

Ingeniería

UNIVERSIDAD POLITÉCNICA DE CARTAGENA GRADO EN ARQUITECTURA NAVAL E INGENIERÍA DE SISTEMAS MARINOS

ANTEPROYECTO DE UN **BUQUE GRANELERO DE** 45.000 TPM

TUTOR: CARLOS ARSENIO MASCARAQUE RAMÍREZ

ÍNDICE

CUADERNILLO 1. MEMORIA EXPLICATIVA.

CUADERNILLO 2. DIMENSIONAMIENTO.

CUADERNILLO 3. PLANO DE FORMAS.

CUADERNILLO 4. CÁLCULOS DE ARQUITECTURA NAVAL.

CUADERNILLO 5. DISPOSICIÓN GENERAL.

CUADERNILLO 6. RESISTENCIA AL AVANCE, PROPULSIÓN Y MOTORIZACIÓN.

CUADERNILLO 7. RESISTENCIA LONGITUDINAL Y SITUACIONES DE CARGA.

Ingeniería

UNIVERSIDAD POLITÉCNICA DE CARTAGENA GRADO EN ARQUITECTURA NAVAL E INGENIERÍA DE SISTEMAS MARINOS

ANTEPROYECTO DE UN **BUQUE GRANELERO DE** 45.000 TPM

CUADERNILLO 1. MEMORIA EXPLICATIVA.

SEPTIEMBRE DE 2023 ÁNGEL PEDREÑO RUBIO

CUADERNILLO 1. MEMORIA EXPLICATIVA.

ÍNDICE

1.	INTRODUCCIÓN	2
2.	CARACTERÍSTICAS DEL PROYECTO	3
	2.1 Dimensionamiento	3
	2.2 Plano de formas	3
	2.3 Cálculos de arquitectura naval	3
	2.4 Disposición general	
	2.5 Resistencia al avance, propulsión y monitorización	4
	2.6 Resistencia longitudinal y situaciones de carga	
3.	TRANSPORTE MARÍTIMO	5
BI	IBLIOGRAFÍA	7

1. INTRODUCCIÓN

El buque a proyectar se trata de un granelero o *bulkcarrier*, el cual se puede definir como un buque de transporte de carga a granel, que navega a una velocidad baja y con una cubierta principal corrida donde se encuentran las tapas de escotilla de las bodegas. Además, también se caracterizan por llevar doble fondo, al igual que los petroleros, y por tener en bodega una forma estructural determinada que favorece la estiba de la carga.

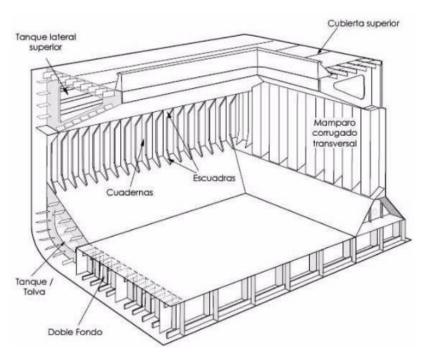


Ilustración 1. Bodega característica de un granelero.

En función del peso muerto, los graneleros se pueden clasificar como:

- Small: Menos de 10.000 TPM.
- Handysize: Entre 10.000 y 40.000 TPM.
- Handymax: Entre 40.000 y 60.000 TPM, lo que corresponde con el buque a proyectar.
- Panamax: Entre 60.000 y 100.000 TPM.
- Capesize: Entre 100.000 TPM y 200.000 TPM.
- Very Large Bulkcarriers (VLBC): Superior a 200.000 TPM.

2. CARACTERÍSTICAS DEL PROYECTO

El presente proyecto tiene como objetivo definir el anteproyecto de un buque granelero de 45.000 TPM. Para ello se ha seguido un proceso iterativo y cíclico, en el que se han modificado los cuadernillos a conveniencia, sin tener en cuenta el orden de estos. Los cuadernillos redactados han sido los siguientes:

2.1 Dimensionamiento

El objetivo principal de este primer cuadernillo es obtener las dimensiones y características principales del buque mediante métodos estadísticos de regresiones, a partir de una amplia base de datos de buques similares. Además, se hará una primera estimación del desplazamiento del buque a partir de cálculos aproximados del peso en rosca.

Como ya se ha mencionado, estos valores iniciales irán cambiando a lo largo de los distintos cuadernillos.

2.2 Plano de formas

Inicialmente, se calcularán los coeficientes de formas del buque y se comprobará que estos, están dentro de los valores recomendados por las Sociedades de Clasificación. A continuación, con nuestras formas y dimensiones calculadas, realizaremos una transformación afín de un buque granelero base en *Maxsurf Modeller*. A partir, de este modelo se obtendrá el plano de formas del buque.

Se intentará que el modelo generado quede lo más alisado posible, con lo que se obtendrán unas mejores características hidrodinámicas.

2.3 Cálculos de arquitectura naval

Se comenzará el cuadernillo calculando el arqueo bruto y neto del buque, así como su francobordo. Se tomará como referencia lo expuesto en el Convenio Internacional sobre Líneas de Carga de 1966.

A continuación, se introducirá el modelo anteriormente creado en *Maxsurf Stability* para obtener las curvas hidrostáticas, curvas de Bonjean y curvas KN del buque.

2.4 Disposición general

Antes de realizar la propia disposición general del buque, se calcularán las superficies límites de espacios de todo el buque (mamparos longitudinales y transversales). Además, se estimará el número de tripulantes convenientes y la división de estos, así como la definición y volumen de los distintos espacios de carga del buque.

Finalmente, se exportará a *Autocad* el modelo anteriormente creado y se dibujará el plano de disposición general y habilitación.

2.5 Resistencia al avance, propulsión y monitorización

Inicialmente, se calculará la resistencia al avance del buque para así poder seleccionar un motor propulsor que proporcione la potencia necesaria para vencer esa resistencia calculada. Además, se proyectarán y calcularán los tanques de consumo necesarios en el buque.

Posteriormente, se diseñarán los huecos entre el codaste y el propulsor, y las dimensiones del timón. Para finalizar, se comprobará que el buque cumple unas condiciones de maniobrabilidad concretas, según reglamento.

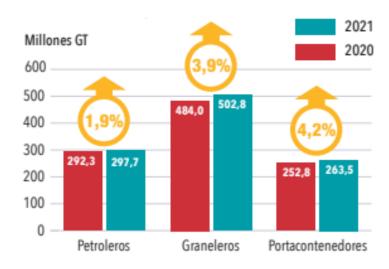
2.6 Resistencia longitudinal y situaciones de carga

Por último, se comprobará la funcionalidad del buque proyectado. Se calcularán de nuevo las partidas de pesos, ahora con un mayor grado de definición, y se introducirán, junto con la disposición de los tanques, en *Maxsurf Stability*.

A continuación, se definirán distintas situaciones de carga de buque intacto y buque en averías, variando la tipología y cantidad de carga transportada, y se mostrarán los análisis de equilibrio y resistencia longitudinal.

3. TRANSPORTE MARÍTIMO

Los buques graneleros hoy en día ocupan un 43% del total de la flota mercante mundial, por otro lado, el volumen de carga transportada por graneleros un 41% del total del comercio por vía marítima mundial.


Según el reporte anual "Review of the Maritime Transport 2016" se estimó que la flota mercante mundial estaba compuesta por 90.917 buques, los cuales suman 1.800 millones de toneladas de peso muerto. Los buques graneleros experimentaron entre 2015 y 2016, un tímido crecimiento del 2´25 %, lo que se traduce en un aumento en la flota de solamente 171.114 toneladas de peso muerto.

La siguiente tabla muestra la composición total de la flota mundial mercante entre 2015 y 2016 diferenciados según el tipo de buque.

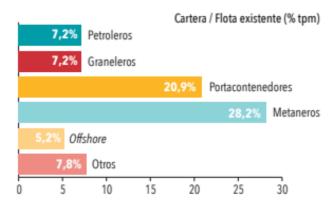

World fleet by p share)	rincipal vessel type, 20	015–2016 (Thousands	of dead-weight tons and percentage
	2015	2016	Percentage change, 2015–2016
	488 308	503 343	
	28.0	27.9	3.08
	761 776	778 890	
	43.6	43.1	2.25
nip	74 158	75 258	
	4.2	4.2	1.48
	228 224	244 274	
	13.1	13.5	7.03
	193 457	204 886	
	11.1	11.3	5.91
	49 669	54 469	
	2.8	3.0	9.67
ker	42 467	44 347	
	2.4	2.5	4.43
	72 606	75 836	
	4.2	4.2	4.45
ssenger ship	5 640	5 950	
	0.3	0.3	5.49
plicable)	23 075	24 284	
	1.3	1.3	5.24
	1 745 922	1 806 650	
	100	100	3.48
		2015 488 308 28.0 761 776 43.6 10 10 10 11 11 193 457 11.1 193 457 11.1 49 669 2.8 10 10 10 10 10 10 10 10 10 10 10 10 10	2015 2016 488 308 503 343 28.0 27.9 761 776 778 890 43.6 43.1 nip 74 158 75 258 4.2 4.2 228 224 244 274 13.1 13.5 193 457 204 886 11.1 11.3 49 669 54 469 2.8 3.0 sker 42 467 44 347 2.4 2.5 72 606 75 836 4.2 4.2 ssenger ship 5 640 5 950 0.3 0.3 oplicable) 23 075 24 284 1.3 1.3 1 745 922 1 806 650

Ilustración 2. Tamaño de flota mercante en 2015 y 2016.

A continuación, se muestran datos de 2021 referidos a la flota mercante mundial y a la construcción naval, en los que se puede observar el lugar que ocupan los buques graneleros.

Gráfica 1. Datos de la flota mundial mercante mundial en 2021.

Gráfica 2. Datos de la construcción naval de 2021.

Desde que finalizó la pandemia mundial del COVID-19, se puede observar un crecimiento en la demanda del *Panamax size* especialmente en los mercados de grano de Brasil y Estados Unidos. Según estudios recientes, se prevé un crecimiento del 2´74 % en la flota de buques graneleros tipo *Panamax size* entre 2022 y 2024.

