Evaluación de tecnologías fotovoltaicas orgánicas
Trabajo fin de máster

Jonatan Mondéjar Martínez
12/09/2014

Directores: Dr. Antonio Urbina Yeregui
Dr. Jose Abad López
TABLA DE CONTENIDO

1. Introducción.. 5
 1.1. Sistema energético y energías renovables... 5
 1.1.1. Desarrollo de la energía Solar Fotovoltaica .. 6
 1.1.2. El desarrollo Fotovoltaico en España ... 7
 1.1.3. El desarrollo fotovoltaico mundial ... 8
 1.2. Tecnologías Fotovoltaicas .. 8
 1.2.1. Silicio monocristalino y policristalino ... 9
 1.2.2. Película delgada inorgánica .. 10
 1.2.3. Tecnologías emergentes .. 11
 1.3. Descripción básica de dispositivos fotovoltaicos .. 11
 1.3.1. Tensión de circuito abierto .. 13
 1.3.2. Corriente de cortocircuito .. 13
 1.3.3. Factor de llenado .. 14
 1.3.4. Eficiencia de conversión de potencia .. 14

2. Fundamentos de células solares orgánicas ... 15
 2.1. Introducción .. 15
 2.2. Estructura ... 16
 2.3. Materiales .. 17
 2.4. Conceptos físicos y funcionamiento .. 19
 2.5. Clasificación de las células solares orgánicas ... 20
 2.5.1. Célula solar sensibilizada por colorante (DSSC) .. 21
 2.5.2. Células multicapa ... 21
 2.5.3. Células de heteroución dispersa (Bulk-heterojunction) 22
 2.5.4. Células solares híbridas orgánicas/inorgánicas .. 23
 2.5.5. Células basadas en Perovskita .. 23

3. Métodos de fabricación ... 24
 3.1. Inkjet-printing ... 24
 3.2. Spray-coating ... 24
 3.3. Spin-coating ... 25
 3.4. Screen-printing ... 25
 3.5. Doctor blading .. 26
 3.6. Técnica Roll to Roll (R2R) .. 26

4. Métodos experimentales .. 27
4.1. Protocolos para los estudios de degradación de células solares orgánicas 27
4.2. International Summit on Organic Photovoltaic Stability (ISOS) .. 28

5. Fabricación de células solares orgánicas en laboratorio ... 31
5.1. Materiales ... 31
5.2. Fabricación de las células solares orgánicas ... 31
5.3. Caracterización de los dispositivos ... 33
5.4. Resultados experimentales ... 34

6. Monitorización de sistemas fotovoltaicos ... 37
6.1. Introducción ... 37
6.2. Localización ... 37
6.3. Hardware, equipo y seguidor solar ... 38
 6.3.1. Módulos solares orgánicos ... 38
 6.3.2. Registros de datos. Enviromon ... 39
 6.3.3. Sensores ... 42
 6.3.4. Equipo de medida Keithley ... 44
 6.3.5. Tarjeta de Relé .. 46
6.4. Software del sistema .. 47
 6.4.1. Programas de Labview ... 48
 6.4.2. Programa Enviromon ... 49
 6.4.3. Helios Analytics .. 50
6.5. Resultados experimentales ... 51

7. Conclusiones ... 57
7.1. Tareas futuras ... 57

8. Bibliografía ... 59
Anexo I .. 63
Anexo II ... 64
Anexo III ... 65
Anexo IV ... 66
Anexo V ... 67
Anexo VI ... 67
Anexo VII ... 70
Anexo VIII ... 71
ABREVIATURAS Y ACRONIMOS

AM1.5, Air mass 1.5

I0, corriente de saturación del diodo equivalente

Iph, fotocorriente generada

Isc, corriente en cortocircuito

ITO, Óxido de indio y estaño

FF, factor de llenado

HOMO, orbital molecular más ocupado (Highest Occupied Molecular Orbital)

LUMO, orbital molecular menos ocupado (Lowest Unoccupied Molecular Orbital)

n, factor de idealidad del diodo

P3HT, Poli-(3-hexiltiofeno)

P3OT, Poli-(3-octiltiofeno)

PCBM, ([1]-fenil -C61-ácido butírico metil ester)

PEDOT, Poli-(3,4-etilendioxitiofeno)

Pmp, potencia en el punto de máxima potencia

PPV, Poli p-fenileno vinileno

PSS, Poli-(4-estirenosulfonato)

Rs, resistencia serie

Rsh, resistencia paralelo

Voc, tensión a circuito abierto

PCE, Eficiencia de la célula solar

UV, Ultravioleta

R2R, roll to roll

ISOS, International Summit on Organic Photovoltaic Stability

USB, Universal Serial Bus

RS-232, Recommended Standard 232

LabVIEW, Laboratory Virtual Instrumentation Engineering Workbench
1. Introducción

1.1. Sistema energético y energías renovables

El modelo energético actual está basado en el uso intensivo de recursos de origen fósil, los cuales provocan un gran impacto negativo en el medioambiente y desequilibrios socioeconómicos que obligan a definir un nuevo modelo de desarrollo sostenible.

El desarrollo sostenible es aquél que trata de garantizar el crecimiento económico, el progreso social y el uso racional de los recursos. Por lo tanto, las políticas energéticas harán en el futuro un gran esfuerzo en el ahorro energético y en la producción de energía a partir de fuentes renovables. La preocupación derivada tanto del cambio climático como de la sostenibilidad de las fuentes primarias de energía ha resultado en un incremento notable de las inversiones en tecnologías relacionadas con las energías renovables.

Para asegurar dicha sostenibilidad se elaboró un convenio marco de la Organización de las Naciones Unidas sobre el cambio climático que acabó en la elaboración del conocido Protocolo de Kioto. Este es un protocolo de la (CMNUCC) Convención Marco de las Naciones Unidas sobre el Cambio Climático, y un acuerdo internacional que tiene por objetivo reducir las emisiones de seis gases de efecto invernadero que causan el calentamiento global: dióxido de carbono (CO\textsubscript{2}), metano (CH\textsubscript{4}) y óxido nítrico (N\textsubscript{2}O), además de tres gases industriales fluorados: hidrofluorocarbonos (HFC), perfluorocarbonos (PFC) y hexafluoruro de azufre (SF\textsubscript{6}), en un porcentaje aproximado de al menos un 5 % de emisiones equivalentes de CO\textsubscript{2}1, dentro del periodo que va desde el año 2008 al 2012, en comparación a las emisiones al año 1990. Esto no significa que cada país deba reducir sus emisiones de gases regulados en un 5% como mínimo, sino que este es un porcentaje a nivel global y, por tanto, cada país obligado por Kioto tiene sus propios porcentajes de emisión que debe disminuir la contaminación global.

El protocolo fue inicialmente adoptado el 11 de diciembre de 1997 en Kioto, Japón, pero no entró en vigor hasta el 16 de febrero de 2005. En noviembre de 2009, eran 187 estados los que ratificaron el protocolo. EE.UU. es el mayor emisor de gases de invernadero mundial, el cual aun no ha ratificado el protocolo.

El protocolo se encuentra dentro del marco de la Convención Marco de las Naciones Unidas sobre el Cambio Climático (CMNUCC), suscrita en 1992 dentro de lo que se conoció como la Cumbre de la Tierra de Río de Janeiro. El protocolo vino a dar fuerza vinculante a lo que en ese entonces no pudo hacer la CMNUCC.

La Unión Europea, como agente especialmente activo en la concreción del Protocolo, se comprometió a reducir sus emisiones totales medias durante el periodo 2008-2012 en un 8% respecto de las de 1990.

Para España esta distribución de compromisos de umbrales de emisión es un problema ya que implica techos económicos diferentes para cada país de la Unión Europea. España, desde 1990, obtuvo un fuerte crecimiento económico, traduciéndose éste último en un aumento del

1 Las "emisiones equivalentes" indican el impacto combinado de los diferentes gases como un equivalente de impacto que tendría una cantidad determinada de emisiones de CO\textsubscript{2}.
transporte y el consumo energético de las familias y la industria. Esta explicación de los techos económicos diferentes se complementa con el hecho de que el consumo energético es proporcional al desarrollo económico y el nivel de emisiones de CO$_2$ es proporcional al consumo energético. Por ello, España está en desigualdad de condiciones con respecto al resto de países de la Unión Europea. España aun estando lejos de sus compromisos cabe destacar que es el segundo país mundial en producción de energía eólica y uno de los países referencia en % de energía renovable sobre la total consumida. Cabe destacar que España podría aumentar un 15% sus emisiones respecto a las de 1990, aún así, España ha sido un gran incumplidor, superando el 40% de emisiones (aunque en los últimos años se ha reducido esta tendencia tan negativa debido a la crisis económica).

1.1.1. Desarrollo de la energía Solar Fotovoltaica

La tendencia actual indica que el mercado fotovoltaico está creciendo. A pesar de que la energía solar fotovoltaica estará aún por detrás de otras fuentes de energía renovables en el 2020, será una tecnología líder hacia el 2050, e incrementará su producción hasta convertirse en una de las principales fuentes de energía del mundo para final de este siglo (EPIA 2011).

La capacidad total instalada en el mundo, como podemos comprobar en la figura 1.1, asciende a cerca de 140 GW, produciendo unos 50 teravatios-hora (TWh) de energía eléctrica al año. Durante los últimos 10 años, los avances han sido impresionantes. La capacidad fotovoltaica total instalada en el mundo se ha multiplicado por un factor de 27, de 1,4 GW en 2000 a 40 GW en 2010, una tasa de crecimiento anual de 40%.

2010 fue el año récord, en el sector fotovoltaico de Europa instalado más capacidad que cualquier otra fuente renovable, con 13 GWp de nueva potencia instalada en la UE, donde se han instalado 7,4 GWp en Alemania. El país continúa dominando el mercado fotovoltaico mundial (Asociación Europea de la Industria Fotovoltaica (EPIA), 2011, EurObserver, 2011).
El cambio a fotovoltaica no es sólo una opción realista para la matriz energética del mañana; también es una solución deseable para la sociedad en su conjunto. La fotovoltaica ahora aparece en el mapa energético de varios países como una alternativa real a las fuentes de electricidad convencionales.

El coste de las células solares de silicio cristalino ha descendido desde 59,05 €/Wp en 1977 hasta aproximadamente 0,57 €/Wp en 2013 [1]. Esta tendencia sigue la llamada "ley de Swanson", una predicción similar a la conocida Ley de Moore, que establece que los precios de los módulos solares descienden un 20% cada vez que se duplica la capacidad de la industria fotovoltaica.

En 2011, el precio de los módulos solares se había reducido en un 60% comparado con su precio en verano de 2008, colocando a la energía solar fotovoltaica por primera vez en una posición competitiva con el precio de la electricidad pagado por el consumidor en un buen número de países soleados. Se ha producido una dura competencia en la cadena de producción, y asimismo se esperan mayores caídas del coste de la energía fotovoltaica en los próximos años, lo que supone una creciente amenaza al dominio de las fuentes de generación basadas en las energías fósiles. Conforme pasa el tiempo, las tecnologías de generación renovable son generalmente más baratas, mientras que las energías fósiles se vuelven más caras.

1.1.2. El desarrollo Fotovoltaico en España

El recurso solar es abundante en España, que dispone de condiciones muy adecuadas para la energía solar fotovoltaica, con áreas de alta irradiancia. La situación respecto a otros países europeos como Alemania es comparativamente muy favorable.

La principal característica de este recurso es estar disponible en toda la superficie al mismo tiempo, estando no obstante condicionado por las sombras de elementos naturales y artificiales y por las particulares condiciones climáticas de cada área geográfica.

![Figura 1.2 Irradiación media diaria en España según zonas climática [INM]](image)
Centrándonos en el sector solar fotovoltaico, el Plan de Fomento de las Energías Renovables en España 2005-2010 establecía una cifra de 400MW de potencia instalada en este tipo de energía. En 2004, la potencia total instalada de energía solar fotovoltaica en España, según los datos disponibles, superó los 37MWp, presentando un incremento cercano al 55% respecto a la potencia instalada en el año 2003.

En España, la fotovoltaica proporciona hasta un 4% de la demanda eléctrica durante el último año, a finales de 2013 la potencia fotovoltaica instalada en España ascendía a 4679 MW. (REE, 2012). Cabe destacar que la normativa actual desde el 2012 ha frenado toda instalación fotovoltaica nueva. En la web de la UNEF se encuentran toda la legislación de este ámbito.

1.1.3. El desarrollo fotovoltaico mundial

En la actualidad, en referencia a las tecnologías empleadas en este mercado cabe destacar que el 87% del mercado fotovoltaico está dominado por las células de silicio cristalino [2] [3], las cuales presentan una madurez tecnológica total en nuestros días. El 13% restante son diversas tecnologías que se agrupan bajo la denominación de “lámina delgada” [4].

Las tendencias calculadas para los próximos años del coste de generación mediante tecnología fotovoltaica podrían ser menores que los costes comerciales en horas pico en algún momento entre los años 2020-2030 [5]. La investigación y la producción de energía mediante tecnologías fotovoltaicas basadas en silicio han sido apoyadas mediante políticas públicas europeas, pero en el futuro se espera un crecimiento en tecnologías fotovoltaicas alternativas, basadas en desarrollo de nuevos materiales, como los polímeros conjugados conductores [6].

1.2. Tecnologías Fotovoltaicas

Existen muchas tecnologías solares con distintos grados de desarrollo, y las células solares orgánicas son una de las clases más recientes de estas tecnologías. En esta sección se discutirá brevemente las principales tecnologías de células solares en la actualidad para ayudar a poner el papel de la tecnología de células orgánicas en su contexto. Las tecnologías de células solares más disponibles en el mercado se pueden dividir en dos grupos principales: silicio mono- y poli-cristalino y células de lámina delgada, fabricadas con distintos materiales inorgánicos. Después de estos dos grupos principales, hay varias tecnologías emergentes que están siendo fuertemente investigadas para su futura aplicación, dentro de estas encontramos las células solares orgánicas en las que se centran nuestro trabajo.

La mejora de la eficiencia en los últimos 35 años se muestra en la figura 1.3 para diferentes tecnologías de células solares. Cabe señalar que las células solares disponibles en el mercado tienen, a veces, rendimientos más bajos en comparación con los registros de laboratorio debido a las complejidades adicionales cuando las células se fabrican a gran escala y en grandes tamaños (a menudo asociadas en módulos). Hay que tener en cuenta que la tecnología de células solares orgánicas (abajo a la derecha en la figura) sigue mejorando,
mientras que las otras tecnologías se han estabilizado. Recientemente, las eficiencias más altas conseguidas en células orgánicas son las logradas con materiales de tipo "Perovskita"\(^2\) [7]

![Cronología de las eficiencias de conversión logradas en células solares fotovoltaicas.](National%20Renewable%20Energy%20Laboratory%202014)

1.2.1. Silicio monocristalino y policristalino

Las células solares basadas en silicio cristalino y policristalino son las más desarrolladas y producidas de todas las tecnologías de células solares y en la actualidad representan aproximadamente el 80% del mercado de células solares [8]. El desarrollo de células solares de silicio se benefició en gran medida del esfuerzo a gran escala para entender y procesar el silicio como un semiconductor para la electrónica y los circuitos integrados. En las células solares de silicio, un fotón es absorbido para generar pares de electrones y "huecos"\(^3\) que se separan y recogen en los electrodos para generar corriente [9]. La recombinación de los portadores se produce antes de la extracción, lo que conduce a pérdidas, las cuales se pueden reducir mediante el uso de silicio de alta pureza y mediante la aplicación de técnicas de procesamiento, incluyendo por ejemplo, dopajes selectivos cerca de los electrodos. Además, el espectro de absorción óptica de silicio está bien adaptado para el espectro solar de células solares a base de un solo material [10]. Si bien hay preocupación por el suministro de silicio en el futuro [11], la amplia disponibilidad de silicio de la industria de circuitos integrados también ha contribuido al éxito de las células solares de silicio. La eficiencia de conversión de energía, que definen el porcentaje de potencia de la luz entrante convertida en energía eléctrica, se ha

\(^2\) Esta denominación se debe a la estructura cristalina que presenta este grupo de materiales, y que se identificó inicialmente en perovskitas basadas en óxidos de cobre.

\(^3\) El "hueco" consiste en la ausencia de un electrón en una banda llena, en este caso, la banda de valencia del material semiconductor inorgánico (o el orbital HOMO en caso de materiales moleculares orgánicos)
demostrado hasta el 25% y el 20,4% en las células solares de silicio monocristalino y policristalino respectivamente [12].

Mientras que el silicio es de lejos el líder en tecnología de células solares, todavía hay muchos aspectos a mejorar, ya sea con los avances en la producción y purificación del silicio o con otros tipos de materiales. En primer lugar, el silicio de alta pureza es generalmente caro y lento de producir. También el silicio es un semiconductor de banda prohibida (o "gap") indirecta y tiene una absorción más débil en comparación con otros semiconductores de gap directo [10]. Por estas y otras razones, el silicio representa casi el 50% del coste de un módulo solar completado [11]. Para evitar algunas de estas limitaciones y potencialmente lograr menores costos por energía producida, se están desarrollando tecnologías que puede utilizar menos material, ya sea por tener capas más delgadas activas a base de películas delgadas o capas activas más pequeñas con una gran área concentrada en la célula pequeña.

1.2.2. Película delgada inorgánica

Las células solares de película delgada inorgánicas son la base de casi todas las células solares comerciales actualmente disponibles que no se basan en el silicio monocristalino y policristalino. Estas son un intento de reducir el alto costo del silicio en las células mediante el uso de películas delgadas de semiconductores que generalmente se depositan sobre un sustrato soporte. Las capas activas son sólo de unas pocas micras de espesor, pero pueden absorber cantidades significativas de luz debido a la fuerte absorción en los materiales de los que están hechas. Los semiconductores pueden tolerar más impurezas ya que las cargas tienen una distancia más corta para viajar a través de las películas delgadas [10].

