UNIVERSIDAD POLITÉCNICA DE CARTAGENA

Departamento de Economía

Área de Fundamentos del Análisis Económico

¿POR QUÉ LA VIRTUD ESTÁ EN EL PUNTO MEDIO?

PROBLEMAS DE RACIONAMIENTO CON PRINCIPIOS DE EQUIDAD LEGÍTIMOS.

José Manuel Jiménez Gómez

2010

Directores:

Mª Carmen Marco Gil

Josep E. Peris Ferrando
UNIVERSIDAD POLITÉCNICA DE CARTAGENA

Departamento de Economía

Área de Fundamentos del Análisis Económico

WHY DOES VIRTUE LIE IN THE MIDDLE GROUND?

RATIONING PROBLEMS WITH COMMONLY ACCEPTED

EQUITY PRINCIPLES.

José Manuel Jiménez Gómez

2010

Advisors:

Mª Carmen Marco Gil

Josep E. Peris Ferrando
A nuestro bebé, cuya existencia alberga la virtud.
AGRADECIMIENTOS

La presente tesis es un esfuerzo en el cual, directa o indirectamente, han sido muchas las personas que, en mayor o en menor medida, y de forma desinteresada me han ayudado, leyendo, opinando, corrigiendo, teniendo paciencia y prestandome su ánimo y confianza en todo momento, para, así, hacer posible su culminación.

Agradezco en primer lugar a mis directores todo el esfuerzo y apoyo académico y personal:

A mi directora de tesis María del Carmen Marco Gil, Universidad Politécnica de Cartagena, por haberme guiado magistral y fraternalmente en cada uno de los pasos necesarios en mi aprendizaje. Agradecerle toda la paciencia que ha tenido conmigo para poder llegar al punto de aprender, entender y disfrutar del área de Fundamentos del Análisis Económico. Creo, sinceramente, que no hubiera podido llegar hasta aquí sin sus ánimos calurosos, precisas correcciones, enseñanzas precisas y directrices certeras.

Mi director de tesis Josep Enric Peris Ferrando, Universidad de Alicante, quien entró a participar en este proyecto de la mano de mi directora, pero cuya inclusión ha sido de vital importancia en el desarrollo y puesta a punto de todas y cada una de las fases de esta tesis, académicas, personales y económicas, por su rigor, profesionalidad y humor, consiguiendo que este viaje sea más llevadero.

En segundo lugar, a pesar de que con todos los profesores miembros del Departamento de Economía he tenido una excelente relación, mostrándome su apoyo y cariño, debo destacar a Juan Patricio Castro Valdivia, por haberme iniciado en la carrera universitaria; a Ignacio Segado Segado, por ayudarme con sus consejos y
conseguir evitar mi desesperación en tan arduo recorrido a través de innumerables charlas; y, por último, pero no menos importante a Perico, Pedro Gadea Blanco, a quien le debo la visión desenfada de cualquier problema, y la lección de aprender a relativizarlos.

A nivel administrativo destacar la ayuda recibida por Mª Victoria García Manzanares, por su apoyo informático, realizando una especial mención a Loli, Dolores Guerrero Belmonte, por resolverme cualquier tarea administrativa posible e imposible, mostrando en todo momento un gran cariño y dedicación.

Asimismo, mostrar mi agradecimiento al resto de personal de la Facultad, profesores y auxiliares, ya que todos han aportado su “granito” necesario para la realización de esta tesis. Si bien, es necesario resaltar a la atención recibida por parte de Gine, Ginesa Pérez Romero, a quien debo el poder tener “acceso” a mi despacho y demás salas, al ser ella consciente de que mi cabeza no siempre está donde debiera; así como la ayuda recibida por Juan Francisco Sánchez García, quien sufre las continuas desavenencias e interrogantes sobre el \LaTeX\ como mi instructor, sin su ayuda y conocimientos me hubiera sido imposible realizar la encuadernación de la tesis aquí presente.

También agradecer la formación recibida y las situaciones vividas durante los años de doctorado en el Departamento de Fundamentos del Análisis Económico de la Universidad de Alicante, los cuales han sido muy importantes en la consecución de los objetivos expuestos en esta tesis.

Quiero, especialmente, agradecer a mis padres, Pepe y Ana, a mis hermanos, Pablo A., Jonatan y Alejandro, a mis yayos, Manolo y Antonia, bisabuelos, Pepe y Carmen, y abuelos, Pepe y Ana, así como a mis suegros, Felipe y Mari Carmen, y al resto de familia, el apoyo incondicional y el cariño que siempre he tenido de ellos, entendiendo mis ausencias y malos momentos, en especial los recibidos por parte de mi mujer e hijo, Mari Carmen y Gabriel, quienes lo sufren diariamente.
Finalmente, agradecer el apoyo económico recibido por una parte de la Fundación Séneca, Agencia de Ciencia y Tecnología de la Región de Murcia a través de becas predoctorales FPI y el proyecto de investigación 05838/PHCS/07 del Programa de Generación de Conocimiento Científico de Excelencia de la. Por otra parte, del Ministerio de Educación y Ciencia, a través de los proyectos de investigación SEJ2007-64649 y SEJ2007-30297-E/ECON, así como del Ministerio de Ciencia e Innovación con el proyecto CSD2006-00016.

Deseo mostrar mi más sincero agradecimiento a todas estas personas sin las cuales, este trabajo no habría visto la luz:

Muchas gracias
ÍNDICE

Resumen ... 1

Abstract - Introduction ... 9

Preliminares .. 17
 0.1 Problemas de bancarrota: Enfoque Axiomático. 17
 0.2 Acotaciones en problemas de bancarrota. 26
 0.3 El criterio de Lorenz. .. 28
 0.4 Enfoque Estratégico. ... 30
 0.5 Juegos con Utilidad Transferible. 32

Capítulo

1 El modelo: Problemas de Bancarrota Lorenz-Bifocales. 39

2 Un nuevo enfoque para acotar ganancias. 47
 2.1 Introducción. .. 47
 2.2 El modelo. .. 49
 2.3 La Aplicación Recursiva del Lorenz P-Safety para P_1
 y P_2. ... 52
 2.4 Un resultado negativo. 56
 2.5 Dualidad. ... 60
 2.6 Conclusiones. .. 61

3 Combinación convexa de reglas de bancarrota: Una
 justificación. ... 63
<table>
<thead>
<tr>
<th>Índice</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1 Introducción. ..</td>
</tr>
<tr>
<td>3.2 El modelo. ...</td>
</tr>
<tr>
<td>3.3 Resultados principales y aplicaciones.</td>
</tr>
<tr>
<td>3.4 Conclusiones. ...</td>
</tr>
<tr>
<td>4 Justificaciones estratérgicas de reglas clásicas de bancarrota. ..</td>
</tr>
<tr>
<td>4.1 Introducción. ...</td>
</tr>
<tr>
<td>4.2 El proceso de Concesiones Unánimes.</td>
</tr>
<tr>
<td>4.3 El proceso de los Derechos Diminuidos.</td>
</tr>
<tr>
<td>4.4 El proceso de Dobles Concesiones.</td>
</tr>
<tr>
<td>4.5 Conclusiones. ...</td>
</tr>
<tr>
<td>5 Juegos de Bancarrota Lorenz-Bifocales.</td>
</tr>
<tr>
<td>5.1 Introducción. ...</td>
</tr>
<tr>
<td>5.2 El modelo. ...</td>
</tr>
<tr>
<td>5.3 Tres aplicaciones. ..</td>
</tr>
<tr>
<td>5.4 Conclusiones. ...</td>
</tr>
<tr>
<td>6 Conclusiones generales e investigación futura.</td>
</tr>
<tr>
<td>6.1 Resultados. ..</td>
</tr>
<tr>
<td>6.2 Investigación futura en progreso.</td>
</tr>
</tbody>
</table>

Apéndice

A Pruebas del Capítulo 2. ... 111
A.1 Observaciones generales. ... 111
A.2 Prueba del Teorema 1. .. 113
A.3 Prueba del Teorema 2. .. 118
A.4 Prueba del Teorema 3. .. 126
A.5 Prueba de las Proposiciones 1 y 2. 133

B Pruebas del Capítulo 3. 137
 B.1 Prueba del Teorema 4. 137

C Pruebas del Capítulo 4. 141
 C.1 Observaciones generales. 141
 C.2 Prueba de la Proposición 5. 141
 C.3 Prueba de la Proposición 6. 142
 C.4 Prueba del Teorema 6. 143
 C.5 Prueba de la Proposición 7. 143
 C.6 Prueba del Teorema 7. 145
 C.7 Prueba de los Teoremas 8 y 9. 146
 C.8 Prueba del Teorema 11. 150

D Pruebas del Capítulo 5. 153
 D.1 Prueba de la Proposición 8. 153
 D.2 Prueba de la Proposición 9. 154
 D.3 Prueba del Teorema 12. 158

E Pruebas del Capítulo 6. 159

Lista de figuras 167

Bibliografía .. 169
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resumen</td>
<td>1</td>
</tr>
<tr>
<td>Abstract - Introduction</td>
<td>9</td>
</tr>
<tr>
<td>Preliminaries</td>
<td>17</td>
</tr>
<tr>
<td>0.1 Bankruptcy problems: Axiomatic Approach.</td>
<td>17</td>
</tr>
<tr>
<td>0.2 Bounds on bankruptcy problems.</td>
<td>26</td>
</tr>
<tr>
<td>0.3 The Lorenz criterion.</td>
<td>28</td>
</tr>
<tr>
<td>0.4 Strategic Approach.</td>
<td>30</td>
</tr>
<tr>
<td>0.5 Transferable Utility Games.</td>
<td>32</td>
</tr>
<tr>
<td>Chapter</td>
<td></td>
</tr>
<tr>
<td>1 The model: Lorenz-Bifocal Bankruptcy Problems.</td>
<td>39</td>
</tr>
<tr>
<td>2 A new approach for bounding awards.</td>
<td>47</td>
</tr>
<tr>
<td>2.1 Introduction.</td>
<td>47</td>
</tr>
<tr>
<td>2.2 The model.</td>
<td>49</td>
</tr>
<tr>
<td>2.3 The Recursive Application of the Lorenz P-Safety for P₁ and P₂.</td>
<td>52</td>
</tr>
<tr>
<td>2.4 A negative result.</td>
<td>56</td>
</tr>
<tr>
<td>2.5 Duality.</td>
<td>60</td>
</tr>
<tr>
<td>2.6 Conclusions.</td>
<td>61</td>
</tr>
<tr>
<td>3 Convex combination of bankruptcy rules: A justification.</td>
<td>63</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
</tr>
<tr>
<td>3.1</td>
<td>Introduction.</td>
</tr>
<tr>
<td>3.2</td>
<td>The model.</td>
</tr>
<tr>
<td>3.3</td>
<td>Main results and applications.</td>
</tr>
<tr>
<td>3.4</td>
<td>Conclusions.</td>
</tr>
<tr>
<td>4</td>
<td>Strategic justifications for old bankruptcy rules.</td>
</tr>
<tr>
<td>4.1</td>
<td>Introduction.</td>
</tr>
<tr>
<td>4.2</td>
<td>The Unanimous Concessions procedure.</td>
</tr>
<tr>
<td>4.3</td>
<td>The Diminishing Claims procedure.</td>
</tr>
<tr>
<td>4.4</td>
<td>The Double Concessions procedure.</td>
</tr>
<tr>
<td>4.5</td>
<td>Conclusions.</td>
</tr>
<tr>
<td>5</td>
<td>Lorenz-Bifocal Bankruptcy Game.</td>
</tr>
<tr>
<td>5.1</td>
<td>Introduction.</td>
</tr>
<tr>
<td>5.2</td>
<td>The model.</td>
</tr>
<tr>
<td>5.3</td>
<td>Three applications.</td>
</tr>
<tr>
<td>5.4</td>
<td>Conclusions.</td>
</tr>
<tr>
<td>6</td>
<td>General conclusions and future research.</td>
</tr>
<tr>
<td>6.1</td>
<td>Results.</td>
</tr>
<tr>
<td>6.2</td>
<td>Future research in progress.</td>
</tr>
</tbody>
</table>

Appendix

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Proofs of Chapter 2.</td>
<td>111</td>
</tr>
<tr>
<td>A.1</td>
<td>General remarks.</td>
<td>111</td>
</tr>
<tr>
<td>A.2</td>
<td>Proof of Theorem 1.</td>
<td>113</td>
</tr>
<tr>
<td>A.3</td>
<td>Proof of Theorem 2.</td>
<td>118</td>
</tr>
<tr>
<td>A.4</td>
<td>Proof of Theorem 3.</td>
<td>126</td>
</tr>
<tr>
<td>A.5</td>
<td>Proofs of Propositions 1 and 2.</td>
<td>133</td>
</tr>
</tbody>
</table>
B Proofs of Chapter 3. ... 137
 B.1 Proof of Theorem 4. 137

C Proofs of Chapter 4. ... 141
 C.1 General remarks 141
 C.2 Proof of Proposition 5. 141
 C.3 Proof of Proposition 6. 142
 C.4 Proof of Theorem 6. 143
 C.5 Proof of Proposition 7. 143
 C.6 Proof of Theorem 7. 145
 C.7 Proof of Theorems 8 and 9. 146
 C.8 Proof of Theorem 11. 150

D Proofs of Chapter 5. ... 153
 D.1 Proof of Proposition 8. 153
 D.2 Proof of Proposition 9. 154
 D.3 Proof of Theorem 12. 158

E Proofs of Chapter 6. ... 159

List of Figures .. 167

Bibliography ... 169
Resumen

¿Cómo deberían repartirse los recursos escasos entre sus demandantes?
¿Debería cada individuo tener garantizada unas determinadas ganancias?

Un problema de racionamiento aparece cada vez que la cantidad disponible de un determinado bien es insuficiente para satisfacer los “derechos objetivos” que, sobre el mismo, posee un grupo de agentes. El ejemplo más característico es el de la quiebra de una empresa, de aquí la denominación de este tipo de problemas en la literatura económica como “Problemas de Bancarrota” (Bankruptcy Problems). Sin embargo, la descripción previa es aplicable a muchas y muy diferentes situaciones reales, entre las que podemos mencionar: el reparto de una herencia que no alcanza el valor de los compromisos que sobre la misma se establecieron; la distribución de un producto, en un contexto de precios fijos, para el que la demanda excede a la oferta; o la recaudación de una cantidad fija de impuestos en una determinada comunidad.

Este tipo de problemas se ha descrito formalmente por un vector \((E, c) \in \mathbb{R}^{++} \times \mathbb{R}^n_+\), tal que \(E < \sum_{i \in N} c_i\), donde \(E\) es la cantidad disponible del bien que tiene que distribuirse entre los agentes del conjunto \(N = \{1, \ldots, i, \ldots, n\}\) y cada coordenada \(c_i\) es interpretada como la cantidad que el agente i-ésimo demanda del bien, reflejando la condición \(E < \sum_{i \in N} c_i\) la incompatibilidad de los derechos individuales.

En este modelo, una solución denominada “Regla de Bancarrota” (Bankruptcy rule), debe entenderse como la aplicación de un proceso que proporciona una distribución del bien teniendo en cuenta las diferencias existentes entre los derechos de los agentes. A este respecto, la Teoría Económica se ha centrado en el estudio de
las diferentes soluciones desde tres enfoques diferentes, analizados en mayor detalle más adelante.

El objetivo principal del presente trabajo es el análisis exhaustivo, en el contexto de los problemas de racionamiento, de dos importantes preocupaciones generales: la discrepancia sobre las justificaciones morales de lo que se entiende por reparto justo, y la exploración sobre el establecimiento de medidas encaminadas a garantizar determinados derechos individuales.

En relación a la búsqueda de una solución cuando se distribuyen recursos escasos, la sociedad siempre ha tenido la preocupación de proponer asignaciones justas, como queda señalado por Lerner [27], entre otros: “Las personas parecen tener el fuerte deseo de creer en un mundo justo.” En este sentido, Schokkaert y Overlaet [46] destacan dos corrientes diferenciadas en la abundante literatura sobre distribución justa: filósofos-economistas y psicólogos-sociólogos. La primera, que es una línea más teórica, trata de recoger una interpretación aceptable de lo que entendemos por distribuciones justas mediante la definición formal de modelos. La segunda, que es una línea más informal y descriptiva, trata de explicar la manera de percibir la justicia por las personas, y su comportamiento cuando se enfrentan a problemas de distribución. Sin embargo, la Justicia difícilmente nos conduce a un único punto de vista: el mismo problema de distribución analizado por dos sociedades diferentes nos conducirá, casi con toda seguridad, al uso de diferentes reglas de reparto. (Moulin [35], Young [65], entre otros). En nuestro contexto, esta discrepancia aparece de manera natural, ya que cualquier distribución en los problemas de bancarrota puede ser observada desde dos puntos de vista: ganancias o pérdidas. Por lo tanto, tenemos dos puntos focales, que dependen de si nos preocupan las ganancias que recibimos o la cantidad no satisfecha de nuestra demanda. Asimismo, podemos encontrar muchos contextos diferentes donde el desacuerdo sobre la asignación propuesta queda recogido mediante dos puntos focales. Por ejemplo, en el contexto de los problemas
de reparto de excedente (surplus sharing problems), Moulin [35] argumenta que
las reglas de reparto proporcional e igualitaria son las dos soluciones focales a
estos problemas y, de hecho, son las únicas que satisfacen un conjunto razonable
de propiedades. Del mismo modo, en la teoría de la justicia y asignaciones libres
de envidia (envy-free allocations), Varian [59] ya propone dos distribuciones focales:
justa-venta y justa-ribeza.

La pregunta, por tanto, es: ¿Cómo puede la gente alcanzar un acuerdo? En
palabras de Roemer [44], más información ayuda a que los acuerdos se alcancen:
"Las cosas se vuelven más interesantes una vez que dejamos el contexto restringido
de la negociación del bienestar (welfarist bargaining) e incluimos información sobre
reursos, preferencias, necesidades, habilidades, etcétera."

Trasladando estas ideas a los problemas de bancarrota, el presente trabajo
define un problema de racionamiento extendido, el Problema de Bancarrota
Lorenz-Bifocal (Lorenz-Bifocal Bankruptcy Problem), y realiza un profundo análisis
sobre las consecuencias producidas por un enriquecimiento del modelo clásico de
rationamiento con un tercer elemento, P, llamado conjunto de Principios Legítimos
(Legitimate Principles set), el cual recoge principios éticos básicos comúnmente
aceptados por una sociedad para resolver una familia específica de problemas de
este tipo. La aparición de desacuerdo también es estudiada con el establecimiento de
dos reglas focales, digamos f y g, considerando tanto el hecho de que los problemas
de racionamiento pueden analizarse desde ganancias o pérdidas, como que el objetivo
general deseado por la sociedad es tratar a todo el mundo lo más igualitariamente
posible. Esta idea queda recogida a través del criterio de Lorenz (Lorenz [28]),
siguiendo la línea de trabajo de Arin [4] y Dutta y Ray [17], entre otros. Por lo
tanto, nuestro problema se describe a través de un vector formado por un problema
de bancarrota y las dos reglas focales, que dependen del conjunto de Principios Legítimos acordado por una sociedad, esto es, \((E, c), f(P), g(P)\).

Con respecto al establecimiento de garantías, la preocupación de asegurar unos derechos individuales mínimos ha figurado de manera destacada en un gran número de contextos. En este sentido, un tema clásico que merece la pena destacar, ya que ha acaparado la mayor parte de la atención tanto de la agenda política como en la literatura político-social durante las dos últimas décadas, es la Renta Básica Universal (Universal Basic Income) (ver, por ejemplo, Tobin et al. [57]). Esta propuesta consiste en el pago por parte de la administración de una prestación monetaria a todos los ciudadanos, a la que tendrán derecho por la simple razón de existir como miembro pleno de una comunidad política, sin tener en cuenta la renta, vida laboral, capacidades laborales, o la composición de su familia (veáse Noguera [41]). La progresión de esta idea en los círculos académicos durante los años recientes, es realmente notable, tanto en términos sociales como políticos. En este sentido, la Red Mundial sobre la Renta Básica (Basic Income Earth Network) ha propiciado el debate y la investigación sobre la Renta Básica Universal tanto en el Parlamento Europeo como en sus Comisiones y, en el caso de Brasil, ha sido aprobada una ley encaminada a implementar la Renta Básica Universal de manera indefinida. Otro contexto donde la idea de garantía aparece, entre otras situaciones, es el establecimiento de un salario mínimo en el mercado laboral o, más recientemente, el debate en Senado estadounidense acerca de asegurar una cobertura sanitaria mínima universal. Por otra parte, y llevado a nuestro contexto, notemos que, muchos autores, desde O’Neill [42] hasta Domínguez [15], han estudiado las garantías desde el punto de vista de los problemas de racionamiento.

Teniendo en cuenta estas dos prominentes preocupaciones generales, con el problema de racionamiento extendido, \((E, c), f(P), g(P)\), nosotros analizamos
las repercusiones producidas por la introducción de toda esta información adicional en el problema clásico de bancarrota, de acuerdo con cada uno de los enfoques metodológicos utilizados para abordar estos problemas. Consecuentemente, este estudio está estructurado en tres partes: Axiomático, Estratégico y Juegos Cooperativos.

- La Aproximación Axiomática, iniciada por Young [63, 64], trata de identificar reglas de reparto con conjuntos de propiedades estructurales y ha dado lugar a una amplia literatura, brillantemente sintetizada por Thomson [52] y Moulin [37]. En esta línea, que sigue en continuo devenir, se enmarca el reciente análisis del establecimiento de diferentes niveles de garantía en los repartos (véase Herrero y Villar [23, 24], Moulin [37], Moreno-Ternero y Villar [33], Chun [10], Domínguez y Thomson [16] y Domínguez [15]). Asimismo, mediante la aplicación recursiva de las mismas, se definen nuevas soluciones. En este contexto pretendemos analizar las implicaciones, sobre el concepto de garantías, de establecer, desde el punto de partida, un conjunto de Principios Legítimos exigibles a las soluciones. Entonces, nosotros consideramos que cada agente debería recibir, al menos, la menor de las cantidades recomendadas por todas estas soluciones.

- El Enfoque Estratégico de los problemas de racionamiento considera diferentes procedimientos para solucionar las diferencias que los agentes pueden tener a la hora decidir cómo distribuir los recursos. Cada procedimiento induce un juego en el que los agentes proponen estratégicamente una regla de reparto, y la solución del juego consiste en la búsqueda de los Equilibrios de Nash del mismo (Nash [40]). Esta línea tiene su origen en las investigaciones de van Damme [58], Marco, Peris y Subiza [31] y Naeve-Steinweg [39], que han sido trasladadas a problemas de racionamiento por Chun [8] y Herrero [21]. El
análisis de este tipo de juegos con la restricción de que los agentes únicamente puedan proponer reglas de reparto que satisfagan el conjunto de *Principios Legítimos*, será nuestro objetivo en este contexto.

- El Enfoque de Juegos Cooperativos utiliza la teoría de juegos como una herramienta para encontrar soluciones a los problemas de racionamiento. Específicamente, asocia a cada problema un juego y define reglas de reparto mediante la aplicación de soluciones propuestas inicialmente para juegos, tanto cooperativos con utilidad transferible, línea iniciada por O’Neill [42], como juegos de negociación, conexión analizada por Dagan y Volij [14]. Esta metodología también ha sido explorada, entre otros, por Aumann y Maschler [5], Curiel, Maschler y Tijs [13], Dutta y Ray [17] y, Alcalde, Marco y Silva [1, 2]. En este nuevo contexto, en el que incorporamos un conjunto de *Principios Legítimos* en la definición del problema de racionamiento, nosotros investigamos la posibilidad de definir y analizar el juego natural TU cooperativo asociado, siguiendo la línea de O’Neill [42].

Nuestros resultados están organizados como sigue. En primer lugar, presentamos la notación y los modelos necesarios para una buena comprensión de la presente tesis. El Capítulo 1 introduce nuestro nuevo problema de racionamiento extendido, llamado *Problemas de Bancarrota Lorenz-Bifocales (Lorenz-Bifocal Bankruptcy Problems)*. A continuación, los siguientes dos capítulos recogen el análisis axiomático sobre este tipo de problemas. En particular, el Capítulo 2 propone un nuevo método para acotar ganancias, siguiendo la línea iniciada por O’Neill [42]. Empezando por el hecho de que una sociedad establece su propio conjunto de "*Principios de Equidad Comúnmente Aceptados*", nuestra propuesta asegura que todos los agentes reciban al menos la cantidad mínima de ganancias de acuerdo con todas las reglas *Admisibles* por tal sociedad. Debido a que esta nueva acotación inferior no agota, en general,
todos los recursos, entonces analizamos su aplicación recursiva, y recuperamos reglas clásicas de bancarrota.

Siguiendo en el Enfoque Axiomático, el Capítulo 3 define el proceso *Lorenz Doble Recursivo* (*Lorenz Double Recursive*), el cual consiste en la imposición recursiva de la acotación inferior sobre ganancias y su acotación superior asociada, al mismo tiempo. También proporcionamos una manera natural de justificar la combinación convexa de reglas de bancarrota, recuperando la media de dos reglas que representan maneras opuestas y extremas de distribuir los recursos.

El Capítulo 4 analiza los *Problemas de Bancarrota Lorenz-Bifocales* desde un punto de vista estratégico, obteniendo nuevas bases para reglas de bancarrota clásicas mediante la utilización de los mecanismos introducidos por Chun [8] y Herrero [23]. Además, a través de la definición de un nuevo proceso, combinación de los dos anteriores, recuperamos, de nuevo, la media de dos reglas que representan maneras opuestas y extremas de distribuir los recursos.

El Capítulo 5 propone una manera natural de asociar un juego de utilidad transferible a nuestro nuevo problema de bancarrota extendido, denominado *Juego de Bancarrota Lorenz-Bifocal* (*Lorenz-Bifocal Bankruptcy Game*). En particular, establecemos la condición necesaria que tienen que cumplir las soluciones para estar en el *Core* de este tipo de juegos, y, aunque estos juegos, en general, no son convexos, obtenemos que el *valor de Shapley* (*Shapley value*) es una selección del *Core* y que también coincide con el *Nucleolus*. Además, demostramos que la recomendación hecha por estos dos conceptos de solución es, otra vez, la media de dos reglas extremas.

Finalmente, el Capítulo 6 resume nuestras conclusiones generales e introduce algunos trabajos en progreso y futuras líneas de investigación.
Resumen

A modo de síntesis, en esta tesis, por una parte, asegurando una mínima cantidad de ganancias a cada agente, proporcionamos nuevas bases, desde los Enfoques Axiomático y Estratégico, para reglas clásicas de bancarrota: *Igual Ganancia Restringida (Constrained Equal Awards)*, *Igual Pérdida Restringida (Constrained Equal Losses)*, *Pínules* y su dual, e *Igualitaria Restringida (Constrained Egalitarian)* y su dual. Del mismo modo, explicamos cómo la combinación de los acuerdos sociales sobre principios y el proceso recursivo puede no ser plausible.

Por otra parte, usando estos dos enfoques e imponiendo al mismo tiempo tanto una acotación inferior en ganancias como una superior, mostramos que podemos sostener de una manera razonable la propuesta de acuerdos "intermedios" en problemas de bancarrota, de entre todas aquellas soluciones que son consideradas *Admisibles* por una determinada sociedad, esto es, aquellas que satisfagan el conjunto de *Principios Legítimos* establecidos por y para la sociedad, ya que recuperamos la media entre dos asignaciones destacadas. Además, mediante la utilización del Enfoque de Juegos Cooperativos, también encontramos sólidas bases para seleccionar la media de dos puntos de vista focales de entre todos aquellos compromisos intermedios, proporcionando un soporte muy simple, actual y comúnmente observado en las decisiones colectivas.

Considerando todo lo anterior, pensamos que esta tesis arroja luz sobre la cuestión propuesta en el título de la misma:

¿Por qué la virtud está en el punto medio?
Abstract - Introduction

How should the scarce resources be rationed among claimants?
Should each individual have a guaranteed level of awards?

A rationing problem appears each time that the available quantity of a particular good is insufficient to satisfy the "objective rights" that a group of agents has on it. The most characteristic example is the bankruptcy of a company, hence the designation of such problems in the economic literature as Bankruptcy Problems. However, the previous description is applicable to many different real situations, among which we mention: the division of an inheritance which does not reach the value of the commitments that were established on it; the distribution of a product, in a context of fixed prices, for which demand exceeds supply; or the collection of a fixed amount of taxes in a given community.

This type of problem is formally described by a vector \((E, c) \in \mathbb{R}_+ \times \mathbb{R}_n\), such that \(E < \sum_{i \in N} c_i\), where \(E\) is the available quantity of the good to be distributed among agents in the set \(N = \{1, ..., i, ..., n\}\) and each coordinate \(c_i\) is interpreted as the demand for good by the \(i\)-th agent, meaning the condition \(E < \sum_{i \in N} c_i\) reflects the incompatibility of all rights.

In this model, a solution called Bankruptcy Rule involves applying a procedure for each bankruptcy problem that ensures a distribution of the good that takes the differences among agents’ claims into account. In this regard, Economic Theory has focused on the study of different solutions from three different approaches, discussed in further detail below.
The main purpose of this dissertation is to produce an in-depth analysis, in the context of rationing problems, of two important general concerns: discrepancy over the moral intuitions of a fair distribution, and the prospect of establishing measures to guarantee certain individuals’ rights.

In terms of finding a solution, society has always taken care to propose a fair allocation when distributing resources, as pointed out by Lerner [27], among others: "People seem to have a strong desire to believe in a just world." In this regard, Schokkaert and Overlaet [46] highlight two streams in the vast literature on distributive justice: one of philosophers-economists, and one of psychologists-sociologists. The former, more theoretical line, defines formal models trying to gather an acceptable interpretation of fair distributions. The latter, more informal and descriptive line, tries to explain the way in which people perceives fairness, and their behavior when facing distribution problems. However, Fairness hardly leads to a single viewpoint: the same distribution problem faced by two different societies will almost certainly lead to the use of different distributional rules (Moulin [35], Young [65], among others). In our framework, this discrepancy arises in a natural way, as any distribution in bankruptcy problems can be observed by focusing either on gains or on losses. We thus have at least two focal viewpoints, depending on whether we worry about the awards we receive or the amount of our demand that is not satisfied. We can also find many contexts where discrepancy over the proposed allocation results in two focal points. For instance, in the context of the surplus sharing problem, Moulin [35] argues that the equal and proportional sharing rules are the two focal solutions of this problem and, indeed, the only ones satisfying a reasonable set of properties. Furthermore, in the theory of fairness and envy-free allocation, Varian [59] has already proposed two focal distributions: an income-fair and a wealth-fair allocations basing on abilities.
Rationing problems with Commonly Accepted Equity Principles

The question, therefore, is: *How can people reach an agreement?* In Roemer’s [44] words, more information helps agreements to be reached: "Things become more interesting once we leave the restricted welfarist of bargaining framework and include information on resources, preferences, needs, skills and so on."

Translating these ideas to bankruptcy problems, the current work defines an extended rationing problem, the *Lorenz-Bifocal Bankruptcy Problem*, and makes a thorough analysis of the consequences of enriching the classical model of rationing with a third element, P, called set of *Legitimate Principles*, comprising basic ethical principles commonly accepted by a society to resolve a specific family of problems of this kind. The appearance of discrepancy is also analyzed, with the establishment of two focal rules, say f and g, by considering both the fact that rationing problems can be analyzed from awards or losses, and that the general desirable social goal is to treat everybody as evenly as possible. This idea is captured by the *Lorenz criterion* (Lorenz [28]), in line with the work of Arin [4] and Dutta and Ray [17], among others. Thus, our problem is described by the vector formed by a bankruptcy problem and the two focal allocations, which depend on the set of *Legitimate Principles* accorded by a society, that is, $((E, c), f (P), g (P))$.

Regarding to establishing guarantees, the concern of ensuring minimum individual rights has been figured prominently in a high number of contexts. In this sense, a classical issue that is worth highlighting, as it has captured most of the attention in the social policy literature and the political agenda during the last two decades, is the *Universal Basic Income* (see for instance Tobin et al. [57]). This proposal involves the payment of a universal cash benefit to all citizens by the Administration, to which they would be entitled by the simple fact of being a full member of a community politics, regardless of income, employment history, availability for work, or the composition of her family (see for instance Noguera
The progression of this idea in academic circles in recent years has been truly remarkable, in both social and political terms. In this regard, the Basic Income Earth Network has led to debate and research into the Universal Basic Income in the European Parliament and Commission and, in the case of Brazil a law has been approved to implement the Universal Basic Income for an indefinite period. Another context where the idea of guarantee appears, among other situations, is the establishment of a minimum wage in the labour market or, more currently, the U.S. Senate’s debate of ensuring universal minimum health coverage. On the other hand, note that in our context, many authors, from O’Neill [42] to Dominguez [15], have dealt with guarantees in rationing problems.

Taking into the account these two general and prominent concerns, with the extended rationing problem, \(((E, c), f(P), g(P)) \), we analyze the consequences of entering this additional information into the classical bankruptcy problem, according to each of the methodological approaches used to address these problems. Thus, this study is structured in three parts: Axiomatic, Strategic and Cooperative Games.

- The Axiomatic Approach, initiated by Young [63, 64], tries to identify bankruptcy rules with sets of structural properties and has led to a vast literature, brilliantly synthesized by Thomson [52] and Moulin [37]. In continuous evolution, this approach fits the recent analysis of establishing different levels of guarantees, when distributing the scarce resources (see Herrero and Villar [23, 24], Moulin [37], Moreno-Ternero and Villar [33], Chun [10], Dominguez and Thomson [16] and Dominguez [15]). Furthermore, by recursively applying these lower bounds, new solutions are defined along these lines. In this context we analyze the implications for the concept of guarantees (lower bounds) by establishing from the beginning a set of Legitimate Principles required for the solution allowed. We then naturally
consider that agents should receive at least the smallest amount recommended by all these solutions.

- Strategic analysis of rationing problems considers different procedures for solving the differences between agents when deciding how to distribute the resource. Each procedure induces a game in which players strategically propose a bankruptcy rule, and the solution of the game consists of finding the *Nash equilibria* (Nash [40]). This approach comes from research by van Damme [58], Marco, Peris and Subiza [31] and Naeve-Steinweg [39], transferred to rationing problems by Chun [8] and Herrero [21]. Our aim is to analyze these kind of games with the restriction that agents only can propose allocations that satisfy the set of *Legitimate Principles*.

- The Cooperative Game Approach uses game theory as a tool for finding solutions to bankruptcy problems. Specifically, it relates a game each rationing problem and defines distribution rules by applying solutions originally proposed for games, both cooperative with transferable utility, initiated by O’Neill [42], and bargaining games, as analyzed by Dagan and Volij [14]. This methodology has also been explored by Aumann and Maschler [5], Curiel, Maschler and Tijs [13], Dutta and Ray [17], and Alcalde, Marco and Silva [1, 2], among others. In our new context, in which we incorporate a set of *Legitimate Principles* into the definition of a rationing problem, we investigate the possibility of defining and analyzing the natural associated game, following the definitions of O’Neill [42] and Dagan and Volij [14].

Our results are organized as follows. Firstly, we present all the notation and the models needed for a good comprehension of the present dissertation. Chapter 1 introduces our new extended rationing problem, known as *Lorenz-Bifocal Bankruptcy*
Problems. Then, the following two chapters set out the axiomatic analysis of these problems. In particular, Chapter 2 proposes a new method for bounding awards following the line initiated by O’Neill [42]. Starting from the fact that a society establishes its own set of "Commonly Accepted Equity Principles", our proposal ensures all agents the minimum amount they can receive according to all the Admissible rules for such a society. Because this new lower bound will not exhaust the endowment in general, we then analyze its recursive application by retrieving old well known bankruptcy rules.

Following in this Axiomatic Approach, Chapter 3 defines the Lorenz Double Recursive procedure, which consists of the recursive imposition of both the lower bound on awards and its associated upper bound. We also provide a natural way of justifying the convex combination of bankruptcy rules, by means of their recursive application, retrieving the average of two extreme and opposite ways of distributing the endowment.

Chapter 4 analyses the Lorenz-Bifocal Bankruptcy Problems from an strategic viewpoint, and a new basis for old bankruptcy rules is obtained by using the mechanisms introduced by Chun [8] and Herrero [23]. Furthermore, by defining a new procedure, which is a combination of the previous ones, we retrieve the average of rules representing two extreme and opposite ways of distribute the resource.

Chapter 5 proposes a natural way of associating a TU game to our new extended bankruptcy problem, called the Lorenz-Bifocal Bankruptcy Game. Specifically, we state a necessary condition for solutions to be in the Core of these games; and, although these games are not generally convex, we find out that the Shapley value is a Core selection and also coincides with the Nucleolus. We also show that the recommendation made by these two solution concepts is again the average of the two extreme rules.
Finally, Chapter 6 summarizes our general conclusions and introduces some works in progress and future research lines.

On the one hand, therefore, by ensuring a minimal amount of awards to each claimant, we provide new basis from Axiomatic and Strategic viewpoints, for classical and well-known bankruptcy rules: the Constrained Equal Awards, the Constrained Equal Losses, Piniles’ and its dual, and the Constrained Egalitarian and its dual. We also explain how the combination of social agreements on principles and recursive procedure may become implausible.

