Simulación de un accionamiento eléctrico con máquina asíncrona y análisis de su comportamiento frente a cargas mecánicas.

Titulación: Ingeniería Industrial
Alumno/a: Juan Antonio García Serrano
Director/a/s: Juan Álvaro Fuentes Moreno

Cartagena, Junio de 2013
## ÍNDICE

1. **INTRODUCCIÓN** ........................................................................................................ 3
   1.1. **OBJETIVOS DEL PROYECTO** ............................................................................. 3
   1.2. **METODOLOGÍA** .................................................................................................. 4
   1.3. **DESCRIPCIÓN DE CAPÍTULOS** ........................................................................ 4
   1.4. **ESTRUCTURA GENERAL DE UN SISTEMA ELECTRÓNICO DE POTENCIA** .. 5
      1.4.1. Clasificación de los Procesadores de Potencia ............................................... 6
      1.4.2. Alimentación Controlada de Motor de Corriente Alterna (MCA) ........................ 6
   1.5. **TIPOS DE CARGAS** ............................................................................................ 8
      1.5.1. Cargas a Par Constante ..................................................................................... 9
      1.5.2. Cargas de Par Lineal ........................................................................................ 10
      1.5.3. Carga de Par Cuadrático ................................................................................ 10
      1.5.4. Carga de Potencia Constante .......................................................................... 11
   2. **UNIDAD DE PROCESAMIENTO DE POTENCIA** .................................................. 12
      2.1. **CONVERTIDOR CONTROLADO POR ÁNGULO** ............................................. 13
         2.1.1. Conceptos de rectificación monofásica controlada ...................................... 14
         2.1.2. Convertidor Trifásico de Onda Completa Controlado por Ángulo .............. 18
         2.1.3. Función de la Inductancia de la Línea ........................................................... 21
         2.1.4. Operación del Convertidor Trifásico Controlado como Inversor ............... 23
         2.1.5. Modelo Simulink del Convertidor Trifásico Controlado por Ángulo .......... 25
      2.2. **INVERSOR MODULADO (PWM)** ................................................................. 28
         2.2.1. Modulación de Ancho de Pulso .................................................................... 28
         2.2.2. Métodos de Modulación .............................................................................. 32
         2.2.3. Inversores Monofásicos .............................................................................. 33
         2.2.4. Inversores Trifásicos .................................................................................. 34
         2.2.5. Modelo Simulink PWD .............................................................................. 36
   3. **CONTROL DE VELOCIDAD Y CONTROL AUXILIAR** ............................................. 38
      3.1. **CONTROL DE VELOCIDAD** .......................................................................... 38
         3.1.1. Elevación de Tensión (Voltage Boost) ............................................................ 39
         3.1.2. Compensación de Deslizamiento (Slip Compensation) ............................... 42
         3.1.3. Circuito de Límite de Corriente (Current Limiter Circuit) .............................. 43
      3.2. **CONTROL AUXILIAR** ..................................................................................... 44
         3.2.1. Subsistema de Seguridad ............................................................................. 44
### 3.2.2. Subsistema de Freno

<table>
<thead>
<tr>
<th>Capítulo</th>
<th>Cargo Efectivo</th>
<th>Descripción</th>
<th>Página</th>
</tr>
</thead>
</table>

### 4. SIMULACIONES

<table>
<thead>
<tr>
<th>Subsistema</th>
<th>Cargo Efectivo</th>
<th>Descripción</th>
<th>Página</th>
</tr>
</thead>
</table>

#### 4.1. CARGAS A PAR CONSTANTE

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>Velocidad Positiva</td>
<td>51</td>
</tr>
<tr>
<td>Velocidad Negativa</td>
<td>58</td>
</tr>
</tbody>
</table>

#### 4.2. CARGAS A PAR LINEAL

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>Velocidad Positiva</td>
<td>67</td>
</tr>
<tr>
<td>Velocidad Negativa</td>
<td>71</td>
</tr>
</tbody>
</table>

#### 4.3. CARGAS A PAR CUADRÁTICO

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>Velocidad Positiva</td>
<td>78</td>
</tr>
<tr>
<td>Velocidad Negativa</td>
<td>82</td>
</tr>
</tbody>
</table>

#### 4.4. CARGAS DE POTENCIA CONSTANTE

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>Velocidad Positiva</td>
<td>88</td>
</tr>
<tr>
<td>Velocidad Negativa</td>
<td>92</td>
</tr>
</tbody>
</table>

### 5. CONCLUSIONES

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Página</th>
</tr>
</thead>
</table>

### 6. ANEXOS

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>Circuito en Simulink y SimPowerSystems del Variador de Frecuencia Fasorial con Freno Regenerativo</td>
<td>99</td>
</tr>
<tr>
<td>Circuito en Simulink y SimPowerSystems del Variador de Frecuencia Fasorial con Freno Resistivo</td>
<td>101</td>
</tr>
<tr>
<td>Características del Motor</td>
<td>102</td>
</tr>
</tbody>
</table>

### 7. GLOSARIO

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Página</th>
</tr>
</thead>
</table>

### 8. BIBLIOGRAFÍA

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Página</th>
</tr>
</thead>
</table>
1. INTRODUCCIÓN

El control rápido y eficiente de la energía eléctrica es un requerimiento continuamente creciente que abarca todas las instancias de su procesamiento, es decir, la generación, la transmisión, distribución y la utilización final por los usuarios; tanto de los sectores industriales como de servicio y domésticos. La mejor forma de realizarlo, definitivamente impuesta en muchas de las instancias mencionadas y que permanentemente desplaza a viejas tecnologías en todos los campos, es el empleo de convertidores electrónicos de potencia. Esto se debe a la gran calidad de las prestaciones de estos sistemas y a su bajo coste, ambos posibilitados por los grandes avances en las tecnologías de los semiconductores de potencia.

Un lugar preponderante en este universo de la electrónica de potencia es ocupado por los rectificadores y los inversores trifásicos controlados. La principal estrategia para realizar este control es la modulación por ancho de pulso (PWM), que abarca una gran variedad de algoritmos que van desde los más simples y tradicionales, como senoidales, hasta técnicas tan sofisticadas como la optimización de rendimiento en tiempo real.

Esta área de la Ingeniería es motivo de intensa actividad de investigación y desarrollo, tanto en ambientes académicos como en empresas de ingeniería y de producto. Para todas estas actividades es importante contar con herramientas de apoyo que permitan evaluar y obtener las limitaciones de los resultados o diseños a fin de decidir sobre su aptitud práctica, posibilidades de optimización, etc... antes de pasar a la ejecución de un prototipo.

Por lo citado anteriormente, este proyecto se centra en realizar una simulación de un lazo abierto de control para un motor asíncrono, lo que permitiría un ahorro económico en los diferentes sectores mencionados. Esta simulación se realizará en los paquetes de Matlab (SimPowerSystems y Simulink).

1.1. OBJETIVOS DEL PROYECTO

Lo que se busca en este proyecto es la simulación de un control de velocidad para motores a través de un lazo abierto. Para ello, este proyecto tendrá el objetivo de una implementación en Matlab (Simulink y SimPowerSystems) de un lazo de control de velocidad abierto.

Se sabe además que en la industria existen diversos tipos de cargas, es por ello que otro de los objetivos que se buscará en esta implementación, vendrá asociado a que el lazo de control sea estable para cada una de las cargas que se pueden llegar a solicitar en las diferentes industrias.
1.2. METODOLOGÍA

La realización de este proyecto pasó por las siguientes etapas:

1) Un estudio en profundidad de Matlab, así como de los componentes a utilizar (puentes de diodos, puente de tiristores, inversores modulados, lazo de control abierto, maquinas asíncronas...), para ello se recurre a la biografía expuesta en el capítulo 8.

2) Implementación en Matlab de los diversos componentes, así como del lazo de control.

3) Análisis de los datos aportados por las simulaciones.

4) Implementación de la documentación.

1.3. DESCRIPCIÓN DE CAPÍTULOS

La estructura de la memoria del presente proyecto es la siguiente:

Capítulo 1
Se realizará la introducción del proyecto, así como sus objetivos y un desglose de los capítulos a tratar, además se realizará una breve introducción a los sistemas de electrónica de potencia, la clasificación de éstos, y las diferentes cargas que se puede hallar en una industria.

Capítulo 2
Se hablará de la Unidad de Procesamiento de la Señal, que abarca el puente de tiristores y el inversor modulado, para una posterior implementación en Matlab.

Capítulo 3
Este capítulo se centrará en el desarrollo del lazo abierto de control de velocidad, con su correspondiente implementación en Matlab, además de los sistemas auxiliares.

Capítulo 4
Se realizará las simulaciones del sistema para cada una de las cargas que se pueden hallar en una industria, observando así el comportamiento del sistema.

Capítulo 5
Se expondrán las conclusiones obtenidas durante estas simulaciones.
Capítulo 6

Se mostrará las características del motor utilizado en el capítulo cinco, así como el circuito implementado en Matlab.

Capítulo 7

Se mostrará el glosario.

Capítulo 8

Biografía de apoyo para el desarrollo de este proyecto.

1.4. ESTRUCTURA GENERAL DE UN SISTEMA ELECTRÓNICO DE POTENCIA

Un sistema electrónico de potencia puede ser sintetizado con el diagrama de bloques de la Figura 1.

La potencia de entrada es usualmente tomada de la red monofásica o trifásica.

La señal de salida se procesa según requerimientos de la carga. El factor de potencia de la entrada depende de la topología y del control del procesador de potencia, mientras que el factor de potencia de la salida depende de las características de la carga.

El flujo de potencia puede ser reversible, intercambiándose la entrada y la salida de potencia. El controlador puede estar formado por circuitos integrados lineales o por procesadores digitales de señales.
1.4.1. Clasificación de los Procesadores de Potencia

Los procesadores de potencia se categorizan según las características de su entrada y su salida en cuanto a la forma y frecuencia. En la mayoría de los sistemas electrónicos de potencia la entrada es tomada de la línea, mientras que la salida, dependiendo de la aplicación, puede ser:

1) Continua
   a. Magnitud regulada
   b. Magnitud ajustable

2) Alterna
   a. Frecuencia constante y magnitud ajustable
   b. Frecuencia y magnitud ajustables

El procesador de potencia puede estar formado por más de una etapa de conversión de potencia. La operación de dichas etapas está desacoplada por elementos almacenadores de energía como condensadores e inductancias. (Figura 2).

![Figura 2 Procesador de Potencia](image)

Se usa la denominación convertidor como término genérico para referirse a cada una de las etapas de conversión de potencia, más específicamente para el convertidor Corriente Alterna (AC) – Corriente Continua (DC), rectificador y para el convertidor DC-AC, inversor.

1.4.2. Alimentación Controlada de Motor de Corriente Alterna (MCA)

El Procesador de potencia básico para motores de alterna se ilustra en la Figura 3. La tensión alterna de línea es rectificada y filtrada, luego un inversor procesa la tensión y la corriente trifásica del motor de magnitud y frecuencia variable.
Simulación de un accionamiento eléctrico con máquina asincrona y análisis de su comportamiento frente a cargas mecánicas.

Dos de las configuraciones más utilizadas son:

1) Inversor como fuente de tensión modulada por ancho de pulso (PWM) con rectificador a diodos, Figura 4.

2) Inversor como fuente de tensión de onda cuadrada con rectificador a tiristores, Figura 5.

Debido a que durante el frenado la potencia fluye desde el motor hacia el convertidor y dada que la tensión en el condensador permanece con el mismo signo, lo que se invierte
es la corriente en el inversor. Esto puede ocasionar que la tensión en el condensador crezca hasta niveles que originarían la destrucción de los componentes. Por lo tanto, la energía debe ser manejada para que eso no ocurra. Una opción es disiparla conectando una resistencia en paralelo con el condensador del filtro Figura 6. La otra posibilidad es utilizar un convertidor que opere en los cuatro cuadrantes del plano tensión-corriente en lugar del rectificador Figura 7, con esto se obtiene un frenado regenerativo devolviendo energía a la línea.

1.5. TIPOS DE CARGAS

Las cargas suelen ser dispositivos mecánicos que se utilizan para manipular o dar forma a materiales, como máquinas herramienta, prensas, calandrias, centrífugas, etc., pero también sistemas transportadores como grúas, cintas transportadoras y mecanismos de avance transversal. Asimismo, las bombas y los ventiladores pueden incluirse en un mismo grupo, ya que ambas tratan de aportar una energía cinética a un determinado fluido. Cuando se habla de una carga, se refiere a cualquier sistema que mantiene en movimiento un sólido o un fluido. El movimiento de un objeto móvil implica cambiar su posición o velocidad, que a su vez implica aplicar un par para superar su posición al movimiento además de acelerar la inercia de la carga.
Las características del motor suelen variar mucho entre el funcionamiento sin carga y a plena carga. El momento de inercia también puede variar, dependiendo de si hay más o menos material procesado en la máquina.

Cualquier carga accionada aplica al motor un par determinado que, normalmente, depende de la velocidad. En general, actúa contra la dirección del movimiento, excepto en el movimiento descendente de mecanismos de elevación, donde actúa en la dirección del movimiento. Además, hay pares de aceleración y deceleración cuando varía la velocidad, que están determinados por el momento de inercia.

El presente apartado se centrará en cuatro tipos de cargas que son las más utilizadas en las empresas.

1.5.1. Cargas a Par Constante

Se habla de carga a par constante cuando las características de la carga en régimen estacionario son tales que el par requerido es más o menos el mismo, independientemente de la velocidad, y la potencia de la carga varía linealmente con la velocidad. Gráfica 1.

Este es el modo de funcionamiento de máquinas como cintas transportadoras, elevadores, grúas, machacadoras, etc… Para este tipo de usos, el dispositivo de arranque tiene que posibilitar un gran par de arranque para superar la fricción estática y acelerar la máquina.
1.5.2. Cargas de Par Lineal

En cargas de par variable tales como compresores, rodillos, etc… el par varía linealmente con la velocidad, y la potencia de la carga varía con la velocidad al cuadrado. Gráfica 2.

El par de arranque requerido para este tipo de uso tendrá un par de arranque menor que en el caso anterior.

