PROYECTO FIN DE CARRERA

“Optimización de la tecnología de producción de canónigos (Valerianella locusta) en bandeja flotante”

Alumno:
Alejandro Díaz Perelló

Dirigido por:
Encarnación Conesa Gallego
Juan Antonio Fernández Hernández

Cartagena, Septiembre 2009
ÍNDICE

RESUMEN ...4

1. INTRODUCCIÓN ..6
1.1. Características generales de los canónigos .. 6
1.1.1. Historia / Origen / Usos / Composición ..6
1.1.2. Descripción botánica ...7
1.1.3. Desarrollo y exigencias ambientales ... 8
1.1.3.1. Semillas y germinación ...8
1.1.3.2. Exigencias edafoclimáticas ..9
1.2. Compuestos químicos en la planta ... 11
1.2.1. El Nitrógeno ...11
1.2.1.1. Nitratos ...13
1.2.1.2. Factores que influyen en la concentración de nitratos en hoja 15
1.2.1.3. Problemática e ingestión de nitratos ...17
1.2.2. Oxalatos ..19
1.3. Cultivo hidropónico. Concepto y sistemas .. 20
1.3.1. Ventajas y desventajas ...22
1.3.2. Justificación del uso de sistemas hidropónicos en hortalizas 24
1.3.3. Cultivo en bandejas flotantes (“floating system”) .. 25
1.3.4. Oxigenación de la solución nutritiva. Influencia de la temperatura 27

2. OBJETIVO DEL TRABAJO ...29

3. MATERIAL Y METODOS GENERALES ..30
3.1. Preparación de las instalaciones ...30
3.2. Siembra y manejo del cultivo ...31
3.3. Muestreo y toma de datos agronómicos ...33
3.4. Determinación del contenido en nitratos y oxalatos ..34
3.5. Tratamiento de datos ...35
4. ENSAYO DE GERMINACION CON DISTINTAS VARIEDADES DE CANONIGOS

4.1. Materiales y métodos

4.2. Resultados

5. ENSAYO SOBRE LA INFLUENCIA DE LA CONCENTRACION DE NITROGENO EN LA ACUMULACION DE NITRATOS Y OXALATOS EN LA PRODUCCION DE CANONIGOS

5.1. Materiales y métodos

5.1.1. Composición de la solución nutritiva

5.1.2. Oxigenación de la solución nutritiva

5.2. Resultados

5.2.1. Experimento 1

5.2.2. Experimento 2

6. ENSAYO SOBRE LA INFLUENCIA DE LA CONCENTRACION DE OXIGENO DISUELTO EN LA PRODUCCION DE CANONIGOS

6.1. Materiales y métodos

6.1.1. Composición de la solución nutritiva

6.1.2. Oxigenación de la solución nutritiva

6.2. Resultados

7. DISCUSION

8. CONCLUSION

9. BIBLIOGRAFIA
RESUMEN

En el proyecto de investigación que nos ocupa se han empleado canónigos (*Valerianella Locusta*), siendo estos un cultivo interesante por la disponibilidad y fácil manejo que nos proporciona. Para poner en practica su cultivo se emplearon bandejas flotantes, que son un tipo de cultivo hidropónico muy interesante para la producción de hortalizas con hoja de pequeño tamaño tipo ´´baby leaf´´, pues nos ofrecen un buen manejo y control de la solución nutritiva, que junto a la oxigenación serán nuestras principales herramientas para crear las futuras condiciones de cultivo.

El objetivo de nuestro trabajo fue analizar la germinación, calidad y producción de los canónigos (*Valerianella locusta*) en situación de cultivo con diferentes soluciones nutritivas y grado de oxigenación.

En el ensayo de germinación, se contabilizaron las semillas germinadas día a día en un periodo de 6 días, comprobando cual de las 5 variedades empleadas presentaba mayor porcentaje de germinación.

A lo largo del trabajo se han efectuado tres ensayos con fechas distintas, en todos ellos empleamos dos variedades de canónigos ´´Nomura´´ y ´´6B´´.La siembra del primer ensayo se realizo el 16 Abril y se recolectó el 25 de Mayo, dando un ciclo de cultivo de 39 días (siendo este el momento de la recolección), efectuando muestreos a los 32, 36 y 39 días después de su siembra. El segundo ensayo fue sembrado el 20 de Mayo y se recolectó el 22 de Junio, dando un ciclo de cultivo de 33 días (siendo este el momento de la recolección), efectuando muestreos a los 26, 30 y 33 días después de su siembra. Y el tercer y último ensayo se sembró el 1 de Junio y se recolectó el 3 de Julio, dando un ciclo de cultivo de 35 días (siendo este el momento de la recolección), efectuando muestreos a los 28, 32 y 35 días después de su siembra; todos los ensayos fueron sembrados en bandejas flotantes tipo styrofloat con una mezcla de turba y vermiculita.
En la preparación de las diferentes condiciones de cultivo se emplearon diferentes técnicas y recursos. En el ensayo de oxigenación, empleamos una estructura de aireación formada por tubos de PVC con diferente grado de oxigenación (control, 10, 30, 60) y en el ensayo de nitratos usamos diferentes soluciones nutritivas (12, 8 y 4 mmoles/L de N).

Los resultados demuestran que reduciendo la concentración de nitrógeno en la solución nutritiva no se consigue reducir la concentración de nitratos en las hojas.

Se puede concluir que resulta interesante el empleo de la variedad Nomura, que a pesar de acumular nitratos en hoja y una mala germinación presenta el mejor comportamiento agronómico como producto “baby leaf.”
1. INTRODUCCIÓN

1.1. Características generales de los canónigos

1.1.1. Historia / Origen / Usos / Composición

Originaria de Europa y conocida hace siglos, la primera información de su cultivo aparece en un documento Alemán fechado en 1588, era cultivada como lechuga de invierno hasta que decayó su uso durante los siglos XVIII y XIX debido a la aparición de variedades de lechuga adaptadas al frío. Su nombre hace referencia a su cultivo en monasterios.

Hoy en día se cultiva en extensiones más o menos importantes en Alemania, Francia, Italia, España y otros países Europeos, siendo más bien una curiosidad fuera de Europa.

Hasta hace poco era bastante conocida pero en los últimos años se ha vuelto a poner de moda en las cocinas de los países europeos, pudiendo utilizarse sola, acompañando a otras plantas de ensalada y como condimentos de algunos guisos y sopas.

Normalmente, las que son cultivadas son de mayor tamaño y más tiernas que las silvestres, pero las hojas de las silvestres poseen un sabor más agradable.

Su composición nutritiva es superior a la de la lechuga, presentando un valor superior de provitamina A y vitaminas B y C. Su valor calórico es muy bajo, 13.40 Kcal. por cada 100 g de producto fresco, por ello es muy empleada en dietas de adelgazamiento. Poseen gran cantidad de clorofila y más minerales (hierro potasio, fósforo, manganeso y yodo) que otras hortalizas. Apreciada también por su alto contenido en calcio y sus propiedades antiescorbúcticas y depurativas. Sus hojas tiernas contienen gran cantidad de fibra, ácido fólico y beta-caroteno, un pigmento que el cuerpo humano es capaz de convertir en vitamina A (citado en Ochoa, J. et al)
Al tratarse de una planta de la familia de la Valeriana, tiene muchas de sus propiedades, es tranquilizante y ayuda a combatir el insomnio.

Se trata de una planta muy perecedera, para su conservación se pueden mantener 2-3 días en el frigorífico cubiertos con un papel absorbente o en el interior de una bolsa de plástico perforada para que no coja olor de la nevera. Al sacarlos, rociar con agua para refrescarlos. Prestar especial atención en no romper las hojas para que se conserve su característico sabor fresco.

1.1.2. Descripción botánica

Su nombre científico es Valerianella locusta y es de la familia de las Valerianaceas. Es una planta anual, con una altura de 7 a 40 cm. y con un periodo vegetativo muy corto. Tiene hojas radicales, espatuladas, de 3 a 8 cm de largo, margen entero o dentado, en su mayoría romas, de color verde grisáceo, naciendo por pares y formando una roseta compacta; estas hojas son el futuro órgano de consumo. Raíz fibrosa y pecíolo más corto que el limbo. El tallo es herbáceo, delgado, corto, anguloso y muy ramificado.

Al terminar el periodo vegetativo sobreviene la emisión del tallo floral, el que ramifica dicotómicamente y diferencia cimas capituliformes en sus ápices.

Las flores son celestes blanquecinas y de corola gamopétala desprovista de giba basal, dispuestas en cabezuelas, compactas en la punta de los tallos o a veces están solas en las bifurcaciones de las ramas. Brácteas más pequeñas que las hojas. Especie dioica, de 2 a 3 cm de longitud, 5 sépalos y 5 pétalos. El ovario trilocular presenta un solo lóculo fértil.
El fruto es pequeño (2 a 2.5 cm), orbicular y grisáceo; con una semilla que no libera, con forma lenticular, aproximadamente tan ancha como alta; el tejido esponjoso se localiza en la parte dorsal del fruto junto al saco fértil. Exteriormente se observan dos finas costillas laterales atravesadas por repliegues.

Figura 1: Morfología general de *Valerianella locusta*.

1.1.3. Desarrollo y exigencias ambientales

1.1.3.1. Semillas y germinación

Las semillas son muy pequeñas, ligeras, con forma lenticular, aproximadamente tan ancha como alta y de color grisáceo inicialmente, con una duración germinativa de 4-5 años; pudiendo ser cultivada durante todo el año.
Dependiendo del momento de siembra, Valerianella locusta puede comportarse como anual o bianual.

Muy frecuente en campos y tierras de cultivo, germinando la semilla en otoño y floreciendo en la misma época del año siguiente.

![Figura 2: Semillas de las diferentes variedades](image)

1.1.3.2. Exigencias edafoclimáticas

No les conviene ni el calor ni la falta de agua; por tanto cabe cultivarla en otoño e invierno, en un rango de temperatura de entre 10º y 20º. Se siembran directamente las semillas a partir de mediados de verano, cuando las temperaturas empiezan a ser menos calurosas. En Julio-Agosto la temperatura es demasiado elevada, los cotiledones se queman, necrosan y pudren teniendo que usar malla de sombreo para evitar dicho daño en esos meses.

Se puede sembrar en hileras o a voleo y se aclara dejando una separación de unos 10cm entre plantas. Debido a que la semilla germina con dificultad es interesante ponerla en remojo uno o dos días antes de la siembra. La cosecha empieza en un mes y medio y se alarga hasta la primavera, durante todo este periodo no es preciso ningún
cuidado especial, salvo en el caso de que los fríos invernales fuesen demasiado intensos, contra los cuales sería preciso proteger la plantación.

También tendremos especial cuidado de la llegada de los primeros calores, que provocan la floración de la planta, ya no siendo apta para el consumo.