On the other hand, by using these approaches and by requiring both a lower and an upper bound on awards, we can reasonably sustain the proposal of "intermediate" agreements for bankruptcy problems, from among all the solutions that are considered Admissible for a given society, i.e., the ones satisfying the set of Legitimate Principles established by and for the society (we retrieve the average between two prominent allocations). Moreover, by using the Cooperative Game Approach, we also find solid grounds for selecting the average of the two focal viewpoints from among all the intermediate compromises, supporting very simple, current and commonly observed collective decisions.

Considering all the above, we think that the current dissertation sheds light onto the question posed in its title:

Why does virtue lie in the middle ground?
Preliminaries.

Next, we introduce all the concepts and definitions which are used in the following chapters. Firstly, we present rationing problems, highlighting some of their main solutions and paying special attention to the Axiomatic Approach: a method which consists of identifying bankruptcy rules with various combinations of appealing properties. Secondly, we introduce the main results on the establishment of guarantees when facing bankruptcy problems. Thirdly, we provide some definitions related to the Lorenz criterion, one of the most used and widely accepted egalitarian concepts. Finally, we present two alternative methods, based in Game Theory, that have been used to analyze bankruptcy situations: the Strategic and the Cooperative Game Approaches.

0.1 Bankruptcy problems: Axiomatic Approach.

The problem of allocating scarce resources among alternative uses is one of the elements that defines the nature of economic science. In this context, many different situations are fit, ranging from individual to social decision problems. For example, dividing our time between labour and leisure; how to spend our money; distributing the tax burden; the allocation of the budget estate among each ministry; rationing a natural resource, like water, among citizens, ... Particularly, our work focuses on analyzing those situations where a perfectly divisible good should be rationed among agents, since their aggregate demands exceeds its supply. Formally:
Definition 1 A bankruptcy problem is a pair \((E, c) \in \mathbb{R}_+^+ \times \mathbb{R}_n^+\) such that

\[E < \sum_{i \in N} c_i. \]

Each agent \(i \in N, N = \{1, \ldots, i, \ldots, n\}\), has a claim \(c_i\) on the estate or endowment, \(E\), which represents the quantity of a perfectly divisible good that should be distributed among the agents. Figure 1 shows this situation graphically. The black lines represent different level of the estate \((E, E')\), and the vector \((c_1, c_2)\) shows the claims of the two agents, whose aggregate is bigger than the resources.

![Figure 1: Bi-personal bankruptcy problems.](image)

Hereinafter, \(\mathcal{B}\) denotes the set of all bankruptcy problems; given a bankruptcy problem \((E, c) \in \mathcal{B}\), \(C\) denotes the sum of the agents’ claims, \(C = \sum_{i \in N} c_i\); and \(\mathcal{B}_0\) the set of bankruptcy problems in which claims are increasingly ordered, that is, bankruptcy problems with \(c_i \leq c_j\) for \(i < j\).
Rationing problems with Commonly Accepted Equity Principles

In this situation, the question is how to distribute a quantity of a perfectly divisible good among a group of agents whose aggregate demands, needs or rights, gathered by the claims vector, exceed the amount to be distributed. Its answer has been analyzed by different methods: the Axiomatic, the Strategic and the Cooperative Game Approaches. In this section we pay special attention to the former one.

From the axiomatic viewpoint, initiated by Young [63, 64], bankruptcy problems are treated from an external agent’s perspective. Specifically, this "arbiter" pursue the goal of deciding a "fair" sharing of the resource among the claimants, for which she requires that this distribution satisfies some appealing principles. So that, the Axiomatic Approach is a normative analysis bases on the search of properties, representing equity principles, to describe the family of solutions satisfying these requirements and, then, characterize each solution with the lowest number of principles (see, for instance, Thomson [52]).

Henceforth, next we define the concept of bankruptcy solution, named bankruptcy rule, and present some of the most important ones below. Thereupon, we introduce some appealing properties, particularly those which are playing an important role in the explanation of the current work.

Definition 2 A bankruptcy rule, or simply a rule, is a function, \(\varphi : \mathcal{B} \rightarrow \mathbb{R}_+^n \), such that for each \((E, c) \in \mathcal{B} \),

\[
(a) \sum_{i \in N} \varphi_i(E, c) = E \text{ (efficiency) and}
\]

\[
(b) 0 \leq \varphi_i(E, c) \leq c_i \text{ for each } i \in N \text{ (non-negativity and claim-boundedness).}
\]
The Proportional rule makes awards proportional to the claims.

The Proportional rule, P, associates for each $(E, c) \in \mathcal{B}$, and each $i \in N$, $P_i(E, c) \equiv (E/C) c_i$.

The Constrained Equal Awards rule (Maimonides, 12th century, among others) recommends equal awards to all claimants subject to no-one receiving more than her claim.

The Constrained Equal Awards rule, CEA, associates for each $(E, c) \in \mathcal{B}$ and each $i \in N$, $CEA_i(E, c) \equiv \min \{c_i, \mu\}$, where μ is chosen so that $\sum_{i \in N} \min \{c_i, \mu\} = E$.

The Constrained Equal Losses rule, CEL, discussed by Maimonides (Aumann and Maschler [5]), chooses the awards vector at which losses from the claims vector are the same for all agents, subject to no-one receiving a negative amount.

The Constrained Equal Losses rule, CEL, associates for each $(E, c) \in \mathcal{B}$ and each $i \in N$, $CEL_i(E, c) \equiv \max \{0, c_i - \mu\}$, where μ is chosen so that $\sum_{i \in N} \max \{0, c_i - \mu\} = E$.

Piniles’ rule (Piniles [43]) provides, for each problem $(E, c) \in \mathcal{B}$, the awards that the Constrained Equal Awards rule recommends for $(E, c/2)$, when the endowment is less than the half-sum of the claims. Otherwise, each agent first receives her half-claim, then the Constrained Equal Awards rule is applied to the residual problem $(E - C/2, c/2)$.

Piniles’ rule, Pin, associates for each $(E, c) \in \mathcal{B}$ and each $i \in N$,

$$Pin_i(E, c) \equiv \begin{cases}
CEA_i(E, c/2) & \text{if } E \leq C/2 \\
\frac{c_i}{2} + CEA_i(E - C/2, c/2) & \text{if } E \geq C/2
\end{cases}$$
Rationing problems with Commonly Accepted Equity Principles

The *Talmud* rule (Aumann and Maschler [5]), assigns the awards that the
Constrained Equal Awards rule recommends for \((E, c/2)\), when the endowment is
less than the half-sum of the claims. Otherwise, each agent first receives her half-
claim, then the *Constrained Equal Losses* rule is applied to the residual problem
\((E - C/2, c/2)\).

The *Talmud* rule, \(T\), associates for each \((E, c) \in B\), and each \(i \in N\),
\[
T_i(E, c) \equiv \begin{cases}
 CEA_i(E, c/2) & \text{if } E \leq C/2 \\
 c_i/2 + CEL_i(E - C/2, c/2) & \text{if } E \geq C/2
\end{cases}
\]

The *Constrained Egalitarian* rule, proposed by Chun et al. [11], is inspired by
the *Uniform* rule (Sprumont [51]), a solution to the problem of fair division when
the preferences are single-peaked. It makes the minimal adjustment in the formula of
the *Uniform* rule, taking the half-claims as the peaks and guaranteeing that awards
are ordered in the same way as claims are.

The *Constrained Egalitarian* rule, \(CE\), associates for each \((E, c) \in B\) and
each \(i \in N\),
\[
CE_i(E, c) \equiv \begin{cases}
 CEA_i(E, c/2) & \text{if } E \leq C/2 \\
 \max\{c_i/2, \min\{c_i, \delta\}\} & \text{if } E \geq C/2
\end{cases}
\]
where \(\delta\) is chosen so that \(\sum_{i \in N} CE_i(E, c) = E\).

Next, Figures 2, 3, 4 and 5 show the path of awards for different levels of the
resource, recommended by all the bankruptcy rules we have just introduced: the
Proportional (red line), *Constrained Equal Awards* (blue line), the *Constrained Equal
Losses* (green line), *Piniles’* (yellow), the *Talmud* (orange line) and the *Constrained
Egalitarian* (grey line) rules.
Figure 2: The Constrained Equal Awards, Constrained Equal Losses and Proportional rules.

Figure 3: Piniles’ rule.

Figure 4: The Talmud rule.

Figure 5: The Constrained Egalitarian rule.
Rationing problems with Commonly Accepted Equity Principles

At this point, it is worth noting that there are two natural viewpoints when facing bankruptcy problems. On the one hand, these situations could be analyzed taking into account the awards received by each agent, i.e., focusing on "what is received". Whereas, on the other hand, these problems can be treated by paying attention to the amount of the claims that are not satisfied, "what is missing", that is, the losses incurred by each agent when a rule \(\varphi \) is applied, denoted by \(l_i = c_i - \varphi_i(E, c) \), for each \(i \in N \). Then, the total loss to distribute, \(L \), is the aggregate losses, \(L = \sum_{i \in N} l_i = C - E \).

In this line, Aumann and Maschler [5] define the dual relation between rules as follows. Given a rule \(\varphi \), its dual shares out losses in the same way that \(\varphi \) divides the endowment. Formally:

The **dual** of \(\varphi \), denoted by \(\varphi^d \), assigns for each \((E, c) \in \mathcal{B} \) and each \(i \in N \),

\[
\varphi^d_i(E, c) = c_i - \varphi_i(L, c).
\]

It is straightforward to check that for each rule, \(\varphi \), its dual is well defined, since given that \((E, c) \in \mathcal{B} \), \((L, c) \in \mathcal{B} \) and given that \(\varphi \) satisfies efficiency, non-negativity and claim-boundedness, the same will apply for \(\varphi^d \).

Moreover, if a rule recommends the same allocation when dividing awards and losses, it is **Self-Dual**.

A rule \(\varphi \) is **Self-Dual**, if for each \((E, c) \in \mathcal{B} \) and each \(i \in N \), \(\varphi_i(E, c) = c_i - \varphi_i(L, c) \).

It can easily checked that the **Proportional** and the **Talmud** rules are **Self-Dual**, while the **Constrained Equal Awards** and the **Constrained Equal Losses** rules are dual each other (Herrero [21]). Moreover, next we define the dual rules of the **Piniles’** and the **Constrained Egalitarian** ones.
Dual of Piniles’ rule provides, for each problem \((E, c) \in \mathcal{B}\), the sharing that the Constrained Equal Losses rule recommends for \((E, c/2)\), when the endowment is less than the half-sum of the claims. Otherwise, each agent first receives her half-claim, then the Constrained Equal Losses rule is re-applied to the residual problem \((E - C/2, c/2)\).

Dual of Piniles’ rule, \(DPin\), associates for each \((E, c) \in \mathcal{B}\) and each \(i \in N\),

\[
DPin_i(E, c) = \begin{cases}
 CEL_i(E, c/2) & \text{if } E \leq C/2 \\
 c_i/2 + CEL_i(E - C/2, c/2) & \text{if } E \geq C/2
\end{cases}
\]

The **Dual Constrained Egalitarian** rule gives the half-claims a central role and makes the minimal adjustment in the formula of the Dual Uniform rule to guarantee that losses are ordered in the same way as claims are.

Dual Constrained Egalitarian rule, \(DCE\), associates for each \((E, c) \in \mathcal{B}\) and each \(i \in N\),

\[
DCE_i(E, c) \equiv \begin{cases}
 c_i - \max\{c_i/2, \min\{c_i, \delta\}\} & \text{if } E \leq C/2 \\
 c_i/2 + CEL_i(E - C/2, c/2) & \text{if } E \geq C/2
\end{cases}
\]

where \(\delta\) is chosen such that \(\sum_{i \in N} DCE_i(E, c) = E\).

Next, we will commenting on some appealing properties, particularly those which are playing an important role in the explanation of the current work.

Order Preservation (Aumann and Maschler [5]) requires respecting the ordering of the claims: if agent \(i\)’s claim is at least as large as agent \(j\)’s claim, he should receive and loss at least as much as agent \(j\), does respectively.

Order Preservation: for each \((E, c) \in \mathcal{B}\), and each \(i, j \in N\), such that \(c_i \geq c_j\), then \(\varphi_i(E, c) \geq \varphi_j(E, c)\), and \(c_i - \varphi_i(E, c) \geq c_j - \varphi_j(E, c)\), that is \(l_i(E, c) \geq l_j(E, c)\).
Resource Monotonicity (Curiel et al. [13], Young [64], among others) demands that if the endowment increases, then all individuals should get at least what they received initially.

Resource Monotonicity: for each \((E, c) \in \mathcal{B}\) and each \(E' \in \mathbb{R}_+\) such that \(C > E' > E\), then \(\varphi_i(E', c) \geq \varphi_i(E, c)\), for each \(i \in N\).

A Super-Modular rule (Dagan et al. [14]) allocates each additional dollar in an "order preserving" manner. In other words, when the endowment increases, agents with higher claims receive a greater part of the increment than those with lower claims.

Super-Modularity: for each \((E, c) \in \mathcal{B}\), all \(E' \in \mathbb{R}_+\), and each \(i, j \in N\) such that \(C > E' > E\) and \(c_i \geq c_j\), then \(\varphi_i(E', c) - \varphi_i(E, c) \geq \varphi_j(E', c) - \varphi_j(E, c)\).

Midpoint Property (Chun, Schummer and Thomson [11]) requires that if the estate is equal to the sum of the half-claims, then all agents should receive their half-claim.

Midpoint Property: for each \((E, c) \in \mathcal{B}\) and each \(i \in N\), if \(E = C/2\), then \(\varphi_i(E, c) = c_i/2\).

The dual relation defined between rules has been carried to the concept of property. In this sense, given two properties, we say that they are dual of each other if whenever a rule satisfies one of them, its dual satisfies the other.

Two properties, \(\mathcal{P}\) and \(\mathcal{P}'\), are dual if whenever a rule, \(\varphi\), satisfies \(\mathcal{P}\), its dual, \(\varphi^d\), satisfies \(\mathcal{P}'\).
It is worth noting that all the principles we have introduced are invariant to the perspective from which the problem is thought, that is, they do not change when dividing "what is available" or "what is missing", so, they are Self-Dual. Formally:

A property, \mathcal{P}, is **Self-Dual** when it coincides with its dual.

0.2 Bounds on bankruptcy problems.

When analyzing bankruptcy problems from the axiomatic viewpoint many authors have proposed certain lower bounds on awards with the aim of ensuring a minimum amount of the resources to each agent. In fact, the solution for the "Contested Garment Problem" proposed in the Babylonic Talmud suggests that each agent should receive at least some part of the available amount when facing these kind of situations. This idea appears in the formal definition of a rule, requiring that no agent receives less than zero. Later, it has underlied the theoretical analysis of bankruptcy problems from its beginning (O’Neill, [42]) to present day (Dominguez, [15]). Next we chronologically present the main concepts that can be found in the literature around the idea of establishing lower bounds on awards.

- By requiring non-negativity, $\varphi_i(E, c) \geq 0$ for each $i \in N$, the definition of a **bankruptcy rule** gives a lower bound on awards (see Definition 2).

- O’Neill [42] defines a lower bound on awards, called **Respect of Minimal Right**, which implies that each agent must receive at least, either the remaining endowment after the other claimants have been fully compensated, or nothing if this amount is negative.

A rule φ satisfies **Respect of Minimal Right** if for each (E, c) in \mathcal{B}, and for each $i \in N$,

$$\varphi_i(E, c) \geq \max \left\{ 0, E - \sum_{j \in N \setminus \{i\}} c_j \right\}.$$
Herrero and Villar [23, 24] introduce two properties,
Sustainability and Exemption, that bound awards. The former, Sustainability says that an agent should receive all her claim, whenever this is sustainable, defined as follows. A claim, \(c_i \), is sustainable if when we truncate all the claims by this one, the problem becomes feasible, i.e.,
\[
\sum_{j \in N} \min \left\{ \tilde{c}, c_j \right\} \leq E, \text{ where } \tilde{c} = c_i.
\]
A rule \(\varphi \) satisfies Sustainability if for each \((E, c) \in \mathcal{B} \), and each \(i \in N \), if \(c_i \) is sustainable then,
\[
\varphi_i(E, c) = c_i.
\]

The second bound, Exemption, requires that when the amount to be divided is large enough with respect to agent’s claims, only those agents with larger claims have to be rationed. A rule \(\varphi \) satisfies Exemption if for each \((E, c) \in \mathcal{B} \), and each \(i \in N \), if \(c_i \leq \frac{E}{n} \),
\[
\varphi_i(E, c) = c_i.
\]

Moulin [37] defines a bound on awards, called Lower Bound, requiring that each agent receives at least a "fair" share of the resources except those who demand less than \(E/n \), in which case her demand is met in full. A rule \(\varphi \) satisfies Lower Bound if for each \((E, c) \in \mathcal{B} \), and each \(i \in N \),
\[
\varphi_i(E, c) \geq \min \left\{ c_i, \frac{1}{n}E \right\}.
\]
Moreno-Ternero and Villar [33] present a weaker notion of Moulin’s lower bound, called Securement, which establishes that each agent should receive at least $1/n$ of her claim truncated by the amount to divide.

A rule φ satisfies Securement if for each $(E, c) \in B$, and each $i \in N$,

$$\varphi_i(E, c) \geq \frac{1}{n} \min \{c_i, E\}.$$

Finally, Domínguez [15] proposes, under the name of Min Lower Bound, that each agent should receive at least $1/n$ of the smallest claim truncated by the amount to divide.

A rule φ satisfies Min Lower Bound if for each $(E, c) \in B$, and each $i \in N$,

$$\varphi_i(E, c) \geq \frac{1}{n} \min \left\{ \min \{c_i\}_{j \in N}, E \right\}.$$

0.3 The Lorenz criterion.

Note that, as Sections 0.1 and 0.2 show, an important purpose when analyzing bankruptcy problems from the axiomatic viewpoint is to identify those rules fulfilling a set of requirements with which are pursued "fair" allocations. In this sense, when talking about "fairness", we should take into account that societies do not care only about the individual gains, but also about the social benefits. In Young’s [65] words:

"The sharing rules express a notion of equality in the division of jointly produced goods. By equitable I do not necessarily mean ethical or moral, but that which a given society considers to be appropriate to the need, status and contributions of various members".
Rationing problems with Commonly Accepted Equity Principles

The equity criteria we apply in this work is the Lorenz-criterion which has been widely accepted when the general social goal is to treat everybody as evenly as possible (see for instance Arin [4], Dutta and Ray [17], Cowell [12] and Lambert [26]). In this regard, if a vector x Lorenz dominates a vector y, then x is less unequally distributed than y. Formally:

For each vector $x \in \mathbb{R}_+^n$, we denote by $\Pi(x)$ the vector that results from x by permuting the coordinates in such a way that $\Pi_1(x) \leq \Pi_2(x) \leq \ldots \leq \Pi_n(x)$.

Let $x, y \in \mathbb{R}_+^n$, we say that x Lorenz dominates y, denoted by $x \succ_L y$, if $\Pi_1(x) \geq \Pi_1(y)$, $\Pi_1(x) + \Pi_2(x) \geq \Pi_2(x) + \Pi_2(x)$, and so on, with at least one strict inequality. Note that, given $x, y \in \mathbb{R}_+^n$, we do not impose on these vectors the condition $\sum_{i \in N} x_i = \sum_{i \in N} y_i$ in order to apply the Lorenz domination criterion (see Arin [4]).

If the partial sums are equal for $\Pi(x)$ and $\Pi(y)$, the two vectors, x and y are said to be Lorenz equivalent, denoted by $x \sim_L y$.

Moreover, a vector $x \in \mathbb{R}_+^n$ is Lorenz Maximal if there is no other vector $y \in \mathbb{R}_+^n$ such that, $y \succ_L x$. And, particularly, given a set $S \subseteq \mathbb{R}_+^n$, a vector $x \in S$ is Lorenz Maximal in S if there is no other vector $y \in S$ such that, $y \succ_L x$.

Finally, applying the Lorenz-criterion on the two focus, gains and losses, that "naturally" arises in bankruptcy problems, we can define the concepts of Lorenz-Gains and Lorenz-Losses domination.

Given two bankruptcy rules f and g, we say that f Lorenz-gains dominates g if for each $(E, c) \in \mathcal{B}$, $f(E, c) \succ_L g(E, c)$. And a bankruptcy rule f is Lorenz-Gains Maximal, LGM, if there is no other g such that, for each $(E, c) \in \mathcal{B}$,
g(E, c) ≻_L f(E, c). Analogously, f Lorenz-losses dominates g if for each (E, c) ∈ B,
(c − f(E, c)) ≻_L (c − g(E, c)). And a bankruptcy rule f is **Lorenz-Losses Maximal**, LLM, if there is no other g such that, for each (E, c) ∈ B, (c − g(E, c)) ≻_L
≻_L (c − f(E, c)).

To clarify these concepts, Figure 6 shows the **Lorenz-Gains** and **Lorenz-Losses Maximal** rules for a bankruptcy problem (Schummer and Thomson [47]). Specifically,
the blue line represents the most evenly rule when sharing the estate which, in this case, corresponds with the **Constrained Equal Awards** rule. Analogously, the green line represents the **Constrained Equal Losses** rule, which recommends the most evenly distribution of the losses.

![Figure 6: Lorenz domination in bi-personal bankruptcy problems.](image)

0.4 **Strategic Approach.**

As stated, there are three methods to study bankruptcy problems. Whereas the Axiomatic Approach treats these problems from a rules-based viewpoint, the
Rationing problems with Commonly Accepted Equity Principles

Strategic Approach (initiated by van Damme [58]) considers rationing problems from a positive viewpoint. That is, the rule which is applied to distribute the resource is not imposed by an external agent, but it is the result of a game where agents act individually pursuing their best strategy, which is that one ensuring her highest payoff. Thus, this analysis is based on the definition of a game where its fundamental requirement is that the recommendation has to be self-enforcing, i.e., there is no external mechanism which let the commitments.

Particularly, in the current work we focus on static games with complete information, denoted by Γ, which are represented as follows,

a) A set of agents, \(N = \{1, ..., i, ..., n\} \).

b) A set of strategies \(S_i \) for each agent, \(i \in N \).

c) A payoff function \(\pi_i : S_i \times \ldots \times S_n \), for each agent, \(i \in N \), which is based on some conjecture concerning the remaining players’ strategies, \(s_j \in S, j \neq i \in N \).

Hence, we denote by \(\Gamma \) the strategic game where each agent, \(i \in N \), chooses a strategy \(s_i \in S_i \), according to her payoff function \(\pi_i \),

\[
\Gamma = \{N, \{S_i\}_{i=1}^n, \{\pi_i\}_{i=1}^n\}.
\]

Specifically, in such a strategic game we look for a Nash equilibrium, which in Nash’s [40] words:

"By using the principles that a rational prediction should be unique, that the players should be able to make use of it, and that such knowledge on the part of each player of what to expect the others to do should not lead him to act out of conformity with the prediction, one is led to the concept."
This concept, which is the main solution concept in the Strategic Approach, says us that this equilibrium is formed by the optimal strategies for each player, given the other players’ strategies. In other words, a Nash equilibrium is a situation where there are no player who wants to deviate unilaterally. Formally:

Theorem (Nash, 1951) Given a game \(\Gamma \) in strategic form, the profiles \(s^* \equiv (s_1^*, s_2^*, ..., s_n^*) \) is called a **Nash equilibrium** if for each \(i \in N \) and each \(s_i \in S_i \),

\[
\pi_i(s^*) \geq \pi_i(s_i, s_{-i}^*).
\]

0.5 **Transferable Utility Games.**

Now we present the third method for analyzing bankruptcy problems: the Cooperative Game Approach, which was initiated by, on the one hand, Dagan and Volij [14], who associate a bargaining problem to each bankruptcy problem and analyze the relationship among solutions; and, on the other hand, O’Neill’s [42], who interprets the relationship between bankruptcy problems and a particular class of Transferable Utility Cooperative Games. Concretely, in the current dissertation we will focus in the latter viewpoint. In this sense, O’Neill provides new basis for the resolution of rationing problems using the idea of coalition, which implies that cooperation among agents is allowed. That is, now the rule which is applied to distribute the resource is consequence of a game where groups of players tend to enforce cooperative behavior. Next, we present the main concepts used in this approach.

A particular kind of cooperative games, on what we will pay attention from now on, is the family of transferable utility games, or TU games. In these games, the utility functions for all the agents are chosen so that the rate of transfer of utility among any two of them is 1:1. Therefore, given a set of agents \(N \), a **TU** game
Rationing problems with Commonly Accepted Equity Principles

involving \(N \) can be described as a function \(V \) associating a real number to each subset of agents, or coalition, \(S \) contained in \(N \) (von Neumann and Morgenstern [60]). Formally:

A **TU game** is a pair \((N,V)\), where \(V : 2^N \rightarrow \mathbb{R}_+ \), and \(V(\emptyset) = 0 \).

Hereinafter, and because along the present dissertation we do not consider changes in the agents’ population, we summarize a TU-game by \(V \).

Given a coalition \(S \subseteq N \), \(V(S) \) is commonly called its worth, and denotes the awards that agents in \(S \) can guarantee by working together. An imputation of a TU game is a sharing of the worth of the grand coalition. Formally:

Let \((N,V)\) be a TU game. The **set of imputations**, denoted by \(I(N,V) \), is

\[
I(N,V) = \left\{ x \in \mathbb{R}^n : \sum_{i \in N} x_i = V(N) \right\}.
\]

Assuming superadditivity, that is, the worth of a coalition is bigger than the sum of the worth of any partition of such a coalition, we can describe a solution for TU games as a correspondence selecting, for each TU game a set of shares of the worth of the grand coalition. Formally:

A **TU game solution** is a correspondence, from a family of TU games, \(G \), referred to a fixed set of agents, \(N \), \(\psi : G \rightarrow \mathbb{R}_+^n \) such that if \(x \in \psi(N,V) \)

\[
\sum_{i \in N} x_i = V(N).
\]
When a TU game solution is univalued, i.e., it consists of a unique share of \(V(N) \), then we call it a TU game value.

A **TU-value** is a function, from a family of TU-games, \(G \), referred to a fixed set of agents, \(N \), \(\gamma : G \rightarrow \mathbb{R}^n \), such that for each TU-game \((N,V) \in G\),

\[
\sum_{i \in N} \gamma_i(V) = V(N).
\]

An important kind of TU-games are the *convex games*, since they have a "good" behavior, but before presenting them, we need some additional notation.

Hereinafter, given a TU-game \((N,V)\), for each agent \(i \in N \) and each coalition \(S \subset N \setminus i \), we call the **marginal contribution of agent \(i \) to coalition \(S \)**, denoted by \(\Delta_i V(S) \), the amount which its adherence contributes to the value of the coalition, which is

\[
\Delta_i V(S) = V(S \cup \{i\}) - V(S).
\]

A TU-game is convex if agents obtain more returns through cooperation, which means that the larger the coalition that agents join, the larger their marginal contribution. Formally: a TU-game \((N,V)\) is **convex** if and only if, for all \(i \in N \),

\[
\Delta_i V(S) \leq \Delta_i V(T) \quad \text{for all} \quad S \subseteq T \subseteq N \setminus \{i\}.
\]

Next, we present, among all the TU game solutions in the economic literature, the ones that occupy a prominent place: the **Core**, the **Shapley value** and the **Nucleolus**.

The **Core** (Gillies [19]) is the set of all feasible outcomes (payoffs) that no player (agent) or group of players (coalition) can improve upon by acting for themselves.
Thus, once an agreement in the core has been reached, no individual and no group could gain by regrouping.

Let \((N, V)\) be a TU game, the **Core** of such a game, denoted by \(\mathcal{C}(N, V)\), is

\[
\mathcal{C}(N, V) = \left\{ x \in \mathbb{R}^n_+ : \sum_{i=1}^n x_i = V(N), \sum_{i \in S} x_i \geq V(S) \forall S \subset N \right\}.
\]

The **Shapley value** (Shapley [48]) is based on the agent’s expected payoff of her marginal contribution to a coalition. Suppose the agents (the elements of \(N\)) agree to meet at a specified place and time. Naturally, because of a random fluctuations, all arrive at different times; it is assumed, however, that all orders of arrival (permutations of the players) have the same probability \((1/n!)\). Suppose that if a player, \(i\), arrives and finds the members of the coalition \(S - \{i\}\) already there, he receives the amount \(V(S) - V(S - \{i\}\)) i.e., the marginal amount which he contributes to the coalition, as payoff. Then, the **Shapley value** is the expected payoff to player \(i\) under this randomization scheme. Formally:

Let \((N, V)\) be a TU game, the **Shapley value**, \(\text{Sh}_i(N, V)\), is for an agent \(i\) the expected payoff of her marginal contribution to a coalition:

\[
\text{Sh}_i(N, V) = \sum_{S \subseteq N} \sum_{i \subseteq S} \frac{(s-1)!(n-s)!}{n!} [V(S) - V(S - \{i\})].
\]

where \(s\) and \(n\) are the cardinalities of \(S\) and \(N\), respectively.

The **Nucleolus** (Schmeidler [45]) minimizes the grade of dissatisfaction that a coalition gives to their members, given a particular set of payoff vectors, named excess vector. Formally:
For a TU-game \((N, V)\) and payoff \(x = (x_1, \ldots, x_n)\), we define the \(2^n\) - vector \(\theta(x)\), called the **excess vector**, as the vector whose components are the excesses of \(2^n\) subsets \(S \subseteq N\), arranged in decreasing order, i.e.,

\[
\theta_k(x) = e(S_k, x),
\]

where \(S_1, \ldots, S_{2^n}\) are the subsets of \(N\), arranged by

\[
e(S_k, x) \geq e(S_{k+1}, x),
\]

where for all \(S \subseteq N\) and \(x = (x_1, \ldots, x_n)\),

\[
e(S_k, x) = V(S_k) - \sum_{i \in S_k} x_i.
\]

Let \((N, V)\) be a TU game, the **Nucleolus**, \(Nu(N, V)\), is

\[
Nu(N, V) = \{ x \in I(N, V) : \theta(x) <_{Le} \theta(y), \forall y \in I(N, V) \},
\]

where \(Le\) denotes the Lexicographic order:

\[
\theta(x) <_{Le} \theta(y) \iff \exists k : \{ \theta_m(x) = \theta_m(y), \forall m < k, \theta_k(x) < \theta_k(y) \}.
\]

At this point, let us introduce the bankruptcy game proposed by O’Neill. His device was to associate to each coalition the quantity of good, if any, that remained left after paying the debts that the bankrupted contracted with all her creditors outside this coalition. Formally:

Given \((E, c) \in \mathcal{B}\), the **O’Neill cooperative game** induced by \((E, c)\) is the pair \((N, V^o_{(E,c)})\) where the function \(V^o_{(E,c)} : 2^N \rightarrow \mathbb{R}_+\) associates to each coalition \(S \subseteq N\), the real number

\[
V^o_{(E,c)}(S) = \max \left\{ 0, E - \sum_{i \in N \setminus S} c_i \right\}.
\]

This game has been analyzed by Curiel et al. [13], who, firstly, note some "links" between the Axiomatic and the Cooperative Game Approaches to bankruptcy
Rationing problems with Commonly Accepted Equity Principles

problems. In this sense, they provide the condition for the correspondence between bankruptcy rules and TU values of the O’Neill’s game, known as Invariance Under Claims Truncation. It requires that a rule recommends the same allocation if the part of a claim that is above the estate is ignored, or not. Formally:

Theorem (Curiel et al., 1987) A necessary and sufficient condition for a bankruptcy rule \(\varphi \) to be a TU value is

\[
\varphi(E, c) = \varphi(E, \tilde{c}),
\]

where the \(i \)-th component of \(\tilde{c} \), the vector of truncated claims, is

\[
\tilde{c}_i(E, c) = \min \{ c_i, E \}
\]

They also identify the Core of such games,

\[
C(N, V_{(E, c)}) = \left\{ x \in \mathbb{R}^n : \sum_{i=1}^{n} x_i = V(N), 0 \leq x_i \leq c_i \right\},
\]

and show that these bankruptcy games are always convex.

Regarding to this, the following results show the correspondence among rules and TU game solutions.

Theorem (O’Neill, 1982) The Random Arrival rule\(^1\) corresponds with the Shapley value.

Theorem (Aumann and Maschler, 1985) The Talmud rule corresponds with the Nucleolus.

Theorem (Dutta and Ray, 1989) The Constrained Equal Awards rule corresponds with the Egalitarian Allocation\(^2\).

\(^1\)See O’Neill [42] for a formal definition of this value.

\(^2\)See Dutta and Ray [17] for a formal definition of this value.
Theorem (Curiel et al., 1987) The Adjusted Proportional rule\(^3\) corresponds with the t-value\(^4\).

\(^3\)See Curiel et al. [13] for a formal definition of this rule.
\(^4\)See Tijss [55, 56] for a formal definition of this value.
CHAPTER 1

THE MODEL: LORENZ-BIFOCAL BANKRUPTCY PROBLEMS.

As Moulin [38] points out,

"Justice is blind, and fairness requires anonymous rules of arbitration. Equals should be treated equally, and unequals, unequally, in proportion to the relevant similarities and differences" (Nicomachean Ethics). This Aristotle’s maxim is one of the basis for the formal definition of distributive fairness”.

In this regard, in bankruptcy problems there is no clear answer to the question about what would be a fair way of dividing the resources among the claimants. Economic Theory attempts to clarify the fairness criterion behind rules by seeking the agreement on appealing properties or requirements which should be fulfilled by the acceptable allocation (see for instance, O’Neill [42], Dutta and Ray [17], Young [63, 64], and Gura and Maschler, [20]).

Henceforth, we can draw that when a society has to solve a bankruptcy problem, it may be quite natural that it establishes a "Commonly Accepted Equity Principles" set on the allowed rules, trying to find the commitment and the fairest distribution. Moreover, note that this idea of establishing restrictions on the possible allocations has been prospected deeply in the context of Nash’s bargaining model (see for instance, van Damme’s [58], Chun [8], Marco et al. [31], Naeve-Steinweg [39], and Thomson [53]).
1. The model: Lorenz-Bifocal Bankruptcy Problems.

However, as Young [65] highlights:

"Fairness does not boil down to a single formula, but represents a balance between competing principle of need, desert and social utility".

Note that he is telling us that when a rule has to be proposed to distribute the resource, society should not only care about the individual awards but also about the social benefits, i.e., each agent concerns for individual and social welfare. In this regard, as we have mentioned in Section 0.3 of Preliminaries, many authors have considered that the general social goal is to treat everybody as evenly as possible (see for instance Arin [4] and Dutta and Ray [17]). At this point, and following Cowell [12] and Lambert [26], among all the equality criteria that appear in the literature on egalitarianism, we decide to consider as general goal equality in terms of the Lorenz-criterion, i.e., an allocation is more equally distributed than another, if the former Lorenz dominates the latter.

In this work, we pick up all these ideas to introduce extended bankruptcy problems, named Lorenz-Bifocal Bankruptcy Problems.

Firstly, we consider a "Commonly Accepted Equity Principles" set, \(P_t \), which must be fulfilled by all the proposed rules for bankruptcy problems.

Secondly, the discrepancy for sharing the resources is considered by means of the existence of two fixed rules, that is, two focus which gather the two most egalitarian rules according to extreme and opposite ways of facing bankruptcy problems: awards and losses (Section 0.1 of Preliminaries).
We call these two focus Lorenz-Focal rules, which are the Lorenz-Gains and Lorenz-Losses Maximal rules satisfying \(P_i \), denoted by \(LGM^{P_i} \) and \(LLM^{P_i} \), respectively.

Finally, a Lorenz-Bifocal Bankruptcy Problem is the triplet consisting of a bankruptcy problem and the two Lorenz-Focal rules according to a fixed "Legitimate Principles" set, \(P_i \). Formally:

Definition 3 A Lorenz-Bifocal Bankruptcy Problem, \(LB_{P_i} \), is a triplet \(LB_{P_i} = (B, LGM^{P_i}, LLM^{P_i}) \) where \(B = (E, c) \in B \), \(P_i \) is a fixed set of principles on which a particular society has agreed, and both \(LGM^{P_i} \) and \(LLM^{P_i} \) are the Lorenz-Gains and Lorenz-Losses Maximal rules satisfying \(P_i \) for each \(B \in B \), respectively.

Let \(P \) be the set of all subsets of properties of rules. Each \(P_i \in P \) represents a specific society which will always apply such principles for solving its problems, and \(LB_P \) denotes the set of all Lorenz-Bifocal Bankruptcy Problems.

Now, the question is

How can we distribute the resources for each Lorenz-Bifocal Bankruptcy Problem?

If we think in a "natural" manner, the answer arise as follows. If a society faces a bankruptcy problem with two focal rules which are interpreted as acceptable extremes and opposite viewpoints to solve the problem, it seems logical to consider as Admissible rules those ones satisfying the set of required principles that assign, to each agent, an allocation between the focus.
1. The model: Lorenz-Bifocal Bankruptcy Problems.