La deposición y procesamiento de materiales en forma de película delgada fina también utiliza temperaturas más bajas en comparación con el silicio. La reducción del volumen de material activo, con una menor pureza y menor temperatura de procesamiento pueden llevar a reducir el costo por unidad de superficie de las células solares de película delgada, aunque por lo general viene con un compromiso de eficiencia relativa a silicio cristalino. El efecto neto es un coste por vatio que es competitivo con el silicio. Las plataformas de materiales para células de película delgada inorgánica son silicio amorfo (a-Si), Cu (InGa) Se₂ (CIGS) y CdTe con altas eficiencias de 10,1%, 19,4% y 16,7%, respectivamente [12].

Mientras que la producción de células de película delgada inorgánica está creciendo rápidamente, todavía existen barreras. Mientras que la purificación, la producción, el procesamiento de células y la encapsulación del silicio se desarrollan como operaciones separadas, todas estas funciones se suelen agrupar en una sola para células de película delgada, lo que lleva a los altos costos de capital [11]. La toxicidad del cadmio en sí es una preocupación importante para las células solares de CdTe, aunque el Cd emitido incluso en ese caso extremo de incendio y destrucción de módulos es menor que el que emite una central térmica para producir la electricidad que necesitan los hornos para el procesado del silicio cristalino. Por otro lado la cantidad limitada de las reservas de indio plantea un problema a largo plazo para la CIGS, lo que requiere el metal en el semiconductor [11]. Las soluciones nuevas a cada uno de estos desafíos podrían encontrarse con un desarrollo continuo.
1.2.3. Tecnologías emergentes

Existen muchas tecnologías de células solares que aún no están ampliamente disponibles en el mercado. Las eficiencias más altas se han demostrado en células basadas en aleaciones de materiales III-V, como Ga, As, P, In, incluyendo también un pequeño porcentaje de Al, para ambos dispositivos individuales y multiunión. Estas células solares multiunión, también llamadas células tándem, consisten en varias uniones p-n superpuestas y conectadas internamente en serie, cada unión absorbe la luz a partir de determinada longitud de onda definida por el ancho de su banda prohibida de energía. Una superposición de dichas uniones permite optimizar la absorción de luz. Sin embargo, las células solares basadas en GaAs en general se han limitado a las aplicaciones espaciales debido a su coste más alto [10].

El alto costo de células de alta eficiencia potencialmente puede ser compensado mediante la concentración de una gran área de la luz solar sobre una célula solar con un área pequeña. La concentración puede producir una gran cantidad de potencia con sólo una pequeña cantidad de semiconductores. Por otra parte, mayores eficiencias se pueden obtener bajo la concentración de luz en comparación con la iluminación de un sol [13]. Eficiencias del 41,6% se han obtenido en las células solares multiunión bajo luz solar concentrada [12]. Sin embargo, los sistemas de concentración son más complejos debido al hardware o "balance of system" (BOS) adicional requerido para enfocar la luz, seguimiento del sol, y enfriamiento de la célula.

Por último las tecnologías en las que se centra nuestro trabajo y que han obteniendo mucha atención recientemente, se basan en materiales orgánicos. Los semiconductores orgánicos siguen siendo un campo relativamente joven, y las más altas eficiencias son alrededor del 10% para conseguir las mejores células de película delgada orgánicas [12, 14]. Las células solares sensibilizadas por colorante han alcanzado eficiencias de hasta el 11% [12]. Esta tecnología emergente de células solares orgánicas se estudiara con detalle en el capítulo 2.

1.3. Descripción básica de dispositivos fotovoltaicos

Habiendo examinado las principales tecnologías de células solares, en esta sección trataremos las características eléctricas básicas comunes de todas las células solares. Cuando se mide en la oscuridad, la corriente contra la tensión (curvas "I-V") las características de las células solares inorgánicas y orgánicas de más eficiencia se asemejan a la respuesta exponencial de un diodo con alta corriente en polarización directa y pequeña corriente en polarización inversa. La luz en un dispositivo genera una fotocorriente en la celda, además del comportamiento del diodo, y la característica IV bajo iluminación cumple con el principio de superposición de la característica en oscuridad y la fotocorriente. Las características de la curva de un dispositivo ideal pueden ser descritas por la ecuación de Shockley con un término adicional de fotocorriente, Iph:

$$I = I_0 \left[\exp \left(\frac{eV}{n kT} \right) - 1 \right] - I_{ph} \tag{1.1}$$

Donde I es la intensidad de corriente, V es el voltaje aplicado o generado por la célula (según el cuadrante que se considere), I₀ es corriente de saturación inversa del diodo, e es la carga elemental, n es el factor de idealidad, k es la constante de Boltzmann, y T es la temperatura.
En realidad, la corriente tendrá una dependencia de la tensión aplicada, y la iluminación puede afectar a las características del diodo.

La figura 1.4 representa el diagrama IV para una célula solar idealizada en la región de generación de energía. La potencia es el producto del voltaje y la corriente, también se representó frente a la tensión, y la potencia negativa indica la generación de energía para esta elección del signo de los ejes.

El circuito equivalente para esta primera aproximación está formado por una fuente de corriente controlada, que representa a la fotocorriente y un diodo ideal en paralelo (figura 1.5).

Este modelo de primer nivel puede ser insuficiente para representar el comportamiento de la célula de una manera precisa, porque dentro de la célula se dan diferentes efectos que pueden afectar a la respuesta de la célula, como la resistencia de los contactos y la producida entre las capas conductoras (resistencia serie, R_s), las fugas de corriente superficiales (resistencia paralelo, R_{sh}), o los efectos de recombinación debidos a la no idealidad del diodo (factor de idealidad, n). El factor de idealidad aumenta conforme disminuye la corriente y es un número entre 1 y 2. Incluyendo estos parámetros en la ecuación de Shockley del diodo ideal (ecuación 1.1), tendríamos la ecuación 1.2 y obtendremos el circuito equivalente de la figura 1.6.

$$I = I_{ph} - I_0 \left(e^{\frac{(V+IR_s)}{nVF}} - 1 \right) - \frac{V+IR_s}{R_{sh}},$$

(1.2)
De estos parámetros, la resistencia serie, R_s, o resistencia parásita, es el parámetro más crítico y engloba las pérdidas resistivas en serie debidas por un lado a la resistencia de los contactos metálicos con el semiconductor, y por otro, a la resistencia ofrecida por las propias capas semiconductoras y a la resistencia de los dedos metálicos que constituyen la rejilla o malla de metalización frontal. Para una misma fotocorriente, el voltaje cae conforme aumenta R_s, en células de concentración en las que se produce una densidad elevada de corriente, se convierte en un factor limitante.

Los parámetros de rendimiento más discutidos que se pueden encontrar a partir de la curva de un dispositivo a una fuente de iluminación conocidas son la tensión en circuito abierto (V_{oc}), corriente de cortocircuito (I_{sc}), factor de llenado (FF), y la eficiencia de conversión de energía (η).

1.3.1. **Tensión de circuito abierto**

La tensión en circuito abierto (V_{oc}) es el voltaje o diferencia de tensión entre los electrodos de la célula solar cuando $I = 0$, que es cuando el dispositivo está en circuito abierto. Si $I = 0$ y la potencia es el producto de la corriente y la tensión, no hay potencia realmente producida con esta tensión. Sin embargo, el V_{oc} marca el límite para tensiones en las que la potencia puede ser producida. El voltaje de circuito abierto también puede ser pensado como el punto en el que la generación de fotocorriente y procesos de recombinación y otras pérdidas se compensan entre sí.

1.3.2. **Corriente de cortocircuito**

La corriente de cortocircuito I_{sc} es la corriente cuando $V = 0$, son las mismas condiciones que si los dos electrodos de la célula estuvieran cortocircuitados. Una vez más, no hay potencia generada en este punto; la I_{sc} sí marca el inicio de la producción de electricidad tan pronto empiece a aparecer una pequeña diferencia de tensión entre los electrodos. En los dispositivos ideales, el I_{sc} será la misma que la fotocorriente I_{ph}. Aunque I_{sc} es técnicamente un número negativo, las discusiones de los diferentes valores de I_{sc} se centran principalmente en la magnitud del valor y lo tratan como un número positivo, por ejemplo, un I_{sc} superior corresponde a una I_{ph} superior.
1.3.3. Factor de llenado

Mientras que Isc y Voc marcan los límites de la producción de energía en una célula solar, la potencia máxima Pmax es el producto entre la tensión Vmax y la corriente Imax donde el producto de I y V está en un mínimo (o máximo en valor absoluto), como se muestra en la Figura 1.4. Debido al comportamiento de diodo y pérdidas de resistencia y de recombinación adicionales, |Imax| y Vmax son siempre menores que |Isc| y Voc, respectivamente. El factor de llenado FF describe estas diferencias y se define como

\[FF = \frac{I_{max}V_{max}}{I_{sc}V_{oc}} \]

(1.3)

FF es una indicación de cómo de cerca Imax y Vmax llegan a los límites de la producción de energía de la Isc y Voc y también la indicación de la nitidez de la curva IV exponencial que conecta Isc y Voc. Un FF alto se relaciona con una mayor potencia máxima, una buena célula solar debe tener un elevado FF. Pero el comportamiento real de las células solares provoca siempre resultados con un FF que es siempre menor que uno. Los dispositivos con alta |Isc| y Voc pueden todavía tener baja FF, lo que sugiere que hay que hacer algo para mejorar la calidad del dispositivo.

1.3.4. Eficiencia de conversión de potencia

El parámetro de rendimiento más discutido de una célula solar es la eficiencia de conversión de potencia (\(\eta \)) y se define como el porcentaje de la irradiancia incidente IL (potencia de la luz por unidad de área) que se convierte en potencia de salida. El punto de trabajo en el que la célula solar se sitúa durante su funcionamiento estará sobre un punto de la curva IV que depende de la carga4 a la que se conecte la célula, por ello la potencia de salida depende de la carga. La potencia de salida máxima se utiliza para el cálculo de la eficiencia. En forma de ecuación, la eficiencia se define como

\[\eta = \frac{|I_{max}| \cdot V_{max}}{I_{L}} \times 100 = \frac{FF \cdot V_{oc} \cdot I_{sc}}{I_{L}} \times 100 \]

(1.4)

Esta fórmula muestra claramente que FF, Isc, y Voc tienen efectos directos sobre \(\eta \). Por otra parte, el área utilizada para el cálculo de I puede afectar \(\eta \) y debe incluir áreas inactivas que son parte integral de la célula solar, tales como las redes de contactos e interconexiones, en el cálculo de la eficiencia para dispositivos de gran tamaño o módulos.

La eficiencia de conversión de potencia es importante, ya que determina la eficacia con que se está utilizando el espacio ocupado por una célula solar y la cantidad de área debe ser cubierta con células solares para producir una cantidad dada de potencia. Sin embargo, hay ventajas y desventajas entre \(\eta \) y el coste para cada tecnología de células solares que debe ser equilibrado, sobre todo si se tiene en cuenta el coste económico de utilizar células solares de mayor eficiencia.

La eficiencia de conversión de potencia también es dependiente de la potencia incidente y el espectro de la fuente de luz ya que las células solares no absorben y convierten los fotones a

4 "carga" en el sentido de "load" en inglés, es decir la resistencia del dispositivo o de la aplicación a la que se conecta la célula (o módulo) solar, si es un dispositivo activo, esta "load" tendría también un componente inductivo.
electrones en todas las longitudes de onda con la misma eficiencia. Para hacer comparaciones entre varias células solares, un espectro estándar debe ser elegido para el cálculo de η. Aunque el espectro de la luz del sol en la superficie de la tierra varía con la localización, la cantidad de nubes, y otros factores, el espectro AM 1,5 G de la figura 1.7 es el espectro estándar más comúnmente utilizado para medir y comparar el rendimiento de la energía fotovoltaica que se pretende para utilizar al aire libre. Debido a las dificultades de reproducir este espectro exacto en el laboratorio con las lámparas estándar, mediciones de la eficiencia de conversión de potencia a menudo deben ser corregidos en base a la eficiencia cuántica externa.

![Figura 1.7 Espectro de irradiancia de AM 1,5 G espectro solar superior a 1,350nm [42]](image)

2. Fundamentos de células solares orgánicas

2.1. Introducción

A pesar de los avances en el campo de la industria solar, el coste de la fabricación de células fotovoltaicas continua siendo muy alto para muchas aplicaciones, sobre todo cuando se requieren grandes superficies. Uno de los factores que elevan el precio de estas tecnologías es la necesidad de procesar semiconductores a altas temperaturas en ambientes al vacío. Esto limita la fabricación a procesos por lotes, con la poca rentabilidad que esto conlleva.

Una posible solución es el uso de semiconductores orgánicos, los cuales pueden ser producidos en grandes superficies a temperaturas relativamente bajas, tanto como por métodos al vacío, como por sublimación de material o preferiblemente por procesos con materiales capaces de formar películas a partir de una disolución, como los polímeros.

La reducción de costes tendrá lugar en parte por el bajo coste del poco volumen necesario en las delgadas capas activas de semiconductor, pero más importante por el bajo coste de los
otros materiales usados, como los sustratos, y los reducidos costes de fabricación por procesos como la producción en continuo (“roll to roll”). [15]

Con respecto a las células solares orgánicas, la primera prometedora eficiencia de la célula solar se demostró por Tang [16] para una célula solar bicapa. En la década de 1990, la fabricación de células solares depositadas a partir de soluciones [17] se comenzó a llevar a cabo por la síntesis de polímeros conjugados de alta pureza utilizados como material activo. Recientemente ha habido una intensa investigación en los materiales, la física, la estabilidad, y la eficiencia de estas tecnologías.

2.2. Estructura

Casi todas las células solares orgánicas tienen una estructura planar. La capa que absorbe la luz (capa activa) está entre dos electrodos diferentes y está formada por la mezcla de dos materiales, uno que actúa como aceptor y otro que actúa como donante, creándose una heterounión (p/n) dispersa a lo largo de toda la capa activa. Uno de los electrodos (habitualmente el ánodo) debe de ser semi-transparente, para que la luz sea capaz de llegar a la capa orgánica. Uno de los materiales más utilizados para este tipo de electrodo es el ITO (Indium-Tin Oxide), pero se pueden utilizar otro tipo de materiales. Para el otro electrodo (cátodo), el material más utilizado es el aluminio (Al), pero se pueden utilizar otros muchos como, calcio (Ca), magnesio (Mg), oro (Au), bario (Ba) u otros. En la figura 2.1 se puede observar un esquema de la estructura de capas [18].

![Figura 2.1 Estructura normal de una célula solar orgánica](image)

Esta es la geométrica normal, pero también podemos encontrar estructuras de geometría inversa en las que las capas cambian su orden normal, produciéndose una inversión en el sentido del movimiento de las cargas fotogeneradas: el ánodo y el cátodo intercambian sus papeles, por lo que suele ser necesario incluir capas adicionales para adaptar los niveles energéticos internos de la célula. Esta estructura sería la que se muestra en la figura 2.2

![Figura 2.2 Estructura inversa de una célula solar orgánica](image)
2.3. Materiales

Los materiales orgánicos contienen principalmente carbono. La tendencia de este elemento para unir a otros átomos de carbono conduce a la formación de moléculas hexagonales y pentagonales, que son el núcleo de la mayoría de los semiconductores orgánicos.

Los monómeros son átomos o moléculas pequeñas que se unen químicamente a otros monómeros para formar semiconductores orgánicos. Estos materiales se dividen en dos tipos generales de acuerdo con su estructura química: oligómeros, que son moléculas formadas por sólo unos pocos monómeros (también llamados pequeños semiconductores orgánicos molécula); y polímeros, que son moléculas formadas por más de 10 monómeros. La figura 2.3 muestra estos dos tipos de materiales orgánicos.

![Figura 2.3 Tipo de semiconductor orgánico](image)

Los oligómeros y polímeros forman sistemas de moléculas que están unidas por fuerzas de Van der Waals. Este tipo de enlace le da la flexibilidad del material.

Básicamente, las propiedades estructurales macroscópicas de estos sistemas de moléculas (macromoléculas) dependen de su estructura química y el método de deposición. Típicamente, las moléculas más pequeñas son más solubles y tienen temperaturas de sublimación más bajos, pero las moléculas más grandes de ofrecer mejores películas sobre recubrimiento por rotación. Por lo tanto, la evaporación térmica es la técnica habitual para depositar oligómeros, mientras que los polímeros son depositados por procesos de humectación (mojado). La fabricación de dispositivos a través de sublimación térmica requiere condiciones de alto vacío y las altas temperaturas, mientras que los procesos humectantes se pueden realizar a temperatura ambiente y presión ambiente.

Los oligómeros y monómeros que absorben la luz visible a menudo son llamados cromóforos y se conocen como colorantes si son claramente solubles y pigmentos si no son solubles [19].

En la figura 2.4 muestra cómo un cambio en la estructura química define el tipo de material. Este cambio depende de la posición y el número de cadenas laterales. Las cadenas laterales están normalmente unidas a moléculas de núcleo para introducir o mejorar la solubilidad, que es una buena propiedad ya que puede evitar la agregación entre las moléculas.
Las moléculas planas en particular, tienen una fuerte tendencia a apilarse debido a la llamada interacción $\pi-\pi$ y así formar grupos de sólidos. La inclusión de cadenas laterales de distinta longitud puede separar estas moléculas y hacer más fácil a las moléculas de disolvente rodear los polímeros y aumentar así su solubilidad.