BIBLIOGRAFÍA

https://www.anave.es/images/informe/marina_mercante/2022/MMTM2022_ESP_webOK.pdf https://www.mundomaritimo.cl/noticias/que-traera-el-2022-para-la-flota-de-graneles-ESTEVE PEREZ, J. (2018). Apuntes de Tráfico Marítimo. Universidad Politécnica de Cartagena.

ALVARIÑO CASTRO , R., AZPÍROZ AZÍROZ, J., & MEIZOSO FERNÁNDEZ, M. (1997). *El proyecto básico del buque mercante*. Madrid: Fondo editorial de Ingeniería Naval: Colegio Oficial de Ingenieros Navales.

Ingeniería Superior Oceánica

UNIVERSIDAD POLITÉCNICA DE CARTAGENA GRADO EN ARQUITECTURA NAVAL E INGENIERÍA DE SISTEMAS MARINOS

ANTEPROYECTO DE UN **BUQUE GRANELERO DE** 45.000 TPM

CUADERNILLO 2. DIMENSIONAMIENTO

ÍNDICE

1.	. INTRODUCCIÓN	3
2.	. BASE DE DATOS	4
3.	ESTIMACIÓN DE LAS DIMENSIONES PRINCIPALES MEDIANTE REGRESIONES	5
	3.1 Eslora total	5
	3.2 Eslora entre perpendiculares	7
	3.3 Manga	8
	3.4 Puntal	10
	3.5 Calado	11
	3.6 Volumen de carga	12
4.	ESTIMACIÓN DE LAS DIMENSIONES PRINCIPALES MEDIANTE FORMULACIÓN	13
	4.1 Eslora	13
	4.2 Manga	13
	4.3 Puntal	14
	4.4 Calado	14
5.	. SELECCIÓN DE DIMENSIONES Y RELACIONES	
	5.1 Recálculo de la manga	16
6.	RESUMEN DE LAS DIMENSONES PRINCIPALES Y SU RELACIÓN	16
	6.1 Relación Eslora – Manga (L/B)	17
	6.2 Relación Manga – Puntal (B/D)	17
	6.3 Relación Manga – Calado (B/T)	
	6.4 Relación Eslora – Puntal (L/D)	17
7.	. CÁLCULO DE LOS COEFICIENTES DE FORMAS MEDIANTE FORMULACIÓN ANALÍTICA	\ 17
	7.1 Coeficiente de Bloque	17
	7.2 Coeficiente de la Maestra	20
	7.3 Coeficiente Prismático Longitudinal	22
	7.4 Coeficiente de la Flotación	22
8.	POSICIÓN LONGITUDINAL DEL CENTRO DE CARENA	23
9.	LONGITUD DEL CUERPO CILÍNDRICO	24
1(0. RESUMEN DE LOS PARÁMETROS PRINCIPALES	24
1:	1. CÁLCULO DEL PESO EN ROSCA	25
	11.1 Peso de la estructura de acero	26
	11.2 Peso de la maquinaria	27
	11.3 Peso del equipo y habilitación	30
	11.4 Peso en rosca	30

CUADERNILLO 2. DIMENSIONAMIENTO

1. INTRODUCCIÓN

El dimensionamiento de un buque tiene como objetivo la obtención de sus dimensiones y coeficientes principales con un grado de precisión adecuada. A pesar de que se trata de un proceso realizado en una etapa prematura, es muy relevante para el posterior desarrollo del proyecto, ya que define aspectos de suma importancia como el coste de construcción.

Inicialmente se debe definir una magnitud principal del buque para afrontar el desarrollo del dimensionamiento, a la que se conoce como dimensión crítica.

En el caso del granelero, se trata de un buque de peso muerto, ya que su condicionante más exigente es el peso (cargas muy densas o de bajo coeficiente de estiba). En consecuencia, el condicionante principal y de mayor importancia, son las toneladas de peso muerto. Las especificaciones de proyecto a tener en cuenta, es que se trata de un buque granelero de 45000 TPM y que debe navegar a una velocidad de servicio estimada de 15 nudos.

Podemos encontrar distintas alternativas para obtener las dimensiones principales de un buque, como nos indican los *apuntes de la asignatura de proyectos*¹.

- -Mediante formulación empírica.
- -A partir de un buque base.
- -Mediante regresiones, empleando una base de datos fiable.

En este caso, se realizará mediante regresiones, habiendo escogido previamente una base de datos adecuada y fiable. Posteriormente, mediante fórmulas analíticas, se comprobará que los resultados obtenidos están dentro de un rango de valores determinado.

3

¹ ALMANSA, M. J. (2020-2021). Apuntes de la asignatura de proyectos. Universidad Politécnica de Cartagena.

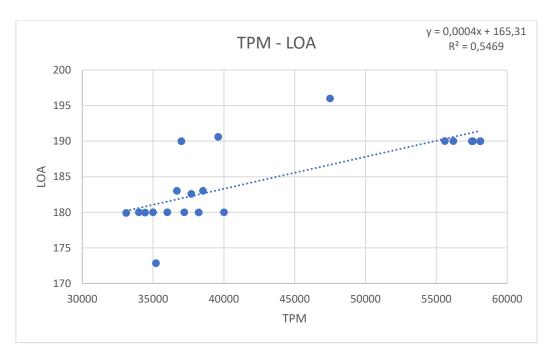
2. BASE DE DATOS

Para el dimensionamiento del granelero en cuestión, se dispone de una base de datos, donde para su elaboración se han tenido en cuenta buques graneleros entre 30.000 y 60.000 TPM.

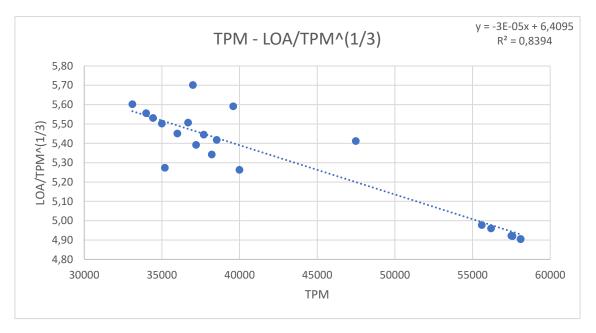
NUMERACIÓN	NOMBRE	TPM (t)	LOA (m)	LBP (m)	B (m)	D (m)	T (m)	v (nudos)	Vcarga (m3)	AÑO
1	Cascade	33100	179,9	176,85	30	14,8	9,5	14,08	48200	2014
2	Wuchang	33994	179,99	176,65	30	15	9,5	14	48908	2012
3	Andalucian Zephyr	34436	179,96	174	30	14,05	9,8	14,7	44154,6	2014
4	Leni Selmer	35000	180	172	30	14,7	9,5	14,401	46284,8	2011
5	TBC Purpose	35196,33	172,83	171,5	28,4	15	10,8	13,5	44294,46	2011
6	Alentejo	36000	180	176,75	30	14,71	10,1	14	46748	2013
7	TBC Praise	36685	183	175,5	27,8	15,6	10,916	13,5	44174,7	2012
8	Venture Goal	37000	189,99	187,05	30	15	9,5	14	54000	2014
9	Nordic Navid	37200	180	176,75	30	14,7	10,1	14	46733	2014
10	UBC Tilbury	37702	182,59	174,6	28,6	15	10,87	15	48818,5	2010
11	TBC Passion	38215	179,97	173	29,8	15	10,536	13,4	47125,65	2011
12	TBC Prime	38529	183	175	29,5	15	10,366	14,25	48141,5	2011
13	Ilshin Green Iris	39600	190,6	184	32,26	17,3	10,15	14	64000	2015
14	Beira	40000	180	177	32,01	15	9,5	14	50852,2	2017
15	Thalassini Axia	47493	196	189	32,26	18,6	13	14,6	75530	2009
16	Anni Selmer	55600	190	182	32,26	17,9	11,2	14,5	70855,3	2009
17	Nordic Stavanger	56200	190	182	32,25	18,1	11,2	14,5	71345	2011
18	MV Ellenita	57501	189,99	186,2	32,26	18	12,818	13,6	72040	2015
19	MV Lunita	57572	189,99	185,6	32,26	18	12,8	10,6	72607	2014
20	MV Star Norita	58097	189,99	185,6	32,26	18	12,826	9,3	72690	2012
21	MV Kristinita	58105	189,99	185,78	32,26	18	12,826	10,3	72690	2011

Tabla 1. Base de datos de graneleros entre 30000 y 60000 TPM.

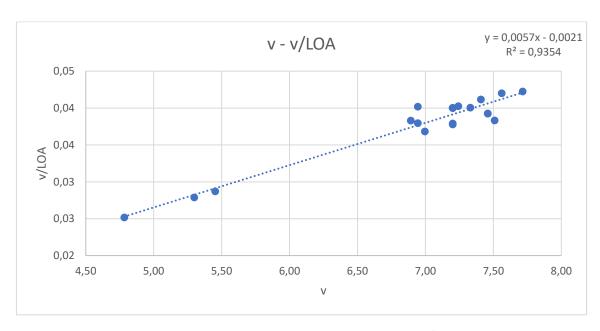
Una vez obtenida la base de datos, se realizan las regresiones correspondientes, con el objetivo de tener una primera estimación de las dimensiones principales. Para considerar estas regresiones como válidas, deben arrojar como mínimo una R^2 igual o mayor de 0´6, se huirá incertidumbres excesivas. La fiabilidad de los valores obtenidos será mayor cuanto mayor sea la R^2 .


Por tanto, la dinámica a seguir será probar distintas relaciones hasta encontrar un valor de \mathbb{R}^2 que consideremos lo suficientemente fiable (cercano a la unidad).

3. ESTIMACIÓN DE LAS DIMENSIONES PRINCIPALES MEDIANTE REGRESIONES

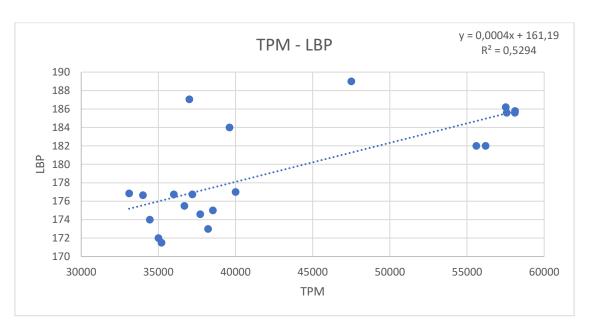

3.1 Eslora total

Se considera como una de las dimensiones de partida a la hora de realizar un dimensionamiento, ya que a partir de ella se pueden calcular otras de forma fiable. A su vez, la eslora, es de las más influyentes en los costes constructivos del buque.

