DISEÑO Y CONSTRUCCIÓN DE MINISUBMARINO AUTÓNOMO DE INSPECCIÓN DE TUBERÍAS SUMERGIDAS

Proyecto Final de Carrera
Autor: Gabriel Riera Navarro
Directores: Bienvenido Alonso Pardo
Leandro Ruiz Peñalver
Carrera: Ingeniería Naval y Oceánica
Universidad Politécnica de Cartagena
1. Índice:

Introducción:... 4
1 Estructura del PFC:... 4
1 AUV ... 5
2 Presentación del proyecto... 6
2.1 Motivación ... 6
3 Antecedentes ... 8

Electrónica .. 10
1 Introducción.. 10
2 Funcionamiento.. 10
2.1 Explicación del funcionamiento mecánico como conjunto 11
3 Medidas de seguridad.. 13
4 Listado de instrumentos.. 14
5 Arquitectura electrónica ... 15
5.1 Módulo de Navegación.. 18
6 Módulo de percepción... 18
7 Generación de una trayectoria .. 20
7.1 Dynamic Mission Planner (DMP).. 21
7.2 ATModule ... 22
7.2.1 ATOperate state machine... 23
7.2.2 EN4AUV (Expert Navigator for Autonomous Underwater Vehicles) . 24
7.3 Obstacle Avoidance Software (OAS)... 25
8 Sistema de Guía y Control .. 26
8.1 Sistema de Guía (Nav Block)... 27
8.2 Sistema de Control .. 28
9 Niveles de control (jerarquía).. 29
9.1 Niveles de programación .. 29
9.1.1 Low-level... 30
9.1.2 High-level ... 30
9.2 Distribución del software ... 31
9.2.1 Low Level.. 31
9.2.2 High level .. 34
10 Alimentación .. 35
11 Telecomunicaciones ... 36

Diseño del vehículo ... 38
12 Bases del proyecto:... 38
12.1 Requisitos conceptuales: ... 38
12.2 Requisitos técnicos:... 40
13 Visión de futuro:.. 43
13.1 Metodología de diseño .. 44
14 Estudio de las optativas:.. 47
14.1 Selección:.. 50
15 Dimensiones iniciales del casco resistente .. 51
16 Seleccion de materiales: ...55
16.1 PVC-U ..56
 16.1.1 Caracteristicas a largo plazo y estudio de fatiga56
 16.1.1.1 Temperatura de trabajo ..57
 16.1.1.2 Tiempo de aplicacion de la carga59
 16.1.1.3 Módulo aparente ...61
 16.1.1.4 Fallo por fatiga ...61
16.2 Aluminio: ...63
17 Seleccion sistema del sistema de cálculo65
 17.1 ANSYS ...65
 17.1.1 Modelización mediante ANSYS67
18 Escantillado del casco resistente ...69
 18.1 Escantillado del cilindro estanco ...69
 18.1.1 Modelización del cilindro estanco mediante ANSYS71
 18.1.1.1 Datos de entrada ..71
 18.1.1.2 Detalles de diseño ...72
 18.1.1.3 Cargas y restricciones74
 18.1.1.4 Resultados ..76
 18.2 Diseño del sistema de estanqueidad ..78
 18.2.1 Estudio de variantes ..78
 18.2.2 Selección ...80
 18.2.3 Diseño ...80
 18.2.3.1 Material de la junta tórica81
 18.2.3.2 Sección y dureza de la junta tórica81
 18.2.3.3 Dimensiones de las juntas tóricas y sus alojamientos: 84
 18.2.3.4 Cálculo de la fuerza de compresión y selección del número de pernos 87
 18.2.3.5 Estimación de la tensión máxima de compresión en la junta tórica ...90
 18.3 Escantillado de las tapas ...91
 18.3.1 ASME: programacion hojas EXCEL91
 18.3.2 Modelización de las tapas mediante ANSYS94
 18.3.2.1 Datos de entrada ..94
 18.3.2.2 Detalles de diseño ...95
 18.3.2.3 Cargas y restricciones96
 18.3.2.4 Resultados ..97
19 Distribucion general ..101
20 Formas del casco hidrodinámico ...105
21 Resistencia al choque ...110
 21.1 Sistema de absorción de impacto110
 21.2 Unión de las carcasas ...114
22 Cálculos de resistencia longitudinal ...116
 22.1 Programación en EXCEL ...117
23 Sistema de flotación ..119
 23.1 Diseño de los flotadores ...120
 23.2 Materiales de fabricación ..122
24 Diseño de la carcosa hidrodinámica ..124
 24.1 Escantillado del casco ...125
 24.2 Carcosa frontal ..125
 24.2.1 Alojamiento del obstacle avoidance126
 24.2.2 Alojamiento del motor de control de arfada127
 24.2.3 Unión entre carcosa frontal y carcosa central128
 24.2.4 Compresión del sistema de absorción de impactos128
 24.3 Carcosa central ..135
 24.3.1 Sujeción del sistema de muelles de absorción de impactos 135
 24.3.2 Sujeción motores principales135
 24.4 Carcosa de cola ..138
 24.4.1 Sujeción del cilindro estanco141
 24.4.2 Alojamiento del MODEM acústico141
 24.4.3 Alojamiento del DVL ..142
24.4.4 Sujeción del sonar Super Seaking
24.4.5 Sujeción del sonar Starfish
24.4.6 Unión a la carcasa central
25 Diseño del sistema de boya de emergencia
26 Diseño de la estructura interna
27 Estimación de la resistencia al avance
27.1 Simulación de modelo simplificado mediante CFD
27.2 Incremento de la resistencia de los elementos restantes
27.2.1 Resistencia del obstacle avoidance y MODEM acústico
27.2.2 Resistencia del orificio del motor delantero
27.2.3 Resistencia del alargamiento del cuerpo cilíndrico
27.3 Resistencia total
28 Estudio de Estabilidad:
28.1 Estabilidad estática transversal
28.2 Estabilidad estática longitudinal
28.3 Estabilidad dinámica
29 Estudio de la evacuación del calor del cilindro estanco
29.1 Calor generado
29.2 Ventilación interna
29.3 Disipadores de las tapas
29.4 Cálculo del calor disipado
29.4.1 Cálculo de los coeficientes de convección
29.4.2 Método de cálculo
29.5 Resultados obtenidos
30 Cálculo de la autonomía
30.1 Autonomía con baterías de plomo ácido
30.2 Autonomía con baterías LiFePo4
BIBLIOGRAFÍA
ANEXO I: presupuesto
ANEXO II: Condición de carga 1
ANEXO II: Condición de carga 2
ANEXO III: Botadura y recuperación
Introducción:

1 Estructura del PFC:

El cuerpo del presente Proyecto Final de Carrera se divide en 4 bloques principales:

- Introducción.
- Electrónica.
- Diseño del vehículo.

Se ha seguido esta estructura en lugar de la estructura por cuadernos, clásica de los PFC de Ingeniería Naval y Oceánica, debido a que se considera que de este modo se agrupa la información de una forma más acorde con el contenido.

La temática de cada bloque está muy diferenciada del resto. A continuación se exponen los contenidos de cada bloque.

- Introducción:

En este bloque, por una parte, se da una idea general de lo que es un AUV [Autonomous Underwater Vehicle]. Esto se hace sin profundizar en el caso concreto del presente proyecto final de carrera.

Por otra parte se presenta la motivación del proyecto, así como su procedencia, ya que surge como una colaboración a un proyecto desarrollado en la Universitat de les Illes Balears (UIB).
Electrónica:

En este segundo bloque, por una parte se expone el funcionamiento del submarino. Por otra parte, se describe el software así como la electrónica que hace posible dicho funcionamiento.

Se describirá cada uno de los instrumentos que le vehículo necesita para llevar a cabo su operación, así como los módulos que componen al arquitectura electrónica del vehículo.

Diseño del vehículo:

En el tercer y último bloque, se agrupa el cuerpo principal del proyecto.

Para empezar, se exponen los datos y conceptos de partida sobre los que se construye el resto del proyecto, así como la futura progresión del mismo.

A continuación, se da una explicación de la que ha sido la metodología que se ha seguido durante el proceso de diseño del prototipo objetivo de este PFC.

Finalmente se trata de plasmar el proceso del diseño completo del submarino. Si bien el proceso real de diseño ha seguido una espiral en la que poco a poco se iba convergiendo en un resultado final, a la hora de presentar dicho proceso en un manuscrito se trata de seguir una secuencia lógica de diseño.

Se van abordando cada uno de los pasos necesarios para el diseño general del vehículo, así como el diseño de cada uno de los componentes que conforman la estructura del vehículo.

1 **AUV**
Definición

Las siglas AUV corresponden a “Autonomous Underwater Vehicle”. Es decir un vehículo no tripulado que es capaz de desarrollar tareas bajo el agua sin necesidad de intervención humana.

No se debe confundir un AUV con un ROV “Remotely Operated Vehicle”. En este caso se trata también de un vehículo capaz de realizar misiones bajo el agua, pero que en todo momento es pilotado a distancia por uno o varios individuos. Este tipo de vehículos suelen ir conectados mediante cable umbilical, a través del cual se les suministra la corriente necesaria para su funcionamiento, así como las señales con que se controlan. Incluso se les puede llegar a suministrar presión neumática si fuera necesaria. Por ello no suele ser necesario que el ROV cargue con la fuente de alimentación para su movimiento, ni la computadora para su control.

El presente caso es sensiblemente distinto, porque como se ha mencionado, el AUV deberá de ser completamente autónomo. Lo que quiere decir que deberá cargar con todo elemento que sea necesario para su funcionamiento.

2 Presentación del proyecto

2.1 Motivación

En los últimos años se ha vivido un impulso en el desarrollo de pequeños vehículos submarinos autónomos, también conocidos como AUVs.

Este tipo de vehículos tiene un gran número de aplicaciones en campos que abarcan desde la oceanografía a aplicaciones militares. Sus tareas, como se expone más adelante, se basan en la inspección y reconocimiento, sin embargo la lista de tareas es
cada vez más amplia, por lo que nuevos diseños surgen, optimizados para las nuevas misiones que se les confían.

La misión del vehículo del presente proyecto es la inspección de tuberías sumergidas para mantenimiento preventivo. Misión que de otro modo debería ser desarrollado por buzos o por ROVs, debido a las profundidades a las que se pueden llegar a encontrar dichas tuberías (superiores a los 1000 metros) y al alto coste que supone alcanzar dichas cotas con vehículos tripulados.

Se pretende desarrollar un vehiculo capaz que descender hasta las proximidades del lecho marino, detectar la tubería, trazar su trayectoria y seguirla a la vez que extrae una imagen acústica del fondo y la tubería. Finalmente, regresar a la superficie y transferir toda la información recopilada. Todo ello sin que se produzca ninguna intervención humana. Es decir, será el propio AUV el que reconocerá y seguirá la tubería gracias a un sistema de inteligencia artificial utilizando los datos adquiridos en tiempo real.

Actualmente no existen muchos vehículos (comerciales o no) capaces de realizar dicha tarea, y mucho menos, versiones de bajo coste. Este es uno de los puntos clave del proyecto, el diseño de un vehículo capaz de alcanzar los requisitos técnicos y funcionales requeridos, a bajo coste.

Para poder poner a prueba la tecnología de inteligencia artificial desarrollada en la Universitat de les Illes Balears (UIB) sobre un vehiculo real, se plantean las siguientes posibilidades:

- Adquirir un vehículo comercial no autónomo (ROV). Dicho vehículo será no autopilotado (lo que reduce los costes de adquisición, pero obliga a realizar modificaciones en el mismo. Por una parte el vehículo debe cargar consigo su fuente de alimentación (baterías en este caso). Por otra parte, debe ser capaz de trasnportar además una serie de instrumentos. El precio de adquisición de un vehículo que cumple con los requisitos es de 4000€ a lo que hay que sumar el coste del pack de baterías, en caso de que existiera la opción de compra, más las modificaciones necesarias para que pueda cargar con la instrumentación. Dichas
modificaciones pueden incluir aumento de potencia propulsora, adición de flotabilidad, etc. Lo que obliga a recalibrar el aparato por completo. El presupuesto final del vehículo más las modificaciones necesarias es de 18000€.

- Adquirir un vehículo comercial con capacidad de transportar las baterías así como la instrumentación requerida. Una vez adquirido el vehículo comercial, se podría sustituir su electrónica por la propia, y más modificaciones necesarias son de poca envergadura, ya que el vehículo ya está enfocado a este tipo de servicio. Sin embargo el precio mínimo de adquisición de uno de estos vehículos es de entorno a los 20000€.

- Desarrollar un vehículo que cumpla con los requisitos del proyecto. Debido a que el proyecto se encuentra en fase de desarrollo, las cotas de profundidad exigidas no son elevadas, lo cual puede favorecer que la construcción propia de un vehículo sea viable y de mucho menor coste que el resto de opciones.

3 Antecedentes

El 10/2007 se inició en la UIB un proyecto con la concesión de una beca económica. Dicho proyecto, titulado “IOGECSE (Inspección autónoma de Oleoductos, Gasoductos, Emisarios y Cables submarinos) abarcó hasta el 09/2009. El proyecto fue desarrollado por un grupo formado por 6 integrantes: el tutor (Ingeniero Oscar Calvo Ibáñez), 3 investigadores (Dr. Gerardo Gabriel Acosta, Dr. Alejandro Rozenfeld e Ing. Hugo Javier Curti) y dos becarios doctorales (André Luis Sousa Sena e Ing. Alberto Rodríguez).

En dicho proyecto se inició el desarrollo de un vehículo submarino autónomo capaz de llevar a cabo misiones de inspección de tuberías sumergidas.
Como resultado de esta primera fase del proyecto, se fabricó un submarino autónomo de bajo coste con el objetivo de poner a prueba el software desarrollado durante el proyecto.

Figura 1: Primera versión del vehículo submarino desarrollada en la UIB.

Posteriormente se concedió una segunda beca para continuar con la investigación en vehículos submarinos autónomos, explorando la posibilidad de que realizaran misiones en conjunto, dotándolos de intercomunicación. Para ese fin se decidió iniciar el desarrollo de un nuevo vehículo prototipo, tratando de mejorar algunos aspectos del diseño. Este segundo vehículo prototipo utilizaría la misma base electrónica ya testada en el primero, pero ya preparado para incorporar un instrumental más amplio.

El diseño de dicho vehículo es el tratado del presente Proyecto Final de Carrera.
Electrónica

1 Introducción

En este apartado se describe la electrónica desarrollada por el grupo de Tecnología Electrónica de la Universitat de les Illes Balears (UIB) en colaboración con el grupo INTELYMEC de la Universidad Nacional del Centro de la Provincia de Buenos Aires (UNICEN) que hacen de base para el desarrollo de este proyecto.

El objetivo de dicha electrónica es la controlar un vehículo submarino de manera que pueda realizar misiones de inspección de tuberías sumergidas de manera autónoma.

En este bloque se tratan tanto el aspecto físico (Hardware) como la programación (Software) de la electrónica del prototipo. Por otra parte, se incluyen apartados dedicados a las telecomunicaciones y a la alimentación eléctrica de los sistemas.

2 Funcionamiento

El objetivo del prototipo es la obtención de imágenes del fondo, realizando el seguimiento de una tubería sumergida de forma automática, para posteriormente realizar la inspección sobre las imágenes obtenidas de la tubería como parte de su mantenimiento preventivo.

Si bien se trata de un vehículo totalmente autónomo, el vehículo cuenta además con control manual a distancia mediante ordenador a través de radio FM o wifi. Dicho sistema solo puede funcionar si el vehículo se encuentra en superficie. Por otra parte,
mientras el vehículo se mantiene en superficie, se puede determinar su posición y velocidad mediante GPS.

Una vez que el vehículo se encuentra sumergido ya no se puede utilizar el GPS para determinar su posición, y en este caso se emplea un dispositivo de posicionamiento espacial combinado basado en las lecturas tomadas por acelerómetros, magnetómetros y giroscopios de índice de giro o “rate gyro”. Este tipo de giroscopio, en lugar de indicar dirección, indica la velocidad de cambio de dirección.

El vehículo debe ser capaz de llegar hasta un área determinada por el usuario en la que se sabe que se encuentra un punto del recorrido de la tubería. Una vez allí traza una ruta de búsqueda, hasta que detecta la tubería.

Una vez la tubería ha sido detectada, se procede al trazado de la trayectoria de la tubería, y al seguimiento de la misma por el vehículo para la toma de imágenes acústicas mediante Side-Scan Sonar (SSS).

Cuando el tramo de tubería deseado ha sido recorrido, o el nivel de batería ha alcanzado un punto bajo, el vehículo regresa a la superficie para ser recogido y descargar toda la información adquirida.

Desde que el vehículo flota libremente en el agua, hasta que es recogido, su funcionamiento es autónomo, es decir, sin necesidad de intervención humana.

2.1 Explicación del funcionamiento mecánico como conjunto

El vehículo obtiene propulsión mediante dos conjuntos de motor eléctrico y hélice, situados a ambos lados del cuerpo central, simétricos desde crujía. Longitudinalmente situados en la mitad del vehículo. Gracias a su disposición simétrica desde crujía, no se
precisa de timón, ya que se controla la dirección mediante el control independiente del empuje generado por cada propulsor.

Para el control de la arfada se dispone de un tercer motor eléctrico con hélice acoplada. Se encuentra en el extremo de proa del vehículo orientado hacia el fondo. Excepto durante el ascenso y descenso a las proximidades del fondo, el vehículo debe mantenerse estable a una distancia fija del fondo.

De las lecturas del compás se obtiene el rumbo del vehículo en cada instante, referente al polo magnético. El problema de utilizar el campo magnético terrestre como referencia, es que la medida se puede ver interferida por otros campos magnéticos presentes. Dichas interferencias se tratan de minimizar mediante algoritmos combinados con la toma de datos del resto de elementos (acelerómetros y rate gyro).

A pesar de la combinación de las tres medidas, el dispositivo de posicionamiento espacial va acumulado error a medida que pasa el tiempo. Para minimizar dicho error, los datos se complementan mediante las lecturas obtenidas mediante un segundo dispositivo, el Doppler Velocity Log (DVL). Se trata de un sonar de cuatro haces proyectados a ángulos correlativos hacia el lecho marino, de manera que se pueda medir la velocidad relativa del vehículo al fondo con una gran precisión. Dicha precisión es necesaria para montar correctamente las imágenes acústicas tomadas del fondo, además de para corregir la posición espacial del vehículo estimada mediante el INS.

El equilibrio transversal del vehículo se consigue mediante la distribución del peso, consiguiendo que el centro de flotación se encuentre por encima del centro de gravedad. Para este fin, se trata de concentrar el peso en la base del vehículo (las baterías lo más cerca del fondo posible y la ubicación de los flotadores en la parte más alta). Además, los motores propulsores trabajan en contrarrotación, por lo que su par de giro tiende a contrarrestarse.

En el avance durante del seguimiento de la tubería sumergida, el vehículo puede encontrar distintos obstáculos (redes, escombros, formaciones rocosas, etc.). Para evitar
posibles colisiones, se instala un sonar delantero enfocando en al dirección de avance, de manera que detecte cualquier posible obstáculo. Dicho sonar se denomina Obstacle Avoidance Sonar.

3 Medidas de seguridad

Para evitar el riesgo de fallo y actuar en caso de que este ocurra, se introducen una serie de medidas de seguridad:

Limitación de sobre intensidad:

Puesto que si se quema la placa controladora de los motores, el vehículo pierde la capacidad de desplazarse, se incluye un limitador de sobre intensidad para evitar que al intensidad sobrepase un nivel determinado.

Sensor de humedad:

Todos los elementos no estancos del vehículo, se encapsulan en un cilindro estanco situado en el centro del vehículo. En el interior del cilindro se ubican dos sensores de humedad (uno en cada extremo) para poder detectar la entrada de agua. El agua, incluso en pequeñas cantidades, puede propiciar el fallo de toda la electrónica, por lo que en caso de entrada, se debe abortar la misión y regresar a la superficie.

Sistema de boya de emergencia:

Como último recurso en la recuperación del vehículo se instala un sistema de boya de emergencia. En caso de ocurrir un fallo fatal para el sistema (el sistema falla y pierde el control del submarino, se quema la placa controladora de los motores, etc.), entrada de agua, o que el vehículo queda atrapado y no logra liberarse, se debe recurrir al sistema de boya de emergencia.
El sistema funciona en base a un recipiente con gas a presión, el cual se controla con una electroválvula. Llegado el caso, permitirá el paso de gas a una boya inicialmente deshinchada. La boya hinchada tira del vehículo hacia la superficie, con fuerza suficiente incluso si el cilindro central está lleno de agua, pudiéndose recuperar de esta manera el vehículo.

Sistema de absorción de choques frontales:

Si bien el vehículo cuenta con un sonar frontal de detección de obstáculos (obstacle avoidance sonar), el vehículo está preparado para sobrevivir a un choque frontal a velocidad de operación.

En caso de que se diera un choque frontal, la energía cinética del vehículo en movimiento es absorbida por un sistema de muelles de compresión, reduciendo la aceleración resultante del choque hasta niveles aceptables.

Medios de localización. (Iluminación y emisión de señales):

Durante su operación normal, tras finalizar la captura de imágenes de la tubería sumergida, el vehículo regresará por medios propios a la superficie. Una vez en la superficie, emitirá señales de radio indicando su posición, además de poder detectar y comunicarse con el vehículo mediante Wi-reles.

Por otra parte, se añade una señal lumínica de bajo consumo para facilitar la localización del vehículo en superficie, tanto en operación normal como en ascensión de emergencia mediante sistema de boya de emergencia.

4 Listado de instrumentos

A continuación se indica el listado de los principales instrumentos del vehículo así como la marca y modelos seleccionados:
5 Arquitectura electrónica

En el desarrollo del software capaz de hacer funcionar el vehículo, se utiliza una programación modular. La programación modular conlleva separar el programa completo en funciones independientes. Cada una de estas funciones se programan en módulos independientes, cada uno de ellos capaz de llevar a cabo la función que le es encomendada por sí mismo. Al unirse conforman el conjunto del programa final.

De esta manera se facilita la tarea programación al abordar una tarea cada vez y los módulos pueden ser sustituidos o modificados con mayor facilidad.

El diseño general se basa en una arquitectura genérica propuesta en algunos trabajos de investigación con algunas simplificaciones.

El vehículo se compone de cuatro módulos principales, que se encargan de las tareas a realizar:

- **Módulo de navegación**: determinación de la posición y velocidad del vehículo
En superficie: basándose en el GPS, los sensores inerciales (INS) y el compás.

En inmersión: basado en el punto inicial de inmersión, a continuación la posición se basa en acelerómetros (INS), compás, profundímetro y Doppler Velocity Log (DVL).

- **Módulo de Percepción:** reconocimiento, posicionamiento y trazado de la trayectoria de la tubería a partir de las batimetrías obtenidas mediante un Multi-beam sonar (MBE) y un sidescan sonnar (SSS). Un sistema que emplea diferentes aproximaciones es capaz de, a partir de los datos adquiridos por los sonares, detectar y reconocer la tubería.

- **Dynamic Mission Planner (DMP):** generación de los puntos de paso (waypoints) que se emplearán para generar una trayectoria a seguir por el vehículo a partir de la trayectoria conocida de la tubería y de la situación en la que se encuentre el robot. Tanto el Obstacle Avoidance Software (OAS) como el Path Planner pertenecen a este módulo.

- **Sistema de Guía y Control:** construcción de una trayectoria a ser seguida por el vehículo y generar las órdenes a cumplir por los propulsores para seguirla tan fielmente como sea posible.
Figura 2: estructura general del sistema utilizado para el diseño del vehículo. [1]

Por otra parte encontramos otros módulos de soporte:

Obstacle Avoidance Software (OAS): Mendiante un sonar delantero detecta posibles obstáculos en la trayectoria del vehículo que obliguen a desviar la trayectoria prefijada.

Static Mission Plan: es la información suministrada por el usuario sobre el punto de inicio, profundidad, velocidad, punto de finalización y otros datos inherentes a la misión. No es propiamente un módulo, sino más bien una recopilación de información perteneciente a la misión concreta que se va a llevar a cabo.

Path Planner: Combina las trayectorias deseada, obligatoria y posible. En efecto, modifica la trayectoria generada en el DMP (trayectoria deseada), según la información aportada por el OAS (trayectoria posible), junto con la información del Static Mission Planner (trayectoria obligatoria o requerida por el usuario humano).
5.1 **Módulo de Navegación**

Determina la posición y velocidad del vehículo basándose en la información del GPS, de los sensores inerciales y el compás.

En superficie, únicamente mediante el GPS ya es posible determinar la posición y la velocidad del vehículo, pero se introduce un cierto error inherente al sistema GPS. Para corregir este error, se une la información obtenida mediante GPS con la información obtenida mediante los sensores inerciales (INS) y el compás.

Una vez que se navega en inmersión, el GPS deja de recibir señal, por lo que el posicionamiento se debe realizar mediante otros métodos. Partiendo de la posición en la que se inicia la inmersión, se irán añadiendo los desplazamientos determinados mediante los sensores inerciales. Para un mejor conocimiento de la velocidad del vehículo, se dispone de un Doppler Velocity Logs (DVL):

6 **Módulo de percepción**

El cometido del **Módulo de percepción** es el reconocimiento de estructuras sumergidas, así como su posicionamiento espacial relativo al propio vehículo.

Para la detección de la tubería, se puede recurrir a diversos tipos de sensores:

- Sónares
 - Side Scan: Imágenes acústicas
 - Multi beam: Batimetrías
- Detectores magnéticos
- Cámaras de video
- Escáneres láser.
Cada uno de estos sistemas tiene una serie de ventajas e inconvenientes:

- **Sónares:**
 - **Side-Scan:**
 - No se ve afectado por la turbiedad del medio.
 - Relativamente fácil detectar formas o patrones.
 - No se detecta la tubería si se encuentra enterrada.
 - **Bultibeam:**
 - No se ve afectado por la turbulencia del medio.
 - Relativamente fácil detectar formas.
 - No se detecta la tubería si se encuentra enterrada.
 - Mayor resolución que barrido mecánico
 - Mucho más acero que barrido mecánico
 - Facilita el posicionamiento de la tubería al conocerse las distancias relativas al vehículo.

- **Detectores magnéticos:**
 - No se ve afectado por la turbiedad del medio.
 - Se detecta la tubería si se encuentra enterrada.
 - Necesitan de mantenerse próximos a la tubería.
 - Cruces de tuberías u otros restos metálicos pueden confundir la medición.

- **Cámaras de vídeo:**
 - Se ve afectado por la turbiedad del medio.
 - Relativamente fácil detectar formas o patrones.
 - No se detecta la tubería si se encuentra enterrada.
 - Bajo coste.
 - Necesidad de iluminación.
Se podría generar la imagen del fondo mediante un sonar Side-scan o mediante uno de tipo Multi-Beam. Para el desarrollo de este proyecto se instala un sonar Multi Beam para el seguimiento de la tubería.

Por otra parte, un sonar Side-scan se instala para generar la imagen sobre la que se realizará la inspección de la estructura sumergida por especialistas.

Para ambos sonares, la velocidad y rumbo del vehículo es de gran importancia para montar correctamente el conjunto de datos que conforman la imagen completa. De una errónea medición de la velocidad podría resultar una imagen sin sentido. Por ello la importancia de la introducción del Doppler Velocity Log DVL y el compás.

Se trata de un ejercicio nada trivial, y de su consecución depende el éxito de la misión.