En la figura 2.5 se muestran algunas moléculas típicas utilizadas en la fabricación de células solares orgánicas. Los materiales utilizados son: C60, PCBM, PC- y P3HT. C60 y PC- son pequeñas moléculas materiales que pueden ser depositadas por evaporación térmica. La molécula de PCBM se basa en la molécula de C60, con la adición de un radical, que proporciona a la molécula una mayor solubilidad. PCBM y P3HT se depositan mediante técnicas de procesamiento húmedo.

El tipo de material utilizado en la capa activa para actuar como donante de electrones son polímeros conjugados “tipo p” que son mezclados con otros polímeros “tipo n” o en general con derivados de fullerenos (como el PCBM) que actúan como aceptor de electrones, creándose así la heterounión dispersa. La especial configuración de los enlaces en los polímeros conjugados, alternando dobles y simples, permite la conducción electrónica como semiconductor, obteniendo comportamientos análogos a semiconductores inorgánicos dopados, esto se produce gracias a la hibridación de los orbitales y al tipo de enlace $\pi-\pi$ arriba indicado, que genera una deslocalización del orbital a lo largo de la macromolécula, de forma similar a cómo se forma una banda de valencia o conducción en un material semiconductor.

La fotoabsorción en estos materiales crea un estado excitado en la capa activa que es confinado normalmente a una molécula o a una región de una cadena polimérica. Esta
excitación localizada es conocida como “excitón”, o par electrón-hueco que se mantiene ligado por fuerzas de Coulomb\(^5\). El excitón puede ser considerado tanto como un estado de alta energía (“excitado”) neutro dentro de una molécula, o, utilizando términos de semiconductores, como el par electrón-hueco arriba mencionado. Cuando el excitón genera distorsiones en la red (posiciones atómicas) que se mueve al unísono, se habla de un "polarón". La unión electrón-hueco es bastante fuerte, del orden del 0,2 eV o superior, por lo que a temperatura ambiente (kT = 25 meV) es difícil que ocurra la separación del par.

2.4. Conceptos físicos y funcionamiento

Debido a la dimerización, la alternancia entre simple y un doble enlace (π y σ) (ver figura 2.6) presentan sistemas conjugados que no son ni covalentes puros ni polares puros. De hecho, representan una clase separada en lo que se refiere a su naturaleza de enlaces, presentan acoplamientos de electrones enormes en comparación con los sólidos cristalinos inorgánicos.

![Figura 2.6 Tipo de enlace π y σ en las moléculas de etano (CH2 = CH2)](image)

Este enorme acoplamiento de electrones causa la mayoría de las cargas que se localizan, principalmente, en condiciones de equilibrio térmico (en la oscuridad y sin tensión aplicada). Por lo tanto, se necesita energía adicional para generar carga móvil (libre).

Para cada molécula, la función de onda de los electrones de los orbitales atómicos π formados por una hibridación sp\(^2\) de los átomos pueden solaparse y crear un orbital deslocalizado a lo largo de la molécula. El orbital ocupado de menor energía derivada de esta unión se llama HOMO (en inglés, "highest occupied molecular orbital") y el siguiente orbital con una energía superior se llama LUMO (orbital molecular desocupado más bajo).

Como podemos ver en la figura 2.6 la diferencia entre el HOMO y LUMO es la banda prohibida (E\(_g\)). Sabemos que conforme más bajo sea E\(_g\), mayor es la conjugación de los orbitales π (o más extendido está el orbital a lo largo de la molécula). Ejemplos de grandes sistemas π son ftalocianinas, naftalocianinas y perilenos [20].

Según la estadística cuántica de Fermi-Dirac, estos orbitales se van llenando con electrones hasta alcanzar un nivel de energía llamado nivel de Fermi, que se sitúa en el gap de energía

\[^5\] En los materiales inorgánicos también se produce un excitón, pero electrón y hueco se separan muy rápidamente, por lo que en primera aproximación se suele considerar la fotogeneración como un proceso que da lugar a cargas libres.
Evaluación de tecnologías fotovoltaicas orgánicas para moléculas intrínsecas o con bajo dopado. La sustracción o adición de electrones a partir de este nivel de equilibrio permite definir dos conceptos: las energías requeridas se llaman el potencial de ionización (IP) y la afinidad electrónica (E_A), respectivamente. Los niveles HOMO y LUMO suelen aproximarse por IP y E_A, respectivamente [21].

Explicados estos conceptos físicos podemos entender el funcionamiento de una célula solar orgánica. Cuando la luz es absorbida por la capa activa, un electrón se mueve desde el orbital molecular ocupado de mayor energía (HOMO) al orbital molecular no ocupado de menor energía (LUMO) (se muestra en la figura 2.7), formando lo que se conoce como excitón. El proceso sigue con la disociación del excitón. El electrón debe llegar entonces a un electrodo (cátodo), mientras que el hueco debe alcanzar el otro electrodo (ánodo).

La diferencia entre el HOMO del dador y el LUMO del aceptor establece un límite superior para el V_{oc} del dispositivo.

Las longitudes de difusión del excitón en los fulerenos son del orden de 40 nm [22], y tienen unos niveles de LUMO adecuados con respecto a los niveles de LUMO de los polímeros conjugados, para un transporte electrónico fotoinducido muy eficiente (inferior a pico segundos). El establecimiento de los niveles LUMO del aceptor y el dador, es importante para optimizar un dispositivo y evitar pérdidas de V_{oc} innecesarias. Los niveles de energía del HOMO de los fulerenos, son lo suficientemente bajos para evitar una posible transferencia de energía entre aceptor y dador.

2.5. Clasificación de las células solares orgánicas

Existen diversos diseños a la hora de fabricar células solares orgánicas, pero básicamente en todos, el material activo está colocado entre dos electrodos, uno transparente por donde entra la luz y otro opaco. A continuación se detalla la clasificación de las células solares orgánicas en función del material y la tecnología de fabricación.

En la figura 2.8 encontramos las eficiencias de las diferentes tecnologías fotovoltaicas orgánicas.
2.5.1. Célula solar sensibilizada por colorante (DSSC)

Se trata de un tipo de célula solar orgánica de bajo coste diseñada por Michael Grätzel y Brian O’Regan en el École Polytechnique Fédérale de Lausanne en 1991 [23]. Es una célula solar de dióxido de titanio nano-estructurado con colorante sensible a la luz, que utiliza mecanismos de transferencia electrónica similares a los que ocurren durante la fotosíntesis en las plantas.

La célula solar está compuesta por una capa porosa de nano-partículas de dióxido de titanio (TiO$_2$). Estas partículas están cubiertas por un tinte, que es el encargado de absorber la luz, de forma semejante al caso de la clorofila en las plantas. El TiO$_2$ está inmerso en un electrolito que dispone de un cátodo de platino que hace la función de catalizador. Como en el caso de una batería alcalina tanto el ánodo (TiO$_2$) como el cátodo (platino) se colocan a ambos lados de un conductor líquido (electrolito). La luz del sol pasa a través del electrodo transparente, excitando las moléculas de tinte y produciendo una inyección de electrones que circulan por el electrodo transparente. La regeneración de los electrones del tinte se produce con una donación del electrolito en contacto con el tinte. Se han conseguido eficiencias máximas de 10.4% con esta tecnología [24].

2.5.2. Células multicapa

En este tipo de célula dos materiales orgánicos están entre dos electrodos distintos. Uno de los electrodos suele ser ITO, y el otro Al, Ca, Au u otros.

Las dos capas orgánicas en esta célula actúan, una como donor y la otra como acceptor de electrones. La composición de los materiales orgánicos puede ser variada, pudiendo encontrarse las combinaciones: pigmento/pigmento, polímero/pigmento, polímero/polímero, tinte/tinte, tinte/pigmento, etc.

Una de las primeras células solares de doble capa fue documentada por Tang en 1986 [25]. Colocó dos pigmentos orgánicos, ftalocianina de cobre y un derivado de perileno en la parte superior, todo ello entre dos láminas de ITO y Ag.

Al utilizar dos materiales semiconductores orgánicos permite una mayor absorción del espectro de energías. De hecho, se consigue absorber el 70% de la radiación solar entre las longitudes de onda de 300-1000 nm. En una célula solar de capa simple sólo se consigue
absorber el 22% de la radiación solar. Por otra parte se han llegado a fabricar estructuras de células solares orgánicas formadas con tres capas. Su eficiencia está en torno al 11% [26].

2.5.3. Células de heterounión dispersa (Bulk-heterojunction)

Son el tipo de células solares orgánicas más investigadas en la actualidad, además son el tipo de células objeto de estudio y fabricación de este trabajo final de máster.

En una célula solar fotovoltaica el polímero conductor y el aceptor orgánico pueden disponerse formando dos capas sucesivas en contacto (configuración de doble capa o double layer) o formando una mezcla en la que las fases de polímero y aceptor se interpenetren (configuración llamada de *bulk-heterojunction*) [27].

Las células solares basadas en polímeros conductores con mayor rendimiento fabricadas hasta el momento emplean la configuración de *bulk-heterojunction* en la que existe una gran área de interfase entre material tipo p y tipo n, donde se produce la separación de cargas fotoinducidas con mayor eficiencia [28].

Una de las diferencias fundamentales entre los materiales semiconductores inorgánicos y los orgánicos es la energía asociada al excitón. Un excitón es un par electrón-hueco creado bajo excitación eléctrica del semiconductor. Para la mayoría de los semiconductores inorgánicos, la energía necesaria para la disociación es pequeña. En cambio, en los semiconductores orgánicos necesitan una energía mayor para que se produzca la disociación del excitón. Esta diferencia respecto a los materiales inorgánicos y los orgánicos es fundamental a la hora de diseñar dispositivos fotovoltaicos orgánicos. Por tanto, en células solares inorgánicas las cargas libres son creadas casi inmediatamente bajo la absorción de la luz. No ocurre lo mismo en células solares orgánicas. Éstas necesitan un mecanismo adicional para conseguir la disociación del excitón.

La disociación del excitón en materiales semiconductores orgánicos no se produce hasta que éste alcanza la interfase de heterounión donor/aceptor. La interfase está formada por dos materiales con distinto HOMO y LUMO. Una vez disociado el excitón, el electrón generado se desplazará al material aceptor y el hueco creado se moverá al material donor. Se ha estimado que la longitud de difusión de excitón está en el rango de ~10 nm. Esto significa que sólo los excitones generados a poca distancia de la interfase donor/aceptor pueden disociarse en electrones y huecos [29]. Este tipo de células han alcanzado eficiencias en torno al 10%.

![Estructura de una célula solar basada en polímeros conjugados (bulk-heterojunction solar cell)](Figura 2.9 Estructura de una célula solar basada en polímeros conjugados)
2.5.4. **Células solares híbridas orgánicas/inorgánicas**

Con este tipo de células solares se combinan las ventajas de los materiales orgánicos e inorgánicos. Las células solares híbridas tienen polímeros conjugados como material orgánico y nano-partículas inorgánicas que son utilizadas para el trasporte de electrones en la estructura. Las eficiencias de estos dispositivos son actualmente en torno al 2%. Alternativamente, es posible mezclar nano-cristales de semiconductores tradicionales, como CdSe, con polímeros conjugados en disolución para formar films fotovoltaicos. En este caso, los dos materiales contribuyen a la absorción de luz y adicionalmente, dicha absorción puede ser controlada a través del tamaño de los nano-cristales [30].

2.5.5. **Células basadas en Perovskita**

Estas son las últimas células que se están investigando y con la que se han obteniendo las eficiencias más altas de las tecnologías emergentes. En su estructura de base de los semiconductores de perovskita-estructurado orgánicos-inorgánicos, el más común es el triyoduro (CH3NH3PbI3), estas perovskitas tienden a tener altas movilidades de portadores de carga, gracias a planos intercalados de oxígeno en su estructura (similar a la estructura perovskita de los superconductores de alta temperatura). La alta movilidad es importante porque, junto con tiempos de vida de soporte de alta carga, significa que los electrones fotogenerados puedan moverse grandes distancias, suficientes para ser extraída como corriente antes de recombínarse, en lugar de perder su energía en forma de calor dentro de la célula (recombinación no-radiativa o pérdida de energía adicional del electrón hasta el borde de la banda de conducción, en la extracción rápida de “electrones calientes”). Se usan absorción y fotoluminiscencia transitoria resuelta en el tiempo para demostrar que las longitudes de difusión eficaces son, en efecto, relativamente grande en CH3NH3PbI3, aproximadamente 10 nm tanto para los electrones como los huecos un valor alto para un semiconductor formado a partir de la solución a baja temperatura. Esta tecnología es la más novedosa, ha evolucionado muy rápidamente en eficiencia, y supone un acercamiento de las aproximaciones “orgánicas” hacia los materiales inorgánicos, pero que pueden ser procesados a partir de disolución [7].
3. **Métodos de fabricación**

Existen numerosos métodos a la hora de fabricar células solares orgánicas. El método ideal de fabricación sería un método capaz de producir gran cantidad de células solares con bajo coste. A continuación se van a exponer los métodos de fabricación más utilizados, a veces más de un método se utiliza en una misma línea de procesado (por ejemplo, combinación de “slot-dye coating” para las capas activas, con “screen printing” para electrodos). En esta referencia se explican más detalladamente todos los métodos [31].

3.1. **Inkjet-printing**

Este método de inyección de tinta de impresión también se utiliza para depositar capas en los sustratos, es la denominada inyección de tinta. El material activo es expulsado a presión, por un orificio de 40-60 μm de diámetro. Las gotas están cargadas eléctricamente, lo que hace que se desvien de su trayectoria hacia el sustrato. El sustrato sigue un movimiento, lo que permite que se cree una película delgada. Se trata de un método de fabricación de bajo coste, flexible y con posibilidad de hacer patrones digitales. Está concebido para alcanzar producciones altas, del orden de 150 m²/h [32].

![Figura 3.1 Proceso de fabricación por impresión de inyección de tinta](image)

3.2. **Spray-coating**

Este método es parecido al *inkjet-printing* pero con algunas peculiaridades. Este método de recubrimiento consiste en la deposición de capas mediante *spray*. Se trata de un método efectivo y una alternativa en la deposición de capas activas. Los parámetros que se pueden modificar en este proceso son la viscosidad del fluido, la altura de la cabeza del *spray* y el tiempo de aplicación.

En la literatura existen células solares orgánicas fabricadas con esta técnica [33].
3.3. **Spin-coating**

El método de *spin-coating* se lleva utilizando varias décadas para la deposición de capas delgadas. Se deposita un poco de fluido en el centro de un sustrato, entonces el sustrato se hace girar a velocidad, entre 1000 y 6000 r.p.m. La fuerza centrífuga distribuye el fluido por todo el sustrato. Al finalizar este proceso se deja secar la mezcla. El secado puede ser de distintos modos, mediante horno, placa calefactora o incluso al aire.

El espesor final de la película depende de la concentración del fluido, de la velocidad de giro del *spinner*, del tiempo que esté girando e incluso del método de secado. Variando estos cuatro parámetros se pueden obtener distintos espesores.

Es un método muy estudiado, es muy sencillo y accesible y se puede controlar el espesor con relativa facilidad cambiando alguna de las variables comentadas anteriormente.

3.4. **Screen-printing**

Se trata de un método para la fabricación de células solares de gran área a bajo coste. En el cual se sitúa una pantalla a pocos milímetros del sustrato. Se echa la disolución del polímero en la pantalla y una escobilla barre la superficie de la pantalla con una velocidad de varios centímetros por segundo. En este momento la disolución fluye desde la pantalla a la superficie del sustrato. Después se retira la pantalla y se deja secar, consiguiendo una película delgada en el sustrato. Existen ejemplos de células solares orgánicas fabricadas mediante este método [34].
3.5. Doctor blading

Este método fue utilizado y patentado por Glen Howatt en 1952. Al principio fue muy utilizado en la industria de la cerámica y más tarde se perfeccionó y se pudo utilizar con espesores más delgados.

El funcionamiento consiste en distribuir una capa de polímero u otra sustancia en el sustrato y una cuchilla de precisión pasa por encima del polímero quitando la sustancia sobrante. En este método se ajusta: la tasa de evaporación del disolvente, la viscosidad del disolvente, la velocidad del proceso, el ángulo de contacto y la altura de la cuchilla encima del sustrato.

3.6. Técnica Roll to Roll (R2R)

Se trata del método que se ha empleado para la fabricación de las células solares orgánicas que utilizamos en este trabajo final de máster. La mayor productividad con el menor coste de fabricación se puede conseguir mediante la técnica de roll-to-roll.

Se trata de un sistema sencillo. Un sustrato largo (flexible o rígido) se desliza por un sistema de rodillos mientras las distintas capas que forman la célula solar se van depositando encima. Se consiguen productividades del orden de 10.000 m²/h a costes menores de 30 €/m². El tipo de cabezal que procede a la deposición del material en disolución puede variar, siendo el más utilizado el “slot dye”, que se basa en rendijas de tamaño y apertura variables. Se han conseguido fabricar células solares orgánicas de heterounión dispersa mediante este método. [35]. El sistema de fabricación que aparece en el anexo I es el utilizado por el DTU en la fabricación de los módulos utilizados en este trabajo fin de máster.
4. Métodos experimentales

Se ha trabajado a dos niveles:

- **Fabricación y caracterización de células de laboratorio a pequeña escala.** En este caso se han fabricado pequeñas células de unos pocos cm² mediante la técnica combinada de spin-coating para la capa activa y la evaporación o el screen-printing para el cátodo (el ánodo de ITO se compra comercialmente), el procesado se ha realizado al aire. Posteriormente se pasa a la caracterización de las mismas, para las cuales se utilizará un simulador solar Clase AAB (AM 1.5) para obtener su caracterización I-V. Se analizarán los parámetros medidos (I_{sc}, V_{oc}, FF, I_{mp}, V_{mp}, eficiencia).