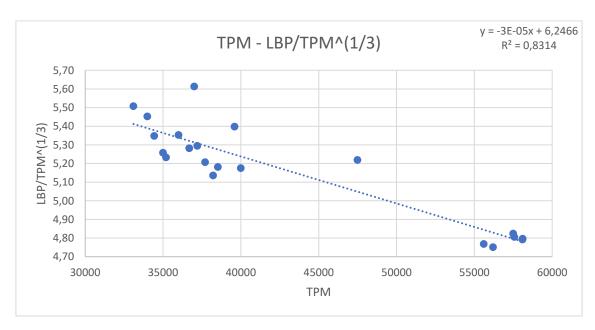

En consecuencia, el aumento de eslora hará que aumente la superficie mojada y, por tanto, la resistencia de presión de origen viscoso.

Gráfica 1. Regresión: Toneladas de Peso Muerto - Eslora total.

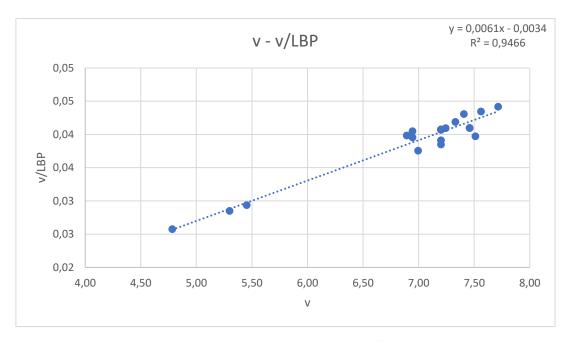
Gráfica 2. Regresión: Toneladas de Peso Muerto – Eslora total/Toneladas de Peso Muerto^1/3.


Gráfica 3. Regresión: Velocidad de servicio – Velocidad de servicio/Eslora total.

La regresión que nos arroja un valor de R^2 mayor, es la Gráfica 3, por lo que se calculará la eslora total a partir de esta regresión.


$$\frac{v}{LOA} = 0.0057 * v - 0.0021$$
$$LOA = 184.235 m$$

3.2 Eslora entre perpendiculares

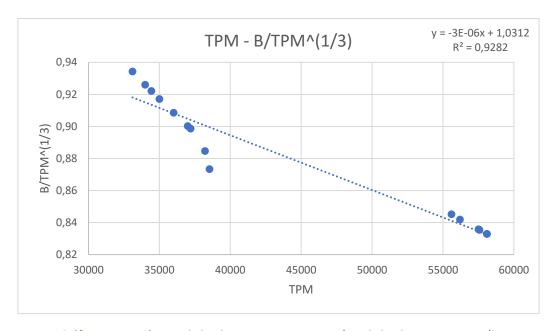

De forma análoga, se van probando relaciones hasta que encontrar la de mayor $R^{\,\,2}.$

Gráfica 4. Regresión: Toneladas de Peso Muerto – Eslora entre perpendiculares.

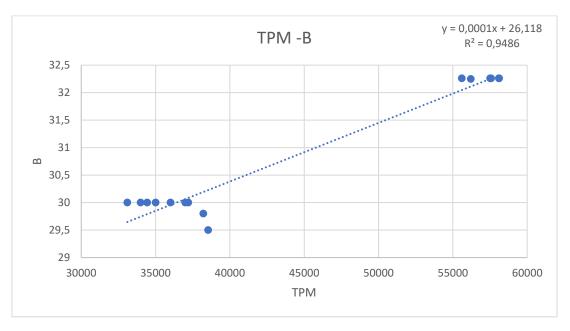
Gráfica 5. Regresión: Toneladas de Peso Muerto – Eslora entre perpendiculares/Toneladas de Peso Muerto^1/3.

Gráfica 6. Regresión: Velocidad de servicio – Velocidad de servicio/Eslora entre perpendiculares.

Como se puede observar en la Gráfica 6, la relación nos arroja una R^2 elevada, por lo que se calculará la eslora entre perpendiculares a través de esta.


$$\frac{v}{LBP} = 0.061 * v - 0.0034$$

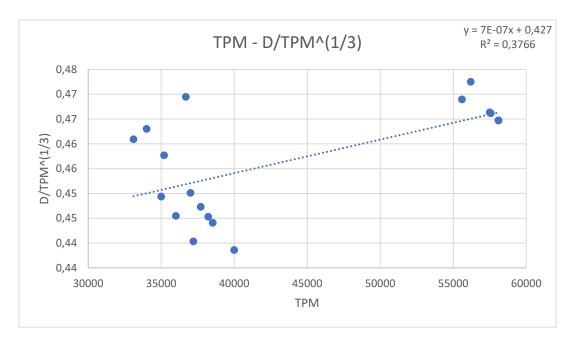
$$LBP = 176.698 m$$


3.3 Manga

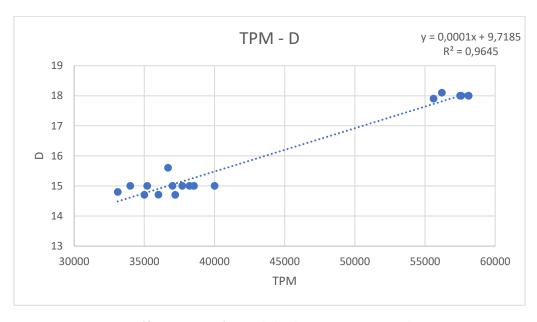
El aumento de la manga se traduce en un aumento del peso estructural del buque, pero de una forma más sutil que el aumento de la eslora. Por otro lado, como resultado del aumento de la superficie mojada, crece la resistencia por formación de olas y por fricción, y por tanto la resistencia total.

Para conseguir las siguientes regresiones con una fiabilidad lo mejor posible, se han eliminado algunos buques de la base de datos: TBC Purpose (5), TBC Praise (7), UBC Tilbury (10), Ilshin Green Iris (13) y Thalassini Axia (15).

Gráfica 7. Regresión: Toneladas de Peso Muerto – Manga/Toneladas de Peso Muerto^1/3.


Gráfica 8. Regresión: Toneladas de Peso Muerto – Manga.

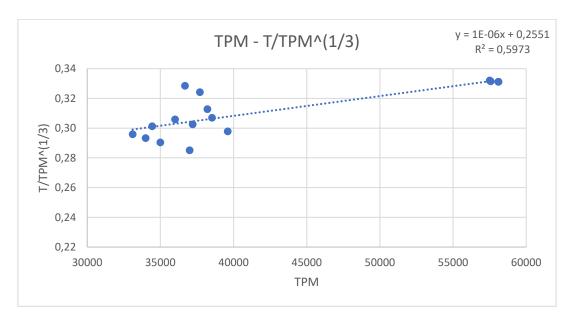
Ambas regresiones arrojan un valor de incertidumbre bajo, por lo que las dos son fiables. Se escoge la que tiene el valor de $R^{\,2}$ más elevado para estimar la manga del buque.


$$B = 0.0001 * TPM + 26.118 = 30.618 m$$

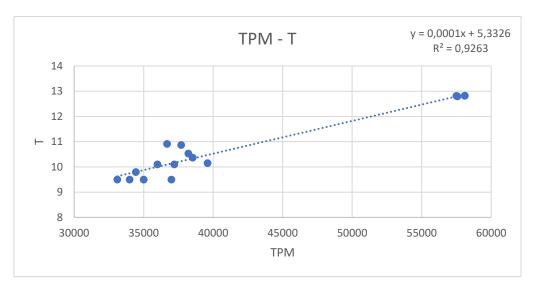
3.4 Puntal

Se considera la dimensión más barata. Además, es inversamente proporcional al peso del casco. Para lograr una buena fiabilidad de los resultados, se han eliminado de la base de datos los buques: *Andalucian Zephyr (3), Ilshin Green Iris (13) y Thalassini Axia (15)*.

Gráfica 9. Regresión: Toneladas de Peso Muerto – Puntal/Toneladas de Peso Muerto^1/3.


Gráfica 10. Regresión: Toneladas de Peso Muerto – Puntal.

La relación Toneladas de Peso Muerto — Puntal es la regresión con valor de $R^{\,2}$ más elevado, por lo que la estimación del puntal queda de la siguiente forma:


$$D = 0.001 * TPM + 9.7185 = 14.218 m$$

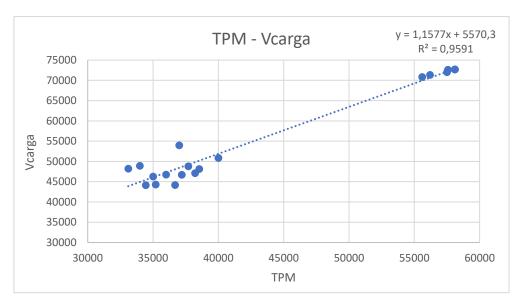
3.5 Calado

Análogamente al puntal, con su aumento disminuye el peso estructural. Por otro lado, genera una alteración de la resistencia total. Para lograr una desviación mínima de los resultados en las regresiones, se han eliminado de la base de datos los siguientes buques: *TBC Purpose (5), Thalassini Axia (15), Anni Selmer (16), Nordic Stavanger (17).*

Gráfica 11. Regresión: Toneladas de Peso Muerto – Calado/Toneladas de Peso Muerto^1/3.


Gráfica 12. Regresión: Toneladas de Peso Muerto – Calado.

Como se puede observar, es la última relación la que nos arroja la mayor fiabilidad. De forma que la estimación del calado queda de la siguiente forma.


$$T = 0.0001 * TPM + 5.3326 = 9.832 m$$

3.6 Volumen de carga

Finalmente, se puede estimar el volumen de carga del buque. Se realizan distintas regresiones a partir del peso muerto.

