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Abstract—We present a simple analytical implementation of
the static singular integrals arising in the volume/surface integral
equation formulation for the analysis of mixed conducting and di-
electric structures such as printed circuits with finite-size dielectric
objects. The singularity of the Green’s functions is extracted from
the kernel of the integral equation as a static term. This term is
then evaluated analytically for coincident rectangular cells in two
and three dimensions. The new technique allows an accurate and
efficient evaluation of method of moments (MoM) self-interactions
compared to other methods previously used in the literature.

Index Terms—Dielectrics, electromagnetic analysis, integral
equations, integration, moment methods.

1. INTRODUCTION

HE volume integral equation technique (VIE) is a widely
T used formulation for the analysis of a large class of
problems containing dielectric objects of finite dimensions and
complex shapes [1]. In this kind of problem, Green’s functions
cannot account for the dielectric objects, and one has to resort
to the use of the well-known free-space Green’s functions
[2]. Using this formulation, the dielectric objects are modeled
with the aid of polarization currents defined on their volumes.
The subsequent application of the method of moments (MoM)
requires the computation of overlapping integrals between the
free-space Green’s functions and the basis and testing func-
tions (base and test integrals). When developing this approach,
surface charge distributions appear at the outer surfaces of
homogeneous bodies. As a result, several combinations of
surface and volume integrals also need to be computed.

In the above frame, the authors have derived an efficient im-
plementation of the volume/surface integral equation (VSIE)
approach for the analysis of mixed dielectric and metallic ob-
jects. The efficiency of the formulation is increased by following
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a singularity extraction technique combined with analytical in-
tegration. The free-space Green’s functions are first split into
static and dynamic parts. The dynamic part thus obtained is
bounded, and it can be integrated numerically without effort.
What remains then is the calculation of the static term con-
taining the singular behavior of the Kernel. To perform this task,
integration techniques based on transformations from rectan-
gular to cylindrical or spherical coordinates have been devel-
oped in the past [3]. Other approaches to treat this problem are
based on the analytical integration of the singular term of the
Kernel [4].

In this letter, we also propose to apply analytical integration
to the singular term. However, as a novelty with respect to other
previous works [4], we apply analytical integration at the same
time to both source and observation cells. In this way, both
test and base integrals are evaluated analytically. The proposed
analytical integration increases accuracy and reduces consid-
erably the computational cost for medium-size problems. The
analytical integration is based on the dyadic identities reported
in [5], which are extended for the first time to account for
volume integration and mixed surface—volume interactions
with rectangular domains in two and three dimensions. The
included results show the efficiency and accuracy of the new
approach for the treatment of the singularity in comparison
to other previous techniques [3], [4]. This novel integration
technique is of practical interest for the analysis of microstrip
antennas or radomes.

II. THEORY

The formulation under consideration is a general VSIE tech-
nique including metallic and dielectric objects. First, the static
term of the Green’s functions is extracted following a Taylor
series expansion. A standard VSIE formulation leads to the fol-
lowing source and volume integrals for the static term:

I, = / /’ L dS’dS; on metallic surfaces D
I, = / fi - /s e fb dS’dS; on metallic surfaces (2)
I; = /\ /\ — dV’dV; in dielectric objects 3)
I, = /\ fi - /\ ) fde dV;  in dielectric objects (4)

Is = //—dS'dV on the dielectric surfaces  (5)
v ’

where ﬁ, and ﬁ are the basis and testing functions employed
in the MoM implementation. Also, Rg is the spatial distance

1536-1225/$26.00 © 2010 IEEE



88

P
. v

v " 7’

P, / fvs
C P‘S/

3 § 12 & Rs
/ S b
z a
Ry = \/(;1: -2+ (y—y )2+ (2 —2)?

Fig. 1. General geometry of the integration domains considered in this letter.

between observation and source points considering two dimen-
sions (surface case), whereas Ry is the volumetric counterpart
of this distance. Finally, Rvs denotes a distance between a point
inside a volumetric region and another point placed at one of the
surfaces that encloses that region (see Fig. 1). Integrals (1) and
(3) are those corresponding to the static MoM contributions of
the electric scalar potential in two and three dimensions, respec-
tively. On the other hand, (2) and (4) refer to the contributions
of the magnetic vector potential in the same cases. Finally, (5)
corresponds to a mixed surface—volume interaction due to the
external charges distributed in the outer surfaces of homoge-
neous bodies.

Integrals I; to I5 can be performed numerically using stan-
dard quadrature and cubature rules [6], when source and obser-
vation integration domains do not coincide. For the coincident
cases S = S’ and V = V’, a different strategy must be adopted
in order to avoid numerical problems and serious inaccuracies.
A useful approach consists in transforming the source and ob-
servation points into cylindrical or spherical coordinates. It is
well known that the term 1/R is canceled out mathematically
due to the Jacobian that appears in these transformations. Alter-
natively, other authors have derived analytical expressions for
the base integration [4]. The analytical integration absorbs the
singularity of the Green’s functions, so numerical integration
can be applied to the outer test integration. In this letter, a new
strategy is proposed based on a double analytical integration of
terms of the form 1/R for coincident surface and volume do-
mains. In this way, no numerical integration is needed for the test
integration. The procedure for triangular surfaces was presented
in [5]. Based on this work, the authors have extended such pro-
cedure to rectangular domains for both surface and volume cases
(as illustrated in Fig. 1).

