calor puede mejorar sustancialmente el COP en comparación con enfriadoras basadas en el aire como foco. Al no haber muchas alternativas tecnológicas (una vez se ha hecho lo recomendable, es decir, recortar en lo posible las cargas térmicas del edificio en cuestión), la bomba de calor geotérmica es una de las pocas opciones reales para producir un ahorro sustancial en climatización. Por otro lado, y al menos en parte, el calor aportado en el suelo durante el proceso aumenta la temperatura del mismo y contribuye a mejorar la eficiencia del proceso inverso, el de calefacción. Por tanto, una bomba de calor con intercambiador de calor enterrado en modo frío supone una opción real de mejora energética y ahorro y produce almacenamiento de calor de origen renovable.
3.3. TIPOS DE BOMBA DE CALOR GEOTÉRMICO

En este apartado se va a dar una visión resumida de la clasificación de las bombas de calor geotérmicas atendiendo a diferentes criterios.

3.3.1. Según el tipo de fuente o sumidero de calor y el fluido de distribución local

La denominación habitual de las bombas de calor se debe a este criterio, de modo que, en primer lugar, se indica el tipo de fuente o sumidero de calor exterior (foco frío) y, en segundo lugar, la naturaleza del fluido con la que se va a distribuir el calor o la refrigeración en el interior del local (foco caliente).

El tipo de fuente o sumidero externo puede ser, Figura 15:

- **Agua**: si existe disponibilidad de acceder a una fuente de agua natural cercana tal como la de un pozo, lago, río, etc. Tratándose de bombas de calor geotérmicas, este caso se daría cuando los colectores en el subsuelo estuvieran en contacto con aguas subterráneas.
- **Suelo**: colectores situados de forma subterránea en sus diferentes tipos, como se verá a continuación. El calor de la Tierra es extraído por medio de colectores por los que circula el fluido caloportador, generalmente agua con glicol, lo que lleva a denominarlas también como agua.

![Figura 15 Bomba de calor con fuente fría el agua (pozo) o con fuente fría el suelo [3].](image-url)
Aunque no procede en el caso de bombas geotérmicas, es muy habitual usar de sumidero o fuente el aire ambiental. Al ser la temperatura ambiental variable a lo largo del año, este tipo de bombas está sometido a una variación de temperatura mucho mayor en el foco frío que las geotérmicas.

El tipo de fluido caloportador del local puede ser:

- **Agua:** para la calefacción por radiadores o suelo radiante, para agua caliente, etc.
- **Aire:** cuando la climatización del local es por medio de aire.

De este modo las bombas de calor geotérmicas suelen ser agua-agua o agua-aire.

3.3.2. Según la distribución del sistema colector del terreno

Se clasifican en:

- **Sistemas abiertos:** normalmente asociados a fuentes de agua subterráneas. Generalmente se necesitan dos pozos, uno de extracción y otro de inyección separados por una distancia suficiente como para no afectarse. Se requiere una permeabilidad suficiente para poder extraer un caudal adecuado con poca subsidencia, y buena calidad de agua para evitar corrosión, atascos y desgaste de tuberías.
- **Sistemas cerrados:** el lazo de colectores del terreno es un circuito cerrado. Es el sistema habitual en bombas de calor geotérmicas con foco frío en el suelo.

Por la disposición de los colectores en el terreno, se distinguen:

- **Colectores en configuración horizontal:** normalmente enterrados a poca profundidad, entre 60 cm y 1,2 m bajo la superficie. Son los sistemas más sencillos de instalar. En este tipo de sistemas el mecanismo más importante para renovar la temperatura del terreno es la radiación solar, por lo que no se debe construir nada encima de la superficie bajo la que estén los colectores. Requieren, por tanto, un mayor uso del terreno. Como cifra aproximada, recuperan del orden de 30 W por m² de terreno, y de 10 a 15 W por metro de tubo.

Es el tipo de instalación con mejor relación coste prestaciones. Cuando existen restricciones de espacio, o para aprovechar mejor la superficie libre, se suele...
recurrir a esquemas con conexiones en serie o paralelo con mayor densidad. Existen varias configuraciones para este tipo de sistemas, como los sistemas con lazos paralelos en zanja, los colectores en espiral horizontal (slinky) o en espiral vertical (svec).

- **Colectores en configuración vertical**: este tipo de sistemas asegura más aún la estabilidad de la temperatura del foco frío, ya que profundiza más debajo de la zona de influencia por los cambios de temperatura externos. Por otra parte, el sondeo vertical asegura que haya suficiente superficie de intercambio. Como cifra estimativa recuperan del orden de 50 W por metro de sondeo. Suelen alcanzar profundidad entre 50 y 150m.