Gráfica 13. Regresión: Toneladas de Peso Muerto – Volumen de Carga/Toneladas de Peso Muerto^1/3.

Gráfica 14. Regresión: Toneladas de Peso Muerto – Volumen de Carga.

La ultima relación, Gráfica 14, nos proporciona una menor desviación. De forma que la estimación del volumen de carga queda:

$$V_{carga} = 1.1577 * TPM + 5570.3 = 57666.8 m^3$$

4. ESTIMACIÓN DE LAS DIMENSIONES PRINCIPALES MEDIANTE FORMULACIÓN

4.1 Eslora

Formula de Maglioni:

$$L_{pp} = a\sqrt[4]{PM} = 181'914 m$$

4.2 Manga

Fórmula de Arkenbout-Shokker:

$$B = \frac{L_{pp}}{9} + 3'66 = 23'873 m$$

Fórmula de Watson:

$$B = \frac{L_{pp}}{9} + 4'27 = 24'483 m$$

Fórmula de Meizoso:

$$B = \frac{L_{pp}}{6'5} = 27'987 m$$

4.3 Puntal

Un aumento del puntal da lugar a la elevación de la posición del centro de gravedad y, en consecuencia, una reducción del brazo adrizante. El límite superior del puntal se alcanzará por tanto cuando la relación B/D no sea aceptable por ese concepto. Por su parte, el límite inferior aparece por problemas de rigidez al aumentar L/D o por francobordo.

El cálculo del puntal se puede hacer considerando que el numeral cúbico, NC (producto de la eslora, de la manga y el puntal) es proporcional al volumen de carga. Por lo tanto, la relación entre el volumen de carga y ese numeral cúbico se mantendrá constante.

$$\frac{V_{Cb}}{(L_{pp} * B * D)_b} = \frac{V_{Cp}}{(L_{pp} * B * D)_p}$$

$$\mathbf{D} = \mathbf{17'379} \mathbf{m}$$

4.4 Calado

El cálculo del calado, cuando es una variable independiente, se puede ligar a la manga por consideraciones hidrodinámicas, haciendo B/T=Cte.

$$T = \frac{B}{2'4} = 9'947 m$$

5. SELECCIÓN DE DIMENSIONES Y RELACIONES

Siempre que se permita, es preferible seleccionar las dimensiones que nos proporcionan las regresiones antes que las calculadas mediante formulación, ya que estas pueden llegar a ser poco exactas.

Valores Base		Valores Reg	resiones	Valores Formulación	
TPM (t)	45000	LOA (m)	184,24	LOA (m)	
v (kn)	15	LBP (m)	176,70	LBP (m)	181,91
v (m/s)	7,72	B (m)	30,62	B (m)	27,99
		D (m)	14,22	D (m)	17,38
		T (m)	9,83	T (m)	9,95
		Vcarga (m3)	57666,80	Vcarga (m3)	-
		Fn	0,19	Fn	0,18

Tabla 2. Valores obtenidos de las dimensiones principales.

A continuación, se comprueba que dimensiones (calculadas mediante regresiones y formulación) se ajustan mejor a los rangos de valores definidos por el *Proyecto Básico del Buque Mercante*² para buques con TPM<50000.

Valores Normales dados por PBM (TPM<50000)						
L/B	B/D	B/T	L/D	T/D	Fn	
5,6 - 6,8	1,7 - 1,9	2,3 - 2,8	10,8 - 12,5	0,7 - 0,76	0,17 - 0,21	

Regresiones	5,8	2,2	3,1	12,4	0,7	0,19
Formulación	6,5	1,6	2,8	10,5	0,6	0,18

Tabla 3. Comparación de métodos empleados con el intervalo de valores recomendados.

Se puede observar como la relación manga-puntal no cumple el rango de valores definido. Por lo que, como solución, se opta por recalcular la manga para obtener un resultado dentro de este rango.

-

² ALVARIÑO CASTRO, R., AZPÍROZ AZÍROZ, J., & MEIZOSO FERNÁNDEZ, M. (1997). *El proyecto básico del buque mercante*. Madrid: Fondo editorial de Ingeniería Naval: Colegio Oficial de Ingenieros Navales.

5.1 Recálculo de la manga

Se ha comprobado que la relación manga – puntal sobrepasa el límite superior, por lo que se decide modificar el valor de la manga para que se ajuste al intervalo de valores. Además, comprobando que el nuevo valor de la manga no sobrepasa ninguno de los límites del resto de intervalos.

Finalmente, se decide tomar como nueva manga 27'4 m.

Valores Normales dados por PBM (TPM<50000)							
L/B	B/D	B/T	L/D	T/D	Fn		
5,6 - 6,8	1,7 - 1,9	2,3 - 2,8	10,8 - 12,5	0,7 - 0,76	0,17 - 0,21		

Regresiones	6,4	1,9	2,8	12,4	0,7	0,19
Formulación	6,6	1,6	2,8	10,5	0,6	0,18

Tabla 4.Comparación de métodos empleados con el intervalo de valores recomendados, tras recalcular la manga.

Como resultado, se observa como con las dimensiones calculadas mediante regresiones cumplimos todos los intervalos de las relaciones. Por tanto, confirmamos lo mencionado anteriormente, los valores obtenidos mediante regresiones con más exactos.

6. RESUMEN DE LAS DIMENSONES PRINCIPALES Y SU RELACIÓN

Dimensiones				
TPM (t)	45000			
v (kn)	15,00			
v (m/s)	7,72			
LOA (m)	184,24			
LBP (m)	176,70			
B (m)	27,40			
D (m)	14,22			
T (m)	9,83			
Vcarga (m3)	57666,80			
Fn	0,19			

Tabla 5. Resumen de las dimensiones principales calculadas.

6.1 Relación Eslora – Manga (L/B)

La relación entre la eslora y la manga repercute en la resistencia al avance del buque, lo que convierte a la eslora, que es la dimensión de mayor envergadura, en la principal a tener en cuenta. Una mayor resistencia al avance se traduce en una mayor potencia en el buque para que pueda operar correctamente, lo cual supone un aumento del coste de construcción y del peso del buque. Además, la relación eslora-manga se relaciona con el número de Froude, número adimensional que, en hidrodinámica, relaciona las fuerzas de inercia y las de gravedad que actúan en un fluido.

6.2 Relación Manga – Puntal (B/D)

La relación entre manga y puntal está relacionada con la posición vertical del centro de gravedad del buque (KG). Un valor demasiado pequeño de B/D podría dar lugar a problemas de estabilidad, sobre todo si existen superestructuras muy elevadas o cargas en cubierta, como en los buques portacontenedores. En buques de doble casco, se recomienda que el valor de B/D esté en torno a 1'8.

6.3 Relación Manga – Calado (B/T)

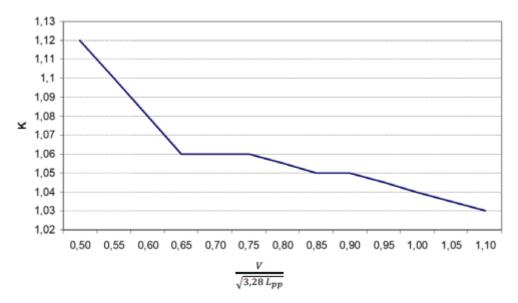
Al igual que la relación manga-puntal, la relación entre manga y calado también influye en la estabilidad. En este caso, aumenta la estabilidad si es un valor elevado, pero también aumenta la resistencia al avance.

6.4 Relación Eslora – Puntal (L/D)

La limitación de un valor máximo de 15-16 en la relación lo establecen las Sociedades de Clasificación. Esto es debido a que la relación entre la eslora y el puntal influye en la resistencia longitudinal del buque, aumentando las tensiones si la relación L/D es muy elevada.

7. CÁLCULO DE LOS COEFICIENTES DE FORMAS MEDIANTE FORMULACIÓN ANALÍTICA

7.1 Coeficiente de Bloque


El coeficiente de bloque se define como la relación entre el volumen desplazado y el producto de la eslora, manga y calado. No obstante, no será posible calcularlo mediante su

definición general, ya que no disponemos del desplazamiento. Está relacionado con la resistencia al avance del buque, cuanto mayor sea este, mayor será la resistencia y el peso del buque.

Se calcula el coeficiente de bloque mediante distintas formulaciones:

Fórmula de Alexander:

$$C_b = K - \frac{V}{2\sqrt{3'28 * L_{pp}}} = \mathbf{0'765}$$

Gráfica 15. Representación del valor de k en la fórmula de Alexander.

<u>Fórmula de Townsin</u>: Proporciona el coeficiente de bloque en función del número de Froude (Fn).

$$C_b = 0'7 + 0'125 * atan(25 * (0'23 - Fn)) = 0'805$$

<u>Fórmula de Schneekluth:</u> Permite obtener el coeficiente de bloque función del número de Froude (Fn) y otros parámetros dimensionales como la eslora o la manga.

$$C_b = \frac{0.14}{Fn} \frac{(\frac{L_{pp}}{B} + 20)}{26} = 0.768$$

<u>Fórmula de Kerlen</u>: Proporciona el coeficiente de bloque en función del número de Froude (Fn). Es utilizado para buques con formas llenas (Cb>0′78).

$$C_h = 1'179 - 2'206 * Fn = 0'804$$

<u>Fórmula de Ayre</u>: Se emplea la formulación adaptada para buques de una hélice y velocidad de servicio.

$$C_b = 1'05 - 1'68 * Fn = 0'739$$

Fórmula de Van Lammeren:

$$C_h = 1'37 - 2'02 * Fn = 0'996$$

Fórmula de Minorsky:

$$C_h = 1'22 - 2'38 * Fn = 0'779$$

<u>Fórmula de Katsoulis</u>: Permite obtener el coeficiente de bloque función del número de Froude (Fn) y otros parámetros dimensionales como la eslora o la manga.

$$C_b = 0'8217 * f * L_{pp}^{0'42} * B^{-0'3072} * T^{0'1721} * v^{-0'6135} = 0'757$$

TIPO DE BUQUE	f
Graneleros	1,03
Gaseros	1,04
Quimiqueros	1,06
Petroleros de productos	1,05
Ferries	1,09
Buques de pasaje	1,00

Tabla 6: Valores recomendados de f según el tipo de buque.