Se debe desarrollar un software capaz de reconocer formas basado en redes neuronales artificiales (ANNPR) para clasificar objetos a partir de datos provenientes de sonares. Puesto que esta fase no ha llegado a desarrollarse no puede profundizarse más.

7 Generación de una trayectoria

Debido a la interrelación que existe entre ellos, en este apartado se explicará en conjunto el DMP, OAS y el Path Planner. En conjunto, generan la trayectoria final a seguir por el vehículo.

Para la generación de una trayectoria, los datos necesarios son:

- La posición y trayectoria de la tubería, resultantes del Módulo de percepción.
- La posición del vehículo determinados por el Módulo de Navegación.
- El Static Mission Plan, indicado por el usuario.
7.1 Dinamic Mission Planner (DMP)

La finalidad de este módulo es generar una trayectoria para el vehículo. Se genera la trayectoria deseada del vehículo, basada en cuatro puntos de control a través de los cuales el vehículo deberá pasar (waypoints).

EL DMP se compone de dos módulos:

- ATModule: genera la trayectoria deseada a seguir por el vehículo, partiendo de la trayectoria de la tubería.
- Obstacle Avoidance Software: detecta posibles obstáculos que supongan conflicto con la trayectoria deseada.
 - Path planner: Modifica la trayectoria deseada en caso de detectarse conflictos, generándose la trayectoria final.

Con el objetivo de generar la trayectoria del vehículo, se empieza por la generación de la trayectoria ideal, basándose únicamente en la posición del vehículo y el de la tubería, es decir, sin tener en cuenta posibles obstáculos en la trazada.

Posteriormente, el Obstacle Avoidance Software (OAS) detecta posibles obstáculos mediante los datos del sonar Obstacle Avoidance delantero.

Por último, el Path Planner (perteneciente al OAS) verifica la trayectoria ideal inicialmente generada por el ATModule frente a posibles. Si no existen obstáculos, la ruta inicial es válida. En caso de detectarse obstáculos, el Path Planner modifica la ruta, resultando la ruta final a seguir por el vehículo.

La trayectoria final definida mediante puntos de control es enviada al Sistema de control, que generará las órdenes para actuar los tres propulsores conforme a las ecuaciones cinemáticas del vehículo.
7.2 ATModule

El ATModule Genera la trayectoria ideal a seguir por el vehículo, partiendo de la posición relativa de la trazada de la tubería al vehículo. Mediante un sistema de razonamiento integral que trata de imitar la toma de decisiones humanas, el módulo determina el estado de la tubería (enterrada, expuesta, intermitente o elevada sobre el fondo). En función de dichos posibles estados de la tubería, decide el tipo de misión: búsqueda de la tubería (search), seguimiento (track), volver a coordenadas donde la tubería se detecta (go to) o abortar misión.

El ATModule se compone de dos módulos trabajando en paralelo:

- ATOperate: máquina de estados finitos (State Machine) simple y robusta que decide la misión a llevar a cabo.
- EN4AUV: Un sistema experto (Expert System) más flexible y adaptable, incorporando una serie de posibles situaciones en forma de una serie de reglas en su base de datos.

![Diagrama del ATModule](image-url)

Figura 3: Modo de funcionamiento general del ATModule.[2]
7.2.1 ATOperate state machine

Utiliza la información recibida del módulo *Módulo de percepción*, así como la información inicial del módulo *DMP*. Con esta información se genera la mejor estrategia a seguir en uno de los cuatro posibles casos predefinidos: *buscar, omitir, rastrear o abortar*.

Inicialmente partiendo siempre del estado INIT, avanzará hacia el siguiente estado GO TO, entonces el software carga las coordenadas de la posición incial conocida contenidas en el Static Mission Plan y pasa a SEARCH, permaneciendo en este último. Se mantendrá en este estado trazando trayectorias en zig-zag sobre un área predeterminada a partir de las coordenadas iniciales.

Si la tubería se halla antes de H intentos, el vehiculo realizará el seguimiento (rastreo) de la misma. En caso de que en los H intentos no se encuentre la tubería, o en caso de que se pierda una vez había sido hallada, el estado pasará a ser GO TO, volver a las últimas coordenadas en que se detectó la tubería.

La interconexión entre los posibles estados se muestra en el siguiente diagrama:
Figura 4: El Dynamic Mission Planner también recibe información del Static Mission planner, en el que se especifican el número de tuberías a ser seguidas, la profundidad u otros aspectos de la misión.[2]

7.2.2 EN4AUV (Expert Navigator for Autonomous Underwater Vehicles)

La finalidad de este módulo de es generar una trayectoria para el vehículo. Para ello precisa de la información proveniente del Módulo de Navegación (posición del vehículo), del Módulo de percepción (posición y trayectoria de la tubería relativa al vehículo) así como el posible error de dichos valores. Basándose en esta información y teniendo en cuenta las distintas características de la misión (Static misión Planer), el EN4AUV decidirá el estatus de la tubería (enterrada, expuesta, intermitente o elevada sobre el fondo) de lo que resultará el estado del vehículo (GOTO, Search, Track, abort) y se genera la trayectoria deseada del vehículo, basada en cuatro puntos de control a través de los cuales el vehículo deberá pasar (waypoints).
El EN4AUV es un sistema reactivo, es decir, que desencadenará una acción determinada en función del entorno. Cada posible situación se recopila en un conjunto de alrededor de quince reglas. Cada escenario, desencadena en distintas acciones o estrategias de rastreo.

Se pueden incluir nuevos posibles escenarios, así como actualizaciones de los ya existentes, en función de la misión que se desee desarrollar.

En función de la información recibida del Módulo de percepción, el EN4AUV decide el estatus de la tubería (enterrada, expuesta, intermitente, elevada sobre el fondo) y el estado propio del vehículo (evitando un obstáculo, con el objeto bajo estudio como encontrado o perdido, o volviendo a la última posición conocida). Con esta información se define el escenario, y en función de este, se genera la trayectoria deseada.

Las posibles acciones están organizadas en una serie de simples subtareas: búsqueda de la tubería (search), seguimiento (track), volver a las últimas coordenadas en que la tubería se detectó (go to) o abortar misión. La trayectoria es generada por una de estas subtareas, o por una encadenación de ellas, como un conjunto de cuatro puntos de control denominados waypoints.

7.3 Obstacle Avoidance Software (OAS)

Su cometido es detectar posibles obstáculos en la trayectoria preliminar definida por el ATModule y en caso de detección, modificar la ruta para evitarlos.

Para la detección de posibles obstáculos cuenta con un sonar frontal (Obstacle Avoidance Sonar), enfocando a la dirección de avance del vehículo.

Como parte del OAS, se encuentra el Path planner, encargado de la modificación de la trayectoria en caso de tener que evitar un obstáculo. Dicha modificación se realiza mediante la recolocación de uno o varios de los puntos de control que conforman la trayectoria a seguir.
Path Planner:

Además de la modificación de la trayectoria en caso de obstáculos el Path Planner recibe información del Static Mission Plan, que puede tomar el control en cualquier momento modificando la trayectoria final. Puede ocurrir por distintos motivos, como puede ser la seguridad.

Finalmente, la ruta final es enviada al Sistema de Guía y Control para generar las órdenes individuales de cada propulsor.

8 Sistema de Guía y Control

Como entrada precisa: la posición y velocidad del vehículo (Módulo de Navegación), así como la trayectoria final a seguir (DMP, concretamente proviniendo del Path Planner).

Si bien se consideran como un módulo conjunto, encontramos por una parte el Sistema de Guía (nav Block) y por otra parte el Sistema de Control (PI Control Block).

- Sistema de Guía: se encarga de calcular un vector con las variables deseadas (coordenadas de la trayectoria deseada y una velocidad de referencia)
- Sistema de Control: En base al vector resultante del Sistema de Guía, y del vector con la posición y velocidad real del vehículo, realiza el cálculo final de la variación necesaria en la trayectoria.
- Finalmente, mediante las ecuaciones cinemáticas propias del vehículo, se transforma la variación necesaria en órdenes a ejecutar por los motores.
8.1 Sistema de Guía (Nav Block)

Se trata de un algoritmo de seguimiento de trazado basado en el sistema de Breivick y Fossen. Este sistema se basa en la asignación de dos partículas, una perteneciente al vehículo (asociada a su centro de flotación) y la segunda partícula asociada a la trayectoria.

Partiendo de la posición relativa de las partículas “vehículo” y “trayectoria”, mediante cálculos vectoriales referentes a las partículas, el método determina:

- Una velocidad y trayectoria preliminar que debe seguir la partícula “vehículo” para aproximarse a la trayectoria deseada.
- La actualización de la partícula “trayectoria”, de manera que no se llegue a alcanzar por la partícula “vehículo”.

La posición y velocidad de cada una de las partículas es parametrizado mediante una variable escalar dependiente del tiempo (ϖ).
8.2 Sistema de Control

El sistema de control recibe como entradas dos vectores:

- Uno representando la posición y velocidad del vehículo (Módulo de Navegación).
- Otro con las variables deseadas (Sistema de Guía).

En primera instancia procesa ambos vectores proporcionado la variación necesaria en la trayectoria de la partícula “vehículo”.

Finalmente, para transformar los parámetros de partícula “vehículo” a órdenes directas para los motores, es necesario aplicar las ecuaciones dinámicas del vehículo. Dichas ecuaciones deberán ajustarse empíricamente con el vehículo finalizado.

Mediante simulaciones se pone el sistema a prueba. Algunos resultados de simulaciones en trayectorias bidimensionales se muestran a continuación:
Figura 7: estudio de la respuesta del sistema de control. [2]

En la gráfica superior izquierda, se puede observar como la trayectoria seguida por el vehículo no alcanza la trayectoria deseada, pero se mantiene muy cerca de esta. En este efecto se puede observar el funcionamiento del Sistema de Guía, actualizando la posición de la partícula “trayectoria” de manera que la partícula “vehículo” tienda siempre hacia ella, sin llegar a alcanzarla. Por lo cual, por ejemplo, al realizar los giros en los extremos superiores de la trayectoria, el vehículo nunca llega hasta el final de la trayectoria deseada, ya que antes de que la partícula “vehículo” la alcance la cima, la partícula “trayectoria” ya está descendiendo.

9 Niveles de control (jerarquía)

9.1 Niveles de programación

Low-level y High-level son términos utilizados para describir niveles de programación con características globales diferenciadas. Se trata de dos adjetivos que se utilizan por comparación, es decir, lo que en un contexto se considera Hight-level, puede ser considerado Low-level en otro.

Como primera anotación se puede decir:
- Low-level: programación en la que se detallan componentes individuales, con la eficiencia como objetivo y con poca separación del lenguaje de la máquina.

- High-level: programación cuyos objetivos son más generales en el funcionamiento del programa como conjunto de componentes, cuyo lenguaje tiende a distar más del lenguaje de la máquina.

9.1.1 Low-level

Suele estar enfocado a la descripción de componentes individuales y problemas concretos, en lugar de otros más generales.

El lenguaje de programación que se relaciona con Low-level se caracteriza por ser más rudimentario y cercano al lenguaje de la máquina. Por ello, puede convertirse al lenguaje de la máquina sin necesidad de compilarlo, como resultado el código trabaja directamente en el procesador. Otra característica es la velocidad de funcionamiento, asociada a su relativa simplicidad, y con un consumo de memoria bajo. Un programa equivalente redactado en lenguaje de High-level conllevará mayor carga computacional y espacio en la memoria.

9.1.2 High-level

En él se detallan los objetivos finales o más generales. Generalmente está más relacionado con el sistema como un todo y sus objetivos.

El lenguaje utilizado para programar High-level suele distar más del lenguaje de la máquina en sí. Esto facilita la programación y la hace más comprensible. Suele contener variables, expresiones aritméticas, subrutinas y otros conceptos de ingeniería informática.

En la programación High-level, se puede decir que prima la funcionalidad frente a la eficiencia. Su composición la hace más lenta y pesada (espacio ocupado de memoria).
9.2 **Distribución del software**

El Hardware del AUV se compone de dos placas procesadoras principales, una que denominamos de Low-level y otra de High-level. Al High-level le corresponde a un FIT-PC, y al Low-level un DS-PIC.

En el FIT-PC (High-level) encontraremos la mayor parte del software, mientras que el DS-PIC (Low-level) se centra en tareas que requieran menos capacidad de procesado y de la comunicación con todos los instrumentos.

![Diagrama general de conexiones entre alto y bajo nivel](image)

Figura 8: esquema general de las conexiones entre alto y bajo nivel. [1]

9.2.1 **Low Level**

Asociado a una placa de desarrollo de microcontroladores Ingenia, denominada iCm4011 que usa un dsPIC 30F4011 como procesador principal. Sus características principales son:
- 16 bits
- 30MIPS de velocidad de la CPU
- Memoria flash de 48 Kb
- 2.048 Bytes de RAM

Esta placa de controladores dispone de un gran número de puertos de comunicación, para conectarse con los sensores y otros procesadores:

- 2x Universal asincrono receptores/transmisores UART
- 1x Serial Peripheral Interface Bus SPI
- 1x Circuito integrado I2C
- 1x Conversor de señales analógicas con 9x10-bit y 1000 kbps

Figura 9: esquema detallado de las conexiones de bajo nivel. [1]

En su interior se encuentran cargados:
o Navigation Module:
 - GPS
 - Profundímetro
 - INS
 - Gyros
 - Acelerómetros
 - DVL

o Sistemas de Guía y Control.

Además, comunica con los sensores, motores (a través de sus controladores) y la CPU (High-level). Desde el DSC-PIC se enviará toda la información necesaria de los sensores a la CPU. Del mismo modo desde el DSC-PIC se enviarán todas las órdenes a actuadores o sensores.

La comunicación con el GPS se realiza mediante una conexión RS232, pero siguiendo el formato dictado por la National Marine Electronics Association (NMEA).

Formato National Marine Electronics Association (NMEA):

El formato que la NMEA dicta para las comunicaciones entre instrumentos marinos marca una serie de parámetros en la forma en que dichas comunicaciones son llevadas a cabo:

- Baud rate: 4800
- Number of data bits: 8
- Stop Bits: 1 o más
- Parity: ninguno
- Handshake: ninguno
El tipo de cable utilizado será además un Serial asíncrono. Para poder conectar dicha salida al DS-PIC es necesario un conversor de Rs232 a USB:

![Figura 10: conversor de conexión NMEA a RS232. [1]](image)

9.2.2 High level

Se soporta en un PC Intel X86 con LINUX como sistema operativo de Compulab Inc. El procesador es un AMD GEODE LX. En él se encuentra la mayor parte de la electrónica, y se conecta con el DS-PIC (Low-level) y con el sistema de comunicaciones.

Sus características principales son:

- 300MHz
- 512 Megabytes de RAM
- 40 Gg de disco duro
- Conexión Ethernet a 100Mbps dual
- Controladora gráfica SXGA, de 640x480 a 1920x1440
- 5 Watts de consumo

Sus conexiones son:

- 2x USB 2.0
- 1x RS-232 vía conector RJ11
En su interior se encuentran cargados:

- DMP
 - ATModule:
 - State Machine
 - EN4AUV
 - Obstacle Avoidance Software
 - Obstacle Avoidance
 - Path Planner

- Módulo de Percepción
 - Detector y Reconocedor de formas a partir de datos de
 - Multi Beam Sonar
 - Side Scan Sonar

![Figura 11: arquitectura de control de alto nivel [1]](image)

10 Alimentación

Para la alimentación de toda la instrumentación se dispone de cuatro baterías del tipo plomo-acido de 12V y 7Ah.
Las cuatro baterías se dividen en dos grupos:

- Dos baterías de alimentación de propulsores
- Dos baterías de alimentación de electrónica

Todos los sistemas se alimentan a través de conversores de DC/AC. Además se encuentran tres tipos de voltajes para las necesidades específicas de cada elemento (5V, 12V y 24V).

Para la alimentación de la electrónica, se dispone de una placa de alimentación compuesta por 3 conversores DC/AC, uno para cada voltaje necesario.

La alimentación de los motores se realiza a través de sus controladoras.

11 Telecomunicaciones

La comunicación del usuario con el vehículo es necesaria, especialmente en el estado de prototipo. Durante su funcionamiento en pruebas en superficie, mediante la comunicación es posible cargar misiones, comprobar el estado de la ejecución de los diferentes módulos. Por otra parte puede ocurrir un fallo en el control autónomo que obligue a recuperar el control manual del pilotaje del vehículo.

Para conseguir comunicación con el vehículo se instalan dos vías distintas de comunicación:

- Radio FM: se conecta directamente al DSP de la placa de Low-level por su entrada PWM. Es un radio control estándar muy utilizado por hobbistas.
- WIFI: se conecta directamente al puerto USB de la placa de High-level una antena WiFi para armar una red privada con otras computadoras que pueden ubicarse en muelle o embarcación de superficie.

Para el control remoto del vehículo se desarrolla una interface en base Perl desde la que es posible visualizar el desarrollo de todas las tareas internas del vehículo en tiempo real, así como comunicarle al vehículo posibles misiones o controlarlo manualmente durante las etapas iniciales de prueba así como en operaciones de recuperación del vehículo.
Diseño del vehículo

12 Bases del proyecto:

Como punto de partida para el desarrollo del diseño del prototipo se determinan una serie de requisitos a cumplir por el vehículo. Dichos requisitos se dividen en 2 grupos: de carácter conceptual y de carácter técnico.

A continuación se procede exponer el significado y repercusión de cada uno de ellos.

12.1 Requisitos conceptuales:

a. Prototipo enfocada hacia pruebas:

La principal misión del prototipo, como se ha comentado, es la de servir como vehículo de pruebas para la aplicación real de un software de auto pilotaje, así como del procesado de imágenes del que este requiere para poder detectar y seguir la tubería sumergida.

Por tratarse de un prototipo de pruebas se va a requerir que el acceso a sus componentes internos sea lo más cómoda posible. Por lo tanto el sistema de estanqueidad deberá ser fácilmente manipulable, y admitir numerosas repeticiones en apertura y cierre, sin que por ello su funcionamiento se vea comprometido.
Además, el sistema de sustentación de componentes interiores, deberá permitir una cómoda manipulación y sustitución de elementos.

b. Facilidad de construcción:

Se debe tratar de que sea posible fabricar el prototipo en la universidad, con los recursos de que se disponen, recurriendo en la menor medida posible a industrias externas. Consiguiendo de este modo reducir los costes.

Debido a que los recursos de la universidad son limitados este se presenta como un factor determinante en el desarrollo del proyecto. La universidad no cuenta con un taller mecánico especializado. Por ello deberá estudiarse la posibilidad de realizar tanta parte del diseño en material no metálico como sea posible.

c. Maximizar la modularización:

Un diseño basado en módulos va a permitir:

- Simplificación del proceso de diseño.
- Facilidad de montaje.
- Adaptabilidad a variaciones en el diseño.
- Facilidad en substitución de componentes.
- Versatilidad hacia adaptaciones futuras.

d. Maximizar estandarización:

Tratar de reducir el número de piezas distintas en el diseño. De esta manera la fabricación de piezas será más sencilla y se dará menor lugar para los errores y reprocesados. Además el stock de piezas distintas a adquirir será menor (por ejemplo pernos), facilitándose también el montaje y siendo menos probables errores por confusión de elementos.
Con ese mismo objetivo se tratará de estandarizar también los sistemas de unión y anclaje de los distintos elementos.

e. **Flexibilidad:**

El diseño deberá ser fácilmente adaptable ante posibles cambios. Dichos cambios pueden incluir la adición de elementos así como la reubicación o extracción de elementos existentes.

f. **Minimizar coste:**

Algunos expertos definen la calidad como la consecución del cumplimiento de unos requisitos, con el mínimo coste posible. En este caso es perfectamente aplicable.

En puntos anteriores ya se ha hecho patente este aspecto como requisito específico del proyecto, sin embargo se presenta como un requisito específico para reivindicar su importancia.

12.2 Requisitos técnicos:

a. **Velocidad:**

Para conseguir obtener una imagen óptica del fondo es necesario mantener aproximadamente constante la velocidad. El rango de velocidades del sonar comercial seleccionado es de \([0,5-2,6 \text{ m/s}]\). Cuanta menor es la velocidad de avance, mayor es la resolución obtenida en las imágenes acústicas del fondo. Teniendo esto en cuenta, se fija una velocidad de operación de 1,5 m/s.

b. **Cota:**

Como ya se ha comentado, el principal objetivo del prototipo a diseñar es el de realizar pruebas de funcionamiento del software desarrollado en la UIB. Por lo tanto, no es
estrictamente necesario que la cota máxima de funcionamiento sea muy elevada. Sin embargo, cuanto mayor sea la cota, más cerca se encontrará el prototipo a un diseño final capaz de trabajar con tuberías en localizaciones reales. Por otra parte, una cota excesiva, obliga a recurrir a metales para su fabricación, por lo que entra en conflicto con uno de los requisitos conceptuales principales del proyecto.

Los propulsores instalados en el prototipo tienen una cota máxima de 50 m, sin embargo con el objetivo de permitir la posterior sustitución de los propulsores por otros con una cota mayor, se deja abierta la posibilidad de aumentar la cota si los resultados a lo largo del proyecto lo permiten. Siendo finalmente la cota seleccionada de 100 m.

c. Autonomía:

El vehículo funciona con energía eléctrica almacenada en las baterías que carga consigo.

El consumo del vehículo puede ser dividido en 3 grupos: toma de datos, electrónica de control y propulsión. Se puede tomar el consumo del prototipo anterior como aproximación inicial:

- Toma de datos: 15 W
- Electrónica de control: 20 W
- Propulsión: 300 W

La autonomía se fija como dato de partida de manera orientativa. Deberá ser suficiente para permitir sesiones de pruebas suficientemente largas. Basándose en la experiencia acumulada por el grupo de trabajo en el proyecto previo se fija una autonomía objetivo de una hora de funcionamiento normal, para lo cual se hará necesaria una capacidad de baterías de aproximadamente 29 Ah.
Se fija también como requisito del proyecto el uso de baterías de plomo-ácido de capacidad 7 Ah y 2,15 kg de peso de las que ya se dispone. El sistema electrónico fue inicialmente montado con dichas baterías.

Por otra parte se debe prever una futura substitución de las baterías de plomo-ácido por otras, de mayor relación capacidad/volumen, distinto peso y de dimensiones distintas.

d. Maniobrabilidad:

Como hemos comentado, el vehículo debe ser capaz de seguir la trayectoria de la tubería sumergida. Además, en ciertos intervalos la tubería queda enterrada por sedimentos o rocas, con lo que el vehículo calcula una supuesta trayectoria y deberá realizar una trayectoria de búsqueda.

Por ello será importante la maniobrabilidad del vehículo, para conseguir con precisión aceptable dichos recorridos.

Además deberá mantenerse a una distancia aproximadamente constante del fondo. Por ello será necesario un suave control sobre el asiento. Variaciones en el asiento demasiado bruscos pueden desvirtuar la toma de datos.

e. Estabilidad:

Para una correcta toma de datos es necesario que el asiento y la escora sean reducidos, el vehículo deberá mantenerse casi paralelo al fondo.

Se debe tratar de evitar la escora en los giros y conseguir variaciones del asiento muy graduales.
13 Visión de futuro:

Como se ha comentado en el apartado anterior, el diseño se va a llevar a cabo teniendo en cuenta una serie de elementos, así mismo, se debe diseñar teniendo en cuenta la futura sustitución de algunos de dichos elementos. En este apartado se recogerán las futuras variaciones que se prevé va a sufrir el prototipo en desarrollo, además de el que debería ser el porvenir del proyecto global.

En primer lugar el diseño se desarrollará contando como elementos del mismo:

- Baterías de plomo-ácido.
- Sonar Starfish.
- Conectores.

Como primer paso, la sustitución de las baterías de plomo-ácido por otras de mejores características generales, con el objetivo de aumentar la autonomía.

En segundo lugar, la posible futura sustitución del Sonar Starfish por otro modelo, concretamente SeaKing ROV/AUV DST. Este modelo aumenta la calidad de las imágenes acústicas, así como la cota de profundidad máxima desde los 50 m del Starfish, hasta los 4000 m.

Finalmente la posibilidad de cambiar los conectores necesarios para el paso de los cables a través de las tapas del cilindro estanco de manera segura en caso de variación de otros elementos.

Dichas posibilidades deben tenerse en cuenta tanto en cuanto al espacio como a la posición del centro de gravedad del conjunto.

En cuanto al proyecto general, como ya se ha comentado, la siguiente fase en el desarrollo es tratar de conseguir que un grupo de vehículos trabajen de forma integrada
como una unidad. Para ello se les equipa cada vehículo con un modem acústico submarino, de manera que puedan comunicarse entre ellos y realizar misiones de forma conjunta.

13.1 Metodología de diseño

A continuación se expone la forma en que se enfoca el desarrollo del proceso de diseño.

El punto de partida, queda definido en el apartado de Bases del proyecto, perteneciente a la introducción. Dichos requisitos conceptuales y técnicos pueden quedar en forma esquemática como:

Requisitos conceptuales:
- Prototipo enfocado hacia pruebas.
- Facilidad de construcción: fabricación en lo posible en materiales no metálicos, fáciles de trabajar.
- Maximizar modularización.
- Maximizar estandarización.
- Flexibilidad.
- Minimizar coste.

Requisitos técnicos:
- Velocidad: 1,5 m/s
- Cota: 100 m
- Autonomía: 4 baterías Pb-ácido.
- Maniobrabilidad.
- Estabilidad.

En primer lugar se debe comprender la función a desempeñar por el vehículo, sin perder de vista el conjunto de requisitos conceptuales. Se trata pues de la superposición de dos criterios que deben satisfacerse simultáneamente. Por una parte está la misión última del AUV: seguimiento de tuberías sumergidas y toma de imágenes para determinar su
estado. Por otra parte, enfocar el diseño hacia la realización de pruebas, facilidad de construcción etc.

Para el desarrollo de un prototipo que cumpla de manera eficiente con el conjunto de requisitos, se decide elaborar un listado con diferentes posibilidades de diseño, evaluando sus pros y sus contras (por ejemplo, casco simple ó casco múltiple).

Además de esta serie de propuestas con bases bien diferenciadas, se plantea para cada una de ellas distintas posibilidades para ciertos componentes, (por ejemplo, en el caso del control de la arfada: timón ó servos).

Una vez elaboradas una serie de optativas, con sus diferentes posibilidades, se pasa por un proceso de descarte, en el que se eliminan las opciones que presenten inviabilidades o excesiva complicación técnica.

Una vez se ha reducido y desarrollado inicialmente las posibilidades más prometedoras, se presentan ante el grupo de trabajo, para ser expuestas y comentadas.

El grupo de trabajo aporta sus propias optativas y sugerencias.

Finalmente se adopta la solución que más eficientemente cumple con los requisitos iniciales.

El desarrollo del diseño se realiza individualmente, presentando periódicamente los avances que se van consiguiendo, tanto al grupo de trabajo como al director del Proyecto Final de Carrera.

Para el diseño general, se decide optar por AUTOCAD como herramienta de visualización en 3D. Cada pieza y elemento diseñado se va encajando en el modelo. De esta manera se puede contrastar automáticamente si hay algún fallo dimensional. Por otra parte, las variaciones que se dan en las primeras fases del desarrollo del diseño obligan a re-dimensionar el modelo en múltiples ocasiones.
El realizar el diseño general a través de una herramienta como AUTOCAD, permite visualizar mucho mejor el conjunto para conseguir la optimización del modelo. Permite además visualizar la ruta de montaje/desmontaje de cada elemento, así como la secuencia de los mismos.