Normalmente, este tipo de sondeos geotérmicos consiste en varias perforaciones verticales, entubadas habitualmente sólo en sus primeros metros para mantener la estabilidad y menos cuanto más consistencia tenga el terreno, en las que se introducen los tubos colectores, generalmente en polipropileno o polietileno. Para mejorar la transmisión de calor a los tubos y aumentar la consistencia, la perforación se rellena con algún material que debe tener la permeabilidad suficiente como para permitir la circulación de aguas de filtraciones o freática. Materiales típicos de relleno son las gravas y las bentonitas.

En cuanto a los captadores se usan dos tipos principalmente:

- **Tubos en U**: tubos con terminación en “U”, es decir, con giro de 180º en el fondo del sondeo. Se pueden instalar varios tubos de este tipo por sondeo (de 1 a 4).
- **Concéntricos o coaxiales**: con diseños lineales de dos tuberías de diferente diámetro o diseños más complejos.

Otro tipo de colectores en configuración vertical son los cimientos geotérmicos. Este tipo de sistemas aprovechan las cimentaciones de los edificios como soporte para instalar los colectores de calor.
3.3.3. Según los pasos de intercambio de calor

Normalmente, la bomba de calor está situada en el interior del local y contiene los intercambiadores que hacen las funciones de condensador y evaporador, el compresor y el sistema de expansión. Por su interior circula en circuito cerrado el refrigerante. Uno de los intercambiadores es recorrido también por el fluido colector del terreno, normalmente agua con glicol, y el otro por el sistema de distribución de calor de la casa, normalmente agua. Este sistema se ve reflejado en la Figura 16.

Figura 16 Configuración habitual de la bomba de calor [3]

Una variante menos habitual son las máquinas de expansión directa, en las que el sistema de colectores del terreno constituye el propio evaporador (en modo calentamiento), de modo que está recorrido directamente por el refrigerante que se va vaporizando progresivamente. Este sistema se muestra en la Figura 17. Requiere un
volumen mucho mayor de refrigerante, la instalación es más complicada y la reparación en caso de fugas es más compleja, además de causar mayor impacto medioambiental.

3.3.4. Según la energía de compresión

- **Bomba de calor de compresión**: la compresión se produce mecánicamente, siendo accionada el compresor por un motor. A su vez, ese motor puede ser eléctrico o de combustión interna.

- **Bomba de calor de absorción**: el accionamiento de la bomba es térmico y se basa en la capacidad de ciertas sales y líquidos de absorber el fluido refrigerante. Son mucho menos habituales que las de compresión.
4. MARCO LEGAL Y NORMATIVA APLICABLE
4. MARCO LEGAL Y NORMATIVA APLICABLE

El nivel de desarrollo en los distintos países europeos en materia de aprovechamiento de energía geotérmica se encuentra en distintos niveles. Así, en los países europeos de nuestro entorno, con gran tradición en instalaciones geotérmicas como son Alemania, Austria, Francia, Suecia y Suiza, existe una situación normativa y legislativa ya plenamente desarrollada, como se ha apuntado anteriormente. Mientras, en otros países con escasa tradición en el aprovechamiento de este tipo de fuentes de energía, como es el caso de España, el grado de desarrollo es escaso, debiéndose acudir a normativa de propósito más generalista a la hora de autorizar estos aprovechamientos.

Además, en estos países de tradición geotérmica, las normativas se han visto complementadas con la elaboración de guías o directrices para agilizar los procesos de autorización dentro de los procedimientos en la Administración Públicas, mientras que en España solamente alguna Comunidad Autónoma ha realizado alguna iniciativa de este tipo.

La inclusión de este tipo de instalaciones en el contexto energético global de nuestro país hace necesaria la realización de una rápida actuación dentro del contexto normativo y legal español para dar cobertura legal y facilidad de implantación a este tipo de aprovechamientos, especialmente en contextos como el actual, donde el suministro energético y el respeto al medio ambiente se han convertido en factores determinantes del desarrollo de cualquier sociedad.

En el caso español, el aprovechamiento de recursos geotérmicos encuentra su marco normativo en la legislación minera, donde la Ley 22/1973, de 21 de julio de Minas que, además de considerar bien de dominio público cuyo aprovechamiento corresponde al Estado todos los yacimientos de origen natural y demás recursos geológicos existentes en el territorio nacional, mar territorial y plataforma continental, los contempla expresamente como recursos de la sección D), junto a los recursos de interés energético.