So that, a *Lorenz-Bifocal Admissible rule* will be a rule satisfying P_t which recommends an allocation between the two Lorenz-Focal rules. Formally:

Definition 4 A *Lorenz-Bifocal Admissible rule* on LB_P is a function $\varphi : LB_P \rightarrow \mathbb{R}^n$, such that for each Lorenz-Bifocal bankruptcy problem $LB_{P_i} \in LB_P$, φ is a rule satisfying P_t, associating for each $i \in N$ a part of the resources satisfying

$$\min\{LGM_i^{P_t}(E,c), LLM_i^{P_t}(E,c)\} \leq \varphi_i(E,c) \leq \max\{LGM_i^{P_t}(E,c), LLM_i^{P_t}(E,c)\}.$$

Let Φ denote the set of all rules and let $\Phi(LB_{P_i})$ be the subset of *Lorenz-Bifocal Admissible rules* in P_t.

In this context, we consider three possible choices of "Commonly Accepted Equity Principles" set that a society could impose on the rules, taking into account that the introduced properties have been understood by many authors as minimal requirements of fairness (see for instance Thomson [52]). Specifically, we consider the following "Legitimate Principles" sets,

$$P_1 = \{\text{Efficiency, Claim-boundedness and Non-Negativity}\},$$

$$P_2 = P_1 \cup \{\text{Resource Monotonicity, Super-Modularity and Midpoint Property}\},$$

and

$$P_3 = P_1 \cup \{\text{Resource Monotonicity and Midpoint Property}\}.$$
Given these sets of equity principles, Schummer and Thomson [47] showed that the Constrained Equal Awards rule is the only Lorenz-Gains Maximal for P_1. Moreover, by Bosmans and Lauwers [6] we know that Piniles’ rule is the only Lorenz-Gains Maximal rule for P_2. Finally, Chun, Schummer and Thomson [8] obtained that the Constrained Egalitarian rule is the only Lorenz-Gains Maximal rule for P_3. Next, all these results are presenting:

Theorem (Schummer and Thomson, 1997) For each $(E, c) \in \mathcal{B}$, the Constrained Equal Awards rule is the only one in $\Phi(P_1)$ such that: (i) the gap between the smallest and the largest amount any claimant receives is the smallest, and (ii) the variance of the amounts received by all claimants is the smallest.

Theorem (Bosmans and Lauwers, 2007) For each $(E, c) \in \mathcal{B}$, Piniles’ rule is the only one in $\Phi(P_2)$ such that: (i) the gap between the smallest and the largest amount any claimant receives is the smallest, and (ii) the variance of the amounts received by all claimants is the smallest.

Theorem (Chun, Schummer and Thomson, 2001) For each $(E, c) \in \mathcal{B}$, Piniles’ rule is the only one in $\Phi(P_3)$ such that: (i) the gap between the smallest and the largest amount any claimant receives is the smallest, and (ii) the variance of the amounts received by all claimants is the smallest.

Starting from these results and using the concept of dual bankruptcy rule, it can be deduced directly that Constrained Equal Losses, the Dual of the Piniles’ and the Dual Constrained Egalitarian rules are the only Lorenz-Losses Maximal for P_1, P_2, and P_3, respectively.
Hence, the Lorenz-Focal rules that mark out the region of Lorenz-Bifocal Admissible rules for \(P_1, P_2, \) and \(P_3 \), are the pairs \((CEA, CEL) \), \((P, DPin) \), and \((CE, DCE) \), respectively. So, Lorenz-Bifocal Bankruptcy Problems for each of these principles sets are well-defined, being their elements triplets, such that, for each \((E, c) \in B \),

\[
LB_{P_1} = ((E, c), CEA, CEL),
LB_{P_2} = ((E, c), P, DPin), \text{and}
LB_{P_3} = ((E, c), CE, DCE).
\]

In this context, the following figures show the area of the associated Lorenz-Bifocal Admissible rules for \(P_1, P_2 \) and \(P_3 \).

In Figure 1.1 the blue and the green lines represent the two Lorenz-Focal rules for \(P_1 \), corresponding with the CEA and CEL rules, respectively. Any Lorenz-Bifocal Admissible rule in this set, must satisfy \(P_1 \) and be placed in the green area.
Figure 1.2 shows the two Lorenz-Focal rules for P_2, represented by the blue and the green lines, which correspond with Pin and $DPin$ rules, respectively. Any Lorenz-Bifocal Admissible rule in this set, must satisfy P_2 and be placed in the green area.

![Diagram showing Lorenz-Focal rules for P_2.]

Figure 1.2: Lorenz-Bifocal Admissible rules for P_2.

Finally, in Figures 1.3 and 1.4 the blue and the green lines represent the two Lorenz-Focal rules for P_3, corresponding with the CE and DCE rules, respectively. The first figure when the relation between agent 1 and 2 when the distance between their claims is lower than the smallest agent’s claim. The second figure otherwise. Any Lorenz-Bifocal Admissible rule in this set, must satisfy P_3 and be placed in the green area.
Figure 1.3: *Lorenz-Bifocal Admissible rules* for P_3 (case a).

Figure 1.4: *Lorenz-Bifocal Admissible rules* for P_3 (case b).
CHAPTER 2

A NEW APPROACH FOR BOUNDING AWARDS.

2.1 Introduction.

As we have already mentioned (see Section 0.2 of Preliminaries), many authors have introduced certain lower bounds on awards in bankruptcy problems: O’Neill [42], Herrero and Villar [23, 24], Moulin [37], Moreno-Ternero and Villar [33] and Dominguez [15]. However, most of these guarantees have only been justified by their own reasonability. A clear exception is the condition Respect of Minimal Rights, which requires that each claimant receives at least what is left of the endowment after the other claimants have been fully compensated, or zero if this amount is negative. This property is not only intrinsically appealing, but also, as Thomson [52] pointed out, it is a consequence of efficiency, non-negativity and claim-boundedness together (See Definition 2).

Our goal is to propose a new method by which the idea of lower bound on awards arises not "ad hoc" but, in a natural way, in the context of Lorenz-Bifocal Bankruptcy Problems. In other words, we recover the O’Neill’s line, establishing restrictions on awards which determine the Lorenz-Bifocal Admissible rules for each Lorenz-Bifocal Bankruptcy Problem. Then, we define the agent’s Lorenz P-Safety as the smallest amount she receives among all the allowed rules. Finally, we define the associated lower bound on awards, Respect of Lorenz P-Safety, by demanding that each agent should receive at least her Lorenz P-Safety.
Since, in general, the aggregate guaranteed amount by means of the \textit{Lorenz P-Safety} will not exhaust the endowment, we propose and analyze its recursive application, called the \textit{Recursive Lorenz P-Safety Process}. The idea of recursivity is not new, and indeed has already been used for introducing bankruptcy rules by Alcalde et al. \cite{1}, who generalize Ibn Ezra’s proposal, and by Dominguez and Thomson \cite{16}, who propose the \textit{Recursive} rule by using Moreno-Ternero and Villar’s concept of boundedness.

We apply the previous methodology to the three different sets of properties or "\textit{Legitimate Principles}" previously introduced. Firstly, we analyze the set P_1, all rules are allowed, finding that the \textit{Recursive Lorenz P-Safety} rule leads to the \textit{Constrained Equal Losses} rule. We then consider the set P_2, consisting of \textit{Resource Monotonicity, Super-Modularity} and \textit{Midpoint Property}. In this society, we show that the \textit{Recursive Lorenz P-Safety} rule leads to the \textit{Dual of Piniles’} rule.

Previous results could be written as follows:

"In the set of all the acceptable rules according to both P_1 and P_2, the recursive application of the Lorenz P-Safety recovers one of its extremes: the one providing greater awards to the higher claimants".

Then, analyzing the generalization of this statement for any P_1, naturally arises as a question. With this aim, we consider the set of socially accepted requirements, P_3. Surprisingly, since $P_2 \subset P_3 \subset P_1$, we show both that this generalization is not possible and that the rule obtained by the recursive application of the \textit{Lorenz P-Safety} does not satisfy all of the equity principles on which this process is based.

The chapter is organized as follows: Section 2.2 proposes our new approach for bounding awards and its recursive application. Section 2.3 provides a new basis to
classical bankruptcy rules using the previous ideas. Section 2.4 shows a non existence result of the proposed process for the set P_3. Section 2.5 presents the dual results. Section 2.6 summarizes the conclusions. Finally, technical proofs are contained in Appendix A.

2.2 The model.

In this section, taking Lorenz-Bifocal Bankruptcy Problems as a starting point, we propose a new lower bound on awards based on the application of the ordinary meaning of a guarantee, named the Lorenz P-Safety. For each Lorenz-Bifocal Bankruptcy Problem, it provides each agent the smallest amount recommended for her by all the Lorenz-Bifocal Admissible rules satisfying the selected properties. Taking into account that each Lorenz-Bifocal Admissible rule has to recommend an allocation between the two Lorenz-Focal rules, our lower bound ensures each agent the minimum amount between them. Formally:

Definition 5 Given $LB_{P_i} \in \mathcal{LB}_P$, the Lorenz P-Safety, Ls, is for each $i \in N$,

$$Ls_i(LB_{P_i}) = \min \{ LGM_{P_i}^i (E, c) , LLM_{P_i}^i (E, c) \} .$$

In general, since the sum of the agents’ Lorenz P-Safeties of a problem does not exhaust the endowment, a requirement of composition from the profile of these bounds arises in a natural way: the awards vector should be equivalently obtainable either directly or by first assigning to each agent her Lorenz P-Safety, adjusting claims down by these amounts, and finally, applying the rule to divide the remainder. The following definition applies this idea.

Definition 6 Given $LB_{P_i} \in \mathcal{LB}_P$, a rule φ satisfies Lorenz P-Safety First if for each $(E, c) \in \mathcal{B}$ and each $i \in N$,

$$\varphi_i(E, c) = Ls_i(LB_{P_i}) + \varphi_i(E - \sum_{i \in N} Ls_i(LB_{P_i}), c - Ls(LB_{P_i})).$$
This kind of composition, or equivalently applying a recursive method from a lower bound on awards, has been used to generate new rules. The Recursive rule, proposed by Dominguez and Thomson [16], is the result of applying this procedure with the Securement lower bound. Following this idea, we define the recursive application of our Lorenz P-Safety, which will be called the Recursive Lorenz P-Safety Process.

Definition 7 For each \(m \in \mathbb{N} \), the **Recursive Lorenz P-Safety Process** at the \(m \)-th step, \(RLS \), associates for each \(LB_{P_i} \in LB_P \), and each \(i \in N \),

\[
[RLS(LB_{P_i}^m)]_i = Ls_i(LB_{P_i}^m),
\]

where \(LB_{P_i}^m \equiv ((E^m, c^m), LGM^{P_i}, LLM^{P_i}), \)

\[(E^1, c^1) \equiv (E, c) \text{ and for } m \geq 2, \]

\[(E^m, c^m) \equiv (E^{m-1} - \sum_{i \in N} Ls_i(LB_{P_i}^{m-1}), c^{m-1} - Ls(LB_{P_i}^{m-1})).\]

According to this process, at the first step an agent will receive her Lorenz P-Safety of the original problem. We then define a residual problem in which the endowment is what remains and the claims are adjusted down by the amounts just given. All agents then receives her Lorenz P-Safety of this residual problem, and so on. In general, it can not be ensured that the sum of the amounts that agents receive in each step exhausts the endowment, but when this occurs, we call this sum the Recursive Lorenz P-Safety rule. In this regard, note that non-negativity and claim boundedness are satisfied by construction. Furthermore, by adapting the proof of Remark 3 in Appendix A, it is clear that whenever the Lorenz P-Safety provides a positive amount to some agent in each step, efficiency is met. In this regard, note that the recursive application of the Minimal Rights fails this requirement, since from the second step on, no agent receives anything. The result of combining this procedure with the aforementioned bound, therefore, would not be a rule.
Definition 8 The Recursive Lorenz P-Safety rule, \(\varphi^{RL} \), associates for each \(LB_P \in LB_P \), and each \(i \in N \),
\[\varphi^{RL}_i(LB_P) = \sum_{m=1}^{\infty} [RLS^m(LB_P)]_i, \]
whenever
\[\sum_{i \in N} \left(\sum_{m=1}^{\infty} [RLS^m(LB_P)]_i \right) = E. \]

Note that this rule will be a Lorenz-Bifocal Admissible rule whenever it fulfills the set of equity principles on which the Recursive Lorenz P-Safety Process is based. A fact that, as we will see later, cannot always be guaranteed.

At this point we should mention some contributions that have certain features in common with our previous approach, although in the context of Nash’s bargaining model. In this sense, a bargaining game is a pair \((Q,d)\), where the feasible set, \(Q \subset \mathbb{R}^n \), consists of all utility vectors attainable by the group \(N \) by unanimous agreement, and the disagreement point, \(d \), which is a point of \(Q \), is the utility vector that results if they fail to reach an agreement. In this regard, a bargaining solution is a function defined on a class of bargaining games that associates with each game in the class a unique point in the feasible set of the game. In this context, Marco et al. [31] define the Unanimous-Concession mechanism, as follows. At a first step, their process guarantees to each agent the smallest amount according to a set of agreed solutions, which would be the disagreement point at the following step, and so on. Thomson [53] discusses an approach where, starting from a class of solutions on which agents have agreed, all the feasible payoff vectors that are not chosen by some members are eliminated and the solutions are reapplied until convergence is reached. He introduces and studies the concept of Closedness Under Recursion of a family of solutions, which means that the solution obtained is not only well-defined but also belongs to the family of solutions considered. This idea, although in a different framework, is close to our definition of Admissible rule, but the process he uses has no relation to ours.
2.3 The Recursive Application of the Lorenz P-Safety for P_1 and P_2.

In this section, we provide the Recursive Lorenz P-Safety rule when the "Commonly Accepted Equity Principles" sets are P_1 and P_2.

As we have seen, for $P_1 = \{Efficiency, \text{Claim-boundedness and Non-Negativity}\}$, we are not requiring any additional property different from those imposed by the definition of a rule. Thus, the Lorenz-Focal rules will be the Lorenz-Gains and Lorenz-Losses Maximal elements in the set of all bankruptcy rules, which, as we know by Schummer and Thomson [47], are given by the pair (CEA, CEL). So that, the associated Lorenz-Bifocal Bankruptcy Problem is, $LB_{P_1} = ((E, c), CEA, CEL)$, where $(E, c) \in B$; and the Lorenz-Bifocal Admissible rules are those rules such that for each $i \in N$, and each $(E, c) \in B$, $\min\{CEA_i(E, c), CEL_i(E, c)\} \leq \varphi_i^{LB_{P_1}}(E, c) \leq \max\{CEA_i(E, c), CEL_i(E, c)\}$.

Then, for each Lorenz-Bifocal Bankruptcy Problem $LB_{P_1} = ((E, c), CEA, CEL)$, its associated Lorenz P-Safety, Ls, comes straightforwardly from our previous definition, that is, for each agent $i \in N$, $Ls_i(LB_{P_1}) = \min\{CEA_i(E, c), CEL_i(E, c)\}$.

This Lorenz P-Safety is represented, for the bi-personal case, in Figure 2.1. The black line represents the estate E. The blue and the green lines show CEA and CEL rules, which are the two Lorenz-Focal rules marking out the area of all the Lorenz-Bifocal Admissible rules for P_1. Moreover, given E, the point Ls shows the Lorenz P-Safety for agents 1 and 2.

As we can see, the smallest amount that agent 1 can receive is the one recommended by the CEL rule. For agent 2, her Lorenz P-Safety is the amount recommended by CEA rule.
Next theorem tells us that the *Recursive Lorenz P-Safety* rule for P_1 recovers one of the two extreme rules; specifically, the one which favors the highest claimant.

Theorem 1 For each $LB_{P_1} \in \mathcal{LB}_P$, $LB_{P_1} = ((E, c), CEA, CEL)$, the *Recursive Lorenz P-Safety* rule is the *Constrained Equal Losses* rule, $\varphi^{RL}(LB_{P_1}) = CEL(E, c)$.

Proof. See Sections A.1 and A.2, in Appendix A. ■

Note that previous result can be generalized as follows. Let P_1^* such that, $P_1 \subset \subset P_1^*$ and such that the properties for $P_1^* \setminus P_1$ are satisfied by both the *Constrained Equal Awards* and the *Constrained Equal Losses* rules. Then, for each $LB_{P_1^*} \in \mathcal{LB}_P$, the *Lorenz P-Safety* will remain the smallest amount recommended by the same
Lorenz-Focal rules. And, consequently, the Recursive Lorenz P-Safety rule will be the Constrained Equal Losses rule, \(\varphi_{RL}(LB_{P_1}) = CEL(E, c) \).

In this regard, note that, as we comment in Chapter 6, if we add to this set of equity principles the properties Order Preservation and Resource Monotonicity, we will obtain the same results, so that, they are redundant in our context.

Next, we analyze the application of our process to the set \(P_2 \) which, in addition to claim-boundedness, non-negativity and efficiency, contains Resource Monotonicity, Super-Modularity and Midpoint Property.

In this set, we know, by Bosmans and Lauwers [6] and duality, that the two Lorenz-Focal rules that mark out the region of Lorenz-Bifocal Admissible rules for \(P_2 \) are given by the pair \((Pin, DPin)\). So that, the associated Lorenz-Bifocal Bankruptcy Problem is, \(LB_{P_2} = ((E, c), Pin, DPin) \), where \((E, c) \in B\); and the Lorenz-Bifocal Admissible rules are those rules satisfying the accorded properties and such for each \(i \in N \), and each \((E, c) \in B\), \(\min\{Pin_i(E, c), DPin_i(E, c)\} \leq \varphi_{i,P_2}^L(E, c) \leq \max\{Pin_i(E, c), DPin_i(E, c)\} \).

Henceforth, applying Definition 5, for each Lorenz-Bifocal Bankruptcy Problem \(LB_{P_2} = ((E, c), Pin, DPin) \), its associated Lorenz P-Safety, \(Ls \), for each agent, \(i \in N \), is \(Ls_i(LB_{P_2}) = \min \{Pin_i(E, c), DPin_i(E, c)\} \).

In Figure 2.2, which shows the previous situation for bi-personal problems, the black line the estate \(E \). The blue and the green lines show \(Pin \) and \(DPin \), respectively,
which are the two Lorenz-Focal rules marking out the area of all the Lorenz-Bifocal Admissible rules for P_2.

Moreover, given E, the point L shows the Lorenz P-Safety for agents 1 and 2, which coincide with the amount recommended by the $DPim$ and Pin rules, respectively.

Figure 2.2: Lorenz P-Safety for P_2.

As previously, next result shows that the Recursive Lorenz P-Safety rule recovers, again, the Lorenz-Focal rule that favors the highest claimant. Analogously, this result can be generalized considering any set, P_2^*, of "Equity principles" which contains P_2 ($P_2 \subset P_2^*$) and such that the properties for $P_2^* \setminus P_2$ are satisfied by both the Pínules’ and the Dual of Pínules’ rules. Then, for each $LB_{P_2^*} \in \mathcal{L}B_P$, the Lorenz-Focal rules
will remain the same. Hence, its associated Lorenz P-Safety will not change and the Recursive Lorenz P-Safety rule will be the Dual of Piniles’ rule.

Theorem 2 For each $LB_{P_2} \in \mathcal{LB}_P$, $LB_{P_2} = ((E, c), Pin, DPin)$, the Recursive Lorenz P-Safety rule is the Dual of Piniles’ rule, $\varphi_{RL}(LB_{P_2}) = DPin(E, c)$.

Proof. See Sections A.1 and A.3, in Appendix A. □

To conclude this section, let us remark that, for the two sets of properties we are considering, the associated Lorenz P-Safety is defined as the minimum of both a classical rule and its dual. These rules are extreme and opposite ways of sharing awards among claimants in the corresponding set of allowed rules. The first intuition when applying the recursive procedure is to get some allocation in the middle of these rules. However, we have proved that the Recursive Lorenz P-Safety rule leads to one of the Lorenz-Focal rules, namely that one favoring the largest claims. Our results can therefore be interpreted as providing a new basis for old rules. Moreover, they lead to a natural question, which is analyzed in the next section:

"For any appealing set of equity principles, would its Lorenz P-Safety recursive application recover one of the two Lorenz-Focal rules?"

2.4 A negative result.

In this section we show that, in general, the recursive application of our new lower bound on awards does not provide one of the Lorenz-Focal rules satisfying the considered set of equity principles. Surprisingly, the rule obtained by our procedure does not always satisfy the properties on which it is based; that is, it is not a Lorenz-Bifocal Admissible rule. Let us consider the set of equity principles P_3, which is an
"intermediate" situation between P_1 and P_2, since is more restrictive than P_1, we require Resource Monotonicity and Midpoint Property, but more permissive than P_2, since we eliminate Super-Modularity.

Applying results in Chun, Schummer and Thomson [8] and duality, the two extreme rules that mark out the region of allowed rules for P_3 are given by the pair (CE, DCE). So that, the associated Lorenz-Bifocal Bankruptcy Problem is, $LB_{P_3} = ((E, c), CE, DCE)$, where $(E, c) \in \mathcal{B}$. The Lorenz-Focal rules are those satisfying the accorded properties such that for each $i \in N$, and each $(E, c) \in \mathcal{B}$, $\min\{CE_i(E, c), DCE_i(E, c)\} \leq \varphi^{LB}_{P_3} (E, c) \leq \max\{CE_i(E, c), DCE_i(E, c)\}$.

Then, for each Lorenz-Bifocal Bankruptcy Problem with $P_i = P_3$, $LB_{P_3} \in \mathcal{LB}_{P_i}$, $LB_{P_3} = ((E, c), CE, DCE)$, the Lorenz P-Safety, L_s, comes straightforwardly from Definition 5, that is, for each agent, $i \in N$, $L_s(LB_{P_3}) = \min \{CE_i(E, c), DCE_i(E, c)\}$.

Figures 2.3 and 2.4 show this situation for bi-personal problems. In these figures, the black solid line represents all the possible sharing of the estate E. The blue and green lines show CE and DCE, which are the two Lorenz-Focal rules marking out the area of all Lorenz-Bifocal Admissible rules for P_3. The point L_s shows the Lorenz P-Safety for agents 1 and 2, which coincides with the amount recommended by the DCE and CE rules, respectively.

In this context, we show that, although for bi-personal problems the Recursive Lorenz P-Safety rule for P_3 retrieves the Dual Constrained Egalitarian rule, this fact can not be extended for the n-person case.
Figure 2.3: Lorenz P-Safety for P_3 (case a).

Figure 2.4: Lorenz P-Safety for P_3 (case b).
Theorem 3 For each bi-personal \(LB_{P_3} \in \mathcal{LB}_P \), \(LB_{P_3} = ((E, c), CE, DCE) \), the Recursive Lorenz \(P \)-Safety rule is the Dual Constrained Egalitarian rule, \(\varphi^{RL}(LB_{P_3}) = DCE(E, c) \).

Proof. See Sections A.1 and A.4, in Appendix A. ■

Proposition 1 There is a problem, \((E, c) \in \mathcal{B} \), for which the Recursive Lorenz \(P \)-Safety rule for \(P_3 \) does not coincide with the Dual Constrained Egalitarian rule, \(\varphi^{RL}(LB_{P_3}) \neq DCE(E, c) \).

Proof. See Sections A.1 and A.5, in Appendix A. ■

Our next proposition highlights the fact that the composition of "appealing" equity principles and "natural" processes for finding solutions does not always guarantee desirable results. In particular, we find that the society should be careful when establishing its equity principles, if the recursive process is applied, since the Recursive Lorenz \(P \)-Safety rule so obtained cannot be Lorenz-Bifocal Admissible.

Proposition 2 For \(P_3 \), the Recursive Lorenz \(P \)-Safety rule does not satisfy Resource Monotonicity.

Proof. See Sections A.1 and A.5, in Appendix A. ■

Finally, next corollary comes from a complete overview of previous results, and it points out the following fact: Our procedure’s success can not even be ensured for a set of properties that is, at the same time, an enlargement and a reduction of other sets for which this process is a Lorenz-Bifocal Admissible rule.

Proposition 3 Let \(P_j, P_k \) and \(P_l \) in \(P \), such that \(P_j \subset P_k \subset P_l \) and such that for each \((E, c) \in \mathcal{B} \), \(LB_{P_j} = (B, LGM^{P_j}, LLM^{P_j}) \) and \(LB_{P_l} = (B, LGM^{P_l}, LLM^{P_l}) \) in \(\mathcal{LB}_P \), \(\varphi^{RL}(LB_{P_j}) \) and \(\varphi^{RL}(LB_{P_l}) \) are Lorenz-Bifocal Admissible rules. It cannot then be ensured that \(\varphi^{RL}(LB_{P_k}) \) is a Lorenz-Bifocal Admissible rule.
2.5 Duality.

The previous analysis can be rewritten for losses by using the idea of duality. When focusing on losses, the starting point will be the Dual Lorenz-Bifocal Bankruptcy Problems. That is, given \(P_t \in P \) and \((E, c) \in \mathcal{B}\), we consider the set of dual properties \((P_t)^d\) and the problem of distributing the losses \((L, c)\).

Given a Lorenz-Bifocal Bankruptcy Problem, \(LB_{P_t} \), the Dual Lorenz-Bifocal Bankruptcy Problem, denoted by \((LB_{P_t})^d\), is a triplet \((LB_{P_t})^d = (B^d, LGM^{(P_t)}^d, LLM^{(P_t)}^d)\) where \(B^d = (L, c) \in \mathcal{B}, P_t \) is a fixed set of principles on which a particular society has agreed, and both \(LGM^{(P_t)}^d \) and \(LLM^{(P_t)}^d \) are the Lorenz-Gains and Lorenz-Losses Maximal rules satisfying \((P_t)^d\) for each \(B^d \in \mathcal{B} \), respectively.

Note that, since all the considered properties of \(P_t \), with \(t = \{1, 2, 3\} \), are Self-Dual we remain using the same sets of equity principles. So that, in this context, it can be shown that the Constrained Equal Awards and Piniles’ rules are retrieved for \(P_1 \) and \(P_2 \), respectively. However, we cannot obtain a generalized result for \(P_3 \).

Corollary 1 For each \(LB_{P_1} \in \mathcal{LB}_P \), \((LB_{P_1})^d = ((L, c), CEA, CEL)\), the Recursive Lorenz \(P \)-Safety rule is the Constrained Awards Losses rule, \(\varphi^{RL} ((LB_{P_1})^d) = CEA(E, c) \).

Corollary 2 For each \(LB_{P_2} \in \mathcal{LB}_P \), \((LB_{P_2})^d = ((L, c), Pin, DPin)\), the Recursive Lorenz \(P \)-Safety rule is the Piniles’ rule, \(\varphi^{RL} ((LB_{P_2})^d) = Pin(E, c) \).

Note that previous result can be generalized as follows.

Let \(P_1^* \) such that, \(P_1 \subset P_1^* \) and such that the properties for \(P_1^* \setminus P_1 \) are satisfied by both the Constrained Equal Awards and the Constrained Equal Losses rules. Then, for each \(LB_{P_1^*} \in \mathcal{LB}_P \), the Lorenz \(P \)-Safety will remain the
Rationing problems with Commonly Accepted Equity Principles

smallest amount recommended by the same Lorenz-Focal rules. Consequently, the Recursive Lorenz P-Safety rule on losses will be the Constrained Equal Awards rule, \(\varphi_{RL}(\{(LB_{P_2})^d\}) = \text{CEA}(E, c) \).

Let \(P_2 \) such that, \(P_2 \subset P_2 \) and such that the properties for \(P_2 \setminus P_2 \) are satisfied by both Piniles’ and the Dual of Piniles’ rules. Then, for each \(LB_{P_2} \in \mathcal{LB}_P \), the Lorenz P-Safety will remain the smallest amount recommended by the same Lorenz-Focal rules. Consequently, the Recursive Lorenz P-Safety rule on losses will be Piniles’ rule, \(\varphi_{RL}\left(\{(LB_{P_1})^d\}\right) = \text{Pin}(E, c) \).

Corollary 3 For each bi-personal \(LB_{P_3} \in \mathcal{LB}_P \), \((LB_{P_3})^d = \{(L, c), CE, DCE\} \), the Recursive Lorenz P-Safety rule is the Constrained Egalitarian rule, \(\varphi_{RL}\left(\{(LB_{P_3})^d\}\right) = CE(E, c) \).

Corollary 4 There is a problem, \((E, c) \in \mathcal{B}\), for which the Recursive Lorenz P-Safety rule for \(P_3 \) does not coincide with the Constrained Egalitarian rule, \(\varphi_{RL}\left(\{(LB_{P_3})^d\}\right) \neq CE(E, c) \).

Finally, note that, in this context, we can treat this Lorenz P-Safety on losses as an upper bound. Particularly, in the following chapter, we interpret this bound as the highest amount that each agent can receive according with all the Lorenz-Bifocal Admissible rules for \(P_t \).

2.6 Conclusions.

We have continued a research line that underlies theory of bankruptcy problems from their very beginning: the search for a "fair" minimum amount that each agent should receive in each situation. In this context, our main contribution is a new method for bounding awards based on the Lorenz-Focal rules.

Our main results have been obtained by applying the methodology to different sets of equity principles which have been interpreted as "basic" requirements
2. A new approach for bounding awards.

by many authors. For two possible societies, permissive and restrictive, we have retrieved, respectively, the *Constrained Equal Losses* and the *Dual of Piniles’ rules* when focusing on awards; and the *Constrained Equal Awards* and *Piniles’ rules* when focusing on losses. Nevertheless, by considering a society whose "Commonly Accepted Equity Principles" set is included in the permissive society’s set and includes the restrictive society’s set, we have shown that the *Recursive Lorenz P-Safety* rule does not satisfy one of the equity principles upon which such a society initially agreed to found its decisions. Thus, the need for in-depth study of the consequences of social agreements on both principles and procedure has been emphasized, as they could become meaningless when combined.

To sum up, this chapter: (i) offers the understanding of old bankruptcy rules from a new viewpoint; and (ii) warns of the difficulties that may be involved in composing "a priori" appropriate pieces of a puzzle.
Chapter 3

Convex combination of bankruptcy rules: A justification.

3.1 Introduction.

In this chapter we propose the simultaneous combination of both a lower and an upper bound on awards when facing Lorenz-Bifocal Bankruptcy Problems. To do this, note that, as we have pointed out, rationing problems can be interpreted from a double viewpoint: awards and losses. With the former case we focus on the amount of gains that we get. In this regard, we can find everyday situations where each agent has guaranteed some amount of the endowment, such as, nowadays, most of the governments have assured an amount of money deposited on the people’s bank accounts. On the other hand, these problems can be faced bothering about the quantity of incurred losses or, in other words, we concern on the highest level of awards that we can obtained. For example, and returning to the previous illustration, some governments have established an upper bound on the bank managers’ salaries.

It does not therefore seem unreasonable to think that each agent should receive at least the smallest amount according to all the allowed rules which satisfy some accorded principles, on the one hand, and on the other, no more than the highest amount provided by all these rules.

Now, by using as starting point the Lorenz-Bifocal Bankruptcy Problems, we define the Lorenz Double Boundedness Recursive Process as the recursive double imposition of a lower and an upper bound on awards, and show that the rule so
obtained coincides with the average of the Lorenz-Focal rules. This result has two consequences. Firstly, we provide a new justification of the convex combination of two extreme and opposite ways of distributing the endowment. Secondly, we obtain a new method which is invariant to the viewpoint (gains and losses) used to ration the resources. This means that our new approach treats symmetrically the problem of "what is available" and "what is missing", i.e., the rule so obtained is Self-Dual.

Finally, we specify these results to the three different sets of equity principles, \(P_i \in \{ P_1, P_2, P_3 \} \), providing new basis for the average of old bankruptcy rules.

The chapter is organized as follows: Section 3.2 proposes our new approach. The main results and their application on the three sets of properties are provided in Section 3.3. Section 3.4 summarizes our conclusions. Finally, Appendix B gathers technical proofs.

3.2 The model.

In this section we define an upper bound on awards, named the Lorenz P-Ceiling, as the highest amount that each agent could get according to the application of the Lorenz-Bifocal Admissible rules satisfying the "Commonly Accepted Equity Principles", i.e., our upper bound ensures that each agent's awards are confined to the maximum amount between the Lorenz-Focal rules for each \(P_i \). Formally:

Definition 9 Given \(LB_{P_i} \in LB_P \), the Lorenz P-Ceiling, \(Lc_i \), is for each \(i \in N \),

\[
Lc_i(LB_{P_i}) = \max \left\{ LGM_i^{P_1}(E, c), LLM_i^{P_3}(E, c) \right\}.
\]

Note that, whenever the accorded properties are Self-Dual, if we focussed on losses instead of awards, an alternative way of understanding this limit would be as a lower
bound on losses (see Section 2.5 of previous chapter), i.e., for each \((LB_{P_i}) \in \mathcal{LB}_P\), the Lorenz P-Ceiling, for each \(i \in N\), is the smallest loss incurred for each agent by all the Lorenz-Bifocal Admissible rules in \(P_i\),

\[
LC_i(LB_{P_i}) = c_i - \min \left\{ LGM_i^{P_i} (L, c), LLM_i^{P_i} (L, c) \right\} = c_i - Ls_i \left((LB_{P_i})^d \right).
\]

Therefore, the Lorenz P-Safety and the Lorenz P-Ceiling are dual, a fact that will be used later on.

Figures 3.1, 3.2, 3.3 and 3.4 represent the two bounds for bi-personal problems with \(P_i \in \{P_1, P_2, P_3\}\), respectively.

Particularly, the black line represents the estate (\(E\)). The blue and the green lines show the Lorenz-Focal rules marking out the area of all the admissible paths of awards satisfying the properties in \(P_1\), \(P_2\), and \(P_3\). That is, the green and the blue solid lines are the CEL and the CEA rules for \(P_1\), the DPin and Pin rules for \(P_2\), and the DCE and the CE rules for \(P_3\), respectively.

As we can see, for \(P_1\), the agent 1’s Lorenz P-Safety is given by the CEL rule, and the Lorenz P-Ceiling is given by the CEA rule. For agent 2 is the opposite, i.e., the CEA rule is her Lorenz P-Safety and the CEL rule is her the Lorenz P-Ceiling.

For \(P_2\), the agent 1’s Lorenz P-Safety is given by the DPin rule, and the Lorenz P-Ceiling is given by Pin rule. For agent 2 the DPin rule is her Lorenz P-Ceiling and Pin rule is her Lorenz P-Safety.

For \(P_3\), the agent 1’s Lorenz P-Safety is given by the DCE rule, and the Lorenz P-Ceiling is given by the CE rule. For agent 2 the DCE rule is her Lorenz P-Ceiling and the CE rule is her Lorenz P-Safety.

Figure 3.1: Lorenz P-Safety and Lorenz P-Ceiling for \(P_1 \).

Figure 3.2: Lorenz P-Safety and Lorenz P-Ceiling for \(P_2 \).
Figure 3.3: Lorenz P-Safety and Lorenz P-Ceiling for P_3 (case a).

Figure 3.4: Lorenz P-Safety and Lorenz P-Ceiling for P_3 (case b).

As we have mentioned in the introduction of the current chapter, there are situations in which a society reaches an agreement on the properties which define the way of rationing the endowment, and then decides that each agent should receive, at least, a minimum amount, and, at most, a maximum amount according to all the Lorenz-Bifocal Admissible rules. With these ideas in mind, we define the Lorenz Double Boundedness Recursive Process as the procedure in which at each step, every agent’s claim is truncated by her Lorenz P-Ceiling, and each of them receives her Lorenz P-Safety.

Definition 10 Given $m \in \mathbb{N}$, the Lorenz Double Boundedness Recursive Process, $LDBR$, associates for each $LB_{P_i} \in LB_P$ and each $i \in N$,

$$[LDBR(LB_{P_i}^m)]_i = Ls_i(LB_{P_i}^m),$$

where $LB_{P_i}^m \equiv ((E^m, c^m), LGM^P_i, LLM^P_i)$,

$$(E^1, c^1) \equiv (E, c) \text{ and for } m \geq 2,$$

$$E^m \equiv E^{m-1} - \sum_{i \in N} Ls_i(LB_{P_i}^{m-1}).$$

$$c_i^m = Lc_i(LB_{P_i}^{m-1}) - Ls_i(LB_{P_i}^{m-1}).$$

According to this process, an agent will get at the first step her Lorenz P-Safety of the original problem. At the second step, we redefine a residual problem, in which the endowment consists of the remaining resources and each agent’s claim is truncated by her Lorenz P-Ceiling, and then adjusted down by the amount received. Then each agent receives her Lorenz P-Safety of this residual problem, and so on. We can easily see that this process is not always efficient, but when it does, we call it the Lorenz Double Recursive rule. Formally:
Definition 11 The Lorenz Double Recursive rule, \(\varphi^{LDR} \), associates for each \(LB_{P_i} \in \mathcal{L}B_P \) and each \(i \in N \), \(\varphi_i^{LDR}(LB_{P_i}) = \sum_{m=1}^{\infty} \left[LDBR(LB_{P_i}^m) \right]_i \), whenever

\[
\sum_{i \in N} \left(\sum_{m=1}^{\infty} \left[LDBR(LB_{P_i}^m) \right]_i \right) = E.
\]

Note that this rule will be a Lorenz-Bifocal Admissible rule whenever it fulfills the set of equity principles on which the Lorenz Double Boundedness Recursive Process is based. A fact that, as we will see later, cannot be always guaranteed.