<u>Fórmula de Telfer</u>: Permite obtener el coeficiente de bloque función del número de Froude (Fn) y otros parámetros dimensionales como la eslora o la manga.

$$C_b = 1 - \frac{3}{8} (\frac{B}{L_{pp}} + 1) \frac{v}{\sqrt{L_{pp}}} = 0.749$$

Se calcula un valor medio de los resultados obtenidos. Además, se comprueba que este valor cumple con el intervalo proporcionado por el *Ship Design, Methodologies of Preliminary Design*³.

Coeficiente de Bloque (Cb)		
Alexander	0,765	
X	0,623	
K	1,077	
Townsin	0,805	
Schneekluth	0,768	
Kerlen	0,804	
Ayre	0,739	
Van Lammeren	0,996	
Minorsky	0,779	
Katsoulis	0,757	
Telfer	0,749	
Cb medio	0,771	
Rango según bibliografía		
0,72 <cb<0,86< td=""></cb<0,86<>		

Tabla 7. Valores calculados del coeficiente de bloque.

7.2 Coeficiente de la Maestra

Se define como la relación entre la parte sumergida de la sección media y el producto de la manga en esa flotación por el calado. Este coeficiente está relacionado con la resistencia al avance. Una disminución del coeficiente de bloque implicará que también deba reducirse el coeficiente de la sección media. En caso de no realizarse esta modificación, se puede producir efectos no deseables sobre las formas con tendencia a ocasionar desprendimientos de flujo, y por tanto, un aumento de la resistencia al avance.

Se calcula el coeficiente de la maestra mediante distintas formulaciones:

<u>Fórmula de Kerler</u>: Define el coeficiente de la maestra en función del coeficiente de bloque.

³ PAPANIKOLAOU, A. (2014). Ship Design. Methodologies of Preliminary Design.

$$C_M = 1'006 * -0'0056C_b^{-3'56} = 0'992$$

<u>Fórmula de HSVA</u>: Define el coeficiente de la maestra en función del coeficiente de bloque.

$$C_M = \frac{1}{1 + (1 - C_b)^{3.5}} = 0.994$$

<u>Fórmula de Torroja</u>: Define el coeficiente de la maestra en función del número de Froude.

$$C_M = 1 - 2Fn^4 = 0'998$$

<u>Fórmula de Meizoso</u>: Define el coeficiente de la maestra en función del número de Froude.

$$C_M = 1 - 0'062Fn^{0'792} = 0'984$$

Como anteriormente, se calcula un valor medio de los resultados obtenidos. Además, se comprueba que este valor cumple con el intervalo proporcionado por el *Ship Design, Methodologies of Preliminary Design*⁴.

Coeficiente de la Maestra (Cm)			
Kerlen	0,992		
HSVA	0,994		
Torroja	0,998		
Meizoso	0,984		
Cm medio	0,993		
Rango según bibliografía 0,990 <cm<0,997< td=""></cm<0,997<>			

Tabla 8. Valores calculados del coeficiente de la maestra.

_

⁴ PAPANIKOLAOU, A. (2014). Ship Design. Methodologies of Preliminary Design.

7.3 Coeficiente Prismático Longitudinal

Se define como la relación entre el volumen de carena y el producto del área en la sección media por la eslora. El coeficiente prismático proporciona una idea de la distribución, en sentido longitudinal, del desplazamiento del buque. Valores bajos de este coeficiente indican que el volumen de obra viva se concentra alrededor de la perpendicular media y sus extremos son afinados, mientras que un valor alto, indica una variación pequeña del área de cada sección respecto de la maestra.

$$C_P = \frac{C_b}{C_M} = \mathbf{0}'776$$

<u>Fórmula de Troost</u>: Define el coeficiente prismático longitudinal en función del número de Froude.

$$C_P = 1'2 - 2'12Fn = 0'807$$

Se escoge el único valor que está dentro del intervalo recomendado proporcionado por el *Ship Design, Methodologies of Preliminary Design*⁵.

Coeficiente Prismático Longitudinal (Cp)		
Cb/Cm	0,776	
Troost	0,807	
Ср	0,807	
Rango según bibliografía 0,79 <cp<0,84< td=""></cp<0,84<>		

Tabla 9. Valores calculados del coeficiente prismático longitudinal.

7.4 Coeficiente de la Flotación

El coeficiente de la flotación relaciona el área de la intersección de la carena con el plano horizontal al calado de proyecto y el área del paralelogramo de lados eslora y manga en la flotación. Este coeficiente tiene una gran influencia en la estabilidad.

Se calcula el coeficiente de la flotación mediante distintas formulaciones:

22

⁵ PAPANIKOLAOU, A. (2014). Ship Design. Methodologies of Preliminary Design.

<u>Fórmula de Schneekluth:</u> Define el coeficiente de la flotación en función del coeficiente de bloque y de la maestra.

$$C_f = \frac{1 + 2C_b}{3} = \mathbf{0'847}$$

<u>Fórmula de Torroja</u>: Define el coeficiente de la flotación en función del coeficiente de bloque.

$$C_f = 0'28 + 0'778C_b = 0'88$$

<u>Otra formulación</u>: Otros autores proponen soluciones particulares de las expresiones anteriores.

$$C_f = 0'248 + 0'778C_b = 0'848$$

De nuevo, se escoge el único valor que está dentro del intervalo recomendado proporcionado por el *Ship Design, Methodologies of Preliminary Design*⁶.

Coeficiente de la Flotación (Cf)			
Schneekluth		0,847	
Torroja		0,880	
	Α	0,280	
	В	0,778	
Otra formulación		0,848	
Cf (elegido)		0,880	
Rango según bibliografía 0,88 <cf<0,92< td=""></cf<0,92<>			

Tabla 10. Valores calculados del coeficiente de la flotación.

8. POSICIÓN LONGITUDINAL DEL CENTRO DE CARENA

Este parámetro relaciona la distancia entre el centro de carena y la sección media del buque, normalmente en porcentaje de la eslora entre perpendiculares. Permite obtener una primera idea de la distribución del volumen de carena en el buque. En buques lentos, más

-

⁶ PAPANIKOLAOU, A. (2014). Ship Design. Methodologies of Preliminary Design.

sensibles a la resistencia viscosa (influenciada por las formas de popa), es recomendable que se sitúe en el entorno de la maestra.

Se realiza el cálculo de la posición longitudinal del centro de carena mediante la formulación de Troost, expresión concebida para encontrar aquella posición longitudinal donde la resistencia al avance sea mínima.

$$XB=rac{(1'75C_P-12'5)L_{pp}}{100}=$$
 2'870 m a Pr de la sección media $\%L_{pp}=rac{XB}{L_{pp}}100=$ 1'624 % de la eslora entre perpendiculares

9. LONGITUD DEL CUERPO CILÍNDRICO

La longitud del cuerpo cilíndrico es función de si las formas son más o menos llenas. Se refiere al porcentaje de eslora entre perpendiculares que ocupa la sección maestra. Su cálculo se puede aproximar mediante la siguiente expresión:

$$LP = -658 + 1607C_b - 914C_b^2 = 37'616 \% L_{pp} = 37'616 * \frac{L_{pp}}{100} = 66'468 m$$

10. RESUMEN DE LOS PARÁMETROS PRINCIPALES

Finalmente, tras haber obtenido las principales dimensiones del buque y sus coeficientes de forma, habiendo estudiado las relaciones entre los mismos según la bibliografía, podemos confirmar que no variarán mucho una vez se modele el buque en Maxsurf. Sin embargo, el mismo programa, ajustará estos parámetros del buque para que sea lo más real e hidrodinámico posible.

Dimensiones		
TPM (t)	45000	
v (kn)	15	
v (m/s)	7,72	
LOA (m)	184,24	
LBP (m)	176,70	
B (m)	27,40	
D (m)	14,22	
T (m)	9,83	
Vcarga (m3)	57666,80	
L/B	6,4	
B/D	1,9	
В/Т	2,8	
L/D	12,4	
T/D	0,7	
Fn	0,19	
Cb	0,77	
Cm	1	
Ср	0,81	
Cf	0,88	
XB (m)	2,87	
LP (m)	66,47	

Tabla 11. Resumen de los parámetros principales del buque.

11. CÁLCULO DEL PESO EN ROSCA

El desplazamiento del buque se divide en dos partes:

- Por un lado, el peso muerto, que se define como el peso que el buque puede transportar cuando está cargado hasta el calado máximo admisible, incluyendo combustible, agua dulce, pertrechos y tripulación. En este caso es un dato proporcionado, 45000 t.
- Y el peso en rosca, que se define como el peso del buque en sí mismo, lo que incluye el peso de la estructura, habilitación, equipos, maquinaría y fluidos en circuitos cerrados (refrigeración y lubricación, por ejemplo).

$$\Delta = PR + PM$$

Se puede realizar una primera estimación del peso en rosca a partir de la definición del coeficiente de bloque y la expresión general del desplazamiento.

$$\Delta = \rho L B T = 48795'04 t$$

 $PR = \Delta - PM = 3795'04 t$

A continuación, vamos a calcular el peso en rosca con una mayor exactitud, empleando formulación dada en función de las características principales del buque. Según la bibliografía del *Proyecto Básico del Buque Mercante*⁷, donde se encuentra un apartado íntegramente para buques graneleros, podemos descomponer el peso en rosca en distintas partidas:

- Peso de la estructura de acero.
- Peso de la maquinaria.
- Peso del equipo y habilitación.

Finalmente se realizará el sumatorio de estas partidas para obtener el valor del peso en rosca y posteriormente la altura de su centro de gravedad.

11.1 Peso de la estructura de acero

En las fases iniciales del proyecto, cuando solo se conocen los requisitos de partida, se hace depender del parámetro crítico del proyecto, el peso muerto en este caso. Se empleará distinta formulación para el cálculo de este peso.