No obstante, su inclusión conceptual como recurso minero no indica que cualquier aprovechamiento haya de ser mediante una concesión minera por periodos de treinta años, prorrogables por periodos iguales hasta un máximo de noventa y por superficies medidas en cuadrículas minera, ya que la propia Ley, al excluir de su ámbito las
expLOTaciones ocasionales y de escasa importancia, cualquiera que sea su clasificación, siempre que se lleve a cabo por el propietario del terreno para su uso exclusivo y no exija la aplicación de técnica minera alguna, deja abierta la vía a una tramitación más simplificada, rápida y menos restrictiva que si las hubiera incluido en su ámbito de aplicación.

A esto hay que añadir la vertiente medioambiental de todo proyecto geotérmico, pues conlleva un aprovechamiento del subsuelo y unos riesgos intrínsecos que han de ser contemplados. Dado el carácter territorial español, este tipo de proyectos encuentra una doble legislación, la estatal, recogida en el Real Decreto Legislativo 1/2008, de 11 de enero, por el que se aprueba el texto refundido de la Ley de Evaluación de Impacto Ambiental que, expresamente, considera las perforaciones geotérmicas a analizar caso por caso por el órgano ambiental, y la legislación de cada Comunidad Autónoma. En el caso de la Comunidad de Madrid, su Ley 2/2002 de evaluación ambiental, las incluye en estudio caso por caso cuando la profundidad es igual o inferior a 200 m y mediante Evaluación de Impacto Ambiental cuando supera dicha profundidad. A esto habría que unir las exigencias que desde un punto de vista local pudieran exigir los Ayuntamientos en cuanto a permisos y licencias pertinentes para desarrollar el proyecto en cuestión.

En definitiva, no existe una reglamentación específica que abarque todas y cada una de las posibilidades que hoy día proporciona la geotermia, con lo cual las autoridades vienen aplicando normativas de carácter genérico cuyas exigencias en muchos casos resultan excesivas para el tipo de aplicación de que se trata.

Dentro de este marco, se hace palpable la necesidad de una normativa específica para cada caso que permita ahondar en la simplificación administrativa que actualmente se demanda, sin renunciar a los aspectos medioambientales y de seguridad a cumplir de manera estricta.

Se deben destacar la existencia de diferentes prontuarios o manuales suizos y alemanes, por ello, a continuación se presentan una serie de extractos de la actual norma alemana VDI 4640 Uso de la energía térmica del subsuelo, muy utilizada como referente europeo, así como la Norma Suiza SIA 384/6.
Sin ser documentos específicos para energía geotérmica en España hay una serie de textos que claramente recogen aspectos de aplicación en el desarrollo de proyectos mineros, igualmente se recogen la normativa a nivel europeo:

- Directiva 2001/77/CE del Parlamento Europeo y del Consejo, de 27 de Septiembre de 2001, relativa a la promoción de la electricidad generada a partir de fuentes de energías renovables.
- Ley 22/1973, de 21 de Julio, de Minas.
- Reglamento General de Normas Básicas de Seguridad Minera, RD 863/1985, de 2 de Abril.
- Orden de 9 de Noviembre de 2012, de la Consejería de Ciencia, Tecnología, Industria y Comercio, por la que se de adoptan medidas de Normalización en la tramitación de expedientes en materia de Industria, Energía y Minas.
- Real Decreto 235/2013, de 5 de Abril, por el que se aprueba el Procedimiento básico para la certificación de eficiencia energética de edificios de nueva construcción.
- Código Técnico de la Edificación. CTE-HE.
5. ESTUDIO DEL CASO
5. ESTUDIO DEL CASO

Los sistemas de bombas de calor acopladas al terreno utilizan el suelo o flujo de agua subterránea como fuente del disipador de calor para la calefacción y la refrigeración de locales y en general son más eficientes energéticamente que las bombas de calor que utilizan al aire exterior como fuente del disipador de calor [18]. En las zonas afectadas por las anomalías térmicas el uso de bombas de calor se investigó especialmente en términos de uso directo de flujo de agua subterránea en el método de calefacción [19]. En este trabajo se estima la demanda de energía de los diferentes sistemas de calefacción del edificio junto con las bombas de calor acopladas al terreno y las sondas de extracción de calor (es decir, sistema de circuito cerrado) en suelo con un gradiente de temperatura anómala.