Prospera bien en casi todos los suelos, pero crece con soltura en suelo poco labrado, endurecido y compacto.

Figura 3: Germinación de las semillas
1.2. Compuestos químicos en la planta

1.2.1. El Nitrógeno

El nitrógeno es uno de los elementos mas importantes en la nutrición de la las plantas dado que participa en la formación de diversos compuestos orgánicos como aminoácidos, proteínas y ácido nucleico. La nutrición de N desempeña un papel significativo en la producción y calidad de la cosecha (Sisson et al., 1991; Gastal y Lemaire, 2002; Wang et al., 2002).

Es uno de los cuatro elementos fundamentales en la construcción de las proteínas, y por lo tanto participa en la constitución de prácticamente todos los organismos. Los vegetales lo absorben preferentemente como nitrato (NO3-) y como amonio (NH4+) y lo asimila como amonio. Además, su deficiencia es la mas fácil de diagnosticar y por lo general, las plantas revelan una respuesta relativamente rápida a las aplicaciones de fertilizantes nitrogenados.
La cantidad de nitrógeno a aportar dependerá de la situación o estado de nuestro cultivo: características del suelo, clima, estado fenológico, técnicas agronómicas empleadas (marco de plantación, riego).

El nitrógeno en el suelo se presenta en las siguientes formas: Nitrógeno orgánico soluble, Nitrógeno nítrico (NO3-), Nitrógeno como nitrato (NO2-) y Nitrógeno asociado a los a las partículas del suelo como ion amonio intercambiable y Nitrógeno orgánico. El ciclo del nitrógeno es sumamente dinámico y complejo, sobre todo los procesos microbiológicos biológicos responsables de la mineralización, fijación y desnitrificación del nitrógeno de los suelos. Por lo general, en los suelos que no están anegados, el Nitrógeno del suelo (retenido como proteína de la materia vegetal) y el Nitrógeno de los fertilizantes se transforman microbiológicamente en NH4+ (amonio) mediante el proceso de amonificación. El ion amonio se oxida por la acción de dos grupos de bacterias (*Nitrosomonas* y *Nitrobacter*) convirtiéndose en nitrato (NO3 -) con un producto intermedio nitrito (NO2-) inestable en un proceso llamado nitrificación. La urea se hidroliza fácilmente en amonio. La desnitrificación se produce en condiciones anaeróbicas en las tierras húmedas o anegadas, donde el nitrato (NO3-) se reduce a varias formas gaseosas NO, N2O, N2 etc.(Muñoz, E. 2005)

Año tras año, los agricultores han aumentado la aplicación de fertilizantes de N a sus tierras (Wang et al., 2000), sin considerar el grave problema de acumulación de compuestos nitrogenados que implica a un no tan largo periodo de tiempo. Una fuente adecuada de N puede promover el crecimiento vegetal y aumentar la producción vegetal (Collins y McCoy, 1997), pero un exceso de esta fertilización nitrogenada, provoca una inevitable acumulación de estos compuestos en la planta, lo que significara la acumulación en los futuros alimentos que provengan de esa planta o cultivo. Dichos compuestos acumulados pueden ser nocivos para nuestra salud y medio ambiente.

Uno de los problemas de la fertilización nitrogenada, es consecuencia del bajo rendimiento y eficiencia en el uso del N, pues no todo el nitrógeno aportado, puede ser
empleado por el cultivo; esto nos deja como consecuencia un gran porcentaje de nitrógeno lixiviado, inmovilizado o en desuso en general.

Es conveniente por lo tanto, tener en cuenta que el contenido de nitrógeno en las hortalizas no depende solo del nitrógeno que llega con el abonado sino también dependerá de la cantidad total de N que se encuentre en el terreno.

Otro de los problemas derivados de esta práctica, es la reducción del valor nutricional como consecuencia de la acumulación de nitratos (mayormente en hojas), como consecuencia de dosis o usos excesivos.

Por tanto, el ajuste de la dosis de nitrógeno tiene una doble motivación: de economía de producción y de sostenibilidad del sistema agrario. En una visión más amplia, contemplando el suelo, el agua y la atmósfera, las razones medioambientales apoyan y refuerzan esas motivaciones.

Una medida fundamental para la regulación de la acumulación de nitratos, reside en la aplicación de técnicas agronómicas razonables, en especial técnicas que hagan una gestión coherente de la fertilización nitrogenada.

1.2.1.1. Nitratos

En nuestro país, la obtención de las máximas producciones suele constituir el objetivo principal de la actividad agrícola. Esto supone frecuentemente el uso masivo de fertilizantes y productos fitosanitarios. A medida que va aumentando el nivel de desarrollo, dicho objetivo se acerca poco a poco hacia la consecución del máximo rendimiento económico, que no coincide necesariamente con la máxima producción, pues adquieren mayor importancia los costes de producción (mano de obra, precio del abono...); su reducción al mínimo resulta imprescindible para alcanzar los niveles de rentabilidad y competitividad necesaria.
Los nitratos son compuestos presentes en el medio ambiente de forma natural como consecuencia del ciclo del nitrógeno, pero puede ser alterado por diversas actividades agrícolas.

Además de emplearse como aditivo de los alimentos, los nitratos también se hallan presentes de manera natural en la mayoría de los vegetales, ya que es la principal forma en que las plantas absorben el nitrógeno a través de las raíces. Teniendo en cuenta que, el total de nitratos absorbidos no se metaboliza hasta su transformación en los aminoácidos constituyentes de las proteínas, el exceso se acumula en los tejidos vegetales hasta alcanzar concentraciones que pueden resultar excesivas.

Así, en el caso del abonado se tiende a una utilización más eficiente de los fertilizantes, valorando el tipo y dosis de abonado que hay que emplear en función del nivel de producción deseado, estado de fertilidad del suelo, coste de los abonos...

Los nitratos en sí son relativamente poco tóxicos. Su toxicidad viene determinada por su conversión en nitritos y nitrosaminas. El nitrato puede transformarse en nitrito por reducción bacteriana tanto en los alimentos (durante el procesado y almacenamiento), como en el propio organismo (en la saliva y el tracto gastrointestinal). Los nitratos en sangre oxidan el hierro de la hemoglobina produciendo metahemoglobina, incapaz de transformar el oxigeno, muy frecuente en bebes. Por otro lado, los nitratos relacionan con los aminoácidos de los alimentos en el estomago, produciendo nitrosaminas y nitrosamidas, sustancias que han demostrado tener efectos cancerígenos. Por esta razón, se han impuesto diversas restricciones al consumo de nitratos.
1.2.1.2. Factores que influyen en la concentración de nitratos en hoja

Se podría afirmar que la mayoría de los canónigos cumplen las normas de los países europeos, según los estudios realizados. Podemos observar que cuando el cultivo se da en invernadero prácticamente se duplica el contenido de nitratos, lo que se explica por la menor iluminación, que, junto con variedad y abonado son los principales factores de que depende.

La iluminación es un factor fundamental, pues de su intensidad depende la actividad fotosintética; si esta se reduce, lo hace también la transformación de nitratos absorbidos en aminoácidos y proteínas.

En invierno se presentan niveles de nitratos más elevados que en verano a causa de la menor iluminación y mayor nubosidad. A su vez, la reducción de la intensidad
lumínica (de un 20% a un 30%) que supone el empleo de plásticos en invernadero incrementa el contenido de nitratos respecto del cultivo al aire libre.

La hierba de los canónigos se encuentra clasificada entre las especies con alto contenido de nitratos (>2500 mg kg-1 p.f.) en sus hojas (Santamaria et al., 2002)

Cada variedad cuenta con el factor genético, que tiene una gran influencia en la acumulación de nitratos por las plantas. Al igual que el contenido varía de unos vegetales a otros, dentro de una especie lo hace según tipo y variedad. Además de las diferencias genotípicas, cualquier modificación en el suministro de nitrógeno (cantidad, fuente, aplicación) puede afectar a la concentración de nitratos en hojas (Ochoa, J. et al)

Hay que destacar las importantes diferencias que se encuentran en el contenido de nitratos entre las diferentes partes de una planta.

En el abonado, la nutrición de la planta influye en gran medida en su desarrollo y composición. Si el medio nutritivo presenta niveles bajos de algún nutriente, el crecimiento de la planta se vera limitado. Por el contrario, un exceso de algún nutriente puede provocar desequilibrios nutricionales (salinidad, antagonismos...) que afectan el nivel de producción y calidad del cultivo.

El nitrato es necesario para el crecimiento de la planta y debe encontrarse en un nivel adecuado para el cultivo. En ocasiones este nivel se ve rebasado, dando lugar a consecuencias como la salinidad que limita el rendimiento del cultivo y provocan un aumento en la concentración de nitratos en hoja.

En línea con la creciente sensibilización de los consumidores hacia aspectos de nutrición y medio ambiente, el agricultor debe adaptar sus técnicas agrícolas hacia la obtención de productos de calidad con el menor impacto ambiental posible. Así, el agricultor debe valorar y controlar el contenido en nitratos, tanto de los cultivos
producidos como del medio nutritivo; para ello habrá de considerar de manera conjunta las alternativas de cultivo, iluminación y nutrición.

1.2.1.3. Problemática e ingestión de nitratos

El nitrógeno tiene efectos perjudiciales, no solo por la contaminación de aguas debido a la lixiviación de los nitratos, sino también por la emisión de amoniacos y óxidos de nitrógeno a la atmósfera. (Duxbury, 1994)

El principal problema de los nitratos radica en que pueden ser reducidos a nitritos en el interior del organismo humano. El nitrato entra en el ciclo alimentario de los organismos vivos a través de la alimentación. Para el hombre, las tres principales fuentes de nitrato son, en el orden: verduras, agua y carne (Santamaria, 1997).

Los nitritos producen la transformación de la hemoglobina a metahemoglobina. La hemoglobina se encarga del transporte del oxígeno a través de los vasos sanguíneos y capilares, pero la metahemoglobina no es capaz de captar y ceder oxígeno de manera funcional. La cantidad normal de metahemoglobina no excede el 2%; entre el 5 y el 10% se manifiestan los primeros signos de cianosis, entre 10 y 20% se aprecia una insuficiencia de oxigenación muscular, y por encima del 50% puede llegar a ser mortal. Una vez formados los nitritos, pueden reaccionar con las aminas, originando las nitrosaminas, un tipo de compuesto sobre cuya acción cancerigena no existen dudas.

Los nitratos y sobretodo los nitritos (NO2) son utilizados como aditivos alimentarios en carnes preparadas y almacenadas por acción antibacteriana realizadas por ellos, donde su utilización es regulada por ley.