Fórmula de A. Osorio:

$$P_{ST} = \left(\frac{L}{D}\right)^{1'376} \left(\frac{BD}{100}\right)^{0'7449} (0'0542 - 0'0017C_b) \ 1000 = 4668'52 \ t$$

Fórmula de J.L. García Garcés:

$$Z_{ST} = 0'416D + 1'73 = 7'64 m$$

 $X_{ST} = 0'482L + 0'12 = 85'29 m$

⁷ ALVARIÑO CASTRO , R., AZPÍROZ AZÍROZ, J., & MEIZOSO FERNÁNDEZ, M. (1997). *El proyecto básico del buque mercante*. Madrid: Fondo editorial de Ingeniería Naval: Colegio Oficial de Ingenieros Navales.

$$P_{ST} = 0'0243 L^{1'5} B D^{0'5} = 5897'03 t$$

Se elige este último valor como resultado, ya que nos proporciona un margen en la estimación del peso de la estructura, que se traduce en un pequeño margen en la estimación del peso en rosca.

Peso estructura			
A. Osorio		4668,52	
J.L. García Garcés		5897,03	
	Zst	7,64	
	Xst	85,29	
Pst (t)		5897,03	

Tabla 12. Valores calculados del peso de la estructura de acero.

11.2 Peso de la maquinaria

Puede descomponerse en el peso de la maquinaria propulsora y peso del resto de la maquinaria.

Para el peso de la maquinaria propulsora principal, como primera estimación, la Lloyd´s Register propone la siguiente formulación para buques con motor diésel lento y una hélice.

$$Pmp = a \left(\frac{BHP}{rpm}\right)^b + c BHP^d$$

Los coeficientes a, b, c y d se obtienen de la tabla proporcionada por *Meizoso Fernandez*⁸.

-

⁸ MEIZOSO, M. (1997). *Apuntes de Proyectos. Escuela Técnica Superior de Madrid.* Universidad Politécnica de Madrid.

Coeficiente	Petrolero	Carguero	Portacontenedor	Granelero	ОВО
		DIESE	L LENTOS		
a	9,38	9,38	9,38	9,38	9,38
b	0,84	0,84	0,84	0,84	0,84
С	0,59	0,56	0,63	0,56	0,62
d	0,70	0,70	0,70	0,70	0,70
e	0,00015	0,00019	0,00012	0,00015	0,00015
f	0,667	0,667	0,667	0,667	0,667
g	3,00	3,00	3,00	3,00	3,00
UNA HÉLICE					
i	0,67	0,71	0,67	0,67	0,67
h	1,00	1,00	1,00	1,00	1,00
j	0,0164	0,0164	0,0164	0,0164	0,0164

Tabla 13. Valores de los coeficientes en función del tipo de buque.

Como se desconoce el valor de la potencia propulsora BHP, se puede estimar mediante la fórmula de D.G.M. Watson dada en la bibliografía del *Proyecto Básico del Buque Mercante⁹*. Tomando la hipótesis inicial de que la velocidad en pruebas es igual al 110% de la velocidad de servicio y que las revoluciones por minuto son 115.

$$BHP = \frac{0'889 \, \Delta^{\frac{2}{3}} (40 - \frac{L_{pp}}{61} + 400(k - 1)^{2} - 12 \, CB}{15000 - 1'81 \, rpm \, \sqrt{L_{pp}}} \, V_{p}^{3}}$$

$$CB = k - \frac{0'5 * V}{\sqrt{3'28 \, L_{pp}}}$$

Peso maquinaria propulsora		
BHP (CV)	13366,50	
BHP (KW)	9967,40	
СВ	0,73	
rpm	115,00	
Pmp (t)	750,66	

Tabla 14. Valores calculados para el peso de la maquinaria propulsora.

Para la estimación del peso de la maquinaria restante, se tiene en cuenta toda maquinaria independiente de la propulsión, como podrían ser grupos generadores, bombas, calderas, intercambiadores, La Lloyd´s Register propone la siguiente formulación para el cálculo de peso de dicha maquinaria. Se supone una longitud de la línea de eje en la cámara de máquinas de 6 metros.

⁹ ALVARIÑO CASTRO, R., AZPÍROZ AZÍROZ, J., & MEIZOSO FERNÁNDEZ, M. (1997). *El proyecto básico del buque mercante*. Madrid: Fondo editorial de Ingeniería Naval: Colegio Oficial de Ingenieros Navales.

$$Prp = k Vcm + h + Lej (j Lej + 5)$$

Siendo Vcm el volumen de la cámara de máquinas, para su cálculo se debe realizar una primera estimación sobre la eslora de la cámara de máquinas. Se emplea formulación para graneleros proporcionada por la bibliografía *Proyecto Básico del Buque Mercante*¹⁰.

$$Lcm = 2'53\,L_{pp}^{0'34} + 3'87\,10^{-6}\,BHP^{1'5}$$

El volumen de la cámara de máquinas se calcula con la siguiente formulación. Donde *Lap* es la eslora del pique de popa, que se supone como el 4% de la eslora entre perpendiculares.

$$Vcm = L_{pp} B D (0'042 \frac{D}{T} - 0'04 C_b + \frac{(Lcm + Lap)(C_b - 0'02)}{L_{pp}} - 0'08$$

$$Lap = 4\% L_{pp}$$

Peso maquinaria restante		
Lcm (m)	18,55	
Lap (m)	7,07	
Vcm (m3)	4042,76	
Leje	6,00	
Prp (t)	149,852	

Tabla 15. Valores calculados para el peso de la maquinaria restante.

Finalmente, se realiza el sumatorio de la maquinaria propulsora y de la restante para obtener la total. A continuación, se calcula el centro de gravedad vertical de este peso.

$$Pm = Pmp + Prp$$

$$Zm = 0'17 T + 0'36 D$$

_

¹⁰ ALVARIÑO CASTRO , R., AZPÍROZ AZÍROZ, J., & MEIZOSO FERNÁNDEZ, M. (1997). *El proyecto básico del buque mercante*. Madrid: Fondo editorial de Ingeniería Naval: Colegio Oficial de Ingenieros Navales.

Peso maquinaria total	
Pm (t)	900,51
Zm (m)	6,79

Tabla 16. Valores calculados de la maquinaria total.

11.3 Peso del equipo y habilitación

De nuevo, se emplea la formulación para graneleros proporcionada por el *Proyecto Básico del Buque Mercante* ¹¹para la estimación del peso y del centro de gravedad vertical del mismo.

$$Ph = 1'125 L_{pp}^{0'8} B^{0'6} C_b^{0'1}$$

$$Zh = D + 1'25 + 0'01 (L_{pp} - 125)$$

Peso equipo y habilitación		
Ph (t)	501,51	
Zh (m)	15,99	

Tabla 17. Valores calculados del peso de equipo y habilitación.

11.4 Peso en rosca

Finalmente se puede obtener la primera estimación del peso en rosca de nuestro buque. Por tanto, se realizará el sumatorio de las tres partidas obtenidas anteriormente. Posteriormente se calculará el centro de gravedad vertical del peso en rosca del buque aplicando el Teorema de Varignon.

$$PR = Pst + Pm + Ph$$

$$KG = \frac{(Pst Zst) + (Pm Zm) + (Ph Zh)}{PR}$$

Peso en rosca		
PR (t)	7299,05	
KGrosca (m)	8,11	

Tabla 18. Valores calculados para el peso en rosca y su centro de gravedad.

¹¹ ALVARIÑO CASTRO , R., AZPÍROZ AZÍROZ, J., & MEIZOSO FERNÁNDEZ, M. (1997). *El proyecto básico del buque mercante.* Madrid: Fondo editorial de Ingeniería Naval: Colegio Oficial de Ingenieros Navales.

CUADERNILLO 2. DIMENSIONAMIENTO

Se puede observar que este peso en rosca es mayor que el calculado inicialmente a partir del peso muerto y el desplazamiento. En consecuencia, nos quedamos con el mayor de los dos por el momento, optando así por una postura conservadora en cuanto al peso del buque.

No obstante, se deben establecer unos márgenes de seguridad que puedan absorber futuros errores de cálculo. Podemos establecer una primera etapa con unos márgenes de seguridad de entre el 5-10% del peso en rosca y un 10-15% de su centro de gravedad vertical.

$$PR = 1'1 * 7299'05 = 8028'955 t$$

 $KG = 1'5 * 8'11 = 12'165 m$

Además, habiendo escogido este valor de peso en rosca, se puede obtener una nueva estimación del desplazamiento del buque.

$$\Delta = PR + PM = 8028'955 + 45000 = 53028'955 t$$

BIBLIOGRAFÍA

- ALMANSA, M. J. (2020-2021). Apuntes de la asignatura de proyectos. Universidad Politécnica de Cartagena.
- ALVARIÑO CASTRO , R., AZPÍROZ AZÍROZ, J., & MEIZOSO FERNÁNDEZ, M. (1997). *El proyecto básico del buque mercante*. Madrid: Fondo editorial de Ingeniería Naval: Colegio Oficial de Ingenieros Navales.
- MEIZOSO, M. (1997). *Apuntes de Proyectos. Escuela Técnica Superior de Madrid*. Universidad Politécnica de Madrid.
- PAPANIKOLAOU, A. (2014). Ship Design. Methodologies of Preliminary Design.

Ingeniería

UNIVERSIDAD POLITÉCNICA DE CARTAGENA GRADO EN ARQUITECTURA NAVAL E INGENIERÍA DE SISTEMAS MARINOS

ANTEPROYECTO DE UN **BUQUE GRANELERO DE** 45.000 TPM

CUADERNILLO 2. DIMENSIONAMIENTO

CUADERNILLO 3. PLANO DE FORMAS.

ÍNDICE

1.	INTRODUCCIÓN
2.	ESTUDIO DE LAS ZONAS DEL BUQUE
	.1 Zonas de proa
	2.1.1 Formas del buque
	2.1.2 Semiángulo de entrada a la flotación
	2.1.3 Abanico y lanzamiento
	2.1.4 Bulbo de proa
2	.2 Zona central
	.3 Zona de popa
	.4 Curva de áreas
	DIMENSIONES FINALES
	LIOGRAFÍA
	EXO I: PLANO DE FORMAS
AIV	EXO I. PLANO DE FORIVIAS

1. INTRODUCCIÓN

En el proyecto de cualquier buque, la definición de sus formas ocupa uno de los aspectos más relevantes. Se deben combinar dos aspectos en el diseño de las formas, que suelen ser contradictorios, son la disminución de la resistencia al avance y la correcta estiba de la carga.