Del diseño general, se obtienen las dimensiones aproximadas de los principales bloques que configuran el prototipo. Con estos resultados ya se puede proceder al diseño y cálculo elemento a elemento.

El cálculo de resistencia longitudinal se realiza mediante hoja EXCEL.

Para el escantillonado del casco resistente, se recurre en primera aproximación al código ASME: Pressure Vessels Design and Practice.

Los resultados obtenidos con dicho código, se compraran con los resultados obtenidos mediante la modelización del casco resistente en el software de cálculo por elementos finitos ANSYS. Posteriormente se realiza un estudio comparativo de distintas configuraciones de las piezas por separada y su repercusión en la resistencia a la presión.

Para el escantillonado del resto de elementos, se extraerán las dimensiones del modelo actualizado en AUTOCAD y se escantillonarán mediante ANSYS.

Las formas del vehículo se basan en un perfil NACA simétrico revolucionado, al que se introducen unas pequeñas modificaciones. Dichas formas envuelven el conjunto de elementos, trabajando únicamente como casco hidrodinámico (carcasa exterior), sin ser estanco.

Una vez obtenidas las formas, es posible realizar una estimación de la resistencia hidrodinámica del prototipo.
Una vez se ha obtenido un diseño preliminar, se realiza un estudio de la estabilidad estática y dinámica mediante EXCEL. Para conseguir la flotabilidad nula, así como el asiento nulo, son necesarios ciertos ajustes. Para este fin es de gran ayuda el uso de un libro EXCEL en el que se vinculan todos los elementos. Es posible conocer la repercusión de la variación en la posición de cualquier elemento, tanto en la resistencia longitudinal, como en la estabilidad, lo que resulta muy útil para converger en el resultado deseado.

14 Estudio de las optativas:

Los aspectos sobre los que se debe decidir son:

- **Casco resistente estanco:** Toda la electrónica, así como las baterías deben protegerse en uno o varios espacios estancos seguros. Puesto que tanto las baterías como la electrónica producen calor, es necesario comprobar que la disipación supera a la generación. La configuración del casco o cascos resistentes, por ser los elementos de mayor tamaño, determinarán en gran medida la forma del vehículo y por lo tanto su resistencia al avance.

- **Propulsión:** Uso de 2 sistemas propulsores (motor+hélice) de los que ya se dispone.

- **Dirección:** La maniobrabilidad es uno de los factores críticos del proyecto. Es necesario el seguimiento de una trayectoria precisa calculada por el propio vehículo. Se deberá buscar un sistema de gobierno robusto y fiable, cuya construcción sea lo más sencilla posible.

- **Control de la arfada:** El vehículo debe ser capaz de descender rápidamente hasta el lecho marino, y una vez allí, mantenerse paralelo a este. Las variaciones en la arfada deberán ser suaves, para evitar la distorsión en la toma de medidas.
Una vez más, se debe tratar de implantar un sistema de gobierno robusto, fiable y de fácil construcción.

- **Control de profundidad**: Algunos AUV no poseen control de arfada, pero en cambio poseen un sistema cilindro pistón que les permite modificar su volumen y por lo tanto modificar su profundidad. Esta posibilidad también se tiene en cuenta.

<table>
<thead>
<tr>
<th>Casco resistente estanco</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simple</td>
</tr>
<tr>
<td>Mayor simplicidad de construcción.</td>
</tr>
<tr>
<td>Más seguridad, menores posibles vías de entrada de agua.</td>
</tr>
<tr>
<td>Mejor hidrodinámica (un solo casco más alargado, menos rozamiento que 2 cascos más cortos).</td>
</tr>
<tr>
<td>Puesto que el diámetro mínimo necesario es el mismo para ambos casos, requiere menor empacho y menor peso.</td>
</tr>
<tr>
<td>Peor accesibilidad a elementos en su interior. Compensado mediante acceso desde cada extremo.</td>
</tr>
<tr>
<td>Múltiple</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Propulsión</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 propulsor</td>
</tr>
<tr>
<td>Mínimo coste de adquisición.</td>
</tr>
<tr>
<td>Obliga al uso de timón o aleta.</td>
</tr>
<tr>
<td>Su posición queda limitada a proa o popa.</td>
</tr>
<tr>
<td>2 propulsores</td>
</tr>
<tr>
<td>Coste de adquisición moderado, permite la no utilización de timón o aleta.</td>
</tr>
<tr>
<td>Permite libre posicionamiento.</td>
</tr>
<tr>
<td>3 o más propulsores</td>
</tr>
<tr>
<td>Coste de adquisición excesivo.</td>
</tr>
<tr>
<td>Permite libre posicionamiento</td>
</tr>
</tbody>
</table>
Dirección

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Timón</td>
<td>Puede trabajar con un solo propulsor.</td>
</tr>
</tbody>
</table>

Posición

En el caso de 2 propulsores, su colocación es libre a lo largo de la eslora. Cuanto más cerca del centro de masa del conjunto, menor inercia de rotación. Cuanto más cerca del centro de área de la sección longitudinal, menor resistencia al giro. Monocasco: un solo timón, necesariamente delante o detrás. En caso de 2 timones, posibilita su colocación libre a lo largo de la eslora, pero se aumenta la complejidad constructiva. 2 cascos paralelos: Colocación libre de un único timón.

Control de la arfada

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Aleta</td>
<td>Necesidad de reductora, motor paso a paso relativamente pesado, o sistema de empujador y tornillo sin fin. Todas las posibilidades son más pesadas y caras, exceptuando mediante empujador y tornillo sin fin. Menor grado de funcionamiento del motor eléctrico, lo que supone menor consumo y menor contaminación acústica.</td>
</tr>
<tr>
<td>2 propulsores separados</td>
<td>Poca complejidad constructiva. Impide el control del control de la dirección mediante los motores</td>
</tr>
</tbody>
</table>

Gabriel Riera Navarro - 49 -
<table>
<thead>
<tr>
<th>Verticalmente</th>
<th>Propulsores o aumenta el número total de motores.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cilindro-pistón</td>
<td>Coste de adquisición elevado.</td>
</tr>
<tr>
<td></td>
<td>El único que permite un control de la flotabilidad.</td>
</tr>
<tr>
<td></td>
<td>Complejidad técnica.</td>
</tr>
<tr>
<td></td>
<td>Insuficiente maniobrabilidad.</td>
</tr>
</tbody>
</table>

Posición

<table>
<thead>
<tr>
<th>Proa</th>
<th>En el caso del servo vertical, de esta manera la componente de la fuerza aplicada ayuda al desplazamiento en esa dirección (a diferencia de si se colocara en la parte trasera)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Popa</td>
<td>En caso de timón, tratando de que no interactúe con la estela de los propulsores.</td>
</tr>
<tr>
<td>Libre</td>
<td>En el caso de 2 propulsores separados verticalmente, su posición es libre a lo largo de la eslora.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Control de Profundidad</th>
<th>Sin control de flotabilidad.</th>
<th>Sin necesidad de elementos añadidos.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mediane control de arfada</td>
<td>Necesidad de reajuste de la arfada constante.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Necesidad de conseguir flotabilidad casi nula.</td>
<td></td>
</tr>
<tr>
<td>Cilindro pistón</td>
<td>Coste de adquisición elevado.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Permite control de la flotabilidad.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Complejidad técnica.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Menor maniobrabilidad.</td>
<td></td>
</tr>
</tbody>
</table>

14.1 Selección:

Tratando de maximizar la robustez del diseño, así como la facilidad de construcción y un coste mínimo, se opta por la siguiente combinación de elementos:
Un único casco estanco, en el que se introducen tanto la electrónica como las baterías. Para una mejor accesibilidad al interior, dotado con 2 tapas de acceso en los extremos.

Propulsión mediante 2 propulsores principales, situados en la zona central del vehículo, con libertad en su colocación en función de las necesidades de distribución de pesos a lo largo de la eslora.

Dirección controlada mediante los propulsores laterales.

Control de la arfada mediante un servo vertical, colocado en la zona de proa.

Control de la profundidad mediante el control de la arfada.

15 Dimensiones iniciales del casco resistente

Se tiene como dato de partida las dimensiones del conjunto de elementos que deben alojarse en el interior del cilindro estanco. Se modeliza cada elemento en AUTOCAD de manera que se puede realizar un estudio de las distintas posibilidades en la configuración. Es imprescindible tener en cuenta el espacio necesario para conexiones, así como dejar espacio a la estructura interna que soportará el conjunto.
Se busca minimizar el diámetro de manera que la resistencia de forma sea lo menor posible, a pesar de resultar una mayor eslora. Además, cuanto menor sea el diámetro, menos cantidad de refuerzos son necesarios para soportar la presión exterior.

Puesto que el mayor elemento que se debe alojar en el cilindro estanco es la batería, este marca el diámetro interior del cilindro contenedor.
Partiendo del diámetro interior del cilindro, se añade un margen de 2 mm en radio, para dejar sitio para la estructura de soporte de las baterías y por la contracción que sufrirá el cilindro debido a la presión externa. Una vez delimitado el margen, se fija la posición de las baterías lo más cerca del fondo posible, de manera que se mejore la estabilidad transversal del vehículo.

La estructura interna debe soportar las baterías por un lado y el conjunto de electrónica por otro lado, permitiendo su extracción del casco resistente por separado. Es decir, por un extremo del cilindro estanco se tiene acceso al conjunto de baterías, montadas sobre su estructura. Por el otro extremo del cilindro estanco se accede al conjunto de electrónica. En ambos casos, tirando de la estructura que los sustenta, se puede deslizar el conjunto de baterías o de electrónica para extraerlo del cilindro.
Para fijar la eslora mínima necesaria para contener los elementos, se debe realizar una estimación del espacio ocupado por el conjunto de electrónica. Para ello se deben tener en cuenta los espacios necesarios para conexiones así como dejar un cierto margen entre elementos para facilitar la circulación de aire por motivos de refrigeración.

Mediante la modelización en AUTOCAD, se disponen los diferentes elementos electrónicos formando distintas configuraciones hasta lograr la más compacta, que no supere el diámetro mínimo fijado por las dimensiones de las baterías.

Figura 14: vista frontal del modulo de electrónica encadado dentro del cilindro. Línea discontinua, margen de 2 mm con la pared interior del cilindro estanco.

Poniendo en línea las 4 baterías más el conjunto de electrónica queda:

Figura 15: longitud mínima requerida.
Añadiendo un margen para la ubicación de ventiladores de refrigeración así como para posibles ampliaciones o modificaciones, la eslora final del casco resistente se fija en 1350 mm.

16 Selección de materiales:

Este punto son de vital importancia los requisitos conceptuales marcados al inicio del proyecto, en especial los referentes a “Facilidad de construcción” y “Minimizar coste”. Debido a ello se debe evitar el uso de materiales metálicos. En caso contrario es necesario contratar la construcción a una empresa externa o comprar un producto comercial, en ambos casos supondrá un aumento de los costes. Además dificulta la introducción de modificaciones posteriores en el prototipo finalizado por la dificultad de obtener buenos resultados mediante soldadura.

Dado que la cota de proyecto es relativamente pequeña, el PVC se plantea como alternativa debido al coste, a la facilidad con la que se trabaja con el material, al gran número de componentes comerciales que se pueden encontrar. Por otra parte, el PVC puede pegarse fácilmente con adhesivos específicos, consiguiéndose uniones prácticamente con las mismas características que el propio material. Esto facilita mucho el proceso de fabricación así como posibles modificaciones posteriores.

Sin embargo, al realizar los cálculos basados en el código ASME VIII, se hace patente que si bien es posible fabricar el cilindro resistente en PVC, para la tapa es necesario un material de mayor resistencia. Esto es en parte debido a que las tapas deben ir perforadas para permitir el paso de los cables a través.

La selección final es: PVC para el cilindro y la estructura externa, y aluminio para la fabricación de las tapas.
Se selecciona aluminio debido a su buena relación peso/resistencia. La construcción del cilindro puede realizarse en la UIB, las tapas por tratarse de un material metálico debe contratarse su fabricación a una empresa externa a la UIB.

16.1 PVC-U

La base para la fabricación del cilindro del casco resistente se basa en una tubería comercial de PVC para alta presión. Este tipo de tuberías se fabrican en PVC-U (Unplasticised Polyvinyl Chloride) también llamado PVC rígido.

16.1.1 Características a largo plazo y estudio de fatiga

A la hora de definir la tensión de diseño para elementos estructurales en PVC se deben tener en cuenta 3 factores principales:

1. Temperatura de trabajo.
2. Tiempo de aplicación de la carga.
3. Fatiga del material.

Por lo tanto es necesario reevaluar las características del material y ajustar su tensión de diseño en las condiciones de trabajo deseadas.

Por una parte, se obtiene la tensión de diseño a partir del tiempo de aplicación de la carga. Por otra parte, se obtiene un coeficiente que reduce la tensión de diseño en función de la temperatura de trabajo.

Se definen las dos situaciones más desfavorables, definidas por su temperatura de trabajo y su tiempo en inmersión.

1. Inmersión en funcionamiento: El submarino se encuentra sumergido a la máxima cota, con toda la instrumentación funcionando simultáneamente.
a. Temperatura de trabajo: 38°C.

b. Tiempo en inmersión: 10 horas (en previsión de un aumento futuro de la autonomía).

2. Inmersión en fallo: El submarino se encuentra sumergido a la máxima cota, pero sin la instrumentación en funcionamiento a la espera del rescate.

 a. Temperatura de trabajo: 30°C.
 b. Tiempo en inmersión: 1000 horas.

Las temperaturas para ambas situaciones se definen en el apartado “Estudio de la evacuación de calor del cilindro estanco”.

Cada situación da como resultado una tensión de diseño, entre las cuales se selecciona la menor. Este proceso se expone en los siguientes puntos.

16.1.1.1 **Temperatura de trabajo**

La tensión máxima admisible del PVC varía con la temperatura, por lo tanto es crítico para la supervivencia del submarino que no se supere la temperatura marcada en su diseño.

En la siguiente gráfica puede observarse la variación aproximada de la tensión de rotura frente a la temperatura.

Figura 16: relación entre tensión y temperatura para el PVC. [4]
A la hora de diseñar elementos en PVC cuya temperatura de trabajo es mayor que los 23 °C habituales, es necesario aplicar un factor de corrección. Dicho factor se puede aplicar sobre el ratio de presión de trabajo (P) de la tubería, o sobre su clase (PC). Los valores de corrección se muestran en la siguiente tabla [4]:

<table>
<thead>
<tr>
<th>Temperature °F</th>
<th>Temperature °C</th>
<th>Multiply the Pressure Rating or Pressure Class at 73.4 °F (23°C) by these Factors</th>
</tr>
</thead>
<tbody>
<tr>
<td>80</td>
<td>(27)</td>
<td>0.88</td>
</tr>
<tr>
<td>90</td>
<td>(32)</td>
<td>0.75</td>
</tr>
<tr>
<td>100</td>
<td>(38)</td>
<td>0.62</td>
</tr>
<tr>
<td>110</td>
<td>(43)</td>
<td>0.50</td>
</tr>
<tr>
<td>120</td>
<td>(49)</td>
<td>0.40</td>
</tr>
<tr>
<td>130</td>
<td>(54)</td>
<td>0.30</td>
</tr>
<tr>
<td>140</td>
<td>(60)</td>
<td>0.22</td>
</tr>
</tbody>
</table>

En el presente caso, interesa poder aplicar el factor corrector sobre la tensión de diseño. La fórmula de la determinación del ratio de presión (P) dada por la norma ISO, ecuación R161-1960, encontramos:

$$ P = \frac{2S}{DR - 1} $$

P = Ratio de presión.
S = Tensión de diseño.
DR = Diámetro exterior/espesor.

Al estudiar dicha fórmula, se puede afirmar que el factor de corrección por temperatura es de aplicación directa sobre la tensión de diseño a 23°C. De esta manera es posible redefinir la tensión de diseño para este caso concreto.
Por lo tanto queda definido el factor corrector para cada una de las situaciones establecidas:

<table>
<thead>
<tr>
<th></th>
<th>Temperatura</th>
<th>Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inmersión en funcionamiento</td>
<td>38,56°C</td>
<td>0,602</td>
</tr>
<tr>
<td>Inmersión en fallo</td>
<td>30°C</td>
<td>0,8</td>
</tr>
</tbody>
</table>

16.1.1.2 Tiempo de aplicación de la carga

Al aplicar una carga constante sobre PVC, se produce un efecto denominado “creep”. Este efecto es producto de que, al aplicarse la carga, las cadenas moleculares del material se reorientan, produciendo una relajación del material en el sentido de la carga. Como consecuencia, las deformaciones aumentan, es decir se reduce el módulo de Young del material a medida que pasa el tiempo frente a una carga constante. A este módulo distorsionado por el efecto de la carga se lo denomina Módulo Aparente. El resultado final del efecto denominado creep, es que una carga que inicialmente no provoca la rotura de la pieza, con el suficiente tiempo de aplicación, puede producir el fallo.

Por otra parte, una vez se elimina la carga, la estructura molecular del material se reestructura, recuperando su módulo original (siempre que no se haya superado su límite elástico).

En el siguiente gráfico se puede observar la evolución de la tensión máxima frente al paso del tiempo para las distintas cargas. Siendo la línea diagonal la que marca el fallo del material.
En el caso del vehículo submarino, el tiempo de aplicación de la carga (tiempo de inmersión) es relativamente bajo frente a los 114 años que se utilizan para el diseño de tuberías comerciales de PVC.

Para los tiempos de aplicación de la carga definidos en las dos situaciones de estudio, se obtienen las tensiones máximas. Para determinar la tensión de diseño, se aplica el factor de reductor por temperatura correspondiente y un factor de factor de seguridad 2:

<table>
<thead>
<tr>
<th>Inmersión en funcionamiento</th>
<th>Factor: 0,602</th>
<th>Tensión máxima: 6200 psi</th>
<th>Tensión de diseño: 1866 psi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inmersión en fallo</td>
<td>Factor: 0,8</td>
<td>Tensión máxima: 5200 psi</td>
<td>Tensión de diseño: 2080 psi</td>
</tr>
</tbody>
</table>

Por lo tanto queda definida la tensión de diseño en 1866 psi o 131 kg/cm².
16.1.1.3 Módulo aparente

Como se ha mencionado el módulo varía tanto con el tiempo de aplicación de al carga como por la temperatura de trabajo. Cuando existe una carga a largo plazo se debe utilizar el denominado módulo aparente para conocer las deformaciones resultantes.

![Gráfica de módulo aparente frente a tiempo y temperatura para PVC.](image)

Figura 18: módulo aparente frente a tiempo y temperatura para PVC. [5]

16.1.1.4 Fallo por fatiga

Una vez que se ha definido la tensión de diseño se puede realizar el estudio de fallo producido por cargas cíclicas. En el caso del submarino difícilmente supondrá un problema ya que su número de ciclos de carga es igual al número de inmersiones.

Mediante la siguiente gráfica se puede determinar el número de ciclos de carga que produce el fallo entrando con la amplitud de la tensión de diseño y la tensión media de diseño. Para este estudio se utilizan las cargas aplicadas. En este caso puesto que la gráfica es para 23°C, se utiliza la tensión de diseño sin reducir por el factor de temperatura, es decir: tensión máxima/factor de seguridad = 6200/2 = 3100 psi.
E.T.S.I.N.O.
DISEÑO Y CONSTRUCCIÓN DE MINISUBMARINO AUTÓNOMO DE INSPECCIÓN DE TUBERÍAS SUMERGIDAS
MEMORIA EXPLICATIVA

\[
\begin{align*}
\sigma_{\text{avg}} &= \text{average stress} = \frac{1}{2}(\sigma_{\text{min}} + \sigma_{\text{max}}) \\
\sigma_{\text{amp}} &= \text{stress amplitude} = \frac{1}{2}(\sigma_{\text{max}} - \sigma_{\text{min}})
\end{align*}
\]

<table>
<thead>
<tr>
<th>(\sigma_{\text{min}})</th>
<th>0 psi</th>
<th>(\sigma_{\text{avg}})</th>
<th>1550 psi</th>
<th>(\sigma_{\text{max}})</th>
<th>3100 psi</th>
<th>(\sigma_{\text{amp}})</th>
<th>1550 psi</th>
</tr>
</thead>
</table>

Entrando con estos valores en la gráfica se obtiene:

![RESULTING CYCLIC-FAILURE CURVES FOR PVC](image)

Figura 19: curvas de fallo por cargas cíclicas para PVC. [4]

El resultado es:

Número de ciclos máximos 47000

Ese número de inmersiones no se estima que sea limitante en la vida útil del vehículo.

Con esto finaliza el estudio de viabilidad del PVC como material de fabricación del casco resistente.
16.2 Aluminio:

En primer lugar se debe seleccionar el material con que se van a fabricar las piezas, en este caso se selecciona una aleación de aluminio al magnesio UNS A95086. Se selecciona esta aleación debido a sus buenas características anticorrosivas y a su uso en la industria naval.

Composición química:

<table>
<thead>
<tr>
<th>%</th>
<th>Si</th>
<th>Fe</th>
<th>Cu</th>
<th>Mn</th>
<th>Mg</th>
<th>Cr</th>
<th>Zn</th>
<th>Ti</th>
<th>Otros</th>
<th>Al</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mínimo</td>
<td>0,4</td>
<td>0,4</td>
<td>0,1</td>
<td>0,4</td>
<td>4</td>
<td>0,05</td>
<td>Ti+Zr</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Máximo</td>
<td>0,4</td>
<td>0,4</td>
<td>0,1</td>
<td>4,9</td>
<td>0,25</td>
<td>0,25</td>
<td>0,25</td>
<td>0,2</td>
<td>0,15</td>
<td></td>
</tr>
</tbody>
</table>

Propiedades físicas:

<table>
<thead>
<tr>
<th>Módulo elástico N/mm²</th>
<th>Peso específico gms/cm³</th>
<th>Temperatura de fusión °C</th>
<th>Coeficiente de dilatación lineal (20°C-100°C)</th>
<th>Conductividad térmica w/m°C</th>
<th>Resistencia eléctrica Micro Ohm/cm.</th>
<th>Conduct. Eléctrica % IACS</th>
<th>Potencial de disolución V.</th>
</tr>
</thead>
<tbody>
<tr>
<td>71000</td>
<td>2,7</td>
<td>580-645</td>
<td>24´5</td>
<td>120</td>
<td>6´1</td>
<td>28´3</td>
<td>0´86</td>
</tr>
</tbody>
</table>

Las características de este material se extraen del propio código (ASME), con el que se escantillenan las tapas.

Para el desarrollo de este proyecto se dispone de la edición de 2008. En la sección VIII se encuentra el procedimiento de cálculo para el escantillonado de las tapas, si bien también es necesario consultar otros temas en ciertos momentos.

El código ASME especifica que las características a utilizar para el material seleccionado se deben extraer del propio manual, junto con la tensión admisible máxima, concretamente de la sección II: Materiales. Entrando con el código que identifica al material: UNS A95086, se encuentran sus características [7]:

Gabriel Riera Navarro - 63 -
De entre ellas se pueden destacar la forma del producto, en barra sólida en este caso, que puede facilitar la construcción de la tapa circular. Por otra parte la máxima tensión admisible es 9300 psi, este es uno de los datos necesarios para el escantillono mediante el código ASME.

Por otra parte también se puede encontrar la máxima intensidad de tensión admisible para el mismo material. Si bien no es dato necesario para el proceso de cálculo mediante el código ASME, si que puede ser un factor relevante a la hora de comparar resultados con la modelización en ANSYS.
17 Selección sistema del sistema de cálculo

En un principio se recurre al código ASME para el diseño del casco resistente, concretamente al código ASME VIII: Pressure Vessel Code. El aluminio está contemplado como material de construcción, así que se pueden diseñar las tapas en base al código, sin embargo no se contemplan materiales plásticos como el PVC, por lo que queda descartado para el cálculo del cilindro. Como alternativa al código ASME, se plantea el cálculo directo mediante un programa de elementos finitos para el escantillonado del cilindro y resto de elementos. De entre los posibles programas se selecciona el ANSYS.

Así pues, el cálculo de las tapas de aluminio se basa en el código ASME, cuyo resultado se contrasta con los que se obtengan de la modelización en ANSYS.

Para el cilindro y resto de elementos se realiza la modelización en ANSYS, modificando los espesores hasta que las tensiones queden dentro de los márgenes de diseño.

17.1 ANSYS

ANSYS, Ins. es un software de simulación de ingeniería. Está desarrollado para funcionar bajo la teoría de elementos finitos. Se trata de un método numérico general para la aproximación de soluciones de ecuaciones diferenciales parciales. El método de elementos finitos está pensado para ser usado en ordenadores y permite resolver ecuaciones diferenciales asociadas a un problema físico sobre geometrías complicadas. Los cálculos se realizan sobre una malla de puntos (llamados nodos) que simulan la pieza objeto de diseño. Sirven a su vez de base para discretización del dominio en elementos finitos. La generación de la malla se realiza usualmente con programas especiales llamados generadores de mallas.

Para llevar a cabo una correcta modelización en ANSYS es necesario acumular cierta experiencia con el programa, basada en algún tipo de guía. Si bien existen manuales
oficiales para cada versión de ANSYS, en Internet se puede encontrar gran cantidad de información, así como tutoriales basados en ejemplos prácticos que ayudan a la toma de contacto con el programa.

El proceso de diseño general se puede dividir en 3 etapas:

- **Pre-proceso:**
 Generación del modelo: se construye la geometría del problema, creando líneas, áreas o volúmenes. Sobre este modelo se establecerá la malla de elementos finitos. La ubicación de los elementos de la maya puede provenir de otras aplicaciones de diseño.
 Se definen los materiales a ser usados en base a sus constantes. Todo elemento debe tener asignado un material particular.
 Generación de la maya: permite realizar una aproximación discreta del problema en base a puntos o nodos. Estos nodos se conectan para formar elementos finitos que juntos forman el volumen del material. La maya puede generarse a mano o usando las herramientas de generación automática o controlada de mayas.

- **Proceso:**
 Aplicación de cargas: se aplican condiciones de borde en los nodos y elementos, se pueden manejar valores de fuerza, presión, restricción de desplazamiento, momento o rotación.
 Obtención de la solución que se obtiene una vez que todos los valores del problema son ya conocidos.

- **Post-proceso:**
 Visualización de resultados, por ejemplo: como dibujo de la geometría deformada del problema o como vídeo del proceso de dormación.
 Listado de resultados: como datos en una tabla

A la hora de modelizar con ANSYS se debe prestar especial atención a:
En primer lugar, al representar la pieza, se puede observar que pequeñas variaciones en el diseño pueden dar tensiones resultantes muy distintas.

En segundo lugar, en cuanto a la selección del tipo de elemento que se va a utilizar para representar la materia, es decir, la forma y características de los elementos infinitesimales de que va a estar formada la modelización. Según la complejidad de la pieza, algunos elementos serán más adecuados que otros, además permiten o no ciertos cálculos (grandes deformaciones, hiperelasticidad, etc.)

En tercer lugar, la aplicación de las cargas y de los puntos de sujeción. La pieza se somete a una serie de cargas conocidas y debe estar sujeta en algunos puntos para evitar el movimiento de la pieza en el espacio, consiguiéndose de este modo el equilibrio de las fuerzas y pudiéndose resolver el problema estático. Debe estudiarse la manera en la estas cargas y puntos de sujeción son aplicados, de manera que sean representativos del caso real.