5.1. PROPIEDADES DE CONSTRUCCIÓN

Vamos a suponer el edificio de una resistencia de dos plantas: la plata baja se encuentra junto a la tierra, la temperatura de las cuales era igual a la temperatura media anual del aire exterior, y el primer piso al lado de un ático sin calefacción [20]. La geometría y orientación de la vivienda se ilustran en la Figura 18.
Cada piso tiene una superficie útil de 60 m2 y una altura neta de 2,7 m, el nivel de aislamiento de las superficies externas cumple los requisitos mínimos vigentes, de conformidad con la Directiva de Rendimiento Edificio de Energía de la Unión Europea (EPBD, European Union’s Energy Building Directive). El aislamiento de la envolvente del edificio depende de la zona climática en la que está situada, en nuestro caso situada en la zona Mediterránea en la península Ibérica.
El sistema de emisión que se utilizaría para la calefacción por suelo radiante es el típico con una temperatura del agua de alimentación aproximadamente de 29,5ºC. El sistema de calefacción en la casa se divide en dos secciones, cada una con circulador separado: uno para la planta baja y otro para el primer piso. El sistema se conecta durante el periodo de calentamiento y la temperatura de punto de ajuste para el sistema de control del suelo radiante se mantiene a 20ºC con una variación de ± 0,5ºC. El control se basa en las temperaturas operativas de los espacios de calentamiento.

Las cargas internas se deben adaptar según la normativa ISO tanto para la planta baja, como para el primer piso.

La muestra de las propiedades térmicas de la envolvente del edificio y las condiciones límite que se han utilizado son las que corresponden en el proyecto de “Possible applications of ground coupled heat pumps in high geothermal gradient zones” en las que se han simulado por ordenador [20].

<table>
<thead>
<tr>
<th>Element</th>
<th>Property</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>External walls</td>
<td>U-value</td>
<td>0.288</td>
<td>W/(m² K)</td>
</tr>
<tr>
<td>Internal floor</td>
<td>U-value</td>
<td>1.793</td>
<td>W/(m² K)</td>
</tr>
<tr>
<td>No-heating floor</td>
<td>U-value</td>
<td>0.225</td>
<td>W/(m² K)</td>
</tr>
<tr>
<td>Ground floor</td>
<td>U-value</td>
<td>0.330</td>
<td>W/(m² K)</td>
</tr>
<tr>
<td>Roofs</td>
<td>U-value</td>
<td>0.236</td>
<td>W/(m² K)</td>
</tr>
<tr>
<td>Windows</td>
<td>U-value</td>
<td>1.24</td>
<td>W/(m² K)</td>
</tr>
<tr>
<td></td>
<td>Area</td>
<td>1.4</td>
<td>m²</td>
</tr>
<tr>
<td>Air change ratio</td>
<td>n</td>
<td>0.5</td>
<td>h⁻¹</td>
</tr>
<tr>
<td>Mean internal loads</td>
<td>–</td>
<td>5.83</td>
<td>W/m²</td>
</tr>
</tbody>
</table>

Figura 19 Propiedades de construcción [20].
5.2. EMPLAZAMIENTO DE LA VIVIENDA

Como ya he mencionado anteriormente la vivienda en la cual se realizará el estudio del caso se situara en la Comarca de Cartagena (Región de Murcia, España).

La vivienda estará situada en un solar sin construir, que utilizando el programa de Google Earth hemos situado [21], como se ve en la Figura 20.

La vivienda está situada en el término municipal de Alumbres (Campo de Cartagena), la elección de la zona fue por la cantidad de parcelas y la cantidad de espacio que disponían dichas parcelas para poder hacer los sondeos dentro de ellas. La vivienda tiene cuyas coordenadas son:

- Latitud: 37°36'28.74"N
- Longitud: 0°54'58.81"O
Estaría situada en la Calle Economato, 3, 30351 Alumbres, Murcia como se puede observar en la Figura 21, donde se realizaría el estudio y posterior construcción de la vivienda.

Figura 21 Situación de la vivienda [21].
6. MODELO DE CAPACIDAD DE RESISTENCIA TENIENDO EN CUENTA LA TRANSFERENCIA DE CALOR EN EL SUELO POR CONDUCCIÓN DE CALOR
6. MODELO DE CAPACIDAD DE RESISTENCIA TENIENDO EN CUENTA LA TRANSFERENCIA DE CALOR EN EL SUELO POR CONDUCCIÓN DE CALOR

6.1. HERRAMIENTAS DE CÁLCULO

La herramienta de cálculo y diseño utilizadas en este proyecto han sido Hojas de cálculo Excel y SIG.

Se ha seleccionado la herramienta SIG porque emite un apropiado análisis y selección de áreas, puede tratar una gran cantidad de datos, es una herramienta potente para visualizar datos nuevos y existentes, ayuda a crear nuevos mapas mientras evita errores humanos en el proceso de toma de decisiones, y permite un manejo efectivo de los datos de GIS.