- **Montaje y caracterización de módulos fabricados en Dinamarca.** Se utilizan módulos fabricados en la DTU-Dinamarca y se ha instalado en un soporte fijo y en un seguidor solar. En este caso se ha motorizado todo el sistema en el cual se han medido los módulos con luz solar directa, y los parámetros ambientales para analizar su influencia en el comportamiento de los módulos. Como uno de los objetivos es el estudio detallado de los procesos de degradación de los dispositivos, se aplicarán los protocolos especiales y consensuados por la comunidad científica que se describen a continuación.

4.1. Protocolos para los estudios de degradación de células solares orgánicas.

Se requiere que los dispositivos de células solares tengan tiempos de vida operativos largos para la aplicación en la vida real. Es un requisito previo que los fenómenos de degradación sean comprensivos y mitigados para la aplicación exitosa de esta tecnología.

Los polímeros y las células solares orgánicas se degradan durante la iluminación y en la oscuridad.

Se aplican métodos para mejorar la estabilidad a través de la elección de los materiales activos, y también la encapsulación con la aplicación de materiales getter y filtros UV.

Se ha demostrado [36] ya que el comportamiento de degradación de las células de polímero implica una serie de mecanismos fotoquímicos incluyendo foto-oxidación directa de polímeros conjugados, una reducción fotoquímica de los componentes orgánicos por aluminio (de un contacto posterior de las células) y la reacción química subsiguiente entre las especies de órgano aluminio y el oxígeno molecular, etc.

La degradación química de las células solares orgánicas se centra principalmente en el papel del oxígeno, el agua y reacciones materiales de electrodo con la capa de polímero activo. Pequeñas cantidades de oxígeno y el agua pueden ser introducidos durante la fabricación del dispositivo absorbida en las diferentes capas, sino quizás más importante que pueden difundir en el dispositivo acabado [37].
La **degradación física** de las células solares orgánicas no se ha estudiado en detalle todavía. Está claro que la eficiencia del dispositivo depende fundamentalmente de la organización espacial de los diferentes materiales en capas con un espesor preciso adaptado para captar fotones óptimamente y el transporte de portadores de carga. En las células de heterounión dispersa, un requisito adicional es la separación a escala nano de las capas activas n y p. Los mejores métodos para obtener esta estructura/morfología han estado en el centro de la investigación de células solares orgánicas durante un número de años. Ahora está claro que esta estructura no es estática una vez que se ha formado durante la producción del dispositivo. La mejor estructura para el funcionamiento del dispositivo no será la más estable termodinámicamente. Estos cambios graduales en la microestructura darán lugar a una degradación del rendimiento. Este tipo de degradación física es más difícil de estudiar porque necesitamos métodos para cartografiar la estructura interna de tres dimensiones y para correlacionar esto con el rendimiento del dispositivo.

4.2. International Summit on Organic Photovoltaic Stability (ISOS)

En una serie de conferencias mantenidas durante los últimos años, la comunidad científica ha consensuado unos procedimientos para el ensayo de dispositivos de células solares orgánicas y módulos con respecto a la estabilidad y el tiempo de vida útil. Las descripciones representan un consenso de la discusión y las conclusiones alcanzadas durante las cumbres internacionales sobre la estabilidad de la fotovoltaica orgánica (ISOS), de la que se han celebrado seis ediciones hasta la fecha. Los procedimientos incluyen instrucciones para las pruebas de la vida útil, pruebas al aire libre, las pruebas de laboratorio a la intemperie y las pruebas de ciclos térmicos, así como las directrices para la presentación de datos. Estos procedimientos están destinados en general a que con las condiciones acordadas y prácticas de pruebas puedan permitir la comparación entre los laboratorios y para ayudar a mejorar la fiabilidad de los valores informados. Los mecanismos de fallo y mecanismos detallados de degradación no están cubiertos en estos protocolos de prueba [38].

Las normas ISOS se establecieron para diferentes tipos de pruebas, tanto para la oscuridad o de luz directa, para la prueba al exterior y al interior. Así como para algún tipo más específico de pruebas, como los ciclos térmicos o pruebas de poca luz.

Cada tipo de prueba, se clasificaría a tres tipos diferentes, dependiendo del nivel de sofisticación. Las tablas de los tipos de test y protocolos la encontramos al final de este punto.

Cada protocolo debería contener una larga lista de parámetros que necesitan ser controlados y registrados. Cuanto mayor sea el nivel de sofisticación, la lista de parámetros que se necesitan más tiempo para ser controlado.

Para poner de relieve algunos de los parámetros importantes. Si nos fijamos en las pruebas de oscuridad, para la primera prueba: ISOS D1, se requiere que una muestra se coloca en una plataforma y se prueba periódicamente. Mientras que para el segundo nivel, que es ISOS D2, se requiere que la muestra se coloca en un horno y la temperatura se mantiene a 65 o 85 grados. Y para ISOS D3, que es el nivel más sofisticado, se requiere que la muestra se coloca en una cámara con condiciones especiales, con no sólo a una temperatura controlada a 65 o 85 grados sino también la humedad relativa que se mantenga a nivel del 85%.
En el caso de mediciones al aire libre, de nuevo, cuanto mayor es el nivel de sofisticación más parámetros necesarios para ser controlado. Y conforme mayor es el nivel, más frecuentemente el escaneo IV es requerido. Especificamente para el tercer nivel, el nivel más alto, se requiere también que la muestra no sólo se mida en el exterior, también se deben tomar periódicamente en interior con una exploración IV que se realiza con una fuente de luz simulada.

En el caso de la degradación de laboratorio de interior o de impregnación de luz, en el nivel 2 el requisito es mantener el dispositivo en 65 o 85 grados, y para el nivel 3, aparte de esta temperatura se requiere que la humedad relativa se mantenga en 50%.

Es muy importante destacar que se decidió que se utilizarán sólo ciertos tipos de fuentes de luz simuladas con ciertos tipos de espectro. Se sugirió que sólo las lámparas que proporcionan un espectro que está razonablemente cerca de espectro real podrían ser útiles. Por tanto, se sugirieron una serie de tipos, tales como lámparas de luz de halogenuros metálicos o lámparas de arco de xenón con filtros de luz diurna.

Por último, también se sugirió utilizar un enfoque diferente para informar de la vida que tiene una curva de degradación. Se sugirió utilizar ocho parámetros para identificar un tiempo de vida para una curva de degradación. Los primeros cuatro parámetros son E_0 a T_0 que identificar la salida de potencia inicial del dispositivo, y E_S T_S que identificaría un punto crítico donde la degradación cambia su modo.

Es muy común en el campo de la OPV que el dispositivo tiene una quemadura en la región inicialmente muy rápido. Y entonces se estabiliza en una fase posterior. Así E_S se corresponde con el punto de este cambio.

Y luego los cuatro parámetros de descanso serán correspondientemente E_{80} T_{80} y E_{80} T_{80}. Que será la degradación de 20% del valor inicial del parámetro correspondiente. Estos parámetros se ven representados en la figura 4.1

![Figura 4.1 Curva de degradación](image)

Hoy en día, en el laboratorio del DTU donde se han fabricado los módulos que utilizamos, se estableció un laboratorio de caracterización para la fotovoltaica orgánica, CLOP. Cuando se hace un gran número de pruebas ISOS en diferentes tipos de dispositivos con el fin de mejorar
el nivel de ISOS, y también para identificar la relación entre los diferentes tipos de pruebas [38].

<table>
<thead>
<tr>
<th>Tipo de test</th>
<th>ISOS-D-1 (plataforma)</th>
<th>ISOS-D-2</th>
<th>ISOS-D-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperatura de almacenamiento</td>
<td>Ambiental</td>
<td>65 °C/85 °C</td>
<td>65 °C/85 °C</td>
</tr>
<tr>
<td>Humedad relativa de almacenamiento</td>
<td>Ambiental</td>
<td>Ambiental (baja)</td>
<td>85 % ± 3 %</td>
</tr>
</tbody>
</table>

Tabla 4.1 Tipos de test

<table>
<thead>
<tr>
<th></th>
<th>ISOS-O-1 (Exterior)</th>
<th>ISOS-O-2 (Exterior)</th>
<th>ISOS-O-3 (Exterior)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min. intervalos de medición</td>
<td>Diario a semanal (Ajuste de rendimiento del dispositivo)</td>
<td>1/15 min. a 1/1 horas recomendada para establecer variaciones entre el día</td>
<td>Exterior: 1/15 min. a 1/1 horas para establecer variaciones en todo el día, Interior: semanal</td>
</tr>
<tr>
<td>Caracterización Fuente de luz</td>
<td>Simulador solar (cerca de AM1.5G)</td>
<td>La luz del sol en condiciones de cielo despejado</td>
<td>La luz del sol bajo claras condiciones de cielo y simulador solar con AM1.5G</td>
</tr>
<tr>
<td>Localización / Tiempo</td>
<td>Informe de latitud, longitud y fecha</td>
<td>Informe de latitud, longitud y fecha</td>
<td>Informe de latitud, longitud y fecha</td>
</tr>
</tbody>
</table>

Tabla 4.2 ISOS en exterior

<table>
<thead>
<tr>
<th></th>
<th>ISOS-L-1 (Simulaciones de laboratorio)</th>
<th>ISOS-L-2 (Simulaciones de laboratorio)</th>
<th>ISOS-L-3 (Simulaciones de laboratorio)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperatura R.H.</td>
<td>Monitorizado y no controlado</td>
<td>Monitorizado y Controlada (65 °C / 85 °C)</td>
<td>Monitorizado y Controlada (65 °C / 85 °C)</td>
</tr>
<tr>
<td></td>
<td>Monitorizado ambiental y no controlado</td>
<td>Monitorizado ambiental y no controlado</td>
<td>Controlado (50%)</td>
</tr>
<tr>
<td>IPCE</td>
<td>Opcional</td>
<td>Opcional</td>
<td>Notificar</td>
</tr>
</tbody>
</table>

Tabla 4.3 ISOS en laboratorio
5. Fabricación de células solares orgánicas en laboratorio

Una célula solar orgánica consiste en un material fotoactivo situado entre un sustrato recubierto con ITO y un electrodo trasero. La capa activa está formada por una mezcla de dos materiales semiconductores, uno aceptor y otro donante. Dentro de los semiconductores tipo p, o donantes, los materiales que se han utilizado son los politiofenos. Preparamos el sustrato y limpiamos las impurezas que pudieran contener antes de depositar este material fotoactivo.

El trabajo de diseño se hizo en el grupo en la UPCT. Se han fabricado pequeñas células de unos pocos cm\(^2\) mediante la técnica combinada de spin-coating para la capa activa y la evaporación o el screen-printing para el cátodo (el ánodo de ITO se compra comercialmente), el procesado se ha realizado al aire.

La caracterización se realiza poco después de la deposición de los polímeros sobre los sustratos, ya que su degradación es rápida. Se obtiene su curva I-V, y se analizan los parámetros (I\(_{sc}\), V\(_{oc}\), FF, I\(_{mp}\), V\(_{mp}\), eficiencia).

5.1. Materiales

Como sustrato conductor se han utilizado i) vidrio con una capa de óxido de indio-estano (ITO) de dimensiones de 20x20x0.5 mm (Delta Technologies, 4-8 ohms/cuadrado) y ii) láminas de polietilentereftalato (PET) con ITO de 20x20x0.5 (Sigma-Aldrich 100 ohms/cuadrado).

Para las sucesivas capas que conforman la célula solar se han utilizado i) poli-3,4-etilendioxitiofeno con sulforato de poliestireno (PEDOT/PSS) (Heraeus-Clevios AI-4083 y Sigma-Aldrich-1.3%wt dispersión de agua) para favorecer la extracción de huecos e igualar la superficie rugosa del ITO, y ii) una mezcla con proporciones 1:1 en peso de poli-3-hexiltiofeno (P3HT) (Sigma Aldrich, pureza del 99,995%) y [6,6]-fenil-C61-ácido butítico metil éster (PCBM) (Solenme, pureza del 99%) para la capa activa.

Para los electrodos se han utilizado ITO presente en el sustrato transparente como anodo, y como cátodo aluminio evaporación en vacío (Goodfellow, pureza del 99,5%).

La deposición de las diferentes capas poliméricas se realiza mediante spin-coater. En el caso de los contactos metálicos esta deposición se lleva a cabo utilizando una cámara de vacío.

5.2. Fabricación de las células solares orgánicas

- Primero se realiza una preparación previa del sustrato cubierto de ITO. La superficie del electrodo de ITO se le quita la mitad por un ataque químico de una mezcla de ácido clorhídrico y ácido nítrico (20% HCl, 5% HNO3 y H2O 75%, porcentajes en volumen) a 60 grados por un tiempo de 5 minutos. Posteriormente se deja secar y se comprueba si hemos eliminado la mitad del ITO del sustrato. Una vez realizado esto para limpiar la superficie y eliminar las impurezas se sumerge el sustrato en un baño de isopropanol durante 15 minutos en ultrasónidos y después otros 15 minutos en agua destilada. Una vez hecho esto ya tenemos el sustrato preparado.
Segundo preparamos la capa activa. Se preparan las disoluciones de polímeros comerciales, de Sigma-Aldrich, P3HT (Tabla 5.1), en un disolvente de o-Diclorobenceno, a diferentes concentraciones en peso de polímero, al 1 y al 3%, que tienen las características mostradas en la Tabla 5.2.

<table>
<thead>
<tr>
<th>o-Diclorobenceno</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(\rho) (g/cm³)</td>
<td>1,3</td>
</tr>
<tr>
<td>Punto de fusión (K)</td>
<td>255,4</td>
</tr>
<tr>
<td>Punto de ebullición (K)</td>
<td>453</td>
</tr>
</tbody>
</table>

Tabla 5.1 Propiedades físicas del disolvente orgánico Diclorobenceno

<table>
<thead>
<tr>
<th>Poli-(3-hexiltiofeno)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Grado</td>
<td>Electrónico</td>
</tr>
<tr>
<td>Pureza</td>
<td>99.995%</td>
</tr>
<tr>
<td>Peso molecular</td>
<td>45,000-65,000</td>
</tr>
<tr>
<td>Punto de fusión</td>
<td>238 °C</td>
</tr>
<tr>
<td>Mw/Mn</td>
<td><2</td>
</tr>
<tr>
<td>Regioregulación</td>
<td>>98% (HNMR)</td>
</tr>
</tbody>
</table>

Tabla 5.2 Características de los polímeros Poli-(3-octiltiofeno), P3HT y Poli-(3-hexiltiofeno), P3OT de la marca Aldrich.

La mezcla de los polímeros de la capa activa es para dos células unos 200µl, de los cuales la proporción de los materiales de la capa activa son 21 mg/ml P3HT y 20 mg/ml PCBM. Por lo tanto se utilizan 4,2 mg de P3HT y 4 mg de PCBM, esto se mezcla con 200µl de diclorobenceno y se calienta a 50 grados durante unos 20 minutos, durante este tiempo pasaremos a la deposición de la siguiente capa.

Tercero pasamos a la deposición sobre el sustrato de una capa de PEDOT/PSS la cual será realizada por spin-coating (explicado anteriormente en el punto 3.3). Se le hecha en el sustrato primero 3 o 4 gotas de isopropanol para limpiar la superficie y después 10 gotas de PEDOT a 1800 rpm durante 1 minuto. Después del spin-coating limpiamos con isopropanol los laterales y del lado que no hay ITO 0,5 cm. Una vez terminado se introduce en el horno a 120 grados durante 10 minutos para eliminar restos de agua en la película.

Cuarto, la mezcla de P3HT/PCBM en diclorobenceno que actúa como capa activa ya está preparada. Por lo que pasamos a la deposición de esta sobre el sustrato. Para esta deposición se han utilizado tres métodos, las dos primeras mediante spin-coating a 1000 rpm, segundo método por spray-coating unos 10 segundos a 20 cm de distancia, y las dos últimas por doctor-blading a una velocidad lenta y el ángulo de contacto de la cuchilla 90 grados. Seguidamente limpiamos los dos extremos con diclorobenceno para que no hagan contacto los electrodos.

Por último, la deposición del electrodo posterior, la cual es realizada por vacío. Las células se colocan en una máscara de contactos preparada en acero inoxidable, láser modelado con la geometría mostrada en la figura 5.1 izquierda. Seguidamente se colocan en el interior de la cámara de vacío configurada para ser utilizada como evaporador térmico, la cual se muestra en la figura 5.1 derecha. Por lo tanto el aluminio se evapora dentro de la cámara de vacío durante 6 minutos a una presión menor de 10⁻⁵ mbar y una corriente de evaporación de 5.2 A, depositándose encima de la capa activa.
Una vez evaporados los contactos se sacan las células de la cámara de vacío y se mete en el horno a 120 grados durante 10 minutos para el secado de estas.

Figura 5.1 Mascara de contactos izquierda y cámara de vacío derecha

El esquema resultante de las capas que forman nuestras células solares es Glass/ITO/PEDOT:PSS/P3HT:PCBM/Al, como se muestra en la figura 5.2.

Figura 5.2 Esquema de las distintas capas que conforman nuestra célula solar orgánica

5.3. Caracterización de los dispositivos

Para la caracterización de las células solares, se utiliza un simulador solar AM1.5 Clase AAB (ABET Technologies Sun2000) junto con una fuente de tensión programable Keithley 230 y un electrómetro Keithley 6514 [39].

Figura 5.3 Simulador solar a la izquierda y Keithley a la derecha.
La caracterización eléctrica se realiza inmediatamente después de la fabricación.