3.3 Main results and applications.

This section presents a general result and its specification on the sets of equity principles \(P_1, P_2 \) and \(P_3 \). Firstly, next theorem establishes that, whenever the properties selected are Self-Dual, the final allocation provided by the Lorenz Double Recursive rule will correspond with the average of the lower and upper bounds for each Lorenz-Bifocal Bankruptcy Problem, i.e., the Lorenz P-Safety and the Lorenz P-Ceiling.

Theorem 4 For each \(LB_{P_i} \in \mathcal{L}B_P \), such that \(P_i \) is Self-Dual, then for each \(i \in N \),

\[
\varphi_i^{LDR}(LB_{P_i}) = \frac{L_{C_i}(LB_{P_i}) + L_{S_i}(LB_{P_i})}{2}.
\]

Proof. See Appendix B.1. □

Therefore, the next result, which follows straightforwardly from Theorem 4, shows that the Lorenz Double Recursive rule for \(P_i \) can be defined as the average of the associated Lorenz-Focal rules.

Proposition 4 For each \(LB_{P_i} \in \mathcal{L}B_P \), such that \(P_i \) is Self-Dual, then

\[
\varphi^{LDR}(LB_{P_i}) = \frac{LGM^{P_i}(E,c) + LLM^{P_i}(E,c)}{2}.
\]
A direct consequence of the above proposition is that the Lorenz Double Recursive rule not only is always well defined, i.e. satisfies efficiency, non-negativity and claim-boundedness, but it also satisfies Self-Duality (Thomson and Yeh [54]), which means that it provides the same allocation of the endowment when distributing awards or losses.

Moreover, with this result we retrieve the convex combination of the two extreme Lorenz-Focal rules. Particularly, the Lorenz Double Recursive rule proposes the midpoint between the two rules which represent extreme and opposite ways of sharing awards among claimants according to the imposed requirements. So, in other words, it could be said that the rationing of the endowment obtained by the recursive double imposition of the Lorenz P-Safety and the Lorenz P-Ceiling neither favor nor hurts to any agent in particular. Following Thomson and Yeh [54]:

"When two rules express opposite viewpoints on how to solve a bankruptcy problem, it is natural to compromise between them by averaging".

Concluding this section, we specify the previous result for the three different sets of equity principles mentioned previously.

From Chapter 2 we know that with \(P_t \in \{ P_1, P_2, P_3 \} \), the Lorenz-Focal rules which delimit the region of Lorenz-Bifocal Admissible rules are well defined. We have also obtained the Lorenz P-Safety for each of these sets of equity principles, as well as the Lorenz P-Ceiling, by duality. It is therefore a straightforward process of applying Theorem 4 in order to obtain the following results.

Corollary 5 For each \(LB_{P_t} \in LB_P \), \(LB_{P_t} = ((E, c), CEA, CEL) \), the Lorenz Double Recursive rule is the average of the Constrained Equal Awards and the Constrained Equal Losses rules.
Corollary 6 For each $LB_{P_2} \in \mathcal{LB}_P$, $LB_{P_2} = ((E, c), Pin, DPin)$, the Lorenz Double Recursive rule is the average of Piniles’ and the Dual of Piniles’ rules.

Corollary 7 For each $LB_{P_3} \in \mathcal{LB}_P$, $LB_{P_3} = ((E, c), CE, DCE)$, the Lorenz Double Recursive rule is the average of the Constrained Egalitarian and the Dual Constrained Egalitarian rules.

Note that these corollaries imply that the allocation proposed by our new procedure is Lorenz-Bifocal Admissible for $P_i \in \{P_1, P_2, P_3\}$, since, the Lorenz Double Recursive rule preserves Resource Monotonicity, Super-Modularity and the Midpoint property.

However, the Lorenz Double Recursive rule fails some properties such that Composition Down (Moulin [36]), Composition Up (Young [65]), and Consistency (Young [65]), even when the two Lorenz-Focal rules fulfill them. It is thus not possible to ensure that the final allocation is Lorenz-Bifocal Admissible when the Lorenz P-Safety and the Lorenz P-Ceiling are used recursively at the same time. For example, it can be observed that if the property of Consistency is added to the set P_1, the two Lorenz-Focal rules are still the Constrained Equal Awards and the Constrained Equal Losses rules, but the average of these Lorenz Admissible rules does not satisfy one of the initial properties. The natural question to pose, therefore, is "Would a society have any argument to apply this new rule?" It could, because although a society may also have reasons for not agreeing to apply the result of the Lorenz Double Recursive rule, as it may fail some properties, this way of distributing the endowment has been defended by many authors as a natural way to agree on a "middle" allocation between two extreme ways of rationing (see for instance Thomson and Yeh [54]). Another reason to use this method is that we know exactly the result of the procedure and the properties which are satisfied by the final allocation.

3.4 Conclusions.

This chapter defines a new method for distributing the endowment, using the idea of recursively guaranteeing ‘fair’ minimum and maximum amounts to each agent in bankruptcy problems, known as the Lorenz Double Recursive rule. In this context, our main result states that the Lorenz Double Recursive rule corresponds with the average of the two extreme Lorenz-Focal rules, implying that our new rule is always well defined and retrieves an allocation which coincides with the midpoint between the rule that favours the highest claimant and the rule that favours the lowest agent, i.e., new justifications are obtained for the convex combination of rules.

Finally, this procedure relates specifically to certain proposed equity principles sets that many authors have interpreted as ‘basic’ requirements, recovering the average of old and well-known rules. We have also shown that our process does not guarantee that the final allocation will be admissible.
Chapter 4

Strategic Justifications for Old Bankruptcy Rules.

4.1 Introduction.

In this chapter we analyze Lorenz-Bifocal Bankruptcy Problems from a non-cooperative viewpoint, by using the Diminishing Claims and the Unanimous Concessions mechanisms proposed by Chun [8] and Herrero [21], respectively. The starting point of both procedures is the bargaining model introduced by van Damme [58], who prospects Nash equilibria of a non-cooperative game. Particularly, he defines a mechanism of successive concessions, where agents’ strategies consist of the choice of a rule among a reasonable set of them. From van Damme’s work, other mechanisms for bargaining and bankruptcy have been proposed (see for instance Naeve-Steinweg [39]). On the one hand, Chun [8] proposes the Diminishing Claims procedure, in which each agent’s claim is truncated by the maximal amount among all the reasonable rules. On the other hand, Herrero [21] modifies the Unanimous Concessions mechanism, provided by Marco et al. [31] (introduced in Chapter 2) ensuring to each agent the minimal amount that all the proposed rules concede to her.

Following this line, and more recently, García-Jurado et al. [18] propose an elementary game where each agent’s strategy belongs to a determined closed space of possible choices. With this game, they show that any acceptable rule can be obtained as the unique allocation of the corresponding Nash equilibria depending on its associated closed interval of strategies. Finally, Herrero et al. [22] provide an
experimental strategic support to the Proportional rule, showing that this one is the choice of most of the players.

Next, we apply this methodology in the framework of the Lorenz-Bifocal Bankruptcy Problems and analyze its application on the three sets of equity principles, P_1, P_2 and P_3, introduced previously. Firstly, we start with the prospection of the Una-nimous Concessions mechanism. In this case, Herrero [21] finds out that in any Nash equilibrium induced by such a game, the Constrained Equal Losses rule is recommended for P_1, and we prove that the Dual of Piniles’ rule is the one recommended for P_2. Moreover, when using P_3, we show that the applications of this procedure does not always provide desirable distributions. Secondly, applying duality, the Constrained Equal Awards rule is recovered (Chun [8]) in any Nash equilibrium induced by the Diminishing Claims procedure for P_1. Moreover, we obtain that, for P_2, Piniles’ rule is retrieved. Finally, we define a new mechanism consisting on the simultaneous application of both procedures, and we provide a non-cooperative justification of the convex combination of two extreme and opposite ways of distributing the endowment.

The chapter is organized as follows: Section 4.2 presents the Unanimous Concessions procedure and its associated results. Section 4.3 provides the results obtained when applying the Diminishing Claims procedure. Section 4.4 proposes and analyses the simultaneous application of the previous mechanisms. Section 4.5 summarizes our conclusions. Finally, Appendix C gathers technical proofs.

4.2 The Unanimous Concessions procedure.

In this section, we start defining the Unanimous Concessions procedure (Marco et al. [31]; Herrero [21]) which works as follows. Given that agents have chosen their preferred admissible rules, if at the initial step there is no agreement, at the second
Rationing problems with Commonly Accepted Equity Principles

step, each agent receives the minimal amount among all the proposed. Now, we redefine the residual bankruptcy problem, in which the endowment is the leftover resource, the claims are adjusted down by the amounts just given, and the same procedure is applied. The solution will be the limit of the procedure if it is feasible, and zero otherwise. Formally:

Definition 12 Unanimous Concessions procedure, u, (Herrero, 2003):

Let \(LB_{P_k} \in LB_P \). At the first stage, each agent chooses a rule \(\varphi^i \in \Phi(LB_{P_k}) \). Let \(\psi = (\varphi^i) \) be the profile of selected rules. The proposal of the Unanimous Concessions procedure, \(u[\psi, LB_{P_k}] \) is obtained as follows, for each \(m \in \mathbb{N} \):

[Step 1] If all agents agree on \(\varphi(LB_{P_k}) \), then \(u[\psi, LB_{P_k}] = \varphi(LB_{P_k}) \). Otherwise, go to next step.

[Step 2] Let us define

\[
Ls_i(LB_{P_k}) = \min_{j \in N} \varphi^j_i(LB_{P_k}),
\]

\[
c^2 = c - Ls_i(LB_{P_k}),
\]

\[
E^2 = E - \sum_{i \in N} Ls_i(LB_{P_k}), \text{ and}
\]

\[
LB^2_{P_k} \equiv (E^2, c^2, LGM^P, LLM^P).
\]

Now, if all agents agree on \(\varphi(LB^2_{P_k}) \), then \(u[\psi, LB_{P_k}] = Ls_i(LB_{P_k}) + \varphi(LB^2_{P_k}) \). Otherwise, go to next step.

[Step \(m + 1 \)] Let us define

\[
Ls_i(LB^m_{P_k}) = \min_{j \in N} \varphi^j_i(LB^m_{P_k}),
\]

\[
c^{m+1} = c^m - Ls_i(LB^m_{P_k}),
\]

\[
E^{m+1} = E^m - \sum_{i \in N} Ls_i(LB^m_{P_k}), \text{ and}
\]

\[
LB^{m+1}_{P_k} \equiv (E^{m+1}, c^{m+1}, LGM^P, LLM^P).
\]

Now, if all agents agree on \(\varphi(LB^{m+1}_{P_k}) \), then \(u[\psi, LB_{P_k}] = \sum_{k=1}^{m} Ls_i(LB^k_{P_k}) +
\]

\[+ \varphi(LB^{m+1}_{P_k}) \). Otherwise, go to next step.
4. Strategic justifications for old bankruptcy rules.

[Limit case] Compute $\sum_{k=1}^{\infty} L_s(LB^k)$. If it converges to an allocation, x, such that $\sum_{i \in N} x_i \leq E$, $u[\psi, LB] = x$. Otherwise, $u[\psi, LB] = 0$.

From now on, let Γ^u_{LB} denote the game induced by the Unanimous Concessions procedure when agents acts strategically, in which the set of players is N, the strategies for each agent are rules in $\Phi(LB)$ and the payoffs are the sum of the amounts received by each agent in each step $m \in \mathbb{N}$. That is,

$$\Gamma^u_{LB} = \left\{ N, \left\{ \phi^i \in \Phi(LB) \right\}_{i=1}^{n}, \left\{ \sum_{k=1}^{m} L_s(LB^k) \right\}_{i=1}^{n} \right\},$$

where m denotes the step where the agreement is reached, and ∞ otherwise.

Next, we consider the "Commonly Accepted Equity Principles" sets P_1 and P_2 previously introduced, to apply this procedure:

P_1, which does not require any additional property to those fulfilled by any rule, that is, claims boundedness, non negativity and efficiency.

P_2, which contains Resource Monotonicity, Super-Modularity and the Midpoint Property.

As Herrero [21] points out, in all non-cooperative Nash equilibria induced by Unanimous Concessions procedure for P_1, each agent will receive the awards recommended by the Constrained Equal Losses rule.

Theorem 5 (Herrero, 2003) In the game Γ^u_{LB}, the CEL rule is a weakly dominant strategy for the agent with the highest claim. In any Nash equilibrium induced by the game Γ^u_{LB}, each agent receives the amount given by the CEL rule.

Now, next propositions tell us that, when the set of equity principles is P_2, if some agent announces the $DP\psi$ rule, then the Unanimous Concessions procedure
Rationing problems with Commonly Accepted Equity Principles

converge to this rule. Moreover, the \textit{DPin} rule is a weakly dominant strategy for the agent with the highest claimant. Then, as a direct consequence of these two results, we show that in all non-cooperative Nash equilibria, each agent will receive the awards recommended by the \textit{DPin} rule.

\textbf{Proposition 5} For each $LB_{P_2} \in \mathcal{LB}_P$, $LB_{P_2} = ((E, c), P_1, DPin)$, and each $i \in N$, if $\varphi^i(E, c) \in \Phi(LB_{P_2})$, and for some $j \in N$, $\varphi^j(E, c) = DPin(E, c)$, then $u[\psi, LB_{P_2}] = DPin(E, c)$.

\textbf{Proof.} See Sections C.1 and C.2 in Appendix C. \hfill \blacksquare

\textbf{Proposition 6} In the game $\Gamma^u_{LB_{P_2}}$, the DPin rule is a weakly dominant strategy for the agent with the highest claim.

\textbf{Proof.} See Sections C.1 and C.3 in Appendix C. \hfill \blacksquare

\textbf{Theorem 6} In any Nash equilibrium induced by the game $\Gamma^u_{LB_{P_2}}$, each agent receives the amount given by the DPin rule.

\textbf{Proof.} See Sections C.1 and C.4 in Appendix C. \hfill \blacksquare

Finally, it is interesting to observe that in both cases P_1 and P_2, the sequence defined by the \textit{Unanimous Concessions} procedure converges to an efficient point, and, moreover, it recovers one of the two \textit{Lorenz-Focal rules}, specifically, the one which favors the highest claimants. So, again, as in Chapter 2 we can ask,

"Would the Unanimous Concessions procedure recover one of the two Lorenz-Focal rules for any appealing set of equity principles?"
4. Strategic justifications for old bankruptcy rules.

4.2.1 A negative result.

In the next results we show that, in general, the Nash equilibrium induced by the application of the Unanimous Concessions procedure does not provide one of the Lorenz-Focal rules. Furthermore, the allocation proposed by it fails one of "Commonly Accepted Equity Principles" on which the process is based. With this purpose, we use the set of equity principles P_3, in which we eliminate Super-Modularity from P_2. That is, P_3 asks for Resource Monotonicity and the Midpoint Property.

In this context, and for the bi-personal games, the following proposition tells us that if some agent announces the DCE rule, then the Unanimous Concessions procedure converge to this rule.

Proposition 7 For each $LB_{P_3} \in \mathcal{LB}_P$, $LB_{P_3} = ((E, c), CE, DCE)$, with $|N| = 2$, and each $i \in \{1, 2\}$, if $\varphi^i(E, c) \in \Phi(LB_{P_3})$, and for some $j \in \{1, 2\}$, $\varphi^j(E, c) = DCE(E, c)$, then $u[\psi, LB_{P_3}] = DCE(E, c)$.

Proof. See Sections C.1 and C.5 in Appendix C.

Finally, we establish that for the bi-personal problems in P_3 each agent receives the awards recommended by the DCE rule in the Nash equilibrium induced by the Unanimous Concessions procedure.

Theorem 7 For each $LB_{P_3} \in \mathcal{LB}_P$, $LB_{P_3} = ((E, c), CE, DCE)$, with $|N| = 2$, in any Nash equilibrium induced by the game $\Gamma_{LB_{P_3}}$, each agent receives the amount given by the DCE rule.

Proof. See Sections C.1 and C.6 in Appendix C.

Nevertheless, the above results cannot be extended for more than two agents as we show in the next theorems.
Theorem 8 There is a problem, \((E, c) \in \mathcal{B}\), for which in a Nash equilibrium induced by the game \(\Gamma^u_{LB_{P_3}}\), not all agents receive the amount given by the DCE rule.

Proof. See Sections C.1 and C.7 in Appendix C. ■

Theorem 9 The Nash equilibrium induced by the game \(\Gamma^r_{LB_{P_3}}\) does not fulfill Resource Monotonicity.

Proof. See Sections C.1 and C.7 in Appendix C. ■

4.3 The Diminishing Claims procedure.

As we have already mentioned, bankruptcy problems can be faced from two viewpoints: gains an losses. By using this dual relation between awards and losses (Aumann and Maschler [5]) and the fact that all the proposed properties are Self-Dual, the results of the previous section can be analyzed focusing on the maximum awards that each agent can ensure, that is, the minimal losses incurred.

In this sense, the Diminishing Claims procedure (Chun [8]), denoted by \(d\), says that, given that agents have chosen their preferred rules, if at the initial step there is no agreement, at the second step, we redefine the residual bankruptcy problem, in which the endowment does not change, and each agent’s claim is truncated by the maximal amount among all the proposed at step 1. Then, the procedure is again applied until an agreement is reached. If this is not the case, the solution will be the limit of the procedure if is feasible, and zero otherwise. Formally:

Definition 13 Diminishing Claims procedure, \(d\), (Chun, 1989):

Let \(LB_{P_1} \in LB_{P}\). At the first stage, each agent chooses a rule \(\varphi^i \in \Phi(LB_{P_1})\). Let \(\psi = (\varphi^i)\) be the profile of selected rules. The proposal of the Diminishing Claims procedure, \(d[\psi, LB_{P_3}]\) is obtained as follows, for each \(m \in \mathbb{N}\):
4. Strategic justifications for old bankruptcy rules.

[Step 1] If all agents agree on \(\varphi (LB_{P_i}) \), then \(d[\psi, LB_{P_i}] = \varphi (LB_{P_i}) \). Otherwise, go to next step.

[Step 2] Let us define
\[
Lc_1 (LB_{P_i}) = \max_{j \in N} \varphi^j_i (LB_{P_i}),
\]
\[
c^2 = Lc (LB_{P_i}),
\]
\[
E^2 = E, \text{ and}
\]
\[
LB_{P_i}^2 = ((E^2, c^2), LGM_{P_i}, LLM_{P_i}).
\]
Now, if all agents agree on \(\varphi(LB_{P_i}^2) \), then \(d[\psi, LB_{P_i}] = \varphi (LB_{P_i}^2) \). Otherwise, go to next step.

[Step \(m + 1 \)] Let us define
\[
Lc_1 (LB_{P_i}^m) = \max_{j \in N} \varphi^j_i (LB_{P_i}^m),
\]
\[
c^{m+1} = Lc (LB_{P_i}^m),
\]
\[
E^{m+1} = E, \text{ and}
\]
\[
LB_{P_i}^{m+1} = ((E^{m+1}, c^{m+1}), LGM_{P_i}, LLM_{P_i}).
\]
Now, if all agents agree on \(\varphi (LB_{P_i}^{m+1}) \), then \(d[\psi, LB_{P_i}] = \varphi (LB_{P_i}^{m+1}) \). Otherwise, go to next step.

[Limit case] Compute \(\lim_{k \to \infty} \varphi (LB_{P_i}^k) \). If it converges to an allocation, \(x \), such that
\[
\sum_{i \in N} x_i \leq E, \text{ d}[\psi, LB_{P_i}] = x. \text{ Otherwise, } d[\psi, LB_{P_i}] = 0.
\]

Hereinafter, let \(\Gamma_{LB_{P_i}}^d \) denote the game induced by the Diminishing Claims procedure when agents acts strategically, in which the set of players is \(N \), the strategies for each agent are rules in \(\Phi (LB_{P_i}) \) and the payoffs are the amount recommending to each agent by the accorded rule. That is,
\[
\Gamma_{LB_{P_i}}^d = \left\{ N, \{ \varphi^j_i \in \Phi (LB_{P_i}) \}_{i=1}^m, \{ \varphi_i (LB_{P_i}^m) \}_{i=1}^m \right\},
\]
where \(m \) denotes the step where the agreement is reached, and \(\infty \) otherwise.
It can be easily checked that the *Diminishing Claims* and the *Unanimous Concessions* procedures are dual, since the maximum amount that each agent can receive in the former mechanism can be interpreted as the minimal losses in which each agent can incur applying the latter mechanism. That is, \(Lc_i(\text{\text{LB}}_P) = c_i - Ls_i(\text{\text{LB}}_P)^d \).

In this sense, Chun [8] shows that in all non-cooperative Nash equilibria induced by *Diminishing Claims* procedure for \(P_1 \), each agent will receive the awards recommended by the *Constrained Equal Awards* rule.

Theorem 10 (Chun, 1989) In any Nash equilibrium induced by the game \(\Gamma^d_{\text{LB}_{P_1}} \), each agent receives the amount given by the CEA rule.

Moreover, by duality, we can retrieve the *Piniles’* rule in \(P_2 \), and the *Constrained Egalitarian* rule for the bi-personal problems but not for the general case in \(P_3 \), when using the *Diminishing Claims* mechanism.

Corollary 8 In any Nash equilibrium induced by the game \(\Gamma^d_{\text{LB}_{P_2}} \), each agent receives the amount given by Pin rule.

Corollary 9 For the bi-personal problems \(\text{\text{LB}}_{P_3} \in \text{\text{LB}}_P \), \(\text{\text{LB}}_{P_3} = ((E, c), CE, DCE) \), in any Nash equilibrium induced by the game \(\Gamma^d_{\text{LB}_{P_3}} \), each agent receives the amount given by the CE rule.

Corollary 10 There is a problem, \((E, c) \in \mathcal{B} \), for which in a Nash equilibrium induced by the game \(\Gamma^d_{\text{LB}_{P_3}} \), not all agents receive the amount given by the CE rule.

4.4 The Double Concessions procedure.

In this section we define a new mechanism which combines the philosophy of the *Diminishing Claims* (Chun [8]) and the *Unanimous Concessions* (Herrero [21]) procedures, using the fact that they are dual.
This new method, named the Double Concessions procedure, says that given that agents have chosen their preferred rules, if at the initial step there is no agreement, at the second step, each agent receives the smallest amount among all the proposed at step 1. Now, we redefine the residual bankruptcy problem, in which the endowment is the leftover resources, and the claims are truncated by the maximum amount recommended by all the suggested rules and adjusted down by the amounts just given. Then, the procedure is again applied until an agreement is reached. If this is not the case, the solution will be the limit of the procedure if is feasible, and zero otherwise. Formally:

Definition 14 Double Concessions procedure, du:

Let $LB_{P_1} \in LB_P$. At the first stage, each agent chooses a rule $\varphi^i \in \Phi(LB_{P_1})$. Let $\psi = (\varphi^i)$ be the profile of selected rules. The proposal of the Double Concessions procedure, $du[\psi, LB_{P_1}]$ is obtained as follows:

[Step 1] If all agents agree on $\varphi(LB_{P_1})$, then $du[\psi, LB_{P_1}] = \varphi LB_{P_1}$. Otherwise, go to next step.

[Step 2] Let us define

\[
L_{s_i}(LB_{P_1}) = \min_{j \in N^i} \varphi^j_1(LB_{P_1}),
\]

\[
L_{c_i}(LB_{P_1}) = \max_{j \in N^i} \varphi^j_1(LB_{P_1}),
\]

\[
c^2 = Lc(LB_{P_1}) - Ls(LB_{P_1}),
\]

\[
E^2 = E - \sum_{i \in N} L_{s_i}(LB_{P_1}), \text{ and}
\]

\[
LB_{P_1}^2 = ((E^2, c^2), LGM_{P_1}, LLM_{P_1}).
\]

Now, if all agents agree on $\varphi(LB_{P_1}^2)$, then $du[\psi, LB_{P_1}] = Ls(LB_{P_1}) + \varphi(LB_{P_1}^2)$. Otherwise, go to next step.

[Step $m + 1$] Let us define

\[
L_{s_i}(LB_{P_1}^m) = \min_{j \in N^i} \varphi^j_1(LB_{P_1}^m),
\]

\[
L_{c_i}(LB_{P_1}^m) = \max_{j \in N^i} \varphi^j_1(LB_{P_1}^m),
\]
\[c^{m+1} = Lc \left(LB_{P_i}^m \right) - Ls \left(LB_{P_i}^m \right), \]
\[E^{m+1} = E^m - \sum_{i \in N} Ls_i \left(LB_{P_i}^m \right), \text{ and} \]
\[LB_{P_i}^{m+1} = \left((E^{m+1}, c^{m+1}), LGM_{P_i}, LLM_{P_i} \right). \]

Now, if all agents agree on \(\varphi \left(LB_{P_i}^{m+1} \right) \), then
\[du \left[\psi, LB_{P_i} \right] = \sum_{k=1}^{m} Ls \left(LB_{P_i}^k \right) + + \varphi \left(LB_{P_i}^{m+1} \right). \text{ Otherwise, go to next step.} \]

[Limit case] Compute \(\lim_{m \to \infty} \sum_{k=1}^{m} Ls \left(LB_{P_i}^k \right) \). If it converges to an allocation, \(x \), such that \(\sum_{i \in N} x_i \leq E \), \(du \left[\psi, LB_{P_i} \right] = x \). Otherwise, \(du \left[\psi, LB_{P_i} \right] = 0 \).

From now on, let \(\Gamma_{LB_{P_i}}^{du} \) denote the game induced by the Double Concessions procedure when agents acts strategically, in which the set of players is \(N \) and the strategies for each agent are rules in \(\Phi \left(LB_{P_i} \right) \) and the payoffs are the sum of the amounts received by each agent in each step \(m \in \mathbb{N} \). That is,
\[\Gamma_{LB_{P_i}}^{du} = \left\{ N, \left\{ \varphi^j \in \Phi \left(LB_{P_i} \right) \right\}_{j=1}^{n}, \left\{ \sum_{k=1}^{m} Ls_i \left(LB_{P_i}^k \right) \right\}_{i=1}^{n} \right\}, \]
where \(m \) denotes the step where the agreement is reached, and \(\infty \) otherwise.

Next theorem shows the main result when applying the Double Concessions procedure in \(P_i \).

Theorem 11 In any Nash equilibrium induced by the game \(\Gamma_{LB_{P_i}}^{du} \), such that \(P_i \) is Self-Dual, each agent receives the amount given by the average of the two Lorenz-Focal rules.

Proof. See Section C.8 in Appendix C. □

We know (Section 3.3, Chapter 3) the Lorenz P-Safety and the Lorenz P-Ceiling for \(P_i \in \{ P_1, P_2, P_3 \} \). So next results are straightforwardly obtained by applying Theorem 11.
4. Strategic justifications for old bankruptcy rules.

Corollary 11 In any Nash equilibrium induced by the game Γ_{LB,P_1}^{da}, each agent receives the amount given by the average of the Constrained Equal Awards and the Constrained Equal Losses rules.

Corollary 12 In any Nash equilibrium induced by the game Γ_{LB,P_2}^{da}, each agent receives the amount given by the average of Piniles’ and the Dual of Piniles’ rules.

Corollary 13 In any Nash equilibrium induced by the game Γ_{LB,P_3}^{da}, each agent receives the amount given by the average of the Constrained Egalitarian and the Dual Constrained Egalitarian rules.

As pointed out in Chapter 3, the convex combination of rules preserves Resource Monotonicity, Super-Modularity and the Midpoint properties (Thomson and Yeh [54]). Hence, as theses corollaries show, our new procedure provides Lorenz-Bifocal Admissible rules for $P_1 \in \{P_1, P_2, P_3\}$, while applying independently the Diminishing Claims and the Unanimous Concessions they fail Resource Monotonicity for P_3.

4.5 Conclusions.

In this chapter we have offered new basis for old bankruptcy rules from a new angle. Specifically, we particularize the methodology of the Unanimous Concessions procedure to different sets of "Commonly Accepted Equity Principles" by a society.

On the one hand, we have obtained the $DPin$ rule when applying the Unanimous Concessions procedure for the set P_2. However, this result cannot be generalized to any set of equity principles P_1, as we have shown for P_3.

By using the idea of duality, the previous results can be analyzed from the viewpoint of sharing losses, i.e., we focus on the maximum awards that each agent can ensure. In this case, Pin rule is retrieved for P_2 when using the Diminishing Claims mechanism.
Finally, we have justified the average of rules by defining a new mechanism, named the *Double Concessions* procedure, combining the *Diminishing Claims* and the *Unanimous Concessions* procedures.
Chapter 5

Lorenz-Bifocal Bankruptcy Game.

5.1 Introduction.

This chapter provides a consideration of Lorenz-Bifocal Bankruptcy Problems from a Cooperative Game viewpoint. Firstly, these kinds of problems are modelled as transferable utility cooperative games, known as Lorenz-Bifocal Bankruptcy Games, by associating each coalition with the smallest quantity of the ‘good’ that such a coalition would receive according to the two proposed allocations. A necessary condition is then provided in order to ensure that a proposal is in the Core of these games: an amount belonging to the interval within the range of the two extremes defined by the focal proposals should be recommended for each agent. Furthermore, although these games are not convex in general, the Shapley value is observed not only to be a Core selection, but also to coincide with the Nucleolus. The recommendations made by these two solution concepts are also shown to be the ‘average of the two Lorenz-Focal rules’.

The chapter is organized as follows. Section 5.2 formally introduces Lorenz-Bifocal Bankruptcy Games, and provides the main characteristics. Section 5.3 applies previous ideas to the three different sets of equity principles. Section 5.4 summarizes our conclusions. Finally, Appendix D contains our technical proofs.
5. Lorenz-Bifocal Bankruptcy Game.

5.2 The model.

In this section we define a new type of games in coalitional form, named Lorenz-Bifocal Bankruptcy Games, which are an appropriate interpretation of Lorenz-Bifocal Bankruptcy Problems in terms of TU-games. Specifically, following the line initiated in Chapter 2, we define the game corresponding to these problems by associating to each coalition the smallest quantity of the resource that it would receive according to all the Lorenz-Bifocal Admissible rules. Thus, we maintain the pessimistic viewpoint used by O’Neill [42] to introduce his bankruptcy game, assuming that each group of agents think about their worst situation, i.e., the worst distribution of the endowment for them according to the two Lorenz-Focal rules. Formally:

Definition 15 Given $LB_{P_i} \in \mathcal{LB}_P$, the corresponding Lorenz-Bifocal Bankruptcy Game is the TU-game $V^{LB_{P_i}}$ which associates the real value $V^{LB_{P_i}}(\emptyset) = 0$ and, for each coalition S, $\emptyset \neq S \subseteq N$,

$$V^{LB_{P_i}}(S) = \min \left\{ \sum_{i \in S} LGM_i^{P_i}(E, c), \sum_{i \in S} LLM_i^{P_i}(E, c) \right\}.$$

In order to illustrate our model, we present the following example.

Example 1 Let us consider the Lorenz-Bifocal Bankruptcy Problem $LB_{P_i} \in \mathcal{LB}_P$, in which $E = 90$, $LGM_i^{P_i}(E, c) = (30, 30, 30)$ and $LLM_i^{P_i}(E, c) = (20, 30, 40)$. Then, the worth of each coalition is $V^{LB_{P_i}}(\{1\}) = \min\{30; 20\} = 20$; $V^{LB_{P_i}}(\{2\}) = \min\{30; 30\} = 30$; $V^{LB_{P_i}}(\{3\}) = \min\{30; 40\} = 30$; $V^{LB_{P_i}}(\{1, 2\}) = \min\{30 + 30; 20 + 30\} = 50$; $V^{LB_{P_i}}(\{1, 3\}) = \min\{30 + 30; 20 + 40\} = 60$; $V^{LB_{P_i}}(\{2, 3\}) = \min\{30 + 40; 30 + 30\} = 60$; $V^{LB_{P_i}}(\{1, 2, 3\}) = 90$.

Next, we analyze the basics properties and the main solution concepts of Lorenz-Bifocal Bankruptcy Games.
Note that a Lorenz-Bifocal Bankruptcy Game, $V^{LB}_{P_i}$, with $LB_{P_i} \in \mathcal{LB}$, has a non-empty Core, since both $LGM^P(E, c)$ and $LLM^P(E, c)$ belong to it. Moreover, next proposition provides a set of necessary conditions for a proposal to be in the Core of a such game, which coincides with the "natural" requirements for a rule to be considered a Lorenz-Bifocal Admissible rule (see Definition 4). This result, therefore, shows that the agents’ behavior regarding Lorenz-Bifocal Bankruptcy Problems has, albeit unconsciously, strong theoretical support.

Proposition 8 Given $LB_{P_i} \in \mathcal{LB}$, if $x \in \mathbb{C}(V^{LB}_{P_i})$ then, for all $i \in N$,

$$\min\{LGM^P_i(E, c), LLM^P_i(E, c)\} \leq x_i \leq \max\{LGM^P_i(E, c), LLM^P_i(E, c)\}.$$

Proof. See Section D.1 in Appendix D. □

However, the following example shows that previous conditions do not always guarantee that an allocation belongs to the Core. That is, it is not a sufficient requirement.

Example 2 Let us consider the Lorenz-Bifocal Bankruptcy Problem $LB_{P_i} \in \mathcal{LB}$, in which $E = 170$, $LGM^P_i(E, c) = (35, 45, 45, 45)$ and $LLM^P_i = (28.75, 38.75, 48.75, 53.75)$. Then, on the one hand $V^{LB}_{P_i}(\{1, 3\}) = \min\{35 + 45; 28.75 + 48.75\} = 77.5$. On the other hand, let us consider the allocation x that distributes the resource, $E = 170$, among agents as follows, $x = (30, 40.25, 46, 53.75)$. This allocation is, for each agent, between those of the two Lorenz-Bifocal rules. However,

$$x_1 + x_3 = 76 < V^{LB}_{P_i}(\{1, 3\}) = 77.5,$$

therefore x does not belongs to $\mathbb{C}(V^{LB}_{P_i})$.

It is well known that the Nucleolus is a Core selection. Nevertheless, the Shapley value for convex games it is also a Core selection, it could recommend, in general, a
distribution outside the Core. In this line, the following example shows that Lorenz-Bifocal Bankruptcy Games need not be convex.

Example 3 Let us consider the Lorenz-Bifocal Bankruptcy Problem $LB_{\mathcal{R}} \in \mathcal{LB}_P$, in which $E = 30$, $LGM^P(E, c) = (7.5, 7.5, 7.5, 7.5)$ and $LLM^P(E, c) = (5, 7, 8, 10)$. It can be easily verified that $V^{LB_{\mathcal{R}}}(\{1\}) = 5$, $V^{LB_{\mathcal{R}}}(\{1, 3\}) = 13$, $V^{LB_{\mathcal{R}}}(\{1, 4\}) = 15$ and $V^{LB_{\mathcal{R}}}(\{1, 3, 4\}) = 22.5$. Thus, $\Delta_3 V^{LB_{\mathcal{R}}}(\{1, 4\}) < \Delta_3 V^{LB_{\mathcal{R}}}(\{1\})$ since

$$V^{LB_{\mathcal{R}}}(\{1, 3, 4\}) - V^{LB_{\mathcal{R}}}(\{1, 4\}) = 7.5 \quad \text{and} \quad V^{LB_{\mathcal{R}}}(\{1, 3\}) - V^{LB_{\mathcal{R}}}(\{1\}) = 8.$$

Therefore, given that $\{1\} \subset \{1, 4\}$, $V^{LB_{\mathcal{R}}}$ is not convex.

So, in order to choose a Core selection, the above example lead us to focus on the Nucleolus of the game. However, as we will show in our main result (Theorem 12), the Shapley value belongs to the Core and coincides with the Nucleolus. The reason of this coincidence lies in the fact that in our game the sum of a player’s marginal contribution to any pair of disjoint coalitions T, T^* such that $T \cup T^* = N \setminus \{i\}$ is a player specific constant, i.e., the Lorenz-Bifocal Bankruptcy Game is a PS-game (Kar et al. [25]). Formally:

A TU-game V is a PS-game if for each $i \in N$, there exists $k_i \in \mathbb{R}$ such that, for all $T \subseteq N \setminus \{i\}$,

$$\Delta_i V(T) + \Delta_i V(N \setminus [T \cup \{i\}]) = k_i.$$

The following result shows that Lorenz-Bifocal Bankruptcy Games are a subclass of PS-games. Moreover, the specific constant, for each agent, obtained by adding its marginal contribution to any coalition S and its complement $N \setminus [S \cup \{i\}]$, is the sum of the recommendations for her made by the two Lorenz-Focal rules.
Proposition 9 Given LB_{P_i} \in LB_{P_i}, the associated Lorenz-Bifocal Bankruptcy Game, \(V^{LB_{P_i}} \), is a PS-game such that for all \(i \in N \) and for all coalition \(T \subseteq N \setminus \{i\} \),
\[
\Delta_i V^{LB_{P_i}} (T) + \Delta_i V^{LB_{P_i}} (N \setminus [T \cup \{i\}]) = LGM_i^{P_i} (E, c) + LLM_i^{P_i} (E, c).
\]

Proof. See Section D.2 in Appendix D.

Our main result, the proof of which is based on states with sufficient clarity how to solve Lorenz-Bifocal Bankruptcy Games. In a way, it provides solid grounds for selecting the average of the two focal viewpoints from among all the intermediate compromises: "Virtue lies in the middle ground".