A la hora de analizar los resultados, se debe seleccionar el sistema de cálculo deseado. Entre los distintos sistemas encontramos se decide analizan las tensiones resultantes según el modelo de Von Mises. Mediante este sistema no se comprueba únicamente la tensión en una dirección, sino que se tiene en cuenta la resultante de todas ellas.

17.1.1 Modelización mediante ANSYS

Tipo de material:

El tipo de material tendrá relevancia sobre la fidelidad con que la pieza va a ser modelizada, así como sus características y datos de entrada necesarios. En primer lugar encontraremos tipos de materiales para representaciones en 2D o en 3D, en el de estudio se precisa una modelización en 3D. De entre las posibilidades que se ofrecen dentro de los sólidos en 3D, se selecciona como tipo de material el SOLID186:
Las distintas formas que pueden adoptar los elementos infinitesimales (representados en la Figura 16) el SOLID186 corresponde a un elemento tetraédrico de 20 nodos. Cada nodo tiene 3 grados de libertad y soporta cálculos de plasticidad así como grandes deformaciones. Este tipo de material presenta la ventaja de ser muy apropiado para figuras complejas, ya que se adapta tanto a radios de giro pequeños, como a pequeños espesores.

Datos de entrada:

Los datos de entrada se especifican en primer lugar indicando que se trata de un material con características estructurales, de comportamiento linear y elástico, con composición homogénea. Una vez llegados a este punto, únicamente se precisa indicar el módulo de Young y el coeficiente de Posisson correspondiente al material modelizado.

Puesto que la pieza se modelizar en mm, y las presiones y el módulo de Young se introducen en Kg/mm^2. La presión externa a aplicar es por tanto de 0,1 kg/mm^2.
18 Escantillonado del casco resistente

El casco resistente deberá contener toda la electrónica, así como las baterías para el funcionamiento del vehículo. Es decir, todo elemento que no es estanco por sí mismo. Por lo tanto el correcto escantillonado de este es crucial en el desarrollo del proyecto.

El casco resistente se considera dividido en 3 elementos: el cilindro central de PVC y 2 tapas en sus extremos de una aleación de aluminio.

18.1 Escantillonado del cilindro estanco

Para el escantillonado del cilindro estanco, se recurre a un proceso iterativo en ANSYS. Dentro de los catálogos disponibles de tubos para alta presión se prueban distintas combinaciones de espesores y diámetros hasta dar con una combinación suficientemente grande para alojar las baterías y con suficiente espesor para soportar la presión exterior.

El cilindro estanco está formado por una parte por el propio cilindro, al que hay que se añaden manguitos portabridas en los extremos de manera que sea posible atornillar las tapas.
Como brida, se utiliza un manguito portabridas. Estas no están perforadas ya que no están diseñadas para alojar los pernos de apriete de las tapas. Su función en hacer de tope para las bridas libres. Sin embargo, en este caso se planea utilizarlas directamente como bridas fijas. Esto es posible debido a que en este caso la presión a soportar es externa, por lo que la brida no va a tener que soportar grandes esfuerzos a través de los pernos. Utilizando los manguitos portabridas en lugar de bridas fijas, se consigue disminuir el diámetro total del cilindro, permitiendo a su vez alojar los orificios de 5 mm de diámetro para el apriete de las tapas.

Figura 22: geometría del manguito portabridas.

<table>
<thead>
<tr>
<th>DN</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>Kg.</th>
</tr>
</thead>
<tbody>
<tr>
<td>125</td>
<td>165</td>
<td>140</td>
<td>132</td>
<td>188</td>
<td>80</td>
<td>14</td>
<td>76</td>
<td>0,786</td>
</tr>
</tbody>
</table>

En el caso del escantillado de cilindros a presión en materiales metálicos, es frecuente reforzar el cuerpo central mediante anillos soldados. En el presente caso, puesto que el diseño se realiza utilizando PVC, no es recomendable reforzar el cilindro central con dichos anillos.

En el caso del recipiente a presión en material metálico, la zona sobre la que el refuerzo anular tiene influencia es considerable (debido a su mayor módulo de Young). Mientras
que en el caso del recipiente en PVC debido a su bajo módulo de Young la zona de influencia del refuerzo anular es escasa, con lo que se requiere de un gran número de refuerzos muy juntos para abarcar toda la longitud del recipiente.

18.1.1 **Modelización del cilindro estanco mediante ANSYS**

Este apartado se incluyen los detalles de diseño junto con los datos con lo que se ha trabajado durante la modelización en ANSYS.

18.1.1.1 **Datos de entrada**

Como ya se ha expuesto, el material utilizado es SOLID186.

El material de diseño del cilindro estanco es PVC-U modelizado como un material lienal, elástico e isotrópico cuyas propiedades físicas son: módulo de elasticidad 285,5 kg/mm^2 y coeficiente de Poisson 0,38.

Además se introduce un segundo material, el aluminio al magnesio UNS A95086 modelizado como un material lienal, elástico e isotrópico, cuyas características son: módulo de elasticidad 6896 kg/mm^2 y coeficiente de Poisson de 0,33.

![Propiedades del material](image)

Figura 23: propiedades del material.
La presión externa a aplicar es de 0,1 kg/mm^2.

18.1.1.2 Detalles de diseño

Se va a modelizar únicamente el cilindro central, sin embargo para poder introducir la presión que se aplica en el cilindro a través de las tapas, se incluye en uno de sus extremos una tapa maciza sobre la que aplicar la presión. Dicha tapa no incluye los orificios para el paso de cables, ya que no se trata de la tapa real, es únicamente un elemento sobre el que aplicar la presión que la tapa transmite al cilindro. Dicha tapa se introduce con un espesor suficientemente sobredimensionado como para que las tensiones máximas del conjunto aparezcan en el cilindro estanco y no en la tapa. Esta simplificación, no altera el resultado, ya que las mayores tensiones no aparecen en la zona de la unión tapa-cilindro, sino en el cuerpo central del cilindro. De esta manera es posible listar las tensiones máximas, obteniendo el valor exacto calculado de la tensión máxima alcanzada en el cilindro estanco.

Se incluye tapa ficticia únicamente en uno de sus extremos ya que la superficie del otro extremo se va a restringir a desplazamiento en la dirección en el eje Z (eje del cilindro). Por otra parte únicamente es necesario modelizar la mitad del cilindro, debido a su simetría. De esta manera se permite ver el interior del cilindro, a la vez que se mantiene el problema estático.

Se modelizan por separado dos elementos:
- Por una parte: conjunto formado por cilindro y una brida en PVC-U.
- Por otra parte: tapa ficticia en aluminio.

De esta manera se puede modelizar la interacción entre ambos elementos.

Una vez se dispone de los dos elementos, se crean las mallas por separado en cada bloque, asignando a cada mallado las propiedades del material correspondiente.
Posteriormente, cuando se haya escantillonado la tapa final, se puede modelizar junto con el cilindro.

Para conseguir la interacción entre los dos bloques mayados se recurre a la aplicación “Contact Pair”. Esta orden es posible introducir un segundo material (Contact174) en la unión entre los elementos que simulará la interacción entre ambos. Esto se hace de manera semiautomática, de manera que únicamente hay que definir los conjuntos de elementos que van a interactuar.
18.1.1.3 Cargas y restricciones

La carga a aplicar es una presión exterior de 0.1 kg/mm². Esta debe ser aplicada en toda la superficie exterior del cilindro, incluyendo la superficie exterior de la tapa, que tenderá a comprimir el cilindro.

Para conseguir la estabilidad del modelo es necesario introducir restricciones en los 3 ejes cardinales en una de las piezas y por lo menos en 2 en la restante para asegurar que se trata de un problema estático. Si se introdujeran restricciones en ambas piezas en la dirección del eje del cilindro (eje “Z”), la tapa no interactuaría correctamente con el cilindro. Por haber utilizado la aplicación “Contact Pair” es posible resolver el problema sin haber definido restricciones en uno de los ejes de una de las piezas.

Las restricciones introducidas son:

- Eje “Z” (el mismo eje del cilindro): Sobre la cara del extremo del cilindro sin la tapa acoplada.
- Eje “X”: en dos Keypoints correspondientes al eje de simetría “Y” del conjunto. Puesto que estos puntos van a tender a desplazarse hacia el centro (dirección “Y”) debido a la presión externa, al introducir una restricción en la dirección “X”, no se altera la deformación natural de la pieza, a la vez que se introduce una restricción en un eje. En el caso del cilindro se aplica sobre los dos keypoints exteriores situados sobre el eje de simetría “Y”, sobre la misma cara.
sobre la que se ha aplicado la restricción sobre el eje “Z”. Del mismo modo, en el caso de la tapa se aplican sobre los dos keypoints exteriores situados en el eje de simetría “Y” de la cara opuesta al contacto con el cilindro.

- Eje “Y”: de manera análoga, se aplica restricción en el eje “X” sobre keypoints situados en el eje “Y” de simetría tanto del cilindro como de la tapa.

Figura 26: Vista de las líneas y de las restricciones de movimiento aplicadas.

En cuanto a las cargas, se aplica una presión de 0,1 kg/mm² en toda las superfi cies exteriores del conjunto.
18.1.1.4 Resultados

Los resultados obtenidos revelan que con un cilindro de dimensiones comerciales con la configuración ya presentada es capaz de resistir a más de 100 m de profundidad, sin sobrepasar la tensión de diseño.

<table>
<thead>
<tr>
<th>Datos de entrada</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Diámetro exterior</td>
<td>140 mm</td>
</tr>
<tr>
<td>Espesor</td>
<td>5.4 mm</td>
</tr>
<tr>
<td>Presión aplicada</td>
<td>0.1 kg/mm²</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Resultados obtenidos</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Tensión máxima</td>
<td>1,197 kg/mm²</td>
</tr>
<tr>
<td>Máxima deformación X/Y</td>
<td>0,282 mm</td>
</tr>
<tr>
<td>Máxima deformación Z</td>
<td>0,882 mm</td>
</tr>
</tbody>
</table>
La tensión de diseño para el PVC-U es de 1,31 kg/mm², por lo que la tensión resultante de la modelización en ANSYS se ajusta a dicha tensión de diseño.

Figura 28: tensiones resultantes del cálculo sobre la pieza deformada. Las deformaciones representadas no corresponden a distancias reales.

Figura 29: tensiones resultantes del cálculo sobre la pieza deformada. Las deformaciones representadas no corresponden a distancias reales.
Es de mencionar que en las representaciones de los resultados de ANSYS, las deformaciones no se muestran en verdadera magnitud. Por otra parte se puede observar como la máxima tensión se encuentra en toda la superficie interior del cilindro y no en la tapa ficticia.

18.2 Diseño del sistema de estanqueidad

Todos los componentes del AUV son modulares y estancos por separado. La instrumentación externa al cilindro estanco no precisa de modificaciones ya que ya está preparada para trabajar en inmersión.

En este apartado se desarrolla la selección y diseño del sistema de estanqueidad del casco resistente, contenedor de todo elemento no estanco: baterías y módulos de electrónica.

El sistema debe resistir 100 m de profundidad, con un factor de seguridad de 2.

En primer lugar se realiza un estudio de posibles soluciones, de las que se seleccionará una, con su posterior adaptación al casco resistente.

18.2.1 Estudio de variantes

El estudio de las variantes se refleja en el siguiente cuadro explicativo:

<table>
<thead>
<tr>
<th>Sistema de estanqueidad</th>
<th>El apriete de la tapa no influye en el de la junta.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Menor espacio útil en el recipiente.</td>
</tr>
<tr>
<td>Junta tórica</td>
<td>Mayor cantidad de material en la tapa.</td>
</tr>
<tr>
<td>interior</td>
<td>Mayor complejidad constructiva.</td>
</tr>
</tbody>
</table>
Si el alojamiento de la junta tórica es adecuado, no se sobrepasa la presión recomendada de la junta por el apriete de la tapa. Menor peso, complejidad constructiva y menor coste.

- **Junta tórica frontal**
 - Bajo precio.
 - Alta capacidad de estanqueidad.
 - Simplicidad del sistema.
 - Posible fallo ante uso reiterado.

<table>
<thead>
<tr>
<th>Sistema de apriete</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Roscado de la tapa</td>
<td>Precisa del roscado tanto de la tapa como del cilindro, resultado más compleja su construcción. Escaso conocimiento del apriete producido. Requiere de una mayor cantidad de material para fabricar la tapa. Reducción del espacio útil del recipiente. Reducido empacho diametral. El fallo de la rosca supone el cese de la funcionalidad del recipiente.</td>
</tr>
<tr>
<td>Presión por pernos</td>
<td>Mayor empacho diametral para dar cabida a los pernos. Mayor conocimiento de la presión aplicada. Fácil substitución de pernos ante fallo de la rosca. Presión uniformemente distribuida y unión más fuerte. Mayor seguridad ante aflojado de la rosca. Menor cantidad de material para fabricar la tapa. Menor complejidad constructiva y menor coste.</td>
</tr>
</tbody>
</table>

PTFE [Polietetrafluoroethylene]

Tipo de junta de material esponjoso que se adapta fácilmente a superficies irregulares. Resistente ante un amplio rango de temperaturas y capaz de soportar hasta 150 Bares de presión. Para su uso simplemente se debe colocar entre las dos superficies a estanqueizar y aplicar la presión necesaria entre ambas.
18.2.2 Selección

Tras la evaluación de las posibilidades, en un principio se selecciona una junta tórica con sistema de apriete por pernos. Posteriormente, se comprueba que se dispone de espacio suficiente para ubicar dos juntas tóricas en la tapa. Con el objetivo de hacer más robusto el diseño se selecciona un sistema de dos juntas tóricas frontales, con un sistema de apriete por pernos.

Las juntas tóricas se encuentran alojadas en la tapa, de manera que no es necesario realizar modificaciones en el casco resistente.

El sistema de apriete por pernos servirá además para sostener las estructuras de soporte de elementos externos al cilindro estanco. Dichas estructuras se tratarán en temas posteriores.

Cada una de las dos juntas tóricas y sus alojamientos que componen el sistema de estanqueidad se diseñan de manera que cada una por separado sea capaz de mantener estanco el casco resistente.

18.2.3 Diseño

Una vez seleccionado el sistema de estanqueidad deseado, se deben determinar una serie de especificaciones que definen los elementos. Dichas especificaciones son:

- Material de la junta tórica.
- Sección y dureza de la junta tórica.
- Dimensiones del alojamiento de la junta.

Para su determinación se recurre a documentación de empresas en que se expone gran cantidad de información, así como procesos de diseño y selección de juntas tóricas distintos. Sin embargo, no se hacen responsables de la selección final del producto.
debido a la variedad de condiciones de operación reales. Por lo tanto el usuario debe realizar sus propios tests y análisis.

Para el diseño se combinan 2 manuales comerciales. Por una parte “Parker O-Ring Handbook” edición 2001 para la selección del material, sección y dureza de la junta.

Por otra parte mediante el “Dichtomatik O-Ring Handbook” se determinan las dimensiones del alojamiento de la junta por encontrarse en este manual un proceso más detallado.

18.2.3.1 Material de la junta tórica

Para trabajar en un ambiente poco agresivo (agua de mar) y a una temperatura moderadamente baja (por debajo de 30º) prácticamente cualquier compuesto habitual de la gama puede trabajar perfectamente en dichas condiciones.

Como material se selecciona Nitrilo NBR. Se trata de un material comúnmente utilizado para la fabricación de juntas tóricas debido a sus buenas características mecánicas, resistencia a lubricantes y por su precio relativamente bajo.

Podemos una tabla resumen con su resistencia ante diferentes compuestos [9]:

<table>
<thead>
<tr>
<th>Material</th>
<th>Sea (Salt) Water</th>
<th>N0674-70</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrile NBR</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Hydronaline HNBR</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Ethylene Propylene</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Fluoroelastomer FKM</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Perfluoralkoxy FEP</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Viton FFKM</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Viton CF</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Viton FFKM</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Silicone VITON</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Nitrile NBR</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Hydronaline HNBR</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Ethylene Propylene</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Fluoroelastomer FKM</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Perfluoralkoxy FEP</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Viton FFKM</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Viton CF</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Viton FFKM</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Silicone VITON</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

18.2.3.2 Sección y dureza de la junta tórica
Se selecciona una dureza baja: de 60 durometer. Ya que la presión a soportar no es elevada, podemos seleccionar una dureza baja, consiguiendo además un mejor amolde a las superficies a estanqueizar asegurando un mejor sellado con superficies más rugosas.

Existen una serie de normas que recogen dimensiones estandarizadas de juntas tóricas. Cada norma dispone de un sistema de codificación propio, y también es posible encontrar juntas tóricas con dimensiones no contempladas por ninguna norma.

Puesto que es relativamente fácil conseguir juntas tóricas pertenecientes a cualquiera de las principales normas, no supone un factor relevante el que las dimensiones seleccionadas pertenezcan a una u otra norma.

Del resultado del proceso de selección resulta que las dimensiones de las juntas que mejor encajan en las dimensiones deseadas pertenecen a la norma SAE AS568, publicada por la “Aerospace Size Standard for O-Rings”.

Ejemplo de codificación: SAE AS568-214

<table>
<thead>
<tr>
<th>SERIES</th>
<th>CROSS-SECTION</th>
<th>millimeters</th>
<th>Inches</th>
</tr>
</thead>
<tbody>
<tr>
<td>-0XX</td>
<td>1.78*</td>
<td>0.070*</td>
<td></td>
</tr>
<tr>
<td>-1XX</td>
<td>2.62</td>
<td>0.103</td>
<td></td>
</tr>
<tr>
<td>-2XX</td>
<td>3.33</td>
<td>0.139</td>
<td></td>
</tr>
<tr>
<td>-3XX</td>
<td>5.33</td>
<td>0.210</td>
<td></td>
</tr>
<tr>
<td>-4XX</td>
<td>6.99</td>
<td>0.275</td>
<td></td>
</tr>
<tr>
<td>-9XX</td>
<td>Varies</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Except for -001, -002 and -003 sizes

El primer dígito corresponde al diámetro de la sección (CS) de la junta, cuyo valor se contempla en la tabla anterior.
Del mismo modo el resto de dígitos corresponden a la secuenciación del diámetro de la junta (D).

De entre los posibles diámetros de la sección de la junta tórica, se selecciona el de 2.616 mm para ambas juntas tóricas.

El diámetro de la junta tórica se determina partiendo de la ubicación del alojamiento para la propia junta tórica. Es decir, en primer lugar se sitúan los emplazamientos aproximados de los alojamientos de las juntas tóricas, sabiendo que la anchura del alojamiento es aproximadamente 3,5 mm para la sección de junta tórica seleccionada. Por otra parte se deja un margen de 4 mm en radio entre la junta interna (la de menor diámetro) y el interior del cilindro estanco, así como entre ambas juntas. Finalmente se ha de fijar que la junta exterior no debe acercarse a menos de 4 mm de los orificios de pernado exterior. Al realizar el cálculo exacto de las dimensiones del alojamiento se concretan dichos márgenes.

Siguiendo el manual de la empresa **Dichtomatik** es posible obtener las dimensiones del alojamiento para cada junta tórica partiendo de su diámetro interno (ID) y sección (CS).
Para la selección de las dimensiones de las juntas tóricas se procede a la programación del proceso de cálculo en EXCEL y probando combinaciones de juntas tóricas hasta dar con las que encajen entre los márgenes determinados por necesidad de espacio.

18.2.3.3 Dimensiones de las juntas tóricas y sus alojamientos:

En primer lugar, teniendo en cuenta que la junta tórica va a trabajar con presión externa, se recomienda que el diámetro interior del alojamiento sea algo mayor que el de la junta, de manera que la junta colocada en reposo ya se encuentre en tensión. La interferencia entre ambas debe estar comprendida entre el 0 y el 5%, se selecciona el 3%. Gracias a este dato es posible establecer el diámetro interior del alojamiento.

Por otra parte, dicha tensión inicial, causa una disminución del área de la sección de la junta que se debe tener en cuenta para el diseño de su alojamiento. Para conocer dicha disminución se recurre a una tabla [10]:

<table>
<thead>
<tr>
<th>AS568 Series</th>
<th>Original Cross-Section in Inches</th>
<th>Reduced Cross-Section at % ID Interference (inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1%</td>
<td>2%</td>
</tr>
<tr>
<td>-XXXX*</td>
<td>0.070 in.</td>
<td>0.069</td>
</tr>
<tr>
<td>-1XX</td>
<td>0.103 in.</td>
<td>0.102</td>
</tr>
<tr>
<td>-2XX</td>
<td>0.139 in.</td>
<td>0.138</td>
</tr>
<tr>
<td>-3XX</td>
<td>0.210 in.</td>
<td>0.208</td>
</tr>
<tr>
<td>-4XX</td>
<td>0.275 in.</td>
<td>0.272</td>
</tr>
</tbody>
</table>

A continuación se decide el grado de compresión o Compression Ratio:

Figura 31: compression ratio. [10]
Cuyo valor debe encontrarse entre el 10 y el 35%, siendo el valor recomendado para juntas tóricas frontales el 25%. Gracias a este dato es posible calcular la profundidad del alojamiento.

Finalmente se fija el porcentaje de ocupación del alojamiento, valor entre 50 y 90%, siendo el valor recomendado del 75%. Este permite despejar el diámetro externo del alojamiento, quedando completamente definido el alojamiento de la junta tórica.

Por lo tanto se ha fijado:

<table>
<thead>
<tr>
<th>ID/OD interferencia:</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sección reducida:</td>
<td>5.232 mm²</td>
</tr>
<tr>
<td>Compression Ratio</td>
<td>25%</td>
</tr>
<tr>
<td>Ocupación</td>
<td>75%</td>
</tr>
</tbody>
</table>

Probando con diferentes juntas tóricas estándar pertenecientes a las distintas normas, se seleccionan aquellas cuyos alojamientos asociados cumplen con los requisitos espaciales fijados al inicio. Se intenta además que ambas juntas pertenezcan a la misma norma.

Junta tórica interior

<table>
<thead>
<tr>
<th>ID</th>
<th>133</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS</td>
<td>2,62</td>
</tr>
</tbody>
</table>

Alojamiento interior

GI-ID	136,99 mm
GI-OD	143,87 mm
Altura	1,97 mm
Anchura	3,44 mm

Junta tórica exterior

<table>
<thead>
<tr>
<th>ID</th>
<th>152,07 mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS</td>
<td>2,62 mm</td>
</tr>
</tbody>
</table>
Las dimensiones finales pueden observarse en la siguiente figura:

Figura 32: Dimensiones finales de los alojamientos de las juntas tóricas.

Para que el las dimensiones del alojamiento queden definidas falta añadir un cierto ángulo de divergencia:

Figura 33: ángulo de divergencia de las paredes del alojamiento de la junta tónica. [10]
Dicho ángulo debe estar comprendido entre 0 y 5°, por lo que se selecciona un ángulo de 2°.

Finalmente se debe tener especial cuidado en el acabado superficial, tanto del alojamiento como de la zona en contacto con la junta tórica de la otra pieza.

Se especifica un valor de rugosidad superficial límite de 32 rms (micro-in). Sin embargo también menciona que las ralladuras producidas en el mecanizado pueden suponer un problema si van en la dirección del paso del agua, pero que difícilmente serán problemáticas si acompañan a la junta tórica circularmente.

18.2.3.4 Cálculo de la fuerza de compresión y selección del número de pernos

A la hora de realizar el apriete de los pernos de la tapa no es necesario conocer la fuerza de compresión necesaria ya que es la profundidad del alojamiento de la junta el que marca su compresión. Sin embargo, sí es necesario el cálculo para conocer la tensión a la que trabajan los pernos y de esta manera determinar el número de pernos necesario.

En primer lugar se debe determinar si al comprimirse la junta tórica va a verse limitada en su deformación por las paredes laterales de su alojamiento. En caso afirmativo, la fuerza necesaria para conseguir la compresión deseada es mayor.

Para determinar si se da dicha limitación a la deformación, se compara la anchura de la junta deformada libremente, con la anchura disponible del alojamiento. La anchura de la deformada se estima de la siguiente manera:

- Se supone que el área de la sección de la junta tórica se mantiene constante antes y después de la deformación.
• La forma de la deformada está compuesta por los extremos como medias circunferencias de diámetro igual a la altura del alojamiento, más una zona central rectangular.

De esta manera es posible calcular la anchura de la junta tórica deformada y compararla con el espacio disponible en el alojamiento.

![Diagrama de junta tórica](image)

Figura 34: junta tórica antes y después de la deformación.

Como se muestra en la figura anterior, no existe interferencia con las paredes del alojamiento.

Partiendo del porcentaje de compresión, fijado previamente en el 25%, mediante la gráfica correspondiente para el diámetro de la sección de la junta, se obtiene la carga lineal/%compresión. Con este dato y la longitud total de las juntas (suma de ambas circunferencias) se calcula la carga necesaria para conseguir la compresión deseada.
Figura 35: fuerza de compresión por unidad de longitud asociada a compresión para distintas durezas de junta tórica. [9]

Para estandarizar el diseño, todos los pernos en el vehículo son de 5 mm de diámetro, a no ser que sea estrictamente necesaria otra métrica. Para conseguir que la carga esté uniformemente distribuida por la tapa, se seleccionan un conjunto de 8 pernos equiespaciados en la periferia de la tapa.

<table>
<thead>
<tr>
<th>Pernos M5 Aluminio 2030</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nº pernos</td>
</tr>
<tr>
<td>L (suma L1 y L2)</td>
</tr>
<tr>
<td>carga/mm(junta)</td>
</tr>
<tr>
<td>carga total</td>
</tr>
<tr>
<td>carga/perno</td>
</tr>
<tr>
<td>At perno</td>
</tr>
<tr>
<td>Tensión perno</td>
</tr>
<tr>
<td>Resistencia a la tracción</td>
</tr>
</tbody>
</table>
18.2.3.5 Estimación de la tensión máxima de compresión en la junta tórica

Como cálculo complementario al ya expuesto, se incluye el cálculo de la presión máxima que experimenta la junta tórica. Dicha presión es representativa de la máxima presión externa para la cual la junta va a resistir teóricamente. Sin embargo no es recomendable el procedimiento que se expone a continuación como método de selección de juntas tóricas.

El cálculo que a continuación se presenta fue expuesto en la 14th International Conference on Fluid Sealing. En ella se presenta un método numérico aproximado para al determinación de la presión máxima sobre juntas tóricas en distintas situaciones (con o sin restricciones de deformación). [11]

\[
\frac{S_{\text{max}}}{E} = c\delta + d\delta^2 + e\delta^3
\]

<table>
<thead>
<tr>
<th>Loading Case</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unrestrained unlubricated axial primary wall</td>
<td>2.0090</td>
<td>-0.2211</td>
<td>2.8383</td>
<td>-8.5051</td>
<td>18.6031</td>
</tr>
</tbody>
</table>

\(S_{\text{max}} \) = pico de tensión en la junta tórica.
\(E \) = Módulo de Young de la junta tórica.
\(X^* \) = Desplazamiento de compresión.
\(d \) = CS
\(\delta \) = Compresión normalizada.
\(\delta = x^*/d \)

Datos de entrada

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>d</td>
<td>2,620 mm</td>
</tr>
<tr>
<td>Compression ratio</td>
<td>25 %</td>
</tr>
<tr>
<td>E</td>
<td>0,4429 kg/mm²</td>
</tr>
<tr>
<td>(\delta)</td>
<td>0,25</td>
</tr>
<tr>
<td>(x^*)</td>
<td>0,655 mm</td>
</tr>
</tbody>
</table>
Puesto que la presión externa a soportar es de 0,1 kg/mm^2, según los cálculos, existe un factor de seguridad de 2 en estanqueidad de cada una de las dos juntas tóricas de la unión.