Los GIS, son herramientas que permiten consultar, analizar y editar datos, mapas e información espacial, en un sentido genérico. Los Sistemas de Información Geográfica (SIG), en inglés denominado como (Geografic Information System), son sistemas informáticos (hardware y software) enfocados al análisis, consulta, desarrollo, manipulación, almacenamiento, en definitiva, al tratamiento de información geográfica.

Por lo tanto un SIG es un programa informático en el cuál se pueden tratar datos, habitualmente datos geográficos, o datos ligados a éstos. Además es una herramienta de tratamiento de datos referenciados geográficamente, en lo que también es posible realizar consultas.

Los GIS son habitualmente usados en diversas disciplinas como investigaciones científicas en su más amplio concepto, cartografía, arqueología, navegación, logística, planeamiento urbanístico, etc.

Funcionamiento de un SIG

Los SIG trabajan con información geográfica, dicha información sufre un proceso de digitalización para que pueda ser tratada con SIG. Este proceso habitualmente se realiza por media de herramientas de Diseño Asistido por Ordenador (DAO, en inglés CAD,

Un tipo de datos raster es, en esencia, cualquier tipo de imagen digital representada en mallas. El modelo de GIS raster o de retícula se centra en las propiedades del espacio más que en la precisión de la localización. Divide el espacio en celdas, píxeles, regulares donde cada una de ellas representa un único valor.

En un GIS, las características geográficas se expresan en frecuencia como vectores, manteniendo las características geométricas de las figuras. En los datos vectoriales, el interés de las representaciones se centra en la precisión de localización de los elementos geográficos sobre el espacio y donde los fenómenos a representar son discretos, es decir, de límites definidos. Cada una de estas geometrías está vinculada a una fila en una base de datos que describe sus atributos.

6.2. MODELO DE CAPACIDAD DE RESISTENCIA

El modelo de simulación utilizada para investigación se llama CARM (CApacity Resistance Model) [5],[6] y se tiene en cuenta la transferencia de calor en el suelo por conducción de calor. Para dicho estudio se utiliza una sonda geotérmica (BHE) tiene un sistema de resistencia y resistencias térmicas y capacidades que utilizan analogía eléctrica estando encerrados en el suelo circundante. Para nuestro estudio dicho modelo de capacidad de resistencia no lo podremos realizar, y tendremos que simular los datos, que obtendremos de otro estudio, dicho estudio es “Possible applications of ground coupled heat pumps in high geothermal gradient zones” realizado en la universidad de Padova. Las propiedades termofísicas se supone que son independientes del tiempo. Cada región vertical se divide en varias regiones anulares. En este estudio de caso, la transferencia de calor axial no se modela.

El modelo de capacidad de resistencia se puede utilizar en una amplia gama de composiciones de suelo, cada una de los cuales tiene una temperatura dada del terreno no perturbado. En consistencia, este modelo también puede tener en cuenta un perfil de temperatura vertical, que puede ser útil cuando se trata de sitios geotérmicos con un gradiente de temperatura anómalo.
Los valores de las temperaturas del suelo inalteradas se suponen que son independientes del tiempo. La Figura 22 muestra un esquema del modelo de capacidad de resistencia.

![Figura 22 Esquema Modelo de Capacidad de Resistencia [20].](image)

Dicho modelo de capacidad de resistencia consiste en un sondeo geotérmico relleno de lechada. El sondeo geotérmico es una tubería situada en una perforación previamente realizada por una perforadora. Dicho sondeo se divide en varias regiones anulares, de distintos radios. Entre las distintas regiones anulares se sitúan una serie de resistencias que serán las encargadas de medir la temperatura en las distintas regiones anulares.

Las propiedades de la tierra que se han utilizado, como entrada en el modelo de capacidad de resistencia para simular el comportamiento térmico de la sonda geotérmica, son los resultados obtenidos del GIS en la Región de Murcia, concretamente en el Municipio de Cartagena [22].
Tenemos que suponer el test de respuesta térmica que nos permiten obtener la conductividad térmica equivalente y la media de temperatura del suelo no perturbado a estimar. Las propiedades térmicas de la tierra en realidad pueden ser estimadas, pero el rango de valores encontrados para los tipos de suelo específico es muy amplia. Por lo tanto el test de respuesta térmica es un método más preciso. La prueba se puede realizar en modo refrigeración (el sistema utiliza una resistencia eléctrica para calentar el agua suministrada a la perforación) o en el modo de calentamiento (es decir, con un enfriador de enfriamiento de la tierra). Cuando el fluido se mueve a través del sistema de calefacción/refrigeración, la entrada y salidas son registradas por un registrador de datos. Para determinar la temperatura del suelo no perturbado, el fluido circula inicialmente a través del sistema sin la inyección de calor o extracción.