1.5.3. Carga de Par Cuadrático

En cargas de par cuadrático tales como Ventiladores, Turbinas, etc… el par varía cuadráticamente con la velocidad y la potencia de la carga varía con la velocidad al cubo. Gráfica 3.
Simulación de un accionamiento eléctrico con máquina asíncrona y análisis de su comportamiento frente a cargas mecánicas.

1.5.4. Carga de Potencia Constante

En las cargas de potencia constante, tales como bobinadoras y desbobinadores, el par de torsión más allá de un cierto rango de velocidad varía inversamente con la velocidad, y la potencia de carga se mantiene constante con la velocidad. Esto puede observarse en la Gráfica 4.

Gráfica 3 Par y Potencia respecto Velocidad para Carga a Par Cuadrático.

Gráfica 4 Par y Potencia respecto Velocidad para Carga a Par Cuadrático.
2. UNIDAD DE PROCESAMIENTO DE POTENCIA

Como muestra la Figura 8, la unidad de procesamiento de potencia (PPU) obtiene su energía de una fuente de alimentación que contiene una tensión sinusoidal monofásica o trifásica de una frecuencia fija y amplitud constante. La unidad de procesamiento de potencia, en respuesta a las entradas de control, convierte de manera eficiente estos voltajes de entrada en una onda de salida apropiada (en frecuencia y amplitud) que se adapta de manera óptima al funcionamiento del motor. La orden de entrada a la unidad puede provenir de un ordenador de proceso. Sin embargo, en aplicaciones de propósito general, los accionamientos eléctricos funcionan en bucle abierto sin retroalimentación.

La Unidad de Procesamiento de Potencia también posee la característica de poder aportar energía al motor o a la línea de alimentación, según la modulación que este sistema realice.

Lo anterior citado lleva a que estos sistemas posean un rendimiento elevado y que cada día sean de mayor implementación en el sector industrial.

En la Fig. 9 se puede observar cómo está implementado un PPU, se divide en un puente de tiristores o Inversor Modulado (1) el cual se encarga de percibir la onda de corriente e intensidad en forma senoidal y convertirla en una onda de corriente continua con un pequeño rizado; una unidad de procesamiento de la señal, compuesta por un condensador, que se encarga de disminuir el rizado de la onda; un Inversor Modulado (2), que consigue ajustar la onda continua a una onda senoidal, que es la que requiere el motor para poder ajustarse a la carga demandada y una unidad de Control que se encarga de ajustar la onda demandada por la carga, a través de actuar en los diferentes elementos del PPU.
Simulación de un accionamiento eléctrico con máquina asíncrona y análisis de su comportamiento frente a cargas mecánicas.

A lo largo de este capítulo se desarrollará el puente de tiristores y el inversor modulado (1) y (2) dejando para el tercer capítulo lo que se refiere al control tanto de las señales que actúan en el inversor como el lazo de control de velocidad.

2.1. CONVERTIDOR CONTROLADO POR ÁNGULO

Para poder desarrollar los PPU es necesario disponer de una tensión continua variable. Esta es obtenida en la mayoría de los casos mediante la conversión de corriente alterna a corriente continua (AC/DC) controlada. Dicha conversión puede ser realizada empleando un convertidor basado en tiristores controlado por ángulo.

Su campo de aplicación lo constituyen las altas potencias, particularmente cuando es necesario o deseable, por cuestiones económicas, controlar el flujo de potencia bidireccional entre la línea y la carga que requiere la tensión continua, como es el caso de la excitación de MCA con capacidad de regeneración.

La Fig. 10 ilustra un convertidor controlado por ángulo, que para una tensión alterna puede controlar la tensión media en el lado de CC desde un valor positivo máximo a uno negativo mínimo en forma continua. Sin embargo, la corriente a través del convertidor no puede cambiar de dirección. En consecuencia los convertidores de este tipo solo pueden operar en dos cuadrantes del plano Vd-Id. Los valores positivo de Vd e Id implican que la potencia circula desde el lado de AC al de CC por lo cual se dice que el convertidor opera como Rectificador, mientras que cuando Vd es negativa la potencia fluye en sentido inverso, en cuyo caso el convertidor opera como Inversor.
2.1.1. Conceptos de rectificación monofásica controlada

2.1.1.1. Circuito básico con tiristores

Dada una tensión alterna a la entrada de un convertidor controlado por ángulo, la tensión media de salida puede ser manipulada con el ángulo de apertura de los tiristores.

A modo de un primer ejemplo explicativo se presenta el circuito de un convertidor controlado de media onda y con una carga formada por una inductancia y una fuente de CC. Fig. 11.
El tiristor soporta una tensión ánodo-cátodo \( (V_{ak}) \) negativa hasta \( \theta_1 \), ángulo a partir del cual puede ser disparado en forma efectiva. En \( \theta_2 \) el tiristor es disparado permitiendo ahora la circulación de corriente, siendo ésta:

\[
VL(t) = L \frac{di}{dt} = VS - Ed \Rightarrow i(wt) = \frac{1}{wL} \int_{\theta_2}^{wt} [Vs(\varepsilon) - Ed] d\varepsilon
\]

Ecuación 1 Tensión Eficaz en un Convertidor Básico de Tiristores

El pico de corriente se encuentra en \( \theta_3 \), cuando la tensión en la bobina se invierte. En \( \theta_4 \) la corriente se anula y al no existir pérdida de energía el área \( A_1 \) es igual al área \( A_2 \). En \( \theta_4 \) el tiristor impide la circulación de corriente en sentido inverso.

El promedio de la tensión de salida puede ser ajustado variando el ángulo de apertura \( (\theta_2) \), pero debe observarse que en este caso también depende de la carga.

2.1.1.2. Convertidor monofásico de onda completa controlado por ángulo

Este convertidor está formado por cuatro tiristores conectados en una configuración puente como describe la Fig. 12. Cargando el puente con una fuente de corriente continua \( Id \), ésta circulará por uno de los tiristores del grupo superior y simultáneamente por uno de los del grupo inferior.

Si los tiristores son disparados de forma ininterrumpida, el funcionamiento pasa a ser el de un puente de diodos.

El instante natural de conducción de los tiristores es \( wt=0 \) para \( T_1 \) y \( T_2 \) y \( wt = \pi \) para los tiristores \( T_3 \) y \( T_4 \). El ángulo de retraso del disparo de cada par de tiristores respecto del
Simulación de un accionamiento eléctrico con máquina asíncrona y análisis de su comportamiento frente a cargas mecánicas.

El instante natural de conducción se denomina ángulo de apertura ($\alpha$), como se observa a continuación:

![Diagrama de formas de onda en el convertidor bifásico](image)

Figura 13 Formas de Onda en el Convertidor Bifásico

Debido a la presencia de la fuente de corriente cada par de tiristores conducirá 180º a partir del ángulo de apertura, por lo cual la tensión media a la salida del puente será:

$$V_{d\alpha} = \frac{1}{\pi} \int_{\alpha}^{\pi+\alpha} \sqrt{2} V_s \sin(\omega t) \, dt = \frac{2\sqrt{2}}{\pi} V_s \cos \alpha \Rightarrow V_{d\alpha} \max = 0.9V_s$$

Ecuaición 2 Tensión Eficaz en un Convertidor Bifásico

La variación de $V_{d\alpha}$ como función de $\alpha$ se puede ver en la Fig. 14. La tensión media asume valores negativos a partir de $\alpha = \pi/2$. Por lo tanto, la región comprendida por $\pi/2 < \alpha < \pi$ determina el funcionamiento del convertidor como inversor.
Sumada a la tensión media sobre la carga existe un rizado del doble de la frecuencia de línea. Dicho contenido armónico varía para cada ángulo de apertura. La corriente por la línea tiene una forma de onda cuadrada de amplitud $I_d$, desfasada respecto de la tensión al ángulo $\alpha$ de apertura, la cual puede ser descompuesta en términos de Fourier según:

$$is(wt) = \sqrt{2}I_s \sin(wt - \alpha) + \sqrt{2}I_s \sin(3(wt - \alpha)) + \sqrt{2}I_s \sin(5(wt - \alpha)) \ldots$$

$$I_s = \frac{2}{\pi} \sqrt{2}I_d$$

Ecuación 3 Intensidad Instantánea en un Puente Bifásico de Tiristores

Mientras que la amplitud de los demás armónicos normalizados respecto de $I_s$ será inversamente proporcional al orden de cada componente.
2.1.2. Convertidor Trifásico de Onda Completa Controlado por Ángulo

Este tipo de convertidores se implementa con seis tiristores en configuración puente como muestra la Fig.16.

![Figura 16 Convertidor Trifásico de Tiristores](image)

Se supone nuevamente, a modo de ejemplo, que la carga está formada por una fuente de corriente continua. La corriente fijada por ésta pasa por uno de los tres tiristores del grupo superior (T₁, T₃ o T₅) y por otro de los que forman el grupo inferior (T₂, T₄ o T₆). Si se excitan las puertas de los tiristores de forma ininterrumpida el funcionamiento, al igual que en el caso monofásico, pasa a ser igual al de un puente de diodos. Esto es, wt = π/6 constituye el instante natural de conducción de los tiristores T₁, T₃ y T₅, mientras que wt= π/6 + π lo es para los tiristores T₂, T₄ y T₆. Como ya se mencionó, el ángulo de apertura (α) se mide a partir de estos instantes naturales de conducción.

Las formas de onda de tensión sobre la carga (Vd) y la corriente por una fase de la línea (Ia) que se obtienen para α = π/4 se ilustran en la Fig.17.
Simulación de un accionamiento eléctrico con máquina asíncrona y análisis de su comportamiento frente a cargas mecánicas.

Observando el caso de $T_5$, éste permanece conduciendo hasta que en la fase “a” se verifica que $wt=\alpha$, instante en el cual la corriente pasa instantáneamente a circular a través de $T_1$. Cada tiristor conduce durante 60°, por lo que la tensión media de salida se calcula según:

$$Vd\alpha = \frac{3}{\pi} \int_{\frac{\pi}{3}\alpha}^{\frac{\pi}{2}+\alpha} \sqrt{2}V_s \left[ \sin(wt) - \sin \left( wt - \frac{2\pi}{3} \right) \right] d(wt) = \frac{3\sqrt{2}}{\pi} Vll \cos \alpha$$

$$Vd\alpha = 1,35Vll \cos \alpha \quad Vll = \sqrt{3}Vs$$

Ecuación 4 Valor Efectivo de Tensión en un Puente de Tiristores Trifásico

La ecuación anterior es válida para un intervalo de $\alpha$ perteneciente entre 0 y $\pi$. No obstante, un margen de seguridad es requerido para evitar fallos en las conmutaciones. El margen de protección debe ser mayor que el máximo intervalo de conmutación más el tiempo de apagado máximo de los tiristores.

En lo que a la corriente de línea (Ia) respecta, se puede ver que es rectangular de tres niveles, de amplitud $Id$ desfasada de la tensión (Van) el ángulo $\alpha$. El valor eficaz de la corriente por cada fase es:
Simulación de un accionamiento eléctrico con máquina asíncrona y análisis de su comportamiento frente a cargas mecánicas.

\[ I_s = \frac{2}{\sqrt{3}} I_d \]

Ecuación 5 Valor Eficaz de la Corriente de Fase de un Puente de Tiristores.

Esta corriente se expresa en términos de sus componentes de Fourier.

\[ i_a(wt) = \sqrt{2} I_s \sin(wt - \alpha) + \sqrt{2} I_s \sin(5(wt - \alpha)) + \sqrt{2} I_s \sin(7(wt - \alpha)) + \sqrt{2} I_s \sin(11(wt - \alpha)) + (\sqrt{2} I_s \sin(13(wt - \alpha))) \]

Ecuación 6 Descomposición en Términos de Fourier de la Corriente Eficaz de un Puente de Tiristores

Figura 18 Armónicos de la Corriente de Línea en el Convertidor Trifásico

Ahora sólo aparecen las componentes impares, sin el tercer armónico ni sus múltiplos (componentes homopolares).

Siendo el valor eficaz de la fundamental:

\[ I_{s1} = \frac{3}{\pi} I_s = \frac{\sqrt{6}}{\pi} I_d \]

Ecuación 7 Valor eficaz de la Corriente Fundamental.
Los demás armónicos tienen un valor eficaz normalizado respecto de Is₁, inversamente proporcional a su orden:

\[ I_{sh} = \frac{I_{s1}}{h} \]

Ecuación 8 Valor Eficaz de la Corriente según Armónico.

### 2.1.3. Función de la Inductancia de la Línea

Se deja ahora de considerar la línea como una fuente ideal de tensión, analizando el efecto causado por la presencia de una inductancia (Lₗ) en serie con la fuente de tensión alterna, como se observa en la Fig.19

![Figura 19 Convertidor Trifásico con Lₗ y Corriente Continua Constante.](image)

Esta Lₗ está formada por la inductancia de dispersión del transformador, que fija la tensión de línea, las inductancias de las líneas de transporte y distribución más una bobina eventualmente conectada en serie con el convertidor, esta inductancia posee la propiedad de limitar el contenido armónico de la corriente alterna por la línea.

#### 2.1.3.1. Influencia de la inductancia de línea en la conmutación de los tiristores

Al no despreciar Lₗ, dado α, la conmutación de corriente de un tiristor a otro se producirá en un intervalo finito de tiempo. Suponiendo que T₅ y T₆ están conduciendo, cuando en la fase “a” se cumple que wt = α, se disparará el tiristor T₁, con lo cual la corriente comienza a conmutar del tiristor T₅ al T₁.
Simulación de un accionamiento eléctrico con máquina asíncrona y análisis de su comportamiento frente a cargas mecánicas.

La conmutación de corriente de la fase “c” a la fase “a” no puede producirse de forma instantánea debido a la presencia de las inductancias $L_s$, por lo cual existe un momento en el cual conducen los tres tiristores a la vez, Fig 21.

En este tiempo que dura la conmutación, la corriente $i_c$ decrece de $I_d$ a 0 mientras que la corriente $i_a$ crece de 0 a $I_d$ tal y como se observa a continuación.
Simulación de un accionamiento eléctrico con máquina asíncrona y análisis de su comportamiento frente a cargas mecánicas.