Theorem 12 For each Lorenz-Bifocal Bankruptcy Game, \(V^{LB_{P_i}} \), where LB_{P_i} \in LB, the Shapley value and the Nucleolus coincide and they are obtained in the average of the two Lorenz-Focal rules, that is,
\[
Sh(V^{LB_{P_i}}) = Nu(V^{LB_{P_i}}) = 1/2 \left(LGM_i^{P_i} (E, c) + LLM_i^{P_i} (E, c) \right).
\]

Proof. See Section D.3 in Appendix D.

5.3 Three applications.

In this section we apply the proposed model to the three different sets of equity principles mentioned previously. Particularly, from Chapter 2, we know the Lorenz-Focal rules which delimit the region of Lorenz-Bifocal Admissible rules are well defined with \(P_i \in \{ P_1, P_2, P_3 \} \). Therefore, by Definition 15 we obtain each of the associated Lorenz-Bifocal Bankruptcy Games.

Given LB_{P_1} \in LB_{P_1}, \(LB_{P_1} = \{(E, c), CEA, CEL\} \), the corresponding Lorenz-Bifocal Bankruptcy Game is the TU-game \(V^{LB_{P_1}} \) which associates to each coalition \(S \subseteq N \), the real value
\[
V^{LB_{P_1}} (S) = \min \left\{ \sum_{i \in S} CEA_i (E, c), \sum_{i \in S} CEL_i (E, c) \right\}.
\]
5. Lorenz-Bifocal Bankruptcy Game.

Given $LBP_2 \in \mathcal{LB}_P$, $LBP_2 = ((E, c), Pin, DPin)$, the corresponding **Lorenz-Bifocal Bankruptcy Game** is the TU-game V^{LBP_2} which associates to each coalition $S \subseteq N$, the real value

$$V^{LBP_2}(S) = \min \left\{ \sum_{i \in S} Pin_i(E, c), \sum_{i \in S} DPin_i(E, c) \right\}.$$

Given $LBP_3 \in \mathcal{LB}_P$, $LBP_3 = ((E, c), CE, DCE)$, the corresponding **Lorenz-Bifocal Bankruptcy Game** is the TU-game V^{LBP_3} which associates to each coalition $S \subseteq N$, the real value

$$V^{LBP_3}(S) = \min \left\{ \sum_{i \in S} CE_i(E, c), \sum_{i \in S} DCE_i(E, c) \right\}.$$

Obviously, in each of these Lorenz-Bifocal Bankruptcy Games all the characteristics and results set out in the previous section hold. Then, by applying Theorem 12 for each $P_i \in \{P_1, P_2, P_3\}$, we present a game-theoretic support of new rules: the average of well-known old solutions representing opposite viewpoints.

Corollary 14 For each Lorenz-Bifocal Bankruptcy Game, V^{LBP_1}, the Shapley value and the Nucleolus coincide. They are also defined by the average of the Constrained Equal Awards and the Constrained Equal Losses rules, that is,

$$Sh(V^{LBP_1}) = Nu(V^{LBP_1}) = 1/2 [CEA(E, c) + CEL(E, c)].$$

Corollary 15 For each Lorenz-Bifocal Bankruptcy Game, V^{LBP_2}, the Shapley value and the Nucleolus coincide. They are defined by the Average of Piniles’ and the Dual of Piniles’ rules, that is,

$$Sh(V^{LBP_2}) = Nu(V^{LBP_2}) = 1/2 [Pin(E, c) + DPin(E, c)].$$
Corollary 16 For each Lorenz-Bifocal Bankruptcy Game, $V^{LB_{PS}}$, the Shapley value and the Nucleolus coincide. They are defined by the Average of the Constrained Egalitarian and the Dual Constrained Egalitarian rules, that is,

$$Sh(V^{LB_{PS}}) = Nu(V^{LB_{PS}}) = 1/2 [CE(E,c) + DCE(E,c)].$$

At this point it should be noted that the compromise reached by the society that we have considered could be classed as coherent, at least, for two reasons. The first of these is that the properties that the society has applied to restrict the set of Lorenz-Bifocal Admissible rules in each case, $P_i \in \{P_1, P_2, P_3\}$, are also satisfied by the final agreement. The second reason is that the "equity criterion" on which the society bases its choices, Lorenz domination, is preserved, although the application of such a criterion is carried out in different domains, each one corresponding to the problem facing society at each time (allocations for bankruptcy problems and excesses of coalitions for bankruptcy games). In this regard, it is well known that, for each TU-game V, the Nucleolus selects the allocation of the resource providing the maximal Lorenz element on the set of vectors the coordinates of which are the excesses of all coalitions referring to efficient and individually rational distributions, $x = V(N)$ and $x_i \geq V(\{i\})$ for all $i \in N$, (see Arin [4]).

5.4 Conclusions.

In this chapter we have used cooperative game theory to support very simple, current and commonly observed collective decisions, which are so common as to be expressed in the popular proverb: "Virtue lies in the middle ground".

Our main result offers game-theoretic grounds for meeting people half-way, providing solid grounds for selecting the average of the two focal viewpoints from among all the Lorenz-Bifocal Admissible rules.
On the other hand, we have particularized this model to the three sets of equity principles proposed, showing how to introduce new applications of game theory and, consequently, new solution concepts by following the line of argument of Section 5.3.

Therefore, we can conclude that this chapter involves both simplicity and the matching of theory with real life, producing an interesting combination.
Chapter 6

General conclusions and future research.

6.1 Results.

Our contribution to the theory about bankruptcy situations in this document starts from two general concerns, which are usual in the literature: individual rights and fair distributions. Regarding to these ideas, we introduce a new extended bankruptcy problem, called the Lorenz-Bifocal Bankruptcy Problem, in which the discrepancy for sharing the resources is considered by means of the existence of two focal rules, according to a "Commonly Accepted Equity Principles" set.

Taking these problems as starting point, we have analyzed the repercussions of this enrichment of the classical rationing problem from the Axiomatic, Strategic and Cooperative Game viewpoints, obtaining the following results:

- In the Axiomatic Approach, firstly, we provide the definition of a lower bound, called Lorenz P-Safety, which is obtained by assigning to each agent the smallest amount she receives according to all Lorenz-Bifocal Admissible rules for such a society. Secondly, the fact that some of the endowment will be still available once we allocate each agent this amount, has led us to introduce the Recursive Lorenz P-Safety rule, defined as the recursive application of our new bound. In this sense, our main results are achieved by particularizing the previous methodology to different sets of equity principles which can be interpreted, from our point of view, as "basic" requirements. For two
possible societies (restrictive and permissive) we retrieve, respectively, the *Dual of Piniles’* and the *Constrained Equal Losses* rules when focusing on awards; and *Piniles’* and the *Constrained Equal Awards* rules when focusing on losses. Nevertheless, by considering a society whose *"Commonly Accepted Equity Principles"* set is included in the permissive society’s set and includes the restrictive society’s set, we show that the *Recursive Lorenz P-Safety* rule does not satisfy one of the equity principles upon which such a society initially agreed to found its decisions. Thus, the need for in-depth study of the consequences of social agreements on both principles and procedure has been emphasized, as they could become meaningless when combined.

In this line, and using the fact that rationing problems can be interpreted from a double viewpoint (awards and losses), we propose the simultaneous combination of both a lower and an upper bound on awards, called the *Lorenz P-Safety* and the *Lorenz P-Ceiling*, respectively. In this regard, we define a new method for distributing the endowment, using the idea of establishing recursively a "fair" minimum and maximum amounts to each agent in bankruptcy problems, named the *Lorenz Double Recursive rule*. Our main result states that this rule corresponds with the average of the two *Lorenz-Focal rules*, that is, we obtain new justifications for the convex combination of two extreme and opposite rules. Then, we particularize this procedure to some sets of equity principles, recovering *Lorenz-Bifocal Admissible rules* even for the set of equity principles for which the *Recursive Lorenz P-Safety* process fails.

- From the Strategic Approach we provide a mechanism from a positive viewpoint. That is, we offer the understanding of old bankruptcy rules as the *Nash equilibrium* of a strategic game where agents act individually pursuing
their best strategy, the one ensuring her highest payoff. Specifically, we particularize the methodology of the Unanimous Concessions (Marco et al. [31]) and the Diminishing Claims (Chun [8]) procedures to different sets of "Commonly Accepted Equity Principles". In particular, we retrieve the Dual of Piniles' rule when applying the Unanimous Concessions procedure, and, by using the idea of duality and the fact all the proposed properties are Self-Dual, we obtain Piniles' rule. Moreover, we show that, for some set of equity principles, the allocation obtained when applying the Unanimous Concessions and the Diminishing Claims procedures, may lead to "not acceptable" results. Particularly, if a society agreed on choosing those rules which satisfy a determined set of equity principles, the final allocation could not satisfy the initial agreed properties.

At this point, combining the Diminishing Claims and the Unanimous Concessions procedures, we define the Double Concessions procedure. In this case, as in the Axiomatic Approach, we retrieve the average of the two Lorenz-Focal rules for the three proposed sets of properties.

- In the Cooperative Game Approach, we associate to our new extended bankruptcy problem a natural TU game, applying the O'Neill's model [42]. In these games, called Lorenz-Bifocal Bankruptcy Games, we obtain necessary conditions for solutions to be a Core selection. On the other hand, although these games are not convex in general, we find that the Shapley Value is not only in the Core, but it also coincides with the Nucleolus. Moreover, these two solutions retrieve the average between the two Lorenz-Focal rules, that is, we provide game theoretical grounds to sustain the proposal of an "intermediate" agreement among all the Lorenz-Bifocal Admissible rules.
6.2 Future research in progress.

From our viewpoint, there are several researching possibilities following the line initiated in the current dissertation. Among other problems, at this moment we are facing two possible generalizations of Lorenz-Bifocal Bankruptcy Problems. On the one hand, note that, by applying the Lorenz criterion, we have obtained two focal rules which delimit the Lorenz-Bifocal Admissible rules. So that, a natural step for trying to generalize our results would be by "substracting" these extreme rules not requiring the equity criterion. Particularly, we relax the requirements imposed on the initial extended bankruptcy problem not considering the Lorenz criterion. On the other hand, we consider other contexts, different of bankruptcy problems, where the two focal proposals arises in a natural way.

6.2.1 Bankruptcy Problems with Legitimate Principles.

Our first attempt to extend the obtained results consists of eliminating the Lorenz criterion, and then considering that the way of distributing the resource is only based on a set of basic properties, called "Commonly Accepted Equity Principles", but without requiring as social goal an equity criterion. Formally:

Definition 16 A Bankruptcy Problem with Legitimate Principles is a triplet (E, c, P_t), where $(E, c) \in B$ and P_t is a fixed set of principles on which a particular society has agreed.

Let P be the set of all subsets of properties of rules. Each $P_t \in P$ represents a specific society which will always apply such principles for solving its problems. Finally, let B_P be the set of all Problems with Legitimate Principles.

In this context, a Socially Admissible rule for a society that has agreed on P_t, is a rule satisfying all these properties.
Definition 17 A Socially Admissible rule, or simply an Admissible rule, is a function, $\varphi : B_P \to \mathbb{R}_+^n$, such that its restriction on B, $\varphi : B \to \mathbb{R}_+^n$, is a rule, and it satisfies all properties in P_t.

Let Φ denote the set of all rules and let $\Phi(P_t)$ be the subset of rules satisfying P_t.

Bankruptcy Problems with Legitimate Principles: Lower bound.

- **Axiomatic Approach.**

Now, from the Axiomatic Approach, and following a similar reasoning as in Chapter 2, we define the lower bound on awards based on Bankruptcy Problems with Legitimate Principles and its associated recursive process.

Definition 18 Given (E,c,P_t) in B_P, the P-Safety, s, is for each $i \in N$,

$$s_i(E,c,P_t) = \inf_{\varphi \in \Phi(P_t)} \{ \varphi_i(E,c) \}.$$

Definition 19 For each $m \in \mathbb{N}$, the Recursive P-Safety Process at the m-th step, RS, associates for each $(E,c,P_t) \in B_P$ and each $i \in N$,

$$[RS(E^m,c^m,P_t)]_i = s_i(E^m,c^m,P_t),$$

where $(E^1,c^1) \equiv (E,c)$ and for $m \geq 2$,

$$(E^m,c^m) \equiv (E^{m-1} - \sum_{i \in N} s_i(E^{m-1},c^{m-1},P_t),c^{m-1} - s(E^{m-1},c^{m-1},P_t)).$$

Again, it can not be ensured that the sum of the amounts that agents receive in each step exhausts the endowment, but when this occurs, we call this sum the Recursive P-Safety rule. Moreover, note that this rule will be an Admissible rule whenever it fulfills the set of equity principles on which the Recursive P-Safety Process is based. A fact that, as we will see later, cannot always be guaranteed.
Definition 20 The Recursive P-Safety rule, \(\varphi^R \), associates for each \((E, c, P_t) \in B_P \) and each \(i \in N \), \(\varphi^R_i(E, c, P_t) = \sum_{m=1}^\infty [RS(E^m, c^m, P_t)]_i \), whenever
\[
\sum_{i \in N} \left(\sum_{m=1}^\infty [RS(E^m, c^m, P_t)]_i \right) = E.
\]

At this point, we consider the three possible choices of "Commonly Accepted Equity Principles" by a society to apply the approach introduced previously, \(P_t \in \{P_1, P_2, P_3\} \), although with some conditions. Particularly, now we include Order Preservation and Resource Monotonicity.

Order Preservation: for each \((E, c) \in B \) and each \(i, j \in N \), such that \(c_i \geq c_j \), then \(\varphi_i(E, c) \geq \varphi_j(E, c) \), and \(c_i - \varphi_i(E, c) \geq c_j - \varphi_j(E, c) \), that is \(l_i(E, c) \geq l_j(E, c) \).

Resource Monotonicity: for each \((E, c) \in B \) and each \(E' \in \mathbb{R}_+ \) such that \(C > E' > E \), then \(\varphi_i(E', c) \geq \varphi_i(E, c) \), for each \(i \in N \).

So our sets of equity principles are:

\[P_1 = \{\text{Efficiency, Claim-boundedness, Non-Negativity, Order Preservation and Resource Monotonicity}\}, \]

\[P_2 = \{\text{Efficiency, Claim-boundedness, Non-Negativity, Resource Monotonicity, Super-Modularity and Midpoint Property}\}, \]

and

\[P_3 = \{\text{Efficiency, Claim-boundedness, Non-Negativity, Order Preservation, Resource Monotonicity and Midpoint Property}\}. \]

It must be remarked that, in the context of Lorenz-Bifocal Bankruptcy Problems, these new conditions are redundant. So, in the context of the Bankruptcy Problems
with Legitimate Principles, the sets of equity principles coincide with the ones we are presenting now.

By applying our previous methodology, we now recover the Constrained Equal Losses and the Dual of Piniles’ rules for P_1 and P_2. However, although for two-person problems the Recursive P-Safety rule for P_3 retrieves the Dual Constrained Egalitarian rule, this fact cannot be extended for the n-person case.

Proposition 10 For each $(E, c, P_1) \in B_P$, $((E, c, P_2) \in B_P)$, $(E, c, P_3) \in B_P)$, the P-Safety for the smallest agent, say 1, corresponds with the Constrained Equal Losses (the Dual of Piniles’) (the Dual Constrained Egalitarian) rule,

$$s_1(E, c, P_1) = CEL_1(E, c) \ (s_1(E, c, P_2) = DPin_1(E, c)) \ (s_1(E, c, P_3) = DCE_1(E, c)).$$

Proof. See Appendix E. ■

Then, by applying duality, it is straightforwardly to show the P-Safety for the highest agent.

Corollary 17 For each $(E, c, P_1) \in B_P$, $((E, c, P_2) \in B_P)$, $(E, c, P_3) \in B_P)$, the P-Safety for the highest agent, say n, corresponds with the Constrained Equal Awards (Piniles’) (Constrained Egalitarian) rule,

$$s_n(E, c, P_1) = CEAn(E, c) \ (s_n(E, c, P_2) = Pin_n(E, c)) \ (s_n(E, c, P_3) = CE_n(E, c)).$$

The most important results that we have obtained are the following ones:

Theorem 13 For each $(E, c, P_1) \in B_P$, $((E, c, P_2) \in B_P)$, the Recursive P-Safety rule is the Constrained Equal Losses (the Dual of Piniles’) rule,

$$\varphi^R(E, c, P_1) = CEL(E, c) \ (\varphi^R(E, c, P_2) = DPin(E, c)).$$

Theorem 14 For each bi-personal Bankruptcy Problem with Legitimate Principles in B_P with $P = P_3$ and each $i \in \{1, 2\}$, the Recursive P-Safety rule is the Dual Constrained Egalitarian rule, $\varphi^R_i(E, c, P_3) = DCE_i(E, c)$.
Proposition 11 There is a problem, \((E, c) \in \mathcal{B}\), for which the Recursive P-Safety rule for \(P_3\) does not coincide with the Dual Constrained Egalitarian rule,
\[
\varphi^R(E, c, P_3) \neq DCE(E, c).
\]

Proposition 12 For \(P_3\), the Recursive P-Safety rule does not satisfy Resource Monotonicity.

The previous analysis can be rewritten for losses by using the idea of duality. As we know, when focusing on losses, the starting point will be the same sets of "Commonly Accepted Equity Principles", \(P_1\) and \(P_2\), since all the considered properties are Self-Dual. Furthermore, by defining the P-Safety for the associated problem \((L, c)\) for each \((E, c) \in \mathcal{B}\) and applying it recursively, it can be shown that Piniles’ and the Constrained Equal Awards rules are retrieved for \(P_1\) and \(P_2\), respectively. And, again, only for bi-personal problems for \(P_3\) we retrieve the Constrained Egalitarian rule. However, this fact can not be extended for the n-person case.

As a consequence of Proposition 10 and Corollary 17, it would be worth to note that for bi-personal problems, the two contexts (Lorenz-Bifocal Bankruptcy Problems, and Bankruptcy Problems with Legitimate Principles) coincide, since the properties gathered by the sets \(P_1\), \(P_2\) and \(P_3\), imply the existence of the two extreme rules defined in each case. Moreover, although the smallest agent’s P-Safety for \(P_1\) \((P_2, P_3)\) corresponds with the Constrained Equal Losses (Dual of Piniles’, Dual Constrained Egalitarian) rules and the highest agent’s P-Safety for \(P_1\) \((P_2, P_3)\) corresponds with the Constrained Equal Awards (Piniles’, Constrained Egalitarian) rules, the other agents’ P-Safety will not be determined by these rules, as shown in Example 4 in Appendix E.
• Strategic Approach.

In the Strategic Approach, we can generalize all the results obtained in Chapter 4 to Bankruptcy Problem with Legitimate Principles, obtaining analogous conclusions. In this sense, again, note that we can use the proofs without making any changes, because, due to the fact that the P-Safety for the smallest and the highest agent do not change (Proposition 10 and Corollary 17), their weakly dominant strategies remain the same.

Bankruptcy Problems with Legitimate Principles: Lower and upper bound.

• Axiomatic Approach.

As we know, bankruptcy problems can be faced from the double viewpoint of awards and losses, so we define an upper bound on awards, named the P-Ceiling, as the highest amount assumed for each agent by all the Admissible rules in P_t. Next, we propose the Double Boundedness Recursive Process as the procedure in which at each step each agent receives a minimum and a maximum amount according to all the Admissible rules, i.e., at each step, every agent’s claim is truncated by her P-Ceiling, and each of them receives her P-Safety.

Definition 21 Given (E, c, P_t) in B_P, the P-Ceiling, ce, is for each $i \in N$,

$$ce_i(E, c, P_t) = \sup_{\varphi \in \Phi(P_t)} \{\varphi_i(E, c)\}.$$
Definition 22 Given $m \in \mathbb{N}$, the Double Boundedness Recursive Process, DBR, associates for each $(E, c, P_i) \in \mathcal{B}_P$ and each $i \in N$,

$$[DBR(E^m, c^m, P_i)]_i = s_i(E^m, c^m, P_i),$$

where $(E^1, c^1) \equiv (E, c)$ and for $m \geq 2$,

$$E^m \equiv E^{m-1} - \sum_{i \in N} s_i(E^{m-1}, c^{m-1}, P_i).$$

$$c^m_i = c e_i(E^{m-1}, c^{m-1}, P_i) - s_i(E^{m-1}, c^{m-1}, P_i).$$

According to this process, an agent will get at the first step her P-Safety of the original problem. At the second step, we redefine a residual problem, in which the endowment is the remaining resources and each agent’s claim is truncated by her P-Ceiling, and then adjusted down by the amount received. Then each agent receives her P-Safety of this residual problem, and so on. We can easily see that this process is not always efficient, but when it does, we call it the Double Recursive rule. Formally:

Definition 23 The Double Recursive rule, φ^{DR}, associates for each $(E, c, P_i) \in \mathcal{B}_P$ and each $i \in N$, $\varphi^{DR}_i(E, c, P_i) = \sum_{m=1}^{\infty} [DBR(E^m, c^m, P_i)]_i$, whenever

$$\sum_{i \in N} \left(\sum_{m=1}^{\infty} [DBR(E^m, c^m, P_i)]_i \right) = E.$$

As we have noted previously, due to the fact that for bi-personal problems both contexts (Lorenz-Bifocal Bankruptcy Problems, and Bankruptcy Problems with Legitimate Principles) coincide, the results obtained in Chapter 3 remain valid. However, this fact does not occur generally, as shown in Example 5 in Appendix E. Moreover, it is worth to highlight that for both the Recursive P-Safety rule and the Double Recursive rule there are more than two focal rules. Nevertheless, in each context
the behavior of the procedure is different, implying that although in the former case (with only the lower bound, or "simple" bounding) the results obtained in the context of Lorenz-Bifocal Bankruptcy Problems are maintained, this does not occur with the "double" bounding.

Finally, it must be noticed that even if there are two focal rules, the Double Boundedness Recursive rule for P_i may not retrieve the average of them if these two rules are not dual each other. Henceforth, for any Bankruptcy Problem with Legitimate Principles such that there exist two Focal rules, which are dual each other, the final allocation provided by the Double Recursive rule will correspond with the average of these two Focal rules.

- **Strategic Approach.**

Note that in the Strategic Approach bi-personal problems for both contexts (Lorenz-Bifocal Bankruptcy Problems, and Bankruptcy Problems with Legitimate Principles) also coincide, therefore, all the results obtained in Chapter 4 remain valid. However, due to the fact that for the n-person case we can find situations with more than two focal rules, this fact cannot be generalized.

Furthermore, as in the previous approach, when there are only two focal rules, we retrieve the average of them only when they are dual each other.

Bankruptcy Problems with Legitimate Principles: Cooperative Game Approach.

Finally, from a Cooperative Game viewpoint, we define a new type of games in coalitional form, named Bankruptcy Games with Legitimate Principles, which are an appropriate interpretation of Bankruptcy Problems with Legitimate Principles
in terms of TU-games. Specifically, following the line initiated in Chapter 5, we define the game corresponding to these problems by associating to each coalition the smallest quantity of the resource that it would receive according to all the Admissible rules. Formally:

Definition 24 Given $B_r \in B_r$, the corresponding Bankruptcy Game with Legitimate Principles is the TU-game V^{B_r} which associates the real value $V^{B_r}(\emptyset) = 0$ and, for each coalition S, $\emptyset \neq S \subseteq N$,

$$V^{B_r}(S) = \min_{\varphi \in \Phi(R)} \left\{ \sum_{i \in S} \varphi_i(E, c, P_i) \right\}.$$

At this point, note that it cannot be ensured that there are just two extreme Admissible rules defining the worth of each coalition, as it occurs with the Lorenz-Bifocal Bankruptcy Game. Henceforth, we can find Bankruptcy Games with Legitimate Principles with more than two focus. In this case, we show through Example 6 (Appendix E) that neither the Shapley value and the Nucleolus coincide, nor any of them retrieves the average of the focal rules.

6.2.2 Bifocal Distribution Problems: Grounds for the average of two focus.

Since previous results cannot be generalized for problems with more than two focal rules, in order to provide more general results, we propose distribution problems in which two prominent proposals are considered equally fair from different reasonable viewpoints. In this regard,

A distribution problem with transferable utility, D, (referred to hereinafter as a distribution problem) is formally described by a pair $D = (M, C^N)$ where $M \in \mathbb{R}_{++}$ represents a given amount of a perfectly divisible "good", a valuable resource that should be distributed among the agents in $N =$
\[= \{1, \ldots, i, \ldots, n\}. \] And \(C^N \) is a set of relevant information, concerning the agents, which should somehow be taken into account when solving the problem. Let \(\mathcal{D} \) denote the type of all distribution problems.

In this general context a distribution rule is a function, \(f : \mathcal{D} \rightarrow \mathbb{R}^n \), which proposes an efficient allocation of the resource for each distribution problem \(D \in \mathcal{D} \), that is, \(\sum_{i \in N} f_i(D) = M \). Let \(\mathcal{F} \) be a family of rules.

Note that a wide range of real situations can be modeled in this way, such as certain important types of TU-games: market games (Shapley and Shubik [50]), cost allocation games (Young [62]) and simple games (Shapley [49]).

In this context, a Bifocal Distribution Problem, denoted by \(BD \in \mathcal{BD} \), is a triplet \(BD = (D, f, g) \) where \(D = (M, C^N) \in \mathcal{D} \) and both \(f \) and \(g \) are "fixed" distribution rules representing two focal proposals in a particular society.

- Cooperative Game Approach.

Regarding to this framework, we define a Bifocal Distribution Game by associating to each coalition the smallest quantity of the resource that would receive according to the two focal rules,

Definition 25 Given \(BD \in \mathcal{BD} \), the corresponding **Bifocal Distribution Game** is the TU-game \(V^{BD} \) which associates the real value \(V^{BD}(\emptyset) = 0 \) and, for each coalition \(S, \emptyset \neq S \subseteq N \),

\[
V^{BD}(S) = \min_{f \in \mathcal{F}} \left\{ \sum_{i \in S} f_i(D), \sum_{i \in S} g_i(D) \right\}.
\]

Finally, note that, by only changing the rules considered in Lorenz-Bifocal Bankruptcy Games, for the focal distribution rules \(f \) and \(g \), we can follow the same reasoning. So that, next theorem states that for each Bifocal Distribution Game, "Virtue lies in the middle ground".
6. General conclusions and future research.

Theorem 15 For each Bifocal Distribution Game, V^{BD}, where $BD = (D, f, g) \in \mathcal{BD}$, the Shapley value and the Nucleolus coincide and they are obtained in the average of the two focal distributions rules, that is,

$$Sh(V^{BD}) = Nu(V^{BD}) = 1/2(f(D) + g(D)).$$

6.2.3 Other open research issues.

Finally, other questions that remain open are the following.

- The axiomatic characterization of the convex combinations of rules. Particularly, following Thomson and Yeh [54], it would be interesting to characterize the average of two extreme and opposite rules.

- The search for new procedures that ensure compatibility with socially accepted equity principles; and the analysis of conditions on the legitimate principle sets which guarantee that such principles are upheld when applying our recursive process.

- Following Luttens [29], it could be analyzed the results obtained by the combination of other lower bounds proposed in the economic literature (different from the O’Neill’s Minimal Right [42]) with the idea of solidarity. In this regard, Luttens, in a model where individuals with different levels of skills exert different levels of effort, combines the idea of solidarity with the individual’s bound as defined by O’Neill [42]. Solidarity is based on the notion that the consequences of a change in an individual’s skill should be borne by the society as whole. Specifically, let us suppose a society where agents’ income inequalities are determined by unequally exerted effort levels and different innate skills. Now suppose that, due to a change in individuals’ skills, there is
more income to divide. The proposal is for these extra resources to be divided according to the changes in individuals’ minimal rights.

- As Schokkaert and Overlaet [46] gather, we can find many contexts where two different proposals that highlight the discrepancy about the way of distributing the resources appear in a natural way. For instance, the two focal solutions are, following Moulin [35], in surplus sharing problems, the equal and proportional sharing rules; or, according to Varian [59], in the theory of fairness and envy-free allocation, the income-fair and the wealth-fair allocations. In this sense, on the one hand, we have provided general results using the Cooperative Game Approach for any Bifocal Distribution Game. On the other hand, it would be interesting to analyze if we can retrieve similar results as those obtained in the context of Lorenz-Bifocal Bankruptcy Problems in the Axiomatic and Strategic Approaches.

- Following Amiel and Cowell [3], and Bosmans and Schokkaert [7], it could be examined public perceptions of "fair", "appealing", or "reasonable" guarantees for rationing problems. Specifically, it would be interesting to answer the following questions. Does the standard structure of analyzing guarantees coincide with its public perceptions? Is the economist’s concept of guarantee a thing apart, that is going to be perpetuated through social brainwashing in the way the subject is studied and taught?
Appendix A

Proofs of Chapter 2.

A.1 General remarks.

We present three remarks which are used in the following proofs.

Let us note that \(\mathcal{B}_0 \) denotes the set of bankruptcy problems in which claims are increasingly ordered, that is, bankruptcy problems with \(c_i \leq c_j \) for \(i < j \).

First, for any Lorenz-Bifocal Bankruptcy Problem, the total loss to distribute is the same at every step of the Recursive Lorenz P-Safety Process.

Remark 1 For each \(LB_{P_i} \in \mathcal{LB}_P \), and each \(m \in \mathbb{N} \), \(L^m = L \).

Proof. Let \(LB_{P_i} \in \mathcal{LB}_P \). Then,

\[
L^m = C^m - E^m = \sum_{i \in N} \left(c_i - \sum_{k=1}^{m} Ls_i(LB_{P_i}^k) \right) - \left(E - \sum_{i \in N} \sum_{k=1}^{m} Ls_i(LB_{P_i}^k) \right) = C - E = L.
\]

Second, for each \(P_i \in \{ P_1, P_2, P_3 \} \), the order of the agents’ claims remains the same along the Recursive Lorenz P-Safety Process.

Remark 2 For each \(LB_{P_i} \in \mathcal{LB}_P \) with \(P_i \in \{ P_1, P_2, P_3 \} \), and each \(i \in N \),

\[
\text{if } c_i^m \leq c_j^m \text{ then } c_i^{m+1} \leq c_j^{m+1}.
\]

Proof. Let \(LB_{P_i} \in \mathcal{LB}_P \) with \(P_i \in \{ P_1, P_2, P_3 \} \), and let denote \((CEA, CEL) = (\varphi^{D(LP_1)}, \varphi^{U(LP_1)}), (Pin, DPin) = (\varphi^{D(LP_2)}, \varphi^{U(LP_2)}) \) and \((CE, DCE) = (\varphi^{D(LP_3)}, \varphi^{U(LP_3)}) \).
Since all of the above mentioned rules satisfy Order Preservation, then for each
\(P_i \in \{P_1, P_2, P_3\}\):

(a) If \(Ls_i(LB_{P_i}^m) = \varphi_i^{D(LR)}(E^m, c^m)\) and \(Ls_j(LB_{P_i}^m) = \varphi_j^{D(LR)}(E^m, c^m)\), then,
by Order Preservation, \(c_i^m - Ls_i(LB_{P_i}^m) \leq c_j^m - Ls_j(LB_{P_i}^m) \Rightarrow c_i^{m+1} \leq c_j^{m+1}\).

(b) If \(Ls_i(LB_{P_i}^m) = \varphi_i^{U(LP)}(E^m, c^m)\) and \(Ls_j(LB_{P_i}^m) = \varphi_j^{U(LP)}(E^m, c^m)\), by
both Order Preservation and the definition of \(Ls_j(LB_{P_i}^m)\), \(c_i^m - \varphi_i^{D(LR)}(E^m, c^m) \leq c_j^m - \varphi_j^{U(LP)}(E^m, c^m) \Rightarrow c_i^{m+1} \leq c_j^{m+1}\).

(c) If \(Ls_i(LB_{P_i}^m) = \varphi_i^{U(LP)}(E^m, c^m)\) and \(Ls_j(LB_{P_i}^m) = \varphi_j^{U(LP)}(E^m, c^m)\), then,
by Order Preservation, \(c_i^m - Ls_i(LB_{P_i}^m) \leq c_j^m - Ls_j(LB_{P_i}^m) \Rightarrow c_i^{m+1} \leq c_j^{m+1}\).

Last remark says that, for each \(P_i \in \{P_1, P_2, P_3\}\), the sum of the amounts that
agents receive by the Recursive Lorenz P-Safety Process is the entire endowment.

Remark 3 For each \(LB_{P_i} \in LLB_P\) with \(P_i \in \{P_1, P_2, P_3\}\), and each \(i \in N\),
\[
\sum_{i \in N} \left(\sum_{m=1}^{\infty} \left[RLS^m(LB_{P_i})\right]_i \right) = E.
\]

Proof. Let \(LB_{P_i} \in LLB_P\) with \(P_i \in \{P_1, P_2, P_3\}\) and \(c^*\) and \(E^*\), denote the
limits of the sequences of the claims vectors and the endowment generated by the
Recursive Lorenz P-Safety Process. These limits exist since claims and endowment
do not increase from step to step, and all of these variables are bounded below by
zero. We then show by contradiction that \(E^* = 0\). Let us suppose that \(E^* > 0\).
Then, since for each \(P_i \in \{P_1, P_2, P_3\}\), \(Ls_j(LB_{P_i}^*) > 0\), where \(j\) denotes the highest
claimant, there is \(m \in N\) such that \(E^m - E^* \leq Ls_j(LB_{P_i}^m)\). Since \(LB_{P_i}^m\) is a well-defined
Lorenz-Bifocal Bankruptcy Problem, \(Ls_j(LB_{P_i}^m) > 0\), and given that all agents
receive non-negative amounts, the endowment at the \((m+1)\) -th step decreases by
at least the agent \(j\)'s Lorenz P-Safety.

Therefore, \(E^{m+1} \leq E^m - Ls_j(LB_{P_i}^m) < E^m - Ls_j(LB_{P_i}^m) \leq E^*,\) which contradicts
the definition of \(E^*\).
A.2 Proof of Theorem 1.

Theorem 1: For each $LB_{P_1} \in LB_P$, $LB_{P_1} = ((E, c), CEA, CEL)$, the Recursive Lorenz P-Safety rule is the Constrained Equal Losses rule, $\varphi^{RL}(LB_{P_1}) = CEL(E, c)$.

The proof is based on four lemmas, but before presenting them, we note the following three facts. We assume, without loss of generality, that $(E, c) \in B_0$.

Fact 1 For each $(E, c) \in B_0$ and each $i \in N$, $CEL_i(E, c) = \max\{0, c_i - \mu\}$, where μ is such that $\sum_{i \in N} \max\{0, c_i - \mu\} = E$.

Therefore, μ can be understood as the losses incurred by the agents who receive positive amounts by applying the Constrained Equal Losses rule.

A straightforward way to compute this rule, which will be useful later on, is as follows.

Fact 2 For each $(E, c) \in B_0$ and each $i \in N$, the loss imposed on agent i by CEL is

$$\gamma_i = \min\{c_i, \alpha_i\},$$

where

$$\alpha_i = \left(L - \sum_{j<i} \gamma_j \right) / (n - i + 1).$$

Therefore, for each $i \in N$,

$$CEL_i(E, c) = c_i - \gamma_i.$$

Fact 3 By Fact 1 and Remark 1 we get:

(a) For each $(E, c) \in B_0$, and each $i \in N$, if $\gamma_i = c_i$, then for each $j < i$, $\gamma_j = c_j$.

(b) For each $(E, c) \in B_0$, and each $i \in N$, if $\gamma_i = \alpha_i$, then $\alpha_i = \mu$ and for each $j > i$, $\alpha_j = \alpha_i$. Therefore $\gamma_i = \mu$ (where μ is defined in the previous fact).

(c) At each step $m \in \mathbb{N}$ and for each $i \in N$, α_i^m only depends on the initial problem, (E, c), and on agent j’s claim, for each $j < i$, at step m.

Next, we provide the four lemmas on which Theorem 1 is based.

Lemma 1 For each $LB_{P_i} \in \mathcal{LB}_P$, such that $(E, c) \in \mathcal{B}_0$, and each $m \in \mathbb{N}$, $\mu^{m+1} = \mu^m$.

Proof. Let agent i be the first agent who receives positive amounts at step $m \in \mathbb{N}$, i.e., (i) $Ls_i(LB_{P_i}^m) > 0$ and (ii) for each $j < i$, $Ls_j(LB_{P_j}^m) = 0$. By (i) and Fact 3, $c_i^m > \mu^m = \alpha_i^m$. Given (ii) and the definition of the Recursive Lorenz P-Safety Process (Definition 7) at the m-th step, $c_j^{m+1} = c_j^m$. By Fact 3-(c), $\alpha_i^{m+1} = \alpha_i^m = \mu^m < c_i^m$.

Furthermore,

$$c_i^{m+1} = c_i^m - \min \left\{ CEL_i(E^m, c^m), CEA_i(E^m, c^m) \right\} \geq$$

$$\geq c_i^m - CEL_i(E^m, c^m) = c_i^m - (c_i^m - \mu^m) =$$

$$\mu^m = \alpha_i^{m+1}.$$

Therefore, by Remark 2 and Fact 3-(b), $\gamma_i^{m+1} = \alpha_i^{m+1} = \mu^{m+1}$. \qed

From now on, μ will denote μ^m, for each $m \in \mathbb{N}$.