Para los países de la Unión Europea, la directiva 98/83/CE del Consejo de 3 de Noviembre de 1998 fijó los límites máximos de 50 y 0,5 mg /L, respectivamente, de NO3 y NO2 para el agua destinada al consumo humano, e impuso a los Estados Miembros la siguiente condición: (NO3 / 50) + (NO2 / 3) ≤ 1 (mg / L).
El 15 de febrero de 1997 entró en vigor en la Comisión Europea Reglamento n. 194/97 un documento sobre los niveles máximos de nitrato admisibles en la lechuga y espinacas en todos los países de la Unión Europea; y más tarde, el 2 de Abril de 2002 la Comisión de las Comunidades Europeas substituye el Reglamento n.194/97 - ya modificado por algunos Reglamentos n. 864/1999 y 466/2001 - con el Reglamento n. ° 563. Las principales novedades introducidas con el nuevo reglamento, en vigor desde 22 de abril de lechuga comentan que:

1) la cosecha de abril a septiembre (meses que hay más radiación solar) y, para el recogimiento octubre a marzo, fue establecido un periodo máximo admisible de nitrato menor en aire libre que en ambiente protegido;

2) por primera vez, lechuga tipo "iceberg", fue separada de las otras, suministrando límites más bajos.

La OMS (Organización Mundial de la Salud) aconseja una ingesta diaria de nitratos entre 0 y 3.7 mg/Kg. Esta misma organización en su último informe sobre la evaluación toxicológica de nitrito y nitrato, redujo a menos de la mitad la dosis diaria aceptable (Acceptable Daily Intake, ADI) para nitritos (NO2) cerca de 0,06 mg / kg de peso corporal (Speijers, 1996), a la vez que confirmó ADI para nitratos (3,65 mg / kg de peso corporal, expresada como NO3- (Speijers, 1996).

El Comité Científico de la Alimentación de la Comisión Europea (European Commission's Scientific Committee for Food, SCF), propuso la introducción de límites máximos para el valor de nitratos y de adopción de técnicas culturales destinadas a reducir el contenido de nitratos en hortalizas (EC, 1995).
1.2.2. Oxalatos

Los oxalatos son sales o ésteres del ácido oxálico. Las sales tienen en común el anión O2CCO2. Se trata de sustancias habitualmente incoloras, reductoras y tóxicas; debido a que en presencia de iones de calcio forman el oxalato de calcio, CaC2O4, una sal muy poco soluble. El oxalato no tiene ninguna utilización metabólica en el organismo, por una parte se elimina calcio como elemento esencial del organismo, y por otra parte si cristaliza formando un cálculo puede obstaculizar los conductos renales. Las piedras renales también suelen ser formadas (al menos en parte) por oxalato cálcico. A los pacientes afectados del riñón se les recomienda una dieta pobre en oxalato. Los oxalatos también disminuyen la absorción intestinal de calcio y magnesio (Libert y Franceschi, 1987).

Es importante saber que cuando se cocinan los alimentos el valor de oxalato se reduce, esto a través de las pérdidas por el lavado en el agua de cocinar. Sin embargo, algunos alimentos que son tradicionalmente asados, no ocurre pérdidas de oxalatos por lavado.

Frente a cationes polivalentes, el ion oxalato suele actuar como ligando quelatante, su acumulación en ciertos órganos también provoca la Oxalosis.

Pueden ser encontrados como formas solubles e insolubles en plantas. Las sales solubles se forman cuando el oxalato se liga con el potasio, sodio y magnesio (el oxalato de magnesio es menos soluble que las sales de sodio y potasio), mientras que las sales insolubles son producidos cuando el oxalato se liga con el calcio y el hierro. El oxalato también puede ser encontrado libre como ácido oxálico; este formas sales solubles en agua con los iones de Na+, K+ y NH4+, también se liga con Ca2+, Fe2+ y Mg2+ volviendo estos minerales indisponibles.

Los oxalatos se forman por neutralización del ácido oxálico con la base correspondiente o por intercambio del catión. Así se puede obtener el oxalato potásico a
partir del ácido oxálico y del hidróxido potásico. Los ésteres del ácido oxálico pueden obtenerse con las reacciones clásicas de esterificación a partir del ácido o del cloruro de oxalil.

El contenido de oxalatos puede ser reducido por la aportación de nitrógeno en forma amoniaca (Palaniswamy et al., 2004), incluso la concentración nitrogenada de la solución nutritiva puede alterar su contenido en los tejidos vegetales.

La distribución del oxalato dentro de las plantas es desigual. En general, el contenido de oxalato es más alto en las hojas intermedias y en las semillas, y más bajo en el tallo (Osweiler et al., 1985; Lilbert y Franceschi, 1987).

El contenido de oxalatos depende, entre otros factores, de la especie y del cultivar, de los fertilizantes (sobre todo aquellos nítricos), y de fases del crecimiento vegetal (Kabaskalis et al., 1995; Makus y Hettiarachchy, 1999; Takebe y Yoneyama, 1997).

Como usos particulares de la industria, diremos que el oxalato potásico se encuentra en las formulaciones de unos quitamanchas. Actúa complejando el hierro que puede estar presente. El oxalato de hierro (III) es una sustancia fotosensible. Expuesto a la luz el hierro se reduce a hierro (II) y una parte del oxalato se oxida a dióxido de carbono (CO2). Los iones de hierro (II) reaccionan con hexacianoferato de hierro (II) para dar un precipitado de azul prusiano. Esta reacción fue utilizada antiguamente para hacer fotocopias. Actualmente ha sido sustituido por la xerotipía.

En la química analítica clásica se utiliza la reacción del oxalato con los iones de calcio para la determinación de estos.

1.3. Cultivo hidropónico. Concepto y sistemas

Etimológicamente el concepto hidroponía deriva del griego y significa literalmente trabajo o cultivo (ponos) en agua (hydros).
El término “hidropónico” fue introducido por Gericke en los años 30, para describir los métodos comerciales de cultivo en medio líquido, siendo este investigador quien primero desarrolló esta iniciativa.

Un cultivo hidropónico en su concepto más amplio, engloba a todo sistema de cultivo en el que las plantas completan su ciclo vegetativo sin la necesidad de emplear el suelo, suministrando la nutrición hídrica y la totalidad o parte de la nutrición mineral mediante una solución en la que van disueltos los diferentes nutrientes esenciales para su desarrollo. (Alarcón, A. 2002). El concepto es equivalente al de “cultivos sin suelo”, y supone el conjunto de cultivo en sustrato más el cultivo en agua.

La hidroponía, se está desarrollando rápidamente como medio de producción vegetal, sobre todo de hortalizas de bajo cultivo protegido. Esta es una técnica alternativa de cultivo protegido, en la cual el suelo es sustituido por una solución acuosa conteniendo sólo los elementos minerales indispensables a los vegetales.

Esta técnica se pueden definir como la ciencia del crecimiento de las plantas sin utilizar el suelo, aunque usando un medio inerte, como la grava, arena, turba, vermiculita, pumita o serrín, a los cuales se añade una solución de nutrientes que contiene todos los elementos esenciales necesitados por la planta para su normal crecimiento y desarrollo (Resh, 2001).

Los sistemas de cultivo hidropónico se dividen en dos grandes grupos. Cerrados, que son aquéllos en los que la solución nutritiva se recircula aportando de forma más o menos continua los nutrientes que la planta va consumiendo y abiertos o a solución perdida, en los que los drenajes provenientes de la plantación son desechados.

Dentro de estos dos grupos hay tantos sistemas como diseños de las variables de cultivo empleadas: sistema de riego (goteo, subirrigación, circulación de la solución.
nutriente, tuberías de exudación, contenedores estancos de solución nutritiva, etc.); sustrato empleado (agua, materiales inertes, mezclas con materiales orgánicos, etc.); tipo de aplicación fertilizante (disuelto en la solución nutritiva, empleo de fertilizantes de liberación lenta aplicados al sustrato, sustratos enriquecidos, etc.); disposición del cultivo (superficial, sacos verticales o inclinados, en bandejas situadas en diferentes planos, etc.); recipientes del sustrato (contenedores individuales o múltiples, sacos plásticos preparados, etc.).

Figura 5: Cama de cultivo empleada en floating system

1.3.1. Ventajas y desventajas

Una vez justificado el empleo de esta técnica para la producción de hortalizas, procedemos a destacar las numerosas ventajas de este método:

- Máximo control de la nutrición de nuestro cultivo, que posibilita la potenciación de diversos parámetros relacionados con la calidad. Por ejemplo la reducción en el aporte de nitratos.
Mejora ambiental: el hecho de tener los drenajes controlados, evita la contaminación de suelos y acuíferos. Permite el empleo de distintos sustratos como la paja de cereales, fibra de coco, fibra de madera, residuo de la industria de corcho, lana de vidrio, etc.

Se consigue una óptima relación aire /agua en el sistema radicular de la planta.

Mantener una menor dependencia y presión sobre recursos naturales como el suelo. De esta manera salva los inconvenientes planteados por el suelo natural (enfermedades del suelo, suelo no fértil, deterioro de las propiedades físicas, suelos salinos...)

Facilita y simplifica el trabajo del agricultor suprimiendo ciertas técnicas como preparación del suelo, eliminación de las malas hierbas, incorporación del abono de fondo...

Permite una mayor precocidad y mayor potencial productivo, debido a que la planta consume menos energía, obteniendo la cantidad justa de nutrientes necesarios para su óptimo desarrollo.

En sistemas cerrados, donde el drenaje es reutilizado, se ahorra agua y fertilizantes, que es toda una ventaja desde el punto de vista ambiental y también el económico.

Aunque en menor escala, los sistemas de cultivo hidropónicos también presentan ciertas desventajas:

Estos sistemas requieren mayor precisión y control en su manejo. El trabajar con pequeños volúmenes de sustrato y poca reserva de agua da lugar a un menor margen de error en comparación en un cultivo con suelo. Esta circunstancia hace muy necesario el control y acompañamiento técnico de un especialista.
Supone un mayor coste inicial en su instalación, tanto por los elementos de riego, como de la adquisición de contenedores, programadores y sustratos.

Puede provocar la aparición de enfermedades en la raíz, por ausencia de los mecanismos de defensa de los sustratos. Un ejemplo es *Phytium* que actúa en sistemas de cultivo sin suelo sobre plantas adultas, produciendo enanismo y pudiendo llegar a matar las plantas.

Contaminación de la capa freática, en instalaciones donde el drenaje no es recirculado y va directamente al suelo. El abandono de sustratos y plásticos de forma incontrolada es también una circunstancia contaminante.

1.3.2. Justificación del uso de sistemas hidropónicos en hortalizas

El futuro de la producción agrícola pasa por una mejora tecnológica lo suficientemente elevada para asegurar el aprovechamiento de los recursos y de esta manera aumentar al máximo la eficiencia del uso energético de los sistemas de producción y mantener una menor dependencia y presión sobre los recursos naturales (suelo, gran cantidad de agua...).