Durante la conmutación, las fases “a” y “c” están en cortocircuito a través de $L_s$. Dado que se tiene en la carga una corriente constante, ésta no producirá caída de tensión en las inductancias de línea, por lo cual será:

\[ V_d = \frac{V_a + V_c}{2} - V_b \]

Ecuación 9 Tensión Media sobre la Carga.

Esto origina una disminución en la tensión media sobre la carga. Dicha caída de tensión puede calcularse según:

\[ Au = \int_\alpha^{\alpha+\beta} Vls \, d(wt) = wLs \int_0^{ld} \, d\alpha = wLsld \]

\[ V_d = Vd\alpha - \frac{3}{\pi} Au = \frac{3\sqrt{2}}{\pi} Vll \cos \alpha - \frac{3}{\pi} wLsld \]

Ecuación 10 Tensión en el Bus de Continua.

2.1.4. Operación del Convertidor Trifásico Controlado como Inversor

Para el caso en el que se solicita un flujo de potencia del motor hacia la línea, el convertidor trifásico deberá comportarse como un inversor. Para ello, el ángulo de apertura ($\alpha$) debe estar entre $\pi/2$ y $\pi$, lo que producirá que la tensión eficaz en el lado de continua sea negativa. A continuación se muestra lo citado en la siguiente figura:
Simulación de un accionamiento eléctrico con máquina asíncrona y análisis de su comportamiento frente a cargas mecánicas.

El convertidor puede operar como inversor únicamente si en el lado de continua existe una fuente de energía.

La Fig. 24 muestra la característica de salida del convertidor con una inductancia de línea no nula, parametrizada con un determinado ángulo de conducción.

Siendo la zona sombreada la región de conducción discontinua donde deja de ser válido todo lo citado anteriormente, ya que se trabaja en la zona de conducción discontinua.

La tensión que soporta un tiristor del puente cuando éste está operando como inversor se puede observar en la siguiente figura.
Se define aquí el ángulo de extinción $\gamma = \pi - (\alpha + u)$. Dicho ángulo determina el intervalo durante el cual la tensión que soporta el tiristor asume valores negativos. El intervalo de extinción $t_{\gamma} = \gamma/w$ debe ser mayor que el tiempo de apagado del tiristor ($t_{\text{off}}$). De no ser así, al hacerse la tensión $V_{ak}$ positiva el tiristor volverá a conducir, dado que no ha tenido el tiempo suficiente para recuperar la capacidad de bloqueo.

2.1.5. Modelo Simulink del Convertidor Trifásico Controlado por Ángulo

Una vez descrito el comportamiento del puente de tiristores se pasa a la implementación de éste, junto a la fuente de alimentación a utilizar.

Para la implementación de la fuente de alimentación y del puente de Tiristores se utiliza SimPowerSystems, como se observa en la Figura 26.
Simulación de un accionamiento eléctrico con máquina asíncrona y análisis de su comportamiento frente a cargas mecánicas.

El control de apertura de los tiristores se divide en dos subcircuitos, dependiendo de si el puente de tiristores debe trabajar como puente rectificador o como inversor. Ambos subcircuitos se han implementado en simulink.
Simulación de un accionamiento eléctrico con máquina asíncrona y análisis de su comportamiento frente a cargas mecánicas.

En la Fig.28 se observa el subcircuito de ángulo de apertura para el puente de tiristores (para un comportamiento como rectificador de CA), lo que produce un comportamiento como puente de diodo.

A diferencia del subcircuito de ángulo de apertura para que el puente de tiristores trabaje como rectificador, el subcircuito de ángulo de apertura para que el puente de tiristores trabaje como inversor será accionado a través de una condición de frenado, explicada posteriormente, lo que se realiza es una modificación del ángulo de apertura llevándolo a un rango de entre $\pi/2$ y $\pi$, produciendo un flujo de potencia del motor hacia la red.

Figura 28 Subcircuito de Ángulo de Apertura como Rectificador

Figura 29 Subcircuito de Ángulo de Apertura como Inversor
2.2. **INVERSOR MODULADO (PWM)**

El inversor modulado se encarga de transformar la corriente continua proporcionada por el puente de tiristores en corriente alterna, la cual alimentará al MCA.

Los inversores no son más que convertidores estáticos de energía que convierten la corriente continua CC en corriente alterna CA, con la posibilidad de alimentar una carga en alterna, regulando la tensión, la frecuencia o bien ambas. Más concretamente, los inversores transfieren potencia desde una fuente de continua a una carga de alterna.

![Figura 30 Inversor Modulado.](image)

**2.2.1. Modulación de Ancho de Pulso**

La modulación de ancho de pulso es una técnica que consiste en generar pulsos de una frecuencia determinada, haciendo que el ciclo de trabajo varíe a lo largo de la onda de control, como se puede observar en la siguiente figura:

![Figura 31 Ejemplo Modulación PWM.](image)
Esta tensión modulada posee un valor eficaz proporcional al valor de referencia, siendo esta proporcionalidad dependiente del ciclo de trabajo y de la tensión continua del bus. Lo anterior citado es el principio de la modulación de ancho de pulso.

Si ahora se plantea una referencia de tipo senoidal, cuya frecuencia sea notablemente menor que la de la onda triangular, la tensión eficaz que se obtiene una vez modulada también será senoidal, como se puede observar en la siguiente figura:

Figura 32 Señal Senoidal Modulada

Figura 33 Espectro de Frecuencia
Por lo tanto, para obtener una forma de onda senoidal se necesitará una onda triangular y una onda senoidal de control. Para el caso de inversores de potencia, se utiliza la señal resultante de la modulación para accionar a los diferentes interruptores, de tal forma que en los instantes en que la señal resultante de la comparación de ambas señales esté en estado alto, el interruptor deberá estar cerrado, mientas que cuando la comparación esté en nivel bajo el interruptor deberá estar abierto impidiendo el paso de la corriente por éste.

Con el objeto de realizar un estudio de la manera más global posible se normalizan los valores de frecuencia y de amplitud de las señales que intervienen, definiendo para ello los siguientes parámetros:

Modulación de Amplitud: es la relación de amplitudes de la señal senoidal y de la triangular (Moduladora y portadora):

\[
m_a = \frac{V_{sen}}{V_{tri}}
\]

Ecuación 11 Modulación de Amplitud

Modulación de Frecuencia: es la relación de frecuencia de la señal triangular y de la senoidal (Moduladora y portadora):

\[
m_a = \frac{f_{tri}}{f_{sen}}
\]

Ecuación 12 Modulación de Frecuencia

Con estos parámetros se pueden establecer algunas reglas acerca de la tensión de salida, sus armónicos, etc...

1) La amplitud del armónico fundamental de la tensión de salida es \( m_a \) veces la de tensión de entrada. Esto se demuestra a través del tiempo de encendido (Ton) y el tiempo que está apagado (Toff) el interruptor.

\[
V_s = V_d \left( \frac{Ton}{T} - \frac{Toff}{T} \right) = V_d \frac{V_{sen}}{V_{tri}} = V_d m_a
\]

Ecuación 13 Tensión Eficaz en la salida del PWM
2) Los armónicos de la tensión de salida aparecen como bandas laterales de la frecuencia de conmutación y sus múltiplos; este aspecto es válido para valores de $mf > 9$, lo cual se puede tomar como cierto siempre, salvo en casos excepcionales de muy elevada potencia. Para el caso general, puede decirse que la amplitud de los distintos armónicos es prácticamente independiente del parámetro $mf$, y éste sólo define la frecuencia a la que aparecen, de manera que puede expresarse la frecuencia de los distintos armónicos por la siguiente expresión:

$$fs = (jm\cdot mf \pm k)f$$

Ecuación 14 Frecuencia de los distintos Armónicos en una Señal Modulada.

Siendo $fs$ la frecuencia del armónico de orden $s$ correspondiente a la banda lateral $k$ para $j$ veces el índice de modulación.

Para valores impares de $j$ sólo existen armónicos para valores pares del parámetro $k$, mientras que para valores pares de $j$ sólo existen armónicos para valores impares de $k$.

3) El parámetro $mf$ debe ser un entero impar, de esta manera se obtiene una simetría impar además de una simetría de media onda; por tanto, en la tensión de salida sólo existirán armónicos de orden impar y desaparecerán los armónicos de orden par.

Con lo expuesto anteriormente se intenta acotar los parámetros de modulación para obtener las mejores prestaciones en el sistema. Así, atendiendo a la etapa de filtrado que es necesaria añadir, interesa trabajar con valores de $mf$ lo más altos posibles, ya que los armónicos aparecerán a frecuencias elevadas, lo cual facilita el filtrado de las mismas. Sin embargo, no se deben dejar de lado las pérdidas de conmutación, ya que al elevar la frecuencia de conmutación éstas aumentan.

Para el caso que nos concierne, se utilizará un $ma < 1$, lo que contrae consigo una reducción de los armónicos del sistema.

Para un valor de $ma < 1$ varios autores aconsejan utilizar un $mf < 21$ ya que:

1) La señal senoidal y triangular deben estar sincronizadas, lo cual requiere obligatoriamente que $mf$ sea un valor entero. La razón reside en que para el caso de tratar con ambas señales desincronizadas, la señal de salida tendría subarmónicos, que es claramente indeseable. Por lo tanto, si la tensión de salida debe modificar su frecuencia, la señal triangular también debe cambiar.
2) Debe ser un valor impar, tal y como se comentó, con el objeto de aprovechar la simetría de la forma de onda.

3) Las pendientes de las señales $V_{\text{sin}}$ y $V_{\text{tri}}$ deben de tener polaridades opuestas y coincidentes en su paso por cero. Este aspecto es particularmente importante para el caso de valores próximos a 21.

2.2.2. Métodos de Modulación

2.2.2.1. Modulación de Pulso Simple

Este método es la técnica de modulación básica. Requiere solamente dos conmutaciones por ciclo; Sin embargo, donde se suele utilizar más es en motores de inducción, debido al gran contenido de armónicos que presenta la onda.

2.2.2.2. Modulación de Pulsos Múltiples

Ésta se caracteriza por el empleo de un tren de pulsos por semiperíodo. Todos los pulsos tienen el mismo ancho. En este tipo de modulación, al aumentar el número de pulsos o el ancho de los mismos, disminuye el contenido de armónicos relativo de la onda a partir de un número de pulsos igual a 10. La reducción en el contenido de armónicos relativo no es apreciable y la frecuencia es muy alta.

2.2.2.3. Modulación Sinusoidal

El contenido de armónicos en el voltaje de salida del convertidor puede ser reducido considerablemente usando un conjunto de pulsos en cada semiperíodo. Si esa modulación se realiza con una función sinusoidal, se obtiene una marcada reducción en el contenido de armónicos de la salida. Esta modulación fue propuesta originalmente por Schoung y Stemmler. La técnica de modulación por ancho de pulso sinusoidal (SPWM), es la más utilizada y existen algunas variaciones de la misma, las cuales optimizan algún criterio en particular.

En este método, una señal portadora triangular se compara con una onda moduladora sinusoidal para determinar los instantes de conmutación. Esta técnica de modulación puede ser implementada fácilmente utilizando circuitos analógicos. Sin embargo, su implementación en sistemas digitales o microprocesadores no resulta fácil, ya que el ancho de los pulsos no se puede obtener a través de funciones analíticas. Para la implementación en este tipo de sistemas, varias técnicas como la de muestreo natural, regular y optimizado, así como otros métodos, son usados para calcular el ancho de los
pulsos. Además, los métodos de eliminación de armónicos han sido propuestos específicamente para sistemas digitales.

2.2.3. Inversores Monofásicos

Suelen distinguirse tres configuraciones de inversores que corresponden a las tres maneras más razonables de realizar la función inversión de tensión o corriente suministrada por la fuente de CC con los medios disponibles.

1) Push-Pull: debe tenerse en cuenta la relación de espiras entre cada uno de los primarios y el secundario.

![Figura 34 Inversor Push-Pull](image)

2) Medio Puente: esta topología puede implementarse con una batería y dos condensadores en medio puente o bien con una batería en medio puente.

![Figura 35 Inversor de Medio Puente](image)

3) Puente Completo: está formado por cuatro interruptores de potencia totalmente controlados.
2.2.4. **Inversores Trifásicos**

Los inversores trifásicos se emplean en la alimentación de cargas trifásicas. De este modo, pueden proporcionar una CA ininterrumpida a partir de una CC, pudiendo accionar motores de CA trifásicos así como cargar trifásicas y monofásicas. En la siguiente figura se observa el tiristor más utilizado:

![Inversor de Puente Completo](image)

**Figura 36 Inversor de Puente Completo.**

Este convertidor se conoce como inversor trifásico en dos niveles, puesto que cada uno de sus terminales del lado AC puede alcanzar los dos extremos de tensión VCC y – VCC. Los lados de continua de los convertidores en medio puente están conectados en paralelo con una fuente de continua común, mientras que el lado de alterna de cada uno de los convertidores está relacionado con una fase de un sistema trifásico.

En electrónica de potencia los componentes electrónicos suelen funcionar en conmutación para evitar el calentamiento excesivo del silicio, por lo que siempre se encontrarán en estado de conducción o de bloqueo.
De esta forma, la carga conectada a la salida del inversor recibe una tensión en forma de pulsos. Controlando los instantes de entrada en conducción y apertura de los interruptores es posible reproducir en la carga una forma de onda determinada, como por ejemplo una onda senoidal.

En el inversor trifásico propuesto hay seis células de conmutación (seis interruptores de potencia: Q1 a Q6), y seis diodos de libre circulación (D1 a D6), colocados en antiparalelo con los interruptores y que se encargan de garantizar la continuidad de la corriente en la carga además de permitir la reversibilidad de la potencia al permitir inyectar corriente desde la carga a la batería de continua.

Cada una de las ramas del inversor está formada por dos interruptores en paralelo con los diodos de libre circulación, estando la salida de cada fase en el punto medio de la rama.