The second lemma states that if at some step $m \in \mathbb{N}$ the agent i’s Lorenz P-Safety for P_i is $CEL_i(E^m, c^m)$, then in each subsequent step, her Lorenz P-Safety for P_i is zero.

Lemma 2 For each $LB_{P_i} \in \mathcal{LB}_P$, such that $(E, c) \in \mathcal{B}_0$, if there is $m \in \mathbb{N}$ if $Ls_i(LB_{P_i}^m) = CEL_i(E^m, c^m)$ then, for each $h \in \mathbb{N}$, $h > 0$,

$$Ls_i(LB_{P_i}^{m+h}) = 0.$$

Proof. Let $LB_{P_i} \in \mathcal{LB}_P$, such that $(E, c) \in \mathcal{B}_0$, and $m \in \mathbb{N}$, be such that

$$Ls_i(LB_{P_i}^m) = CEL_i(E^m, c^m) = c_i^m - \min \left\{ c_i^m, \mu \right\}.$$

Then,

$$c_i^{m+1} = c_i^m - CEL_i(E^m, c^m) = c_i^m - (c_i^m - \min \left\{ c_i^m, \mu \right\}) = \min \left\{ c_i^m, \mu \right\}.$$
Therefore,

\[CEL_i(E^{m+1}, c^{m+1}) = c_i^{m+1} - \min \{ c_i^{m+1}, \mu \} = \]

\[= \min \{ c_i^m, \mu \} - \min \{ \min \{ c_i^m, \mu \}, \mu \} = \]

\[= \min \{ c_i^m, \mu \} - \min \{ c_i^m, \mu \} = 0. \]

And, \(Ls_i(LB_{P_i}^{m+1}) = CEL_i(E^{m+1}, c^{m+1}) = 0. \)

Thus, the agent \(i \)'s Lorenz P-Safety for \(P_1 \) is, from this step on, zero because for each \(h \in \mathbb{N}, h > 0, \) \(CEL_i(E^{m+h}, c^{m+h}) = 0 = Ls_i(LB_{P_i}^{m+h}). \]

The next lemma establishes that, if agent \(i \)'s Lorenz P-Safety for \(P_1 \) is, at each step, the amount provided by the Constrained Equal Awards rule, then the total amount received by this agent is at most her award as calculated by the Constrained Equal Losses rule applied to the initial problem.

Lemma 3 For each \(LB_{P_i} \in \mathcal{L}_B, \) such that \((E, c) \in \mathcal{B}_0, \) and each \(i \in N, \) if, for each \(m \in \mathbb{N}, \)

\[Ls_i(LB_{P_i}^m) = CEA_i(E^m, c^m), \]

\[\varphi_i^{RL}(LB_{P_i}) = \sum_{k=1}^{\infty} Ls_i(LB_{P_i}^k) \leq CEL_i(E, c). \]

Proof. Let \(LB_{P_i} \in \mathcal{L}_B, \) such that \((E, c) \in \mathcal{B}_0, \) and \(i \in N. \) If for each \(m \in \mathbb{N}, \)

\[Ls_i(LB_{P_i}^m) = CEA_i(E^m, c^m), \]

then by the definition of the Lorenz P-Safety (Definition 5), and given that \(CEL_i(E^m, c^m) \geq CEA_i(E^m, c^m), \)

\[Ls_i(LB_{P_i}^m) \leq CEL_i(E^m, c^m) = c_i^m - \mu = c_i - \sum_{k=1}^{m-1} Ls_i(LB_{P_i}^k) - \mu, \]

so that

\[Ls_i(LB_{P_i}^m) + \sum_{k=1}^{m-1} Ls_i(LB_{P_i}^k) \leq c_i - \mu, \]

that is,

\[\sum_{k=1}^{m} Ls_i(LB_{P_i}^k) \leq CEL_i(E, c). \]
Therefore,
\[
\lim_{m \to \infty} \sum_{k=1}^{m} Ls_i(LB_{P_1}^k) \leq c_i - \mu = CEL_i(E, c). \]

The last lemma says that if the agent’s Lorenz P-Safety for \(P_1 \) corresponds at some step \(m^* \in \mathbb{N} \) with the amount recommended by the \textit{Constrained Equal Losses} rule for the problem \((E^{m^*}, c^{m^*}) \) and at the previous step is the amount provided by the \textit{Constrained Equal Awards} rule for each problem \((E^{m^*-1}, c^{m^*-1}) \), then the total amount received by this agent at step \(m^* \) is that given by the \textit{Constrained Equal Losses} rule applied to the initial problem.

\textbf{Lemma 4} For each \(LB_{P_1} \in \mathcal{LB}_P \), such that \((E, c) \in B_0\), and each \(i \in N \), if there is \(m^* \in \mathbb{N}, m^* > 1 \), such that \(Ls_i(LB_{P_1}^{m^*}) = CEL_i(E^{m^*}, c^{m^*}) \) and \(Ls_i(LB_{P_1}^{m^*-1}) = CEA_i(E^{m^*-1}, c^{m^*-1}) \), then,
\[
\sum_{k=1}^{m^*} Ls_i(LB_{P_1}^k) = CEL_i(E, c).
\]

\textbf{Proof.} Let \(LB_{P_1} \in \mathcal{LB}_P \), such that \((E, c) \in B_0\). We have
\[
Ls_i(LB_{P_1}^{m^*}) = CEL_i(E^{m^*}, c^{m^*}) \quad \text{and} \quad Ls_i(LB_{P_1}^{m^*-1}) = CEA_i(E^{m^*-1}, c^{m^*-1}).
\]
Since \(CEA_i(E^{m^*-1}, c^{m^*-1}) > 0 \), then \(CEL_i(E^{m^*-1}, c^{m^*-1}) > 0 \). Therefore \(c_i^{m^*-1} > \mu \) and by Lemma 1, \(c_i^{m^*} \geq \mu \).

Then, at step \(m^* \), agent \(i \) received
Rationing problems with Commonly Accepted Equity Principles

\[
\sum_{k=1}^{m^*} Ls_i(LB_{P_1}^k) = \sum_{k=1}^{m^*-1} Ls_i(LB_{P_1}^k) + CEL_i(E^{m^*}, c^{m^*}) = \\
= \sum_{k=1}^{m^*-1} Ls_i(LB_{P_1}^k) + \left[c_i^{m^*} - \min \{c_i^{m^*}, \mu \} \right] = \\
= \sum_{k=1}^{m^*-1} Ls_i(LB_{P_1}^k) + \left[c_i - \sum_{k=1}^{m^*-1} Ls_i(LB_{P_1}^k) \right] - \min \{c_i^{m^*}, \mu \} = \\
= c_i - \min \{c_i^{m^*}, \mu \} = c_i - \mu.
\]

Therefore,
\[
\sum_{k=1}^{m^*} Ls_i(LB_{P_1}^k) = CEL_i(E, c). \blacksquare
\]

Proof of Theorem 1.

Let \(LB_{P_1} \in LB_P \), such that \((E, c) \in B_0 \). There are two cases.

Case a: All agents claim the same amount. Then, by definition of Lorenz P-Safety for \(P_1 \), each agent receives the same amount and the entire endowment is distributed at the first step. Therefore, \(\varphi^{RL}(LB_{P_1}) = CEL(E, c) \).

Case b: There are at least two agents whose claims differ. By construction, in this case the agent with the smallest claim, say \(i \), receives as Lorenz P-Safety for \(P_1 \), \(Ls_i(LB_{P_1}) = CEL_i(E, c) \). Furthermore, for all \(m \in \mathbb{N} \) the agent with the highest claim, say \(j \), receives as Lorenz P-Safety for \(P_1 \), \(Ls_j(LB_{P_1}) = CEA_j(E^m, c^m) \).

Now, by Lemmas 2 and 4 for each agent \(r \in N \) who at some step \(m \in \mathbb{N} \) receives \(CEL_r(E^m, c^m) \) as Lorenz P-Safety for \(P_1 \), we have \(\varphi^{RL}_r(LB_{P_1}) = CEL_r(E, c) \). For each of the remaining agents, say \(l \neq r \), by Lemma 3, \(\varphi^{RL}_l(LB_{P_1}) \leq CEL_l(E, c) \). Then, since \(\varphi^{RL}(LB_{P_1}) \) exhausts the endowment, by Remark 3, \(\varphi^{RL}(LB_{P_1}) = CEL(E, c) \). \blacksquare
A.3 Proof of Theorem 2.

Theorem 2: For each $LB_{P_2} \in LB_P$, $LB_{P_2} = ((E, c), Pin, DPim)$, the Recursive Lorenz P-Safety rule is the Dual of Piniles’ rule, $\varphi^{RL}(LB_{P_2}) = DPim(E, c)$.

The proof is based on five lemmas, but before presenting them, we note four facts. In their proofs we assume, without loss of generality, $(E, c) \in B_0$.

Fact 4 The Dual of Piniles’ rule can be written as follows, given $(E, c) \in B$, $i \in N$,

$$DPim_i(E, c) = \begin{cases} \frac{c_i}{2} - \min \left\{ \frac{c_i}{2}, \lambda \right\} & \text{if } E \leq C/2 \\ \frac{c_i}{2} + \left(\frac{c_i}{2} - \min \left\{ \frac{c_i}{2}, \lambda \right\} \right) & \text{if } E \geq C/2 \end{cases},$$

where λ is such that $\sum_{i \in N} DPim_i(E, c) = E$.

Fact 5 Given $E^1 > C/2$ and $E^2 = E^1 - C/2$, the corresponding λ, computed for obtaining DPim rule, for (E^1, c) and (E^2, c), denoted λ^1 and λ^2 respectively, are equal. Indeed

$$\lambda^1 : \sum_{i \in N} \min \left\{ \frac{c_i}{2}, \lambda^1 \right\} = C - E^1$$

and

$$\lambda^2 : \sum_{i \in N} \min \left\{ \frac{c_i}{2}, \lambda^2 \right\} = C/2 - E^2 = C - E^1.$$

A straightforward way to compute the $DPim$ rule, which will be useful later on, is as follows.
Fact 6 For each \((E, c) \in \mathcal{B}_0\), and each \(i \in N\), the loss imposed on agent \(i\) by \(DPin\) is

\[
\gamma_i = \begin{cases}
\frac{c_i}{2} + \min \left\{ \frac{c_i}{2}, \alpha_i \right\} & \text{if } E \leq C/2 \\
\min \left\{ \frac{c_i}{2}, \alpha^*_i \right\} & \text{if } E \geq C/2
\end{cases},
\]

where

\[
\alpha_i = \left(\frac{C}{2} - E - \sum_{j<i} \gamma_j \right) / (n - i + 1),
\]

and

\[
\alpha^*_i = \left(L - \sum_{j<i} \gamma_j \right) / (n - i + 1).
\]

Therefore, for each \(i \in N\),

\[
DPin_i(E, c) = c_i - \gamma_i.
\]

Fact 7 By Fact 4 and Remark 1, we get:

(a) For each \((E, c) \in \mathcal{B}_0\) and each \(i \in N\),

Case (i) \(E \leq C/2\), if \(\gamma_i = c_i\) then, for each \(j < i\), \(\gamma_j = c_j\).

Case (ii) \(E \geq C/2\), if \(\gamma_i = c_i/2\) then, for each \(j < i\), \(\gamma_j = c_j/2\).

(b) For each \((E, c) \in \mathcal{B}_0\) and each \(i \in N\), and given \(\lambda\) (defined in Fact 4),

Case (i) \(E \leq C/2\), if \(\gamma_i = c_i/2 + \alpha_i\) then \(\alpha_i = \lambda\) and for each \(j > i\), \(\alpha_j = \alpha_i\).

Therefore, \(\gamma_i = c_i/2 + \lambda\).

Case (ii) \(E \geq C/2\), if \(\gamma_i = \alpha_i\) then \(\alpha_i = \lambda\) and for each \(j > i\), \(\alpha_j = \alpha_i\). Therefore, \(\gamma_i = \lambda\).

(c) At each step \(m \in \mathbb{N}\) and for each \(i \in N\), \(\alpha^*_i\) only depends on the initial problem, \((E, c)\), and on agent \(j\)'s claim, for each \(j < i\), at step \(m\).
Next lemma shows that the relationship among claims and \(\lambda \) is fixed.

Lemma 5 For each \(LB_{P_2} \in \mathcal{LB}_P \), such that \((E, c) \in \mathcal{B}_0 \), and each \(m \in \mathbb{N} \),

\[
(a) \text{ if } c_i^m / 2 < \lambda^m, \text{ then } c_i^{m+1} / 2 < \lambda^m
\]

and

\[
(b) \text{ if } c_i^m / 2 > \lambda^m, \text{ then } c_i^{m+1} / 2 \geq \lambda^m.
\]

Proof. Part (a) is obvious since \(c_i^{m+1} < c_i^m \). In order to prove (b), we have two cases.

Case b.1: \(E \leq C/2 \). Let agent \(i \) be the first agent who receives a positive amount at step \(m \in \mathbb{N} \), i.e., (i) \(Ls_i(LB_{P_2}^m) > 0 \) and (ii) for each \(j < i \), \(Ls_j(LB_{P_2}^m) = 0 \). Given (ii) and the definition of the *Recursive Lorenz P-Safety Process* (Definition 7) at the \(m \)-th step, \(c_j^{m+1} = c_j^m \).

Furthermore, since

\[
c_i^{m+1} / 2 = c_i^m / 2 - \min \{DPin_i(E^m, c^m), Pin_i(E^m, c^m)\} \geq c_i^m / 2 - DPin_i(E^m, c^m) = c_i^m / 2 - (c_i^m / 2 - \min \{c_i^m / 2, \lambda^m\}) = \min \{c_i^m / 2, \lambda^m\} = \lambda^m.
\]

Therefore,

\[
c_i^{m+1} / 2 \geq \lambda^m.
\]

Case b.2: \(E \geq C/2 \). Since agents receive their half-claim and the remaining endowment is distributed as previously (Fact 4) the conclusion follows directly. ■

The second lemma says that, in each step, \(\lambda^m \) is always the same.

Lemma 6 For each \(LB_{P_2} \in \mathcal{LB}_P \), such that \((E, c) \in \mathcal{B}_0 \), and each \(m \in \mathbb{N} \), \(\lambda^m = \lambda^{m+1} \).

Proof. By Fact 6, for each \(i \in N \), \(\gamma_i \) represents the loss incurred by agent \(i \), and this will not change if \(\alpha_i \) does not change. By construction, \(\alpha_i \) is the same whenever the relationship among claims and \(\lambda \) is fixed. By Remark 2, Fact 7-(b) and Lemma 5, we know that \(\lambda_{m+1} = \gamma_{i_{m+1}} = \alpha_{i_{m+1}} = \alpha_{i_{m}} = \gamma_{i_{m}} = \lambda_{m} \). \(\blacksquare \)

From now on, \(\lambda \) will denote \(\lambda_{m} \), \(\forall m \in N \).

The third lemma states that if at some step \(m \in N \) agent’s \(i \) Lorenz \(P \)-Safety for \(P_2 \) is \(DP_{i}(E_{m}, c_{m}) \), then in the following steps, her Lorenz \(P \)-Safety for \(P_2 \) is zero.

Lemma 7 For each \(LB_{P_2} \in \mathcal{LB}_P \), such that \((E, c) \in \mathcal{B}_0 \), if there is \(m \in N \) such that \(LS_i(LB_{P_2}^m) = DP_{i}(E_{m}, c_{m}) \) then,

\[
LS_i(LB_{P_2}^{m+h}) = 0, \text{ for each } h \in N, h > 0.
\]

Proof. Let \(LB_{P_2} \in \mathcal{LB}_P \), such that \((E, c) \in \mathcal{B}_0 \), and \(m \in N \) be such that

\[
LS_i(LB_{P_2}^m) = DP_{i}(E_{m}, c_{m}).
\]

We will show that \(LS_i(LB_{P_2}^{m+1}) = DP_{i}(E_{m+1}, c_{m+1}) = 0 \).

Case a: \(E_{m} \leq C_{m}/2 \) and \(\lambda \geq c_{i_{m}}/2 \). Then

\[
DP_{i}(E_{m}, c_{m}) = 0
\]

and

\[
c_{i_{m+1}}/2 = c_{i_{m}}/2 - (DP_{i}(E_{m}, c_{m})) = c_{i_{m}}/2.
\]

Therefore,

\[
DP_{i}(E_{m+1}, c_{m+1}) = c_{i_{m+1}}/2 - \min\{c_{i_{m+1}}/2, \lambda\} = 0.
\]

Case b: \(E_{m} \leq C_{m}/2 \) and \(\lambda < c_{i_{m}}/2 \). Then

\[
DP_{i}(E_{m}, c_{m}) = c_{i_{m}}/2 - \min\{c_{i_{m}}/2, \lambda\} = c_{i_{m}}/2 - \lambda.
\]
Thus,

\[
c_i^{m+1}/2 = c_i^m/2 - (DPin_i(E^m, c^m)) = c_i^m/2 - (c_i^m/2 - \lambda) = \lambda.
\]

Therefore,

\[
DPin_i(E^{m+1}, c^{m+1}) = c_i^{m+1}/2 - \min\{c_i^{m+1}/2, \lambda\} = \lambda - \min\{\lambda, \lambda\} = 0.
\]

Case c: \(E^m \geq C^m/2\). Since agents receive their half-claims and the remaining endowment is distributed as previously (see Fact 4) the conclusion follows straightforwardly.

And, \(Ls_i(LB_{P_2}^{m+1}) = DPin_i(E^{m+1}, c^{m+1}) = 0\).

Thus, the agent \(i\)'s Lorenz \(P\)-Safety for \(P_2\) is, from this step on, zero because for each \(h \in \mathbb{N}, h > 0\), \(DPin_i(E^{m+h}, c^{m+h}) = 0 = Ls_i(LB_{P_2}^{m+h})\). □

Next lemma states that, if agent \(i\)'s Lorenz \(P\)-Safety for \(P_2\) is, at every step, the amount provided by Piniles’ rule, then the total amount received by this agent will be at most her award corresponding to the Dual of Piniles’ rule applied to the initial problem.

Lemma 8 For each \(LB_{P_2} \in LB_P\), such that \((E, c) \in B_0\), and each \(i \in N\), if \(Ls_i(LB_{P_2}^m) = Pin_i(E^m, c^m)\) for each \(m \in \mathbb{N}\), then

\[
\varphi_i^{RL}(LB_{P_2}) = \sum_{k=1}^{\infty} Ls_i(LB_{P_2}^m) \leq DPin_i(E, c).
\]
Rationing problems with Commonly Accepted Equity Principles

Proof. Let \(LB_{P_2} \in \mathcal{LB}_P \), such that \((E, c) \in \mathcal{B}_0\), and \(i \in N \).

Case a: For each \(m \in \mathbb{N} \), \(E^m \leq C^m / 2 \).

If for each \(m \in \mathbb{N} \) \(Ls_i(LB_{P_2}^m) = Pin_i(E^m, c^m) \), then by the definition of the Lorenz P-Safety (Definition 5),

\[
Ls_i(LB_{P_2}^m) \leq DPin_i(E^m, c^m) \leq c_i^m / 2 - \lambda = c_i / 2 - \sum_{k=1}^{m-1} Ls_i(LB_{P_2}^k) - \lambda,
\]

then

\[
Ls_i(LB_{P_2}^m) + \sum_{k=1}^{m-1} Ls_i(LB_{P_2}^k) \leq c_i / 2 - \lambda,
\]

that is,

\[
\sum_{k=1}^{m} Ls_i(LB_{P_2}^k) \leq DPin_i(E, c).
\]

Therefore,

\[
\lim_{m \to \infty} \sum_{k=1}^{m} Ls_i(LB_{P_2}^k) \leq c_i / 2 - \lambda = DPin_i(E, c)
\]

Case b: \(E^m \geq C^m / 2 \).

This case is only possible when \(m = 1 \). Now, since each agent receives her half-claim and the remaining endowment is distributed as in case 1 (See Fact 4), the proof follows straightforwardly. ■

Last lemma states that if each agent \(i \)'s Lorenz P-Safety for \(P_2 \) at some step \(m^* \in \mathbb{N} \) is the amount provided by the Dual of Piniles’ rule for the problem \((E^{m^*}, c^{m^*})\) and at the previous step is the amount provided by Piniles’ rule for the problem \((E^{m^*-1}, c^{m^*-1})\), then the total amount received by this agent at step \(m^* \) is that given by the Dual of Piniles’ rule applied to the initial problem.

Lemma 9 For each \(LB_{P_2} \in \mathcal{LB}_P \), such that \((E, c) \in \mathcal{B}_0\), and each \(i \in N \), if there is \(m^* \in \mathbb{N} \), \(m^* > 1 \), such that \(Ls_i(LB_{P_2}^{m^*}) = DPin_i(E^{m^*}, c^{m^*}) \) and

\(Ls_i(LB_{P_2}^{m^*-1}) = Pin_i(E^{m^*-1}, c^{m^*-1}) \),

then

\[
\sum_{k=1}^{m^*} Ls_i(LB_{P_2}^k) = DPin_i(E, c).
\]
Proof. Let $LB_{p_2} \in \mathcal{L}B_{p}$, such that $(E, c) \in \mathcal{B}_0$.

Case a: $E \leq C/2$. Then,

$$Ls_i(LB_{p_2}^{m^*}) = DPim_i(E^{m^*}, c^{m^*}),$$

$$Ls_i(LB_{p_2}^{m^*-1}) = Pin_i(E^{m^*-1}, c^{m^*-1}),$$

by construction, $Pin_i(E^{m^*-1}, c^{m^*-1}) > 0$ and by the definition of the Lorenz P-Safety (Definition 5),

$$DPim_i(E^{m^*-1}, c^{m^*-1}) > 0.$$

Given Fact 4, $c_i^{m^*-1}/2 > \lambda$ and by Lemma 6, $c_i^{m^*}/2 \geq \lambda$. Then, at step m^*, $E^{m^*} \leq C^{m^*}/2$ and agent i received

$$\sum_{k=1}^{m^*} Ls_i(LB_{p_2}^k) = \sum_{k=1}^{m^*-1} Ls_i(LB_{p_2}^k) + DPim_i(E^{m^*}, c^{m^*}) =$$

$$= \sum_{k=1}^{m^*-1} Ls_i(LB_{p_2}^k) + \left[c_i^{m^*}/2 - \min \left\{ c_i^{m^*}/2, \lambda \right\} \right] =$$

$$= \sum_{k=1}^{m^*-1} Ls_i(LB_{p_2}^k) + \left[\frac{c_i}{2} - \sum_{k=1}^{m^*-1} Ls_i(LB_{p_2}^k) - \lambda \right] =$$

$$= \frac{c_i}{2} - \lambda = DPim_i(E, c).$$

Case b: $E \geq C/2$. By Fact 4, each agent receives at least half of her claim, so

$$\sum_{k=1}^{m^*} Ls_i(LB_{p_2}^k) = c_i/2 + \sum_{k=1}^{m^*} Ls_i(\tilde{E}^k, c^k, P_{p_2}),$$

where $\tilde{E} = E - C/2$.

Then, we follow the same reasoning than in case a, taking into account \tilde{E}.

So that, $E \leq C/2$, and, $LB_{p_2} = (\tilde{E}, c, Pin, DPim)$. Then,

$$Ls_i(\tilde{E}^{m^*}, c^{m^*}) = DPim_i(\tilde{E}^{m^*}, c^{m^*}),$$

$$Ls_i(\tilde{E}^{m^*-1}, c^{m^*-1}) = Pin_i(\tilde{E}^{m^*-1}, c^{m^*-1}),$$
then, since by construction, \(P_{\text{in}}(E^{m^* - 1}, e^{m^* - 1}) > 0 \), by the definition of the \textit{Lorenz P-Safety} (Definition 5),

\[
DP_{\text{in}}(E^{m^* - 1}, e^{m^* - 1}) > 0.
\]

Therefore, by Fact 4 and Lemma 6, \(c_i^{m^* - 1}/2 > \lambda \), which implies \(c_i^{m^*}/2 \geq \lambda \). Furthermore, \(E^{m^*} \leq C^{m^*}/2 \).

Then, at step \(m^* \), agent \(i \) received

\[
\sum_{k=1}^{m^*} Ls_i(\tilde{LB}_{P_2}^k) = \sum_{k=1}^{m^*-1} Ls_i(\tilde{LB}_{P_2}^k) + DPP_{\text{in}}(E^{m^*}, e^{m^*}) = \\
\sum_{k=1}^{m^*-1} Ls_i(\tilde{LB}_{P_2}^k) + \left[c_i^{m^*}/2 - \min \left\{ e^{m^*/2}, \lambda \right\} \right] = \\
\sum_{k=1}^{m^*-1} Ls_i(\tilde{LB}_{P_2}^k) + \left(c_i/2 - \sum_{k=1}^{m^*-1} Ls_i(\tilde{LB}_{P_2}^k) - \lambda \right) = \\
c_i/2 - \lambda = DPP_{\text{in}}(E, e).
\]

Therefore,

\[
\sum_{k=1}^{m^*} Ls_i(\tilde{LB}_{P_2}^k) = c_i/2 + \sum_{k=1}^{m^*} Ls_i(\tilde{LB}_{P_2}^k) = c_i - \lambda = DPP_{\text{in}}(E, e).
\]

\textbf{Proof of Theorem 2.}

Let \(LB_{P_2} \in LB_P \), such that \((E, e) \in B_0 \). There are two cases.

\textbf{Case a:} All agents claim the same amount. Then, by definition of the \textit{Lorenz P-Safety} for \(P_2 \), each agent receives the same amount and the entire endowment is distributed at the first step. So that, \(\varphi^{RL}(LB_{P_2}) = DPP_{\text{in}}(E, e) \).

\textbf{Case b:} There are at least two agents whose claims differ. By construction, given Fact 4, the agent with the smallest claim, say \(i \), receives as \textit{Lorenz P-Safety} for \(P_2 \), \(Ls_i(\tilde{LB}_{P_2}) = DPP_{\text{in}}(E, e) \). Furthermore, for each \(m \in \mathbb{N} \) the agent with the
highest claim, say j, receives as Lorenz P-Safety for P_2, $Ls_j(LB^m_{P_2}) = Pin_j(E^m, c^m)$.

Now, by Lemmas 7 and 9, for each agent $r \in N$ who at some step $m \in \mathbb{N}$ receives
\[DPin_r(E^m, c^m) \] as Lorenz P-Safety for P_2, we have $\varphi^{RL}_r(LB_{P_2}) = DPin_r(E, c)$. For each of the remaining agents, say $l \neq r$, by Lemma 8, $\varphi^{RL}_l(LB_{P_2}) \leq DPin_l(E, c)$.

Then, we know, by Remark 3, that $\varphi^{RL}(LB_{P_2})$ exhausts the endowment, thus,
\[\varphi^{RL}(LB_{P_2}) = DPin(E, c). \]

\section*{A.4 Proof of Theorem 3.}

\textbf{Theorem 3:} For each bi-personal $LB_{P_3} \in LB_P$, $LB_{P_3} = ((E, c), CE, DCE)$, the Recursive Lorenz P-Safety rule is the Dual Constrained Egalitarian rule,
\[\varphi^{RL}(LB_{P_3}) = DCE(E, c). \]

We note two facts, in which we assume, without loss of generality, that $(E, c) \in \mathcal{B}_0$.

\textbf{Fact 8} The Dual Constrained Egalitarian rule can be written as follows,

\[DCE_i(E, c) \equiv \begin{cases}
 c_i - \max \{c_i/2, \min \{c_i, \delta\}\} & \text{if } E \leq C/2 \\
 c_i - \min \{c_i/2, \delta\} & \text{if } E \geq C/2
\end{cases}, \]

where δ is chosen such that $\sum_{i \in N} DCE_i(E, c) = E$.

By Fact 8, it is obvious that agent one receives nothing if $\min \{c_2 - c_1, c_2/2\} \geq E$.

The following fact gives us two conditions that will be used in the proof of Theorem 3.

\textbf{Fact 9} Let $LB_{P_3} \in LB_P$, such that $(E, c) \in \mathcal{B}_0$, a bi-personal problem. Then, given Fact 8 and the definition of the Dual Constrained Egalitarian rule (see Section 0.1 of Preliminaries), at any step $m \in \mathbb{N}$,
\[Ls_1(LB^m_{P_3}) = DCE_1(E^m, c^m). \] Therefore:

(i) Next inequality characterizes the fact that agent one is guaranteed nothing at each step \(m \in \mathbb{N} \)

\[Ls_1(LB^m_{P_3}) = 0 \Leftrightarrow \min \{ c^m_2 - c^m_1, c^m_2 / 2 \} \geq E^m. \quad (\text{C.A.1}) \]

(ii) The previous characterization for step \(m \in \mathbb{N} \) implies the following conditions in terms of the problem at step \(m - 1 \),

\[E^m \leq c^m_2 - c^m_1 \Leftrightarrow E^m \leq E \leq c_2 - c_1 + 2Ls_1(LB_{P_3}). \quad (\text{C.A.2.}) \]

Furthermore, \(E^2 \leq c^2_2 / 2 \Leftrightarrow E - Ls_1(LB_{P_3}) - Ls_2(LB_{P_3}) \leq c_2 / 2 - Ls_2(LB_{P_3}) / 2 \)

and then,

\[E^2 \leq c^2_2 / 2 \Leftrightarrow E \leq c_2 / 2 + Ls_2(LB_{P_3}) / 2 + Ls_1(LB_{P_3}). \quad (\text{C.A.3}) \]

Proof of Theorem 3

For each bi-personal problem \(LB_{P_3} \in \mathcal{LP}, \) such that \((E, c) \in \mathcal{B}_0, \) by Fact 8, at each step \(m \in \mathbb{N}, \) \(Ls_1(LB^m_{P_3}) = DCE_1(E^m, c^m), \) and \(Ls_2(LB^m_{P_3}) = CE_2(E^m, c^m). \)

Now, we show that agent 1’s Lorenz P-Safety for \(P_3 \) at each step \(m \geq 2, \) is zero, so agent one’s Recursive Lorenz P-Safety rule for \(P_3 \) is the Dual Constrained Egalitarian rule. Then, since \(\varphi^{RL}(LB_{P_3}) \) exhausts the endowment, given Remark 3, \(\varphi^{RL}(LB_{P_3}) = DCE_2(E, c). \)

If \(c_1 = c_2, \) by the definition of the Recursive Lorenz P-Safety rule for \(P_3 \) (Definition 8), each agent \(i \) receives the same amount at the initial step. And if \(c_1 \neq c_2, \) with \(E = (c_1 + c_2) / 2 \) by the Midpoint Property, each agent \(i \) receives
her half-claim, $c_i/2$. In both cases, therefore, at the initial step the endowment is
exhausted, and $\varphi^{RL}(LB_{P_3}) = DCE(E, c)$.

When $c_1 \neq c_2$ there are three cases.

Case 1: $Ls_1(LB_{P_3}) = 0$. Note that this is only possible in Region I.a of Figure
A.1 and in Regions I.b and II.b of Figure A.2.

Then, by Condition C.A.1 $E \leq \min \{c_2 - c_1, c_2/2\}$. Now, in the following step
$E^2 = E - Ls_2(LB_{P_3})$, $c_1^2 = c_1$ and $c_2^2 = c_2 - Ls_2(LB_{P_3})$. Therefore, Condition C.A.1
again states that $Ls_1(LB_{P_3}^2) = 0$ if and only if

$$E - Ls_2(LB_{P_3}) \leq c_2 - c_1 - Ls_2(LB_{P_3}), \text{ which follows from } E \leq c_2 - c_1,$$

and

$$E - Ls_2(LB_{P_3}) \leq (c_2/2) - (Ls_2(LB_{P_3})/2), \text{ which follows from } E \leq c_2/2.$$

Applying the previous reasoning from step 2 to the next step, and so on, we
obtain $\varphi^{RL}_1(LB_{P_3}) = 0$. Therefore, by Remark 3, $\varphi^{RL}_1(LB_{P_3}) = (0, E) = DCE(E, c)$.

In Cases 2 and 3, we will show that at $m = 2$ agent 1’s Lorenz P-Safety for P_3 is
zero. Case 1 can then be applied to the residual Lorenz-Bifocal Bankruptcy Problem,
so from $m = 2$ on, $Ls_1(E^{m^2+h}, c^{m^2+h}, P_3) = 0$, for each $h \in \mathbb{N}$, and $\varphi^{RL}_1(LB_{P_3}) =
= Ls_1(LB_{P_3})$.

Case 2: $Ls_1(LB_{P_3}) > 0$, and $c_2/2 \geq c_2 - c_1$.

In this case the agents’ Lorenz P-Safety for P_3 can be placed in Regions II.a,
III.a, IV.a and V.a of Figure A.1.

Region II.a: $c_2 - c_1 \leq E \leq c_1$. Then, $Ls_1(LB_{P_3}) = (E + c_1 - c_2)/2$ and
$Ls_2(LB_{P_3}) = E/2$. Conditions C.A.2. and C.A.3 imply $E \leq 2c_1$, which is true, as in
this region, $E \leq c_1$. Therefore,

$$\varphi^{RL}(LB_{P_3}) = ((E + c_1 - c_2)/2, (E - c_1 + c_2)/2) = DCE(E, c).$$
Region III.a: \(c_1 \leq E \leq (c_1 + c_2)/2 \). Then, \(Ls_1(LB_{P3}) = E - c_2/2 \) and \(Ls_2(LB_{P3}) = E - c_1/2 \). Now, Conditions C.A.2. and C.A.3 imply \(E \geq c_1 \), which is obviously fulfilled in this region. Therefore,
\[
\varphi^{RL}(LB_{P3}) = (E - (c_2/2), c_2/2) = DCE(E, c).
\]

Region IV.a: \((c_1 + c_2)/2 \leq E \leq [(c_1 + c_2)/2] + [(c_2 - c_1)/2] = c_2 \). Then, \(Ls_1(LB_{P3}) = c_1/2 \) and \(Ls_2(LB_{P3}) = c_2/2 \). Again, from Conditions C.A.2. and C.A.3 we need to show both \(E \leq c_2 \), which is the Estate-upper bound of this region, and \(E \leq (3c_2/4) + (c_1/2) \), which, by the Estate-upper bound of this region, is true since \(c_2/2 \geq c_2 - c_1 \) in Case 2, which implies \(c_1/2 \geq c_2/4 \). Therefore,
\[
\varphi^{RL}(LB_{P3}) = (c_1/2, E - c_1/2) = DCE(E, c).
\]

Region V.a: \(c_2 \leq E \leq 2c_1 \). Then, \(Ls_1(LB_{P3}) = (E + c_1 - c_2)/2 \) and \(Ls_2(LB_{P3}) = E/2 \). Now, Conditions C.A.2. and C.A.3 imply \(E \leq 2c_1 \), which is obviously fulfilled in this region. Therefore,
\[
\varphi^{RL}(LB_{P3}) = ((E + c_1 - c_2)/2, (E - c_1 + c_2)/2) = DCE(E, c).
\]

Region VI.a: \(2c_1 \leq E \). Then, \(Ls_1(LB_{P3}) = (E + c_1 - c_2)/2 \) and \(Ls_2(LB_{P3}) = E - c_1 \). Here, Conditions C.A.2. and C.A.3 do not imply any restriction, so that,
\[
\varphi^{RL}(LB_{P3}) = ((E + c_1 - c_2)/2, (E - c_1 + c_2)/2) = DCE(E, c).
\]

Case 3: \(Ls_1(LB_{P3}) > 0 \), and \(c_2/2 \leq c_2 - c_1 \). In this case, the agents’ Lorenz P-Safety for \(P_3 \) can be placed in Regions II.b, III.b, IV.b and V.b of Figure A.2.

Region III.b: \(c_2/2 \leq E \leq (c_1 + c_2)/2 \). Then, \(Ls_1(LB_{P3}) = E - c_2/2 \) and \(Ls_2(LB_{P3}) = E - c_1/2 \). Conditions C.A.2. and C.A.3 imply \(E \geq c_1 \), inequality fulfilled as in this region \(c_2/2 \leq c_2 - c_1 \), implying \(c_1 \leq c_2/2 \). Therefore,
\[
\varphi^{RL}(LB_{P3}) = (E - c_2/2, c_2/2) = DCE(E, c).
\]

Region IV.b: \((c_1 + c_2)/2 \leq E \leq c_1 + c_2/2 \). Then \(Ls_1(LB_{P3}) = c_1/2 \) and \(Ls_2(LB_{P3}) = c_2/2 \). Now, Conditions C.A.2. and C.A.3 imply \(E \leq c_2 \) and \(E \leq
\(\leq 3c_2/4 + c_1/2 \), and both inequalities are satisfied as in this region \(c_2/2 \leq c_2 - c_1 \),
which implies \(c_1 \leq c_2/2 \). Therefore,
\[
\varphi_{RL}(LB_{P_3}) = (c_1/2, E - c_1/2) = DCE(E, c).
\]

Region V.b: \(c_1 + c_2/2 \leq E \leq c_2 \). \(Ls_1(LB_{P_3}) = c_1/2 \) and \(Ls_2(LB_{P_3}) = E - c_1 \).
Conditions C.A.2. and C.A.3 imply \(E \leq c_2 \), which is the Estate-upper bound in this
region. Therefore,
\[
\varphi_{RL}(LB_{P_3}) = (c_1/2, E - c_1/2) = DCE(E, c).
\]

Region VI.b: \(c_2 \leq E \). Then, \(Ls_1(LB_{P_3}) = (E + c_1 - c_2)/2 \) and \(Ls_2(LB_{P_3}) = E - c_1 \).
Here, Conditions C.A.2. and C.A.3 do not imply any restriction, so that,
\[
\varphi_{RL}(LB_{P_3}) = ((E + c_1 - c_2)/2, (E - c_1 + c_2)/2) = DCE(E, c).
\]
Figure A.1: Regions of the *Constrained Egalitarian* rule and its dual (case a).