Con los datos registrados se pueden trazar las curvas IV. Parámetros tales como Voc, Isc, FF, PCE son extraídos de las curvas IV medida, estos son los valores más importantes que definen el rendimiento del dispositivo (como se detalla en el punto 1.3). Las medidas se encuentran automatizadas por un programa de Labview de control de los instrumentos utilizados.

Esta técnica de caracterización ha sido el más utilizado en los experimentos de laboratorio en la UPCT. Con el equipo (figura 5.3) y el software obtenemos una curva IV, un ejemplo se muestra en la figura 5.4, que se ha generado la medición de uno de la gran cantidad de dispositivos fabricados a lo largo de los últimos meses.

![Figura 5.4 Interfaz para el programa de medida y caracterización realizado en Labview](image)

Mientras que el estudio de la degradación de los dispositivos, es esencial medir todas las características del diodo periódicamente, ya que dependiendo del tipo de material y la medición de las condiciones de cada parámetro fotovoltaica podrían comportarse de forma diferente. A menudo, el deterioro de la eficiencia del dispositivo es una consecuencia de la disminución de la fotocorriente generada. En los estudios se pueden observar el decaimiento de FF e incluso Voc, puede dar lugar a la disminución del PCE \[40, 41\].

5.4. **Resultados experimentales**

Según las ISOS de laboratorio y protocolos descritas en el punto anterior 4.2, las pruebas utilizadas son de nivel bajo, que corresponde a una ISOS-L-1, ya que no son sofisticadas.

Una vez obtenidos los resultados nos centramos en la comparación de la eficiencia de las células solares obtenida por los tres métodos utilizados en la deposición de la capa activa; spin-coating, spray-coating y doctor-blading.

De cada sustrato de 20x20x0.5 mm hemos sacado cuatro células, como hemos utilizado 6 sustratos hemos realizado 24 células. Las 8 primeras fabricadas por spin-coating, las 12 siguientes realizadas en spray-coating y las últimas 4 realizadas por doctor blading.
Con todos los datos de eficiencia los cuales se encuentran en una tabla en el anexo II, las separamos en las tres gráficas siguientes:

Figura 5.5 Eficiencia de células solares fabricadas por spin-coating

Figura 5.6 Eficiencia de células solares fabricadas por spray-coating

Figura 5.7 Eficiencia de células solares fabricadas por Doctor Blading

El método que más experiencia se tiene en el laboratorio es el de fabricación de spin-coating. Por ello estas son las células solares con más eficiencia. Como podemos comprobar en la figura
5.6 todos tienen un PCE en torno al 1 %, a excepción de la 5 que su PCE es del 0,11 % debido a su baja Isc y FF, y como máximo tenemos la número 8 con PCE del 1,94 %.

Las fabricadas por spray-coating varían de espesor de capa activa, en las que las cuatro primeras tienen un espesor bajo, seguidas de las cuatro siguientes con espesor medio y las cuatro últimas las más espesas. La eficiencia va aumentando según el espesor, pasando de las primeras con una eficiencia muy baja, hasta las más espesas llegando a un PCE del 0,91 %. El aumento de espesor entre las 5-8 y las 9-12 no varió mucho la eficiencia, esto quiere decir que el espesor de la capa activa llegado un límite ya no aumenta el PCE.

Las fabricadas por Doctor blading eran la primera vez que se realizaban, y los resultados han sido bastante buenos en las dos primeras células solares, con una PCE del 1 % y 1,28 %, pero no tanto en las dos siguientes, esto se debe a que al esparcir la capa activa con la cuchilla, esta se ha empezado a distribuir homogéneamente, pero para las dos últimas ya no quedaba tanta capa activa, por tanto la capa activa de las dos últimas es muy delgada y por ello su PCE es casi nulo. Para los próximos experimentos con este método se utilizara más capa activa para que todas las células queden con el mismo espesor.

Como se ha comprobado las eficiencias más altas las encontramos en las células fabricadas por spin-coating, debido a la experiencia en este método, seguidas de las fabricadas por spray-coating y doctor blading. Estas dos últimas han dado buenos resultados a pesar de que era la primera vez que se fabricaban con el equipo utilizado.

Y por otro lado se hace un pequeño estudio de degradación de la mejor célula fabricada por spin-coating, que cuenta con un área de $1,5 \times 10^6 \text{ mm}^2$. Esta degradación se hace con los datos obtenidos de las primeras 24 horas y con la célula solar no encapsulada. El estudio de degradación se hace en un corto periodo de tiempo, en la nos centramos en la degradación de la eficiencia teniendo la temperatura en el laboratorio de medida constante aproximadamente de unos 25 grados y la humedad también se mantiene en unos rangos aceptables, pero en este caso no se estudia aunque sea un parámetro importante en la degradación.

<table>
<thead>
<tr>
<th>Tiempo (horas)</th>
<th>0</th>
<th>0,5 horas</th>
<th>1 hora</th>
<th>15 horas</th>
<th>20 horas</th>
<th>24 horas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voc (V)</td>
<td>0,5333</td>
<td>0,4667</td>
<td>0,4667</td>
<td>0,5333</td>
<td>0,5333</td>
<td>0,5333</td>
</tr>
<tr>
<td>Isc (mA)</td>
<td>-0,1426</td>
<td>-0,1194</td>
<td>-0,1040</td>
<td>-0,0328</td>
<td>-0,0219</td>
<td>-0,0152</td>
</tr>
<tr>
<td>Pm (W)</td>
<td>-4,75E-05</td>
<td>-3,18E-05</td>
<td>-2,77E-05</td>
<td>-6,56E-06</td>
<td>-2,92E-06</td>
<td>-2,02E-06</td>
</tr>
<tr>
<td>FF (%)</td>
<td>38,17</td>
<td>35,91</td>
<td>34,06</td>
<td>15,26</td>
<td>12,76</td>
<td>11,66</td>
</tr>
<tr>
<td>PCE (%)</td>
<td>1,936</td>
<td>1,334</td>
<td>1,102</td>
<td>0,178</td>
<td>0,099</td>
<td>0,063</td>
</tr>
</tbody>
</table>

Tabla 5.3 Degradación célula solar orgánica no encapsulada fabricada por spin-coating en condiciones estándar (STC).

Como podemos ver en la tabla 5.3 en las primeras 24 horas pasa de un PCE del 1,93 % al 0,06 % que es casi nulo. Los parámetros más afectados son el FF y el Isc, ya que la Voc se mantiene casi constante. La célula se ve afectada por una degradación química por no estar encapsulada y en poco tiempo esta se ve totalmente degradada, aunque también se degrada físicamente ya que se producen cambios graduales en la microestructura que dan lugar a una degradación del rendimiento, pero para esta degradación se necesitan métodos de microscopía.
6. Monitorización de sistemas fotovoltaicos

6.1. Introducción

Como parte importante de nuestro trabajo fin de máster es el montaje y automatización de un sistema fotovoltaico experimental para monitorizar los parámetros medioambientales y técnicos. En este sistema fotovoltaico se miden 60 módulos solares orgánicos fabricados en DTU.

Mediremos estos módulos y evaluaremos su eficiencia, así como la degradación sufrida por estos módulos después de 3 años, ya que se encuentran fabricados desde mitad del 2011.

6.2. Localización

El lugar donde se ha realizado el montaje de la instalación es en el campus de la Universidad de Murcia, en la terraza del Instituto Universitario de Investigación en Óptica y Nanofísica. La posición la encontramos en la siguiente figura.

Figura 6.1 Localización del sistema fotovoltaico
La posición 38°01'24.6”N 1°10'33.5”W es en la que se encuentra el seguidor solar. Los sensores se encuentran distribuidos cerca del seguidor.

El sistema fijo se encuentra en la zona de piedras situada en el lado izquierdo de la figura 6.2. El ordenador con el sistema de captación de datos se encuentra en la primera planta del edificio.

6.3. Hardware, equipo y seguidor solar

Lo primero son los módulos fotovoltaicos que vamos a utilizar en el sistema, los cuales como se ha dicho anteriormente has sido fabricados en Dinamarca en el DTU (se describen en la sección 6.3.1).

El la instalación del sistema utilizaremos diferentes sensores y equipamiento para la motorización del sistema.

Contamos con un sistema de registro de datos en el que utilizamos EnviroMon. En el que van conectados los distintos sensores que utilizaremos.

Por otro lado la adquisición de datos para trazar la curva IV la hacemos utilizando un instrumento de medida de Keithley.

También contaremos con un sistema de relés con los que seleccionamos el modulo que vamos a medir.

Y por ultimo contamos con el seguidor solar con el cual se hace un seguimiento de la posición del sol en tiempo real.

6.3.1. Módulos solares orgánicos

Contamos con un total de 60 módulos fotovoltaicos orgánicos, los cuales fueron fabricados en el DTU de Dinamarca en el año 2011. Por lo que tras tres años veremos en las medidas la degradación de estos módulos por el paso del tiempo. Estos módulos fueron fabricados por Roll to Roll en el DTU, y cada modulo están compuestos de 16 células, y se dividen en paneles de 6 módulos cada uno, por lo que se cuenta con 10 paneles.

Según medidas realizadas en varios modulos se estimo unos valores medios de los datos que se midieron en en el 2011, dando los siguientes parámetros:

- $I_{sc}=70\,mA$
- $V_{oc}=0.8*16$ (células)$=12.8\,V$
- $P_{max}=0.6\,Wp$
- $Active\,Area=470\,cm^2$
- $PCE=1.67\%$

Figura 6.2 Modulo solar orgánico
En la figura 6.2 se ve un modulo de los utilizados en el 2011, ahora los módulos tienen unas modificaciones para poder tomar las medidas mejor de los mismo, los cuales lo vemos en la siguiente figura.

![Figura 6.3 Panel orgánico fotovoltaico utilizado en el sistema](image)

Figura 6.3 Panel orgánico fotovoltaico utilizado en el sistema

6.3.1. Registro de datos. Enviromon

EnviroMon es un sistema de registro de datos extremadamente versátil y ampliable. Es ideal para la monitorización en tiempo real de una amplia gama de parámetros tales como la temperatura, la humedad y el uso de energía. Puede tomar mediciones sobre grandes áreas, tales como almacenes, invernaderos, cuartos frigoríficos y fábricas. EnviroMon se compone de un número de diferentes módulos, incluyendo sensores, convertidores, alarmas y un registrador.

Se pueden conectar en red hasta diez convertidores mixtos a un registrador utilizando el propio cableado de EnviroMon, y añadir opciones de alarma para el sistema si es necesario. La conexión de los componentes del sistema se realiza en serie.

En nuestro caso el sistema cuenta de 5 convertidores conectados, siguiendo la distribución de la figura 6.4

![Figura 6.4 Distribución del sistema de control](image)
El sistema de comunicación utilizado en este sistema es de un cable de red de cuatro hilos que transporta energía y datos entre el registrador y convertidores. El registrador se puede conectar en cualquier lugar a lo largo del cable de red.

Para la mayoría de las aplicaciones, se utiliza un cable tipo teléfono de bajo costo. Esto permite el funcionamiento con 400 metros de cable de red entre el registrador y el sensor más alejado. Con cable más grueso, esta distancia se puede aumentar a un kilómetro o más. Pero en nuestro sistema no es necesario ya que se encuentra cerca la parte de adquisición de la de convertidores y sensores.

Empezando por la parte de Logging & Analysis en el cual encontramos el EnviroMon que se pone con comunicación con el ordenador por RS232. Este es un **EL005 Data Logger**.

![Figura 6.5 Data Logger EL005](image)

El registrador EL005 no tiene pantalla ni botones, y así es conectado al ordenador para ver los datos. El EL005 tiene una capacidad de memoria de 250000 muestras y baterías internas recargables de larga duración. Esta combinación hace que sea ideal para la grabación de datos durante largos períodos de tiempo, como es nuestro caso.

El registrador EL005 tiene una batería interna recargable. Esta batería se mantiene cargada mientras recibe la alimentación de red, y se mantendrá el sistema en funcionamiento durante un máximo de 72 horas con la batería.

De este Data logger sale a tres convertidores **EL037 General Purpose Converter** (Voltage / Current Inputs). En estos convertidores es donde va conectado, el sensor de irradiancia horizontal, el sensor de irradiancia del seguidor que va directo al sol, así como las medidas de corriente y voltaje, y por último la medida del anemómetro.

El EL037 tiene 4 canales de entrada cuando se utiliza con el registrador EL005, cada canal se puede configurar de forma independiente (mediante puentes) para medir ± 2,5 V, ± 10 V o 4-20 mA. Se pueden enrutar una fuente de alimentación externa (12 V o 24 V dependiendo de los requisitos de los dispositivos de entrada) a cada uno de los dispositivos de entrada. Las conexiones a los canales de entrada son a través de terminales de tornillo.

El sistema EnviroMon normalmente mostrará el valor de entrada en milivoltios. Esto puede cambiar el nombre y cambiar de escala en otras unidades, añadiendo la información de escala para el software.
El siguiente convertidor conectado al sistema es para medir las temperaturas, es el **EL001 3-Channel Converter** (Temperature and Switch Position). Este convertidor, el cual podemos ver en la figura 6.7, cuenta con tres canales para la medida de tres sensores de temperatura.

Y el último convertidor que encontramos en el sistema es para obtener la humedad y temperatura de un sensor de exterior que se encontrara en nuestra pequeña estación meteorológica. Este convertidor es el **EL026 Humidity / Temperature Converter**. Con este convertidor y utilizando su sensor de temperatura y humedad obtendremos unas medidas de alta precisión.
EnviroMon tiene su propio software con el que se adquieren las medidas pero en este trabajo se ha hecho un programa en Labview El sistema completo de convertidores queda como se muestra en la siguiente figura.

Figura 6.9 Sistema completo de EnviroMon

6.3.2. Sensores

Los sensores que tiene nuestro sistema son los que se describen a continuación. La conexión entre los sensores a los convertidores es por cable de red a los sensores de temperatura, humedad y anemómetro. Los demás sensores directamente a los canales de los convertidores.

Tres sensores de temperatura EL015. Este es un sensor resistivo de precisión adecuado para medir la temperatura de -30 °C a +70 °C. A menos que la temperatura hay que medir es fuera de este rango este sensor representa la mejor opción para medir la temperatura.

El sensor de humedad y temperatura de exterior que utilizamos en la estación meteorológica es el EL030 diseñado específicamente para el convertidor utilizado.

Figura 6.10 Sensor de humedad y temperatura

Junto con este sensor de humedad tendremos el anemómetro en nuestra estación meteorológica, este anemómetro es un anemómetro y Veleta potenciométrica Davis modelo 7911 con cable de 12 metros.
Este anemómetro mide de forma precisa la velocidad y dirección del viento. Es resistente a vientos extremos e incorpora rodamientos sellados de acero inoxidable para una larga duración.

En la siguiente imagen de la derecha podemos ver el sensor y a la izquierda el convertidor que se conecta a un canal de entrada del convertidor **EL037 General Purpose Converter**.

Los siguientes sensores son los dos sensores de irradiancia con los que cuenta nuestro sistema, los cuales irán también conectados a un convertidor de EnviroMon del tipo **EL037**.

El primer sensor de irradiancia es el **BF5 Sunshine**. Este es un versátil sensor de radiación solar. Se utiliza una matriz de fotodiodos con un patrón sombreado generado por ordenador único para medir la radiación solar incidente. Un microprocesador calcula las componentes globales y difusos de la radiación y determina el estado del sol. Incluyen un calentador integrado que mantiene el sensor clara de rocío, hielo y nieve a -20 grados C. Este sensor es el que colocamos en el suelo en posición horizontal ya que mide indirectamente las horas de sol usando una ecuación simple basada en la radiación total PAR (radiación fotosintéticamente activa). Este algoritmo sol se corresponde con la Oficina Mundial Met umbral de 120 W/m2 en el rayo solar de duración de la insolación. No necesita ser ajustado para seguir el sol. Las especificaciones del sensor se encuentran en detalle en el anexo III.

El segundo sensor para medir la irradiancia solar es el **CMP 3 piranómetro**. Este es el que va colocado en el seguidor solar. La construcción del sensor de termopila mide la energía solar que se recibe desde el espectro solar total y todo el hemisferio (180 grados campo de visión). La salida se expresa en vatios por metro cuadrado. Este sensor está diseñado para uso al aire...
libre continua. Está destinado a mediciones de la radiación de onda corta solar global en el rango espectral 300-2800 nm. El detector mide termopila irradiancia hasta 2000 W / m², con tiempo de respuesta <18 segundos y típico de sensibilidad de 10 mV / W / m² que variará de menos de 5% a partir de -10 ºC a +40 º C. Rango de temperatura de funcionamiento es de -40 º C a +80 º C y la estabilidad es superior al 1% por año.

El Piranómetro no requiere ninguna potencia, que suministra una tensión baja de 0-20mV en relación con la cantidad de radiación entrante. Cuando se requiere un nivel de voltaje más alto o una señal de 4-20 mA, se utilizara el AMPBOX, que se muestra a la izquierda de la figura 6.13

Por último contamos con un sensor de corriente fabricado para la medición electrónica de las corrientes pequeñas que pasa por los cables, las especificaciones se encuentran en el anexo IV.

En la figura 6.14 podemos ver a la derecha el transformador casero necesario para el sensor de corriente que necesita una Vcc +15 V y -15 V.

6.3.3. Equipo de medida Keithley

Para la realización de las curvas IV de nuestros módulos solares orgánicos hemos utilizado un instrumento de medida Keithley Serie 2400 el cual está diseñado específicamente para aplicaciones de prueba fuertemente acoplados y medición. Todos los modelos SourceMeter proporcionan voltaje de precisión y generación de corriente, así como capacidades de medición. Este es a su vez una fuente altamente estable de alimentación de CC y un multímetro verdadero de grado 6 ½ dígitos. Las características de la fuente de energía incluyen bajo ruido, precisión y colación. Las capacidades del multímetro incluyen alta repetibilidad y
Evaluación de tecnologías fotovoltaicas orgánicas

bajo ruido. En funcionamiento de este instrumentos pueden actuar como una fuente de
tensión, una fuente de corriente, un medidor de tensión, un medidor de corriente, y un
ohmímetro.