El deterioro progresivo del suelo de los invernaderos y de las zonas de producción hortícola en general, debido a un agotamiento, una contaminación fúngica y una salinización cada vez más extendidos, obliga a los agricultores a optar por el cultivo hidropónico como solución a dichos problemas. Por otra parte, actualmente resulta imprescindible la implantación de técnicas que nos lleven a una economización de los cada vez más escasos recursos hídricos, la técnica de cultivo hidropónico, dada su elevada tecnificación, permite consumir únicamente el agua necesaria, minimizando todo tipo de pérdidas y aportando solamente la cantidad estricta de elemento que las plantas necesitan, ello unido a la mayor productividad y calidad logradas mediante el uso de esta técnica al tener perfectamente controladas las variables de cultivo, permite
la obtención de una mayor cantidad de producto con el mínimo consumo de agua y fertilizantes.

1.3.3. Cultivo en bandejas flotantes (“floating system”)

La optimización de los aspectos cualitativos de la producción hortícola con un bajo impacto ambiental, constituye una prioridad que involucra a todo el sistema agroalimentario en su conjunto. Teniendo en cuenta que la tendencia del mismo es compatibilizar calidad, cuidado ambiental, costes y rendimientos; diremos que entre las técnicas más innovadoras que responden a estos requisitos se encuentra el sistema de cultivo sin suelo en paneles flotantes floating system, que constituye un sistema hidropónico económico y sencillo que puede ser empleado con éxito en la producción de hortalizas de hoja pequeña, como los canónigos. Dando solución a un problema de otros sistemas de cultivo sin suelo, como lo es la sujeción de la planta a la solución nutritiva. El poliestireno expandido es el material más usado en la solución de este tipo de problema, debido a sus propiedades y fácil manejo.

Este cultivo se basa en el crecimiento de las plantas en bandejas que flotan (5-10 cm) en soluciones nutritivas constituidas por agua y fertilizantes. De este modo, se facilita las prácticas de riego y de fertilización para el productor.

Algunos métodos emplean sustratos orgánicos, turbas, o inorgánicos, vermiculita, arena, grava, lana de roca, etc., permitiendo el anclaje de las raíces, a diferencia de los que no prevén un soporte para tal fin (Castagnino et al., 2005).

El sistema de bandejas flotantes presenta varias ventajas respecto a los sistemas hidropónicos convencionales, como lo son la reducción de los costes, una mayor versatilidad a la hora de futuros cultivos, aumento de la producción por unidad de área empleada, mantenimiento continuo de la producción mediante la programación de las tareas (siembra, transplante recolección) y ahorro de agua.
Mediante esta técnica es posible obtener un mayor número de cosechas en el año, que las cultivadas en el suelo, especialmente en el caso de cultivo en invernadero.

Uno de los principales problemas de este sistema de cultivo es el estancamiento de la solución nutritiva en las camas de cultivo, esto suele dar lugar a dos situaciones no deseadas: aparición de algas en suspensión en la solución nutritiva y la pérdida de rendimiento que se ve reflejada en forma de carencias en nutrientes, peso seco…

Todo esto hace que un aspecto fundamental en este tipo de cultivo sea la aireación, responsable de la oxigenación de la solución nutritiva indispensable en la producción de cultivos de hoja, en los cuales el grado de oxigenación de la solución nutritiva tiende a disminuir al aumentar la temperatura, situación común en invernaderos y túneles de cultivo.

Una de la posibilidad que nos ofrece el floating system es la reducción del aporte de nitratos durante la última semana de cultivo, reduciendo los contenidos en nitratos en el material vegetal, sin afectar los rendimientos del cultivo.

El empleo de semillas para el inicio del cultivo presenta ventajas sobre el método tradicional: optimización de la germinación, menor empleo de mano de obra, posibilidades de anticipar la entrada al mercado en casi un mes, mejor control de malas hierbas y una mayor calidad del producto final (Ramponi, 2000).

A nivel global resulta creciente el interés en el sistema de floating system ya que presenta la ventaja de permitir cultivar hortalizas, particularmente de hojas, todo el año; con ciclos muy breves (para ensalada se llegan a hacer 18 ciclos en 12 meses), con limitado aporte de fitofarmacós (no son necesarios los herbicidas) y un crecimiento vegetativo absolutamente uniforme. (Del Fabro, A., 2003)
Las mejores condiciones hídricas de las plantas producidas en floating system, unidas a la facilidad de absorción de nutrientes, son los factores que inducen una mayor expansión foliar con la consiguiente mayor tasa de crecimiento y calidad.

Figura 6: Situación de los canónigos en floating system

1.3.4. Oxigenación de la solución nutritiva. Influencia de la temperatura

En el proceso de la optimización de la producción de los cultivos es necesario realizar evaluación de diversos factores que puedan afectar la producción y calidad. (Zheng et al. 2007) indican que un ambiente radical bien oxigenado es esencial para la salud del sistema radical (absorción de nutrientes, crecimiento y mantenimiento de raíces) y la prevención de enfermedades radicales.

Este importante aspecto de los cultivos sin suelo se resuelve mediante varios métodos. Tal vez el mas usado, sobre todo en investigación, es el burbujeo de aire continuo con un compresor. Su facilidad de construcción así como su flexibilidad para el uso en unidades caseras (Resh, 1992) lo hacen muy recomendable, también se utiliza con fines comerciales.
En general por debajo de los 3-4 mg/l de oxígeno disuelto en la solución (Gislerod y Kemton, 1983) se produce una disminución en el crecimiento radical, apareciendo un empardecimiento de este, tal vez sea el síntoma más precoz y fácilmente destacable de los primeros problemas al respecto.

Una consecuencia secundaria, al disminuir el oxígeno, es la aparición de poblaciones de microorganismos no deseados en el medio, la importancia de este factor se ve al observar la estrecha correlación exponencial entre la concentración de oxígeno en la solución nutritiva y los pesos secos de la raíz y vástago (Zeroni et al., 1983). En el caso de ser un sistema recirculante es posible aumentar la oxigenación de la solución nutritiva provocando un salto del drenaje (50 cm aprox.) en el tanque de recogida.

La disponibilidad del oxígeno está muy relacionada con la temperatura, la cantidad máxima disponible en una solución nutritiva disminuye con el aumento de la temperatura, mientras que el efecto contrario ocurre con la capacidad de difusión del mismo, por lo que, en parte, estos fenómenos se compensan. Esta razón hace que el valor absoluto de oxígeno en la solución nutritiva previamente saturada con aire a presión sea menor en las horas centrales (Adams, 2004), donde la temperatura en un cultivo es mayor. Por todo ello concluimos que debemos mantener la disponibilidad de oxígeno en la rizosfera constante.

Podemos distinguir los diferentes factores que afectan a la demanda / oferta de oxígeno:

- Factores que afectan a la demanda del aparato radical:
 - Aumenta la demanda con la temperatura del sustrato.
 - Aumenta la demanda con la radiación solar.

- Factores que afectan a la oferta posible desde la solución nutritiva:
 - Disminuye la solubilidad del oxígeno con la temperatura.
 - Aumenta la velocidad de difusión del oxígeno con la temperatura.
2. OBJETIVO DEL TRABAJO

Por una parte, comprobar cual de las cinco variedades empleadas presentaba mejor comportamiento germinativo bajo iguales condiciones.

Por otra parte, estudiar el efecto de diferentes grados de oxigenación (control, bajo (10), medio (30) y alto (60)) y concentración de nitrógeno (4, 8 y 12 mmoles/L) de la solución nutritiva, en la calidad y producción de canónigos en bandejas flotantes (floating system) (Valerianella locusta), a través de la determinación de la concentración de nitratos, oxalatos y variables de crecimiento vegetativo (altura de la planta, número de plantas por fisura, número de hojas por planta, área foliar, clorofila (SPAD) y el peso húmedo y seco de cada muestra.
3. MATERIAL Y METODOS GENERALES

Se realizaron tres experimentos en la Estación Experimental Agroalimentaria Tomas Ferro (ESEA) de la UPCT ubicado en La Palma (Cartagena). En todos los ensayos se emplearon dos variedades de canónigos: “Nomura” y “6B”.

En este punto se procederá a la descripción de la metodología general utilizada en el presente experimento refiriéndose simultáneamente el material utilizado.

<table>
<thead>
<tr>
<th>ENSEÑO</th>
<th>FECHA SIEMBRA</th>
<th>FECHA RECOLECCION</th>
<th>Nº DE DIAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitratos</td>
<td>16-abr</td>
<td>25-may</td>
<td>39</td>
</tr>
<tr>
<td>Nitratos</td>
<td>01-jun</td>
<td>03-jul</td>
<td>35</td>
</tr>
<tr>
<td>Oxigenación</td>
<td>20-may</td>
<td>22-jun</td>
<td>33</td>
</tr>
</tbody>
</table>

Tabla 1. Ciclo de cada ensayo

3.1. Preparación de las instalaciones

Lo primero que se hizo fue el acondicionamiento de las instalaciones y materiales, para ello se procedió a la limpieza y desinfección de bandejas flotantes (tipo styrofloat), camas de cultivo y bidones a emplear. También se procedió a la comprobación del sistema de bombeo, así como los datalogger utilizados para el registro de datos ambientales. Para el bombeo de aire empleamos un sistema de ventilación formado por una estructura de PVC con salidas de aire, y el datalogger es CR10X y CR1000 (Campbell Scientific), con las sondas que miden la temperatura del aire, la temperatura del agua, CE, humedad relativa, la radiación solar y el oxígeno disuelto en agua.
3.2. Siembra y manejo del cultivo

Tras la limpieza y preparación del material y maquinaria, se procedió a la siembra manual, intercalando fisuras y calculando un número aproximado de 20 semillas por fisura.

Los materiales empleados para llevar a cabo la siembra son los siguientes: bandejas flotantes de poliestireno expandido (tipo styrofloat) fabricadas por Europak s.p.a, que poseen 42 fisuras de 17,1 x 0,25 cm de forma troncocónica con unas dimensiones de 96 x 60 x 3,5 cm. que en nuestro caso se dividió en dos para emplear bandejas de 60 x 41 x 3,5 cm. con una mezcla equilibrada de sustrato de turba rubia y negra de la marca Floragard denominada sustrato comercial tipo S.

La siembra de las semillas se efectuó intercalando fisuras (una si otra no) que más tarde fueron compactadas con un elemento circular de grosor similar a la propia fisura. Las semillas empleadas, pertenecen a dos variedades diferentes de canónigos: “Nomura”, del banco Rick Zwaan y “6B” del banco Akira.
Calculando unas 12 semillas por fisura y empleando solo la mitad de estas (21 fisuras) para sembrar, obtuvimos una densidad de plantación aproximada de 1024 plantas/m².

Tras la siembra, se dejaron las bandejas en una germinadora (SANYO, Fitotron), a una temperatura constante de 25º C, 85% de humedad y oscuridad para facilitar la germinación. Después de un periodo de 3 días y con las plántulas ya germinadas, se procedió a introducir las bandejas en las camas de cultivo preparadas con una solución de agua fresca dentro del invernadero de policarbonato.