18.3 Escantillonado de las tapas

Una vez se ha seleccionado el sistema de estanqueidad se procede al escantillonado de las tapas. Cada una de ellas deberá alojar un total de 5 orificios repartidos por su superficie para permitir el paso de los cables que conectarán con cada elemento que se encuentre en el exterior del casco resistente. Cada uno de estos orificios es de 15 mm de diámetro, para ser compatibles con el conector estanco.

Como ya se ha comentado previamente, el proceso de escantillonado se desarrolla mediante dos procedimientos distintos. En primer lugar mediante el código: ASME VIII: Pressure Vessel Code. En segundo lugar mediante el software ANSYS.

18.3.1 ASME: programación hojas EXCEL

En este apartado se expone de manera resumida el procedimiento de cálculo descrito en el apartado UG-34 de la sección VIII. Dicho procedimiento se programa en una hoja EXCEL de manera que se pueda comprobar su validez mediante ejercicios resueltos, así como admitir la variación de los datos de entrada.

La tapa a escantillonar es del tipo K:
Los datos de entrada quedan:

<table>
<thead>
<tr>
<th>Datos de entrada</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>d</td>
<td>5,529 in</td>
</tr>
<tr>
<td>C</td>
<td>0,3</td>
</tr>
<tr>
<td>hg</td>
<td>0,710 in</td>
</tr>
<tr>
<td>P: Presión externa</td>
<td>145 psi</td>
</tr>
<tr>
<td>S: Tensión máxima admisible</td>
<td>9300 psi</td>
</tr>
<tr>
<td>E: Joint efficiency</td>
<td>1</td>
</tr>
<tr>
<td>W: Carga total pernos</td>
<td>445,935 lb</td>
</tr>
<tr>
<td>L: perímetro por los centros de los pernos</td>
<td>6,949 in</td>
</tr>
</tbody>
</table>

En el diámetro “d” se utiliza el valor de la junta tórica interior, de lo contrario se estaría sobredimensionado la tapa.

Con ellos, el espesor de partida calculado resulta ser 9,990 mm, pero en este primer cálculo no se contempla que la tapa está agujereada para permitir el paso de los cables. Para ello se añade un incremento de espesor que es función del número, tamaño y distribución de los agujeros. También se da la posibilidad de reforzar individualmente cada abertura en las tapas, pero eso se traduce en un mayor trabajo de fabricación y por lo tanto un mayor coste, consiguiéndose a cambio una pequeña disminución del peso.

Figura 36: tipo de unión seleccionada. [7]
Para tener en cuenta el incremento de espesor debido a las aberturas, se debe continuar en el apartado UG-39. En él se encuentran distintos procedimientos de cálculo, de entre ellos de deben localizar los que se ajusten a las características de la pieza. Se calcula el incremento mediante todos los métodos compatibles y se selecciona el resultado menor.

La validez de cada método viene determinado por la proporcionalidad entre el diámetro de los orificios frente al diámetro de la pieza, así como el espaciado entre orificios. Es decir, el método no contempla la distribución real de los orificios sobre la tapa, por lo que necesariamente contemplará la peor distribución posible en cada caso. Debido a esto, el resultado obtenido puede estar sobredimensionado.

Para que se cumpla con el espaciado mínimo entre orificios, se distribuyen los cinco orificios necesarios por la superficie de la tapa tratando de maximizar el espaciado entre orificios, pero dejando un margen de 9,25 mm entre el orificio y la pared interior del cilindro para la instalación de los conectores estancos. Se evita en la medida de lo posible alojar un orificio en el centro de la tapa, ya que como se puede comprobar en la modelización mediante ANSYS, resultan mayores tensiones precisamente entorno al orificio central.

Figura 37: ubicación y separación entre orificios.
En el manual se plantean distintas formas de cálculo. Los resultados obtenidos para el espesor total varían desde 13,583 mm hasta 14,985 mm. El menor valor es el que se da por bueno por ser el resultado menor que cumple con todas las condiciones impuestas para su aplicación. Este resultado se modeliza en ANSYS para poder comparar sus resultados.

18.3.2 Modelización de las tapas mediante ANSYS

Para realizar un análisis más exhaustivo del diseño de las tapas, se realiza un estudio mediante ANSYS, de manera que se puedan comparar sus resultados con los obtenidos mediante el código ASME.

Como ya se anticipaba en el apartado anterior, los resultados obtenidos mediante el código ASME están aparentemente sobredimensionados, ya que en el método de cálculo propuesto no se incluye la ubicación de los orificios en la tapa. Esto obliga a que el resultado obtenido sea por lo tanto para la peor distribución posible, es decir, con un orificio central.

Puesto que en el presente caso se dispone de espacio suficiente para distribuir los orificios de manera que no se ubique ninguno en le centro de la tapa, se espera obtener un espesor de la tapa menor que mediante el código ASME.

Este apartado se incluyen los detalles de diseño junto con los datos con lo que se ha trabajado durante la modelización en ANSYS.

18.3.2.1 Datos de entrada

Como ya se ha expuesto, el material utilizado es SOLID186.
El material de diseño del cilindro estanco es el aluminio al magnesio UNS A95086 modelizado como un material lienal, elástico e isotrópico, cuyas características son: módulo de elasticidad 6896 kg/mm² y coeficiente de Poisson de 0,33.

Según el código ASME, la tensión admisible máxima para la aleación de aluminio es de 6.41 kg/mm², sin embargo también se especifica que se debe tener en cuenta la intensidad de tensión de diseño. En este caso la de intensidad de tensión de diseño toma el mismo valor que la tensión de diseño 6.41 kg/mm².

Además se introduce un segundo material, PVC-U modelizado como un material lienal, elástico e isotrópico cuyas propiedades físicas son: módulo de elasticidad 285,5 kg/mm² y coeficiente de Poisson 0,38.

La presión externa a aplicar es de 0,1 kg/mm².

18.3.2.2 Detalles de diseño

De manera análoga al proceso de modelización del cilindro estanco, se va a realizar el estudio de la interacción entre dos elementos. Por una parte la tapa, y por otra parte el cilindro estanco. Para cada elemento se realiza el mallado asociando el material correspondiente.

Puesto que se trata de un sistema simétrico, se modeliza únicamente la mitad, es decir, la mitad del cilindro estanco y una de las tapas en un extremo. De hecho únicamente es necesario modelizar un tramo del cilindro estanco, ya que no va a interactuar con la tapa más allá de los primeros 20 cm.

Una vez modelizados los elementos por separado, se recurre a la aplicación “Contact Pair” para definir el problema como la interacción de dos elementos (tapa y cilindro estanco) sometidos a fuerzas externas (presión hidrostática).
No se tienen en cuenta la presión inicial entre la brida y la tapa debida a los pernos ya que no interfiere con la concentración de tensión en los orificios para los cables de la tapa, que es donde se van a encontrar las mayores tensiones.

En la siguiente figura se pueden observar las distintas visualizaciones de la misma vista del conjunto de tapa y cilindro estanco:

18.3.2.3 **Cargas y restricciones**

La presión exterior a aplicar es de 0,1kg/mm^2 y debe aplicarse sobre la totalidad de las superficies exteriores. Sin embargo, la presión a aplicar sobre la cara exterior de la tapa es algo mayor, para compensar la reducción de superficie debida a los orificios para el paso de los cables, de manera que la fuerza total aplicada sobre la tapa sea la misma que si no tuviera los orificios. La presión compensada a aplicar es por tanto 0,10609 kg/mm^2
Si bien es cierto que esta compensación causa un pequeño desajuste en la distribución de carga sobre la tapa, es conservadora, ya que se está aplicando una menor cantidad de fuerza en el margen exterior de la tapa y algo mayor en el centro, donde su repercusión es mayor.

Es necesario introducir restricciones en todos los ejes para asegurar que se resuelve un problema estático. Esto se hace de manera análoga a la modelización del cilindro estanco.

Las restricciones introducidas son:

- **Cilindro**: Puesto que el extremo opuesto a la tapa del cilindro no va a intervenir en funcionamiento de la tapa, se puede restringir su cara en todas las direcciones.

- **Tapa**:
 - Eje “X”: en dos Keypoints correspondientes al eje de simetría “Y” del conjunto. Puesto que estos puntos van a tender a desplazarse hacia el centro (dirección “Y”) debido a la presión externa, al introducir una restricción en la dirección “X”, no se altera la deformación natural de la pieza, a la vez que se introduce una restricción en un eje.
 - Eje “Y”: de manera análoga, se aplica restricción en el eje “X” sobre keypoints situados en el eje “Y” de simetría de la tapa.
 - Eje “Z”: en esta dirección no se incluye restricción, ya que va a ser la dirección en la que va a interactuar con el cilindro.

18.3.2.4 **Resultados**

Se analizan las tensiones resultantes según el modelo de Von Mises, listando los resultados de mayor a menor se obtienen las tensiones máximas a las que se somete la modelización, la máxima tensión para el escantillonado resultante del diseño mediante
el código ASME (espesor 13,6 mm) con la distribución de orificios de diseño representado en ANSYS es de **4,605 kg/mm^2**. En cuanto a la intensidad de tensión se observan **4,751 kg/mm^2**, ambos frente a los **6,412 kg/mm^2** marcados por el manual. A la vista de los resultados, se está produciendo un sobreescantillono de la pieza. Sin embargo se comprueba que para el mismo modelado incluyendo un orificio central la máxima tensión resultante es 5,678 kg/mm^2 y la máxima intensidad de tensión 5,989 kg/mm^2, resultados más ajustados a los datos de diseño.

Para determinar el mínimo espesor necesario para cumplir con los requisitos de diseño se sigue el siguiente procedimiento. Se realiza la misma modelización para distintos espesores de la tapa, obteniéndose un gráfico en el que se relaciona tanto la máxima tensión como la máxima intensidad de tensión frente al espesor. Entrando en la gráfica con la tensión e intensidad de tensión de diseño se selecciona el espesor más restrictivo:

Figura 39: Tensiones resultantes sobre pieza deformada (las dimensiones no están representadas en verdadera magnitud).
Figura 40: selección del espesor de las tapas a partir de las tensiones e intensidades de tensión obtenidas de los cálculos con diversos espesores.

Se puede observar que con los datos se pueden realizar regresiones sin apenas dispersión, siendo en ambos casos líneas de tendencia de 2º grado. De este modo es más fácil estimar el espesor que dará como resultado una tensión o intensidad de tensión de 6.412 kg/mm², o qué tensión corresponde a espesor concreto.

El resultado exacto es 11,11 mm de espesor, frente a los 13,6 mm obtenidos mediante el código ASME.
Figura 41: Visión frontal de las tensiones.

Figura 42: Visión de las tensiones de la parte interna de la tapa.
Se puede observar como las zonas que más tensión soportan son los bordes de los orificios más cercanos al centro de tapa en su cara esterna.

19 Distribución general

En primer lugar se modeliza en AUTAD, cada uno de los componentes. Una vez se dispone de todos ellos, se prueban diferentes configuraciones hasta dar con la más optimizada, es decir, la que minimice la eslora sin aumentar la proyección frontal del vehículo.

Simultáneamente se programa una hoja Excel con el peso, volumen y posición de los elementos, de manera que se pueda tener en cuenta la posición del centro de masa y el de flotación a la hora de analizar la validez de cada posible distribución.

Para las distintas distribuciones se debe tener en cuenta:

<table>
<thead>
<tr>
<th>Elemento</th>
<th>Posición</th>
<th>Orientación</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obstacle avoidance</td>
<td>Debe ser el elemento más a proa, sin obstáculos que le impidan la toma de datos.</td>
<td>Posición vertical</td>
</tr>
<tr>
<td>Motor delantero</td>
<td>Tan a proa como sea posible, aumentando el par creado.</td>
<td>Vertical</td>
</tr>
<tr>
<td>Motores laterales</td>
<td>Tan cerca del centro de masas del conjunto para minimizar inercia de giro.</td>
<td>Horizontales</td>
</tr>
<tr>
<td>Sonar Starfish</td>
<td>Los extremos de las aletas inferiores deben estar libres de obstáculos y orientados hacia abajo.</td>
<td>Posibilidad de sustitución.</td>
</tr>
</tbody>
</table>
DISEÑO Y CONSTRUCCIÓN DE MINISUBMARINO AUTÓNOMO DE INSPECCIÓN DE TUBERÍAS SUMERGIDAS

<table>
<thead>
<tr>
<th>Componente</th>
<th>Descripción</th>
<th>Orientación</th>
</tr>
</thead>
<tbody>
<tr>
<td>DVL</td>
<td>Su parte inferior debe quedar despejada.</td>
<td>Vertical</td>
</tr>
<tr>
<td>Sonar SeaKing</td>
<td>Una de sus zonas extremas debe quedar despejada en su orientación hacia el fondo.</td>
<td>Horizontal</td>
</tr>
<tr>
<td>Modem acústico</td>
<td>Uno de sus extremos debe quedar despejado para una correcta emisión y recepción.</td>
<td>Indiferente</td>
</tr>
<tr>
<td>Boya emergencia</td>
<td>Parte trasera, para poder ser expulsada en caso de quedar el vehículo atrapado por la proa.</td>
<td></td>
</tr>
</tbody>
</table>

- Espacio necesario para los conectores de salida del cilindro estanco: todo cable que sale del cilindro estanco deberá hacerlo a través de una de sus tapas, de manera que se puedan instalar los conectores estancos. Dichos conectores requieren de una cantidad de espacio (mínimo de 100 mm) que se debe tener en consideración a la hora de modelizar el conjunto.
- Las baterías de plomo-ácido pueden ser sustituidas por baterías de ion-lítio.
- El Sonar Starfish puede ser sustituido en un futuro por el sonar SeaKing ROV/AUV DST.
- Los instrumentos sensibles (DVL, Starfish y Sonar Seaking) es conveniente situarlos apartados de los motores, ya que se pueden crear interferencias y ruidos.

Simultáneamente con la configuración general, se ajustan las dimensiones del casco hidrodinámico.

Se busca la configuración cuyas formas consigan menor superficie de la proyección frontal, de manera que se minimice la resistencia por forma. En segunda instancia, minimizar la eslora.
En cuanto a la distribución general, se dispone de algunos elementos cuya posición final admite libertad. De este modo, será posible realizar el ajuste de la posición (longitudinal o vertical) del centro de gravedad a la requerida. En este caso dichos elementos son:

- Starfish.
- DVL.
- Flotadores.
- Sonar Seaking.
- Modem acústico.

La posición del resto de elementos queda fijada por cuestiones hidrodinámicas (confinamiento dentro de la carcasa hidrodinámica) y de minimización de espacio.

A continuación se muestra el esquema de la distribución general. La versión que se muestra es la resultante de toda la espiral de diseño seguida. Es decir, las posiciones de los elementos ya considera el espacio necesario para la estructura de sujeción y es la adecuada para que no exista asiento con el vehículo en inmersión.

Por otra parte es necesario considerar el espacio necesario para la salida de cables del cilindro estanco a través de la tapas. Para el paso de los cables se utilizan conectores, y es necesario también considerar la posibilidad de que en un futuro se utilicen conectores distintos. Para ello se deja un margen de 10 cm desde la tapa hasta cualquier elemento externo al cilindro.

Como se observa en las figuras inferiores, la distancia entre la tapa delantera y los elementos es mayor a 10 cm. Esto se debe a un incremento en la eslora debido al sistema de amortiguación de choque, de manera que se permita al vehículo comprimirse para absorber un choque frontal. La justificación de dicho incremento se expone en el apartado de resistencia al choque.
Cubriendo los elementos que aparecen en la figura, se ajusta el casco hidrodinámico. Por otra parte, faltan todos los elementos de sujeción, que conforman la estructura externa del vehículo.

Figura 43: distribución general de los elementos principales.

Figura 44: alzado y perfil de la distribución general de los elementos principales.
Figura 45: vista frontal y dimensiones máximas.

<table>
<thead>
<tr>
<th>Dimensiones principales</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Manga máxima</td>
<td>440,16 mm</td>
</tr>
<tr>
<td>Puntal</td>
<td>267,69 mm</td>
</tr>
<tr>
<td>Eslora total</td>
<td>2778,02 mm</td>
</tr>
</tbody>
</table>

20 Formas del casco hidrodinámico

Las formas de cada uno de los elementos que conforman el conjunto del vehículo, no están optimizadas hidrodinámicamente. Hasta ahora se ha tratado de minimizar la superficie en la proyección frontal mediante la posición de cada elemento en la distribución general, sin embargo la resistencia del conjunto es elevada.

Con el objetivo de reducir la resistencia al avance, se añade una carcasa que recubre la mayor parte de los elementos. Debido a su posición en el vehículo, los motores quedan fuera de la carcasa.
El Starfish está diseñado para ser remolcado por una embarcación a baja velocidad, por lo que sus formas ya son adecuadas.

Para los motores, dado que no tienen unas formas adecuadas, se les añade un frontal para minimizar su resistencia al avance. La forma de dicho frontal es igual al morro de la carcasa hidrodinámica pero escalada de manera que encaje en el motor.

La carcasa está basada en un perfil NACA revolucionado. Para que la revolución sea posible, se selecciona un perfil simétrico. Posteriormente es modificado con el objetivo de ajustar más convenientemente al conjunto de elementos a cubrir.

Para empezar se selecciona un perfil NACA-0012, por ser considerado hidrodinámicamente adecuado.

Figura 46: Dimensiones del perfil NACA0012.

Debido al escaso espesor de este perfil es necesaria una eslora excesiva para poder contener el casco resistente. Para solventar este problema, se decide utilizar una variación dentro de la misma serie:
Para minimizar la resistencia al avance se realizan diferentes pruebas de tamaño con la carcasa hidrodinámica, hasta conseguir que recubra la totalidad de los elementos deseados. Usando el perfil NACA 0012B como base, se le realizan una serie de modificaciones dimensionales para conseguir un ajuste adecuado con el cilindro central estanco y el resto de elementos. En primer lugar se achata el perfil, es decir, mantenido el espesor de cada sección se disminuye la longitud del perfil. En segundo lugar se divide el perfil por su sección mayor, para introducir entre ambas partes un cuerpo cilíndrico.
El sonar Starfish emite los pulsos desde los bordes de las dos aletas inferiores. Es posible por tanto, mantener el cuerpo del sonar en el interior de la carcasa, permitiendo que sobresalgan dichos bordes para una correcta emisión y recepción.

Figura 49: alargamiento de la carcasa hidrodinámica.

Figura 50: interacción del sonar Starfish con la carcasa hidrodinámica.
Por otra parte, la hora de situarlo en la carcasa se tiene en cuenta también la posibilidad de sustituirlo en un futuro por el sonar SeaKing ROV/AUV DST, por lo que se deja el margen necesario para que sea posible su sustitución sin necesidad de modificación de la carcasa.

Figura 51: Superior: vista lateral de la carcasa hidrodinámica con el sonar Starfish montado. Inferior: vista lateral de la carcasa hidrodinámica con el sonar Seaking ROV/AUV DST.

- **Dimensiones principales de la carcasa hidrodinámica:**

<table>
<thead>
<tr>
<th>Dimensión</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eslora total</td>
<td>2778.02 mm</td>
</tr>
<tr>
<td>Manga de la maestra</td>
<td>202.63 mm</td>
</tr>
<tr>
<td>Área de la maestra</td>
<td>32247.60 mm</td>
</tr>
</tbody>
</table>

Coeficientes de forma de la carcasa hidrodinámica

<table>
<thead>
<tr>
<th>Coeficiente</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cb</td>
<td>0.613</td>
</tr>
<tr>
<td>Cm</td>
<td>0.785</td>
</tr>
<tr>
<td>Cp</td>
<td>0.781</td>
</tr>
</tbody>
</table>
21 Resistencia al choque

En este apartado se realiza un estudio de las modificaciones en el diseño necesarias para hacer posible al submarino soportar un choque frontal a una velocidad de 1,5 m/s.

El vehículo cuenta con un obstacle avoidance, un sonar frontal que le permite detectar objetos que se pudieran encontrar en su trayectoria de avance. Sin embargo, es preferible que incluso en el caso de una colisión frontal el submarino tenga la capacidad de sobrevivir.

El objetivo del sistema propuesto es amortiguar el choque de manera que se reduzca el pico de presión sobre los elementos.

En el caso del submarino, el fluido del interior de la carcasa se desplaza junto con el vehículo viajando en los espacios del interior de la carcasa.

21.1 Sistema de absorción de impacto

Para conseguir un pico menor de presión debida al choque frontal, se recurre a un sistema de muelles que absorba el impacto.

Para la selección de los muelles se realiza un estudio energético, igualando la energía cinética del vehículo en movimiento, con la energía potencial que va a absorber el sistema de muelles.

El sistema se compone de dos partes:

1. Cuerpo principal del vehículo.
2. El cuerpo estático: Va a ser la parte del vehículo que va a recibir el impacto (proa) y que sufrirá la deceleración más brusca. Este cuerpo sirve de punto de...
apoyo sobre el que van a actuar los muelles permitiendo el frenado progresivo del cuerpo principal. Este se compone del morro de la carcasa hidrodinámica, contenido en su interior el obstacle avoidance, el motor delantero y la boya de proa (ver el apartado “Sistema de flotación”).

En el estudio energético se tiene en cuenta la masa del cuerpo principal del vehículo junto con la masa del agua contenida en su interior. Se descuenta el peso del cuerpo delantero y del agua contenida en su interior del total del vehículo debido que su inercia no debe ser absorbida por el sistema de muelles.

El cuerpo que más puede verse perjudicado en caso de colisión frontal es el cuerpo estático. Sin embargo los elementos que en él se encuentran tienen muy poca masa y son más robustos que el resto de instrumentos (DVL, Starfish o sonar SeaKing). Además su coste comparativo es reducido.

Los elementos del cuerpo estático únicamente deben soportar su propia deceleración, ya que es la carcasa la que aguanta la fuerza del choque y posteriormente la fuerza de frenado del cuerpo principal determinado por los muelles.

En caso de que el motor delantero quedara inutilizado, el vehículo no sería capaz de desplazarse y sería necesario recurrir al sistema de boya de emergencia.

Entre el cuerpo estático y el cuerpo principal se sitúan los muelles de compresión que absorberán la energía cinética del cuerpo principal, transformándola en energía potencial con una deceleración controlada.

El factor que determina cuan amortiguado es el choque, es la distancia de compresión. A mayor distancia de compresión, menor es el pico máximo de fuerza de choque. Se seleccionan los muelles de manera que se minimice la fuerza de choque sin sobrepasar los 160 mm de longitud. Por otra parte se fija como requisito que el diámetro del muelle no supere los 24 mm, de esta manera es posible situarlo en el espacio entre el cilindro estanco y la carcasa hidrodinámica.
Los muelles se seleccionan en acero inoxidable. Ya que no van a entrar en contacto con la tapa, no hay peligro de corrientes galvánicas.

Cálculos:

<table>
<thead>
<tr>
<th>Velocidad</th>
<th>1,5 m/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Masa</td>
<td>66,77 kg</td>
</tr>
<tr>
<td>E cinética</td>
<td>75,12 J</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nº</th>
<th>5 muelles</th>
</tr>
</thead>
<tbody>
<tr>
<td>L inicial</td>
<td>155,0 mm</td>
</tr>
<tr>
<td>L recomendada</td>
<td>86,44 mm</td>
</tr>
<tr>
<td>K</td>
<td>6,1994 N/mm</td>
</tr>
<tr>
<td>Fuerza unitaria</td>
<td>425,03 N</td>
</tr>
<tr>
<td>Fuerza total</td>
<td>2125,15 N</td>
</tr>
<tr>
<td>E potencial total</td>
<td>72,85 J</td>
</tr>
</tbody>
</table>

El propio fabricante de muelles indica la máxima compresión deseable. Al igualarse la energía potencial con la cinética a los muelles han superado su longitud recomendada en 1,06 mm. Puesto que el sistema no debe trabajar de manera continua, este sobreesfuerzo de los muelles es asumible.

Con el sistema de muelles se obtiene una deceleración máxima de \(32,32 \text{ m/s}^2 \).

Sin embargo queda un margen hasta la máxima compresión que el muelle es capaz de alcanzar en la condición de sólido (todas las espiras en contacto):
Puesto que se trata de muelles con peligro de pandeo, es necesario encapsularlos para su correcto funcionamiento. Para determinar las dimensiones de su cilindro contenedor en necesario tener en cuenta que al comprimirse el muelle aumenta su diámetro externo.

Aplicando la fórmula es posible conocer el máximo diámetro del muelle, que se alcance en condición de sólido [12]:

$$o.d., \ solid = \sqrt{D^2 + \frac{p^2 - d^2}{\pi^2}} + d$$

<table>
<thead>
<tr>
<th>OD</th>
<th>21,4</th>
</tr>
</thead>
<tbody>
<tr>
<td>d</td>
<td>3,2</td>
</tr>
<tr>
<td>p</td>
<td>7,02</td>
</tr>
<tr>
<td>OD expansión</td>
<td>3,29</td>
</tr>
<tr>
<td>OD'</td>
<td>24,69</td>
</tr>
</tbody>
</table>

Siendo “p” el paso y “d” el diámetro del hilo.

Conociendo las fuerzas unitarias máximas en cada muelle y su diámetro máximo es posible escantillar sus alojamientos.

Los muelles se posicionan entorno a la zona de proa del cilindro estanco, por lo que se seleccionan de manera que quepan en el espacio entre el cilindro estanco y la carcasa hidrodinámica.

Para posibilitar la contracción del cuerpo principal del vehículo frente al cuerpo estático, la carcasa hidrodinámica de la zona de proa se introduce en el interior del resto de la carcasa hidrodinámica. Para que dicho desplazamiento no suponga un problema con los márgenes necesarios entre las tapas de los cilindros y los elementos externos, es necesario aumentar la eslora del vehículo en al menos la distancia de compresión necesaria (66,6 mm). Se deja un margen de compresión final de 80 mm.
La fuerza asociada a dicha deformación es de 2480 N. Dicho valor es el que se utiliza para escantillinar el sistema de compresión de los muelles en el apartado de diseño de la carcasa hidrodinámica.

![Diagrama de la carcasa sin compresión y con compresión máxima](image)

Figura 52: vista superior de la carcasa sin compresión (celeste) y con compresión máxima (rojo).

De esta manera los elementos de mayor coste y sensibilidad quedan protegidos ante una colisión frontal.

En cuanto al cilindro estanco, su punto de sujeción a la carcasa se encuentra en popa, sujeto mediante dos refuerzos anulares que sujetan a la brida trasera. Por lo tanto la fuerza debida a la deceleración de frenado compensa la compresión longitudinal debida a la presión externa aplicada sobre las tapas, sin aumentar la tensión máxima que soporta el cilindro.

21.2 Unión de las carcasas

Existe un solapamiento entre las dos partes de la carcasa. Dicho solapamiento impide cualquier movimiento que no sea de compresión longitudinal y consiguiendo que todos los muelles trabajen por igual incluso si el choque no es perfectamente frontal.
Para posibilitar el desplazamiento relativo entre las dos carcasas, impidiendo que la carcasa frontal se separare del conjunto, se utiliza un sistema de unión con “raíles”. Es decir, la carcasa frontal consta de 8 orificios de 5 mm de diámetro para el paso de los pernos. En cambio la carcasa principal consta de 8 carriles de 5 mm de anchura y 80 mm de longitud en la dirección de desplazamiento.