Figura 6.15 Instrumento Keithley Serie 2400

Es este caso se ha utilizado como medido de corriente y tensión al mismo tiempo, por ello
podemos obtener las curvas IV con solo este instrumento. Se puede medir las entradas por 2
canales o por 4, para medir con mayor precisión en la medición de los módulos se han utilizado
los 4 canales, teniendo dos conexiones positivas y dos negativas, conectadas como muestra la
figura 6.16.

Figura 6.16 Conexión en cuatro canales

La salida del instrumento al ordenador se puede realizar por RS232 o por GPIB. Se ha utilizado
la conexión por GPIB del instrumento al ordenador, haciendo las configuraciones necesarias de
la tarjeta GPIB para que se comunique perfectamente.
6.3.4. **Tarjeta de Relés**

La tarjeta de relés utilizada es una tarjeta de 8 relés con los que se conectan cada uno de los paneles en un relé y de esta manera podemos medir con un bucle en el programa cada uno de los módulos sin necesidad de conectar y desconectar cada uno a la Keithley. Con esta tarjeta se miden 6 módulos. Además se puede cambiar la configuración de cada uno de los módulos conectándolos entre sí en serie y paralelo para obtener diferentes medidas, pero eso está fuera de este trabajo fin de máster y sería una tarea futura.

La conexión de la tarjeta de relés se hace directamente por USB por el que también se alimenta.

6.3.5. **Seguidor solar**

El seguidor solar que utilizamos es de la marca Sat control modelo SM40M1V. Este seguidor solar de dos ejes, cuenta con dos motores lineales uno para la elevación y otro la angulación. El ángulo de elevación es de 15 a 90 grados y la velocidad de rotación de 0.052 - 0.062 ° / s.

Cabe destacar que el seguimiento del Sol se hace vía internet, por lo que es necesario que se encuentre conectado a internet para que con el programa que utiliza pueda funcionar el seguidor.

La conexión con el seguidor solar se hace a través de RS485, el cual con un convertidor es pasado a RS232 (figura 6.19 derecha), y este a USB con un convertidor (figura 6.19 izquierda), para la conexión del seguidor al ordenador.
Con este seguidor podemos hacer un seguimiento del sol a lo largo de todo el día, o utilizarlo para desorientar los paneles a ángulos no óptimos para ver su comportamiento. En nuestro caso el seguidor solar lo hemos utilizado con 18 módulos, en el que los módulos los desorientamos y comprobamos que este tipo de módulos totalmente desorientados pueden todavía generar energía, con una eficiencia baja.

El seguidor solar utiliza su propio programa se describe en el punto 6.4.

Los planos de la conexión del seguidor solar se presentan en el anexo V.

En la figura 6.20 podemos ver el seguidor solar en funcionamiento con los 18 módulos orgánicos de los que obtenemos las medidas en orientación opuesta al Sol.

Figura 6.20 Seguidor solar con módulos solares orgánicos

6.4. **Software del sistema**

El software utilizado en este trabajo fin de máster ha sido el Labview, con el que hemos realizado los programas necesarios para el correcto funcionamiento de nuestro sistema.

También se ha utilizado el programa de EnviroMon para la comprobación de que los convertidores se comunican perfectamente y los datos que obtenemos están dentro de unos rangos aceptables.

Por último se ha utilizado el programa específico del seguidor solar el cual es el Helios Analytics, con el que hemos movido manualmente el seguidor solar poniéndolo en la posición que se quería.
6.4.1. Programas de Labview

Labview es una plataforma y entorno de desarrollo para diseñar sistemas, con un lenguaje de programación visual gráfico. Recomendado para sistemas hardware y software de pruebas, control y diseño, simulado o real y embebido. El lenguaje que usa se llama lenguaje G, donde la G simboliza que es lenguaje Gráfico.

Se han realizado un total de 6 programas con esta plataforma, de los cuales 4 son subprogramas que se utilizan dentro de un programa principal, que es el que se encarga de sacar la curva IV y los parámetros característicos de las células solares. Y por otro lado un segundo programa principal que es el que se encarga de guardar todos los parámetros ambientales y recogidos por el Enviromon.

El primer sub-programa es el encargado de realizar la curva IV y sacar los parámetros característicos de los módulos que se están midiendo. En este se realizan las operaciones necesarias para obtener los valores y utilizamos el protocolo de comunicación por GPIB para obtener los datos de la Keithley. El programa lo encontramos en el anexo VI con detalle ya que es demasiado grande.

Los siguientes sub-programas son tres, los cuales están relacionados entre sí, y son los que están relacionados con el funcionamiento de los relés. El primero es el Relay Init que es el encargado de abrir los relés. El segundo es el central que va seguido del Relay Init, y es el que se repite 6 veces ya que es el que selecciona el modulo que se mide, y en nuestro caso medido 6 módulos uno detrás de otro con un solo programa, este es el sub-programa Module selector. Y el tercero que es el que está después del bucle del module selector que es el encargado de cerrar los relés, y este es el Relay Close.

Podemos ver la secuencia de los sub-programas de los relés en la siguiente figura.

![Figura 6.21 Los tres sub-programas de la secuencia de relés](image)

Estos cuatro sub-programas se encuentran dentro de nuestro programa principal, el cual se encarga de sacar los parámetros característicos así como todos los valores de la curva IV de
cada uno de los módulos y guardarnos en archivos de texto con todos los datos, los cuales luego recuperamos para tratar todos los datos.

El programa principal se encuentra en el anexo VII detallado.

Y como último un programa con el que obtenemos los parámetros ambientales de la instalación. Este programa se llama Enviromont_Out, del cual también se guardan también todos los parámetros ambientales en archivos de texto para tenerlos todos los datos guardados.

En la siguiente figura vemos el programa detallado, que lo que hace es sacar los valores del propio EnviroMon, en el cual se les hace la conversión necesarias para que las medidas estén en el sistema internacional.

Figura 6.22 Programa parámetros del EnviroMon

6.4.2. Programa EnviroMon

Este programa solo se ha utilizado para comprobar que la conexión de los convertidores es correcta y todos los sensores están funcionando correctamente, ya que los valores los medimos y guardamos en el programa nombrado en el punto anterior.

En la figura 6.23 se ve una vista previa del programa en funcionamiento con los sensores activos, los cuales se encuentran todos en verde.
6.4.3. Helios Analytics

Este programa viene de serie con el seguidor solar, por lo que lo único que se ha de hacer es poner el puerto de comunicación que en este caso conexión USB y la utilización se encuentra detallada en el manual del mismo.

En la figura 6.24 vemos la vista previa del programa desde donde se modifican los valores. Nosotros hemos utilizado el lado inferior derecho del panel para mover el seguidor de manera manual.
6.5. Resultados experimentales

Una vez descrito el sistema y todo el equipo utilizado pasamos en este punto a ver los resultados obtenidos de las mediciones de los módulos fotovoltaicos orgánicos.

Nuestro sistema se encuentra, según los protocolos vistos en el punto 4.2, entre un nivel bajo y un nivel medio, estaría entre el ISO-O-1 y el ISOS-O-2, más cercano al ISOS-O-2. Según estos protocolos se tiene en cuenta el intervalo de medida mínimo, que en nuestro caso es de diaria a semanal y en algunos casos varias medidas en un solo día, por lo que tenemos un nivel medio, para tener un nivel alto habría que realizar más medidas y también obtener medidas en interior de manera semanal, pero esto será una tarea de futuro. Por otro lado se tiene en cuenta la caracterización de la fuente de luz, que en nuestro caso es la luz solar en condiciones buenas teniendo el nivel medio. Y por último los datos de localización y tiempo que estos datos son necesarios para todos los niveles. Cabe destacar que para tener un nivel alto solo se tiene que realizar más medidas de los paneles y someterlos a medidas de interior con un simulador solar de AM 1.5G.

Para el tratado de datos se ha utilizado dos programas, por un lado Microsoft Excel para ordenar datos y hacer gráficas, y por otro Origin representar y comparar datos.

- Primero se realizaron unas medidas de los 60 módulos fotovoltaicos en los que sacamos la Isc y la Voc colocando los paneles a 0 grados con respecto a la horizontal del horizonte, quedando en una orientación no óptima con respecto al sol, y estas medidas son realizadas con el multímetro. Con estas primeras mediciones lo que se quiso comprobar es que los paneles después de 3 años guardados seguían siendo útiles y comprobar cuántos de los 60 módulos no funcionaban y sobre qué valores oscilaban las medidas. Recordamos que contamos con 10 paneles y en cada panel hay 6 módulos fotovoltaicos orgánicos. El área activa con la que cuentan los módulos es de 0,047 m². La temperatura de esta primera medida estaba entre los 25 y 30 grados. Y la irradiancia esta entorno a los 1000 W/m².

Tras las primeras medidas se ha obtenido que de los 60 módulos han dejado de funcionar 6, por lo que se cuentan con 54 operativos. Y los valores más característicos de un panel que son la corriente de cortocircuito y el voltaje a circuito abierto estaban, la Isc = 18±/-2mA, y la Voc alrededor de los 6 V. Estos valores ya nos dan una idea de que al ser la intensidad de cortocircuito tan baja, la generación de energía de estos será baja, así como su eficiencia. Teniendo en cuenta que estos valores en el 2011 eran de una Isc = 70 mA y una Voc = 12.8V, vemos como la tensión se ha degradado a la mitad y al corriente ha disminuido alrededor del 30%, por lo que las eficiencias de estos paneles se verán también afectadas por estos valores, siendo esta más baja de la que tenía al comienzo del 1,67 %.

Todas las primeras medidas detalladas las podemos encontrar en el anexo VIII.

- Las segundas medidas que se han tomado son orientando los módulos directamente al sol. En cuyo caso ya hemos obtenido todos los parámetros y las curvas IV de todos los módulos operativos. Y cuya irradiancia ha ido variando ya que al tomarse al exterior esta dependía de la irradiancia del sol en el momento de la medida.
Los módulos que no funcionan son el B1, B2, D4, F6, G1 y J1. Por lo que estos módulos no se han medido ya que su respuesta sabemos que es nula. En la siguiente tabla podemos ver los datos obtenidos de las medidas.

<table>
<thead>
<tr>
<th>MODULO</th>
<th>FF (%)</th>
<th>G (W/m2)</th>
<th>Pm (W)</th>
<th>Voc (V)</th>
<th>Isc (A)</th>
<th>Jsc (mA/cm²)</th>
<th>PCE (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>31.47</td>
<td>972</td>
<td>0.041</td>
<td>6.09</td>
<td>0.0211</td>
<td>0.045</td>
<td>0.088</td>
</tr>
<tr>
<td>A2</td>
<td>31.02</td>
<td>972</td>
<td>0.047</td>
<td>5.36</td>
<td>0.0304</td>
<td>0.065</td>
<td>0.083</td>
</tr>
<tr>
<td>A3</td>
<td>30.59</td>
<td>972</td>
<td>0.047</td>
<td>5.36</td>
<td>0.0304</td>
<td>0.065</td>
<td>0.083</td>
</tr>
<tr>
<td>A4</td>
<td>31.78</td>
<td>972</td>
<td>0.037</td>
<td>4.77</td>
<td>0.0241</td>
<td>0.051</td>
<td>0.089</td>
</tr>
<tr>
<td>A5</td>
<td>31.87</td>
<td>972</td>
<td>0.023</td>
<td>3.76</td>
<td>0.0204</td>
<td>0.043</td>
<td>0.081</td>
</tr>
<tr>
<td>A6</td>
<td>30.27</td>
<td>972</td>
<td>0.022</td>
<td>3.76</td>
<td>0.0195</td>
<td>0.041</td>
<td>0.051</td>
</tr>
<tr>
<td>B3</td>
<td>29.23</td>
<td>972</td>
<td>0.048</td>
<td>5.00</td>
<td>0.0326</td>
<td>0.069</td>
<td>0.098</td>
</tr>
<tr>
<td>B4</td>
<td>24.76</td>
<td>972</td>
<td>0.063</td>
<td>5.91</td>
<td>0.0355</td>
<td>0.076</td>
<td>0.139</td>
</tr>
<tr>
<td>B5</td>
<td>30.13</td>
<td>972</td>
<td>0.056</td>
<td>5.45</td>
<td>0.0347</td>
<td>0.074</td>
<td>0.139</td>
</tr>
<tr>
<td>B6</td>
<td>29.75</td>
<td>990</td>
<td>0.044</td>
<td>5.00</td>
<td>0.0298</td>
<td>0.063</td>
<td>0.122</td>
</tr>
<tr>
<td>C1</td>
<td>27.78</td>
<td>970</td>
<td>0.047</td>
<td>6.27</td>
<td>0.0256</td>
<td>0.054</td>
<td>0.104</td>
</tr>
<tr>
<td>C2</td>
<td>29.21</td>
<td>998</td>
<td>0.036</td>
<td>5.18</td>
<td>0.0229</td>
<td>0.049</td>
<td>0.083</td>
</tr>
<tr>
<td>C3</td>
<td>29.83</td>
<td>998</td>
<td>0.048</td>
<td>6.36</td>
<td>0.0258</td>
<td>0.055</td>
<td>0.076</td>
</tr>
<tr>
<td>C4</td>
<td>37.89</td>
<td>998</td>
<td>0.053</td>
<td>6.82</td>
<td>0.0267</td>
<td>0.057</td>
<td>0.114</td>
</tr>
<tr>
<td>C5</td>
<td>29.30</td>
<td>998</td>
<td>0.049</td>
<td>6.09</td>
<td>0.0275</td>
<td>0.059</td>
<td>0.114</td>
</tr>
<tr>
<td>C6</td>
<td>26.05</td>
<td>998</td>
<td>0.047</td>
<td>5.36</td>
<td>0.0304</td>
<td>0.065</td>
<td>0.083</td>
</tr>
<tr>
<td>D1</td>
<td>28.98</td>
<td>998</td>
<td>0.040</td>
<td>7.00</td>
<td>0.0181</td>
<td>0.038</td>
<td>0.101</td>
</tr>
<tr>
<td>D2</td>
<td>31.86</td>
<td>998</td>
<td>0.044</td>
<td>6.91</td>
<td>0.0205</td>
<td>0.044</td>
<td>0.086</td>
</tr>
<tr>
<td>D3</td>
<td>30.79</td>
<td>998</td>
<td>0.043</td>
<td>6.64</td>
<td>0.0205</td>
<td>0.044</td>
<td>0.094</td>
</tr>
<tr>
<td>D5</td>
<td>32.47</td>
<td>998</td>
<td>0.041</td>
<td>6.09</td>
<td>0.0211</td>
<td>0.045</td>
<td>0.088</td>
</tr>
<tr>
<td>D6</td>
<td>32.02</td>
<td>998</td>
<td>0.042</td>
<td>5.73</td>
<td>0.0241</td>
<td>0.051</td>
<td>0.088</td>
</tr>
<tr>
<td>E1</td>
<td>30.59</td>
<td>850</td>
<td>0.038</td>
<td>6.79</td>
<td>0.0180</td>
<td>0.038</td>
<td>0.094</td>
</tr>
<tr>
<td>E2</td>
<td>30.97</td>
<td>850</td>
<td>0.037</td>
<td>6.49</td>
<td>0.0185</td>
<td>0.039</td>
<td>0.093</td>
</tr>
<tr>
<td>E3</td>
<td>28.92</td>
<td>850</td>
<td>0.034</td>
<td>5.88</td>
<td>0.0199</td>
<td>0.042</td>
<td>0.086</td>
</tr>
<tr>
<td>E4</td>
<td>59.65</td>
<td>850</td>
<td>0.035</td>
<td>5.88</td>
<td>0.0201</td>
<td>0.043</td>
<td>0.085</td>
</tr>
<tr>
<td>E5</td>
<td>30.44</td>
<td>850</td>
<td>0.038</td>
<td>6.28</td>
<td>0.0196</td>
<td>0.042</td>
<td>0.092</td>
</tr>
<tr>
<td>E6</td>
<td>44.07</td>
<td>850</td>
<td>0.036</td>
<td>6.28</td>
<td>0.0190</td>
<td>0.041</td>
<td>0.083</td>
</tr>
<tr>
<td>F1</td>
<td>34.96</td>
<td>850</td>
<td>0.043</td>
<td>6.00</td>
<td>0.0210</td>
<td>0.045</td>
<td>0.106</td>
</tr>
<tr>
<td>F2</td>
<td>31.65</td>
<td>850</td>
<td>0.044</td>
<td>5.60</td>
<td>0.0245</td>
<td>0.052</td>
<td>0.113</td>
</tr>
<tr>
<td>F3</td>
<td>31.93</td>
<td>850</td>
<td>0.039</td>
<td>5.27</td>
<td>0.0249</td>
<td>0.053</td>
<td>0.098</td>
</tr>
<tr>
<td>F4</td>
<td>29.58</td>
<td>850</td>
<td>0.043</td>
<td>5.84</td>
<td>0.0243</td>
<td>0.052</td>
<td>0.107</td>
</tr>
<tr>
<td>F5</td>
<td>29.93</td>
<td>850</td>
<td>0.042</td>
<td>6.00</td>
<td>0.0233</td>
<td>0.050</td>
<td>0.105</td>
</tr>
<tr>
<td>G2</td>
<td>30.20</td>
<td>850</td>
<td>0.028</td>
<td>4.79</td>
<td>0.0188</td>
<td>0.040</td>
<td>0.073</td>
</tr>
<tr>
<td>G3</td>
<td>30.09</td>
<td>850</td>
<td>0.031</td>
<td>5.03</td>
<td>0.0195</td>
<td>0.041</td>
<td>0.078</td>
</tr>
<tr>
<td>G4</td>
<td>30.59</td>
<td>850</td>
<td>0.038</td>
<td>5.84</td>
<td>0.0208</td>
<td>0.044</td>
<td>0.096</td>
</tr>
<tr>
<td>G5</td>
<td>30.94</td>
<td>850</td>
<td>0.038</td>
<td>5.84</td>
<td>0.0204</td>
<td>0.043</td>
<td>0.095</td>
</tr>
<tr>
<td>G6</td>
<td>31.75</td>
<td>850</td>
<td>0.033</td>
<td>5.84</td>
<td>0.0184</td>
<td>0.039</td>
<td>0.093</td>
</tr>
<tr>
<td>H1</td>
<td>39.53</td>
<td>850</td>
<td>0.047</td>
<td>7.70</td>
<td>0.0197</td>
<td>0.042</td>
<td>0.107</td>
</tr>
<tr>
<td>H2</td>
<td>30.99</td>
<td>850</td>
<td>0.041</td>
<td>6.59</td>
<td>0.0199</td>
<td>0.042</td>
<td>0.104</td>
</tr>
<tr>
<td>H3</td>
<td>31.03</td>
<td>850</td>
<td>0.029</td>
<td>5.58</td>
<td>0.0171</td>
<td>0.036</td>
<td>0.074</td>
</tr>
<tr>
<td>H4</td>
<td>30.73</td>
<td>850</td>
<td>0.036</td>
<td>5.98</td>
<td>0.0188</td>
<td>0.040</td>
<td>0.089</td>
</tr>
<tr>
<td>H5</td>
<td>31.62</td>
<td>850</td>
<td>0.033</td>
<td>6.18</td>
<td>0.0174</td>
<td>0.037</td>
<td>0.087</td>
</tr>
<tr>
<td>H6</td>
<td>30.39</td>
<td>850</td>
<td>0.033</td>
<td>6.28</td>
<td>0.0172</td>
<td>0.037</td>
<td>0.082</td>
</tr>
<tr>
<td>I1</td>
<td>25.86</td>
<td>950</td>
<td>0.027</td>
<td>6.00</td>
<td>0.0189</td>
<td>0.040</td>
<td>0.077</td>
</tr>
</tbody>
</table>
Podemos comprobar cómo la irradiancia ha ido variando y se encontraba entre los 850 y 1000 W/m². La temperatura a la que se encontraba los paneles a la hora de la medida era de 32 grados. Y la humedad durante las medidas se encontraba entre los 42 y 52 %. En viento en estas medidas ha sido ignorado ya que no nos afectaba.