Según nos indica el *Proyecto Básico del Buque Mercante* ¹existen distintas posibilidades para determinar las formas del buque:

- Derivación de las formas, a partir de un buque considerado bueno hidrodinámicamente.
- Generación de las formas, métodos que a partir de los parámetros principales del buque generan diversas alternativas de formas.
- Series sistemáticas, realizadas la mayoría de las veces por canales de ensayos.

Tras el proceso de definición de las formas es cuando podemos desarrollar la disposición general que tendrá el buque. La generación del plano de formas se realizará a través del programa *Maxsurf*, en el que se pueden generar las formas a partir de un buque base dado por el programa.

Inicialmente, se definirán las dimensiones principales en el programa, cumpliendo unos determinados requisitos e intentando que el buque sea lo más hidrodinámico posible. Se realizará una transformación del buque granelero base que ofrece *Maxsurf*, teniendo en cuenta que la modificación de algunas de las dimensiones puede generar aumentos de la resistencia al avance, aparición de cavitación, pérdida de maniobrabilidad del buque o incluso pérdida de estabilidad.

¹ ALMANSA, M. J. (2020-2021). Apuntes de la asignatura de proyectos. Universidad Politécnica de Cartagena.

2. ESTUDIO DE LAS ZONAS DEL BUQUE

En la modificación del buque granelero base habrá que tener en cuenta cada una de las zonas del buque, de popa a proa. En general, las características normales para un buque granelero con alto coeficiente de bloque incluyen un cuerpo cilíndrico elevado, un número de Froude menor a 0´2 y un coeficiente de la maestra cercano a la unidad. Respecto a las zonas de proa y popa, se estudiarán por separado.

2.1 Zonas de proa

Deben definirse teniendo en cuenta distintos aspectos, como las formas del buque, el semiángulo de entrada en la flotación, el diseño de la roda y el bulbo de proa.

2.1.1 Formas del buque

En el diseño de las formas de proa debe decidirse si se van a usar secciones en U o en V. Las secciones en V, aunque presentan mejor estabilidad y comportamiento en la mar, también inducen a una mayor resistencia por formación de olas. Las formas en V son recomendables para buques con Froude inferiores a 0´18 o superiores a 0´25, siendo las formas en U las mejores para los valores de Froude intermedios. En este caso, como Froude está alrededor de 0´19, se elegirá una disposición de formas en U de las secciones.

2.1.2 Semiángulo de entrada a la flotación

Este semiángulo de entrada influye bastante en la resistencia al avance del buque. Un ángulo excesivo puede generar una aparición temprana del flujo turbulento, lo que aumentaría la resistencia viscosa. Además, este ángulo también influye en la forma de las secciones de proa y de la curva de áreas.

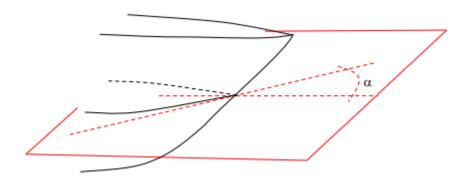


Ilustración 1. Semiángulo de entrada en la flotación sobre una carena.

Para su obtención se emplea la formulación dada por los *apuntes de la asignatura de proyectos*².

$$\alpha = 125'6 \frac{B}{L_{pp}} - 162'25 C_p^2 + 234'32 C_p^3 + 0'1551 XB^3 = 41'43^{\circ}$$

2.1.3 Abanico y lanzamiento

La proa del buque debe diseñarse de forma que se disminuya el cabeceo y el embarque de agua. El tipo de proa puede relacionarse con el coeficiente prismático del buque. Por lo general se utiliza una roda vertical para buques llenos, con alto coeficiente prismático. El valor recomendado de β , ángulo formado entre la intersección de la roda con el plano de flotación, es entre 15 y 30 grados.

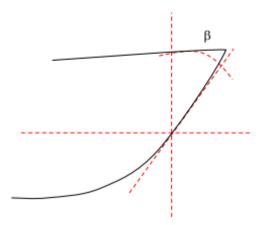


Ilustración 2. Ángulo formado entre la roda y el plano de flotación.

2.1.4 Bulbo de proa

Se denomina bulbo de proa al engrosamiento de la proa, en la roda, que normalmente es protuberante. Para buques lento, como es el caso, se produce una ola rompiente que forma parte de la resistencia viscosa. El efecto del bulbo es disminuir esta resistencia al engrosar las zonas por debajo de la flotación y permitiendo afinar las inmediatamente superiores.

² ALMANSA, M. J. (2020-2021). Apuntes de la asignatura de proyectos. Universidad Politécnica de Cartagena.

La incorporación del bulbo es parte del estudio del proyectista, en función de las distintas condiciones de cara, comportamiento en la mar, potencia propulsora, ... Por otro lado, existen distintos tipos de bulbos.

Tal y como se expone en los *apuntes de la asignatura de proyectos*³, los criterios orientativos para la elección de un bulbo o no, son los siguientes:

• Tienen bulbo de proa el 95% de los buques que cumplen:

$$0'65 < C_b < 0'82$$
 $5'5 < \frac{L}{B} < 7$

• No resulta adecuado el bulbo de proa para buques en los que se cumpla:

$$C_b \frac{B}{I} > 0'135$$

En nuestro caso, se obtiene una tabla con los siguientes resultados:

Parámetro	Valores recomendados	Valor calculado
Cb	0′65-0′82	0,77
L/B	5′5-7	6,449
Cb*(B/L)	< 0′135	0,120

Tabla 1. Valores para incorporación de bulbo de proa.

Se observa, por tanto, que según la bibliografía se recomienda la incorporación de bulbo de proa. El tipo de bulbo seleccionado será uno tipo delta o gota de agua, recomendados para buques con secciones en U y variaciones grandes de calado, como es el caso del granelero. Dependiendo del punto de máximo protuberancia del bulbo será alto, medio o bajo.

En la bibliografía empleada se da formulación para determinar las formas iniciales del bulbo de proa. Posteriormente, habrá que verificar el rendimiento global de la carena con la instalación del bulbo en proa.

³ ALMANSA, M. J. (2020-2021). Apuntes de la asignatura de proyectos. Universidad Politécnica de Cartagena.

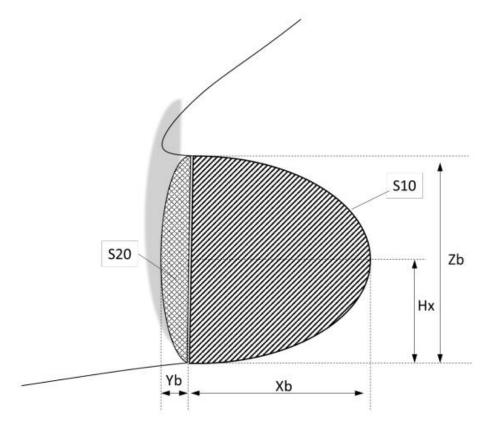


Ilustración 3. Parámetros de formas del bulbo de proa.

 Altura del punto de máxima protuberancia (Hx), es la altura sobre la línea de base del punto más a proa del bulbo. Normalmente se adimensionaliza empleando el calado (Hx/T). Se recomienda un rango 0,35 < Hx/T < 0,55. Para un calado de 9'83 metros, podemos establecer una altura, que cubrirá el rango de calados en lastre y en plena carga.

$$\frac{Hx}{7'25} = 0'45$$

$$Hx = 4'423 m$$

• Abscisa del punto de máxima protuberancia (Xb). Se define respecto a la perpendicular de proa. Se adimensionaliza con la eslora (Xb/Lpp). Es un parámetro menos crítico que la altura, y se calculará en la condición más desfavorable que será la de lastre.

$$\frac{Xb}{L_{pp}} = 0.1811 C_b \frac{B}{L_{pp}} + 0.0074$$

$$Xb = 5'132 m$$

Área transversal del bulbo S20/S10. Para valores de coeficiente de bloque próximos a 0'77 y una relación de Lpp/B de 6'4, se da un valor estimado de área transversal de 10'4, para una altura media de Hx/T = 0'45. Para buques graneleros se recomiendan valores entre el 9 y 12 %, por lo que se cumple esa condición.

$$Sa20 = 100 \frac{S20}{S10} = 10'1 \%$$

2.2 Zona central

En el anterior cuadernillo se calculó una primera estimación de la longitud del cuerpo cilíndrico respecto al porcentaje de la eslora entre perpendiculares. En este caso, tenía un valor de un 37´616 % de la eslora entre perpendiculares, alrededor de 66´648 metros. Si observamos los resultados de la curva de áreas, el valor arrojado por Maxsurf es 79 metros aproximadamente. Por otro lado, el fondo del buque es plano, lo que proporciona una buena estabilidad en aguas tranquilas.

2.3 Zona de popa

Al ser un buque lento y con una sola hélice, se ha seleccionado una forma de la popa en U, favoreciendo así el flujo de llegada al propulsor. Además, se ha elegido un espejo de popa casi vertical, el cual tiene una parte por debajo de la línea de flotación, lo que permitirá una reducción de la resistencia al avance evitando un desprendimiento anticipado de la capa límite.

2.4 Curva de áreas

La curva de áreas será recta en su zona más alta, debido a la alta longitud del cuerpo cilíndrico del buque, como consecuencia de ser un buque con formas llenas. Además, obtenemos unas "shoulders" suaves en la curva (radios amplios en la zona de unión con el cuerpo cilíndrico), lo que evita el desprendimiento de flujo.