Las señales de control de los interruptores de cada rama deben ser complementarias para evitar que se cortocircuite la fuente VCC. Es necesario tener en cuenta que los interruptores necesitan un tiempo denominado tiempo muerto, tanto para realizar la apertura como para el cierre, por lo que, antes de cerrar un interruptor para permitir el paso de corriente, es necesario esperar este tiempo muerto para que el interruptor complementario haya tenido tiempo suficiente para abrirse y no se produzca un cortocircuito en la fuente.

En la siguiente figura se muestran las diferentes combinaciones posibles, donde puede apreciarse que en el primer y último estado las tensiones son nulas, por lo que estos estados se conocen como estados de libre circulación.

![Figura 38 Configuraciones del Inversor en Función del Estado de los Interruptores.](image)
2.2.5. **Modelo Simulink PWD**

Una vez descrito el comportamiento del PWD se pasa a la implementación de éste a través de SimPowerSystems, Figura 39.

El control de este sistema se implementó en Simulink, dejando algunas variables pendientes del lazo de control de velocidad, como son la amplitud de la onda de control y su frecuencia, ya que esta onda es la encargada de modificar la tensión eficaz que percibirá el motor tanto en amplitud como en frecuencia.
Simulación de un accionamiento eléctrico con máquina asíncrona y análisis de su comportamiento frente a cargas mecánicas.

Figura 40 Control en Simulink del PWM
3. CONTROL DE VELOCIDAD Y CONTROL AUXILIAR

3.1. CONTROL DE VELOCIDAD

Para implementar el lazo abierto de control de velocidad se utilizó como referencia [1], en el cual Mohan utiliza la siguiente figura para mostrar el lazo de velocidad.

![Figura 41 Lazo de Control de Velocidad para un MCA de Inducción](image)

En la figura se puede observar una velocidad de referencia a la que se desea que el motor gire (está impuesta por el usuario del control). Se observa también el rectificador y el inversor descritos en los apartados anteriores y tres nuevos módulos encargados de ajustar las señales de control sobre el PWM para hacer que el motor gire a las especificaciones deseadas por la velocidad de referencia.

Se puede ver como estos módulos sólo son abastecidos por las señales de corriente y tensión de la fuente de continua, lo que proporciona una cierta independencia del motor, eliminando las retroalimentación que deben venir del motor. Esto lleva consigo la ventaja de poder disponer el variador y el motor a grandes distancias.

El lazo de control se compone de un limitador de velocidad de referencia que se encarga de limitar las velocidades de referencia, acotándolo a valores admisibles por el motor. Otro de los módulos es el de Elevación de Tensión, que se encarga de proporcionar una amplitud determinada a la señal de control del PWM en función de la velocidad de referencia que se quiera obtener en el motor.
El slip compensación posee la función de incrementar la frecuencia de sincronismo para que la velocidad del motor sea la deseada. Para finalizar, se encuentra el Circuito de Límite de Corriente, que se encarga de variar la pendiente de la velocidad de referencia para que el motor posea una aceleración tal que la intensidad solicitada sea inferior a la admisible por los tiristores y evite así que por ellos pase más corriente de la que pueden soportar.

3.1.1. Elevación de Tensión (Voltage Boost)
Lo que se intenta en este lazo es mantener la densidad de flujo en un valor óptimo, lo que se traduce como una disminución de las pérdidas en el rotor, aumentando el rendimiento del sistema.

Se parte del esquema monofásico de un motor asíncrono:

![Figura 42 Esquema Monofásico Motor Asincrono](image1)

![Figura 43 Esquema Fasorial de un Motor Asincrono](image2)
Simulación de un accionamiento eléctrico con máquina asíncrona y análisis de su comportamiento frente a cargas mecánicas.

A través del circuito se llega a la conclusión de que:

\[ V_a = Ema + (Rs + j2\pi f Li)Ia \]

Ecuación 15 Tensión en Bornes del Motor

Por las leyes de Kirchhoff:

\[ Ia = Ima + Ira \]

Ecuación 16 Leyes de Kirchhoff

Para optimizar la densidad de flujo interesa que la Im sea siempre Im nominal, sustituyendo en las ecuaciones anteriores se llega a:

\[ V_a = 2\pi(Lm + Ls)Imnomf + RsIra \]

Ecuación 17 Pendiente de Optimización de la Densidad de Flujo

Dónde:

\[ SLOPE \text{ Constante} = 2\pi(Lm + Ls)Imnom \]

Ecuación 18 Slope Contante

El Slope es la pendiente de cómo debe evolucionar la tensión en bornes del motor para mantener una densidad de flujo constante, disminuyendo así las pérdidas del motor y aumentando su rendimiento.

Se sabe que la Ir es igual:

\[ Ira = \left( \frac{Tem}{Tem,nom} \right)Iranom = \left( \frac{nmotor}{nmotor,nom} \right)Iranom \]

Ecuación 19 Igualdades de la Ira
Sustituyendo en la ecuación 17 obtenemos la Va que debe tener el motor en bornes en función de la velocidad de referencia y la frecuencia de referencia, datos aportados por el usuario.

\[ Va = 2\pi (L_m + L_s) I_{mn} f + R_s \left( \frac{n_{motor}}{n_{motor_nom}} \right) I_{ranom} \]

**Ecuación 20 Pendiente de Optimización de la Densidad de Flujo en Función de la Velocidad de Referencia**

Esta ecuación es la que se utilizará para definir la amplitud de la tensión de control que percibirá el PWM. Se resaltan dos aspectos de la ecuación anterior. Ambos términos son pendientes de la frecuencia y velocidad de referencia, si ésta fuera nula, no cabría la posibilidad de una aportación de energía del motor hacia la red, por la anulación de la onda de control; la segunda connotación se destaca para valores inferiores a 50 rad/sg, ya que si un motor asíncrono es alimentado a una frecuencia tan baja, sin administrarle en bornes la tensión que requiere, la velocidad del motor decrecerá notablemente. Por los condicionantes anteriores se ha optado por introducir varias modificaciones en el sistema que permiten que el motor trabaje por debajo de los 50 rad/sg y que pueda aportar energía a la red cuando el motor posea un excedente de energía.

Acto seguido se pasa a la implementación de este sistema en Simulink.

![Figura 44 Modulo de Elevación de Tensión](image-url)
3.1.2. Compensación de Deslizamiento (Slip Compensation)

El módulo de compensación tiene como misión compensar la velocidad de deslizamiento para que la velocidad en el motor sea la requerida por el usuario.

\[ w_{syn} = w_m + w_{slip} \]

**Ecuación 21 Relación de Velocidades en el Motor**

Cuando se le administra una frecuencia a la onda de control del PWM lo que se está definiendo es la frecuencia a la cual el estator del motor va a trabajar. Dependiendo del par aportado por el motor el deslizamiento variará.

\[ w_{syn} = w_m + \frac{Tem}{Kt} = w_m + \frac{K_{motor}}{Kt} = w_m + w_m k_1 \]

**Ecuación 22 Relación de Velocidad de Estator y Rotor**
Simulación de un accionamiento eléctrico con máquina asíncrona y análisis de su comportamiento frente a cargas mecánicas.

Implementándose en Simulink de la siguiente manera:

![Figura 46 Modulo de Compensación de Deslizamiento](image1)

![Figura 47 Implementación en Simulink del Compensación de Deslizamiento](image2)

3.1.3. **Circuito de Límite de Corriente (Current Limiter Circuit)**

Este circuito se centra en disminuir la velocidad solicitada por el usuario, para que la Id que debe pasar por los tiristores se encuentre dentro de los márgenes que pueden soportar, ya que si esta Id aumentara el nivel de la intensidad máxima de los tiristores, éstos se romperían.

Para este sistema se ha utilizado un control directo entre intensidad y velocidad a través de su constante correspondiente.

\[ \omega_{syn} = l d \times K1 \]

**Ecuación 23 Disminución de la Velocidad en Función de la Id**

Desde un principio se ha querido que el motor trabaje a velocidades positivas y negativas, por ello la implementación de este circuito se consideró para ambos casos, bien que se sumara a una velocidad negativa o bien que se restara a una velocidad positiva.

La implementación se realiza en Simulink.
Simulación de un accionamiento eléctrico con máquina asíncrona y análisis de su comportamiento frente a cargas mecánicas.

3.2. CONTROL AUXILIAR

Una vez se ha terminado de implementar el lazo de control de velocidad, se debe implementar el subsistema de seguridad (Limitador de Corriente y de Tensión) y el subsistema de freno, que es el encargado de dar la orden de modificación del ángulo de apertura al puente de tiristores para aportar la energía excedente a la red.

3.2.1. Subsistema de Seguridad

Este sistema de seguridad intenta desconectar el equipo de la fuente de alimentación en caso de una sobretensión o un cortocircuito.
3.2.2. Subsistema de Freno

Cuando el motor posee un excedente de energía, este módulo encarga la orden de producir el volcado a la red de esta energía excedente. El sistema se divide en tres módulos; cuando la salida de éstos se encuentra en nivel lógico alto, se produce la acción de frenado o de volcado de energía a la red.
Simulación de un accionamiento eléctrico con máquina asíncrona y análisis de su comportamiento frente a cargas mecánicas.

3.2.2.1. Control de Intensidad

Con este módulo se consigue apreciar cuándo existe en el sistema una demanda de energía fuera de lo habitual.
Simulación de un accionamiento eléctrico con máquina asíncrona y análisis de su comportamiento frente a cargas mecánicas.

Este módulo trabaja realizando una comparación entre la intensidad $I_d$ y una intensidad de referencia, que es función de la velocidad. A una menor velocidad la intensidad de referencia es menor.

Siempre y cuando la intensidad $I_d$ supere la intensidad de referencia, la condición de Intensidad será de valor lógico positivo.

### 3.2.2.2. Control de Tensión

Cuando un motor sufre una desaceleración o bien la velocidad del motor supera la velocidad de sincronismo del propio motor, la tensión del bus de continua aumenta por encima de un cierto valor $V_d$.

Por ello, este módulo se ha centrado en visualizar cuándo sucede esto.
Si se cumple que la tensión Vd, está por encima de Vd nominal más un cierto rizado, la condición de Tensión se volverá nivel lógico alto.

### 3.2.2.3. Módulo de Detección de Aceleración y Desaceleración

Este módulo distingue cuándo el motor sufre una desaceleración o bien está acelerando. Se realiza esta distinción ya que la potencia desarrollada en estos dos aspectos es muy parecida, haciendo que los dos sistemas anteriores no puedan distinguir adecuadamente cuando es uno u otro. Este módulo sirve de apoyo al resto de sistemas.

![Figura 56 Implementación en Simulink del Módulo de Aceleración o Desaceleración](image)
Simulación de un accionamiento eléctrico con máquina asincrona y análisis de su comportamiento frente a cargas mecánicas.

Quedando el sistema globalmente

Figura 57 Control de Velocidad y Control Auxiliar
4. SIMULACIONES

Una vez se ha descrito el sistema, así como su funcionamiento, se observa su comportamiento respecto a las cargas que se podrían encontrar en una industria. Con ello, lo que se quiere estudiar es el comportamiento del sistema a diferentes velocidades, así como la aportación de la energía excedente a la red.

Para poder observar mejor este excedente de energía, en las simulaciones que se centren en ello, se utilizará un freno resistivo, como se muestra en circuito en Simulink y Simpowersystems del variador de frecuencia fasorial con freno resistivo de los anexos. Para todas las demás pruebas se utilizará el circuito en Simulink y Simpowersystems para el variador de frecuencia fasorial con freno regenerativo de los anexos.

4.1. CARGAS A PAR CONSTANTE

Se recupera del capítulo 1 la gráfica 1:

![Gráfica 5 Par y Potencia respecto Velocidad para Carga a Par Constante](image)

Se exponen varios aspectos para estas cargas, la primera reside en que si el par producido por el motor en el arranque es inferior al par de la carga más el par requerido para vencer los rozamientos internos del motor, éste se quedará en estado de bloqueo, lo que producirá un consumo de corriente elevado en el estator del motor.

El segundo aspecto a destacar reside en que si el par del motor es superior a la de la carga se podrá observar un incremento de la potencia del motor, lo que se traduce en una reducción del deslizamiento y, en consecuencia, un aumento de la velocidad del motor.
4.1.1. Velocidad Positiva

Para este apartado y según las características del motor que se utiliza (incluido en anexos) se va a imponer un par resistente en la carga de 3 Nm para poder observar el comportamiento a baja velocidad y un par de 10 Nm para altas velocidades. Como se puede ver en la gráfica aportada por Matlab:

Gráfica 6 Par Constante a Velocidad Positiva Baja (Nm)

Gráfica 7 Par Constante a Velocidad Positiva Alta (Nm)
Simulación de un accionamiento eléctrico con máquina asíncrona y análisis de su comportamiento frente a cargas mecánicas.

4.1.1.1. Escalón de Velocidad

Este apartado se encargará de ver el comportamiento del sistema frente a entradas del usuario en forma de escalón (Saltos de velocidad).

Par Carga 3 Nm

Se le impone al sistema un par de carga de 3 Nm y una velocidad de referencia como se muestra en la siguiente gráfica:

Hay que considerar que para esta simulación se trabaja con una frecuencia en el motor de 0 Hz a 22 Hz.

La velocidad desarrollada por el motor se puede observar en la siguiente gráfica:
Se observa que el motor tiene una respuesta adecuada, respecto los escalones de velocidad a baja frecuencia. Se puede ver una oscilación en esta respuesta, ya que el motor trabaja a bajas frecuencias.

Se resalta que para esta prueba se utilizó un motor de dos pares de polos, lo que implica que la velocidad de sincronismo del estator está trabajando entre 140 rad/sg y 0 rad /sg [22,0 Hz]

Par Carga 10 Nm
Se le impone al sistema un par de carga de 10 Nm y una velocidad de referencia como se muestra en la siguiente gráfica:

![Gráfica 10 Velocidad de Referencia en Velocidad Positiva con Escalón a 10 Nm (rad/sg)](image)

Siendo la respuesta del sistema:
Simulación de un accionamiento eléctrico con máquina asíncrona y análisis de su comportamiento frente a cargas mecánicas.

Se observa cómo a velocidades mayores de 19 Hz el sistema no posee la oscilación antes mencionada y es más estable.