La prueba suele durar cuatro días. Un modelo de fuente de línea continua, que emite un flujo de calor constante por unidad y tiempo, permite la conductividad térmica equivalente del suelo para ser calculado. El cálculo de los datos de prueba con el modelo de código de línea produce un error sistemático debido a la duración de la prueba; el valor del error
es inferior a ± 2,5% para las pruebas que duran más de cuatro días. La temperatura del fluido media (entro la entrada y de retorno) se traza como el algoritmo natural del tiempo, que proporciona una ecuación lineal. Cuando se utiliza la pendiente K de esta ecuación lineal y la tasa de potencia constante por unidad de longitud, la conductividad térmica se puede calcular con la ecuación:

\[
\lambda_{\text{ground}} = \frac{q}{4\pi k}
\]

Siendo:

- \(q \) Flujo de calor específico por unidad de tiempo (W/m)
- \(\lambda_{\text{ground}} \) Conductividad térmica del suelo (W/mK)
- \(k \) Pendiente de la curva (-)

La ecuación anterior se basa en el modelo de fuente de línea infinita [7] que representa la sonda geotérmica (BHE) con una velocidad lineal uniforme y constante de calor intercambiado con el suelo. Además, el suelo alrededor de la sonda geotérmica (BHE) se supone que es homogéneo e isotrópico sin agua subterránea en movimiento. Sobre la base de estos supuestos, el campo de temperatura alrededor de la sonda geotérmica (BHE) es una función del tiempo y la distancia desde el eje de la sonda geotérmica (es decir, el radio), que se expresa en la siguiente ecuación:

\[
T_q(r, t) = \frac{q}{4\pi k} \int_{\frac{r^2}{4at}}^{\infty} e^{-\frac{u}{4at}} du = \frac{q}{4\pi \lambda_{\text{ground}}} E_1 \left(\frac{r^2}{4at} \right)
\]

Siendo:

- \(r \) radio (m)
- \(a \) difusividad (m²/s)
- \(t \) tiempo (s)
Para valores grandes de tiempo t, que se define como cuando $F_o>5$, la integral
exponencial E_1 se aproxima con la siguiente ecuación simple:

$$E_1\left(\frac{r^2}{4at}\right) \cong \ln\left(\frac{4at}{r^2}\right) - \gamma$$

Donde:

- γ constante de Euler (-)

De acuerdo a las dos anteriores ecuaciones, la temperatura del fluido se puede escribir como:

$$T_f(t) = \frac{q}{4\pi \lambda_{ground}} \left[\ln\left(\frac{4at}{r^2}\right) - \gamma\right] + q \cdot R_b + T_0$$

Donde:

- R_b resistencia térmica del pozo (mk/W)
- T_0 temperatura del suelo no perturbado ($^\circ$C)

En un gráfico de cambio de temperatura frente al algoritmo del tiempo, la ecuación anterior se puede utilizar para calcular una línea recta donde la pendiente es una función del coeficiente de conductividad del suelo:

$$T_f(t) = k \cdot \ln t + m$$

Donde:

$$K = \frac{q}{4\pi \lambda_{ground}}$$

Para determinar la temperatura del suelo no perturbado, el fluido que hemos supuesto
se distribuye inicialmente a través del sistema sin la inyección de calor [8]. Se supuso el
registro de la temperatura del agua que llena la sonda geotérmica, que produjo el perfil
de temperatura que muestra la Figura 24; esta lectura se tiene que llevar a cabo 10 días
después de que se instale el intercambiador de calor geotémico de modo que el
intercambiador esté en una condición de estado estacionario.
Para realizar los cálculos hemos utilizado el valor de la temperatura media del suelo en la zona donde se situará nuestra instalación, en la Comarca de Cartagena, teniendo en cuenta esta temperatura y la profundidad obtenemos la distribución de la temperatura con la profundidad en el terreno no perturbado, en los cuales obtendremos los resultados registrados en la Figura 24. En los que se ve una distribución continua y homogénea, en la que al aumentar la profundidad aumenta la temperatura.

![Distribución de la temperatura con la profundidad](image)

Figura 24 Temperatura del suelo no perturbado vertical, realizado dentro de la tubería BHE y la ecuación lineal de datos de registro.