A. Identities and Integrals for Rectangular Domains

In [5], the authors started from a set of useful algebraic iden-
tities that helped to reduce the complexity of the MoM integrals.
In two dimensions, and adapted for rectangular surfaces, these
identities take now the following form:

= — Vs - V§Rs (6)
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R_SZVSXVISXIRS_VSV/SRS (7)
(V5 x I+ fi, Rs) = V& x (Rs fi) @®

fi-(VsV5Rs)- fu="Vs - (V's - Rs | fifo

. L oo 1=
(feRs — Rsfy) — §IR§

W =

+

). ®

Here, the subscript S indicates that the spatial distance and the
differential operators are expressed in two-dimensional coordi-
nates (Fig. 1). These are the same expressions that appear in [5]
for triangular domains and Rao—Wilton—Glisson (RWG) basis
and testing functions, except for the case of (9), where the con-
stants 1/3 and 1/9 change depending on the definition of the
basis functions employed (which are rooftops defined on rect-
angular cells for our case).

These identities can now be extended to the 3D case of rect-
angular prisms cells, resulting in

2
R—v = —Vvy- V'VRV (10)
oI ;T /
R— = VV X VV X IRv—VV VV RV (11)
Y

( IV X j ﬁJRv) :VIV X (RV ﬁj) (12)

e 1 s
ftfb‘l‘z(ftRS

). (13)

Now, the subscript V denotes that operations are performed in
three dimensions (illustrated in Fig. 1). It can be noticed that
these new identities maintain the same form as the previous
ones, differing only in some constants that appear due to the
additional spatial dimension.

Finally, because we are also interested in mixed sur-
face—volume interactions, an additional identity must be added
to complete the whole set of useful equations, namely

Fi- (Vv Vi Ry)-fo=Vy - (v’v Ry

I
- Rsfv) — EIR%

2 d?
—— = —Vs-V§Rys + — Rys.

RVS 822 ( 14)

Using these identities in combination with the well-known
Gauss, Stokes, and Curl theorems, the integrals expressed in
(1)—(5) can be transformed into the following bounded inte-
grand expressions:

11:—// Rs - dl'dl

C ’

n=- [ [ Rt
C ’

15)

Fif= Rfi+ 5Uifts - RsFo)

|
+7 <ft - §RS> @ dl'dl (16)

1
132—5//R\rﬁ~ﬁ’d5’d5
Js Jst
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C
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In the above expressions, C and C’ denote the linear contours of
the surface cells, and S and S’ correspond to the surface bound-
aries of the volume cells. The vectors (@, #') are the outward
vectors normal to the observation and source integration do-
mains (linear or surface depending on the case), respectively.
It is interesting to note that, due to the application of the iden-
tities, the term 1/R has changed to R, which is bounded for
R — 0. Also, the complexity of the integration domains has
been reduced in one dimension for each case. Hence, it is pos-
sible to evaluate analytically the expressions (15)—(19).

Although the integration domains are simple, the final ana-
lytical results for all the integrals require very long calculus and
algebraic manipulations, specially in the case of the volumetric
cells. Nevertheless, we have verified that these operations can be
performed with well-known symbolic analysis software, such
as Mathematica [7]. The resulting expressions are composed of
simple logarithmic and inverse of trigonometric functions, de-
pending only on the size cell dimensions. Therefore, they can
be evaluated very quickly with a computer. The final expres-
sions for rectangular domains (17, I5) and for volume—surface
domains (I5) are included in the Appendix, whereas the for-
mulas for volume domains have been published in a Web page
[8] due to space reasons.

III. RESULTS

In this section, we propose to evaluate the performance of
two different numerical techniques for the computation of the
different static singular integrals, taking the analytical results
derived in this letter as the reference results. The first technique
is the semianalytical method proposed in [4], widely employed
in the computation of the singular and close to singular inter-
actions of the MoM. In this case, the base integral is reduced to
line integrals along the edges of a polygon or polyhedron. These
line integrals can be written in close form. Nevertheless, this
technique requires a numerical integration for the test integral,
which increases the computational cost when using a Galerkin
MoM procedure. Moreover, this method yields to numerical in-
accuracies when computing the integrals for observation points
close to the edges of the source domain.

The second technique was presented in [3] and is based on
a transformation from rectangular coordinates to cylindrical
or spherical coordinates depending on the original integration
domain. This procedure needs to perform a different coordinate
transformation for each observation cubature point of the test
integration. Once the coordinate transformation is done for
each observation point, a Gauss—Legendre quadrature rule is
employed for computing the base integral since the singularity
has been canceled out by the Jacobian of the transformation.