4.1.1.2. Rampa de Velocidad

Este apartado se encargará de ver el comportamiento del sistema frente a una entrada rampa, producida por el usuario.

Par Carga 3 Nm

Se le impone al sistema un par de carga de 3 Nm y una velocidad de referencia como se muestra en la siguiente gráfica:
Simulación de un accionamiento eléctrico con máquina asíncrona y análisis de su comportamiento frente a cargas mecánicas.

Siendo la respuesta del sistema:

Se observa cómo a velocidades menores de 19 Hz el sistema no puede vencer el par de la carga, llevando al sistema a velocidades negativas. Una vez superados los 20 Hz el sistema tiende a recuperar una velocidad positiva en el rotor del motor.

Par Carga 10 Nm
Se le impone al sistema un par de carga de 10 Nm, y la siguiente gráfica de velocidad de referencia:

Gráfica 14 Velocidad de Referencia en Velocidad Positiva con Rampa a 10 Nm (rad/sg)
Simulación de un accionamiento eléctrico con máquina asíncrona y análisis de su comportamiento frente a cargas mecánicas.

Siendo la respuesta del sistema:

![Gráfica 15 Velocidad del Rotor en Velocidad Positiva con Rampa a 10 Nm (rad/sg)](image)

Se observa como a un par mayor el sistema debe de recuperarse de una velocidad negativa mayor, ya a velocidades bajas de la rampa, el motor no puede vencer el par ocasionado por la carga.

**4.1.1.3. Recuperación de Energía**

En este apartado se recurre al freno resistivo para ver la potencia consumida por la resistencia cuando el motor genera un excedente de energía, se utilizará un par resistivo de 5 Nm con la siguiente entrada de velocidad de referencia:

![Gráfica 16 Velocidad de Referencia en Velocidad Positiva para Recuperación a 5 Nm (rad/sg)](image)
Simulación de un accionamiento eléctrico con máquina asincrónica y análisis de su comportamiento frente a cargas mecánicas.

Siendo la respuesta del sistema:

![Gráfica 17 Velocidad del Rotor en Velocidad Positiva para Recuperación a 5 Nm (rad/sg)](image)

Se pasa a observar la potencia consumida por la carga:

![Gráfica 18 Potencia Consumida por la Resistencia en Velocidad Positiva para Recuperación a 5 Nm (W)](image)

Se puede observar dos cosas, la primera, que el consumo de la resistencia se produce cuando existe un exceso de potencia por parte del motor, dejando de consumir cuando este excedente de energía baja de un cierto umbral, y lo segundo a identificar recae en que a un menor salto entre velocidades en el rotor, el consumo energético de la resistencia es menor, lo que implica que solamente se absorbe por la resistencia, el excedente de energía correspondiente.
4.1.2. Velocidad Negativa

Para este apartado y según las características del motor que se utiliza (Incluido en anexos) se va a imponer un par resistente en la carga de -3 Nm para poder observar el comportamiento a baja velocidad y a un par de -10 Nm para altas velocidades. Como se puede ver en la gráfica aportada por Matlab:

![Gráfica 19 Par Constante a Velocidad Negativa Baja (Nm)](image)

![Gráfica 20 Par Constante a Velocidad Negativa Alta (Nm)](image)

4.1.2.1. Escalón de Velocidad

Este apartado se encargará de ver el comportamiento del sistema frente a entradas del usuario en forma de escalón (Saltos de velocidad).
Par Carga -3 Nm
Se le impone al sistema un par de carga de -3 Nm, y la siguiente gráfica de velocidad de referencia:

Hay que considerar que para esta simulación se trabaja con una frecuencia en el motor de -3 Hz a -19 Hz.

La velocidad desarrollada por el motor se puede observar en la siguiente gráfica:

Se observa que el motor tiene una respuesta adecuada, respecto los escalones de velocidad a baja frecuencia, se observa una oscilación en esta respuesta ya que el motor se hace trabajar a bajas frecuencias.
Se resalta que para esta prueba se utilizó un motor de dos pares de polos, lo que implica que la velocidad de sincronismo del estator está trabajando entre -120 rad/sg y -20 rad/sg [-19,-3 Hz]

Par Carga -10 Nm
Se le impone al sistema un par de carga de -10 Nm, y la siguiente gráfica de velocidad de referencia:

![Gráfica 23 Velocidad de Referencia en Velocidad Negativa con Escalón a -10 Nm (rad/sg)](image)

Siendo la respuesta del sistema:

![Gráfica 24 Velocidad del Rotor en Velocidad Negativa con Escalón a -10 Nm (rad/sg)](image)

Se observa como a velocidades mayores de -19 Hz el sistema no posee la oscilación y es más estable.
4.1.2.2. Rampa de Velocidad

Este apartado se encargará de ver el comportamiento del sistema frente a una entrada rampa, producida por el usuario.

Par Carga -3 Nm
Se le impone al sistema un par de carga de -3 Nm, y la siguiente gráfica de velocidad de referencia:

![Gráfica 25 Velocidad de Referencia en Velocidad Negativa con Rampa a -3 Nm (rad/sg)](image1)

Gráfica 25 Velocidad de Referencia en Velocidad Negativa con Rampa a -3 Nm (rad/sg)

Siendo la respuesta del sistema:

![Gráfica 26 Velocidad del Rotor en Velocidad Negativa con Rampa a -3 Nm (rad/sg)](image2)

Gráfica 26 Velocidad del Rotor en Velocidad Negativa con Rampa a -3 Nm (rad/sg)
Se observa como a velocidades menores de -19 Hz el sistema no puede vencer el par de la carga, llevando al sistema a velocidades positivas, una vez superados los -20 Hz el sistema tiende a recuperar una velocidad negativa en el rotor del motor.

Par Carga -10 Nm
Se le impone al sistema un par de carga de -10 Nm, y la siguiente gráfica de velocidad de referencia:

![Gráfica 27 Velocidad de Referencia en Velocidad Negativa con Rampa a -10 Nm (rad/sg)](image)

Siendo la respuesta del sistema:

![Gráfica 28 Velocidad del Rotor en Velocidad Negativa con Rampa a -10 Nm (rad/sg)](image)
Se observa como a un par mayor el sistema debe de recuperarse de una velocidad positiva mayor, ya que a velocidades bajas de la rampa, el motor no puede vencer el par ocasionado por la carga.

4.1.2.3. Recuperación de Energía

En este apartado se recurre al freno resistivo para ver la potencia consumida por la resistencia cuando el motor genera un excedente de energía, se utilizará un par resistivo de -5 Nm con la siguiente entrada de velocidad de referencia:

![Gráfica 29 Velocidad de Referencia en Velocidad Negativa para Recuperación a -5 Nm (rad/sg)](image1)

Siendo la respuesta del sistema:

![Gráfica 30 Velocidad del Rotor en Velocidad Negativa para Recuperación a -5 Nm (rad/sg)](image2)
Se pasa a observar la potencia consumida por la carga:

![Gráfica]

Gráfica 31 Potencia Consumida por la Resistencia en Velocidad Negativa para Recuperación a -5 Nm (W)

Se puede observar dos cosas, la primera que el consumo de la resistencia se produce cuando existe un excedente de potencia por parte del motor, dejando de consumir cuando este excedente de energía baja de un cierto umbral, y lo segundo a identificar recae en que a un menor salto entre velocidades en el rotor el consumo energético de la resistencia es menor, lo que implica que solamente se absorbe por la resistencia el excedente de energía correspondiente.

4.1.2.4. Caso Práctico

Para este caso se cogerá como estudio una cinta trasportadora, que variará su par de carga en función de la cantidad de producto a transportar. Por lo tanto, la potencia de nuestro sistema deberá evolucionar de acuerdo a esta carga constante.

Se muestra a continuación la gráfica referida a par de la carga que se utilizará en este caso.
Simulación de un accionamiento eléctrico con máquina asincrónica y análisis de su comportamiento frente a cargas mecánicas.

La velocidad de referencia utilizada en el control del sistema es:

Gráfica 32 Par Desarrollado por una Cinta Trasportadora (Nm)

Gráfica 33 Velocidad de Referencia para Cinta Transportadora (rad/sg)
Obteniendo una velocidad en el rotor:

![Gráfica 34 Velocidad en el Rotor para Cinta Transportadora (rad/sg)](image)

Como se puede observar, en función del par desarrollado por la carga, la velocidad en el rotor aumentará o disminuirá alrededor de la velocidad de referencia, disminuyendo o aumentando la potencia consumida en dicho motor.

Ello trae consigo una modificación en el rendimiento del sistema:

![Gráfica 35 Rendimiento del Sistema para Cinta Transportadora (%)](image)
4.2. CARGAS A PAR LINEAL

Se recupera del capítulo 1 la gráfica 2:

![Gráfica 36 Par y Potencia respecto Velocidad para Carga a Par Variable](image)

Se observa en la gráfica que este tipo de cargas son lineales con la velocidad del motor, por lo que el par quedará en función de la velocidad del rotor, aumentando con este o disminuyendo, lo que se traduce en un incremento en la potencia al aumentar la velocidad del sistema.

4.2.1. Velocidad Positiva

En este apartado se observará el comportamiento del sistema frente a entradas escalón y entradas en forma de rampa, ambas en velocidad positivas.

4.2.1.1. Escalón de Velocidad

Este apartado se encargará de ver el comportamiento del sistema frente a entradas del usuario en forma de escalón (Saltos de velocidad).

Se le impone al sistema la siguiente gráfica de velocidad de referencia:
Simulación de un accionamiento eléctrico con máquina asíncrona y análisis de su comportamiento frente a cargas mecánicas.

La velocidad desarrollada por el motor se puede observar en la siguiente gráfica:

Se observa que el motor tiene una respuesta adecuada, respecto los escalones de velocidad a baja frecuencia, se observa una oscilación en baja frecuencia ya que el motor se hace trabajar a bajas frecuencias.
4.2.1.2. **Rampa de Velocidad**

Este apartado se encargará de ver el comportamiento del sistema frente a una entrada rampa, producida por el usuario.

Se le impone al sistema la siguiente gráfica de velocidad de referencia:

![Gráfica 39: Velocidad de Referencia en Velocidad Positiva con Rampa a Par Lineal (rad/sg)](image1)

Siendo la respuesta del sistema:

![Gráfica 40: Velocidad del Rotor en Velocidad Positiva con Rampa a Par Lineal (rad/sg)](image2)
4.2.1.3. Recuperación de Energía

En este apartado se recurre al freno resistivo para ver la potencia consumida por la resistencia, cuando el motor genera un excedente de energía, para ello se utilizará tanto una entrada en rampa como en escalón.

Se usa una velocidad de referencia como se indica a continuación:

![Gráfica 41 Velocidad de Referencia en Velocidad Positiva para Recuperación a Par Lineal (rad/sg)](image1)

Siendo la respuesta del sistema:

![Gráfica 42 Velocidad del Rotor en Velocidad Positiva para Recuperación a Par Lineal (rad/sg)](image2)
Se pasa a observar la potencia consumida por la carga:

![Gráfica 43 Potencia Consumida por la Resistencia en Velocidad Positiva para Recuperación a Par Lineal (W)](image)

Se puede observar dos cosas, la primera que el consumo de la resistencia se produce cuando existe un exceso de potencia por parte del motor, dejando de consumir cuando este excedente de energía, baja de un cierto umbral, y lo segundo a identificar recae en que a un menor salto entre velocidades en el rotor el consumo energético de la resistencia es menor, lo que implica que solamente se absorbe por la resistencia el excedente de energía correspondiente.

4.2.2. Velocidad Negativa

En este apartado se observará el comportamiento del sistema frente a entradas escalón y entradas en forma de rampa, ambas en velocidad negativas.

4.2.2.1. Escalón de Velocidad

Este apartado se encargará de ver el comportamiento del sistema frente a entradas del usuario en forma de escalón (Saltos de velocidad).

Se le impone al sistema la siguiente gráfica de velocidad de referencia:
Simulación de un accionamiento eléctrico con máquina asíncrona y análisis de su comportamiento frente a cargas mecánicas.

La velocidad desarrollada por el motor se puede observar en la siguiente gráfica:

Se observa que el motor tiene una respuesta adecuada, respecto los escalones de velocidad a baja frecuencia, se observa una oscilación en baja frecuencia ya que el motor se hace trabajar a bajas frecuencias.
4.2.2.2. Rampa de Velocidad

Este apartado se encargará de ver el comportamiento del sistema frente a una entrada rampa, producida por el usuario.

Se le impone al sistema la siguiente gráfica de velocidad de referencia:

![Gráfica 46 Velocidad de Referencia en Velocidad Negativa con Rampa a Par Lineal (rad/sg)](image)

Siendo la respuesta del sistema:

![Gráfica 47 Velocidad del Rotor en Velocidad Negativa con Rampa a Par Lineal (rad/sg)](image)
4.2.2.3. Recuperación de Energía

En este apartado se recurre al freno resistivo para ver la potencia consumida por la resistencia cuando el motor genera un excedente de energía.

Se usa una velocidad de referencia como se indica a continuación:

![Gráfica 48 Velocidad de Referencia en Velocidad Negativa para Recuperación a Par Lineal (rad/sg)](image)

Siendo la respuesta del sistema:

![Gráfica 49 Velocidad del Rotor en Velocidad Negativa para Recuperación a Par Lineal (rad/sg)](image)
Simulación de un accionamiento eléctrico con máquina asíncrona y análisis de su comportamiento frente a cargas mecánicas.

Se pasa a observar la potencia consumida por la carga:

![Gráfica 50 Potencia Consumida por la Resistencia en Velocidad Negativa para Recuperación a Par Lineal (W)](image)

Se puede observar dos cosas, la primera que el consumo de la resistencia se produce cuando existe un exceso de potencia por parte del motor, dejando de consumir cuando este excedente de energía, baja de un cierto umbral, y lo segundo a identificar recae en que a un menor salto entre velocidades en el rotor el consumo energético de la resistencia es menor, lo que implica que solamente se absorbe por la resistencia el excedente de energía correspondiente.