Para la preparación y acondicionamiento de las camas de cultivo, se limpió y desinfectó perfectamente la superficie de las mismas; tras 15 días y cuando el sistema radicular esta algo mas desarrollado, se vació el agua de las camas de cultivo, llenándolas a continuación con la solución nutritiva calculada a una altura de 10 cm. En último lugar se conectaron los sistemas de oxigenación en el fondo de la solución y se compruebo el pH de la solución nutritiva.

Pasados 12 días de la siembra, se hizo necesario efectuar técnicas de aclareo en las fisuras de las bandejas buscando una densidad final de plantación de 855 plantas/m², que corresponde con unas 10 plantas por fisura.

Figura 8: (A) Distribución del sustrato; (B) Compactación del sustrato; (C) Germinadora
3.3. Muestreo y toma de datos agronómicos

Cuando la plántula posee su primer par de hojas verdaderas, es decir, que no se trate de los cotiledones, se puede proceder a su primer muestreo. Para ello se siguieron los siguientes pasos: lo primero que se hizo fue la extracción de la planta completa de la bandeja, sacando un número aproximado de 10 plantas por fisura y una fisura por bandeja, que se colocaron en bolsas individuales y etiquetadas para su posterior transporte al laboratorio, donde se procesarán.

Estando ya en el laboratorio, se toma el peso fresco con una balanza digital, se le corta la raíz y quedando solo la parte aérea, de la cual se toman medida en cm desde la base de los pecíolos hasta la parte superior de la hoja más alta, luego se contabiliza el número de hojas por planta y el número de plantas por fisura. Se mide el contenido relativo en clorofila (SPAD) en hojas de cada repetición con un SPAD-505 (Konica-Minolta) y se mide el área foliar de cada repetición con un medidor de área foliar modelo LI-3100C (LICOR). Por último, para medir el peso seco, se introduce el material vegetal en una estufa a 60º, durante unos días, hasta conseguir un peso constante; un parte del material vegetal se conserva en fresco en el congelador para futuros análisis.

Una vez recopilados todos estos datos, se procede a su traspaso a un formato digital en una tabla Excel.

(A) (B) (C)

Figura 9: (A) Peso digital; (B) Medidor de área foliar; (C) Medidor de clorofila
Figura 10: (A) Muestra preparada para procesado; (B) Canónigos extraídos de bandeja

<table>
<thead>
<tr>
<th></th>
<th>1er MUESTREO</th>
<th>2º MUESTREO</th>
<th>3º MUESTREO</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRIMER ENSAYO</td>
<td>18/05/09.</td>
<td>22/05/09.</td>
<td>25/05/09.</td>
</tr>
<tr>
<td>SEGUNDO ENSAYO</td>
<td>29/06/09.</td>
<td>03/07/09.</td>
<td>06/07/09.</td>
</tr>
<tr>
<td>TERCER ENSAYO</td>
<td>15/06/09.</td>
<td>19/06/09.</td>
<td>22/06/09.</td>
</tr>
</tbody>
</table>

Tabla 2: Fecha de los diferentes muestreos

3.4. Determinación del contenido en nitratos y oxalatos

Hechos ya todos los muestreos y con todo el material vegetal seco, procedemos a su trituración en un molinillo. Para la fase de triturado, empleamos únicamente el material
vegetal del último muestreo, que es el que coincide con el del momento de la recolección y por este motivo, es el que nos interesa, ya que se trata del futuro alimento.

Trituramos de forma conjunta las tres repeticiones procedentes de la misma variedad y solución nutritiva o tipo de oxigenación según el ensayo, consiguiendo así 6 muestras trituradas de cada uno de los últimos muestreos. Luego se extraen tres repeticiones de 0.2 g de cada una de las 6 muestras anteriores, añadiéndole 50 ml de agua destilada. A continuación, las muestras así preparadas se colocan en un agitador Orbital Shater, modelo 481, a 50ºC, durante 40 minutos a 117 rpm.

Tras el agitado, se filtran los extractos utilizando embudos y filtros DP 145 110, para más tarde, con la ayuda de una pipeta Pasteur obtener dos muestras de cada una de las ya filtradas; una de las muestras se conserva en la UPCT y la otra es llevada para analizar a un Cromatógrafo Iónico, (Metron HM columna 838-861) en el laboratorio SAIT de la Universidad Politécnica de Cartagena.

Figura 11: Preparación de la muestra a analizar

3.5. Tratamiento de datos

Los datos trasladados a Excel se someten a un estudio estadístico mediante el programa Statgraphics Plus para Windows, que serán analizados con una ANOVA bifactorial.
4. ENSAYO DE GERMINACION CON DISTINTAS VARIEDADES DE CANONIGOS

4.1. Materiales y métodos

Para la preparación de nuestro ensayo de germinación se emplearon 5 variedades diferentes de canónigos, contando entre ellas Pulsar, Cirilla, Baikal, 6B y Nomura.

Buscando probar la influencia de la temperatura y la luz en la capacidad germinativa de la planta, expusimos a las semillas a las siguientes condiciones:

Se utilizaron 200 semillas de cada variedad, distribuidas en 4 placas petri por variedad (25 semillas por placa), Estas placas se colocaron en el interior de una cámara de germinación a una temperatura constante de 20ºC, a humedad constante y un periodo de luz de 12 horas.

Por otra parte dispusimos otras 20 placas petri (4 placas por variedad), con 25 semillas cada una, a una temperatura de 20º, humedad constante y sometidas a un periodo de oscuridad total.

En el transcurso de 6 días, se fueron contabilizando las semillas germinadas día a día, manteniendo la humedad de estas y observando su comportamiento.
4.2. Resultados

En el ensayo con luz, todas las variedades tardaron un mínimo de tres días en comenzar a germinar; la variedad que comenzó antes a germinar fue Pulsar, seguida de cerca por Baikal. La variedad Cirilla fue la primera en germinar todas sus semillas, todo lo contrario de otras variedades como Nomura y 6B, que no llegaron a germinar en su totalidad en este periodo de tiempo. Por su relación semillas germinadas / velocidad de germinado, se podría afirmar que la variedad Pulsar, con un 94 % de germinado, fue la que mejor respuesta obtuvo a nuestro ensayo. (Grafica 1)

En el ensayo de oscuridad, las variedades Nomura y en menor lugar 6B volvieron a ser las mas lentas y con menor poder germinativo. Al contrario del ensayo con luz, la variedad Pulsar no obtuvo una gran respuesta, al no completar el germinado de ninguna de sus placas petri; la variedad Baikal, fue la mas veloz y consiguió un buen porcentaje de germinado (Tabla 3); pero en este ensayo a oscuras, la variedad que mejor resultados obtuvo fue Cirilla, con una germinación casi completa de todas sus semillas en el periodo impuesto de 6 días.
Como conclusión, se comenta que el comportamiento germinativo de las variedades, es significativamente distinto en función de las condiciones de luminosidad de las que dispongan; teniendo así, las variedades Pulsar, Baikal y Nomura una mejor germinación en condiciones de luz, justo al contrario de las variedades 6B y Cirilla, que presentan mejor germinado a oscuras.(Grafica 2)

A pesar de los resultados de este ensayo, en el que verificamos la mala germinación de las variedades Nombre y 6B, se decidió emplearlas en el resto de experimentos basándose en el buen comportamiento agronómico observado en Ochoa, J. et al (2008), donde ambas variedades obtuvieron buenos resultados en numero de hojas, peso fresco y seco.

<table>
<thead>
<tr>
<th>VARIEDAD</th>
<th>LUZ</th>
<th>OSCURIDAD</th>
</tr>
</thead>
<tbody>
<tr>
<td>PULSAR</td>
<td>94</td>
<td>60</td>
</tr>
<tr>
<td>CIRILLA</td>
<td>87</td>
<td>89</td>
</tr>
<tr>
<td>6B</td>
<td>66</td>
<td>79</td>
</tr>
<tr>
<td>NOMURA</td>
<td>29</td>
<td>21</td>
</tr>
<tr>
<td>BAIKAL</td>
<td>87</td>
<td>59</td>
</tr>
</tbody>
</table>

Tabla 3: Porcentajes de germinación (%)

![Gráfica de barras](attachment:image.png)
Grafica 1: Comparación de las variedades en diferentes condiciones

Grafica 2: Porcentaje total de germinación en distintas variedades.
5. ENSAYO SOBRE LA INFLUENCIA DE LA CONCENTRACION DE NITROGENO EN LA ACUMULACION DE NITRATOS Y OXALATOS EN LA PRODUCCION DE CANONIGOS

5.1. Materiales y métodos

La siembra del primer experimento se realizo el 16 de Abril y se efectuaron tres muestreos, realizados a los 32, 36 y 39 días después de la siembra (correspondiendo al fin del cultivo). El segundo se sembró el 1 de Junio y sus respectivos muestreos fueron a los 28, 32 y 35 días después de la siembra (correspondiendo al fin del cultivo).

5.1.1. Composición de la solución nutritiva

Una vez que las bandejas ya está flotando en agua fresca y empezando a desarrollar su sistema radical, se aplica la solución nutritiva, que está formada por fertilizantes comerciales, anteriormente estudiados y calculados.

Tras su pesado, se van depositando en bolsas individuales dando como resultado tres tipos de solución nutritiva, de 12, 8 y 4 mmoles/L de N. Para cada una de ellas se prepararon tres bolsas, con la finalidad de realizar tres repeticiones con cada una de las concentraciones, repartiéndolas de manera aleatoria por el invernadero. La concentración de la solución nutritiva se puede observar en la Tabla 4.
Dibujo 2: Distribución de las soluciones nutritivas en el invernadero. (1° experimento)

Dibujo 3: Distribución de las soluciones nutritivas en el invernadero. (2° experimento)
<table>
<thead>
<tr>
<th></th>
<th>12mmoles/L</th>
<th>8mmoles/L</th>
<th>4mmoles/L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrato Magnesio</td>
<td>38</td>
<td>38</td>
<td>30</td>
</tr>
<tr>
<td>Nitrato Calcio</td>
<td>41</td>
<td>17</td>
<td>0</td>
</tr>
<tr>
<td>Sulfato Potasio</td>
<td>54</td>
<td>54</td>
<td>54</td>
</tr>
<tr>
<td>Fosfato Monocarbonico</td>
<td>23</td>
<td>23</td>
<td>19</td>
</tr>
<tr>
<td>Sulfato Amonio</td>
<td>13</td>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>Óxido Fosfórico</td>
<td>0</td>
<td>0.06</td>
<td>0</td>
</tr>
<tr>
<td>Óxido Magnesico</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Quelato Hierro</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Micronutrientes</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

Tabla 4: Composición de las distintas soluciones nutritivas del ensayo de nitrógeno.