TABLE I
NUMBER OF INTEGRATION POINTS NEEDED IN THE TEST INTEGRAL FOR THE
DIFFERENT STATIC SINGULAR INTEGRALS IN ORDER TO OBTAIN
A RELATIVE ERROR BELOW 103

[ - [[ Semianalytic - Wilton | Sph-Cyl coordinates |

I 13 10
1> 13 16
I3 31 31
Iy 31 58
Is 6 6

Using this technique, the base integral is done in spherical
or cylindrical coordinates, while the test integral is solved
using cubature rules [6]. For the numerical tests, a standard
rectangular (surface case) or hexahedral (volume case) cell of
aspect ratio (a; b = 0.5a; ¢ = a) has been selected. In Table I,
we present the number of integration points needed in the test
integral for the two mentioned numerical techniques in order
to obtain a relative error below 10~2. The computation of the
relative errors has been done taking as the reference results
the analytical expressions derived in this letter. For the second
technique, we have selected 10 fixed points for integration
along the three spherical coordinates. The test integral has been
solved in all cases with specialized cubature rules derived from
[6]. Results show that the mixed volume—surface integral I5
requires the least number of integration points. This is because
the singularity is concentrated in one extreme of the integra-
tion domain. On the contrary, the volume integral with linear
variation I, requires more numbers of points than the others.
This is because more points are needed to properly represent
the volume region. These results give an idea on the gain in
efficiency that can be obtained when the new analytical tech-
nique presented in this letter is used instead of the alternative
numerical approaches.

IV. CONCLUSION

In this letter, we have presented a simple and efficient tech-
nique for evaluating the singular contributions in the general
frame of a volume/surface integral equation (VSIE) formulation
solved by MoM. This formulation is very useful for the anal-
ysis of finite-size microstrip antennas, microstrip transmission
lines with complex features, or antennas covered by radomes. A
novel analytical integration in rectangular domains is applied to
the static terms of the Green’s functions (for both surface and
volume cases). It is shown that the new technique improves the
accuracy and reduces the computational cost, as compared to
pure numerical or semianalytical integration. Useful numerical
results are presented to confirm the practical value of the new
approach.

APPENDIX
ANALYTICAL EXPRESSIONS

Considering the domains and the reference coordinate sys-
tems of Fig. 1, the basis and testing functions employed for the
integrals are defined as a linear variation along the z-axis. There
are two possible orientation cases, one along positive z-axis (f1)
and one along negative Z-axis (ﬁ), taking the following forms:

(20a)
(20b)
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Under these considerations, the surface—surface integral for

the scalar potential is

I

The surface—surface integral with linear variation takes different
forms if the basis and test functions have equal or opposite ori-
entations. When they have the same orientation, the following

_ ;(ag’ 418 — %(cﬂ +12)/% — b In

—b+va?+b?
b++a2+b2

—a?bIn

expression is obtained:

1
I2a:—

If basis and test functions have opposite orientations, the fol-

180

/a2 - b2
va2 + b2 + 60a3b% In atva 407

_a+1/a2+b2
b+ Va?+b?

+450*bIn | —————r
—b+Va%+b?

lowing expression is obtained:

I

Similar expressions are obtained when basis and test functions
are oriented along other axes, just interchanging the dimensions

(a

=360 80a® + 8b° — 152a° + (72a* — 8b* + 4a*b?

Va2 4+ b2 +15ab| — 106> In b + b(4a® + 5b%)

In(—a+ Va2 + b2)+b(—4a®>+5b%) In (a++/ a2 +b2)
b JaZ 2
+6atIm [ PE VLD (23)

b+ Va®+0b2

,b) by the dimensions along the relevant axes.

Finally, the volume—surface integral takes the following ex-

pression for the face shown in Fig. 1:

I

=15 4¢t + (6a%c — 4c®)

a2 4 2 4 (6b%c — 4¢?)

Vb2 + 2+ (—6ac—6b*c+4c)d—24abc? arctan [

—a+va?+b?
a++va?+b2

21

(22)

)

cd

g

24a° 4 60a’b® 4 4b° — (24a* + 4b* + 584%b?)
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a
—2a*Ina — 26" Inb + (a* — 6a’b” + b*) In [a® + b7]

+ 2a*In [c—i— a2+02} + 2b*1n [c—i— b2—|—c2]

b
— 8ab? arctan [%] — 8abarctan [—2}

—a+d —-b+d

—12 In|——— In|——

abe bn[a—i—d]—}_an[b—}—d}
(—2a* + 1260 — 2b™)In [c + d] + 2¢3

b+ Vb2 + c? —-b+d

2l In | ————=|+In|—
b4+ Vb2 2 b+d

—a+Va?+c?

+al31 [b2+02]+1
al3ln | —— n|—————
a+Va? + c?

c2

a+d 02+2a(a—|—\/a2—|—02)
+In|——|+3In
—a+d b2+ 2+ 2a(a+d)
(24a)
a? 4+ b% + 2. (24b)

The integral for other faces can easily be obtained by inter-
changing (a,b) by the new dimensions of the relevant face:

(a,¢)

[1

[2

3

[4

[5

[6

[7

[8

or (b, ¢). The volume-volume integrals are given in [8].
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