4.2.2.4. Caso Práctico

Para este caso se cogerá como estudio un compresor. El cual en función de los requerimientos de la instalación, deberá trabajar a una velocidad mayor o menor.

La velocidad de referencia utilizada en el control del sistema es:
Simulación de un accionamiento eléctrico con máquina asíncrona y análisis de su comportamiento frente a cargas mecánicas.

Obteniendo una velocidad en el rotor:

Lo que se observa es que en función de los requerimientos de la instalación, el compresor es capaz de variar su velocidad para ajustarse a ellos. Reduciendo su consumo cuando se reduce la velocidad de trabajo.

Ello trae consigo la siguiente curva de rendimiento del sistema:
Simulación de un accionamiento eléctrico con máquina asíncrona y análisis de su comportamiento frente a cargas mecánicas.

Se puede observar como a velocidades entorno a las velocidades nominales del motor obtenemos unos rendimientos mayores, no hay que olvidar que se trata de un motor asíncrono el cual a velocidades bajas posee un rendimiento menor.

4.3. CARGAS A PAR CUADRÁTICO

Se recupera del capítulo 1 la gráfica 3:

Gráfica 53 Rendimiento del Sistema para Compresor (%)

Gráfica 54 Par y Potencia respecto Velocidad para Carga a Par Cuadrático.
Simulación de un accionamiento eléctrico con máquina asíncrona y análisis de su comportamiento frente a cargas mecánicas.

Se observa en la gráfica que este tipo de cargas son cuadráticas con la velocidad del motor, por lo que el par quedaría en función de la velocidad del rotor, aumentando con este o disminuyendo, lo que se traduce en un incremento en la potencia al aumentar la velocidad del sistema.

4.3.1. Velocidad Positiva
En este apartado se observará el comportamiento del sistema frente a entradas escalón y entradas en forma de rampa, ambas en velocidad positivas.

4.3.1.1. Escalón de Velocidad
Este apartado se encargará de ver el comportamiento del sistema frente a entradas del usuario en forma de escalón (Saltos de velocidad).

Se le impone al sistema la siguiente gráfica de velocidad de referencia:

La velocidad desarrollada por el motor se puede observar en la siguiente gráfica:
Simulación de un accionamiento eléctrico con máquina asíncrona y análisis de su comportamiento frente a cargas mecánicas.

Se observa que el lazo de control tiene una respuesta adecuada, respecto los escalones de velocidad a baja frecuencia, se observa una oscilación en baja frecuencia ya que el motor se hace trabajar a bajas frecuencias.

4.3.1.2. Rampa de Velocidad
Este apartado se encargará de ver el comportamiento del sistema frente a una entrada rampa, producida por el usuario.
Se le impone al sistema la siguiente gráfica de velocidad de referencia:

Gráfica 56 Velocidad del Rotor en Velocidad Positiva con Escalón a Par Cuadrático (rad/sg)

Gráfica 57 Velocidad de Referencia en Velocidad Positiva con Rampa a Par Cuadrático (rad/sg)
Siendo la respuesta del sistema:

![Gráfica 58 Velocidad del Rotor en Velocidad Positiva con Rampa a Par Cuadrático (rad/sg)](image)

4.3.1.3. **Recuperación de Energía**

En este apartado se recurre al freno resistivo para ver la potencia consumida por la resistencia cuando el motor genera un excedente de energía.

Se usa una velocidad de referencia como se indica a continuación:

![Gráfica 59 Velocidad de Referencia en Velocidad Positiva para Recuperación a Par Cuadrático (rad/sg)](image)
Siendo la respuesta del sistema:

![Gráfica 60 Velocidad del Rotor en Velocidad Positiva para Recuperación a Par Cuadrático (rad/sg)](image)

Se pasa a observar la potencia consumida por la carga:

![Gráfica 61 Potencia Consumida por la Resistencia en Velocidad Positiva para Recuperación a Par Cuadrático (W)](image)

Se puede observar dos cosas, la primera que el consumo de la resistencia se produce cuando existe un exceso de potencia por parte del motor, dejando de consumir cuando este excedente de energía baja de un cierto umbral, y lo segundo a identificar recae en que a un menor salto entre velocidades en el rotor el consumo energético de la resistencia es menor, lo que implica que solamente se absorbe por la resistencia el excedente de energía correspondiente.
4.3.2. Velocidad Negativa

En este apartado se observará el comportamiento del sistema frente a entradas escalón y entradas en forma de rampa, ambas en velocidad negativas.

4.3.2.1. Escalón de Velocidad

Este apartado se encargará de ver el comportamiento del sistema frente a entradas del usuario en forma de escalón (Saltos de velocidad).

Se le impone al sistema la siguiente gráfica de velocidad de referencia:

![Gráfica 62 Velocidad de Referencia en Velocidad Negativa con Escalón a Par Cuadrático (rad/sg)](attachment:image1)

La velocidad desarrollada por el motor se puede observar en la siguiente gráfica:

![Gráfica 63 Velocidad del Rotor en Velocidad Positiva con Escalón a Par Cuadrático (rad/sg)](attachment:image2)
Se observa que el lazo de control tiene una respuesta adecuada, respecto los escalones de velocidad a baja frecuencia, se observa una oscilación en baja frecuencia ya que el motor se hace trabajar a bajas frecuencias.

4.3.2.2. Rampa de Velocidad
Este apartado se encargará de ver el comportamiento del sistema frente a una entrada rampa, producida por el usuario.

Se le impone al sistema la siguiente gráfica de velocidad de referencia:

![Gráfica 64 Velocidad de Referencia en Velocidad Negativa con Rampa a Par Cuadrático (rad/sg)](image1)

Siendo la respuesta del sistema:

![Gráfica 65 Velocidad del Rotor en Velocidad Negativa con Rampa a Par Cuadrático (rad/sg)](image2)
4.3.2.3. Recuperación de Energía

En este apartado se recurre al freno resistivo para ver la potencia consumida por la resistencia cuando el motor genera un excedente de energía.

Se usa una velocidad de referencia como se indica a continuación:

![Gráfica 66 Velocidad de Referencia en Velocidad Negativa para Recuperación a Par Cuadrático (rad/sg)](image)

Siendo la respuesta del sistema:

![Gráfica 67 Velocidad del Rotor en Velocidad Negativa para Recuperación a Par Cuadrático (rad/sg)](image)
Se pasa a observar la potencia consumida por la carga:

![Gráfica 68 Potencia Consumida por la Resistencia en Velocidad Negativa para Recuperación a Par Cuadrático (W)](image)

Se puede observar dos cosas, la primera que el consumo de la resistencia se produce cuando existe un exceso de potencia por parte del motor, dejando de consumir cuando este excedente de energía baja de un cierto umbral, y lo segundo a identificar recae en que a un menor salto entre velocidades en el rotor el consumo energético de la resistencia es menor, lo que implica que solamente se absorbe por la resistencia el excedente de energía correspondiente.

4.3.2.4. Caso Práctico

Para este caso se cogerá como estudio un ventilador. El cual en función de los grados requeridos por el local impulsará aire al exterior o introducirá aire.

La velocidad de referencia utilizada en el control del sistema es:
Simulación de un accionamiento eléctrico con máquina asíncrona y análisis de su comportamiento frente a cargas mecánicas.

Obteniendo una velocidad en el rotor:

Lo que se observa es que en función de los requerimientos de la instalación, el ventilador es capaz de variar su velocidad para ajustarse a ellos.

Ello trae consigo la siguiente curva de rendimiento del sistema:
Se puede observar como a velocidades entorno a las velocidades nominales del motor obtenemos unos rendimientos mayores, no hay que olvidar que se trata de un motor asíncrono el cual a velocidades bajas posee un rendimiento menor.

4.4. CARGAS DE POTENCIA CONSTANTE

Se recupera del capítulo 1 la gráfica 4:
Se observa en la gráfica que este tipo de cargas son a potencia constante, y que a velocidades bajas del motor, los pares que debe aportar son mayores.

4.4.1. Velocidad Positiva

En este apartado se observara el comportamiento del sistema frente a entradas escalón y entradas en forma de rampa, ambas en velocidad positivas.

4.4.1.1. Escalón de Velocidad

Este apartado se encargara de ver el comportamiento del sistema frente a entradas del usuario en forma de escalón (Saltos de velocidad).

Se le impone al sistema la siguiente gráfica de velocidad de referencia:

![Gráfica 73 Velocidad de Referencia en Velocidad Positiva con Escalón a Potencia Constante (rad/sg)](image)

La velocidad desarrollada por el motor se puede observar en la siguiente gráfica:
Simulación de un accionamiento eléctrico con máquina asíncrona y análisis de su comportamiento frente a cargas mecánicas.

Se observa que el lazo de control tiene una respuesta adecuada, respecto los escalones de velocidad a baja frecuencia, se observa una oscilación en baja frecuencia ya que el motor se hace trabajar a bajas frecuencias.

4.4.1.2. Rampa de Velocidad

Este apartado se encargará de ver el comportamiento del sistema frente a una entrada rampa, producida por el usuario.

Se le impone al sistema la siguiente gráfica de velocidad de referencia:

![Gráfica 75 Velocidad de Referencia en Velocidad Positiva con Rampa a Potencia Constante (rad/sg)](image)

Gráfica 75 Velocidad de Referencia en Velocidad Positiva con Rampa a Potencia Constante (rad/sg)
Simulación de un accionamiento eléctrico con máquina asíncrona y análisis de su comportamiento frente a cargas mecánicas.

Siendo la respuesta del sistema:

![Gráfica 76 Velocidad del Rotor en Velocidad Positiva con Rampa a Potencia Constante (rad/sg)](image)

4.4.1.3. Recuperación de Energía

En este apartado se recurre al freno resistivo para ver la potencia consumida por la resistencia cuando el motor genera un excedente de energía.

Se usa una velocidad de referencia como se indica a continuación:

![Gráfica 77 Velocidad de Referencia en Velocidad Positiva para Recuperación a Potencia Constante (rad/sg)](image)
Simulación de un accionamiento eléctrico con máquina asíncrona y análisis de su comportamiento frente a cargas mecánicas.

Siendo la respuesta del sistema:

![Gráfica 78 Velocidad del Rotor en Velocidad Positiva para Recuperación a Potencia Constante (rad/sg)](image)

Gráfica 78 Velocidad del Rotor en Velocidad Positiva para Recuperación a Potencia Constante (rad/sg)

Se pasa a observar la potencia consumida por la carga:

![Gráfica 79 Potencia Consumida por la Resistencia en Velocidad Positiva para Recuperación a Potencia Constante (W)](image)

Gráfica 79 Potencia Consumida por la Resistencia en Velocidad Positiva para Recuperación a Potencia Constante (W)

Se puede observar dos cosas, la primera que el consumo de la resistencia se produce cuando existe un exceso de potencia por parte del motor, dejando de consumir cuando este excedente de energía baja de un cierto umbral, y lo segundo a identificar recae en que a un menor salto entre velocidades en el rotor el consumo energético de la resistencia es menor, lo que implica que solamente se absorbe por la resistencia el excedente de energía correspondiente.
4.4.2. Velocidad Negativa

En este apartado se observará el comportamiento del sistema frente a entradas escalón y entradas en forma de rampa, ambas en velocidad negativas.

4.4.2.1. Escalón de Velocidad

Este apartado se encargará de ver el comportamiento del sistema frente a entradas del usuario en forma de escalón (Saltos de velocidad).

Se le impone al sistema la siguiente gráfica de velocidad de referencia:

![Gráfica 80 Velocidad de Referencia en Velocidad Negativa con Escalón a Potencia Constante (rad/sg)]

La velocidad desarrollada por el motor se puede observar en la siguiente gráfica:

![Gráfica 81 Velocidad del Rotor en Velocidad Positiva con Escalón a Potencia Constante (rad/sg)]
4.4.2.2. **Rampa de Velocidad**

Este apartado se encargará de ver el comportamiento del sistema frente a una entrada rampa, producida por el usuario.

Se le impone al sistema la siguiente gráfica de velocidad de referencia:

![Gráfica 82 Velocidad de Referencia en Velocidad Negativa con Rampa a Potencia Constante (rad/sg)](image1)

Siendo la respuesta del sistema:

![Gráfica 83 Velocidad del Rotor en Velocidad Negativa con Rampa a Potencia Constante (rad/sg)](image2)
4.4.2.3. Recuperación de Energía

En este apartado se recurre al freno resistivo para ver la potencia consumida por la resistencia cuando el motor genera un excedente de energía.

Se usa una velocidad de referencia como se indica a continuación:

![Gráfica 84 Velocidad de Referencia en Velocidad Negativa para Recuperación a Potencia Constante (rad/sg)](image)

Siendo la respuesta del sistema:

![Gráfica 85 Velocidad del Rotor en Velocidad Negativa para Recuperación a Potencia Constante (rad/sg)](image)
Se pasa a observar la potencia consumida por la carga:

Se puede observar dos cosas, la primera que el consumo de la resistencia se produce cuando existe un exceso de potencia por parte del motor, dejando de consumir cuando este excedente de energía baja de un cierto umbral, y lo segundo a identificar recae en que a un menor salto entre velocidades en el rotor el consumo energético de la resistencia es menor, lo que implica que solamente se absorbe por la resistencia el excedente de energía correspondiente.

**4.4.2.4. Caso Práctico**

Para este caso se cogerá como estudio un desbobinador. El cual en función de la bobina reducirá su par, aumentando su velocidad.

La velocidad de referencia utilizada en el control del sistema es:
Simulación de un accionamiento eléctrico con máquina asíncrona y análisis de su comportamiento frente a cargas mecánicas.

Obteniendo una velocidad en el rotor:

Ello trae consigo la siguiente curva de rendimiento del sistema:
Simulación de un accionamiento eléctrico con máquina asíncrona y análisis de su comportamiento frente a cargas mecánicas.

Gráfica 89 Rendimiento del Sistema para Desbobinador
5. CONCLUSIONES

Este trabajo muestra la viabilidad de la modelización de sistemas electrónicos de potencia con simuladores comerciales estándar de propósitos generales, del tipo orientado a ecuaciones o diagramas de bloques funcionales como forma de ingresas el modelo. Siendo éste tipo de programa habitualmente usado en Ingeniería de Control, esto resulta muy conveniente para todo aquel con tareas que involucren electrónica de potencia en sistemas de control.