De esta manera al unir las carcasas, cuando la carcasa frontal entra en contacto con los muelles, los orificios de la carcasa principal se alinean con el final de los carriles de la carcasa frontal. Por lo tanto, en caso de choque, los raíles permiten el desplazamiento en compresión entre las carcasas, pero no permite la separación de ambas.

El apriete de los pernos no debe ser elevado, ya que trabajan únicamente como si fueran bulones y deben permitir el desplazamiento de compresión. Para la unión de las carcasas debe existir una interferencia mínima con los muelles de manera de que se precise comprimir una carcasa contra la otra para poder introducir los pernos.

Con una interferencia de 1,6 mm la fuerza necesaria a aplicar es de 50 N.

Estos mismos 8 carriles sirven como orificios para la evacuación del agua del interior de la carcasa. En el caso de que la carcasa fuera estanca, la deceleración brusca podría producir un efecto semejante al del golpe de ariete. Para evitarlo, los propios carriles funcionan como una válvula de escape. El conjunto de los carriles suponen una abertura en el casco hidrodinámico de 23,6 cm², descontando la parque que queda cubierta por la superposición entre las carcasas. A pesar de los orificios, se ha considerado la totalidad del agua del interior del cuerpo principal del vehículo en la masa del estudio energético.
22 Cálculos de resistencia longitudinal

22.1 Cálculos de resistencia longitudinal

Previamente al escantillado de la estructura exterior se debe realizar el cálculo de resistencia longitudinal con el objetivo de conocer los esfuerzos a los que esta va a verse sometida. Como situación más desfavorable se plantea que el vehículo es sostenido desde sus extremos, con la carcasa hidrodinámica llena de agua. Esta situación no debería darse en su uso normal ya que para la introducción y retirada del vehículo del agua, consta de unos anclajes sujetos a la carcasa hidrodinámica, situados en los extremos del cilindro estanco. Sin embargo se podría dar en caso de que se tratara de retirar manualmente (entre 2 personas) el vehículo del agua. Se supone el conjunto acelerado a 20 m/s^2 para tener en cuenta la manipulación. De este modo se pueden conocer los máximos momentos flectores a los que se puede ver sometida la estructura exterior.

Los cálculos de resistencia longitudinal en flotación libre no tienen aplicación en el desarrollo del presente proyecto, ya que la diferencia el entre el peso y el empuje en cada punto es muy baja, por lo que los momentos resultantes son casi despreciables para la estructura, frente al propio peso de los instrumentos fuera del agua.

Dicho cálculo se realiza por una parte mediante hoja de cálculo EXCEL. El uso de este método de cálculo es posible ya que el número de elementos no es excesivamente elevado. Por otra parte, la mayor parte de los elementos son de peso y volumen constante con la eslora, lo que facilita mucho los cálculos.

Para comprobar que la hoja de cálculo funciona correctamente, se realizan una serie de pruebas, comparando los resultados obtenidos mediante HIDROMAX. Para poder trabajar con HYDROMAX, previamente se crean una serie de elementos simples en MAXSURF, que posteriormente son exportadas a HIDROMAX para realizar los cálculos en flotación libre. Una vez comprobado que la hoja EXCEL se obtiene los mismos resultados, resulta mucho más cómodo realizar cambios en la distribución de los elementos en la hoja de cálculo, que tener que repetir cada vez todo el proceso de
modelización en MAXSURF, exportación a HYDROMAX y finalmente el cálculo. Las simulaciones iniciales con HYDROMAX no se incluyen en el presente proyecto.

En el siguiente apartado se expone la manera en que se ha programado la hoja de cálculo EXCEL.

22.1 Programación en EXCEL

Para poder realizar el cálculo de la resistencia longitudinal en situación de sujeción desde los extremos mediante una hoja EXCEL, en primer lugar se introducen los datos de entrada. Los datos necesarios son:

<table>
<thead>
<tr>
<th>Elemento</th>
<th>Peso</th>
<th>Volumen</th>
<th>Posición x</th>
<th>Anchura</th>
</tr>
</thead>
</table>

Se realiza una tabla con todos los elementos con sus datos. De esta manera es posible realizar los cálculos para representar las curvas de pesos, cortantes y momentos a lo largo de toda la eslora.

Se incluye el agua que cabe en los espacios libres dentro de la carcasa hidrodinámica, para poder contabilizarla en el cálculo. Para poder conocer su peso, se calcula el volumen interior de la carcasa hidrodinámica en cada tramo, restando el volumen (total o parcial) del elemento o elementos contenidos en su interior.

Para poder transformar los datos de entrada el las gráficas de pesos, fuerza cortante y momentos es necesario se procede de la siguiente forma:

En primer lugar se obtiene el peso medio de cada elemento a lo largo de la anchura de cala elemento. Como además se conoce su posición en el vehículo, se puede rellenar una tabla en la que tengamos una línea de ordenadas por cada elemento y en que cada abscisa represente un incremento de eslora:
Siguiendo este proceso se obtienen los siguientes resultados:

<table>
<thead>
<tr>
<th></th>
<th>elemento 1</th>
<th>elemento 2</th>
<th>elemento…</th>
<th>SUMA</th>
</tr>
</thead>
<tbody>
<tr>
<td>posición x=0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>posición x=1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>posición x=2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>posición x=…</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>47,454 kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peso total</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>46,365 dm³</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volumen total</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>19,920 cm</th>
</tr>
</thead>
<tbody>
<tr>
<td>LCG</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>19,921 cm</th>
</tr>
</thead>
<tbody>
<tr>
<td>LCB</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>0,292 cm</th>
</tr>
</thead>
<tbody>
<tr>
<td>KG</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>0,974 cm</th>
</tr>
</thead>
<tbody>
<tr>
<td>KB</td>
<td></td>
</tr>
</tbody>
</table>

Introduciendo un condicional en la cuadricula central se pueden rellenar los espacios correspondientes a cada elemento con su peso por unidad de longitud. Es decir, los puntos en los que un elemento está presente (por ejemplo de la posición x=50 a la posición X=85), el condicional rellenará dichas casillas con su peso por unidad de longitud. De este modo al final de la cuadrícula se puede realizar la integración del peso por unidad de longitud en cada punto. Representándola frente a la eslora se obtiene la curva de pesos, en este caso acelerada a 20 m/s²:

Figura 53: curva de pesos del vehículo en situación de carcasa llena de agua acelerado a 20 m/s².
Para la integración de esta curva a fin de conseguir la curva de cortantes, se calculan las reacciones en los extremos, y basta con sumar en cada punto el valor de la curva de pesos acumulada:

![Curva de cortantes del vehículo en situación de carcosa llena de agua acelerado a 20 m/s^2.](image)

Figura 54: curva de cortantes del vehículo en situación de carcosa llena de agua acelerado a 20 m/s^2.

Finalmente para integrar la curva de momentos flectores se realiza la acumulación de fuerza cortante a lo largo de la eslora:

![Curva de momentos del vehículo en situación de carcosa llena de agua acelerado a 20 m/s^2.](image)

Figura 55: curva de momentos del vehículo en situación de carcosa llena de agua acelerado a 20 m/s^2.

23 Sistema de flotación

Dado que el peso del vehículo es superior a su desplazamiento inicial, se hace necesario incorporar un sistema de flotación. Los objetivos a conseguir son:

- Flotabilidad casi nula, pero positiva. De esta manera, se corre menor riesgo de la perdida del vehículo en caso de fallo.
• Obtener un reservorio de flotabilidad para la posibilidad de que el vehículo deba cargar con elementos más pesados.
• Hacer coincidir la posición longitudinal del peso con la del centro de flotación, de manera que el vehículo permanezca horizontal en flotación libre.
• Maximizar la distancia vertical entre centro de peso y centro de flotación, aumentando la estabilidad transversal.
• Unos pequeños lastres en los extremos de proa o popa para realizar el ajuste final de estabilidad estática en el momento del lanzamiento.
• Flexibilizar el sistema tanto como sea posible, de manera que el vehículo admita modificaciones en la distribución de pesos.

Para el diseño del sistema de flotación es necesario conocer el peso total del vehículo, así como su desplazamiento. Para ello se recogen en una hoja de cálculo EXCEL el conjunto de componentes con su posición, peso y desplazamiento. Partiendo de estos datos se obtiene el desplazamiento total, peso total y posicione longitudinal y vertical de peso y desplazamiento.

Inicialmente la diferencia entre peso y desplazamiento de 6,95 kg.

Para conseguir la flotación necesaria se definen una serie de flotadores a lo largo del vehículo. En función de la condiciona de carga, se dará uso a unos u otros flotadores con tal de conseguir asiento nulo y la flotabilidad casi nula.

23.1 Diseño de los flotadores

Los flotadores se componen de un alma de una espuma de alta densidad, protegida mediante fibra de vidrio. Para la fabricación de los flotadores se parte de un bloque o plancha de espuma de alta densidad, a partir del cual se recortan las almas del flotador. Una vez recortado el flotador, se lamina para hacerlo impermeable y protegerlo.
Se da prioridad a la ubicación de flotadores en la mitad superior del vehículo, recurriendo a la inferior cuando la capacidad de carga conseguida no es suficiente o cuando se ha agotado el espacio en la parte superior y un ajuste de la posición del centro de flotación es necesario.

Los flotadores integrados en el vehículo son:

- **Flotador de proa**: dos piezas situadas en la mitad superior de la proa. Se deja un espacio entre el flotador y el punto más a proa de al carcasa para que no sufra daño en caso de colisión frontal.

- **Flotadores centrales**: conjunto de cinco flotadores idénticos de forma semi anular situados entorno al cilindro estanco. Sus posiciones a lo largo del cuerpo central del vehículo son intercambiables, con lo que se consigue una gran flexibilidad de condiciones de carga compatibles. En caso de necesidad pueden ubicarse flotadores extra en la parte inferior del cilindro estanco, a expensas de reducir la estabilidad transversal.

- **Flotadores extremos de cilindro**: conjunto de dos flotadores semi anulares idénticos (superior e inferior) situados entorno a la brida de popa del cilindro estanco. Su volumen es menor al de los flotadores centrales por lo que hacen posible un ajuste de la flotabilidad más fino. Se da prioridad al uso del flotador superior.

- **Flotadores laterales de cola**: conjunto de cuatro flotadores simétricos desde crujía y desde el plano medio horizontal. Se sitúan en las paredes laterales de la carcasa de cola. El conjunto se divide en par superior e inferior ya que se deben utilizar de dos en dos (simétricos desde crujía) para evitar descompensaciones en la estabilidad transversal.

- **Flotadores centrales de cola**: conjunto de dos flotadores idénticos ubicados en el espacio entre el DVL y el sonar Starfish. Dichos flotadores aportan a conseguir el asiento nulo por ser los flotadores más a popa. Cuando en un futuro el sonar Starfish sea sustituido por el sonar SeaKing ROV/AUV DST, debe retirarse este conjunto de flotadores ya que ocupan parte del espacio necesario para su ubicación.
Figura 56: distribución general de los flotadores.

Figura 57: vista superior del sistema de flotadores y los elementos con los que colinda.

Figura 58: vista lateral (arriba) y superior (abajo) del sistema de flotadores.

23.2 Materiales de fabricación

Para el núcleo se precisa un material de baja densidad capaz de soportar las presiones producidas a altas profundidades. Por ello se selecciona una espuma de poliuretano.
Figura 59: Características generales de la espuma de poliuretano (izquierda). Curvas de selección de densidad de espuma en función de la profundidad y del tipo de operación. [13]

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
<th>Test Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density</td>
<td>160 kg/m³ (10 lb/ft³)</td>
<td>BS4370</td>
</tr>
<tr>
<td>Tensile strength</td>
<td>1000 KPa (145 lbf/in²)</td>
<td>BS4370</td>
</tr>
<tr>
<td>Compression strength</td>
<td>1700 KPa (250 lbf/in²)</td>
<td>BS4370</td>
</tr>
<tr>
<td>Thermal conductivity</td>
<td>0.033 W/mK</td>
<td>BS874</td>
</tr>
</tbody>
</table>

Si bien la espuma por sí sola no es capaz de soportar la presión sin que las celdas individuales colapsen. Para evitarlo se recurre a un encapsulado compuesto por un laminado de dos capas de fibra de vidrio Mat 100, con lo que se consigue un espesor de 0,52 mm. Dicho laminado se aplica directamente sobre la espuma una vez se ha recortado y adaptado a la carcasa hidrodinámica.

La densidad de la espuma se selecciona de 250 kg/m³.

Desgraciadamente las espumas en general poseen una capacidad de transmisión del calor muy bajo, lo que obliga a realizar un estudio de la evacuación del calor generado en el interior del cilindro estanco.

En la situación de carga de diseño (con las baterías de plomo-ácido) utilizando la totalidad de flotadores, queda un reservorio de flotabilidad de 1,49 kg.
24 Diseño de la carcasa hidrodinámica

La carcasa hidrodinámica cumple una doble función. Por una parte, recubre el conjunto de los elementos de manera que se minimice la resistencia hidrodinámica. Por otra parte, cumple las funciones de estructura externa para la sujeción de todos los elementos.

La totalidad de la carcasa hidrodinámica se fabrica en fibra de vidrio.

La carcasa se divide en tres partes principales:
1. Carcasa frontal: construida en una sola pieza.
2. Carcasa central o cuerpo cilíndrico central: construida en una sola pieza.
3. Carcasa de cola: construida en dos piezas simétricas dividida horizontalmente por su eje de simetría. De esta manera se puede separar la parte superior para tener acceso a los instrumentos del interior. Ambas partes se unen entre sí mediante pernos.

La unión entre carcasas se consigue mediante pernado en la zona de solapado entre las carcasas. Gracias a ello en el caso de la unión de la carcasa frontal, si se diera un impacto que no fuera perfectamente frontal, el encaje de una carcasa con la otra impide que se descentre el conjunto, guiando la compresión en sentido longitudinal.

Figura 60: Superior: vista superior de la carcasa hidrodinámica y de las zonas de superposición entre tramos. Inferior: Vista lateral de la carcasa hidrodinámica completa.
24.1 Escantillonado de la carcasa

La carcasa se fabrica en fibra de vidrio, utilizando únicamente MAT 300. Si bien las propiedades mecánicas de un laminado mixto de MAT y Roving son mejores, se decide utilizar únicamente MAT por la facilidad a la hora de la fabricación, no solo de la carcasa, sino del resto de elementos fabricados en fibra de vidrio.

Para el escantillonado se parte de los cálculos de resistencia longitudinal. Suponiendo el vehículo sujeto desde sus extremos con la carcasa llena de agua. Se calculan los momentos suponiendo una aceleración derivada de la manipulación del vehículo de 20 m/s².

El escantillonado de la carcasa derivado del estudio longitudinal en la citada situación, deriva un espesor muy bajo, ya que con una sola capa de MAT 300 se obtiene un factor de seguridad de más de 4,5 sobre la tensión de rotura.

Por razones de seguridad se decide fijar un espesor de pared de la carcasa de 3 capas, es decir, 2,338 mm, suponiendo una proporción de fibra/resina en peso (Wf) de 0,3.

Por otra parte la zona frontal de la carcasa se refuerza con dos capas más para aumentar su resistencia a impactos frontales.

24.2 Carcasa frontal

Los elementos que se sujetan a la carcasa central son:

- Obstacle avoidance.
- Motor de control de arfada.
- Boya frontal.
- Compresión del sistema de absorción de impactos.

Esta carcasa es la más reforzada ya que debe soportar el impacto frontal en caso de que suceda, así como la compresión de los muelles.
Para permitir el desplazamiento relativo entre carcasas, la carcasa frontal se aloja en el interior de la carcasa principal.

24.2.1 Alojamiento del obstacle avoidance

Se debe perforar un orificio en la carcasa de manera que el obstacle avoidance sobresalga de la carcasa.

El alojamiento del obstacle avoidance se compone de una pieza de fibra de vidrio independiente que se encaja en el orificio de la carcasa y se sujeta mediante cuatro pernos desde el exterior.

La fijación del obstacle avoidance a su alojamiento queda definida por su propia forma gracias al ensanchamiento en su zona central. Se fabrica un alojamiento a medida que envuelve el instrumento, dejando su parte inferior delantera libre de obstáculos.

![Figura 61](image.png)

Figura 61: vista del obstacle avoidance montado en su alojamiento.
24.2.2 Alojamiento del motor de control de arfada

De manera análoga al alojamiento del obstacle avoidance, por una parte el motor se sujeta a su alojamiento, y es el alojamiento el que se sujeta a la carcasa.

El alojamiento del motor de control de arfada se constituye de una parte tubular y una parte superior de sujeción, todo ello fabricado en fibra de vidrio.

El radio interior de la parte tubular es 2 mm superior al de la hélice, conservando el margen que existía con su tobera original.

En la parte inferior de la carcasa se encuentra una pieza tubular en la que encaja el alojamiento del motor. Esta pieza es integral de la carcasa y su objetivo es evitar movimientos del conjunto motor y alojamiento. El conducto del motor a su vez se sujeta a la parte superior de la carcasa mediante pernos. De esta manera es posible extraer el conjunto desde la parte superior simplemente desempernando y deslizando el conjunto hacia arriba.
El espesor del cilindro central es de 1,56 mm (2 capas de mat 300).

24.2.3 Unión entre carcasa frontal y carcasa central

Como ya se ha descrito en el apartado “Sistema de absorción de impacto”, en la unión existe un solapamiento entre las carcasas, de manera que en caso de impacto se guíe el desplazamiento relativo entre las carcasas en el sentido longitudinal.

Para unir las carcasas se introduce la carcasa frontal en la carcasa central, quedando la parte delantera del cilindro en el interior de la zona de solapamiento entre ambas.

La unión entre las carcasas se consigue mediante ocho pernos.

24.2.4 Compresión del sistema de absorción de impactos

Es necesario transmitir la fuerza del choque frontal al sistema de muelles. Sin embargo, puesto que la carcasa frontal se fabrica en una sola pieza, su diámetro interior mínimo queda fijado por el diámetro de las tapas del cilindro estanco, por lo que no es posible comprimir el sistema de muelles directamente.
Para solventar el inconveniente, se introduce una pieza anular de aluminio entre la carcasa frontal y el sistema de muelles. El diámetro interior del anillo es igual al diámetro de la tubería de PVC dejando un pequeño margen. El diámetro exterior es igual al diámetro interior de la carcasa central.

Figura 64: pieza de compresión del sistema de muelles (magenta) y carcasa frontal.

En su extremo, la carcasa frontal se refuerza hacia el interior hasta el diámetro de la tapa del cilindro estanco. La carcasa transmite la fuerza al anillo intermedio a través de su periferia y este la transmite al sistema de muelles.

Figura 65: diámetros de pieza de compresión del sistema de muelles (magenta) y diámetro interior de la carcasa hidrodinámica frontal.
El escantillonado del espesor del anillo se determina mediante la simulación del conjunto en ANSYS, así como los esfuerzos a los que se ve sometida la carcasa.

Para el escantillonado se recurre al mismo sistema que al escantillonar las tapas del cilindro estanco. Es decir, se modeliza la interacción entre el anillo y la carcasa frontal al aplicar la fuerza máxima de los muelles en choque para distintos valores del espesor del anillo hasta hacer coincidir la tensión máxima o la intensidad de tensión máxima con el valor de tensión admisible del aluminio. Se utiliza la misma aleación de aluminio que para las tapas.

Para poder simular la fuerza aplicada por los muelles, se introducen una serie de anillos entorno a la superficie del anillo de compresión.

Figura 66: Izquierda: áreas de las piezas modelizadas. Derecha: elementos mallados y superficie de aplicación de la presión de los muelles (rojo).
Figura 67: tensiones resultantes en la pieza de compresión.

Figura 68: tensiones resultantes en la cara externa de la carcasa hidrodinámica frontal.
Las máximas tensiones e intensidades de tensión se representan en un gráfico para determinar el mínimo espesor necesario.

De los resultados se obtiene espesor de 10,6 mm en el anillo.

Puesto que existe peligro de pandeo en los muelles, para evitar que este suceda en caso de colisión, se añaden al anillo una serie de alojamientos tubulares para los muelles fabricados en fibra de vidrio, de manera que se evite el posible pandeo a la vez que se sujetan los muelles.

Los alojamientos de los muelles se componen de dos piezas tubulares, que encajan una en el interior de la otra. El máximo diámetro es menor al diámetro interior de los muelles, de manera que encaje en su interior.

Se agrupan todas las mitades de un mismo extremo en una sola pieza con la base en común. La base de cada conjunto se adhiere a la totalidad de la cara frontal del anillo de compresión. De este modo además de dar rigidez al conjunto se aíslan los muelles de acero inoxidable, de los anillos de compresión de aluminio, evitando corrientes galvánicas.
Cada parte del alojamiento se adhiere a uno de los anillos, de manera que al colocar los anillos, queden encerrados entre los anillos y sujetos por los alojamientos encajados entre sí.

En la base de ambas partes del alojamiento se introducen unos pequeños orificios de manera que se pueda evacuar el agua del interior más fácilmente.

El espesor del laminado es de 1,56 mm (2 capas de Mat 300).
Figura 70: ubicación del sistema de sujeción de muelles entorno al cilindro estanco.

Figura 71: Sistema de muelles montado.
24.3 **Carcasa central**

Los elementos que se sujetan a la carcasa central son:

- Sistema de muelles de absorción de impactos.
- Motores principales.
- Boyas.

24.3.1 **Sujección del sistema de muelles de absorción de impactos**

El sistema utilizado es el mismo que con la carcasa frontal: un aumento del espesor de la carcasa central hacia el interior, en el que apoya un anillo con las mismas dimensiones que el calculado anteriormente.

24.3.2 **Sujección motores principales**

Los motores se ubican longitudinalmente en la zona central del submarino, dentro del centro volumétrico del submarino, para minimizar el par de giro.

Figura 72: vista superior (arriba) y lateral (abajo) de las sujeciones de los motores principales acoplados a la carcasa hidrodinámica.
Para unir los motores principales al vehículo, se une una pieza de sujeción a la carcasa central. Dicha pieza cumple simultáneamente la función de sujeción de los motores, reducción de su resistencia al avance y de protección de los mismos ante posibles enganches con algas u otros objetos. Se fabrican en fibra de vidrio y se laminan directamente a la carcasa central haciendo el conjunto más sólido que mediante unión mediante pernos. Como parte de la unión, se refuerza la zona de la carcasa central, quedando con dos capas de MAT300 más de espesor (1,56 mm).

Como parte de cada pieza de sujeción, se une al laminado de fibra de vidrio la tobera original del motor. De esta manera se desvbinda el motor de la tobera, haciéndolo menos vulnerable a posibles choques de la tobera.

Puesto que tanto el diámetro del motor como el de la hélice son menores al diámetro interior de la tobera, es posible introducir el conjunto motor y hélice a través de la tobera hasta su posición.

Para proteger la parte frontal del motor, se recubre por un cono de fibra de vidrio finalizado por una semiesfera. Formando parte integral de la pieza de sujeción del motor.

Para evitar que el vehículo se pudiera enganchar en algas, cuerdas u otros objetos, además de la forma de la pieza de sujeción, se introducen dos deflectores verticales.
Figura 73: detalle de las sujeciones de los motores principales.

Figura 74: vista frontal de las sujeciones de los motores principales montados en la carcasa hidrodinámica.
El espesor del laminado es de 4,7 mm de espesor (6 capas de mat 300), de manera que sujetando el submarino con la carcasa llena de agua desde el extremo de la sujeción del motor (situación que no debe ocurrir en su operación normal) se obtiene un factor de seguridad de 1,67 a flexión.

24.4 Carcasa de cola

Los elementos que se sujetan a la carcasa de cola son:

- Cilindro estanco.
- MODEM acústico.
- DVL.
- Sonar Super Seaking.
- Sonar Starfish.
La carcasa de cola se constituye de dos partes unidas mediante pernos. De esta manera es posible acceder y extraer cualquier elemento de conjunto sin necesidad de desmontar la totalidad de la carcasa, incluyendo el acceso a la tapa de popa del cilindro estanco.

Inicialmente se fabrica la carcasa en una sola pieza. Posteriormente se añade una zona en la que la carcasa superior se superpone a la inferior por su para interna. De esta manera se pueden pernar ambas partes de la carcasa mediante pernos normales a la superficie. Dicha zona de superposición tiene el mismo espesor que la carcasa.

Por otra parte en la zona superior de la carcasa se instala la boya de emergencia. Para recubrir el recipiente a presión, así como la propia boya se introduce una carcasa externa.

Figura 76: vista superior (arriba) y lateral (abajo) de la carcasa de cola con los instrumentos instalados.

Puesto que es necesario recortar la silueta del recipiente a presión en la parte superior de la carcasa para poder introducirlo en su posición. Para compensar la perdida de material en la carcasa, se lamina sobre la propia carcasa una parte de la carcasa externa. El resto
de carcasa externa, funciona como una trampilla para dejar salir la boya en caso de activarse el sistema.

Figura 77: vista lateral de la zona de trampilla de salida de la boya de emergencia.

Figura 78: detalle del orificio de ubicación del recipiente a presión y la trampilla del sistema de boya de emergencia.
24.4.1 Sujeción del cilindro estanco

El cilindro estanco se desliza en el interior de la carcasa central, pero se sujeta en la carcasa de cola. De esta manera en caso de choque, la fuerza producida por la deceleración se aplica en el extremo de popa de cilindro, por lo que el cuerpo central del cilindro estanco trabaja a tracción. Con esto se consigue que en caso de choque frontal el cilindro no sufra más que durante su operación normal, ya que la tracción debida a la deceleración se compensa con la compresión a la que se ve sometido el cilindro debido a la presión externa.

La sujeción del cilindro estanco se basa en un refuerzo anular en el interior de la carcasa de cola que encaja entorno a la brida de popa del cilindro. Al unir ambas partes de la carcasa de cola, el cilindro queda sujeto desde la brida.

24.4.2 Alojamiento del MODEM acústico

El MODEM acústico se sujeta a la carcasa desde el interior de la parte superior de la carcasa de cola. El MODEM consta de cuatro orificios en su base para la sujeción.
24.4.3 Alojamiento del DVL

Para la sujeción del DVL se requiere de un alojamiento. Dicho alojamiento se compone de una pieza tubular dividida longitudinalmente que se cierra entorno al DVL. En su base dispone de una repisa anular que se perna a la pieza inferior de la carcasa de cola.

La colocación del DVL se realiza con la parte superior de la carcasa de cola retirada.

24.4.4 Sujeción del sonar Super Seaking

El sonar se sujeto mediante dos abrazaderas pernadas a la pieza inferior de la carcasa de cola.

24.4.5 Sujeción del sonar Starfish

El sonar Starfish consta de una serie de orificios en su parte superior preparados para que pueda ser arrastrado desde ellos. Dos de ellos se utilizan para sujetarlo a la parte superior de la carcasa mediante espárragos que atraviesan la carcasa de parte a parte.

24.4.6 Unión a la carcasa central

La unión entre las dos partes de la carcasa de cola y la carcasa central es similar a la unión entre la carcasa frontal y la central. Se basa en una zona en que la carcasa central envuelve a la carcasa de cola y sujeción mediante ocho pernos.

![Figura 80: vista superior de la superposición entre la carcasa central y la de cola.](image-url)
Sin embargo en este caso no es deseable un desplazamiento relativo entre las carcasas como ocurre con la carcasa central. Para evitar que esto ocurra, en la carcasa central se lamina un alojamiento anular en el que encaja el conjunto de la carcasa de cola, haciendo posible la transmisión del esfuerzo de compresión longitudinal producido en caso de choque frontal.