Comparando nuestros resultados teóricos con los resultados experimentales del estudio “Possible applications of ground coupled heat pumps in high geothermal gradient zones”, se puede observar que para una profundidad de 120 m tenemos cerca de 20ºC menos de temperatura. Esto es debido a la zona y sobre todo al tipo de terreno en el que nos situamos.
EL SISTEMA DE CALEFACCIÓN

Uno de los objetos de este estudio es determinar la eficiencia energética de los sistemas de calefacción de baja temperatura, junto con la sonda geotérmica (BHE) instalado en zonas con gradiente geotérmico anómalo. Tres sistemas de calefacción se investigan al mismo tiempo en este estudio.

El primero caso es un intercambiador de calor geotérmico directamente con el sistema de calefacción de un edificio a través del intercambiador de calor agua-agua con una eficiencia del 95% (Caso 1), en el que se realizarían tres sondeos geotérmicos como se aprecia en la Figura 25.

El segundo caso tiene dos sondeos geotérmicos conectados en serie con una bomba de calor aire-agua, como un dispositivo de copia de seguridad para la carga de calefacción del edificio (Caso 2) como se ve en la Figura 26.
El tercero caso tiene un único sondeo geotérmico y se acopla con una bomba de calor agua-agua (Caso 3) como se ve en la Figura 27 Esquema de la bomba de calor geotérmica Caso 3 [20].

Una vez elegidos los tres sistemas de calefacción nombrados anteriormente pasaremos al proceso de simulación de cálculos experimentales y comportamiento del terreno a lo largo del tiempo. Realizaremos el estudio del comportamiento del terreno en el primer, sexto y vigésimo año.
Caso 1:

En el Caso 1, en el que se supone que se realizan tres perforaciones, utilizando un intercambiador agua-agua con un rendimiento del 95%, a la hora de suponer los cálculos, adaptando los datos a la zona de estudio realizaremos el comportamiento de las regiones anulares según el paso del tiempo. En la Figura 28 tenemos los resultados tras haber supuesto el Caso 1 con el comportamiento del terreno el primer año.

![Distribución de la temperatura con la profundidad](image)

Figura 28 Distribución de la temperatura con la profundidad en el Caso 1 primer año

Como se puede observar en la figura anterior, en el Caso 1 en el primer año de estudio, la cantidad de temperatura absorbida durante el proceso es muy pequeña. La temperatura en las regiones anulares varía dependiendo si son interiores o exteriores. Cuanto más exterior es la región anular mayor temperatura tendrá, en este caso la región anular n.15 con un radio de R = 3.576 m llega a unos 47 °C a la profundidad de los 120 m. Cuanta más interior sea la región anular menor temperatura tendrá.
En la Figura 29 vemos el comportamiento del terreno en el Caso 1, pero en vez de ser el primer año, el comportamiento es realizado para el sexto año. Mantenemos constantes el radio de las regiones anulares.

En esta gráfica en el Caso 1, en el sexto año de estudio, se puede observar que, con respecto al estudio del primer año, la temperatura del agua a la entrada y la temperatura del agua de retorno son constantes, también se aprecia una pequeña diferencia entre las temperaturas de las regiones anulares, siendo sus pendientes más grandes.
Para terminar con el Caso 1, en la Figura 30, obtenemos el resultado del comportamiento del terreno en el vigésimo año.

![Distribución de la temperatura con la profundidad](image)

Figura 30 Distribución de la temperatura con la profundidad en el Caso 1 vigésimo año

En el estudio del vigésimo año se observa que la temperatura del agua a la entrada y la temperatura del agua de retorno se mantienen constantes con respecto al estudio del Caso 1 en el primer y sexto año. Las regiones anulares se mantienen constantes con respecto al estudio del sexto año.
Caso 2:

En el Caso 2, en el que se realizan dos perforaciones, el estudio se realizará suponiendo un campo de sondeo geotérmico más pequeño y está conectada en serie con una bomba de calor aire-agua como un dispositivo de copia de seguridad para la carga de calefacción de la vivienda. En la Figura 31 vemos el comportamiento del terreno en el Caso 2 transcurrido el primer año.

En el Caso 2 en el primer año se observa que la temperatura del agua a la entrada y la de retorno es menor que la del Caso 1. La cantidad de temperatura que es capaz de absorber del subsuelo es la misma que en caso 1. La temperatura de las regiones anulares varían en función de la profundidad, cuanto más externa es la región anular mayor será la temperatura, en caso contrario, cuanto menos sea la región anular menor será la temperatura.
Ahora vemos el comportamiento del terreno en el Caso 2 en el sexto año, como se puede observar en la Figura 32.

En el Caso 2 en el sexto año de estudio, con respecto al primer año de estudio del Caso 2 observamos que la temperatura de entrada de agua al pozo y la de retorno se mantiene constante, también se ve una disminución de la temperatura en los anillos anulares, tanto en el más interior como en el más exterior, siendo sus pendientes mayores.
Por último en el Caso 2, vamos a obtener el comportamiento del terreno en el vigésimo año, como se puede observar en la Figura 33.