Con estos datos podemos ver como de los 56 módulos activos se obtiene una eficiencia de alrededor de 0,1% o menor. Teniendo en cuenta que estos módulos tres años atrás tenían una eficiencia del 1,67%, estos se han degradado casi totalmente. Una vez que sabemos esto, normalizamos la eficiencia al primer dato obtenido y obtenemos una gráfica como la que se muestra en la siguiente figura.

Como podemos observar la eficiencia se queda entre el 0,14 % y el 0,05 %.

Por otro lado sacamos una nube de puntos de los dos valores más importantes que son la corriente de cortocircuito y el voltaje a circuito abierto, en la que nos quedan las dos gráficas siguientes.
En estas gráficas podemos observar como la Voc está entre los 3,5 y 8 V, y la Isc entre los 15 y 36 mA.

Y en el caso del tercer valor más importante, el factor de llenado, se encuentra en torno al 30 %, por lo que es bajo, y en definitiva esto con los valores anteriores repercute en tener una Resistencia seria y parasita más grande, y por tanto una eficiencia baja como hemos comprobado.

Como dato interesante esta el módulo J5, que también fue medido cuando estaba nublado, y se obtuvo sorprendentemente una eficiencia del 1,13% que es muy buena para la que tenía nada más salir de fábrica. Esto es debido a que según los estudios realizados en el DTU [42] las células solares orgánicas trabajan mejor con cielos nublados y con menor irradiancia.
La curva IV obtenida de este panel sigue teniendo los valores bajos, pero al utilizar la formula de la eficiencia y ser la irradiancia mucho menor, hace que la eficiencia del conjunto sea un poco mejor. En estas condiciones la curva IV (Gráfica 6.4) es muy parecida a la de los demás módulos, teniendo un factor de llenado igual.

Gráfica 6.4 Curva IV del módulo J5 con baja irradiancia

Obtenidos estos valores pasamos a las terceras medidas realizadas que han sido poniendo el seguidor solar opuesto a la luz de sol, con un ángulo de -37 grados, y el sol se encontraba justo en el extremo opuesto.

Para realizar estas medidas se han seleccionado algunos de los que mejor funcionaba, quedándonos con 9 módulos. Los valores obtenidos son los que encontramos en la siguiente tabla.

<table>
<thead>
<tr>
<th>MODULO</th>
<th>FF (%)</th>
<th>G (W/m²)</th>
<th>Vmpp (V)</th>
<th>Impp (A)</th>
<th>Voc (V)</th>
<th>Isc (A)</th>
<th>PCE (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>F2</td>
<td>27.80</td>
<td>63</td>
<td>0.829</td>
<td>0.00102</td>
<td>1.43</td>
<td>0.00211</td>
<td>0.028</td>
</tr>
<tr>
<td>F3</td>
<td>27.84</td>
<td>63</td>
<td>0.829</td>
<td>0.00115</td>
<td>1.43</td>
<td>0.00234</td>
<td>0.028</td>
</tr>
<tr>
<td>F5</td>
<td>27.19</td>
<td>52</td>
<td>1.031</td>
<td>0.00069</td>
<td>1.64</td>
<td>0.00131</td>
<td>0.026</td>
</tr>
<tr>
<td>J2</td>
<td>30.65</td>
<td>52</td>
<td>1.031</td>
<td>0.00079</td>
<td>1.74</td>
<td>0.00152</td>
<td>0.030</td>
</tr>
<tr>
<td>J3</td>
<td>34.99</td>
<td>55</td>
<td>1.031</td>
<td>0.00062</td>
<td>1.64</td>
<td>0.00127</td>
<td>0.028</td>
</tr>
<tr>
<td>J4</td>
<td>26.96</td>
<td>52</td>
<td>1.031</td>
<td>0.00071</td>
<td>1.84</td>
<td>0.00124</td>
<td>0.032</td>
</tr>
<tr>
<td>J5</td>
<td>26.94</td>
<td>55</td>
<td>1.031</td>
<td>0.00075</td>
<td>1.74</td>
<td>0.00157</td>
<td>0.028</td>
</tr>
<tr>
<td>E6</td>
<td>27.10</td>
<td>52</td>
<td>1.031</td>
<td>0.00073</td>
<td>1.74</td>
<td>0.00157</td>
<td>0.030</td>
</tr>
<tr>
<td>E5</td>
<td>27.56</td>
<td>52</td>
<td>1.031</td>
<td>0.00075</td>
<td>1.74</td>
<td>0.00157</td>
<td>0.030</td>
</tr>
</tbody>
</table>

Tabla 6.2 Parámetros de los módulos fotovoltaicos en oposición a la luz del sol

Como podemos ver con una irradiancia muy baja y de forma indirecta, el factor de llenado de los mismos casi no varía. La Isc y Voc en consecuencia si son más bajas y por ello la eficiencia también lo es. Se ha obtenido una eficiencia de alrededor del 0,03% con una irradiancia de 63 W/m², que en comparación con lo obtenido a irradiancia de alrededor de entre 800 y 1000 W/m², las cuales dieron una eficiencia alrededor del 0,08 y 0,1%, vemos como en este tipo de células las irradiancias altas no hacen que se comporten los paneles mucho mejor.
Para ver mejor la diferencia entre las curvas IV utilizamos 2 de los módulos, y superponemos la curva con irradiancia directa y la curva totalmente desorientada. Hemos utilizado el J5 y F2.

Como podemos comprobar en los dos módulos, al tener una irradiancia menor la curva IV es menor, aunque el factor de llenado es prácticamente igual, y la eficiencia se ve reducida a menos de la mitad, pero aun estando los módulos con baja irradiancia y totalmente desorientados siguen dando una respuesta.
7. Conclusiones

Aunque las mejores eficiencias de estos dispositivos están, a día de hoy, en el rango del 5-6%, no existen obstáculos importantes para conseguir eficiencias mayores en los próximos años. La comunidad científica tiene las ideas claras sobre el funcionamiento de los dispositivos y dispone de estrategias para continuar mejorando sus rendimientos. La previsión general es que los futuros progresos vendrán dados tanto por nuevos materiales optimizados, como por geometrías de dispositivo más eficientes. [40]

Es preciso admitir que, en los últimos años, se han conseguido algunos progresos en el desarrollo de los métodos de producción para células solares orgánicas. Se ha demostrado la viabilidad de múltiples métodos de impresión y recubrimiento para lograr películas que ya cumplen especificaciones de funcionamiento de dispositivos. La fabricación roll-to-roll de módulos eficientes constituye el último eslabón tecnológico que es preciso superar para pasar, de una fase de investigación y desarrollo, a la producción en masa (o masiva), en la escala de los Gigavatios.

➢ Con respecto a los protocolos para los estudios de degradación de células solares orgánicas y las ISOS que tenemos en el sistema montado, sabemos que es de entre un nivel bajo y medio. El reto como trabajo futuro es seguir mejorando los sistemas utilizados y llegar al nivel más sofisticado de medida que sería las ISOS de nivel 3.

El trabajo presentado en este proyecto fin de máster está dirigido al estudio de dos partes.

➢ La primera estudiar las diferentes técnicas de fabricación. Se han fabricado un total de células solares orgánicas por spin-coating, spray-coating y doctor blading, de las cuales hemos obtenido que las mejores eficiencias se han logrado por spin-coating, debido principalmente a la experiencia en fabricación con este método en el laboratorio.

➢ La segunda línea ha sido el montaje de un sistema con seguidor solar y sistema fijo de 30 grados, de los cuales hemos obtenidos todos los datos ambientales como parámetros importantes de las células solares orgánicas que se tenían. Aunque estos módulos fueron fabricados en el 2011 y tras tres años se han degradado mucho, se ha podido estudio como afecta la irradiancia en los módulos orgánicos, así como la orientación. Se ha obtenido que aunque la irradiancia sea muy baja y el panel este totalmente desorientado estas células siguen teniendo una respuesta positiva y generando energía.

7.1. Tareas futuras

El apartado de fabricación de células queda por mejorar principalmente los dos métodos utilizados como novedad, los cuales son spray-coating y doctor blading. Optimizar los métodos de fabricación para obtener mejores eficiencias. Fabricación con geométrica invertida. Y también realizar un estudiar de forma completa el análisis de ciclo de vida para estas tecnologías y calculando la energía embebida en el proceso de fabricación.

Y con respecto al montaje del sistema y medidas de módulos fotovoltaicos orgánicos, quedaría seguir optimizando el sistema, y conseguir paneles nuevos para poder realizarles un estudio de
degradación en las condiciones ambientales de la región de Murcia en comparación con estudios realizados en otros puntos de Europa con los mismos tipos de células orgánicas, y de esta manera poder realizar un ciclo de vida útil de estos paneles y estudiar la rentables de esta tecnología a nivel comercial.

Por otro lado mejora el sistema y los protocolos de medidas para tener un sistema de nivel alto, con una ISOS-O-3.

Por último con respecto al sistema motorizado utilizar la tarjeta de relés para ir modificando la configuración de los paneles a serie y paralelo para ver posibles mejoras en la configuración de la instalación.
8. Bibliografía

Referencias del trabajo:

Páginas web:

http://www.picotech.com/data.html
Evaluación de tecnologías fotovoltaicas orgánicas

http://www.kippzonen.com/Product/11/CMP-3-Pyranometer#.U_tMEsV_sw8

http://www.keithley.com/products/dcac/voltagesource/broadpurpose/?mn=2400

Anexo I

Maquina con la que se han fabricado los módulos fotovoltaicos orgánicos en Dinamarca en el DTU.
Anexo II

Tabla con todos los parámetros de las células fabricadas. La irradiancia es de 1000 W/m² dada por el simulador, y la temperatura de 25 grados.

<table>
<thead>
<tr>
<th>Parámetros</th>
<th>1A</th>
<th>1B</th>
<th>1C</th>
<th>1D</th>
<th>2A</th>
<th>2B</th>
<th>2C</th>
<th>2D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Área (mm²)</td>
<td>9.00E-06</td>
<td>9.00E-06</td>
<td>9.00E-06</td>
<td>9.00E-06</td>
<td>1.50E-06</td>
<td>1.50E-06</td>
<td>1.50E-06</td>
<td>1.50E-06</td>
</tr>
<tr>
<td>Voc (V)</td>
<td>0.533</td>
<td>0.533</td>
<td>0.533</td>
<td>0.533</td>
<td>0.533</td>
<td>0.533</td>
<td>0.533</td>
<td>0.533</td>
</tr>
<tr>
<td>Ics (A)</td>
<td>-0.00032</td>
<td>-0.00033</td>
<td>-0.00043</td>
<td>-0.00045</td>
<td>-0.00001</td>
<td>-0.00011</td>
<td>-0.00014</td>
<td>-0.00003</td>
</tr>
<tr>
<td>Vm (V)</td>
<td>0.400</td>
<td>0.333</td>
<td>0.333</td>
<td>0.333</td>
<td>0.267</td>
<td>0.333</td>
<td>0.333</td>
<td>0.267</td>
</tr>
<tr>
<td>Im (A)</td>
<td>-21.1 E-5</td>
<td>-24.6 E-5</td>
<td>-29.3 E-5</td>
<td>-29.8 E-5</td>
<td>-6 E-5</td>
<td>-5.9 E-5</td>
<td>-8.7 E-5</td>
<td>-1.2 E-5</td>
</tr>
<tr>
<td>PCE (%)</td>
<td>0.936</td>
<td>0.911</td>
<td>1.085</td>
<td>1.105</td>
<td>0.109</td>
<td>1.321</td>
<td>1.936</td>
<td>0.219</td>
</tr>
<tr>
<td>FF (%)</td>
<td>50.12</td>
<td>46.12</td>
<td>42.32</td>
<td>41.58</td>
<td>25.45</td>
<td>33.72</td>
<td>38.17</td>
<td>22.47</td>
</tr>
<tr>
<td>Área (mm²)</td>
<td>9E-06</td>
<td>9E-06</td>
<td>9E-06</td>
<td>9E-06</td>
<td>9E-06</td>
<td>9E-06</td>
<td>9E-06</td>
<td>9E-06</td>
</tr>
<tr>
<td>Voc (V)</td>
<td>0.200</td>
<td>0.333</td>
<td>0.600</td>
<td>0.600</td>
<td>0.467</td>
<td>0.467</td>
<td>0.400</td>
<td>0.400</td>
</tr>
<tr>
<td>Ics (A)</td>
<td>-21.7 E-5</td>
<td>-29.6 E-5</td>
<td>-2.28E-05</td>
<td>-2.01E-05</td>
<td>-43.3 E-5</td>
<td>-48.1 E-5</td>
<td>-42.6 E-5</td>
<td>-39.9 E-5</td>
</tr>
<tr>
<td>Vm (V)</td>
<td>0.133</td>
<td>0.133</td>
<td>0.200</td>
<td>0.267</td>
<td>0.267</td>
<td>0.267</td>
<td>0.267</td>
<td>0.267</td>
</tr>
<tr>
<td>Im (A)</td>
<td>-10.1 E-5</td>
<td>-19.2 E-5</td>
<td>-1.04 E-5</td>
<td>-74 E-5</td>
<td>-26 E-5</td>
<td>-26.2 E-5</td>
<td>-20.7 E-5</td>
<td>-26 E-5</td>
</tr>
<tr>
<td>PCE (%)</td>
<td>0.150</td>
<td>0.285</td>
<td>0.023</td>
<td>0.022</td>
<td>0.771</td>
<td>0.777</td>
<td>0.612</td>
<td>0.572</td>
</tr>
<tr>
<td>FF (%)</td>
<td>30.98</td>
<td>25.93</td>
<td>15.27</td>
<td>16.29</td>
<td>34.36</td>
<td>31.14</td>
<td>32.37</td>
<td>32.28</td>
</tr>
<tr>
<td>Área (mm²)</td>
<td>9.00E-06</td>
<td>9.00E-06</td>
<td>9.00E-06</td>
<td>9.00E-06</td>
<td>9.00E-06</td>
<td>9.00E-06</td>
<td>1.20E-05</td>
<td>1.20E-05</td>
</tr>
<tr>
<td>Voc (V)</td>
<td>0.533</td>
<td>0.533</td>
<td>0.533</td>
<td>0.533</td>
<td>0.600</td>
<td>0.600</td>
<td>0.600</td>
<td>0.533</td>
</tr>
<tr>
<td>Ics (A)</td>
<td>-43.5 E-5</td>
<td>-42.5 E-5</td>
<td>-4.14 E-5</td>
<td>-43.5 E-5</td>
<td>-46.6 E-5</td>
<td>-10.3 E-5</td>
<td>-9.6 E-06</td>
<td>-40.00</td>
</tr>
<tr>
<td>Vm (V)</td>
<td>0.33</td>
<td>0.33</td>
<td>0.33</td>
<td>0.33</td>
<td>0.40</td>
<td>0.33</td>
<td>0.33</td>
<td>0.13</td>
</tr>
<tr>
<td>Im (A)</td>
<td>-24.6 E-5</td>
<td>-22.1 E-5</td>
<td>-2.26 E-5</td>
<td>-18.5 E-5</td>
<td>-27.1 E-5</td>
<td>-28.8 E-5</td>
<td>-5.5 E-5</td>
<td>-3.9 E-6</td>
</tr>
<tr>
<td>PCE (%)</td>
<td>0.912</td>
<td>0.820</td>
<td>0.835</td>
<td>0.685</td>
<td>1.002</td>
<td>1.282</td>
<td>0.153</td>
<td>0.004</td>
</tr>
<tr>
<td>FF (%)</td>
<td>35.75</td>
<td>31.78</td>
<td>33.17</td>
<td>33.89</td>
<td>34.56</td>
<td>41.30</td>
<td>29.77</td>
<td>10.20</td>
</tr>
</tbody>
</table>
BF5 Specifications

The BF5 is intended for use outdoors in natural daylight, with an unobstructed view of the horizon. Significant errors may be produced by artificial light, or if the BF5 is shaded from direct sunlight by buildings, or if there are strong reflections from windows, for example. The following accuracy figures give 95% confidence limits, i.e. 95% of individual readings will be within the stated limits under normal climatic conditions.