Figura 81: detalle del alojamiento de la carcasa de cola (verde y azul) en la carcasa central (amarillo).

25 Diseño del sistema de boya de emergencia

En el supuesto de que el vehículo durante su operación sumergido perdiera la capacidad de maniobra (ya sea por fallo del sistema de control, por quedar el vehículo trabado o por inundación del cilindro estanco) y no fuera capaz de regresar a la superficie, debe activarse el sistema de boya de emergencia. El sistema funciona a partir de gas comprimido contenido en un recipiente a presión, con el cual se llena una boya que arrastra al vehículo en su ascenso a la superficie.
La boya se sitúa en el extremo de popa del vehículo, contenida en el interior de la carcasa. Al dar paso al gas, se libera hincha la boya, tirando del vehículo desde la sujeción del extremo de popa del vehículo. De este modo, si el vehículo ha quedado enganchado en su avance, es más probable que se libere y ascienda.

Los componentes que constituyen el conjunto son:

- Recipiente de gas a presión.
- Electro válvula de salida.
- Circuito de alimentación de gas.
- Boya.
- Sistema de anclaje de la boya al vehículo.

La flotabilidad necesaria la marca la situación en que el recipiente estanco quedara inundado. Al volumen interior del cilindro, se le resta el volumen de los elementos contenidos en su interior para determinar el volumen necesario de la boya. A dicho volumen necesario, se le añade un margen para conseguir flotabilidad positiva con la que ascender o facilitar la liberación del vehículo en caso de que quede atrapado.

Para conseguir la flotabilidad nula, el volumen necesario es de 12 litros. Por lo que se estima un volumen necesario de 14 litros.

El recipiente de gas a presión debe contener volumen suficiente para el hinchado de la boya en un entorno a 10 kg/cm^2. Como solución se recurre a contenedores de nitrógeno para Paintball. Dichos contenedores pueden encontrarse en diversos materiales y volúmenes, siendo fácilmente accesibles y económicos. Un solo recipiente debe ser capaz de rellenar el volumen de la boya a la presión requerida (14 litros a 10 kg/cm^2). De entre las distintas opciones se selecciona un recipiente de nitrógeno de 48 ci y 3000 psi, de este modo se supera el producto de volumen y presión de la boya con un cierto margen:
La presión de salida se fija a 400 psi, por lo que descontando el volumen de gas remanente en el recipiente, el volumen de gas disponible es de 14,09 dm³ a 10 bares.

Como boya se selecciona un balón hinchable de 65 cm de diámetro y 1,2 mm de espesor. De esta manera no es necesario instalar una válvula de sobre presión en la boya, ya que tiene capacidad suficiente para contener el todo el gas a presión atmosférica.

A la salida de la boya se conecta una electroválvula preparada para trabajar sumergida. Desde el cilindro se da la orden de apertura de la electroválvula lo que produce el llenado de la boya.

Tabla 1:

<table>
<thead>
<tr>
<th>PVol recipiente [kg/cm²litro]</th>
<th>P*vol boya</th>
</tr>
</thead>
<tbody>
<tr>
<td>162.8</td>
<td>150</td>
</tr>
</tbody>
</table>

Figura 82: electro válvula submarina del sistema de boya de emergencia.
26 Diseño de la estructura interna

La estructura interior tiene como objetivo la sujeción tanto de la electrónica como de las baterías contenidas en el interior del cilindro estanco.

La configuración propuesta consiste en la separación del módulo de electrónica del módulo de baterías para posibilitar la extracción de cada módulo por uno de los extremos del cilindro estanco.

Ambos módulos se conectan en el centro, para evitar desplazamientos longitudinales relativos entre ellos.

Figura 83: disposición general de los elementos internos del cilindro estanco y su estructura de sujeción.

Los elementos base son tubos de aluminio, varilla roscada de aluminio y perfil cuadrado de PVC.

Los tubos de aluminio, en contacto directo con las baterías, favorecen la transmisión del calor.
A la hora de diseñar la estructura se ha de tener en cuenta que el cilindro va a sufrir una compresión debida a la presión externa. Dicha compresión debe ser tenida en cuenta tanto en la dirección radial (con las caras de PVC) como en la longitudinal (con los tubos).

Por otra parte es importante la ubicación de los tubos para que al contactar con las tapas no coincida con los orificios para el paso de los cables. Del mismo modo, deben interactuar lo mínimo posible con el conjunto de ventiladores que conforman el sistema de ventilación del cilindro estanco.

Para la correcta introducción de los módulos en el cilindro, se sitúan unos puntos guías en los extremos del cilindro que permitirán el paso de las estructuras en una única posición. No es recomendable situar guías a lo largo del cilindro estanco ya que su contribución estructural frente a la deformación del cilindro por la presión externa, produce una distribución irregular de tensiones entorno al cilindro. Debido a ello se aumenta la tensión máxima en la pared del cilindro estanco.

26.1 Módulo de baterías

![Figura 84. estructura del módulo de baterías.](image-url)
El módulo se compone por dos tubos de aluminio (diámetro 12 mm espesor 1,5 mm) que hacen de cuerpo resistente. En la base se sitúa un perfil de PVC (10x10 mm) que sirve de apoyo a las baterías.

Los tubos de aluminio se conectan entre sí y con la base mediante varilla roscada de aluminio de 5 mm. La varilla sirve de tope a las baterías evitando que se desplacen longitudinalmente. Para la sujeción lateral en las varillas superiores se dispone de tuercas y arandelas que mantienen a las baterías en su posición.

Las uniones entre las varillas roscadas y el resto de elementos se consiguen mediante fibra de vidrio.

La unión mecánica entre los módulos se consigue haciendo coincidir la posición de los tubos. Los tubos del módulo de electrónica encajan en el interior de los tubos del módulo de baterías.

En los extremos de la estructura se dispone de varillas roscadas que sirven para el agarre de la estructura. En este caso, la unión entre las varillas y los tubos se consigue mediante taladrado del tubo y una tuerca en su interior, reforzando el conjunto con fibra de vidrio. Esto es así para servir de tope para la estructura de sujeción de la electrónica.

26.2 **Módulo de electrónica**

![Figura 85: estructura del módulo de electrónica.](image)
Los tubos que componen el cuerpo resistente del módulo de batería son de 9 mm de diámetro exterior y 1 mm de espesor. De esta manera pueden encajar en el interior de los tubos de la estructura del módulo de baterías.
No se profundiza más en la estructura de la electrónica ya que es necesario disponer de cada elemento para poder sujetarlo correctamente. Únicamente se dispone una estructura base sobre la que ubicar el conjunto de elementos.

26.3 Escantillonado de las estructuras

Las condiciones de estudio para el escantillonado de las estructuras son:

- Situación de choque, utilizando la aceleración obtenida en el estudio del sistema de absorción de impactos, se comprueba que las estructuras soportan la compresión resultante.
- Situación de manipulación: se considera la estructura sujeta por sus soportes de los extremos, considerando una aceleración de 20 m/s^2 como estimación de las fuerzas derivadas de la manipulación de cada módulo.

La situación más desfavorable es la de la manipulación. La aleación utilizada para la fabricación de los perfiles de aluminio es 6060. La mitad de su límite elástico es de 968,5 kg/cm^2.

En el cálculo se desprecia el aporte del perfil de PVC.

En el caso de del módulo de baterías la tensión máxima calculada es de 893,5 kg/cm^2. En el módulo de electrónica se obtiene una tensión máxima de 213,8 kg/cm^2.

27 Estimación de la resistencia al avance

Para estimar la resistencia al avance se parte de los resultados obtenidos de la simulación mediante un programa de simulación CFD (Computational Fluid Dynamics). El modelo simulado es una simplificación del modelo real, por lo que se
calcula por separado la resistencia individual de los elementos y se añade al resultado obtenido mediante CFD.

Si bien la velocidad de operación se fija en 1,5 m/s, la simulación se realiza a 2 m/s. Para obtener la resistencia a 1,5 m/s se supone una dependencia cuadrática con la velocidad.

27.1 Simulación de modelo simplificado mediante CFD

Para simplificar la simulación se omiten una serie de elementos:

- Obstacle avoidance.
- MODEM acústico.
- Orificio del motor delantero.

Por otra parte, el modelo utilizado en la simulación no tiene la eslora final del vehículo. Sin embargo se consideran válidos los resultados ya que el aumento de la eslora se consigue mediante el alargamiento del cuerpo cilíndrico central, por lo que puede rectificarse el resultado añadiendo la resistencia por fricción asociada a la superficie del tramo añadido.

![Figura 88: modelo simplificado del vehículo mallado.](image)
La resistencia obtenida para 2 m/s es de 53,750 N.

27.2 Incremento de la resistencia de los elementos restantes

La estimación de la resistencia de cada elemento se evalúa por separado considerando una velocidad de avance de 2 m/s y se añade al resultado de la simulación.

La evaluación de la resistencia de cada elemento se aproxima asimilando los elementos a figuras geométricas simples y calculando sus coeficientes de arrastre asociados.

Para obtener la fuerza de arrastre se aplica la fórmula [14]:

Figura 89: detalle de la distribución de presiones y direcciones del fluido sobre el morro del vehículo.
27.2.1 Resistencia del obstacle avoidance y MODEM acústico

Su resistencia s aproxima simulándolos a cilindros normales a la corriente:

\[F_a = \frac{C_w \rho V_0^2 A_{frONTAL}}{2} \]

\(h) \) Cilindro normal a la corriente

\[
\begin{align*}
&Re < 0.2 : C_w = \frac{8 \rho}{Re} \\
&10^4 < Re < 10^5 \\
&Re > 5 \times 10^5
\end{align*}
\]

<table>
<thead>
<tr>
<th>L/d</th>
<th>1</th>
<th>5</th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>(\infty)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cw</td>
<td>0.63</td>
<td>0.8</td>
<td>0.83</td>
<td>0.93</td>
<td>1</td>
<td>1.2</td>
</tr>
</tbody>
</table>

Se realizan los cálculos considerando la longitud del elemento que sobresale de la carcasa.

Obstacle avoidance

<table>
<thead>
<tr>
<th>D</th>
<th>0.048 m</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>0.025 m</td>
</tr>
<tr>
<td>L/D</td>
<td>0.5</td>
</tr>
<tr>
<td>Re</td>
<td>101854,6026</td>
</tr>
<tr>
<td>Cw</td>
<td>0.63</td>
</tr>
<tr>
<td>Fa</td>
<td>1,5498 N</td>
</tr>
</tbody>
</table>

Modem acústico

<table>
<thead>
<tr>
<th>D</th>
<th>0.048</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>0.0175 m</td>
</tr>
<tr>
<td>L/D</td>
<td>0.4</td>
</tr>
<tr>
<td>Re</td>
<td>101854,6026</td>
</tr>
<tr>
<td>Cw</td>
<td>0.63</td>
</tr>
<tr>
<td>Fa</td>
<td>1,085 N</td>
</tr>
</tbody>
</table>
27.2.2 Resistencia del orificio del motor delantero

La resistencia del orificio se aproxima por la resistencia de una placa plana perpendicular a la corriente en que la anchura \(L \) es igual a la manga máxima del orificio y la altura \(d \) es la diferencia de altura al inicio y al fin del orificio con un incremento del 50%. Finalmente se considera el doble por ser un orificio pasante.

Figura 90: dimensiones del orificio del motor de control de arfada.

\[
\text{Orificio motor delantero} \\
\begin{array}{|c|c|}
\hline
\text{d} & 0,012 \text{ m} \\
\text{L} & 0,0645 \text{ m} \\
\hline
\text{L/d} & 5,5 \\
\hline
\end{array}
\]
27.2.3 Resistencia del alargamiento del cuerpo cilíndrico

Para el cálculo del incremento de resistencia se recurre a la fórmula del coeficiente de fricción de la ITTC-57, aplicado al número de Reynols asociado a la eslora completa del submarino.

\[C_f = \frac{0.075}{(\log_{10} Re - 2)^2} \]

<table>
<thead>
<tr>
<th>Alargamiento del cuerpo central</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
</tr>
<tr>
<td>Re</td>
</tr>
<tr>
<td>Cf</td>
</tr>
<tr>
<td>L'</td>
</tr>
<tr>
<td>S'</td>
</tr>
<tr>
<td>F</td>
</tr>
</tbody>
</table>

27.3 Resistencia total

La resistencia total a 2 m/s se obtiene del sumatorio de la resistencia resultado de la simulación con el resto de resistencias individuales. Se añade un 5% de resistencia por irregularidades y pernos.

\[Rt=(53,750+1,550+1,085+3,759+2,449)*1,05 \]
\[Rt= 65,722 N \]
28 Estudio de Estabilidad:

28.1 Estabilidad estática transversal

El estudio de estabilidad estática se basa en la obtención de la distancia GB. Conocidas las posiciones verticales de cada elemento así como su peso y volumen, es posible calcular la altura del centro de masas así como la altura del centro de empuje. La distancia entre ambos se mantiene constante por encontrarse en inmersión.

<table>
<thead>
<tr>
<th>Peso total</th>
<th>47,454 kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volumen total</td>
<td>46,365 dm^3</td>
</tr>
<tr>
<td>LCG</td>
<td>19,920 cm</td>
</tr>
<tr>
<td>LCB</td>
<td>19,921 cm</td>
</tr>
<tr>
<td>KG</td>
<td>0,292 cm</td>
</tr>
<tr>
<td>KB</td>
<td>0,974 cm</td>
</tr>
<tr>
<td>GB</td>
<td>0,682 cm</td>
</tr>
</tbody>
</table>

La curva de pares adrizantes obtenida en situación de operación es:

![Curva de par adrizante](image)

Figura 91: curva de par adrizante.

A la vista de los resultados se estima una estabilidad estática adecuada.
28.2 Estabilidad estática longitudinal

El vehículo tiene la capacidad de adaptarse a diferentes situaciones de carga mediante la variación de las boyas combinadas con la adición de una pequeña cantidad de lastre. De este modo se consigue que el vehículo no tenga asiento.

28.3 Estabilidad dinámica

En primer lugar, los elementos están ubicados muy cerca del plano horizontal del vehículo, por lo que su brazo de palanca es reducido (inferior a 13 cm en todo caso).

Por otra parte, gracias a la disposición de los elementos, los momentos que hacen que el vehículo tienda a cabecear se contrarrestan entre los elementos superiores y los inferiores si resultando un par de cabeceo muy bajo.

En este aspecto tiene incidencia la coincidencia de la posición longitudinal del centro de flotación con el centro de gravedad. Generando un par desestabilizador de 4,76 kg·cm por cada milímetro de desplazamiento relativo.

Finalmente, al disponer del motor de control de arfada en una posición tan adelantada (a 112,89 cm de la sección central), la fuerza que este tiene que desarrollar es muy baja.

Estimando un par desestabilizador conservador de 50 kg·cm, la fuerza que debe generar el motor es de 0,44 kg. Sin embargo, el motor no trabaja de forma continua, sino que se conecta y desconecta en función de que la inclinación del vehículo supere un cierto margen desde la horizontal.
29 Estudio de la evacuación del calor del cilindro estanco

En el interior del cilindro estanco se encuentran todos los componentes electrónicos así como el sistema de baterías. En su funcionamiento normal se genera una cantidad de calor que debe ser evacuada de manera que no se alcancen temperaturas elevadas que puedan dañar los equipos o la estructura.

En este apartado se estima la cantidad de calor producido en el interior del cilindro así como la forma en que se evacua.

El objetivo del cálculo es la determinación de la temperatura del aire en el interior del cilindro así como la máxima temperatura alcanzada por las paredes del cilindro. Este dato es de suma importancia para el escantillonado del cilindro ya que la tensión máxima admisible del PVC disminuye con el aumento de la temperatura.

Para evitar que se creen puntos de calor en zonas concretas del tubo de PVC, se ubican 8 ventiladores a lo largo del cilindro con el objetivo de conseguir la circulación y mezcla de la totalidad del aire contenido en el interior del cilindro.

<table>
<thead>
<tr>
<th>Estimación del consumo del motor de control de arfada</th>
</tr>
</thead>
<tbody>
<tr>
<td>Momento desestabilizante estimado</td>
</tr>
<tr>
<td>Distancia a Lcb</td>
</tr>
<tr>
<td>Coeficiente de uso</td>
</tr>
<tr>
<td>Fuerza x2</td>
</tr>
<tr>
<td>Consumo en uso</td>
</tr>
<tr>
<td>Consumo promedio</td>
</tr>
</tbody>
</table>
29.1 Calor generado

Las fuentes de generación de calor son:

- Baterías.
- Electrónica.
- Controladoras de los motores.
- Ventilación interna.
- Disipadores de las tapas.
- Perdidas en los cables.

- **Baterías:**

Su producción de calor depende de la resistencia interna de las mismas, así como del consumo de corriente. Se estudia el caso más desfavorable, es decir en el que todos los instrumentos funcionan simultáneamente junto con los motores principales. Dicha situación se da durante la operación normal del submarino.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltaje</td>
<td>12 V</td>
</tr>
<tr>
<td>Intensidad</td>
<td>25,15 A</td>
</tr>
<tr>
<td>Resistencia interna</td>
<td>0,025 Hom</td>
</tr>
<tr>
<td>P=I^2*R</td>
<td>16,57 W</td>
</tr>
</tbody>
</table>

- **Electrónica:**

En ella se incluye:

- Ordenador
- Conversores de corriente
- Módulo de datos:
 - Obstacle avoidance
 - Starfish
Sonar Seaking.

El consumo eléctrico de la electrónica es de 20W.

- Controladoras de los motores principales:

Puesto que los motores principales son de tipo brushless, precisan de controladoras específicas para este tipo de motores para poder hacerlos funcionar. El consumo de las controladoras depende de su resistencia interna y de la corriente que se les suministra. La resistencia interna indicada por el fabricante es de 6 mohm. Considerando el consumo combinado de los 3 motores (2 de propulsión y uno de control de arfada), se obtiene una generación de calor de 0,76 W.

- Ventilación interna:

Para asegurar que el aire del interior del cilindro circula y que no se acumula calor en ningún punto se introducen 8 ventiladores. Consumo combinado es de 4 W.

- Disipadores de las tapas:

Para aumentar la transferencia de calor a través de las tapas, se les añaden 2 disipadores con ventilador (uno por tapa). El consumo combinado de los disipadores es de 1 W.

- Calor total generado en el interior del cilindro:

| Q total generado | 42,33 W |
29.2 **Ventilación interna**

Una adecuada ventilación interna es indispensable para el funcionamiento del vehículo. No solo por mantenerse en el rango de temperatura de trabajo de los elementos en el interior del cilindro, sino para asegurar la integridad física del cilindro estanco fabricado en PVC.

Con el fin de asegurar una evacuación del calor adecuada y uniforme a través de las paredes del cilindro se debe mantener el aire del interior del cilindro en continua circulación. Para ello se introduce un conjunto de ocho ventiladores distribuidos en el interior del cilindro.

![Figura 92: vista superior (arriba) y lateral (abajo) de la ubicación de los ventiladores.](image)

La circulación del aire en el interior del cilindro es longitudinal, es decir, en una mitad del cilindro el aire avanza hacia proa, mientras que en la otra mitad el aire avanza hacia popa. Debido a la distribución interna de los elementos se selecciona que en la mitad
superior del cilindro el aire circula hacia popa, por el contrario en la inferior viaja hacia proa.

Para evitar que la acción de los ventiladores de la mitad superior contrarresten a los de la mitad inferior, se introduce una membrana plástica horizontal situada en la mitad del cilindro estanco, quedando delimitado el flujo en una dirección y en otra.

![Figura 94: detalle de la distribución de ventiladores.](image)

Los ventiladores tienen 40 mm de diámetro y un caudal de 3,29 dm³/s. Partiendo de estos datos se estima una velocidad de circulación media del aire de 0,694 m/s.

29.3 Disipadores de las tapas

Para mejorar la capacidad de evacuación de calor se instalan unos disipadores para circuito integrado o Chipset en las tapas. Estos constan de un disipador y un ventilador acoplado.
Las dimensiones de este elemento son:
Base: 40x40 mm
Altura: 45 mm

Gracias a sus reducidas dimensiones puede apoyarse contra el centro de las tapas, sin que entre en conflicto con los cables que la atraviesan.

El disipador va instalado sobre la estructura interna y al cerrar las tapas queda en contacto con estas. Para mejorar la transmisión por contacto entre la tapa y el disipador se utiliza una grasa térmica.
En las especificaciones técnicas se encuentra que posee una resistencia térmica de 1,45 °C/W. Esto significa que existirá una diferencia de temperatura entre la superficie sobre la que se instale y el aire colindante de 1,45°C por cada W de potencia calorífica generada.

29.4 Cálculo del calor disipado

Una vez calculado el calor generado, se debe evaluar el calor disipado por el vehículo. Para dicha evaluación se define la situación más desfavorable en la que se pueda encontrar el vehículo.

En la peor situación posible, el vehículo se encuentra a 100 m de profundidad con toda su instrumentación funcionando, incluidos los motores propulsores, pero sin conseguir avanzar, por lo que no existe refrigeración forzada con el agua. Esta situación puede darse por fallo de la electrónica, o por quedar el submarino atrapado y sin capacidad de movimiento en el fondo.

El submarino debe poder evacuar el calor generado de manera que sea posible un rescate posterior.

La evacuación del calor se calcula mediante símil eléctrico de transferencia de calor en estado estacionario. Estudiando las diferentes vías por las que el calor es evacuado desde el interior del cilindro estanco hasta el agua en el exterior de la carcasa hidrodinámica. Para realizar el cálculo del calor disipado, se calculan las resistencias de cada vía de evacuación de calor:

Las vías iniciales de evacuación de calor son:

1. Paredes del cilindro estanco: Entorno a las paredes de PVC del cilindro estanco encontramos el sistema de flotadores, que al estar conformado por espuma de
poliuretano, trabaja como aislante térmico. Tras la capa de flotadores se encuentra además la carcasa hidrodinámica. Se considera el caso más desfavorable, en que toda la parte superior del cilindro estanco está recubierta por flotadores. Para realizar el símil eléctrico se estudia el cilindro estanco como dos vías independientes de evacuación de calor:

a. Cilindro PVC: corresponde a la parte inferior del cilindro, en contacto directo con el agua.

b. Cilindro PVC + flotadores: corresponde a la parte superior del cilindro, recubierta por los flotadores.

2. Tapas del cilindro estanco: estas entran directamente en contacto con el agua contenida en el interior de la carcasa hidrodinámica.

En el símil eléctrico las tres posibles vías de evacuación del calor se sitúan en paralelo, todas ellas con foco caliente y frío común, el aire del interior del cilindro y el agua en el exterior de la carcasa respectivamente. En el siguiente diagrama se resume el camino que sigue el calor a través de cada una de las vías:

Figura 97: esquema de equivalencia eléctrica del sistema.

Suposiciones para el cálculo:

- El aire en el interior del cilindro se mantiene a una temperatura constante, de esta manera se puede abordar el problema como un problema de transferencia de calor estático. Una vez planteadas las condiciones de contorno de la situación concreta, la temperatura del aire del interior del cilindro queda fijada al igualarse el calor generado con el calor disipado.
• El submarino se encuentra en fallo:
 o Submarino en reposo, la convección con el agua deberá ser natural.
 o Generación de calor máxima, a pesar de que el vehículo no se encuentra en movimiento el calor generado en el interior del cilindro es el de todos los instrumentos en funcionamiento incluyendo los motores propulsores.
• La velocidad media de circulación del aire longitudinalmente es de 0,694 m/s.
• La velocidad máxima de circulación del aire longitudinalmente es de 2,618 m/s (la velocidad de salida del aire del ventilador).
• El agua entorno al submarino a 100 m de profundidad se encuentra a 23,125 ºC.
 o Valor correspondiente al percentil 99,9 de una serie de 200000 perfiles a 100 metros.

29.4.1 Cálculo de los coeficientes de convección

Las formulas generales para el cálculo de coeficientes son [14]:

\[
Pr = \frac{\nu}{\alpha} = \frac{\mu \cdot C_p}{k}
\]

\[
Re = \frac{D \sqrt{\rho \beta}}{\mu}
\]

Siendo D la longitud característica del cálculo.

\[h = Nu \cdot k\]

• **Cálculo del coeficiente de convección “h1 aire-tubo” [14]:**

El coeficiente de convección se calcula utilizando fórmulas para convección en el interior de cilindros. Como situación representativa se selecciona “flujo turbulento no desarrollado”:

Gabriel Riera Navarro
- 166 -
\[Nu = 0.036 \ Re^{0.8} \ Pr^{1/3} \left(\frac{d}{L} \right)^{0.55} \]

Siendo válido para valores de diámetro de tubería (d) entre longitud (L) comprendidas entre 10 y 100.

- **Cálculo del coeficiente de convección “h2 aire-tapa”:**

Se aproxima mediante el cálculo del coeficiente de “convección forzada del flujo laminar para una placa plana horizontal” de igual superficie a la cara interior de la tapa (restando los orificios para el paso de los cables y el espacio ocupado por los disipadores).

\[Nu = \frac{h_c \cdot L}{k} = 0.664 \ \sqrt{Re_L} \ Pr^{1/3}, \text{ para: } \begin{cases} 10^{3} < Re_L < 5 \cdot 10^{5} \\ Pr > 0.5 \end{cases} \]

- **Cálculo del coeficiente de convección “h3 tubo-agua-carcasa”:**

Cálculo para “convección natural entre cilindros horizontales concéntricos” [15]:

Figura 98: intercambio de calor entre dos anillos concéntricos.
• Cálculo del coeficiente de convección “h4 carcosa hidrodinámica-água”:

Cálculo para “convección natural en el exterior de cilindros horizontales isotermos” [14]:

\[
N_u = \left\{ 0.60 + \frac{0.387 \, \text{Ra}^{1/6}}{[1 + (0.559/\text{Pr})^{9/16}]^{8/27}} \right\}^2
\]

• Cálculo del coeficiente de convección “h5 tapas-agua”:

Cálculo para “convección natural sobre placa vertical con flujo de calor constante” [14]:

\[
N_u = F(\text{Pr}) \sqrt{\frac{G\text{Pr}}{4}} , \text{ siendo } 0.95 \, F(\text{Pr}) = \frac{4}{3} f(\text{Pr})
\]

<table>
<thead>
<tr>
<th>Pr</th>
<th>0,01</th>
<th>1</th>
<th>10</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>F(Pr)</td>
<td>0,335</td>
<td>0,811</td>
<td>1,656</td>
<td>3,083</td>
</tr>
</tbody>
</table>

29.4.2 Método de cálculo

Una vez calculados los coeficientes de convección, junto con los coeficientes de transmisión, se obtienen las resistencias para cada paso en el camino recorrido por el calor durante su evacuación.
Del conjunto de las resistencias se obtiene la resistencia equivalente del sistema, obtenida de la suma equivalente de las resistencias conjuntas de los tres ramales en paralelo.

Puesto que se conoce la temperatura del agua, así como el calor a disipar, es posible obtener el valor de la temperatura del aire del interior del cilindro mediante tanteo. Puesto que los coeficientes de convección también dependen de la temperatura de los fluidos, se deben ir retocando los datos para el cálculo de cada coeficiente.

Por otra parte, los coeficientes de convección natural dependen de la diferencia de temperatura entre el fluido y la superficie. Por lo tanto es necesario calcular el incremento de temperatura (caída de potencial en el símil eléctrico) en cada resistencia asociada a un coeficiente de convección natural.