Una vez preparadas las 9 bolsas, se depositaron una a una en bidones de 100 l, que tras su correcto mezclado con el agua se trasplantaron a la cama de cultivo con la ayuda de bombas de agua.

Justo después de verter la solución nutritiva, se procedió a la medición de el pH mediante un pHmetro modelo 507 de la marca (CRISON); se buscó un rango de entre 5.6-6, en caso de estar por encima, se empleo ácido sulfúrico para bajarlo. Con el fin de cada cultivo, se recogieron todos los datos climáticos y ambientales de los datalogger CR10X y CR1000 (Campbell Scientific), así como las sondas que miden la temperatura del aire, la temperatura del agua, CE, humedad relativa, la radiación solar y el oxígeno disuelto en agua, obteniendo los siguientes datos:
Datos de Nitrógeno 1:

<table>
<thead>
<tr>
<th></th>
<th>CE</th>
<th>HR</th>
<th>Tª AIRE</th>
<th>Tª AGUA</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAX</td>
<td>3,068</td>
<td>88,3</td>
<td>40,74</td>
<td>31,2</td>
</tr>
<tr>
<td>MIN</td>
<td>2,19</td>
<td>12,66</td>
<td>8,63</td>
<td>17,47</td>
</tr>
</tbody>
</table>

RAD. MEDIA A MEDIODIA: 688,033333 mmoles/m²seg

<table>
<thead>
<tr>
<th>OXIGENACIÓN</th>
<th>4 mmoles/L</th>
<th>8 mmoles/L</th>
<th>12 mmoles/L</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEDIA</td>
<td>6,898885986</td>
<td>6,855565321</td>
<td>7,4983753</td>
</tr>
</tbody>
</table>

Datos de Nitrógeno 2:

<table>
<thead>
<tr>
<th></th>
<th>CE</th>
<th>HR</th>
<th>Tª AIRE</th>
<th>Tª AGUA</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAX</td>
<td>3,304</td>
<td>70,924</td>
<td>33,53</td>
<td>43,762</td>
</tr>
<tr>
<td>MIN</td>
<td>1,921</td>
<td>40,522</td>
<td>22,64</td>
<td>17,396</td>
</tr>
</tbody>
</table>

RAD. MEDIA A MEDIODIA: 253,152625 mmoles/m²seg

<table>
<thead>
<tr>
<th>OXIGENACIÓN</th>
<th>4 mmoles/L</th>
<th>8 mmoles/L</th>
<th>12 mmoles/L</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEDIA</td>
<td>6,569833239</td>
<td>6,464042717</td>
<td>6,835510357</td>
</tr>
</tbody>
</table>

5.1.2. Oxigenación de la solución nutritiva

Una vez que la solución nutritiva es la deseada y las bandejas flotantes ya están repartidas, se tapan los huecos restantes de la cama de cultivo con el fin de evitar la proliferación de algas; en este momento ya se puede poner en marcha el sistema de oxigenación, que en este experimento está formado por un único tipo de sistema de oxigenación con una capacidad de oxigenación bajo, que se aplica a todas las mesas de cultivo.
5.2. Resultados

5.2.1. Experimento 1

Las características agronómicas de los canónigos en el momento de recolección (39 dds) con las diferentes concentraciones de nitrógeno y variedades empleadas están expresadas en la tabla 5.a.

Entre variedades solo se encuentran diferencias significativas en parámetros como la altura, nº hojas, contenido en nitratos y oxalatos; parámetros en los que la variedad Nomura es superior a la variedad 6B. Por otro lado, la variedad 6B alcanzó mayores resultados en peso fresco y peso seco, parámetros que no presentaron diferencias significativas.

Entre tratamientos aparecieron diferencias significativas en altura y contenido de oxalatos, mostrando los mayores valores la concentración de 4 mmoles/L. Además a esta misma dosis de nitrógeno (4 mmoles/L), se consiguieron valores superiores de nº hojas y contenido de nitratos, sin mostrar diferencias significativas con el resto de dosis de nitrógeno aplicadas. El tratamiento de 12 mmoles/L presentó los mayores resultados en
Optimización de la tecnología de producción de canónigos en bandeja flotante

Área foliar, peso fresco, peso seco y contenido relativo de clorofila (SPAD). Destacar la reducción significativa del contenido en oxalatos con el aumento de la concentración de nitrógeno, consiguiendo de esta forma la concentración de 12 mmoles/L, el menor contenido de estos.

<table>
<thead>
<tr>
<th>Nitrógeno 1</th>
<th>ALTURA (cm)</th>
<th>Nº HOJAS</th>
<th>ÁREA FOLIAR (cm²/planta)</th>
<th>PESO FRESCO (g)</th>
<th>PESO SECO (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOMURA</td>
<td>4,98 b</td>
<td>6,97 b</td>
<td>106,81</td>
<td>6,74</td>
<td>0,68</td>
</tr>
<tr>
<td>6 B</td>
<td>3,91 a</td>
<td>6,42 a</td>
<td>112,93</td>
<td>5,99</td>
<td>0,6</td>
</tr>
<tr>
<td>TRATAMIENTO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 mmoles/L</td>
<td>4,76 c</td>
<td>6,85</td>
<td>116,63</td>
<td>6,76</td>
<td>0,64</td>
</tr>
<tr>
<td>8 mmoles/L</td>
<td>3,65 a</td>
<td>6,58</td>
<td>93,3</td>
<td>5,29</td>
<td>0,56</td>
</tr>
<tr>
<td>12 mmoles/L</td>
<td>4,18 b</td>
<td>6,67</td>
<td>119,68</td>
<td>7,04</td>
<td>0,72</td>
</tr>
</tbody>
</table>

SIGNIFICACIÓN

<table>
<thead>
<tr>
<th></th>
<th>VARIEDAD</th>
<th>TRATAMIENTO</th>
<th>VAR. X TTO.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>x x x</td>
<td>x x</td>
<td>n.s.</td>
</tr>
<tr>
<td>VARIEDAD</td>
<td>n.s.</td>
<td></td>
<td>n.s.</td>
</tr>
<tr>
<td>TRATAMIENTO</td>
<td>n.s.</td>
<td>n.s.</td>
<td>n.s.</td>
</tr>
<tr>
<td>VAR. X TTO.</td>
<td>n.s.</td>
<td>n.s.</td>
<td>n.s.</td>
</tr>
</tbody>
</table>

* *, **, *** y n.s. indican el nivel de significación al 0.05, 0.01, 0.0001 y ausencia de significación, respectivamente, según un ANOVA bifactorial.

Tabla 5.a: Características agronómicas de los canónigos en el momento de su recolección

<table>
<thead>
<tr>
<th>Nitrógeno 1</th>
<th>SPAD</th>
<th>NITRATOS (ppm)</th>
<th>OXALATOS (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>VARIEDAD</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOMURA</td>
<td>45,7</td>
<td>3500,22 b</td>
<td>107,63 b</td>
</tr>
<tr>
<td>6 B</td>
<td>46,62</td>
<td>2462,26 a</td>
<td>79,42 a</td>
</tr>
<tr>
<td>TRATAMIENTO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 mmoles/L</td>
<td>44,2</td>
<td>3226,85</td>
<td>117,1 b</td>
</tr>
<tr>
<td>8 mmoles/L</td>
<td>46,06</td>
<td>2609,56</td>
<td>95,39 ab</td>
</tr>
<tr>
<td>12 mmoles/L</td>
<td>48,21</td>
<td>3107,3</td>
<td>68,08 a</td>
</tr>
</tbody>
</table>

SIGNIFICACIÓN

<table>
<thead>
<tr>
<th></th>
<th>VARIEDAD</th>
<th>TRATAMIENTO</th>
<th>VAR. X TTO.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n.s.</td>
<td></td>
<td>n.s.</td>
</tr>
<tr>
<td>VARIEDAD</td>
<td>x x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRATAMIENTO</td>
<td>n.s.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VAR. X TTO.</td>
<td>n.s.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabla 5.b: Contenido de nitratos, oxalatos y SPAD en las hojas de canónigo en el momento de recolección
En este caso las interacciones resultaron significativas en el caso de parámetros de crecimiento como la altura y el número de hojas (Grafica 5). En la altura podemos constatar que la diferencia de crecimiento se hace más significativa en caso de una concentración baja (4 mmoles/L), que en una de mayor concentración (8 y 12 mmoles/L). Con una concentración de 4 mmoles/L, la variedad Nomura obtuvo una diferencia de altura más significante que en el resto de concentraciones.

Grafica 5: Interacción del tratamiento y la variedad con la altura

En el número de hojas, la variedad Nomura obtuvo mayores resultados, llegando a duplicar el contenido en los tratamientos de concentración 12 mmoles/L y sobre todo el de 4 mmoles/L, donde Nomura alcanzó su mayor porcentaje en hojas, todo lo contrario que 6B, que obtuvo el mínimo. Con una menor significación, en la concentración de 8 mmoles/L se da el caso contrario, obteniendo así la variedad 6B mayor número de hoja que Nomura.
5.2.2. Experimento 2

Las características agronómicas de los canónigos en el momento de recolección (35 dds) con las diferentes concentraciones de nitrógeno y variedades empleadas están representadas en la tabla 6.a. La variedad y la concentración de nitrógeno influyeron significativamente sobre todos los parámetros excepto en el contenido relativo en clorofila (SPAD) y el contenido en oxalatos. Entre variedades, Nomura produjo significativamente mayor altura, nº hojas, área foliar, peso fresco y peso seco, mientras que 6B fue mayor en el contenido relativo en clorofila (SPAD), oxalatos y significativamente superior en el caso de los nitratos acumulados en planta.

Entre tratamientos, la ausencia de diferencias significativas la encontramos en peso seco, SPAD y oxalatos. La concentración de 4 mmoles/L fue la que favoreció valores significativamente más elevados de todos los parámetros agronómicos. La mayor concentración de nitratos y oxalatos se dio con una concentración de 12 mmoles/L, donde en el caso de los nitratos, dicha diferencia se hace más significativa. Por otra parte, los mínimos contenidos en nitratos y oxalatos, fueron alcanzados por la concentración de 8 mmoles/L.
mmoles/L, que a su vez fue superior en el parámetro de SPAD, sin que existieran diferencias significativas con el resto de dosis de nitrógeno aplicadas.