<table>
<thead>
<tr>
<th>Accuracy and Resolution of analogue radiation outputs</th>
<th>PAR</th>
<th>Energy</th>
<th>Illuminance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Units</td>
<td>(\mu \text{mol.m}^{-2}.\text{s}^{-1})</td>
<td>(W.m^{-2})</td>
<td>klux</td>
</tr>
<tr>
<td>Overall accuracy: Total</td>
<td>(\pm 10 \mu \text{mol.m}^{-2}.\text{s}^{-1} \pm 12%)</td>
<td>(\pm 5 W.m^{-2} \pm 12%)</td>
<td>(\pm 6000 \text{ klux} \pm 12%)</td>
</tr>
<tr>
<td>Overall accuracy: Diffuse</td>
<td>(\pm 10 \mu \text{mol.m}^{-2}.\text{s}^{-1} \pm 15%)</td>
<td>(\pm 20 W.m^{-2} \pm 15%)</td>
<td>(\pm 6000 \text{ klux} \pm 15%)</td>
</tr>
<tr>
<td>Resolution</td>
<td>0.5 (\mu \text{mol.m}^{-2}.\text{s}^{-1})</td>
<td>0.3 (W.m^{-2})</td>
<td>0.060 klux</td>
</tr>
<tr>
<td>Range</td>
<td>0 - 2500 (\mu \text{mol.m}^{-2}.\text{s}^{-1})</td>
<td>0 - 1250 (W.m^{-2})</td>
<td>0 - 200 klux</td>
</tr>
<tr>
<td>Output sensitivity</td>
<td>1mV (\pm 1 \mu \text{mol.m}^{-2}.\text{s}^{-1})</td>
<td>1mV (\pm 0.5 W.m^{-2})</td>
<td>1mV (\pm 0.100 \text{ klux})</td>
</tr>
<tr>
<td>Output range</td>
<td>0 - 2500 mV</td>
<td>0 - 2500 mV</td>
<td>0 - 2000 mV</td>
</tr>
</tbody>
</table>

Input voltage range
- 1.4 - 3.6V DC, internal battery
- 5.0 - 15V DC, external power

Fuse trip point, on sunshine status signal
- 0.5A, 30V self resetting (switch closure mode)

Max applied voltage to sunshine status output
- 0 to 24V (contact closure mode)

RS232 connector
- 5 pin M12

Signal output & power-in connector
- 8 pin M12

Mounting options
- Camera tripod socket, 1/4" Whitworth holes for 4x M4 bolts at box corners

Size & Weight
- 120mm x 122mm x 95mm, 630g

Heater output below 0°C
- 15 W

Heater output above 0°C
- 2W reducing to 0W at 35°C

Lowest snow & ice-free temperatures
- -20°C at 0 m/s wind speed
- -10°C at 2 m/s wind speed

Heater: max power
- 15 W at 12V DC

Heater: max current
- 1.5A at 15V

Fuse: max voltage, current
- 24V, 1.6A (self resetting)

Heater Input voltage
- 12 to 15V DC

Ordering Information

Sunshine Sensor type BF5 includes built-in heater, user manual, RS232 cable and Software & Manuals CD with sensor configuration software.

Note: BF5 requires connecting cables for use with SunScan Probe or data logger.

BF5 cables

- 5m cable, BF5 to SunScan Probe type BF5-SS1-05 for connecting BF5 to SunScan.
- 10m RS232 extension cable type BF5-BS1-10m connects BF5 outputs to a data logger.
- 1.5m RS232 cable type BF-BSC01 1.5m RS232 cable. IP68 M12 5-pole connector (f) to 9-way D-connector (f). Connects BF5 to PC. Supplied as standard with BF5.

Extension cables

- 5m extension cable type EXT/8W-05 IP68 M12 connector (f) to IP68 M12 connector (m).
- 0.5m RS232 cable type BF-RS30 10m weatherproof RS232 cable. IP68 M12 5-pole connector (f) to IP68 M12 5-pole connector (m). Can be connected to other RS232 cables.

BF5 accessories

- Cross arm type BF5-M 1m length cross arm with pole mounting bracket and BF5 levelling device.

For Mounting Sunshine Sensor onto weather station mast M2 or M2-Min.

For SunScan Probe accessories see SunScan data sheet.

Delta-T Devices Ltd
130 Low Road, Burwell, Cambridge, CB25 0EJ, UK
Tel: +44 1638 742922 sales@delta-t.co.uk www.delta-t.co.uk

BF5-DS-2.p6 May 2013
Current Transducers CT 0.1 .. 0.4-P

For the electronic measurement of small currents: AC, DC, mixed, with a galvanic isolation between the primary circuit and the secondary circuit.

Electrical data

<table>
<thead>
<tr>
<th>Primary nominal current rms (I_{nm}) [mA]</th>
<th>Primary current, measuring range (I_{n}) [mA]</th>
<th>Type</th>
<th>ReoHS since date code</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>± 200</td>
<td>CT 0.1-P</td>
<td>46129</td>
</tr>
<tr>
<td>200</td>
<td>± 400</td>
<td>CT 0.2-P</td>
<td>46154</td>
</tr>
<tr>
<td>400</td>
<td>± 600</td>
<td>CT 0.4-P</td>
<td>46234</td>
</tr>
<tr>
<td>(V_{CC}) Supply voltage (± 5 %)</td>
<td>± 15</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>(I_{C}) Current consumption</td>
<td>± 45</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>(R_{	ext{iso}}) Isolation resistance @ 500 VDC</td>
<td>> 500</td>
<td>MΩ</td>
<td></td>
</tr>
<tr>
<td>(V_{\text{OUT}}) Output voltage (Analog) @ (I_{n}), (R_{x} = 10kΩ), (T_{a} = 25°C)</td>
<td>± 5</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>(R_{	ext{out}}) Output internal resistance</td>
<td>< 51</td>
<td>Ω</td>
<td></td>
</tr>
<tr>
<td>(C_{c}) Capacitive loading</td>
<td>± 5</td>
<td>nF</td>
<td></td>
</tr>
</tbody>
</table>

Accuracy-Dynamic performance data

\(X \) Accuracy (excluding offset) @ \(I_{n} \), \(T_{a} = 25°C \), \(R_{x} = 10kΩ \)	± 1 % of \(I_{n} \)	% of \(I_{n} \)	
\(E_{o} \) Linearity error (0 .. ± \(I_{n} \))	± 0.5 % of \(I_{n} \)		
\(TCV_{\text{out}} \) Temperature coefficient of \(V_{\text{OUT}} \) (of reading)	± 0.05 %/K		
\(V_{\text{off}} \) Electrical offset voltage @ \(I_{n} = 0 \), \(T_{a} = 25°C \)	± 100 mV		
\(V_{ ext{hes}} \) Hysteresis offset voltage	@ \(I_{n} = 0 \), after an excursion of 1 \(I_{n} \)	± 2 mV	
@ \(I_{n} = 0 \), after an excursion of 100 \(I_{n} \)	± 20 mV		
\(TCV_{\text{off}} \) Temperature coefficient of \(V_{\text{off}} \) @ -20 .. +85°C	CT 0.1-P	± 8 mVK	
CT 0.2-P	± 4 mVK		
CT 0.4-P	± 2 mVK		

| \(I_{r} \) Response time to 80% of \(I_{n} \) step | ± 20 mS | 90% of \(I_{n} \) step | ≤ 60 mS |

BW Frequency bandwidth (-3 dB)	CT 0.1-P	DC 40 .. 70000Hz
CT 0.2-P	DC 40 .. 110000Hz	
CT 0.4-P	DC 40 .. 180000Hz	

General data

\(T_{a} \) Ambient operating temperature	-20 .. + 85 °C
\(T_{s} \) Ambient storage temperature	-25 .. + 85 °C
\(d_{CP} \) Creepage distance	> 5.5 mm
\(d_{Cl} \) Clearance distance	> 5.5 mm
CTI Comparative tracking index (Group IIIa)	> 220
\(m \) Mass	25 g
Standards	EN 50178: 1997

Notes:

Performance data are given for steady phase of the transducer.
Transitory period after power on lasts typically less than 2 min.
Please refer to characterization report for details.

Please don't put the high voltage between the secondary pins and fixing pins. If it must be so, don't exceed the 2.5 kV between these pins with the maximum isolation distance.

Features

- DC & AC earth leakage current transducer using a flux-gate principle
- PCB mounting
- ±15V power supply
- ±5V output @ \(I_{n} \)
- Isolated plastic case recognized according to UL94-V0.

Advantages

- Small size
- Bandwidth: DC and 40 up to 7.18 kHz
- Response time better than 60 ms
- Cost effective, compact alternative to classical RCDs (Residual Current Device)

Applications

- Earth leakage detection in transformerless inverters
- 1st human contact protection of PV arrays
- Failure detection in power sources
- Symmetrical fault detection (e.g. after motor inverter)
- Current leakage detection in stacked DC sources
- Single phase or three phase differential current measurement up to ±30A per wire (DC or AC)

Application domain

- Industrial

Evaluación de tecnologías fotovoltaicas orgánicas

Anexo IV
En este anexo podemos ver en la imagen el montaje del cableado y conexiones, y en la página siguiente el plano de AutoCad de la las conexiones del sistema del seguidor solar.
Box wiring for positioner MICRO (POZSOL36A)

Set Pla. Box 190x140x70 w inst. sol. poz., DIN rail, glands, cable code: SETB0XPSG1-TC
EAN: 383106391304
Anexo VI

Con este programa se obtienen los parámetros característicos de la célula solar, los cuales son las salidas de la derecha de la imagen de abajo. El bucle de 16 sentencias del centro es el encargado de comunicarse con el instrumento por GPIB y que funcione perfectamente.

Como vemos los valores de entrada son la dirección del puerto GPIB, el número de pasos, retardo, el voltaje inicial y final de donde estará nuestra curva IV, la irradiancia y el área activa de los módulos.
Programa principal de el cual guardamos todos los parámetros de los módulos fotovoltaicos, así como sus curvas IV, hora de realización de la medida y todos lo necesario para tener un buen orden de todos los datos que obtenemos.
Anexo VIII

Medidas de las células fotovoltaicas

<table>
<thead>
<tr>
<th>Panel</th>
<th>Voc (V)</th>
<th>Isc (A)</th>
<th>Irradiancia (mW/m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>J1</td>
<td>0</td>
<td>0</td>
<td>>50</td>
</tr>
<tr>
<td>J2</td>
<td>6.4</td>
<td>0.026</td>
<td><70</td>
</tr>
<tr>
<td>J3</td>
<td>6.1</td>
<td>0.024</td>
<td><70</td>
</tr>
<tr>
<td>J4</td>
<td>6</td>
<td>0.028</td>
<td><70</td>
</tr>
<tr>
<td>J5</td>
<td>6.2</td>
<td>0.022</td>
<td><70</td>
</tr>
<tr>
<td>J6</td>
<td>6.1</td>
<td>0.024</td>
<td><70</td>
</tr>
<tr>
<td>I1</td>
<td>5.48</td>
<td>0.028</td>
<td><70</td>
</tr>
<tr>
<td>I2</td>
<td>6.1</td>
<td>0.03</td>
<td><70</td>
</tr>
<tr>
<td>I3</td>
<td>6.3</td>
<td>0.033</td>
<td><70</td>
</tr>
<tr>
<td>I4</td>
<td>6.7</td>
<td>0.041</td>
<td><70</td>
</tr>
<tr>
<td>I5</td>
<td>5.45</td>
<td>0.027</td>
<td><70</td>
</tr>
<tr>
<td>I6</td>
<td>6.5</td>
<td>0.035</td>
<td><70</td>
</tr>
</tbody>
</table>

Sensor de irradiancia

<table>
<thead>
<tr>
<th>Panel</th>
<th>Voc (V)</th>
<th>Isc (A)</th>
<th>Irradiancia (mW/m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>J1</td>
<td>5.8</td>
<td>0.03</td>
<td><70</td>
</tr>
<tr>
<td>J2</td>
<td>4.56</td>
<td>0.019</td>
<td><70</td>
</tr>
<tr>
<td>J3</td>
<td>4.51</td>
<td>0.017</td>
<td><70</td>
</tr>
<tr>
<td>J4</td>
<td>4</td>
<td>0.02</td>
<td><70</td>
</tr>
<tr>
<td>J5</td>
<td>5.1</td>
<td>0.025</td>
<td><70</td>
</tr>
<tr>
<td>J6</td>
<td>5.1</td>
<td>0.024</td>
<td><70</td>
</tr>
<tr>
<td>I1</td>
<td>6.28</td>
<td>0.036</td>
<td><70</td>
</tr>
<tr>
<td>I2</td>
<td>6.8</td>
<td>0.04</td>
<td><70</td>
</tr>
<tr>
<td>I3</td>
<td>6.3</td>
<td>0.036</td>
<td><70</td>
</tr>
<tr>
<td>I4</td>
<td>6.2</td>
<td>0.036</td>
<td><70</td>
</tr>
<tr>
<td>I5</td>
<td>6.6</td>
<td>0.039</td>
<td><70</td>
</tr>
<tr>
<td>I6</td>
<td>5.92</td>
<td>0.03</td>
<td><70</td>
</tr>
</tbody>
</table>

Primera hora de medida 10:35-11:20

<table>
<thead>
<tr>
<th>Panel</th>
<th>Voc (V)</th>
<th>Isc (A)</th>
<th>Irradiancia (mW/m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>6.5</td>
<td>0.038</td>
<td><125</td>
</tr>
<tr>
<td>D2</td>
<td>6.21</td>
<td>0.034</td>
<td><125</td>
</tr>
<tr>
<td>D3 (+)</td>
<td>5</td>
<td>0.023</td>
<td><125</td>
</tr>
<tr>
<td>D4</td>
<td>0</td>
<td>0</td>
<td><125</td>
</tr>
<tr>
<td>D5 (+)</td>
<td>5.35</td>
<td>0.026</td>
<td><125</td>
</tr>
<tr>
<td>D6</td>
<td>5.79</td>
<td>0.023</td>
<td><125</td>
</tr>
<tr>
<td>G1</td>
<td>0</td>
<td>0</td>
<td><150</td>
</tr>
<tr>
<td>G2</td>
<td>7.05</td>
<td>0.031</td>
<td><125</td>
</tr>
<tr>
<td>G3</td>
<td>7.05</td>
<td>0.03</td>
<td><125</td>
</tr>
<tr>
<td>G4</td>
<td>7.1</td>
<td>0.033</td>
<td><125</td>
</tr>
<tr>
<td>G5 (+)</td>
<td>6.62</td>
<td>0.027</td>
<td><125</td>
</tr>
<tr>
<td>G6 (-)</td>
<td>6.36</td>
<td>0.026</td>
<td><125</td>
</tr>
</tbody>
</table>

Segunda hora de medida 11:45-12:35

<table>
<thead>
<tr>
<th>Panel</th>
<th>Voc (V)</th>
<th>Isc (A)</th>
<th>Irradiancia (mW/m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>E1</td>
<td>5.5</td>
<td>0.029</td>
<td><100</td>
</tr>
<tr>
<td>E2</td>
<td>6.37</td>
<td>0.036</td>
<td><100</td>
</tr>
<tr>
<td>E3 (-)</td>
<td>6</td>
<td>0.035</td>
<td><100</td>
</tr>
<tr>
<td>E4 (+)</td>
<td>5.9</td>
<td>0.035</td>
<td><100</td>
</tr>
<tr>
<td>E5</td>
<td>5.41</td>
<td>0.036</td>
<td><100</td>
</tr>
<tr>
<td>E6</td>
<td>5.28</td>
<td>0.035</td>
<td><100</td>
</tr>
<tr>
<td>H1</td>
<td>6.28</td>
<td>0.036</td>
<td><70</td>
</tr>
<tr>
<td>H2 (+)</td>
<td>6.8</td>
<td>0.04</td>
<td><70</td>
</tr>
<tr>
<td>H3</td>
<td>6.3</td>
<td>0.036</td>
<td><70</td>
</tr>
<tr>
<td>H4 (-)</td>
<td>6.2</td>
<td>0.036</td>
<td><70</td>
</tr>
<tr>
<td>H5</td>
<td>6.6</td>
<td>0.039</td>
<td><70</td>
</tr>
<tr>
<td>H6 (-)</td>
<td>5.92</td>
<td>0.03</td>
<td><70</td>
</tr>
</tbody>
</table>

Apagar terminal negativo (-)

Apagar terminal positivo (+)

No funcionan (naranja)

Temp. 25°C

Temp. 28°C

Temp. 30°C