La elección del ambiente Matlab/Simulink/SimPowerSystems aquí reportada, no solo obedece a la amplia difusión que este tienen en aplicaciones de control, sino esencialmente a las posibilidades que brinda, dentro de su mismo entorno, de ir más allá del tradicional concepto de simulación.

Además de las ventajas por el programa utilizado con este proyecto se ha observado que el optar por una lazo abierto de alimentación, se obtiene una serie de ventajas que con retroalimentación no se obtienen, entre ellas se destaca, que la distancia a cubrir entre el motor y el variador de frecuencia es mucho mayor que se hubiera una retroalimentación, pudiendo disponer este control a una gran distancia, eliminando así el encoder dispuesto en el motor. Todo lo anterior citado lleva un ahorro económico en la instalación.

Se ha podido observar un buen comportamiento de este variador de frecuencia frente todos los tipos de resistencias que se pueden encontrar en la industria, adaptándose a cada una ellas. Además el sistema posee la ventaja de aportar una parte de la energía excedente a la red, disminuyendo el consumo total del sistema y aumentado globalmente el rendimiento de la instalación.

Se puntualiza que se ha omitido algunas fricciones del sistema lo que repercutiría en el sistema como una disminución en el rendimiento. Obteniendo también rendimientos cada vez más bajos a una disminución de la frecuencia de trabajo, algo normal en los motores asíncronos.
6. ANEXOS

6.1. CIRCUITO EN SIMULINK Y SIMPOWERSYSTEMS DEL VARIADOR DE FRECUENCIA FASORIAL CON FRENO REGENERATIVO

A continuación se expone el circuito general que se ha implementado:
Simulación de un accionamiento eléctrico con máquina asíncrona y análisis de su comportamiento frente a cargas mecánicas.

Se puede observar en la siguiente figura el Modulo de Fuente de CC donde reside el puente de tiristores y el PWM para el caso de freno regenerativo.
6.2. CIRCUITO EN SIMULINK Y SIMPOWERSYSTEMS DEL VARIADOR DE FRECUENCIA FASORIAL CON FRENO RESISTIVO

Se puede observar en la siguiente figura el Modulo de Fuente de CC donde reside el puente de diodos y el PWM para el caso de freno resistivo.
6.3. CARACTERISTICAS DEL MOTOR

Se expone las características del motor utilizado durante las simulaciones.

<table>
<thead>
<tr>
<th>Asynchronous Machine (mask) (link)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Implements a three-phase asynchronous machine (wound rotor, squirrel cage or double squirrel cage) modeled in a selectable dq reference frame (rotor, stator, or synchronous). Stator and rotor windings are connected in wye to an internal neutral point.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Parameters</th>
<th>Advanced</th>
<th>Load Flow</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preset model:</td>
<td>01: 5 HP</td>
<td>460 V</td>
<td>60Hz</td>
</tr>
<tr>
<td>Mechanical input:</td>
<td>Torque Tm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rotor type:</td>
<td>Squirrel-cage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reference frame:</td>
<td>Rotor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mask units:</td>
<td>SI</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### Características del Motor

<table>
<thead>
<tr>
<th>Característica</th>
<th>Valores</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potencia nominal</td>
<td>3730 W</td>
</tr>
<tr>
<td>Voltaje nominal</td>
<td>460 V</td>
</tr>
<tr>
<td>Frecuencia</td>
<td>60 Hz</td>
</tr>
<tr>
<td>Resistencia y Inductancia</td>
<td></td>
</tr>
<tr>
<td>Stator</td>
<td>Rs(ohm) = 1.115, Ls(H) = 0.005974</td>
</tr>
<tr>
<td>Rotor</td>
<td>Rr(ohm) = 1.083, Lr(H) = 0.005974</td>
</tr>
<tr>
<td>Inercia</td>
<td>0.2037</td>
</tr>
<tr>
<td>Factor fricción</td>
<td>p</td>
</tr>
<tr>
<td>Condiciones iniciales</td>
<td>[1 0 0 0 0 0 0]</td>
</tr>
</tbody>
</table>

- **Simule saturación**
- **Parámetros de saturación**: [1, i1, ..., (Arms); v1, v2, ..., (VrmsLL)]

```
61, 302.9841135, 420.4778367; 230, 322, 414, 460, 506, 552, 598, 644, 690
```
Simulación de un accionamiento eléctrico con máquina asincrónica y análisis de su comportamiento frente a cargas mecánicas.

7. GLOSARIO

INDICE DE ECUACIONES

<table>
<thead>
<tr>
<th>Ecuación</th>
<th>Descripción</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Tensión Eficaz en un Convertidor Básico de Tiristores</td>
<td>15</td>
</tr>
<tr>
<td>2</td>
<td>Tensión Eficaz en un Convertidor Bifásico</td>
<td>16</td>
</tr>
<tr>
<td>3</td>
<td>Intensidad Instantánea en un Puente Bifásico de Tiristores</td>
<td>17</td>
</tr>
<tr>
<td>4</td>
<td>Valor Eficaz de Tensión en un Puente de Tiristores Trifásico</td>
<td>19</td>
</tr>
<tr>
<td>5</td>
<td>Valor Eficaz de la Corriente de Fase de un Puente de Tiristores</td>
<td>20</td>
</tr>
<tr>
<td>6</td>
<td>Descomposición en Términos de Fourier de la Corriente Eficaz de un Puente de Tiristores</td>
<td>20</td>
</tr>
<tr>
<td>7</td>
<td>Valor eficaz de la Corriente Fundamental</td>
<td>20</td>
</tr>
<tr>
<td>8</td>
<td>Valor Eficaz de la Corriente según Armónico</td>
<td>21</td>
</tr>
<tr>
<td>9</td>
<td>Tensión Media sobre la Carga</td>
<td>23</td>
</tr>
<tr>
<td>10</td>
<td>Tensión en el Bus de Continua</td>
<td>23</td>
</tr>
<tr>
<td>11</td>
<td>Modulación de Amplitud</td>
<td>30</td>
</tr>
<tr>
<td>12</td>
<td>Modulación de Frecuencia</td>
<td>30</td>
</tr>
<tr>
<td>13</td>
<td>Tensión Eficaz en la salida del PWM</td>
<td>30</td>
</tr>
<tr>
<td>14</td>
<td>Frecuencia de los distintos Armónicos en una Señal Modulada</td>
<td>31</td>
</tr>
<tr>
<td>15</td>
<td>Tensión en Bornes del Motor</td>
<td>40</td>
</tr>
<tr>
<td>16</td>
<td>Leyes de Kirchhoff</td>
<td>40</td>
</tr>
<tr>
<td>17</td>
<td>Pendiente de Optimización de la Densidad de Flujo</td>
<td>40</td>
</tr>
<tr>
<td>18</td>
<td>Slope Contante</td>
<td>40</td>
</tr>
<tr>
<td>19</td>
<td>Igualdades de la Ira</td>
<td>40</td>
</tr>
<tr>
<td>20</td>
<td>Pendiente de Optimización de la Densidad de Flujo en Función de la Velocidad de Referencia</td>
<td>41</td>
</tr>
<tr>
<td>21</td>
<td>Relación de Velocidades en el Motor</td>
<td>42</td>
</tr>
<tr>
<td>22</td>
<td>Relación de Velocidad de Estator y Rotor</td>
<td>42</td>
</tr>
<tr>
<td>23</td>
<td>Disminución de la Velocidad en Función de la Id</td>
<td>43</td>
</tr>
</tbody>
</table>
Simulación de un accionamiento eléctrico con máquina asíncrona y análisis de su comportamiento frente a cargas mecánicas.

**Índice de Figuras**

<table>
<thead>
<tr>
<th>Figura</th>
<th>Descripción</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figura 1</td>
<td>Sistema Electrónico de Potencia</td>
<td>5</td>
</tr>
<tr>
<td>Figura 2</td>
<td>Procesador de Potencia</td>
<td>6</td>
</tr>
<tr>
<td>Figura 3</td>
<td>Procesador de Potencia para MCA</td>
<td>7</td>
</tr>
<tr>
<td>Figura 4</td>
<td>Procesador de Potencia (PWM) con Rectificador a Diodos.</td>
<td>7</td>
</tr>
<tr>
<td>Figura 5</td>
<td>Procesador de Potencia con Rectificador a Tiristores.</td>
<td>7</td>
</tr>
<tr>
<td>Figura 6</td>
<td>Frenado Disipativo</td>
<td>8</td>
</tr>
<tr>
<td>Figura 7</td>
<td>Frenado Regenerativo</td>
<td>8</td>
</tr>
<tr>
<td>Figura 8</td>
<td>Diagrama de Bloques de un Sistema de Accionamiento Eléctrico.</td>
<td>12</td>
</tr>
<tr>
<td>Figura 9</td>
<td>PPU</td>
<td>13</td>
</tr>
<tr>
<td>Figura 10</td>
<td>Convertidor Controlado de la Frecuencia de la Línea</td>
<td>14</td>
</tr>
<tr>
<td>Figura 11</td>
<td>Convertidor Básico de Tiristores</td>
<td>14</td>
</tr>
<tr>
<td>Figura 12</td>
<td>Convertidor Monofásico de Tiristores</td>
<td>15</td>
</tr>
<tr>
<td>Figura 13</td>
<td>Formas de Onda en el Convertidor Bifásico</td>
<td>16</td>
</tr>
<tr>
<td>Figura 14</td>
<td>Tensión en el Puente Bifásico en Función del Ángulo de Apertura</td>
<td>17</td>
</tr>
<tr>
<td>Figura 15</td>
<td>Espectro de la Corriente de Línea Puente Bifásico.</td>
<td>17</td>
</tr>
<tr>
<td>Figura 16</td>
<td>Convertidor Trifásico de Tiristores</td>
<td>18</td>
</tr>
<tr>
<td>Figura 17</td>
<td>Formas de Onda en el Convertidor Trifásico</td>
<td>19</td>
</tr>
<tr>
<td>Figura 18</td>
<td>Armónicos de la Corriente de Línea en el Convertidor Trifásico</td>
<td>20</td>
</tr>
<tr>
<td>Figura 19</td>
<td>Convertidor Trifásico con L_s y Corriente Continua Constante.</td>
<td>21</td>
</tr>
<tr>
<td>Figura 20</td>
<td>Circuito válido en la Comutación de Corriente de T_3 a T_1 en presencia de L_s</td>
<td>22</td>
</tr>
<tr>
<td>Figura 21</td>
<td>Formas de Onda para la Comutación en presencia de L_s</td>
<td>22</td>
</tr>
<tr>
<td>Figura 22</td>
<td>Corriente de Línea en presencia de L_s</td>
<td>23</td>
</tr>
<tr>
<td>Figura 23</td>
<td>Forma de Onda en Modo Inversor</td>
<td>24</td>
</tr>
<tr>
<td>Figura 24</td>
<td>Características Puente de Tiristores</td>
<td>24</td>
</tr>
<tr>
<td>Figura 25</td>
<td>Tensión sobre un Tiristor en el Modo Inversor</td>
<td>25</td>
</tr>
<tr>
<td>Figura 26</td>
<td>Puente de Tiristores y Fuente de Alimentación</td>
<td>26</td>
</tr>
<tr>
<td>Figura 27</td>
<td>Modulo de Ángulo de Apertura de Tiristores</td>
<td>26</td>
</tr>
<tr>
<td>Figura 28</td>
<td>Subcircuito de Ángulo de Apertura como Rectificador</td>
<td>27</td>
</tr>
<tr>
<td>Figura 29</td>
<td>Subcircuito de Ángulo de Apertura como Inversor</td>
<td>27</td>
</tr>
<tr>
<td>Figura 30</td>
<td>Inversor Modulado</td>
<td>28</td>
</tr>
<tr>
<td>Figura 31</td>
<td>Ejemplo Modulación PWM.</td>
<td>28</td>
</tr>
<tr>
<td>Figura 32</td>
<td>Señal Senoidal Modulada</td>
<td>29</td>
</tr>
<tr>
<td>Figura 33</td>
<td>Espectro de Frecuencia</td>
<td>29</td>
</tr>
<tr>
<td>Figura 34</td>
<td>Inversor Push-Pull</td>
<td>30</td>
</tr>
<tr>
<td>Figura 35</td>
<td>Inversor de Medio Puente</td>
<td>33</td>
</tr>
<tr>
<td>Figura 36</td>
<td>Inversor de Puente Completo</td>
<td>34</td>
</tr>
<tr>
<td>Figura 37</td>
<td>Inversor Trifásico de dos Niveles</td>
<td>34</td>
</tr>
<tr>
<td>Figura 38</td>
<td>Configuraciones del Inversor en Función del Estado de los Interruptores.</td>
<td>35</td>
</tr>
<tr>
<td>Figura 39</td>
<td>PWD Trifásico Simulink</td>
<td>36</td>
</tr>
<tr>
<td>Figura 40</td>
<td>Control en Simulink del PWM</td>
<td>37</td>
</tr>
<tr>
<td>Figura 41</td>
<td>Lazo de Control de Velocidad para un MCA de Inducción</td>
<td>38</td>
</tr>
<tr>
<td>Figura 42</td>
<td>Esquema Monofásico Motor Asíncrono</td>
<td>39</td>
</tr>
<tr>
<td>Figura 43</td>
<td>Esquema Fasorial de un Motor Asíncrono</td>
<td>39</td>
</tr>
<tr>
<td>Figura 44</td>
<td>Modulo de Elevación de Tensión</td>
<td>41</td>
</tr>
<tr>
<td>Figura 45</td>
<td>Implementación en Simulink del Elevación de Tensión</td>
<td>42</td>
</tr>
<tr>
<td>Figura 46</td>
<td>Modulo de Compensación de Deslizamiento</td>
<td>43</td>
</tr>
<tr>
<td>Figura 47</td>
<td>Implementación en Simulink del Compensación de Deslizamiento</td>
<td>43</td>
</tr>
<tr>
<td>Figura 48</td>
<td>Modulo de Circuito de Límite de Corriente</td>
<td>44</td>
</tr>
</tbody>
</table>
Simulación de un accionamiento eléctrico con máquina asincrónica y análisis de su comportamiento frente a cargas mecánicas.