Note that this figure the black solid lines represent all the possible sharing of six different levels of the estate \((E_1, E_2, E_3, E_4, E_5\) and \(E_6\)). The blue and the green solid lines show \(CE\) and \(DCE\). The regions are, starting from the estate zero, those areas bounded by an estate and by the next one.
Figure A.2: Regions of the Constrained Egalitarian rule and its dual (case b).

Again, note that in this figure the black solid lines represent all the possible sharing of six different levels of the estate (E_1, E_2, E_3, E_4, E_5 and E_6). The dots and squares show CE and DCE. The regions, starting from the estate zero, those areas bounded by an estate and by the next one.
A.5 Proofs of Propositions 1 and 2.

Proposition 1: There is a problem, \((E, c) \in B\), for which the Recursive Lorenz P-Safety rule for \(P_3\) does not coincide with the Dual Constrained Egalitarian rule, \(\varphi_{RL}(LB_{P_3}) \neq DCE(E, c)\).

Proposition 2: For \(P_3\), the Recursive Lorenz P-Safety rule does not satisfy Resource Monotonicity.

First, we note the following fact, in which we assume, without loss of generality, \((E, c) \in B_0\).

Fact 10 By Fact 8, the Dual Constrained Egalitarian rule can be written as follows, given \((E, c) \in B_0, i \in N\),
\[
DCE_i(E, c) = c_i - \gamma_i,
\]
where \(\gamma_i\) is chosen such that \(\sum_{i \in N} DCE_i(E, c) = E\).

Therefore,

Case a: \(E \leq C/2\). We can compute \(\gamma_i\) as:
\[
\gamma_i = \begin{cases}
 c_i & \forall \ i < l \\
 \max\{c_i/2, \alpha_i\} & \forall \ i \geq l
\end{cases}
\]
where agent \(l\) is such that \(\sum_{j=1}^{\infty} \min\{c_j - c_{i-1}; c_j/2\} < E\), and either \(\sum_{j=1}^{\infty} \min\{c_j - c_{i-1}; c_j/2\} \geq E\), either \(l = 1\). Otherwise, \(l = n\).

Then, for each \(i \geq l\),
\[
\alpha_i = \frac{L - \sum_{j=1}^{l-1} c_j - \sum_{j=1}^{l} \gamma_j}{i - l + 1}.
\]

Note also that we should compute \(\alpha\) from the highest claimant to the smallest one.
Case b: $E \geq C/2$. Then, γ_i denotes the losses incurred by agent i when the losses from the claim vector are equal for all agents subject to no-one obtaining less than her half-claim.

Proof of Proposition 1.

Let us consider the problem $LB_{P_3} \in LB_P$, such that $(E, c) = (21, (5; 19.5; 20)) \in E$.

Thus, given the definitions of the **Constrained Egalitarian** rule and its dual (Section 0.1 of Preliminaries), the definition of the **Lorenz P-Safety** (Definition 5) for P_3, and Fact 10, we obtain at step $m = 1$, $(E^1, c^1) = (21, (5; 19.5; 20))$, $CE(E^1, c^1) = (2.5; 9.25; 9.25)$, and $DCE(E^1, c^1) = (5 - \gamma_1; 19.5 - \gamma_2; 20 - \gamma_3)$.

Since $\min \{20 - 5; 10\} + \min \{19.5 - 5; 9.75\} = 19.75 < E$, $l = 1$. Thus,

\[
\alpha_3 = 23.5/3 = 7.83 \Rightarrow \gamma_3 = \max \{10; 7.83\} = 10.
\]

\[
\alpha_2 = (23.5 - 10)/2 = 6.75 \Rightarrow \gamma_2 = \max \{9.75; 6.75\} = 9.75.
\]

\[
\alpha_1 = 23.5 - 10 - 9.75 = 3.75 \Rightarrow \gamma_1 = \max \{2.5; 3.75\} = 3.75.
\]

So, $DCE(E^1, c^1) = (1.25; 9.75; 10)$. Then, $Ls(E^1, c^1, P_3) = (1.25; 9.25; 9.25)$.

Step $m = 2$:

$(E^2, c^2) = (1.25, (3.75; 10.25; 10.75))$, $CE(E^2, c^2) = (0.416; 0.416; 0.416)$, and $DCE(E^2, c^2) = (3.75 - \gamma_1^2; 10.25 - \gamma_2^2; 10.75 - \gamma_3^2)$.

Since $\min \{10.75 - 10.25; 5.375\} = 0.5 < E^2 = 1.25$, $l = 2$, and

for $l = 1$, $\min \{10.75 - 3.75; 5.375\} + \min \{10.25 - 3.75; 5.125\} = 10.5 > E^2$.

Thus,

\[
\alpha_3^2 = (23.5 - 3.75)/2 = 9.875 \Rightarrow \gamma_3^2 = \max \{5.375; 9.875\} = 9.875.
\]

\[
\alpha_2^2 = 23.5 - 3.75 - 9.875 = 9.875 \Rightarrow \gamma_2^2 = \max \{5.125; 9.875\} = 9.875.
\]

\[
\gamma_1^2 = 3.75.
\]
So, \(DCE(E^2, c^2) = (0; 0.375; 0.875) \). Then, \(Ls(LB^2_{P_3}) = (0; 0.375; 0.416) \), and
\[
\sum_{k=1}^{2} Ls(LB^k_{P_3}) = (1.25; 9.625; 9.666).
\]

Step \(m = 3 \) :
\((E^3, c^3) = (0.459, (3.75; 9.875; 10.334)), CE(E^3, c^3) = (0.153; 0.153; 0.153) \), and
\(DCE(E^3, c^3) = (3.75 - \gamma_1^3; 9.875 - \gamma_2^3; 10.334 - \gamma_3^3). \)

\(l = 2 \) since \(\min \{10.334 - 9.875; 5.167\} = 0.459 = E^3 \), and
for \(l = 1 \), \(\min \{10.334 - 3.75; 5.167\} + \min \{9.875 - 3.75; 4.937\} = 10.104 > E^3. \)

Thus,
\[
\alpha_3^3 = 23.5 - 3.75 - 9.875 = 9.875 \Rightarrow \gamma_3^3 = \max \{5.167; 9.875\} = 9.875.
\]
\[
\gamma_2^3 = 9.875.
\]
\[
\gamma_1^3 = 3.75.
\]

So, \(DCE(E^3, c^3) = (0; 0; 0.459) \). Then, \(Ls(E^3, c^3, P_3) = (0; 0; 0.153) \), and
\[
\sum_{k=1}^{3} Ls(LB^k_{P_3}) = (1.25; 9.625; 9.819).
\]

Step \(m \geq 3 \) : \(DCE(E^m, c^m) = (0; 0; E^m), \) since \(E^m \leq c^m \) - \(c^m_2 \).

Then, \(\varphi^{RL}(LB_{P_3}) = (1.25; 9.625; 10.125) \neq DCE(E, c) = (1.25; 9.75; 10). \)

Proof of Proposition 2.

Let us consider the problem \(LB_{P_3} \) and \(LB'_{P_3} \in LB_P \), such that \((E, c) = (21, (5; 19.5; 20)) \) and \((E', c) = (22.25; (5; 19.5; 20)) \) \(\in B, \) respectively.

In this case, given the definitions of the Constrained Egalitarian rule and its dual (see Section 0.1 of Preliminaries), and by the definition of the Lorenz P-Safety (Definition 5 for \(P_3 \)), and since the Midpoint Property is fulfilled,
\[
\varphi^{RL}(LB'_{P_3}) = (2.5; 9.75; 10). \]
Moreover, in the previous example, we have seen that

$$\varphi^{RL}(LB_{P_3}) = (1.25; 9.625; 10.125).$$

Obviously, these two distributions contradict Resource Monotonicity as the highest claimant receives less when the endowment increases. \[\blacksquare\]
APPENDIX B

Proofs of Chapter 3.

B.1 Proof of Theorem 4.

Theorem 4: For each $LB_1 \in LB$, such that P_i is Self-Dual, then for each $i \in N$,

$$\varphi_i^{LDR}(LB_1) = \frac{Lc_i(LB_1) + Ls_i(LB_1)}{2}.$$

The proof of this result is based on two lemmas and a remark.

The first lemma shows that, in any step $m \in \mathbb{N}$, $m > 1$, the sum of the Lorenz P-Safety and the Lorenz P-Ceiling coincides with the sum of the claims.

Lemma 10 For each $LB_1 \in LB$, such that P_i is Self-Dual, and $m \in \mathbb{N}, m > 1$,

$$\sum_{i \in N} [Lc_i(LB_1^m) + Ls_i(LB_1^m)] = C^m.$$

Proof. Let $LB_1 \in LB$, such that P_i is Self-Dual, and $m \in \mathbb{N}, m > 1$.

Note that for each $i \in N$, and each Lorenz-Bifocal Admissible rule, φ,

$$\min \{LGM_i^{P_1}(E, c), LLM_i^{P_1}(E, c)\} \leq \varphi_i \leq \max \{LGM_i^{P_1}(E, c), LLM_i^{P_1}(E, c)\}.$$

Then, by the definitions of the Lorenz P-Safety and the Lorenz P-Ceiling (Definitions 5 and 9), these two rules define the Lorenz P-Safety and the Lorenz P-Ceiling of each agent for a set of properties P_1, i.e.,

$$Ls_i(LB_1) = \min \{LGM_i^{P_1}(E, c), LLM_i^{P_1}(E, c)\}, \text{ and}$$
\[Lc_i(LB_{P_i}) = \max \{ LGM_i^{R_i} (E, c), LLM_i^{R_i} (E, c) \}. \]

Moreover, by their dual relation, for each agent we are adding the two Lorenz-Focal rules. So next expression comes straightforwardly.

\[\sum_{i \in N} \left[\frac{Lc_i(LB_{P_i}^m) + Ls_i(LB_{P_i}^m)}{2} \right] = E^m. \]

Finally, we know that

\[E^m = E^{m-1} - \sum_{i \in N} Ls_i(LB_{P_i}^{m-1}) = \]

\[\sum_{i \in N} \left[\frac{Lc_i(LB_{P_i}^{m-1}) + Ls_i(LB_{P_i}^{m-1})}{2} \right] - \sum_{i \in N} Ls_i(LB_{P_i}^{m-1}) = \]

\[\sum_{i \in N} \left[\frac{Lc_i(LB_{P_i}^{m-1}) - Ls_i(LB_{P_i}^{m-1})}{2} \right] = C^m/2, \]

by the definition of the Lorenz Double Boundedness Recursive Process (Definition 10).

The following remark is a direct consequence of Lemma 10 and it says that for each Lorenz-Bifocal Bankruptcy Problem, and at any step \(m \in \mathbb{N}, m > 1 \), the half of the claims sum at every step of the Lorenz Double Boundedness Recursive Process (Definition 10) coincides with both the endowment and the total loss at every step of the process.

Remark 4 For each \((LB_{P_i}) \in LB_P\), such that \(P_i \) is Self-Dual, and \(m \in \mathbb{N}, m > 1 \), \(E^m = L^m = C^m/2 \).

Proof. Let \(LB_{P_i} \in LB_P \), such that \(P_i \) is Self-Dual, and \(m > 1 \in \mathbb{N} \). We know that, \(L^m = C^m - E^m \). By Lemma 10, \(E^m = C^m/2 \). Therefore, \(L^m = C^m - C^m/2 = C^m/2 \).

The second lemma says that, each agent’s claim at each step different of the initial one coincides with sum of both the lower and upper bound on awards.
Lemma 11 For each $LB_{P_i} \in \mathcal{LB}_P$, such that P_i is Self-Dual, and $m > 1 \in \mathbb{N}$,

$$c_i^m = Lc_i(LB_{P_i}^m) + Ls_i(LB_{P_i}^m).$$

Proof. Let $LB_{P_i} \in \mathcal{LB}_P$, such that P_i is Self-Dual, for each $i \in N$, and each $m > 1 \in \mathbb{N}$, by Remark 4 we know that for $m > 1 \in \mathbb{N}$, $L^m = E^m$, so, $Ls_i(LB_{P_i}^m) = Ls_i((LB_{P_i}^m))^d).$ By duality $Lc_i(LB_{P_i}^m) = c_i^m - Ls_i((LB_{P_i}^m))^d) = c_i^m - Ls_i(LB_{P_i}^m)$, then,

$$c_i^m = Lc_i(LB_{P_i}^m) + Ls_i(LB_{P_i}^m).$$

Proof of Theorem 4.

Let $LB_{P_i} \in \mathcal{LB}_P$, such that P_i is Self-Dual, for each $i \in N$, and each $m \in \mathbb{N}$,

$$\varphi_i^{LB}LB_{P_i} = Ls_i(LB_{P_i}) + \sum_{m=2}^{\infty} Ls_i(LB_{P_i}^m).$$

By the definition of the Lorenz Double Boundedness Recursive Process (Definition 10),

$$\sum_{m=2}^{\infty} c_i^m = \sum_{m=2}^{\infty} [Lc_i(LB_{P_i}^{m-1}) - Ls_i(LB_{P_i}^{m-1})] = Lc_i(LB_{P_i}) + \sum_{m=2}^{\infty} Lc_i(LB_{P_i}^m) - Ls_i(LB_{P_i}) - \sum_{m=2}^{\infty} Ls_i(LB_{P_i}^m).$$

By Lemma 11,

$$\sum_{m=2}^{\infty} c_i^m = \sum_{m=2}^{\infty} [Lc_i(LB_{P_i}^m) + Ls_i(LB_{P_i}^m)].$$

So,

$$Lc_i(LB_{P_i}) + \sum_{m=2}^{\infty} Lc_i(LB_{P_i}^m) - Ls_i(LB_{P_i}) - \sum_{m=2}^{\infty} Ls_i(LB_{P_i}^m) = \sum_{m=2}^{\infty} [Lc_i(LB_{P_i}^m) + Ls_i(LB_{P_i}^m)].$$

Thus,
B. Proofs of Chapter 3.

\[
\sum_{m=2}^{\infty} L_{s_i}(L_{B_{\Pi}}^m) = \left(L_{c_i}(L_{B_{\Pi}}) - L_{s_i}(L_{B_{\Pi}}) \right) / 2.
\]

Therefore,

\[
\varphi_{i}^{LDR}(L_{B_{\Pi}}) = L_{s_i}(L_{B_{\Pi}}) + \frac{L_{c_i}(L_{B_{\Pi}}) - L_{s_i}(L_{B_{\Pi}})}{2}
\]

\[
= \frac{L_{s_i}(L_{B_{\Pi}}) + L_{c_i}(L_{B_{\Pi}})}{2}. \blacksquare
\]
Appendix C

Proofs of Chapter 4.

C.1 General remarks

Next we present three remarks, in which we consider, without loss of generality,
\((E,c) \in \mathcal{B}_0\). These remarks, which comes straightforwardly from the definition of
the Lorenz P-Safety (Definition 5) for the sets of equity principles \(P_1, P_2\) and \(P_3\),
and the definitions of CEA, CEL, Pin, DPin, CE and DCE rules (see Section 0.1 of
Preliminaries), shows the smallest and highest agents’ Lorenz P-Safety, respectively.

Remark 5 Given \(LB_{P_1} \in \mathcal{LB}_P\), \(LB_{P_2} = ((E,c), CEA, CEL)\), and for each \(m \in \mathbb{N}\),
\(LS_1(LB_{P_1}^m) = CEL_1(E^m, c^m)\) and \(LS_n(LB_{P_1}^m) = CEA_n(E^m, c^m)\).

Remark 6 Given \(LB_{P_2} \in \mathcal{LB}_P\), \(LB_{P_2} = ((E,c), Pin, DPin)\), and for each \(m \in \mathbb{N}\),
\(LS_1(LB_{P_2}^m) = DPin_1(E^m, c^m)\) and \(LS_n(LB_{P_2}^m) = Pin_n(E^m, c^m)\).

Remark 7 Given \(LB_{P_3} \in \mathcal{LB}_P\), \(LB_{P_3} = ((E,c), CE, DCE)\), and for each \(m \in \mathbb{N}\),
\(LS_1(LB_{P_3}^m) = DCE_1(E^m, c^m)\) and \(LS_n(LB_{P_3}^m) = CE_n(E^m, c^m)\).

C.2 Proof of Proposition 5.

Proposition 5: For each \(LB_{P_2} \in LB_P\), \(LB_{P_2} = ((E,c), Pin, DPin)\), and each
\(i \in \mathbb{N}\), if \(\varphi^i(E,c) \in \Phi(LB_{P_2})\), and for some \(j \in \mathbb{N}\), \(\varphi^j(E,c) = DPin(E,c)\),
them \(u[\psi, LB_{P_2}] = DPin(E,c)\).
[Step 1] If all agents agree on \(\varphi(LB_{P_2}) = \text{DPin}(E, c) \), then \(u[\psi, LB_{P_2}] = \text{DPin}(E, c) \). Otherwise, go to next step.

[Step 2] Let \(Ls_i(LB_{P_2}) = \min_{j \in N} \varphi^j_i(LB_{P_2}) \), \(c^2 = c - Ls(LB_{P_2}) \), and \(E^2 = E - \sum_{i \in N} Ls_i(LB_{P_2}) \). By Lemma 7, for each agent \(i \) such that \(Ls_i(LB_{P_2}) = \text{DPin}_i(E, c) \), \(Ls_i(LB_{P_2}^2) = 0 \). Since \(\varphi^j = \text{DPin} \), if all agents agree on \(\varphi(LB_{P_2}^2) \), by Lemma 9, \(\text{DPin}(E, c) \equiv u[\psi, LB_{P_2}] = Ls(LB_{P_2}) + \varphi(LB_{P_2}^2) \). Otherwise, go to next step.

[Step \(m + 1 \)] Let \(Ls_i(LB_{P_2}^m) = \min_{j \in N} \varphi^j_i(LB_{P_2}^m) \), \(E^{m+1} = E^m - \sum_{i \in N} Ls_i(LB_{P_2}^m) \), and \(c^{m+1} = c^m - Ls(LB_{P_2}^m) \). By Lemma 7, for each agent \(i \) such that \(Ls_i(LB_{P_2}^m) = \text{DPin}_i(E^m, c^m) \), \(Ls_i(LB_{P_2}^{m+1}) = 0 \). Since \(\varphi^j = \text{DPin} \), if all agents agree on \(\varphi(LB_{P_2}^{m+1}) \), by Lemma 9, \(\text{DPin}(E, c) \equiv u[\psi, LB_{P_2}] = \sum_{k=1}^{m} Ls(LB_{P_2}^k) + \varphi(LB_{P_2}^{m+1}) \). Otherwise, go to next step.

[Limit case] Compute \(\sum_{k=1}^{\infty} Ls_i(LB_{P_2}^k) \). Note that, by Lemmas 7 and 9 and the definition of the \(\text{DPin} \) rule (Section 0.1 of Preliminaries), for each agent \(i \in N \) such that \(c_i = c_n \), \(\sum_{k=1}^{\infty} Ls_i(LB_{P_2}^k) = \text{DPin}_i(E, c) \). Moreover, for the rest of agents, \(l \), by Lemma 8, \(\sum_{k=1}^{m} Ls_i(LB_{P_2}^k) \leq \text{DPin}_i(E, c) \). Furthermore, by Remark 6 and the definition of the \(\text{DPin} \) rule,

\[
Ls_i(LB_{P_2}) \geq E/n \geq \text{DPin}_i(E, c)/n; Ls_i(LB_{P_2}^2) \geq (\text{DPin}_i(E, c) - Ls(LB_{P_2})) / n;
\]

thus, \(\sum_{k=1}^{m} Ls_i(LB_{P_2}^k) \geq \frac{\text{DPin}_i(E, c)}{n} \sum_{k=0}^{m-1} \left(\frac{n-1}{n} \right)^{k} \), i.e.,

\[
\sum_{k=1}^{\infty} Ls_i(LB_{P_2}^k) \geq \text{DPin}(E, c).
\]

Therefore, \(\sum_{k=1}^{\infty} Ls_i(LB_{P_2}^k) = \text{DPin}(E, c) \).

C.3 Proof of Proposition 6.

Proposition 6: In the game \(\Gamma^u_{LB_{P_2}} \), the \(\text{DPin} \) rule is a weakly dominant strategy for the agent with the highest claim.
By Remark 2, for each \(m \in \mathbb{N} \), \(c_1^m \leq c_2^m \leq \ldots \leq c_n^m \).

Moreover, note that for each \(LB_{P_2} \in \mathcal{LB}_P \) and each \(\varphi \in \Phi(LB_{P_2}) \),

\[
DPin_n(E, c) \geq \varphi_n(E, c).
\]

Finally, by Lemmas 7, 8 and 9, \(\sum_{k=1}^{\infty} Ls_n(LB_{P_2}^k) \leq DPin_n(E, c) \).

Therefore, \(DPin_n(E, c) \geq u_n[\psi, LB_{P_2}] \), i.e., the \(DPin \) rule is a weakly dominant strategy for the agent with the highest claim. \(\blacksquare \)

C.4 Proof of Theorem 6.

Theorem 6: In any Nash equilibrium induced by the game \(\Gamma^n_{LB_{P_2}} \), each agent receives the amount given by the \(DPin \) rule.

Let us consider \(LB_{P_2} \in \mathcal{LB}_P \). Then, each agent’s outcome in any Nash equilibrium of \(\Gamma^n_{LB_{P_2}} \) satisfies \(DPin_i(E, c) \leq u_i[\psi, LB_{P_2}] \), for each \(i \in N \). Otherwise if for some \(i \in N \), \(DPin_i(E, c) > u_i[\psi, LB_{P_2}] \) then, by Proposition 5, agent \(i \) could deviate to choose \(DPin \), which gives her more awards, contradicting the Nash equilibrium. Finally, if for each \(i \in N \), \(DPin_i(E, c) \leq u_i[\psi, LB_{P_2}] \), then, \(u[\psi, LB_{P_2}] = DPin(E, c) \), since \(\sum_{i \in N} u_i[\psi, LB_{P_2}] \leq E \). \(\blacksquare \)

C.5 Proof of Proposition 7.

Proposition 7: For each \(LB_{P_3} \in LB_P \), \(LB_{P_3} = ((E, c), CE, DCE) \), with \(|N| = 2 \), and each \(i \in \{1, 2\} \), if \(\varphi^i(E, c) \in \Phi(LB_{P_3}) \), and for some \(j \in \{1, 2\} \), \(\varphi^j(E, c) = DCE(E, c) \), then \(u[\psi, LB_{P_3}] = DCE(E, c) \).

[Step 1] If the two agents agree on \(\varphi(LB_{P_3}) = DCE(E, c) \), then \(u[\psi, LB_{P_3}] = DCE(E, c) \). Otherwise, go to next step.
[Step 2] Let \(Ls_i(LB_{P_3}) = \min_{j \in N} \varphi^j_i(LB_{P_3}) \), \(c^2 = c - Ls(LB_{P_3}) \), and \(E^2 = E - \sum_{i \in N} Ls_i(LB_{P_3}) \). In this case, by Remark 7, \(Ls_1(LB_{P_3}) = DCE_1(E, c) \), and by Fact 9, \(Ls_1(LB^2_{P_3}) = 0 \). Since \(\varphi^j = DCE \), if all agents agree on \(\varphi(LB^2_{P_3}) \), then, as we can see in the proof of Theorem 3 (Appendix A.4), \(u[\psi, LB_{P_3}] = Ls(LB_{P_3}) + \varphi(LB^2_{P_3}) = DCE(E, c) \). Otherwise, go to next step.

[Step \(m + 1 \)] Let \(Ls_i(LB^m_{P_3}) = \min_{j \in N} \varphi^j_i(LB^m_{P_3}) \), \(E^{m+1} = E^m - \sum_{i \in N} Ls_i(LB^m_{P_3}) \), and \(c^{m+1} = c^m - Ls(LB^m_{P_3}) \). By Fact 9, \(Ls_1(LB^m_{P_3}) = 0 \). Since \(\varphi^j = DCE \), if all agents agree on \(\varphi(LB^m_{P_3}) \), then, as we can see in the proof of Theorem 3 (Appendix A.4), \(u[\psi, LB_{P_3}] = \sum_{k=1}^{m} Ls(LB^k_{P_3}) + \varphi(LB^{m+1}_{P_3}) = DCE(E, c) \). Otherwise, go to next step.

[Limit case] Compute \(\sum_{k=1}^{\infty} Ls_1(LB^k_{P_3}) \). Note that, by Fact 9 and the definition of the DCE rule (Section 0.1 of Preliminaries), and, as we can see in the proof of Theorem 3 (Appendix A.4), for agent 1, \(\sum_{k=1}^{\infty} Ls_1(LB^k_{P_3}) = DP\in 1(E, c) \).

Moreover, by Remark 7, \(\sum_{k=1}^{m} Ls_2(LB^k_{P_3}) \leq DCE_2(E, c) \). Furthermore, by Fact 7 and the definition of the DCE rule,

\[
Ls_2(LB_{P_3}) \geq E/2 \geq DCE_2(E, c)/2;
\]

\[
Ls_2(LB^2_{P_3}) \geq \frac{DCE_2(E, c) - Ls_2(LB_{P_3})}{2};
\]

thus,

\[
Ls_2(LB_{P_3}) + Ls_2(LB^2_{P_3}) \geq Ls_2(LB_{P_3}) + \frac{DCE_2(E, c) - Ls_2(LB_{P_3})}{2}
\]

\[
\geq \left(1 - \frac{1}{2}\right)Ls_2(LB_{P_3}) + \frac{DCE_2(E, c)}{2}
\]

\[
\geq \left(1 - \frac{1}{2}\right)\frac{DCE_2(E, c)}{2} + \frac{DCE_2(E, c)}{2}
\]

\[
\geq \left(1 + \frac{1}{2}\right)\frac{DCE_2(E, c)}{2}
\]
Rationing problems with Commonly Accepted Equity Principles

So that, in general,

$$\sum_{k=1}^{m} Ls_{2} (LB_{P_{3}}^{k}) \geq \frac{DCE_{2}(E, c)}{2} \sum_{k=0}^{m-1} \left(\frac{1}{2} \right)^{k}. $$

By considering the limit when $m \to \infty$ we obtain

$$\sum_{k=1}^{\infty} Ls_{2} (LB_{P_{3}}^{k}) \geq DCE_{2}(E, c).$$

Therefore, $\sum_{k=1}^{\infty} Ls_{2} (LB_{P_{3}}^{k}) = DCE_{2}(E, c). \blacksquare$

C.6 Proof of Theorem 7.

Theorem 7: For each $LB_{P_{3}} \in LB_{P}$, $LB_{P_{3}} = ((E, c), CE, DCE)$, with $|N| = 2$, in any Nash equilibrium induced by the game $\Gamma_{LB_{P_{3}}}^{u}$, each agent receives the amount given by the DCE rule.

Let us consider $LB_{P_{3}} \in LB_{P}$. Then, each agent’s outcome, in any Nash equilibrium of $\Gamma_{LB_{P_{3}}}^{u}$ satisfies $DCE_{i}(E, c) \leq u_{i} [\psi, LB_{P_{3}}]$ for each $i \in N$, with $|N| = 2$. Otherwise if for some $i \in \{1, 2\}$, $DCE_{i}(E, c) > u_{i} [\psi, LB_{P_{3}}]$ then, by Proposition 7, agent i could deviate to choose DCE, which gives her more awards, contradicting the Nash equilibrium. Finally, if for each $i \in \{1, 2\}$, $DCE_{i}(E, c) \leq u_{i} [\psi, LB_{P_{3}}]$, then, $u [\psi, LB_{P_{3}}] = DCE (E, c)$, since $\sum_{i \in N} u_{i} [\psi, LB_{P_{3}}] \leq E. \blacksquare$

C.7 Proof of Theorems 8 and 9.

Theorem 8: There is a problem, $(E, c) \in B$, for which in a Nash equilibrium induced by the game $\Gamma_{LB_{P_{3}}}^{u}$, not all agents receive the amount given by the DCE rule.

Theorem 9: The Nash equilibrium induced by the game $\Gamma_{LB_{P_{3}}}^{u}$ does not fulfill Resource Monotonicity.
Proof of Theorem 8.

Let us consider the following problem \(LB_{P_3} \in \mathcal{LB}_{P} \), such that, \((E, c) \in \mathcal{B} = (21, (5; 19.5; 20))\), and for each step \(m \in \mathbb{N} \),

\[
\psi \left(LB_{P_3}^m \right) = (CE, \varphi^2, DCE).
\]

Thus, given the definitions of the \(CE \) rule and its dual and Fact 10, we get at step \(m = 1 \), \((E^1, c^1) = (21, (5; 19.5; 20))\), \(CE(E^1, c^1) = (2.5; 9.25; 9.25) \), and \(DCE(E^1, c^1) = (1.25; 9.75; 10) \).

[Step 1] Since there is no agreement, go to next step.

[Step 2] \(Ls(LB_{P_3}^1) = (1.25; 9.25; 9.25) \), and \(E^2 = 1.25 \). So,

\((E^2, c^2) = (1.25, (3.75; 10.25; 10.75))\), \(CE(E^2, c^2) = (0.416; 0.416; 0.416) \), and \(DCE(E^2, c^2) = (0; 0.375; 0.875) \), and since there is no agreement, go to next step.

[Step 3] \(Ls(LB_{P_3}^2) = (0; 0.375; 0.416) \), and \(E^3 = 0.459 \). So,

\((E^3, c^3) = (0.459, (3.75; 9.875; 10.334))\), \(CE(E^3, c^3) = (0.153; 0.153; 0.153) \), and \(DCE(E^3, c^3) = (0; 0; 0.459) \), and since there is no agreement, go to next step.

[Step 4] \(Ls(LB_{P_3}^3) = (0; 0; 0.153) \), and \(E^4 = 0.306 \). So,

\((E^4, c^4) = (0.306, (3.75; 9.875; 10.181))\), \(CE(E^3, c^3) = (0.102; 0.102; 0.102) \), and \(DCE(E^3, c^3) = (0; 0; 0.306) \), and since there is no agreement, go to next step.

[Limit case] Note that, since \(E^m \leq c^3_m - c^2_m \), and \(c^m_i \geq E^m / 3 \), for each step \(m \geq 3 \), \(DCE(E^m, c^m) = (0; 0; E^m) \) and \(CE(E^m, c^m) = (E^m / 3; E^m / 3; E^m / 3) \). Thus, \(Ls(LB_{P_3}^m) = (0; 0; E^m / 3) \).

Therefore, \(u[\psi, LB_{P_3}] = \sum_{k=1}^{\infty} Ls \left(LB_{P_3}^k \right) = (1.25; 9.625; 10.125) \).

At this point, we have to show that the \(CE \) and \(DCE \) are the weakly dominant strategies for agents 1 and 3 in this example, respectively.

In this regard, next we can observe that agent 3 cannot increase her payoff by changing her strategy.
Let us consider the same problem $LB_{P_3} \in LB_P$, such that, $(E, c) \in B = (21, (5; 19.5; 20))$, and for each step $m \in \mathbb{N}$,

$$\psi \left(LB_{P_3} \right) = (CE, \varphi^2, \varphi^3) ,$$

where, since from step 2 on, the remaining estate in this case is different from the previous problem, we will denote by \overline{E}_m the estate for each step $m > 1$.

Thus, given the definitions of the CE rule and its dual (Section 0.1 of Preliminaries) and Fact 8, we get at step $m = 1$, $(E^1, c^1) = (21, (5; 19.5; 20))$, $CE(E^1, c^1) = (2.5; 9.25; 9.25)$, and $DCE(E^1, c^1) = (1.25; 9.75; 10)$.

[Step 1] It is obvious that there is no agreement, because if all the agents chooses the CE rule, then

$$u_3 \left[\psi, LB_{P_3} \right] = CE_3 (E, c) = 9.25 \leq 10.125 = u_3 \left[\psi, LB_{P_3} \right]$$

Therefore, go to next step.

[Step 2] By construction,

$$\varphi_1 \left(LB_{P_3}^1 \right) \geq DCE_1 (E^1, c^1) , \quad \varphi_1 \left(LB_{P_3}^1 \right) \leq CE_1 (E^1, c^1) , $$

$$\varphi_2 \left(LB_{P_3}^1 \right) \geq CE_2 (E, c^1) , \quad \varphi_2 \left(LB_{P_3}^1 \right) \geq CE_2 (E^1, c^1) , $$

$$\varphi_3 \left(LB_{P_3}^1 \right) \geq CE_3 (E^1, c^1) , \quad \varphi_3 \left(LB_{P_3}^1 \right) \leq DCE_2 (E^1, c^1) .$$

Then,

$$Ls \left(LB_{P_3} \right) = \left(\min \left\{ \varphi^2_1 \left(LB_{P_3}^1 \right), \varphi^3_1 \left(LB_{P_3}^1 \right) \right\} ; 9.25; 9.25 \right) .$$

Note that,

$$\min \left\{ \varphi^2_1 \left(LB_{P_3}^1 \right), \varphi^3_1 \left(LB_{P_3}^1 \right) \right\} = DCE_1 (E^1, c^1) + \alpha , \quad \text{where } \alpha \in \mathbb{R}_+ \text{ such that}$$

$$DCE_1 (E^1, c^1) \leq DCE_1 (E^1, c^1) + \alpha \leq CE_1 (E^1, c^1) ,$$

and $Ls_3 (LB_{P_3}) = Ls_3 (LB_{P_3})$.

Rationing problems with Commonly Accepted Equity Principles
Thus,
\[E^2 = 1.25 - \alpha \leq E^2. \] So,
\[(E^2, c^2) = (1.25 - \alpha, (3.75 - \alpha; 10.25; 10.75)), \]
\[CE(E^2, c^2) = (0.416 - \alpha/3; 0.416 - \alpha/3; 0.416 - \alpha/3), \] and
\[DCE(E^2, c^2) = (0; 0.375 - \alpha/2; 0.875 - \alpha/2), \] and since there is no agreement, go to next step.

[Step 3] By construction,
\[\varphi_1 \left(LB_{P_3}^2 \right) \geq DCE_1(E^2, c^2), \quad \varphi_1 \left(LB_{P_3}^2 \right) \leq CE_1(E^2, c^2), \]
\[\varphi_2 \left(LB_{P_3}^2 \right) \geq DCE_2(E^2, c^2), \quad \varphi_2 \left(LB_{P_3}^2 \right) \leq CE_2(E^2, c^2), \]
\[\varphi_3 \left(LB_{P_3}^2 \right) \geq CE_3(E^2, c^2), \quad \varphi_3 \left(LB_{P_3}^2 \right) \leq DCE_2(E^2, c^2). \]

Then,
\[Ls(LB_{P_3}^2) = \]
\[= \left(\min \left\{ \varphi_2^2 \left(LB_{P_3}^m \right), \varphi_3^2 \left(LB_{P_3}^m \right) \right\} ; \min \left\{ \varphi_1^2 \left(LB_{P_3}^m \right), \varphi_3^2 \left(LB_{P_3}^m \right) \right\} ; 0.416 - \alpha/3 \right). \]
Note that,
\[\min \left\{ \varphi_2^2 \left(LB_{P_3}^m \right), \varphi_3^2 \left(LB_{P_3}^m \right) \right\} = DCE_1(E^2, c^2) + \alpha^2, \] where \(\alpha^2 \in \mathbb{R}_+ \) such that
\[DCE_1(E^2, c^2) \leq DCE_1(E^2, c^2) + \alpha^2 \leq CE_1(E^2, c^2), \]
\[\min \left\{ \varphi_2^2 \left(LB_{P_3}^m \right), \varphi_3^2 \left(LB_{P_3}^m \right) \right\} = DCE_2(\bar{E}^2, c^2) + \varepsilon^2, \] where \(\varepsilon^2 \in \mathbb{R}_+ \) such that
\[DCE_2(\bar{E}^2, c^2) \leq DCE_2(\bar{E}^2, c^2) + \varepsilon^2 \leq CE_2(\bar{E}^2, c^2), \]
and \(Ls_3(LB_{P_3}^2) \leq Ls_3(LB_{P_3}^2). \)
Thus,
\[\bar{E}^3 = (1.25 - \alpha) - \alpha^2 - (0.375 - \frac{\alpha}{2} - \varepsilon^2) - (0.416 - \frac{\alpha}{2}) = 0.459 - \frac{\alpha}{2} - \alpha^2 - \varepsilon^2 \leq E^3. \]
So,
\[(\bar{E}^3, c^3) = (0.459 - \frac{\alpha}{2} - \alpha^2 - \varepsilon^2, (3.75 - \alpha; 9.875 - \varepsilon^2; 10.334)), \]
\[CE(\bar{E}^3, c^3) = \left(\bar{E}^3 / 3; \bar{E}^3 / 3; \bar{E}^3 / 3 \right), \] and
\[DCE(\bar{E}^3, c^3) = (0; 0; \bar{E}^3), \] and since there is no agreement, go to next step.
[Step 4] By construction,

\[\varphi_1(\tilde{LB}_{P_3}) \geq DCE_1(\tilde{E}^3, c^3), \quad \varphi_2(\tilde{LB}_{P_3}) \geq DCE_2(\tilde{E}^3, c^3), \quad \varphi_3(\tilde{LB}_{P_3}) \geq CE_3(\tilde{E}^3, c^3). \]

Then,

\[Ls(\tilde{LB}_{P_3}) = \left(\min \left\{ \varphi_2^2 \left(\tilde{LB}_{P_3} \right), \varphi_3^2 \left(\tilde{LB}_{P_3} \right) \right\} : \min \left\{ \varphi_1^2 \left(\tilde{LB}_{P_3} \right), \varphi_3^2 \left(\tilde{LB}_{P_3} \right) \right\} : \tilde{E}^3 / 3 \right) . \]

Note that,

\[\min \left\{ \varphi_1^2 \left(\tilde{LB}_{P_3} \right), \varphi_3^2 \left(\tilde{LB}_{P_3} \right) \right\} = DCE_1(\tilde{E}^3, c^3) + \alpha^3, \text{ where } \alpha^3 \in \mathbb{R}_+ \text{ such that } \]

\[DCE_1(\tilde{E}^3, c^3) \leq DCE_1(\tilde{E}^3, c^3) + \alpha^3 \leq CE_1(\tilde{E}^3, c^3), \]

\[\min \left\{ \varphi_2^2 \left(\tilde{LB}_{P_3} \right), \varphi_3^2 \left(\tilde{LB}_{P_3} \right) \right\} = DCE_2(\tilde{E}^3, c^3) + \varepsilon^3, \text{ where } \varepsilon^3 \in \mathbb{R}_+ \text{ such that } \]

\[DCE_2(\tilde{E}^3, c^3) \leq DCE_2(\tilde{E}^3, c^3) + \varepsilon^3 \leq CE_2(\tilde{E}^3, c^3), \]

and \(Ls_3(\tilde{LB}_{P_3}) \leq Ls_3(\tilde{LB}_{P_3}) \).