29.5 Resultados obtenidos

Una vez converge el sistema, se obtiene que la temperatura del aire del interior del cilindro es de 39,87ºC. Esta es la temperatura a la que llega el aire al alcanzar el estado de régimen estacionario.

A la hora de sustituir las baterías de plomo-ácido por otras de mayor rendimiento, se debe tener en cuenta la temperatura alcanzada en el interior del cilindro, por lo que es necesario recalculate la disipación de calor teniendo en cuenta el calor generado por las nuevas baterías.

La temperatura media alcanzada en el PVC es 36,10 ºC. sin embargo se debe considerar una temperatura mayor para el escantillonado del cilindro estanco ya que puntualmente la temperatura puede ser mayor.

Considerando la velocidad de circulación máxima como la velocidad de salida del ventilador (2,618 m/s), se recalcula el coeficiente de convección. Utilizando este nuevo
El propio fabricante de las baterías suministra una tabla en la que se puede obtener la autonomía de la batería en función del consumo unitario por batería.

Figura 99: gráfica de descarga de la batería en función de la potencia suministrada.
Entrando el la tabla característica de la batería se obtiene que la autonomía estimada es de aproximadamente 40 minutos.

30.2 Autonomía con baterías LiFePo4

Este tipo de baterías cumple con los requisitos para su uso en el submarino, como valores de referencia podemos tomar:

- Relación energía/volumen: 200 Wh/l
- Relación energía/peso: 100 Wh/Kg
- Máxima temperatura de trabajo: 65 ºC
- Relativamente económicas: 1,5 Wh/$
- Mayor rendimiento a altas cargas: 4C 85%

A igualdad de volumen, la sustitución de las baterías de plomo ácido por las de LiFePo4 supone un notable incremento en la autonomía. Pasando de ser 40 minutos a 2 horas.
BIBLIOGRAFÍA

[8] ANSYS HELP.

ANEXO I: presupuesto

Estructura

<table>
<thead>
<tr>
<th>Elementos</th>
<th>Material</th>
<th>Nº</th>
<th>Longitud (mm)</th>
<th>Diámetro (cm)</th>
<th>Espesor (mm)</th>
<th>Precio unitario</th>
<th>Coste (€)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cilindro PVC 140mm</td>
<td>PVC-u</td>
<td>1</td>
<td>2000</td>
<td>140</td>
<td>5,4</td>
<td>18,94</td>
<td>37,88</td>
</tr>
<tr>
<td>Manguito portabridas</td>
<td>PVC-u</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>9,17</td>
<td>18,34</td>
</tr>
<tr>
<td>Barra aluminio</td>
<td>Aluminio UNS A95086</td>
<td>1</td>
<td>190</td>
<td>60</td>
<td>40</td>
<td>40</td>
<td>180</td>
</tr>
<tr>
<td>Torneado de tapas y anillos de compresión</td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>60</td>
<td>180</td>
</tr>
<tr>
<td>Tubo aluminio 6060</td>
<td>Aluminio 6060</td>
<td>2</td>
<td>1000</td>
<td>12</td>
<td>1,5</td>
<td>4,5</td>
<td>9</td>
</tr>
<tr>
<td>Tubo aluminio 6060</td>
<td>Aluminio 6060</td>
<td>2</td>
<td>1000</td>
<td>9</td>
<td>1</td>
<td>3,5</td>
<td>7</td>
</tr>
<tr>
<td>Perfil PVC</td>
<td>PVC-u</td>
<td>2</td>
<td>1000</td>
<td>10</td>
<td>10</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>Varilla rosada aluminio</td>
<td>Aluminio BRUT P40</td>
<td>2</td>
<td>1000</td>
<td>5</td>
<td></td>
<td>9,39</td>
<td>18,78</td>
</tr>
<tr>
<td>Resina poliéster 5 kg y catalizador</td>
<td>Resina poliéster</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>29,5</td>
<td>59</td>
</tr>
<tr>
<td>Fibra de vidrio MAT 300</td>
<td></td>
<td>1</td>
<td>26000</td>
<td></td>
<td></td>
<td>55</td>
<td>55</td>
</tr>
<tr>
<td>Fibra de vidrio MAT 100</td>
<td></td>
<td>1</td>
<td>1000</td>
<td></td>
<td></td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Desmoldante</td>
<td>Silspray</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>5,1</td>
<td>5,1</td>
</tr>
<tr>
<td>Poliuretano alta densidad PUR 250</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>45</td>
<td>45</td>
</tr>
<tr>
<td>Fabricación molde Forexpan</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>450</td>
<td>450</td>
</tr>
<tr>
<td>Tornillería</td>
<td>Aluminio 62</td>
<td>1</td>
<td>5</td>
<td></td>
<td></td>
<td>0,5</td>
<td>31</td>
</tr>
<tr>
<td>Mánano de obra de fabricación</td>
<td></td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td>36</td>
<td>1080</td>
</tr>
<tr>
<td>Otros</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Total estructura</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2146</td>
<td></td>
</tr>
</tbody>
</table>

Recipiente presión Ninja 48ci/3000psi	Aluminio	1	50	50
Conexiones neumáticas	Inox	4	5,45	21,8
Boya	PVC	1	25	25
Electroválvula submarina Miniature Scuttle Valve 1704-200	Inox	1	500	500
Muelles	Inox	5	7	35
Total estructura		2777,9 €		

Instrumentación

<table>
<thead>
<tr>
<th>Instrumentos</th>
<th>Marca</th>
<th>Modelo</th>
<th>Número</th>
<th>Precio unitario estimado</th>
<th>Total (€)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obstacle avoidance sonar</td>
<td>Tritech</td>
<td>Micron DST Sonar</td>
<td>1</td>
<td>2500</td>
<td>2500</td>
</tr>
<tr>
<td>Side-scan sonar</td>
<td>Starfish</td>
<td>450F</td>
<td>1</td>
<td>3200</td>
<td>3200</td>
</tr>
<tr>
<td>Multiybeam sonar</td>
<td>Tritech</td>
<td>SeaKing</td>
<td>1</td>
<td>3000</td>
<td>3000</td>
</tr>
<tr>
<td>Motores propulsores hélice acoplada</td>
<td>Tecnadyne</td>
<td>Modelo 300</td>
<td>2</td>
<td>3000</td>
<td>6000</td>
</tr>
<tr>
<td>Obstacle avoidance sonar</td>
<td>CrustKrawle r</td>
<td>High-Flow Thruster 400HFS-L</td>
<td>1</td>
<td>600</td>
<td>600</td>
</tr>
<tr>
<td>Doppler velocity log</td>
<td>LinkQuest Inc.</td>
<td>NavQuest 600 Micro</td>
<td>1</td>
<td>20000</td>
<td>20000</td>
</tr>
<tr>
<td>Motor de control de arfada</td>
<td>CrustKrawle r</td>
<td>High-Flow Thruster 400HFS-L</td>
<td>1</td>
<td>600</td>
<td>600</td>
</tr>
<tr>
<td>Modem acústico</td>
<td>LinkQuest Inc.</td>
<td>NavQuest 600 Micro</td>
<td>1</td>
<td>20000</td>
<td>20000</td>
</tr>
<tr>
<td>Modem acústico</td>
<td>LinkQuest Inc.</td>
<td>NavQuest 600 Micro</td>
<td>1</td>
<td>20000</td>
<td>20000</td>
</tr>
<tr>
<td>Dispositivo de posicionamiento espacial</td>
<td>Xsens</td>
<td>Mti-28A53G35</td>
<td>1</td>
<td>2000</td>
<td>2000</td>
</tr>
<tr>
<td>Baterías plomo-ácido</td>
<td>RS</td>
<td>Y7-12RS</td>
<td>4</td>
<td>14,5</td>
<td>58</td>
</tr>
<tr>
<td>Electrónica</td>
<td></td>
<td></td>
<td>1</td>
<td>1200</td>
<td>1200</td>
</tr>
</tbody>
</table>

Total

| Coste estimado del vehículo completo | 42835,9 € |

ANEXO II: Condición de carga 1

Corresponde a la situación de carga de operación.

<table>
<thead>
<tr>
<th>Equipos:</th>
<th>Específico</th>
<th>Número</th>
<th>Peso (kg)</th>
<th>Volumen (dm³)</th>
<th>Peso en agua</th>
<th>*Posición x</th>
<th>Anchura (cm)</th>
<th>**Altura</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instrumentos</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DVL</td>
<td>1</td>
<td>2,900</td>
<td>1,700</td>
<td>1,200</td>
<td>113,935</td>
<td>12,600</td>
<td>-2,900</td>
<td></td>
</tr>
<tr>
<td>Sidescan (starfish)</td>
<td>1</td>
<td>2,000</td>
<td>1,000</td>
<td>1,000</td>
<td>143,575</td>
<td>37,600</td>
<td>0,000</td>
<td></td>
</tr>
<tr>
<td>Micron DST (obstacle avoidance)</td>
<td>1</td>
<td>0,324</td>
<td>0,144</td>
<td>0,180</td>
<td>-103,875</td>
<td>5,110</td>
<td>-4,126</td>
<td></td>
</tr>
<tr>
<td>Modem acustico</td>
<td>1</td>
<td>0,400</td>
<td>0,260</td>
<td>0,200</td>
<td>75,245</td>
<td>5,110</td>
<td>10,200</td>
<td></td>
</tr>
<tr>
<td>módulo de datos (sonay, sydescan y profundimetro)</td>
<td>1</td>
<td>1,500</td>
<td>0,000</td>
<td>1,500</td>
<td>34,000</td>
<td>30,000</td>
<td>0,000</td>
<td></td>
</tr>
<tr>
<td>Sonar Seaking</td>
<td>1</td>
<td>3,000</td>
<td>1,561</td>
<td>1,400</td>
<td>94,075</td>
<td>23,800</td>
<td>-3,520</td>
<td></td>
</tr>
<tr>
<td>Cilindro estanco</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tramo tubería PVC</td>
<td>1</td>
<td>4,285</td>
<td>20,536</td>
<td>-16,764</td>
<td>0,000</td>
<td>134,750</td>
<td>0,000</td>
<td></td>
</tr>
<tr>
<td>Manguito portabrida</td>
<td>0,786</td>
<td>2</td>
<td>1,572</td>
<td>1,123</td>
<td>0,421</td>
<td>0,000</td>
<td>134,750</td>
<td>0,000</td>
</tr>
<tr>
<td>Estructura interna</td>
<td>14</td>
<td>0,874</td>
<td>0,000</td>
<td>0,874</td>
<td>0,000</td>
<td>134,750</td>
<td>0,000</td>
<td></td>
</tr>
<tr>
<td>Baterías</td>
<td>2,150</td>
<td>4</td>
<td>8,600</td>
<td>0,000</td>
<td>8,600</td>
<td>-22,800</td>
<td>60,000</td>
<td>-0,440</td>
</tr>
<tr>
<td>Disipadores tapas</td>
<td>*1,2</td>
<td>2</td>
<td>0,200</td>
<td>0,000</td>
<td>0,200</td>
<td>0,000</td>
<td>23,800</td>
<td>0,000</td>
</tr>
<tr>
<td>Tapas</td>
<td>*1,1</td>
<td>2</td>
<td>1,587</td>
<td>0,588</td>
<td>0,985</td>
<td>0,000</td>
<td>134,750</td>
<td>0,000</td>
</tr>
<tr>
<td>Motores+sujeciones</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Principales</td>
<td>1,210</td>
<td>2</td>
<td>2,420</td>
<td>1,663</td>
<td>0,826</td>
<td>24,500</td>
<td>15,000</td>
<td>0,000</td>
</tr>
<tr>
<td>Delantero</td>
<td>1</td>
<td>0,718</td>
<td>0,315</td>
<td>0,413</td>
<td>-93,275</td>
<td>8,800</td>
<td>0,000</td>
<td></td>
</tr>
<tr>
<td>Carcasa</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frontal</td>
<td>*1,05</td>
<td>4</td>
<td>1,078</td>
<td>0,674</td>
<td>0,387</td>
<td>-88,975</td>
<td>40,000</td>
<td>0,000</td>
</tr>
<tr>
<td>Central</td>
<td>*1,05</td>
<td>3</td>
<td>3,564</td>
<td>2,122</td>
<td>1,390</td>
<td>3,200</td>
<td>134,750</td>
<td>0,000</td>
</tr>
<tr>
<td>Cola</td>
<td>*1,05</td>
<td>3</td>
<td>1,490</td>
<td>0,931</td>
<td>0,535</td>
<td>104,375</td>
<td>75,000</td>
<td>1,620</td>
</tr>
<tr>
<td>Flotadores</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/2 Laterales seaking</td>
<td>2</td>
<td>0,672</td>
<td>2,290</td>
<td>-1,675</td>
<td>103,375</td>
<td>40,000</td>
<td>0,000</td>
<td></td>
</tr>
<tr>
<td>Flotador proa</td>
<td>1</td>
<td>0,444</td>
<td>1,520</td>
<td>-1,114</td>
<td>-97,375</td>
<td>40,000</td>
<td>3,319</td>
<td></td>
</tr>
<tr>
<td>Detalle</td>
<td>Cantidad</td>
<td>1/2 flotador entre DVL-starfish</td>
<td>0,900</td>
<td>-0,701</td>
<td>1,000</td>
<td>28,000</td>
<td>0,000</td>
<td></td>
</tr>
<tr>
<td>-------------------------------------</td>
<td>----------</td>
<td>---------------------------------</td>
<td>-------</td>
<td>--------</td>
<td>-------</td>
<td>--------</td>
<td>-------</td>
<td></td>
</tr>
<tr>
<td>1/2 flotador sobre cilindro estanco (x5)</td>
<td>4</td>
<td>1,638</td>
<td>5,091</td>
<td>-3,581</td>
<td>19,060</td>
<td>134,750</td>
<td>5,423</td>
<td></td>
</tr>
<tr>
<td>Boya emergencia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recipiente a presión + boya</td>
<td>1</td>
<td>2,500</td>
<td>2,083</td>
<td>0,365</td>
<td>29,375</td>
<td>50,000</td>
<td>9,400</td>
<td></td>
</tr>
<tr>
<td>Válvula</td>
<td>1</td>
<td>1,000</td>
<td>0,735</td>
<td>0,246</td>
<td>78,875</td>
<td>41,000</td>
<td>0,000</td>
<td></td>
</tr>
<tr>
<td>Cables y tornillería</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>2,640</td>
<td>0,660</td>
<td>2,031</td>
<td>0,000</td>
<td>160,000</td>
<td>0,000</td>
<td></td>
</tr>
<tr>
<td>Muelles</td>
<td>5</td>
<td>1,462</td>
<td>0,442</td>
<td>1,009</td>
<td>-84,975</td>
<td>20,000</td>
<td>0,000</td>
<td></td>
</tr>
<tr>
<td>Lastre</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,300</td>
<td>0,273</td>
<td>0,273</td>
<td>33,000</td>
<td>20,000</td>
<td>-8,000</td>
<td></td>
</tr>
</tbody>
</table>

Flotabilidad: 0,12 kg

<table>
<thead>
<tr>
<th>Detalle</th>
<th>Peso total</th>
<th>47,454 kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volumen total</td>
<td>46,365 dm³</td>
<td></td>
</tr>
<tr>
<td>LCG</td>
<td>19,920 cm</td>
<td></td>
</tr>
<tr>
<td>LCB</td>
<td>19,921 cm</td>
<td></td>
</tr>
<tr>
<td>KG</td>
<td>0,292 cm</td>
<td></td>
</tr>
<tr>
<td>KB</td>
<td>0,974 cm</td>
<td></td>
</tr>
<tr>
<td>GB</td>
<td>0,682 cm</td>
<td></td>
</tr>
</tbody>
</table>

* Posición longitudinal desde el centro del cilindro estanco.
** Altura desde eje del cilindro estanco.
Curvas

- Curva de pesos

- Cortantes

- Momentos flectores
ANEXO II: Condición de carga 2

Corresponde a la situación con vehículo en situación de operación y la carcasa hidrodinámica llena de agua.

<table>
<thead>
<tr>
<th>Equipos:</th>
<th>Específico</th>
<th>Número</th>
<th>Peso (kg)</th>
<th>Volumen (dm³)</th>
<th>Peso en agua</th>
<th>*Posición x</th>
<th>Anchura (cm)</th>
<th>**Altura</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instrumentos</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Instrumentos</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DVL</td>
<td>1</td>
<td>2,900</td>
<td>1,700</td>
<td>1,200</td>
<td>113,935</td>
<td>12,600</td>
<td>-2,900</td>
<td></td>
</tr>
<tr>
<td>Sidescan (starfish)</td>
<td>1</td>
<td>2,000</td>
<td>1,000</td>
<td>1,000</td>
<td>143,575</td>
<td>37,600</td>
<td>0,000</td>
<td></td>
</tr>
<tr>
<td>Micron DST (obstacle avoidance)</td>
<td>1</td>
<td>0,324</td>
<td>0,144</td>
<td>0,180</td>
<td>-103,875</td>
<td>5,110</td>
<td>-4,126</td>
<td></td>
</tr>
<tr>
<td>Modem acustico</td>
<td>1</td>
<td>0,400</td>
<td>0,260</td>
<td>0,200</td>
<td>75,245</td>
<td>5,110</td>
<td>10,200</td>
<td></td>
</tr>
<tr>
<td>Cilindro estanco</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tramo tubería PVC</td>
<td>1</td>
<td>4,285</td>
<td>20,536</td>
<td>-16,764</td>
<td>0,000</td>
<td>134,750</td>
<td>0,000</td>
<td></td>
</tr>
<tr>
<td>Contratapa (portabrida)</td>
<td>0,786</td>
<td>2</td>
<td>1,572</td>
<td>1,123</td>
<td>0,421</td>
<td>0,000</td>
<td>134,750</td>
<td>0,000</td>
</tr>
<tr>
<td>Estructura interna</td>
<td>14</td>
<td>0,874</td>
<td>0,000</td>
<td>0,874</td>
<td>0,000</td>
<td>134,750</td>
<td>0,000</td>
<td></td>
</tr>
<tr>
<td>Baterías</td>
<td>2,150</td>
<td>4</td>
<td>8,600</td>
<td>0,000</td>
<td>8,600</td>
<td>-22,800</td>
<td>60,000</td>
<td>-0,440</td>
</tr>
<tr>
<td>Disipadores tapas</td>
<td>*1,2</td>
<td>2</td>
<td>0,200</td>
<td>0,000</td>
<td>0,200</td>
<td>0,000</td>
<td>23,800</td>
<td>0,000</td>
</tr>
<tr>
<td>Tapas</td>
<td>*1,1</td>
<td>2</td>
<td>1,587</td>
<td>0,588</td>
<td>0,985</td>
<td>0,000</td>
<td>134,750</td>
<td>0,000</td>
</tr>
<tr>
<td>Motores+ sujeciones</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Principales</td>
<td>1,210</td>
<td>2</td>
<td>2,420</td>
<td>1,663</td>
<td>0,826</td>
<td>24,500</td>
<td>15,000</td>
<td>0,000</td>
</tr>
<tr>
<td>Delantero</td>
<td>1</td>
<td>0,718</td>
<td>0,315</td>
<td>0,413</td>
<td>-93,275</td>
<td>8,800</td>
<td>0,000</td>
<td></td>
</tr>
<tr>
<td>Carcasa</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frontal</td>
<td>*1,05</td>
<td>4</td>
<td>1,078</td>
<td>0,674</td>
<td>0,387</td>
<td>-88,975</td>
<td>40,000</td>
<td>0,000</td>
</tr>
<tr>
<td>Central</td>
<td>*1,05</td>
<td>3</td>
<td>3,564</td>
<td>2,122</td>
<td>1,390</td>
<td>3,200</td>
<td>134,750</td>
<td>0,000</td>
</tr>
</tbody>
</table>
Flotabilidad: 0,12 kg

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>0,931</th>
<th>0,535</th>
<th>104,375</th>
<th>75,000</th>
<th>1,620</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flotadores</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/2 Laterales seaking</td>
<td>2</td>
<td>0,672</td>
<td>2,290</td>
<td>-1,675</td>
<td>103,375</td>
<td>40,000</td>
</tr>
<tr>
<td>Flotador proa</td>
<td>1</td>
<td>0,444</td>
<td>1,520</td>
<td>-1,114</td>
<td>-97,375</td>
<td>40,000</td>
</tr>
<tr>
<td>1/2 flotador entre DVL-starfish</td>
<td>2</td>
<td>0,286</td>
<td>0,900</td>
<td>-0,637</td>
<td>123,675</td>
<td>28,000</td>
</tr>
<tr>
<td>1/2 flotador sobre cilindro estanco (x5)</td>
<td>4</td>
<td>1,638</td>
<td>5,091</td>
<td>-3,581</td>
<td>19,060</td>
<td>134,750</td>
</tr>
<tr>
<td>Boya emergencia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recipiente a presión + boya</td>
<td>1</td>
<td>2,500</td>
<td>2,083</td>
<td>0,365</td>
<td>29,375</td>
<td>50,000</td>
</tr>
<tr>
<td>Válvula</td>
<td>1</td>
<td>1,000</td>
<td>0,735</td>
<td>0,246</td>
<td>78,875</td>
<td>41,000</td>
</tr>
<tr>
<td>Cables y tornillería</td>
<td>1</td>
<td>2,640</td>
<td>0,660</td>
<td>2,031</td>
<td>0,000</td>
<td>160,000</td>
</tr>
<tr>
<td>Muelles</td>
<td>5</td>
<td>1,462</td>
<td>0,442</td>
<td>1,009</td>
<td>-84,975</td>
<td>20,000</td>
</tr>
<tr>
<td>Lastre</td>
<td>5</td>
<td>1,462</td>
<td>0,442</td>
<td>1,009</td>
<td>-84,975</td>
<td>20,000</td>
</tr>
<tr>
<td>Agua interior de carcasa</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Delantera</td>
<td>si=1</td>
<td>4,797</td>
<td>4,680</td>
<td>0,000</td>
<td>-83,365</td>
<td>32,000</td>
</tr>
<tr>
<td>central</td>
<td>si=1</td>
<td>16,544</td>
<td>16,140</td>
<td>0,000</td>
<td>10,300</td>
<td>160,800</td>
</tr>
<tr>
<td>Trasera</td>
<td>si=1</td>
<td>5,586</td>
<td>5,450</td>
<td>0,000</td>
<td>105,200</td>
<td>49,600</td>
</tr>
</tbody>
</table>

* Flotabilidad: 0,12 kg

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Peso total</td>
<td>74,380</td>
<td>kg</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Volumen total</td>
<td>72,635</td>
<td>dm³</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LCG</td>
<td>17,524</td>
<td>cm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LCB</td>
<td>17,527</td>
<td>cm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Posición longitudinal desde el centro del cilindro estanco.
** Altura desde eje del cilindro estanco.
Curvas
ANEXO III: Botadura y recuperación

En este apartado se exponen dos posibilidades para la botadura y posterior recuperación del vehículo desde una embarcación.

En el caso de que el buque desde el que se bota el vehículo disponga de grúa o pluma, el vehículo dispone de dos anillas para su sujeción. Dichas anillas están unidas a la carcasa central. Su ubicación es tal que ambas coinciden en posiciones en las que existe solapamiento entre la carcasa central y las carcasas de cola y frontal.

Ubicación de las anillas de sujeción.

En el caso en que el buque no disponga de grúa o similar, se propone utilizar un sistema de rampa. Este dispone de dos refuerzos con ruedas a lo largo de su longitud para el deslizamiento del vehículo y dos flotadores para mantenerla fuera del agua.
La rampa se sujeta a la borda o al espejo del buque mediante sistema de apriete. Se ubica en una posición u otra en función del espacio disponible y de la posición de trincado a bordo del vehículo.

Una vez sujeta la rampa, esta pivota desde su sujeción, es decir, en el caso de que se instale en el costado del buque, la rampa no transmitirá al vehículo el balanceo del buque.

Para la maniobra de recuperación del vehículo, en primer lugar se engancha una línea a la anilla delantera del vehículo. A continuación se posiciona el vehículo encarado a la rampa. Por último se recoge la línea, haciendo ascender el vehículo hasta la cubierta.

Para evitar que los instrumentos que sobresalen de la carcasa hidrodinámica puedan sufrir daños, las ruedas que permiten deslizar al vehículo se apoyan en la carcasa en el espacio comprendido entre el DVL y los motores principales.
Por otra parte, se evita que el vehículo gire transversalmente al entrar en contacto los deflectores de los motores principales con la propia estructura de la rampa.

Vista frontal de la estructura con el vehículo apoyado sobre las ruedas. Margen de los deflectores de los motores principales con la estructura 10mm.

Vistas frontal y lateral.

Con el objetivo de que la rampa sea válida para buques con destinos francobordos, se puede ajustar la posición longitudinal de los flotadores, de manera que puede controlarse la inmersión inicial de la estructura.
La estructura de la rampa se compone de dos refuerzos principales. Estos son perfiles rectangulares de aluminio. Para facilitar su transporte junto con el vehículo se dividen en dos partes por el centro. Ambas partes encajan en un tramo de perfil de 40 cm de longitud, quedando enfundados, y se unen a él mediante pernos.

- **Escantillonado de los perfiles:**

Para el escantillonado de la estructura de la rampa se utiliza la masa del vehículo lleno de agua y se considera una aceleración de 30 m/s².

Se fija una longitud total de la rampa de 4 metros, de manera que pueda utilizarse con francobordos mayores a 1,5 metros.

Como situación de estudio se supone la totalidad del peso aplicada en el centro de la rampa, estando esta horizontal.

Se seleccionan perfiles de aleación de aluminio 6063 T5, cuyo límite elástico es de 17,839 kg/mm².
Estructura

<table>
<thead>
<tr>
<th>Característica</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>L total</td>
<td>4000 mm</td>
</tr>
<tr>
<td>L’ distancia crítica</td>
<td>1800 mm</td>
</tr>
<tr>
<td>B</td>
<td>40 mm</td>
</tr>
<tr>
<td>H</td>
<td>140 mm</td>
</tr>
<tr>
<td>e</td>
<td>2 mm</td>
</tr>
<tr>
<td>Área</td>
<td>531 mm²</td>
</tr>
<tr>
<td>Inercia</td>
<td>1218328,250 mm⁴</td>
</tr>
<tr>
<td>Longitud de interferencia</td>
<td>400 mm</td>
</tr>
<tr>
<td>Aceleración</td>
<td>30 m/s²</td>
</tr>
<tr>
<td>Peso</td>
<td>74,407 kg</td>
</tr>
<tr>
<td>Momento</td>
<td>204789,908 Kg*mm</td>
</tr>
<tr>
<td>Tensión máxima</td>
<td>5,883 kg/mm²</td>
</tr>
</tbody>
</table>

El factor de seguridad resultante para la situación definida es de 3,032.

Perfil de unión

<table>
<thead>
<tr>
<th>Característica</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>400 mm</td>
</tr>
<tr>
<td>H</td>
<td>150 mm</td>
</tr>
<tr>
<td>B</td>
<td>50 mm</td>
</tr>
<tr>
<td>e</td>
<td>5 mm</td>
</tr>
</tbody>
</table>

Volumen

<table>
<thead>
<tr>
<th>Característica</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volumen</td>
<td>72,521 dm³</td>
</tr>
<tr>
<td>radio</td>
<td>1,300 dm</td>
</tr>
<tr>
<td>Longitud</td>
<td>6,830 dm</td>
</tr>
</tbody>
</table>