Figura 49 Implementación en Simulink del Circuito de Limite de Corriente
Figura 50 Modulo de Subsistema de Protección
Figura 51 Implementación en Simulink del Subsistema de Protección
Figura 52 Subsistema de Frenado
Figura 53 Módulos de Composición del Subsistema de Frenado.
Figura 54 Implementación en Simulink del Control de intensidad
Figura 55 Implementación en Simulink del Control de Tensión
Figura 56 Implementación en Simulink del Módulo de Aceleración o Desaceleración
Figura 57 Control de Velocidad y Control Auxiliar
Simulación de un accionamiento eléctrico con máquina asincrona y análisis de su comportamiento frente a cargas mecánicas.

**INDICE DE GRÁFICAS**

<table>
<thead>
<tr>
<th>Gráfica</th>
<th>Título</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Par y Potencia respecto Velocidad para Carga a Par Constante</td>
<td>9</td>
</tr>
<tr>
<td>2</td>
<td>Par y Potencia respecto Velocidad para Carga a Par Variable</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>Par y Potencia respecto Velocidad para Carga a Par Cuadrático.</td>
<td>11</td>
</tr>
<tr>
<td>4</td>
<td>Par y Potencia respecto Velocidad para Carga a Par Cuadrático.</td>
<td>11</td>
</tr>
<tr>
<td>5</td>
<td>Par Constante a Velocidad Positiva Baja (Nm)</td>
<td>50</td>
</tr>
<tr>
<td>6</td>
<td>Par Constante a Velocidad Positiva Alta (Nm)</td>
<td>51</td>
</tr>
<tr>
<td>7</td>
<td>Velocidad de Referencia en Velocidad Positiva con Escalón a 3 Nm (rad/sg)</td>
<td>52</td>
</tr>
<tr>
<td>8</td>
<td>Velocidad de Referencia en Velocidad Positiva con Escalón a 3 Nm (rad/sg)</td>
<td>52</td>
</tr>
<tr>
<td>9</td>
<td>Velocidad del Rotor en Velocidad Positiva con Escalón a 3 Nm (rad/sg)</td>
<td>52</td>
</tr>
<tr>
<td>10</td>
<td>Velocidad de Referencia en Velocidad Positiva con Escalón a 10 Nm (rad/sg)</td>
<td>53</td>
</tr>
<tr>
<td>11</td>
<td>Velocidad del Rotor en Velocidad Positiva con Escalón a 10 Nm (rad/sg)</td>
<td>54</td>
</tr>
<tr>
<td>12</td>
<td>Velocidad de Referencia en Velocidad Negativa para Rec. a 5 Nm (W)</td>
<td>57</td>
</tr>
<tr>
<td>13</td>
<td>Velocidad del Rotor en Velocidad Negativa para Rec. a 5 Nm (W)</td>
<td>58</td>
</tr>
<tr>
<td>14</td>
<td>Velocidad de Referencia en Velocidad Negativa para Rec. a 5 Nm (W)</td>
<td>59</td>
</tr>
<tr>
<td>15</td>
<td>Velocidad del Rotor en Velocidad Negativa para Rec. a 10 Nm (rad/sg)</td>
<td>60</td>
</tr>
<tr>
<td>16</td>
<td>Velocidad de Referencia en Velocidad Negativa para Rec. a 10 Nm (rad/sg)</td>
<td>61</td>
</tr>
<tr>
<td>17</td>
<td>Velocidad del Rotor en Velocidad Negativa para Rec. a 10 Nm (rad/sg)</td>
<td>62</td>
</tr>
<tr>
<td>18</td>
<td>Velocidad de Referencia en Velocidad Negativa para Rec. a 10 Nm (rad/sg)</td>
<td>63</td>
</tr>
<tr>
<td>19</td>
<td>Velocidad del Rotor en Velocidad Negativa para Rec. a 10 Nm (rad/sg)</td>
<td>64</td>
</tr>
<tr>
<td>20</td>
<td>Velocidad del Rotor en Velocidad Negativa para Rec. a 10 Nm (rad/sg)</td>
<td>65</td>
</tr>
<tr>
<td>21</td>
<td>Velocidad de Referencia en Velocidad Negativa para Escalón a -3 Nm (rad/sg)</td>
<td>66</td>
</tr>
<tr>
<td>22</td>
<td>Velocidad del Rotor en Velocidad Negativa para Escalón a -3 Nm (rad/sg)</td>
<td>67</td>
</tr>
<tr>
<td>23</td>
<td>Velocidad de Referencia en Velocidad Negativa para Escalón a -10 Nm (rad/sg)</td>
<td>68</td>
</tr>
<tr>
<td>24</td>
<td>Velocidad del Rotor en Velocidad Negativa para Escalón a -10 Nm (rad/sg)</td>
<td>69</td>
</tr>
<tr>
<td>25</td>
<td>Velocidad de Referencia en Velocidad Negativa para Escalón a -3 Nm (rad/sg)</td>
<td>70</td>
</tr>
<tr>
<td>26</td>
<td>Velocidad del Rotor en Velocidad Negativa para Escalón a -10 Nm (rad/sg)</td>
<td>71</td>
</tr>
<tr>
<td>27</td>
<td>Velocidad de Referencia en Velocidad Negativa para Escalón a -10 Nm (rad/sg)</td>
<td>72</td>
</tr>
<tr>
<td>28</td>
<td>Velocidad del Rotor en Velocidad Negativa para Escalón a -10 Nm (rad/sg)</td>
<td>73</td>
</tr>
<tr>
<td>29</td>
<td>Velocidad de Referencia en Velocidad Negativa para Escalón a -10 Nm (rad/sg)</td>
<td>74</td>
</tr>
<tr>
<td>30</td>
<td>Velocidad de Referencia en Velocidad Negativa para Escalón a -10 Nm (rad/sg)</td>
<td>75</td>
</tr>
<tr>
<td>31</td>
<td>Velocidad de Referencia en Velocidad Negativa para Escalón a -10 Nm (rad/sg)</td>
<td>76</td>
</tr>
<tr>
<td>32</td>
<td>Velocidad de Referencia en Velocidad Negativa para Escalón a -10 Nm (rad/sg)</td>
<td>77</td>
</tr>
<tr>
<td>33</td>
<td>Velocidad de Referencia en Velocidad Negativa para Escalón a -10 Nm (rad/sg)</td>
<td>78</td>
</tr>
<tr>
<td>34</td>
<td>Velocidad de Referencia en Velocidad Negativa para Escalón a -10 Nm (rad/sg)</td>
<td>79</td>
</tr>
<tr>
<td>35</td>
<td>Velocidad de Referencia en Velocidad Negativa para Escalón a -10 Nm (rad/sg)</td>
<td>80</td>
</tr>
<tr>
<td>36</td>
<td>Velocidad de Referencia en Velocidad Negativa para Escalón a -10 Nm (rad/sg)</td>
<td>81</td>
</tr>
<tr>
<td>37</td>
<td>Velocidad de Referencia en Velocidad Negativa para Escalón a -10 Nm (rad/sg)</td>
<td>82</td>
</tr>
<tr>
<td>38</td>
<td>Velocidad de Referencia en Velocidad Negativa para Escalón a -10 Nm (rad/sg)</td>
<td>83</td>
</tr>
<tr>
<td>39</td>
<td>Velocidad de Referencia en Velocidad Negativa para Escalón a -10 Nm (rad/sg)</td>
<td>84</td>
</tr>
<tr>
<td>40</td>
<td>Velocidad de Referencia en Velocidad Negativa para Escalón a -10 Nm (rad/sg)</td>
<td>85</td>
</tr>
<tr>
<td>41</td>
<td>Velocidad de Referencia en Velocidad Negativa para Escalón a -10 Nm (rad/sg)</td>
<td>86</td>
</tr>
<tr>
<td>42</td>
<td>Velocidad de Referencia en Velocidad Negativa para Escalón a -10 Nm (rad/sg)</td>
<td>87</td>
</tr>
<tr>
<td>43</td>
<td>Velocidad de Referencia en Velocidad Negativa para Escalón a -10 Nm (rad/sg)</td>
<td>88</td>
</tr>
<tr>
<td>44</td>
<td>Velocidad de Referencia en Velocidad Negativa para Escalón a -10 Nm (rad/sg)</td>
<td>89</td>
</tr>
<tr>
<td>45</td>
<td>Velocidad de Referencia en Velocidad Negativa para Escalón a -10 Nm (rad/sg)</td>
<td>90</td>
</tr>
<tr>
<td>46</td>
<td>Velocidad de Referencia en Velocidad Negativa para Escalón a -10 Nm (rad/sg)</td>
<td>91</td>
</tr>
<tr>
<td>47</td>
<td>Velocidad de Referencia en Velocidad Negativa para Escalón a -10 Nm (rad/sg)</td>
<td>92</td>
</tr>
<tr>
<td>48</td>
<td>Velocidad de Referencia en Velocidad Negativa para Escalón a -10 Nm (rad/sg)</td>
<td>93</td>
</tr>
<tr>
<td>49</td>
<td>Velocidad de Referencia en Velocidad Negativa para Escalón a -10 Nm (rad/sg)</td>
<td>94</td>
</tr>
</tbody>
</table>
Simulación de un accionamiento eléctrico con máquina asíncrona y análisis de su comportamiento frente a cargas mecánicas.

Gráfica 50 Potencia Consumida por la Resistencia en Velocidad Negativa para Rec. a Par Lineal (W) 75
Gráfica 51 Velocidad de Referencia para Compresor (rad/sg) 76
Gráfica 52 Velocidad en el Rotor para Compresor (rad/sg) 76
Gráfica 53 Rendimiento del Sistema para Compresor (%) 77
Gráfica 54 Par y Potencia respecto Velocidad para Carga a Par Cuadrático. 77
Gráfica 55 Velocidad de Referencia en Velocidad Positiva con Escalón a Par Cuadrático (rad/sg) 78
Gráfica 56 Velocidad del Rotor en Velocidad Positiva con Escalón a Par Cuadrático (rad/sg) 79
Gráfica 57 Velocidad de Referencia en Velocidad Positiva con Rampa a Par Cuadrático (rad/sg) 79
Gráfica 58 Velocidad del Rotor en Velocidad Positiva con Rampa a Par Cuadrático (rad/sg) 80
Gráfica 59 Velocidad de Referencia en Velocidad Positiva para Recuperación a Par Cuadrático (rad/sg) 80
Gráfica 60 Velocidad del Rotor en Velocidad Positiva para Recuperación a Par Cuadrático (rad/sg) 81
Gráfica 61 Potencia Consumida por la Resistencia en Velocidad Positiva para Recuperación a Par Cuadrático (W) 81
Gráfica 62 Velocidad de Referencia en Velocidad Negativa con Escalón a Par Cuadrático (rad/sg) 82
Gráfica 63 Velocidad del Rotor en Velocidad Positiva con Escalón a Par Cuadrático (rad/sg) 82
Gráfica 64 Velocidad de Referencia en Velocidad Negativa con Rampa a Par Cuadrático (rad/sg) 83
Gráfica 65 Velocidad del Rotor en Velocidad Negativa con Rampa a Par Cuadrático (rad/sg) 83
Gráfica 66 Velocidad de Referencia en Velocidad Negativa para Rec. a Par Cuadrático (rad/sg) 84
Gráfica 67 Velocidad del Rotor en Velocidad Negativa para Recuperación a Par Cuadrático (rad/sg) 84
Gráfica 68 Potencia Consumida por la Resistencia en Velocidad Negativa para Recuperación a Par Cuadrático (W) 85
Gráfica 69 Velocidad de Referencia para Ventilador (rad/sg) 86
Gráfica 70 Velocidad en el Rotor para Ventilador 86
Gráfica 71 Rendimiento del Sistema para Ventilador 87
Gráfica 72 Par y Potencia respecto Velocidad para Carga a Par Cuadrático. 87
Gráfica 73 Velocidad de Referencia en Velocidad Positiva con Escalón a Potencia Constante (rad/sg) 88
Gráfica 74 Velocidad del Rotor en Velocidad Positiva con Escalón a Potencia Constante (rad/sg) 89
Gráfica 75 Velocidad de Referencia en Velocidad Positiva con Rampa a Potencia Constante (rad/sg) 89
Gráfica 76 Velocidad del Rotor en Velocidad Positiva con Rampa a Potencia Constante (rad/sg) 90
Gráfica 77 Velocidad de Referencia en Velocidad Positiva para Rec. a Potencia Constante (rad/sg) 90
Gráfica 78 Velocidad del Rotor en Velocidad Positiva para Recuperación a Potencia Constante (rad/sg) 91
Gráfica 79 Potencia Consumida por la Resist. en Veloc. Positiva para Rec. a Potencia Constante (W) 91
Gráfica 80 Velocidad de Referencia en Velocidad Negativa con Escalón a Potencia Constante (rad/sg) 92
Gráfica 81 Velocidad del Rotor en Velocidad Negativa con Escalón a Potencia Constante (rad/sg) 92
Gráfica 82 Velocidad de Referencia en Velocidad Negativa con Rampa a Potencia Constante (rad/sg) 93
Gráfica 83 Velocidad del Rotor en Velocidad Negativa con Rampa a Potencia Constante (rad/sg) 93
Gráfica 84 Velocidad de Referencia en Velocidad Negativa para Rec. a Potencia Constante (rad/sg) 94
Gráfica 85 Velocidad del Rotor en Velocidad Negativa para Rec. a Potencia Constante (rad/sg) 94
Gráfica 86 Potencia Consumida por la Resistencia en Velocidad Negativa para Recuperación a Par Cuadrático (W) 95
Gráfica 87 Velocidad de Referencia para Desbobinador 96
Gráfica 88 Velocidad en el Rotor para Desbobinador 96
Gráfica 89 Rendimiento del Sistema para Desbobinador 97
Simulación de un accionamiento eléctrico con máquina asíncrona y análisis de su comportamiento frente a cargas mecánicas.

8. BIBLIOGRAFIA


.