![Figura 33 Distribución de la temperatura con la profundidad Caso 2 vigésimo año](image)

En el estudio del vigésimo año, se observa que los resultados son casi idénticos a los del sexto año, se mantiene constante la temperatura del agua a la entrada del pozo, al igual que en el estudio en el primer y sexto año, y la temperatura de las regiones anulares no varía con respecto al estudio del sexto año.
Caso 3:

En el Caso 3, en el que se realiza una sola perforación, el estudio se realizará suponiendo un campo de sondeo geotérmico más pequeño y se acopla con una bomba de calor agua-agua. En la Figura 34 vemos el comportamiento del terreno en el Caso 3 en el primer año.

En el estudio del primer año en el Caso 3 se observa que la temperatura del agua a la entrada al pozo es menor que en los casos anteriores, pero la temperatura del agua de retorno es mayor, en este caso la diferencia de temperatura que se puede extraer es mayor que en los casos anteriores. También podemos observar que la temperatura de las regiones anulares es mayor que en los casos anteriores, siendo menores sus pendientes.
Ahora vemos el comportamiento del terreno en el Caso 3 en el sexto año, como se puede observar en la Figura 35.

Figura 35 Distribución de la temperatura con la profundidad Caso 3 sexto año

En el estudio del sexto año en el Caso 3, con respecto al estudio del primer año del Caso 1 la temperatura de entrada de agua al pozo y la de extracción se mantiene constante, mientras que la temperatura de las regiones anulares, siendo menores sus pendientes.
Para concluir en el Caso 3 vamos a obtener el comportamiento del terreno en el vigésimo año, como se puede observar en la Figura 36.

![Distribución de la temperatura con la profundidad](image)

Figura 36 Distribución de la temperatura con la profundidad Caso 3 vigésimo año

En el estudio del vigésimo año del Caso 3 se observa que los datos son casi idénticos a los del sexto año. La temperatura de entrada de agua al pozo y la de extracción se mantiene constante, como en el estudio del primer y sexto año. La temperatura de las regiones anulares es menor que en estudio del primer año, pero muy similares a la que hemos obtenido en el estudio del sexto año.

Si comparamos los resultados con el estudio realizado en la Universidad de Padova, que antes hemos mencionado, se puede observar que hay una variación temperatura de unos 20ºC a 120 metros de profundidad. La pendiente de las regiones anulares también varía, siendo mayores las pendientes en este estudio. Y la cantidad de temperatura que el fluido caloportador que utilizamos es capaz de absorber es prácticamente la misma, variando únicamente la temperatura de entrada del agua y la de salida, que en este caso es menor.
7. CONCLUSIONES
7. CONCLUSIONES

De este estudio sacamos como conclusión que es factible realizar una instalación como las planteadas anteriormente en la zona de la Comarca de Cartagena, comparando con el estudio de la universidad de Padova, se extrae menos temperatura, pero aun así es factible la instalación, con unas sondas e instalaciones similares de las que ellos realizaron en su estudio.

Caso a caso, vamos a extraer las conclusiones finales de cada uno:

En el Caso 1 se obtiene la temperatura del agua de extracción a una mayor temperatura que en los otros casos, pero la variación de temperatura entre el agua de entrada al pozo y el agua de extracción es mínima.

Los resultados del Caso 2 son similares al anterior, la variación de temperatura entre el agua de entrada al pozo y el agua de extracción es la misma, lo que varía es que esta agua está a menos temperatura.

En el Caso 3 la variación de temperatura entre el agua de entrada al pozo y la de extracción es mayor que en los otros casos, pudiendo sacar mayor rendimiento al sistema.

Como conclusión final, comparando con los resultados de los tres casos, el mejor caso para calentar la vivienda en el Caso 3, en el que se realizaría una sola perforación, el estudio se realizará suponiendo un campo sonda geotérmica más pequeño y se acoplaría con una bomba de calor agua-agua.
Bibliografía
Bibliografía

[3]. CIATESA. (s.f.). Bomba de calor.

[9]. Adela Escudero Ramos (28 de Septiembre de 2011). Evaluación del potencial geotérmico de muy baja entalpía en la Región de Murcia mediante el uso de sistemas de información geográficos para la implantación de sistemas de climatización y ACS. Cartagena, Murcia, España.

[12]. Bomba de calor. IEE. Universidad de Cantabria.

[13]. Site Geothermie Perspectives de l’ADAME et du BRGM.

[21]. Google Earth 7.1.5.1557.