<table>
<thead>
<tr>
<th>Nitrógeno 2</th>
<th>ALTURA (cm)</th>
<th>Nº HOJAS</th>
<th>AREA FOLIAR (cm²/planta)</th>
<th>PESO FRESCO (g)</th>
<th>PESO SECO (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>VARIEDAD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOMURA</td>
<td>3,58 b</td>
<td>6,31 b</td>
<td>61,29 b</td>
<td>2,84 b</td>
<td>0,35 b</td>
</tr>
<tr>
<td>6 B</td>
<td>2,69 a</td>
<td>5,67 a</td>
<td>42,56 a</td>
<td>1,92 a</td>
<td>0,23 a</td>
</tr>
<tr>
<td>TRATAMIENTO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 mmoles/L</td>
<td>3,46 b</td>
<td>6,28 b</td>
<td>57,08 b</td>
<td>2,65 b</td>
<td>0,32 b</td>
</tr>
<tr>
<td>8 mmoles/L</td>
<td>2,91 a</td>
<td>5,91 a</td>
<td>50,12 a</td>
<td>2,21 a</td>
<td>0,27 a</td>
</tr>
<tr>
<td>12 mmoles/L</td>
<td>3,04 a</td>
<td>5,78 a</td>
<td>48,59 a</td>
<td>2,28 a</td>
<td>0,29 ab</td>
</tr>
</tbody>
</table>

SIGNIFICACIÓN

VARIEDAD	x x x	x x x	x x x	x x x	x x x
TRATAMIENTO	x x x	x x	x	x	
VAR. X TTO.	x	n.s.	n.s.	n.s.	n.s.

*, **, *** y n.s. indican el nivel de significación al 0.05, 0.01, 0.0001 y ausencia de significación, respectivamente, según un ANOVA bifactorial.

Tabla 6.a: Características agronómicas de los canónigos en el momento de su recolección

<table>
<thead>
<tr>
<th>Nitrógeno 2</th>
<th>SPAD</th>
<th>NITRATOS (ppm)</th>
<th>OXALATOS (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>VARIEDAD</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOMURA</td>
<td>30,42</td>
<td>2868,63 a</td>
<td>103,65</td>
</tr>
<tr>
<td>6 B</td>
<td>32,35</td>
<td>3746,68 b</td>
<td>120,74</td>
</tr>
<tr>
<td>TRATAMIENTO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 mmoles/L</td>
<td>31,46</td>
<td>3051,7 a</td>
<td>105,78</td>
</tr>
<tr>
<td>8 mmoles/L</td>
<td>31,93</td>
<td>2917,78 a</td>
<td>102,26</td>
</tr>
<tr>
<td>12 mmoles/L</td>
<td>30,76</td>
<td>3953,48 b</td>
<td>128,56</td>
</tr>
</tbody>
</table>

SIGNIFICACIÓN

VARIEDAD	n.s.	x x	n.s.
TRATAMIENTO	n.s.	x	n.s.
VAR. X TTO.	n.s.	n.s.	x

Tabla 6.b: Contenido de nitratos, oxalatos y SPAD en las hojas de canónigo en el momento de recolección
De las interacciones producidas entre variedades y tratamientos, destacamos la ocurrida con la altura y el contenido en oxalatos.

La variedad Nomura posee la mayor altura en todos los tratamientos, haciéndose este hecho más significativo en el caso de la concentración de 4 mmoles/L.

Grafica 3: Interacción del tratamiento y la variedad con la altura

En el contenido de oxalatos en planta (Grafica 4), a pesar de no obtenerse diferencias significativas alguna entre variedades, ni entre tratamientos, sí se obtuvo una baja significación cuando se estudió la interacción producida entre variedades y tratamientos. Se apreció un mayor contenido de oxalatos en la variedad Nomura con la concentración de 12 mmoles/L, mientras que en la variedad 6B, se obtuvieron mayores contenidos de oxalatos con la concentración de 8 mmoles/L.
Grafica 4: Interacción del tratamiento y la variedad con el contenido de oxalatos en planta.
6. ENSAYO SOBRE LA INFLUENCIA DE LA CONCENTRACION DE OXIGENO DISUELTO EN LA PRODUCCION DE CANONIGOS

6.1. Materiales y métodos

Este ensayo fue sembrado el 20 de Mayo y los muestreos fueron realizados a los 26, 30 y 33 días después de su siembra (correspondiendo al fin del cultivo).

6.1.1. Composición de la solución nutritiva

En este ensayo, la concentración de la solución nutritiva era la misma para todas las mesas de cultivo (12 mmoles/L de N), siendo en este caso la oxigenación el parámetro que varía entre los cultivos.

Pesadas las cantidades adecuada de los fertilizantes de la solución nutritiva (Tabla 7), los separamos en bolsas para depositarlos en todas las camas de cultivo tras su correcto mezclado con el agua.

Una vez que las bandejas ya están flotando cada una en su solución nutritiva, se procede a comprobar los valores de CE y pH, que corresponden respectivamente a una media aproximada de 2.8 d/Sm y 5.8 respectivamente.

Con el fin de cada cultivo, se recogieron todos los datos climaticos y ambientales de los datalogger CR10X y CR1000 (Campbell Scientific), así como las sondas que miden la temperatura del aire, la temperatura del agua, CE, humedad relativa, la radiación solar y el oxígeno disuelto en agua, obteniendo los siguientes datos:

<table>
<thead>
<tr>
<th></th>
<th>CE</th>
<th>HR</th>
<th>Tª AIRE</th>
<th>Tª AGUA</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAX</td>
<td>3,35700288</td>
<td>86,6</td>
<td>39,23</td>
<td>40,3166667</td>
</tr>
<tr>
<td>MIN</td>
<td>2,49312968</td>
<td>18,42</td>
<td>15,02</td>
<td>16,57</td>
</tr>
</tbody>
</table>
RAD. MEDIA A MEDIODÍA: 256,468965 mmoles/m²seg

<table>
<thead>
<tr>
<th>OXIGENACIÓN</th>
<th>CONTROL</th>
<th>BAJO</th>
<th>MEDIO</th>
<th>ALTO</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEDIA</td>
<td>4,23835725</td>
<td>6,49336585</td>
<td>7,32764993</td>
<td>7,47301004</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>12 mmoles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrato Magnesio</td>
<td>38</td>
</tr>
<tr>
<td>Nitrato Calcio</td>
<td>41</td>
</tr>
<tr>
<td>Sulfato Potásico</td>
<td>54</td>
</tr>
<tr>
<td>Fosfato Monoamónico</td>
<td>23</td>
</tr>
<tr>
<td>Sulfato Amónico</td>
<td>16</td>
</tr>
<tr>
<td>Ácido Fosfórico</td>
<td>0</td>
</tr>
<tr>
<td>Oxido Magnesio</td>
<td>0</td>
</tr>
<tr>
<td>Quelato Hierro</td>
<td>2</td>
</tr>
<tr>
<td>Micronutrientes</td>
<td>2</td>
</tr>
</tbody>
</table>

Tabla 7: Composición de la solución nutritiva del ensayo de oxigenación

6.1.2. Oxigenación de la solución nutritiva

En este ensayo la oxigenación es el parámetro que varía entre los cultivos. Para ello empleamos diferente grado de oxigenación mediante conducciones con capacidad de oxigenación diferente, conseguida con la mayor o menor presencia de salidas de aire en las tuberías de PVC que forman el sistema de oxigenación. De esta manera, llegamos a producir cuatro tipos de niveles de oxigenación: control (sin salidas de aire (C)), bajo (10), medio (30) y alto (60 salidas de aire).
La distribución de los sistemas de oxigenación se efectuó de manera aleatoria, repartiendo por el invernadero tres repeticiones de cada nivel de oxigenación, ocupando un número total de 12 mesas de cultivo.

Figura 14: Detalle de unión del sistema de oxigenación

Dibujo 5: Distribución del grado de oxigenación en el invernadero. (3º experimento)
6.2. Resultados

Las características agronómicas de los canónigos en el momento de recolección (33 dds) con diferentes grados de oxigenación y empleando dos variedades se expresan en la tabla 8.a.

Entre variedades, todos los parámetros analizados obtuvieron diferencias significativas, excepto el contenido de nitratos en planta. La variedad Nomura consiguió una mayor altura, número de hojas, área foliar, peso fresco y seco y mayor contenido en oxalatos frente a la variedad 6B que alcanzó el mayor contenido en nitratos y el mayor contenido relativo en clorofila (SPAD).

Entre tratamientos encontramos diferencias significativas en los parámetros de altura, nitratos y oxalatos. La altura de las plantas para los diferentes grados de oxigenacion presenta diferencias significativas, sobre todo cuando comparamos el grado medio con los demás. Se aprecia la existencia de diferencias significativas para los diversos tratamientos en relación al contenido de NO3 y C2O2 acumulados en las hojas de canónigo, dichas diferencias las encontramos entre tratamientos de grado bajo, alto y control. Por otro lado el nivel medio y bajo provocaron las mayores concentraciones de nitratos, significativamente diferentes al resto. El tratamiento de grado bajo consiguió los mayores resultados en área foliar, peso fresco y seco respecto a los otros grados de oxigenacion, sin diferencias significativas entre ellos. En el caso de los oxalatos, las diferencias también son notables, registrando mínimas cantidades en el caso de los tratamientos control y grado alto, al revés que el tratamiento de grado medio que acumuló la mayor cantidad de oxalatos, estando relacionado con el de grado bajo. Cabe destacar el hecho de que el tratamiento de grado bajo presentó las mayores tasas de área foliar, peso fresco y peso seco, sin que exista diferencia significativa entre ellas.
Tabla 8.a: Características agronómicas de los canónigos en el momento de su recolección

<table>
<thead>
<tr>
<th>Oxigenación</th>
<th>ALTURA (cm)</th>
<th>N° HOJAS</th>
<th>ÁREA FOLIAR (cm²/planta)</th>
<th>PESO FRESCO (g)</th>
<th>PESO SECO (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>VARIEDAD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOMURA</td>
<td>3,83 b</td>
<td>5,72 b</td>
<td>98,26 b</td>
<td>4,13 b</td>
<td>0,36 b</td>
</tr>
<tr>
<td>6 B</td>
<td>3,04 a</td>
<td>5,09 a</td>
<td>62,43 a</td>
<td>2,85 a</td>
<td>0,27 a</td>
</tr>
<tr>
<td>TRATAMIENTO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CONTROL</td>
<td>3,62 b</td>
<td>5,5</td>
<td>82,54</td>
<td>3,69</td>
<td>0,34</td>
</tr>
<tr>
<td>BAJO</td>
<td>3,60 b</td>
<td>5,41</td>
<td>94,75</td>
<td>4,12</td>
<td>0,35</td>
</tr>
<tr>
<td>MEDIO</td>
<td>3,09 a</td>
<td>5,3</td>
<td>72,2</td>
<td>3,04</td>
<td>0,3</td>
</tr>
<tr>
<td>ALTO</td>
<td>3,42 b</td>
<td>5,42</td>
<td>71,9</td>
<td>3,12</td>
<td>0,28</td>
</tr>
</tbody>
</table>

* **,** ***** y n.s. indican el nivel de significación al 0.05, 0.01, 0.0001 y ausencia de significación, respectivamente, según un ANOVA bifactorial.