Thus,

\[\tilde{E}^4 = \tilde{E}^3 - \alpha^3 - \varepsilon^3 - \tilde{E}^3 / 3 \leq E^4 . \]

Since there is no agreement, go to next step.

[Limit case] Note that, since \(\tilde{E}^m \leq E^m \), for each step \(m \geq 1 \).

Thus, \(u_3 \left[\psi, LB_{P_3} \right] = \sum_{k=1}^{\infty} Ls_3 \left(LB_{P_3}^k \right) \leq 10.125 = u_3 \left[\psi, LB_{P_3} \right] \), i.e., the DCE rule is a weakly dominant strategy for the agent 3.

Finally, by duality we can easily get that agent 1 cannot increase her payoff by changing her strategy, i.e., the CE rule is a weakly dominant strategy for the agent 1.

Therefore, since agent’s 2 strategy does not influence in the procedure, in the Nash equilibrium induced by the game \(\Gamma^u_{LB_{P_3}} \) for this problem, \(u \left[\psi, LB_{P_3} \right] \neq \neq DCE(E, c) \).
Proof of Theorem 9.

Let us consider the problem \(LB_{P_3} \) and \(LB'_{P_3} \in LB_P \), such that (\(E, c = (21, (5; 19.5; 20)) \) and (\(E', c = (22.25; (5; 19.5; 20)) \)) \(\in B \), respectively.

In this case, given the definitions of the Constrained Egalitarian rule and its dual (see Section 0.1 of Preliminaries), and since the Midpoint Property is fulfilled,

\[
u[\psi, LB'_{P_3}] = (2.5; 9.75; 10),
\]

Moreover, in the previous example, we have seen that

\[
u[\psi, LB_{P_3}] = (1.25; 9.625; 10.125).
\]

Obviously, these two distributions contradict Resource Monotonicity since the highest claimant receives less when the endowment increases. ■

C.8 Proof of Theorem 11.

Theorem 11: In any Nash equilibrium induced by the game \(\Gamma^\text{du}_{LB_P} \), such that \(P_i \) is Self-Dual, each agent receives the amount given by the average of the two Lorenz-Focal rules.

Let \(LB_{P_i} \in LB_P \), such that \(P_i \) is Self-Dual.

By Theorem 4 we know that whenever each claimant’s Lorenz P-Safety and Lorenz P-Ceiling corresponds with the amount recommending by one of the two Lorenz-Focal rules, then all the agents receive the amount given by the average of the two Lorenz-Focal rules.

Moreover, by the definition of the Double Concessions procedure (Definition 14), we can easily note that the Lorenz-Gains Maximal rule is a weakly dominant strategy for the smallest agent, and the Lorenz-Losses Maximal rule is a weakly dominant
strategy for the highest claimant. Thus,

\[
Ls_i(LB_{P_i}^m) = \min_{\varphi \in \Phi(LB_{P_i})} \{LGM_{i}^{P_i}, LLM_{i}^{P_i}\}, \quad \text{and}
\]

\[
Lc_i(LB_{P_i}^m) = \max_{\varphi \in \Phi(LB_{P_i})} \{LGM_{i}^{P_i}, LLM_{i}^{P_i}\}.
\]

Therefore, by Theorem 4,

\[
du[\psi, LB_{P_i}] = \lim_{m \to \infty} \sum_{k=1}^{m} Ls_i(LB_{P_i}^k) = Ls_i(LB_{P_i}) + \sum_{m=2}^{\infty} Ls_i(LB_{P_i}^m)
\]

\[
= \frac{Ls_i(LB_{P_i}) + Lc_i(LB_{P_i})}{2}.
\]

■
APPENDIX D

PROOFS OF CHAPTER 5.

D.1 Proof of Proposition 8.

Proposition 8: Given $LB_{P_i} \in LB_P$, if $x \in C(V^{LB_P})$ then, for all $i \in N$,

$$\min \{ LGM_i^{P_i}(E, c), LLM_i^{P_i}(E, c) \} \leq x_i \leq \max \{ LGM_i^{P_i}(E, c), LLM_i^{P_i}(E, c) \}.$$

Let $LB_{P_i} \in \mathcal{LB}_P$ and let $x \in C(V^{LB_P})$. Then, by definition of both the bankruptcy rule (Definition 2) and the Core distribution (Section 0.5 of Preliminaries),

$$\sum_{i \in N} LGM_i^{P_i}(E, c) = \sum_{i \in N} LLM_i^{P_i}(E, c) = \sum_{i \in N} x_i = V^{LB_P}(N) = E \quad (D.1)$$

and

$$x_i \geq V^{LB_P} \{ \{i\} \} = \min \{ LGM_i^{P_i}(E, c), LLM_i^{P_i}(E, c) \} \text{ for all } i \in N.$$

Now, we only have to prove that $x_i \leq \max \{ LGM_i^{P_i}(E, c), LLM_i^{P_i}(E, c) \}$ for all $i \in N$.

Let us suppose that there exists $i \in N$ such that

$$x_i > \max \{ LGM_i^{P_i}(E, c), LLM_i^{P_i}(E, c) \} \text{ and,}$$
without loss of generality, let us assume that

$$LLM_i^{P_i}(E, c) \leq LGM_i^{P_i}(E, c).$$

Then

$$x_i > LGM_i^{P_i}(E, c). \tag{D.2}$$

Let \(S = \{ j \in N \setminus \{ i \} \} \). Then, on the one hand, by Conditions D.1 and D.2,

$$\sum_{j \in S} x_j < \sum_{j \in S} LGM_j^{P_i}(E, c) \tag{D.3}$$

and on the other hand, since \(LLM_i^{P_i}(E, c) \leq LGM_i^{P_i}(E, c) \), Condition D.1 implies

$$\sum_{j \in S} LLM_j^{P_i}(E, c) \geq \sum_{j \in S} LGM_j^{P_i}(E, c). \tag{D.4}$$

Therefore, by Conditions D.4 and D.3,

$$V^{LB_{P_i}}(S) = \min \left\{ \sum_{j \in S} LLM_j^{P_i}(E, c), \sum_{j \in S} LGM_j^{P_i}(E, c) \right\} = \sum_{j \in S} LGM_j^{P_i}(E, c) > \sum_{j \in S} x_j,$$

in contradiction with the fact that \(x \in C(\mathcal{V}^{LB_{P_i}}) \). Thus,

$$x_i \leq \max \{ LGM_i^{P_i}(E, c), LLM_i^{P_i}(E, c) \} \text{ for all } i \in N. \blacksquare$$

D.2 Proof of Proposition 9.

Proposition 9: Given \(LB_{P_i} \in LB_P \), the associated Lorenz-Bifocal Bankruptcy Game, \(V^{LB_{P_i}} \), is a PS-game such that for all \(i \in N \) and for all coalition \(T \subseteq N \setminus \{ i \} \),

$$\Delta_i V^{LB_{P_i}}(T) + \Delta_i V^{LB_{P_i}}(N \setminus [T \cup \{ i \}]) = LGM_i^{P_i}(E, c) + LLM_i^{P_i}(E, c).$$
Let $LB_{ri} \in LBF$. By the definition of the Lorenz-Bifocal Bankruptcy Game (Definition 15), $V^{LB_{ri}}$, is such that $V^{LB_{ri}}(\emptyset) = 0$ and, for each coalition $S, \emptyset \neq S \subseteq N$,

$$V^{LB_{ri}}(S) = \min \left\{ \sum_{i \in S} LGM_{ri} (E, c), \sum_{i \in S} LLM_{ri} (E, c) \right\}.$$

Let $\alpha_i = LGM_{ri} (E, c) - LLM_{ri} (E, c)$ for all $i \in N$. Then, the worth of each coalition $S \subseteq N$ can be expressed as follows:

$$V^{LB_{ri}}(S) = \begin{cases}
\sum_{j \in S} LLM_{ji} (E, c) & \text{if } \sum_{j \in S} \alpha_j \geq 0 \\
\sum_{j \in S} LGM_{ji} (E, c) & \text{if } \sum_{j \in S} \alpha_j \leq 0
\end{cases}. \quad \text{(D.5)}$$

Next, we calculate the marginal contribution of any agent $i \in N$ to any coalition $T \subseteq N \setminus \{i\}$, that is, $\Delta_i V^{LB_{ri}}(T) = V^{LB_{ri}}(T \cup \{i\}) - V^{LB_{ri}}(T)$. The following four cases exhaust all the possibilities:

Case 1: $\sum_{j \in T} \alpha_j \geq 0$ and $\alpha_i + \sum_{j \in T} \alpha_j \geq 0$.

By Condition D.5, $V^{LB_{ri}}(T) = \sum_{j \in T} LLM_{ji} (E, c)$ and,

$$V^{LB_{ri}}(T \cup \{i\}) = \sum_{j \in T} LLM_{ji} (E, c) + LLM_{ri} (E, c).$$

Thus,

$$\Delta_i V^{LB_{ri}}(T) = LLM_{ri} (E, c). \quad \text{(D.6)}$$

Case 2: $\sum_{j \in T} \alpha_j \geq 0$ and $\alpha_i + \sum_{j \in T} \alpha_j \leq 0$.

By Condition D.5, $V^{LB_{ri}}(T) = \sum_{j \in T} LLM_{ji} (E, c)$ and

$$V^{LB_{ri}}(T \cup \{i\}) = \sum_{j \in T} LGM_{ji} (E, c) + LLM_{ri} (E, c).$$

Thus,

$$\Delta_i V^{LB_{ri}}(T) = LGM_{ri} (E, c) - \sum_{j \in T} LGM_{ji} (E, c) + \sum_{j \in T} LLM_{ji} (E, c).$$
\[\Delta_i V^{LB_p}(T) = LGM_i^{P_i}(E, c). \] (D.7)

Case 3 : \(\sum_{j \in T} \alpha_j \leq 0 \) and \(\alpha_i + \sum_{j \in T} \alpha_j \leq 0 \)

By Condition D.5, \(V^{LB_p}(T) = \sum_{j \in T} LGM_j^{P_i}(E, c) \) and
\[V^{LB_p}(T \cup \{i\}) = \sum_{j \in T} LGM_j^{P_i}(E, c) + LGM_i^{P_i}(E, c). \] Thus,
\[\Delta_i V^{LB_p}(T) = LGM_i^{P_i}(E, c). \] (D.8)

Case 4 : \(\sum_{j \in T} \alpha_j \leq 0 \) and \(\alpha_i + \sum_{j \in T} \alpha_j \geq 0 \)

By Condition D.5, \(V^{LB_p}(T) = \sum_{j \in T} LGM_j^{P_i}(E, c) \) and \(V^{LB_p}(T \cup \{i\}) =\)
\[= \sum_{j \in T} LLM_j^{P_i}(E, c) + LLM_i^{P_i}(E, c). \] Thus,
\[\Delta_i V^{LB_p}(T) = \]
\[= LLM_i^{P_i}(E, c) + \sum_{j \in T} LLM_j^{P_i}(E, c) - \sum_{j \in T} LGM_j^{P_i}(E, c) = LLM_i^{P_i}(E, c) - \sum_{j \in T} \alpha_j. \] (D.9)

Next, we calculate the sum of the marginal contributions of any agent \(i \in N \) to any pair of disjoint coalitions \(T, T^* \) such that \(T \cup T^* = N \setminus \{i\} \). With this aim, let us note that, given that both \(LGM_i^{P_i} \) and \(LLM_i^{P_i} \) are distribution rules,
\[\sum_{i \in N} \alpha_i = \sum_{i \in N} LGM_i^{P_i}(E, c) - \sum_{i \in N} LLM_i^{P_i}(E, c) = 0. \]
Therefore,
\[\sum_{k \in T^*} \alpha_k = - \left(\alpha_i + \sum_{j \in T} \alpha_j \right). \] (D.10)

Here again we consider four cases for coalition \(T \), which exhaust all the possibilities:

Case 1 : \(\sum_{j \in T} \alpha_j \geq 0 \) and \(\alpha_i + \sum_{j \in T} \alpha_j \geq 0 \). Then, by Condition D.10, \(\sum_{k \in T^*} \alpha_k \leq 0 \) and \(\alpha_i + \sum_{k \in T^*} \alpha_k \leq 0 \). Now, applying Condition D.6 to coalition \(T \) and Condition D.8 to coalition \(T^* \), we have
\[\Delta_i V^{LB_p}(T) + \Delta_i V^{LB_p}(T^*) = LLM_i^{P_i}(E, c) + LGM_i^{P_i}(E, c). \]
Case 2: $\sum_{j \in T} \alpha_j \geq 0$ and $\alpha_i + \sum_{j \in T} \alpha_j \leq 0$. Then, by Condition D.10, $\sum_{k \in T^*} \alpha_k \geq 0$ and $\alpha_i + \sum_{k \in T^*} \alpha_k \leq 0$. Now, applying Condition D.7 to both coalitions T and T^*, we have

$$
\Delta V^{LB_{i}^{R}}(T) + \Delta V^{LB_{i}^{R}}(T^*) = LGM_{i}^{P_{i}}(E,c) + \sum_{j \in T} \alpha_j + LGM_{i}^{P_{i}}(E,c) + \sum_{k \in T^*} \alpha_k =
$$

$$
= LGM_{i}^{P_{i}}(E,c) + LGM_{i}^{P_{i}}(E,c) - \alpha_i
$$

$$
= LGM_{i}^{P_{i}}(E,c) + LGM_{i}^{P_{i}}(E,c) - LGM_{i}^{P_{i}}(E,c) + LLM_{i}^{P_{i}}(E,c)
$$

$$
= LLM_{i}^{P_{i}}(E,c) + LGM_{i}^{P_{i}}(E,c).
$$

Case 3: $\sum_{j \in T} \alpha_j \leq 0$ and $\alpha_i + \sum_{j \in T} \alpha_j \leq 0$. Then, by Condition D.10, $\sum_{k \in T^*} \alpha_k \geq 0$ and $\alpha_i + \sum_{k \in T^*} \alpha_k \geq 0$. Now, applying Condition D.8 to coalition T and Condition D.6 to coalition T^*, we have

$$
\Delta V^{LB_{i}^{R}}(T) + \Delta V^{LB_{i}^{R}}(T^*) = LGM_{i}^{P_{i}}(E,c) + LLM_{i}^{P_{i}}(E,c).
$$

Case 4: $\sum_{j \in T} \alpha_j \leq 0$ and $\alpha_i + \sum_{j \in T} \alpha_j \geq 0$. Then, by Condition D.10, $\sum_{k \in T^*} \alpha_k \leq 0$ and $\alpha_i + \sum_{k \in T^*} \alpha_k \geq 0$. Now, applying Condition D.9 to both coalitions T and T^*, we have

$$
\Delta V^{LB_{i}^{R}}(T) + \Delta V^{LB_{i}^{R}}(T^*) = LLM_{i}^{P_{i}}(E,c) - \sum_{j \in T} \alpha_j + LLM_{i}^{P_{i}}(E,c) - \sum_{k \in T^*} \alpha_k =
$$

$$
= LLM_{i}^{P_{i}}(E,c) + LLM_{i}^{P_{i}}(E,c) + \alpha_i
$$

$$
= LLM_{i}^{P_{i}}(E,c) + LLM_{i}^{P_{i}}(E,c) + LGM_{i}^{P_{i}}(E,c) - LLM_{i}^{P_{i}}(E,c)
$$

$$
= LLM_{i}^{P_{i}}(E,c) + LGM_{i}^{P_{i}}(E,c).
$$

\[\blacksquare \]
D.3 Proof of Theorem 12.

Theorem 12: For each Lorenz-Bifocal Bankruptcy Game, V^{LB_P}, where $LB_P \in \mathcal{LB}_P$, the Shapley value and the Nucleolus coincide and they are obtained in the average of the two Lorenz-Focal rules, that is,

$$Sh(V^{LB_P}) = Nu(V^{LB_P}) = 1/2 \left(LGM^{Pl}(E,c) + LLM^{Pl}(E,c) \right).$$

Taking into account Proposition 9 and applying, to V^{LB_P}, with $LB_P \in \mathcal{LB}_P$, the main result in Kar et al. [25], gathered below, we obtain that for all $i \in N$, $Sh_i(V^{LB_P}) = PNu_i(V^{LB_P}) = \left(LLM^{Pl}_i(E,c) + LGM^{Pl}_i(E,c) \right)/2$, where PNu denotes the Prenucleolus. Now, given that, by the definition of V^{LB_P}, $PNu(V^{LB_P})$ satisfies individual rationality, that is, $PNu(V^{LB_P}) \geq V^{LB_P}(\{i\})$ for all $i \in N$, we have that $Nu(V^{LB_P}) = PNu(V^{LB_P})$.

Main Result in Kar, Mitra and Wutuswami (2009): If a TU-game V is a PS-game, then for all $i \in N$, $Sh_i(V) = PNu(V) = k_i/2$, where PNu denotes the Prenucleolus and k_i is the player i’s specific constant corresponding to the sum of her marginal contribution to any pair of disjoint coalitions T, T^* such that $T \cup T^* = N \setminus \{i\}$. ■
APPENDIX E

Proofs of Chapter 6.

Proof of Proposition 10.

Proposition 10: For each \((E, c, P_1) \in B_P\), \(((E, c, P_2) \in B_P\), \(((E, c, P_3) \in B_P\), the \(P\)-Safety for the smallest agent, say 1, corresponds with the Constrained Equal Losses (the Dual of Piniles') (the Dual Constrained Egalitarian) rule,

\[s_1(E, c, P_1) = CEL_1(E, c) \quad s_1(E, c, P_2) = DPin_1(E, c) \quad s_1(E, c, P_3) = DCE_1(E, c). \]

- For each problem \((E, c, P_1)\), such that \((E, c) \in B_0\), note that:

 If \(CEL_1(E, c) = 0\), by non-negativity, \(\varphi_1(E, c) = 0\).

 If \(CEL_1(E, c) > 0\), by the definition of the CEL rule, \(c_1 - CEL_1(E, c) = c_j - CEL_j(E, c)\), for each \(j \in N \neq 1\).

 So by efficiency, if \(\varphi_1(E, c) < CEL_1(E, c)\), \(c_1 - \varphi_1(E, c) > c_j - \varphi_j(E, c)\), contradicting Order Preservation.

 Therefore, there is no Admissible rule, \(\varphi\), for \(P_1\) such that, \(\varphi_1(E, c) < \)

 \(< CEL_1(E, c). \]

\(\blacksquare\)
• For each problem \((E, c, P_2)\), such that \((E, c) \in \mathcal{B}_0\), note that:

Case 1) \(E \leq C/2\)

If \(DPin_1(E, c) = 0\), by non-negativity, \(\varphi_1(E, c) = 0\).

If \(DPin_1(E, c) > 0\), by the definition of the \(DPin\) rule, \(\frac{c_1}{2} - DPin_1(E, c) = \frac{c_j}{2} - DPin_j(E, c)\), for each \(j \in N \neq 1\).

So by efficiency, if \(\varphi_1(E, c) < DPin_1(E, c)\), \(\frac{c_1}{2} - \varphi_1(E, c) > \frac{c_j}{2} - \varphi_j(E, c)\). By the \textit{Midpoint Property}, when \(E' = C/2\), \(\varphi(E', c) = c/2\), so that,

\[
\frac{c_1}{2} - \varphi_1(E, c) \geq \frac{c_j}{2} - \varphi_j(E, c)
\]

\[
\varphi_1(E', c) - \varphi_1(E, c) \geq \varphi_j(E', c) - \varphi_j(E, c),
\]

contradicting \textit{Super-Modularity}.

Case 2) \(E \geq C/2\)

If \(DPin_1(E, c) = c_1/2\), by the \textit{Midpoint Property}, \(\varphi_1(E, c) = c_1/2\).

If \(DPin_1(E, c) > c_1/2\), by the definition of the \(DPin\) rule, \(c_1 - DPin_1(E, c) = c_j - DPin_j(E, c)\), for each \(j \in N \neq 1\).

So by efficiency, if \(\varphi_1(E, c) < DPin_1(E, c)\), \(c_1 - \varphi_1(E, c) > c_j - \varphi_j(E, c)\).

When \(E' = C\), \(\varphi(E', c) = c\), so that,

\[
c_1 - \varphi_1(E, c) > c_j - \varphi_j(E, c)
\]

\[
\varphi_1(E', c) - \varphi_1(E, c) > \varphi_j(E', c) - \varphi_j(E, c),
\]

contradicting \textit{Super-Modularity}.

Therefore, there is no Admissible rule, \(\varphi\), for \(P_2\) such that, \(\varphi_1(E, c) < < DPin_1(E, c)\).
For each problem \((E, c, P_3)\), such that \((E, c) \in \mathcal{B}_0\), note that:

Case 1) \(E \leq C/2\)

If \(DCE_1 (E, c) = 0\), by non-negativity, \(\varphi_1 (E, c) = 0\).

If \(DCE_1 (E, c) > 0\), by the definition of the DCE rule, \(\frac{c_j}{2} - DCE_1 (E, c) \leq \frac{c_j}{2} - DCE_j (E, c)\), for each \(j \in N \neq 1\).

Case 1.1) If \(DCE_j (E, c) = \frac{c_j}{2}\), for each \(j \in N \neq 1\).

By efficiency, if \(\varphi_1 (E, c) < DCE_1 (E, c)\), \(\varphi_j (E, c) > DCE_j (E, c) = \frac{c_j}{2}\). By the Midpoint Property, when \(E' = C/2\), \(\varphi (E', c) = c/2\), so that,

\[\varphi_j (E', c) = \frac{c_j}{2} < \varphi_j (E, c),\]

contradicting Resource Monotonicity.

Case 1.2) If \(DCE_j (E, c) \neq \frac{c_j}{2}\), for each \(j \in N \neq 1\).

By the definition of the DCE rule, \(\frac{c_j}{2} - DCE_1 (E, c) = \frac{c_j}{2} - DCE_j (E, c)\), for each \(j \in N \neq 1\).

So by efficiency, if \(\varphi_1 (E, c) < DCE_1 (E, c)\), \(\frac{c_j}{2} - \varphi_1 (E, c) > \frac{c_j}{2} - \varphi_j (E, c)\), contradicting Order Preservation.

Case 1.3) If \(DCE_l (E, c) \neq \frac{c_l}{2}\), and \(DCE_k (E, c) = \frac{c_k}{2}\) for each \(l, k \in N \neq 1\).

We can reapply the reasoning of Cases 1.1 and 1.2. In this sense, if

Case 1.3.1) If \(\varphi_l (E, c) > DCE_l (E, c)\).

\(\varphi\) contradicts Order Preservation.

Case 1.3.2) If \(\varphi_k (E, c) > DCE_k (E, c) = \frac{c_k}{2}\).

By the Midpoint Property, \(\varphi\) contradicts Resource Monotonicity.

Case 2) \(E \geq C/2\)

If \(DCE_1 (E, c) = c_1/2\), by the Midpoint Property, \(\varphi_1 (E, c) = c_1/2\).
If \(\text{DCE}_1 (E, c) > c_1/2 \), by the definition of the \(\text{DCE} \) rule, \(c_1 - \text{DCE}_1 (E, c) = c_j - \text{DCE}_j (E, c) \), for each \(j \in N \neq 1 \).

So by efficiency, if \(\varphi_1 (E, c) < \text{DCE}_1 (E, c) \), \(c_1 - \varphi_1 (E, c) > c_j - \varphi_j (E, c) \), contradicting Order Preservation.

Therefore, there is no Admissible rule, \(\varphi \), for \(P_3 \) such that, \(\varphi_1 (E, c) < \langle \text{DCE}_1 (E, c) \). ■

Example 4 Let us consider the problem \((E, c, P_1) \), with \((E, c) = (49, (18; 27; 40)) \in B_P \). Thus, we obtain that, \(\text{CEA} (E, c) = (16.3; 16.3; 16.3) \) and \(\text{CEL} (E, c) = (6; 15; 28) \). By Proposition 10, \(s_1 (E, c, P_1) = 6 \) and \(s_3 (E, c, P_1) = 16.3 \). However, for agent 2 neither of both rules is the smallest amount she can get according to \(P_1 \), since, for example, computing the Talmud rule, \(T (E, c) = (9; 13.5; 26.5) \), we can see that \(T_2 (E, c) = 13.5 < \text{CEL}_2 (E, c) < \text{CEA}_2 (E, c) \). ■

Example 5 Let us consider the problem \((E, c) = (60, (15; 16; 30)) \in B \). On the one hand, by Proposition 10, for each \((E, c, P_1) \) in \(B_P \) and each \(m \in \mathbb{N} \) the \(P \)-Safety for the smallest and the highest agents are the CEL and the CEA rules. On the other hand, it can be easily checked, following the same reasoning as the proof of Proposition 10, that the Admissible rule which recommends the smallest amount for the intermediate agent, \(\varphi_1^{\text{min} 2} \), is defined as follows,

Case 1) \(\text{CEL}_2 (E, c) \leq \text{CEA}_2 (E, c) \).

\[
\varphi_1^{\text{min} 2} (E, c) = \text{CEL} (E, c) + (2\alpha; -\alpha; -\alpha) \text{, where}
\]

\[
\alpha = \begin{cases}
\frac{\text{CEL}_2 (E, c) - \text{CEL}_1 (E, c)}{3} & \text{If } \frac{2}{3} (\text{CEL}_2 (E, c) - \text{CEL}_1 (E, c)) \leq c_1 \\
\frac{c_1 - \text{CEL}_1 (E, c)}{2} & \text{Otherwise}
\end{cases}
\]

Case 2) \(\text{CEL}_2 (E, c) \geq \text{CEA}_2 (E, c) \).
a) $CEA_1(E, c) = CEA_2(E, c) = CEA_3(E, c)$.

a.1) $c_3 - c_2 \leq E$.

$\varphi_{[^{\min}]}^{[^{\Pi}]}(E, c) = CEL(E, c) + (-\alpha; \alpha; 2\alpha)$, where

$\alpha = \frac{c_3 - c_2}{3}$.

a.2) $c_3 - c_2 \geq E$.

$\varphi_{[^{\min}]}^{[^{\Pi}]}(E, c) \equiv CEL(E, c) = (0; 0; E)$.

b) $CEA_1(E, c) \neq CEA_2(E, c) = CEA_3(E, c)$.

b.1) $c_3 - c_2 \geq CEA_2(E, c) - CEA_1(E, c)$.

$\varphi_{[^{\min}]}^{[^{\Pi}]}(E, c) = CEA(E, c) + (-\alpha; \alpha; \alpha^*; 2\alpha + \alpha^*)$, where

$\alpha^* = CEA_2(E, c) - CEA_1(E, c)$, and

$\alpha = \frac{c_3 - c_2 - 2\alpha^*}{3}$.

b.2) $c_3 - c_2 \leq CEA_2(E, c) - CEA_1(E, c)$.

$\varphi_{[^{\min}]}^{[^{\Pi}]}(E, c) = CEA(E, c) + (0; -\alpha; \alpha)$, where

$\alpha = \frac{c_3 - c_2}{2}$.

Note that the case $CEA_1(E, c) \neq CEA_2(E, c) \neq CEA_3(E, c)$ is not possible, since, then by the definition of the Constrained Equal Awards and the Constrained Equal Losses rules, $CEL_2(E, c) < CEA_2(E, c)$.

Moreover, by applying the idea of duality, $\varphi_{[^{\max}]}^{[^{\Pi}]}$ denotes the Admissible rule which recommends the highest amount for the intermediate agent. That is,

$\varphi_{[^{\max}]}^{[^{\Pi}]}(E, c) = c_3 - \varphi_{[^{\min}]}^{[^{\Pi}]}(L, c)$.

Then,

Step $m = 1$, $(E^1, c^1) = (60, (15; 16; 30))$,

$CEA(E^1, c^1) = (15; 16; 29)$,

$CEL(E^1, c^1) = (14.66; 15.66; 29.66)$,

$\varphi_{[^{\min}]}^{[^{\Pi}]}(E^1, c^1) = (15; 15.5; 29.5)$,
\(\varphi_{P_1}^{\text{max}}(E^1, c^1) = (15; 16; 29) \).

Then,
\[s(E^1, c^1, P_1) = (14.66; 15.5; 29), \]
\[ce(E^1, c^1, P_1) = (15; 16; 29.66). \]

Step \(m = 2 \): \((E^2, c^2) = (0.833, (0.33; 0.5; 0.66)) \),
\[CEA(E^2, c^2) = 0.278; 0.278; 0.278, \]
\[CEL(E^2, c^2) = (0.111; 0.278; 0.444), \]
\[\varphi_{P_1}^{\text{min}}(E^2, c^2) = (0.222; 0.222; 0.389), \]
\[\varphi_{P_1}^{\text{max}}(E^2, c^2) = (0.167; 0.333; 0.333). \]

Then,
\[s(E^2, c^2, P_1) = (0.111; 0.222; 0.278), \]
\[ce(E^2, c^2, P_1) = (0.278; 0.333; 0.444). \]

Step \(m = 3 \): \((E^3, c^3) = (0.222, (0.166; 0.111; 0.166)) \),
\[CEA(E^3, c^3) = (0.074; 0.074; 0.074), \]
\[CEL(E^3, c^3) = (0.092; 0.037; 0.092), \]

Note that in this step, the smallest agent is agent 2, and agent 1 and 3 has the same claim, so
\[s(E^3, c^3, P_1) = (0.074; 0.037; 0.074), \]
\[ce(E^2, c^2, P_1) = (0.092; 0.074; 0.092). \]

At this point,
\[\sum_{k=1}^{3} s(E^k, c^k, P_1) = (14.851; 15.759; 29.185). \]

By the definition of the P-Safety (Definition 18), \(s_i(E^m, c^m, P_1) \geq 0 \), therefore,
\[DBR(E, c, P_3) = (14.851; 15.759; 29.185) + \sum_{m=4}^{\infty} s(E^m, c^m, P_1) \neq \frac{ce(E, c, P_1)+s(E, c, P_2)}{2} = (14.83; 15.75; 29.33). \]

Moreover, the average of the P-Safety and the P-Ceiling does not exhaust the resource,
Example 6 Let us consider the bankruptcy problem \(B \), in which \(E = 60 \) and there are three focal distribution rules, \(f \), \(g \) and \(h \), providing \(f(E, c) = (10, 25, 25) \), \(g(E, c) = (0, 27.5, 32.5) \) and \(h(E, c) = (10, 22.5, 27.5) \). If the associated TU-game is defined by

\[
V^{B_B}(S) = \min \left\{ \sum_{i \in S} f_i(E, c), \sum_{i \in S} g_i(E, c), \sum_{i \in S} h_i(E, c) \right\},
\]

it is easy to verify that \(V^{B_B}({\{1\}}) = 0 \), \(V^{B_B}({\{2\}}) = 22.5 \), \(V^{B_B}({\{3\}}) = 25 \), \(V^{B_B}({\{1, 2\}}) = 27.5 \), \(V^{B_B}({\{1, 3\}}) = 32.5 \), \(V^{B_B}({\{2, 3\}}) = 50 \) and \(V^{B_B}({\{1, 2, 3\}}) = 60 \). Then \(Sh(V^{B_B}) = (5.42, 25.42, 29.16) \), \(Nu(V^{B_B}) = (6.25, 25, 28.75) \) and \((f + g + h)/3 = (6 + (2/3), 25, 28 + (1/3)) \).

Note that in this example the three focal distribution rules are involved in specifying the coalitions worth and this fact causes the loss of the PS-game quality. Furthermore, even \(h \) only determines the worth of player 2, none of the players \(i, i \in \{1, 2, 3\} \), has a constant sum of his marginal contribution to all pairs of coalitions whose union is \(N\setminus\{i\} \):

\[
\begin{align*}
\Delta_1V({\{2\}}) + \Delta_1V({\{3\}}) &= 12.5 \neq 10 = \Delta_1V({\varnothing}) + \Delta_1V({\{2, 3\}}), \\
\Delta_2V({\{1\}}) + \Delta_2V({\{3\}}) &= 52.5 \neq 50 = \Delta_2V({\varnothing}) + \Delta_2V({\{1, 3\}}) \text{ and} \\
\Delta_3V({\{1\}}) + \Delta_3V({\{2\}}) &= 60 \neq 57.5 = \Delta_3V({\varnothing}) + \Delta_3V({\{1, 2\}}).
\end{align*}
\]
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Bi-personal bankruptcy problems.</td>
</tr>
<tr>
<td>2</td>
<td>The Constrained Equal Awards, Constrained Equal Losses and Proportional</td>
</tr>
<tr>
<td></td>
<td>rules.</td>
</tr>
<tr>
<td>3</td>
<td>Piniles’ rule.</td>
</tr>
<tr>
<td>4</td>
<td>The Talmud rule.</td>
</tr>
<tr>
<td>5</td>
<td>The Constrained Egalitarian rule.</td>
</tr>
<tr>
<td>6</td>
<td>Lorenz domination in bi-personal bankruptcy problems.</td>
</tr>
<tr>
<td>1.1</td>
<td>Lorenz-Bifocal Admissible rules for P_1.</td>
</tr>
<tr>
<td>1.2</td>
<td>Lorenz-Bifocal Admissible rules for P_2.</td>
</tr>
<tr>
<td>1.3</td>
<td>Lorenz-Bifocal Admissible rules for P_3 (case a).</td>
</tr>
<tr>
<td>1.4</td>
<td>Lorenz-Bifocal Admissible rules for P_3 (case b).</td>
</tr>
<tr>
<td>2.1</td>
<td>Lorenz P-Safety for P_1.</td>
</tr>
<tr>
<td>2.2</td>
<td>Lorenz P-Safety for P_2.</td>
</tr>
<tr>
<td>2.3</td>
<td>Lorenz P-Safety for P_3 (case a).</td>
</tr>
<tr>
<td>2.4</td>
<td>Lorenz P-Safety for P_3 (case b).</td>
</tr>
<tr>
<td>3.1</td>
<td>Lorenz P-Safety and Lorenz P-Ceiling for P_1.</td>
</tr>
<tr>
<td>3.2</td>
<td>Lorenz P-Safety and Lorenz P-Ceiling for P_2.</td>
</tr>
<tr>
<td>3.3</td>
<td>Lorenz P-Safety and Lorenz P-Ceiling for P_3 (case a).</td>
</tr>
<tr>
<td>3.4</td>
<td>Lorenz P-Safety and Lorenz P-Ceiling for P_3 (case b).</td>
</tr>
<tr>
<td>A.1</td>
<td>Regions of the Constrained Egalitarian rule and its dual (case a).</td>
</tr>
</tbody>
</table>
A.2 Regions of the \textit{Constrained Egalitarian} rule and its dual (case b). . . 132
BIBLIOGRAPHY

[52] Thomson, W: Axiomatic and game-theoretic analysis of bankruptcy and

(Forthcoming).

[54] Thomson, W., Yeh, C.H: Operators for the adjudication of conflicting claims.

[55] Tijs, S: Bounds for the core and the t-value. In: Moeschlin, O., and
Pallaschke, D. (Eds.), Game Theory and Mathematical Economics. North-

[56] Tijs, S: An axiomatization of the τ-value. Mathematical Social Science, 13,

[58] van Damme, E: The Nash Bargaining Solution is Optimal. Journal of Economic
Theory 38, 78-100 (1986).

(1974).

of game theory with applications. North-Holland, Amsterdam, pp. 2025-2054
(2002).