Tabla 8.b: Contenido de nitratos, oxalatos y SPAD en las hojas de canónigo en el momento de recolección

<table>
<thead>
<tr>
<th>Oxigenación</th>
<th>SPAD</th>
<th>NITRATOS (ppm)</th>
<th>OXALATOS (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>VARIEDAD</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOMURA</td>
<td>40,7 a</td>
<td>2381,49</td>
<td>110,73 b</td>
</tr>
<tr>
<td>6 B</td>
<td>44,74 b</td>
<td>2750,95</td>
<td>43,05 a</td>
</tr>
<tr>
<td>TRATAMIENTO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CONTROL</td>
<td>42</td>
<td>2165,33 a</td>
<td>61,05 a</td>
</tr>
<tr>
<td>BAJO</td>
<td>42,16</td>
<td>2973,47 d</td>
<td>84,07 ab</td>
</tr>
<tr>
<td>MEDIO</td>
<td>42,05</td>
<td>2894,19 cd</td>
<td>111,65 b</td>
</tr>
<tr>
<td>ALTO</td>
<td>44,66</td>
<td>2231,9 ab</td>
<td>50,80 a</td>
</tr>
</tbody>
</table>

SIGNIFICACIÓN

VARIEDAD	n.s.	x x
TRATAMIENTO	n.s.	x x
VAR. X TTO.	n.s.	x

Tabla 8.b: Contenido de nitratos, oxalatos y SPAD en las hojas de canónigo en el momento de recolección
Cabe destacar las interacciones que existen entre variedades y tratamientos con parámetros como la altura y en menor medida los oxalatos.

En el caso de la altura apreciamos mayores tasas de crecimiento de la variedad Nomura en los distintos grados de oxigenación (control, bajo, medio y alto), esta diferencia se hace más significativa en el caso del tratamiento de grado bajo. (Grafica 5)

![Grafica 5: Interacción del tratamiento y la variedad con la altura](image)

En el contenido de oxalatos, podemos contemplar (Grafica 6) como la variedad Nomura acumuló mayor contenido en oxalatos que la variedad 6B en todas los tratamientos; esta diferencia se hace más evidente en tratamientos como el de grado medio, donde la variedad Nomura llegó a triplicar dicho contenido. También es llamativo el hecho de la escasa influencia del grado de oxigenación en la variedad 6B.
Grafica 6: Interacción del tratamiento y la variedad con el contenido de oxalatos en planta.
7. DISCUSION

En el primer experimento de nitrógeno, se comprobó que en la mayoría de los parámetros analizados relativos al comportamiento agronómico, se obtuvieron valores superiores en comparación al resto, esto es porque el ciclo de cultivo del primero fue de 39 dds y el segundo y tercero presentó un ciclo de cultivo inferior a 33 y 35 dds respectivamente.

En la altura, los mayores resultados se obtuvieron con el primer experimento (Nitrógeno 1), en este parámetro, se hace notable la diferencia de días entre experimentos, pues se registra un aumento de altura entre experimentos, casi proporcional al aumento del número de días de cultivo, siendo aconsejable reducir su ciclo, para que presenten una altura adecuada como producto “baby leaf. Este hecho coincide con Oliveira, S. (2008) sobre un cultivo de espinaca, donde se verificó el mismo comportamiento.

Entre variedades, Nomura del primer experimento de Nitrógeno, fue la que más creció, mientras la variedad 6B del segundo experimento (Nitrógeno 2) fue la que menos lo hizo. Comparando los dos ciclos de cultivo con distintas dosis de Nitrógeno, encontramos las diferencias más significativas en el primer experimento, donde la concentración de 4 mmoles/L provocó el mayor resultado de altura. Todo lo contrario de los resultados del segundo experimento, donde la concentración de 8 mmoles/L registró la menor altura de todos.

El número de hojas por planta en los experimentos estuvo más influenciado por las variedades empleadas que por los diferentes tratamientos, presentando la variedad Nomura una significativa superioridad en todos los experimentos, que se hace más evidente en el primero de ellos.
Entre dosis de Nitrógeno es también en el primer experimento, y a la concentración de 4 mmoles/L con los que se consiguió aumentar su valor. Para este parámetro, el ensayo de oxigenación fue el que mostró los valores más bajos de los tres, tanto en la variedad Nomura como en la 6B. Asimismo, el grado medio de oxigenación, alteró el número de hojas, reduciendo su valor. En relación al área foliar de las plantas presenta distintos valores entre experimento, ya que en el primer y tercer experimento no se encontraron diferencias significativas entre tratamientos, pero en el segundo sí. Entre variedades, fue de nuevo la variedad Nomura del primer experimento la que mayor resultado consiguió, al contrario de la variedad 6B del tercer experimento, que mostró el menor área foliar. Entre tratamientos, la concentración de 12 mmoles/L fue la responsable de los mayores (Nitrógeno 1) y menores (Nitrógeno 2) resultados en el parámetro de área foliar. Destacar el hecho, de que en este parámetro los mayores resultados entre variedades y tratamientos fueron logrados en el primer experimento y los peores en el segundo.

El peso fresco y seco tienen el mismo comportamiento, encontrando las mayores diferencias significativas en el segundo experimento (nitrógeno 2), donde se dan los más bajos resultados entre tratamientos, con una concentración de 8 mmoles/L y de forma más significativa entre variedades, con 6B. Los mayores resultados se dan en el primer experimento donde Nomura entre variedades y 12 mmoles/L entre tratamientos, mostraron las más elevadas cantidades de peso seco y fresco.

Los resultados del segundo experimento, donde la concentración de 4 mmoles/L mostró los mayores resultados en los parámetros de área foliar, peso fresco y seco, se contradicen con los resultados del primer experimento, donde la mayor concentración (12 mmoles/L) provocó mayores resultados en esos parámetros. También Ochoa et al. (2008) realizaron un estudio de producción de canónigos con distintas concentraciones de nitrógeno, donde se verificó que el aumento de la concentración de nitrógeno en la solución nutritiva incrementó significativamente el peso fresco, seco y el área foliar de las variedades cultivadas, siendo las concentraciones de 12 mmoles/L las que favorecieron valores significativamente más elevados en estos parámetros.
En el experimento de oxigenación se aprecia la ausencia de diferencias significativas en todos los parámetros de crecimiento excepto la altura, este hecho corresponde con Lara, L. *et al* (2008) en un estudio del nivel de oxigenación de Portulaca oleraceae en la que se dio la misma circunstancia.

Aparte de los parámetros de crecimiento, las muestras presentaron diferencias significativas en el contenido en nitratos, oxalatos, aunque menores en el contenido relativo de clorofila (SPAD).

En el contenido relativo de clorofila en planta (SPAD) solo se obtuvieron diferencias significativas entre las variedades del segundo experimento. Los mayores resultados entre variedades y tratamientos, fueron logrados por 6B y 12 mmoles/L respectivamente, en el primer experimento (Nitrógeno 1), justo lo contrario de lo sucedido en el segundo experimento donde Nomura entre variedades y 12 mmoles/L entre tratamientos consiguieron los mas bajos resultados.

Según Paschold (1989), el contenido de nitratos en la planta viene determinado por un conjunto de factores ambientales (luz, temperatura, entre otros), nutricionales (nitrógeno, fósforo, potasio, entre otros) y propios del cultivo (genotipo, órgano vegetativo, edad, entre otros) que interactúan entre sí.

En el primer experimento apreciamos diferencias significativas solo entre variedades. La mayor acumulación de nitratos en planta la encontramos en el segundo experimento (nitrógeno 2) mediante el tratamiento de concentración de 12 mmoles/L, la misma dosis de nitrógeno aplicada en el primer experimento, realizado en meses mas frescos ,registró menor cantidad de nitratos acumulados. Un estudio de Gaviola, (1996) de los factores de manejo que inciden sobre la calidad de hortalizas, confirma que las siembras mas cercanas al invierno obtuvieron menores cantidades de nitratos. El tratamiento de control del tercer experimento (oxigenación) registra la mínima acumulación de nitratos con 2165 mg/Kg PF, que en cualquier caso, es una cantidad significativamente superior a los resultados de Dellacecca *et al*. (2001) en los que se obtuvieron 510 mg/Kg PF de nitratos en canónigos.
Por el contrario, Santamaria et al. (2002) indica que la hierba de los canónigos se encuentra clasificada entre las especies con alto contenido de nitratos (>2500 mg kg\(^{-1}\) PF.) en sus hojas, resultado que se aproxima más a nuestra cantidad de nitrato acumulada.

Entre variedades, la máxima concentración de nitratos se dio en la variedad 6B del segundo experimento, al revés de la variedad Nomura del tercer experimento que consiguió la menor cantidad sin diferencias significativas.

El contenido de oxalatos en las hojas presenta diferencias significativas en el primer y tercer experimento. En el segundo experimento se encuentran las mayores cantidades de oxalatos, tanto entre variedades (6B) como entre tratamientos (12 mmoles/L) sin que exista diferencia significativa alguna. Por otra parte, la menor acumulación de estos compuestos se da en el tercer experimento (oxigenación), donde 6B entre variedades y grado alto de oxigenación, entre tratamiento, mostraron las cantidades mas bajas.
8. CONCLUSION

A la vista de los resultados expuestos anteriormente podemos extraer las siguientes conclusiones del estudio realizado en tres experimentos sobre dos variedades de canónigo.

1. Los ensayos de germinación realizados, a temperatura constante de 20°C, aportaron que la germinación de la variedad Nomura fue menor que la variedad 6B, tanto en condiciones de luz como en oscuridad.

2. La variedad Nomura mostró mejor comportamiento agronómico (peso, altura, número de hojas y área foliar) que la variedad 6B, considerando los tres ensayos realizados, independientemente del tratamiento aplicado.

3. La solución nutritiva con un nivel de oxigenación bajo mostró el mejor comportamiento agronómico para las dos variedades ensayadas; por otro lado, este mismo nivel de oxigenación aportó la mayor concentración de nitratos en planta.

4. La dosis más baja de nitrógeno aplicada en la solución nutritiva (4 mmoles/L) no indujo la reducción de la concentración de nitratos en planta.

5. Las variedades de canónigos Nomura y 6B cultivados en bandejas flotantes y en estas condiciones de cultivo, mostraron bajas concentraciones de oxalatos, por lo que podemos indicar que la presencia de este compuesto no supone ningún riesgo desde el punto de vista sanitario; por el contrario, la concentración de nitratos en planta, se encuentra en el límite de los máximos permitidos en la mayoría de los países europeos.
9. BIBLIOGRAFÍA

✓ Emanuela Fontana and Silvana Incola (2009) Traditional and soilless culture systems to produce corn salad (Valerianella olitoria L.) and rocket (Eruca sativa Mill.) with low nitrate content. Journal of Food, Agriculture & Environment Vol.7 (2): 405 - 410

http://es.wikipedia.org/wiki/Oxalato_(qu%C3%ADmica)