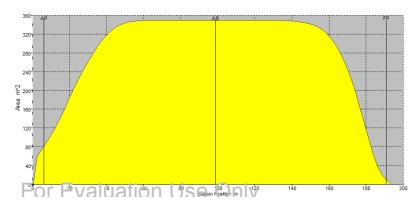
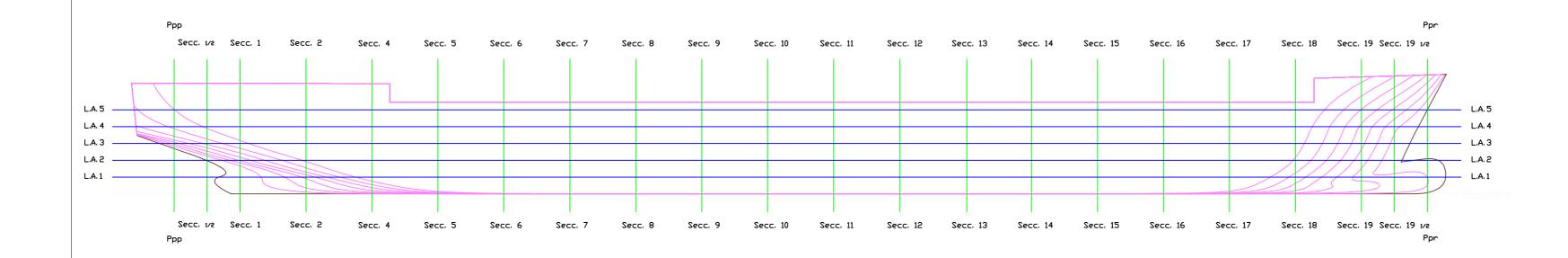
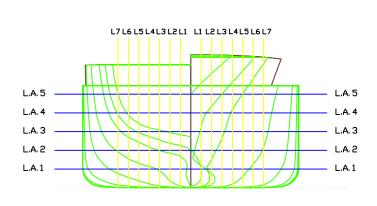


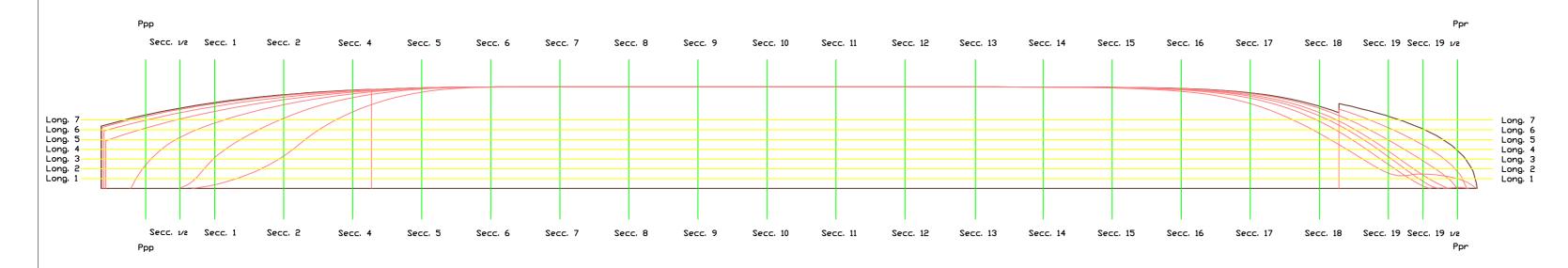
Ilustración 4. Curva de áreas obtenida de Maxsurf.

3. DIMENSIONES FINALES

Finalmente, tras llevar a cabo las transformaciones paramétricas correspondientes al buque base, se observa que han cambiado casi la totalidad de las dimensiones, en pequeña medida. La necesidad de adaptar tanto el bulbo de proa como las formas de popa han llevado a la variación de etas dimensiones.


Dimensión	Calculado	Real
LOA (m)	184,235	193,639
LBP (m)	176,699	184,671
B (m)	27,400	28,568
D (m)	14,219	15,847
T (m)	9,833	12,362
TPM (t)	45000	45000
Δ (t)	52299	55427
∇ (m3)	51023	54075
v (kn)	15	15
Fn	0,19	0,19
L/B	6,45	6,45
B/D	1,93	1,93
B/T	2,79	2,79
L/D	12,43	12,43
T/D	0,69	0,69
Cb	0,771	0,804
Cm	0,993	0,99
Ср	0,807	0,812
Cf	0,880	0,889
XB (m)	2,870	4,134
LP (m)	66,468	79,784


Tabla 2. Comparación de resultados calculados y reales del buque.


BIBLIOGRAFÍA

ALMANSA, M. J. (2020-2021). Apuntes de la asignatura de proyectos. Universidad Politécnica de Cartagena.

ANEXO I: PLANO DE FORMAS

CARACTERÍSTICAS PRINCIPALES

Eslora total	193,693	m
Eslora entre perpendiculares	671, 184	m
Manga de proyecto	28,568	m
Calado de proyecto	12,362	m

CARACTEÍSTICAS DE TRAZADO

Separación	entre	secciones		9,719	m
Separación	entre	líneas de	agua	2,472	m
Separación	entre	longitudino	iles	1,375	m

Universidad Politécnica de Cartagena

Fdo. Ángel Pedreño Rubio

PLANO DE FORMAS Buque granelero 45000 tpm

ESCALA 1:500

ARCHIVO: Plano de formas FECHA: Agosto 2023 PLANO Nº 1 HOJA Nº 1

Técnica Naval y

Escuela Ingeniería Superior Oceánica

UNIVERSIDAD POLITÉCNICA DE CARTAGENA GRADO EN ARQUITECTURA NAVAL E INGENIERÍA DE SISTEMAS MARINOS

ANTEPROYECTO DE UN **BUQUE GRANELERO DE** 45.000 TPM

CUADERNILLO 4. CÁLCULOS DE ARQUITECTURA NAVAL.

SEPTIEMBRE DE 2023 ÁNGEL PEDREÑO RUBIO

ÍNDICE

1.		INTRODUCCIÓN	2
2.		ARQUEO	2
	2.	1 Arqueo bruto	2
	2.	2 Arqueo neto	3
3.		FRANCOBORDO	4
	3.	1 Capítulo I. Generalidades	5
		3.1.1 Regla 3.1 – Eslora	5
		3.1.2 Regla 3.4 – Manga	5
		3.1.3 Regla 3.5 – Puntal de trazado	6
		3.1.4 Regla 3.6 – Puntal de francobordo	6
		3.1.5 Regla 3.7 – Coeficiente de bloque	6
	3.	2 Capítulo III. Francobordos	6
		3.2.1 Regla 27 – Tipos de buques	6
		3.2.2 Regla 28 – Francobordo tabular	7
		3.2.3 Regla 30 – Corrección por coeficiente de bloque	7
		3.2.3 Regla 31 – Corrección por puntal	7
		3.2.4 Regla 37 - Reducción por superestructura	7
		3.2.5 Francobordo de verano	8
		3.2.6 Francobordo tropical y de agua dulce	8
		3.2.7 Francobordo de invierno y para el Atlántico Norte	9
		3.2.8 Resumen de francobordos calculados	9
4.		CURVAS HIDROSTÁTICAS	9
	4.	1 Trimado de -1'5 metros	. 10
	4.	2 Trimado de 0 metros	. 14
	4.	3 Trimado de 1´5 metros	. 19
5.		CURVAS DE BONJEAN	. 23
6.		CURVAS KN	. 25
	6.	1 Trimado de -1'5 metros	. 25
	6.	2 Trimado de 0 metros	. 26
	6.	3 Trimado de 1´5 metros	. 27
DΙ	DI	IOGRAFÍA	20

1. INTRODUCCIÓN

En el presente cuadernillo se obtendrán los cálculos hidrostáticos básicos del buque, así como el arqueo bruto y neto, y el francobordo. Para ello, se usará como herramienta de apoyo el programa *Maxsurf*, ya empleado anteriormente.

Las curvas hidrostáticas son una serie de diagramas que representan las diferentes características geométricas del buque. Las curvas normalmente más calculadas por su relevancia son:

- Curvas hidrostáticas o carenas rectas.
- Curvas de Bonjean.
- Curvas transversales de estabilidad o curvas KN.

2. ARQUEO

El concepto de arqueo se emplea para medir la capacidad comercial de los buques (tamaño del buque y su volumen de carga). La Organización Marítima Internacional (OMI) lo recomienda y emplea en Convenios Internacionales, reglamentos o como medida estadística del tamaño de una flota específica de buques. Además, el arqueo determina, entre otras, el número mínimo de tripulantes que debe navegar en el buque, la normativa aplicable, etc.

Normalmente se determina a través del Convenio Internacional de Arqueo de Londres adoptado en 1969 (Arqueo GT) y el sistema de arqueo en toneladas *Moorsom* (Arqueo TRB), obligatorio para todos los buques pesqueros menores de 24 metros. Por otro lado, los canales de Panamá y Suez disponen de su propia normativa de arqueo de buques.

2.1 Arqueo bruto

Según el Convenio Internacional de Arqueo de 1969, se defino como la expresión del tamaño total de un buque, determinada de acuerdo con las disposiciones del Convenio. Se calcula como:

$$GT = K_1 V$$

Donde K_1 es una constante que puede estimarse como:

$$K_1 = 0'2 + 0'02 \log(V)$$

V es el sumatorio de todos los volúmenes de los espacios cerrados del buque.

	Volume (m3)
Bajo cubierta principal	79502,084
Castillo	1602,253
Toldilla	3057,697
Cubierta A	1120,243
Cubierta B	1120,243
Cubierta C	910,816
Cubierta D	910,816
Cubierta E	700,453
Cubierta del puente	715,281
Brazola de esotillas	869,611
Total	90509,497

Tabla 1. Volúmenes de los espacios cerrados del buque.

Finalmente, el arqueo bruto toma el valor de 27074'457 GT.

2.2 Arqueo neto

Se puede calcular como:

$$NT = K_2 V_C \left(\frac{4 d}{3 D}\right)^2 + K_3 \left(N_1 + \frac{N_2}{10}\right)$$

Siendo V_C el volumen total de espacios de carga, d el calado de trazado, D el puntal de trazado y K_2 y K_3 son constantes que pueden estimarse como:

$$K_2 = K_1$$

$$K_3 = 1.25 * \frac{GT + 10000}{10000}$$

Los valores N_1,N_2 hacen referencia a la cantidad de pasajeros y de tripulación, respectivamente.

Siguiendo la formulación expuesta, quedan los siguientes resultados:

K1	0,3		
К2	0,3		
К3	4,634		
d	12,362		
D	15,847		
Vc	55644,694		
N1	0		
N2	26		

Tabla 2. Coeficientes obtenidos para calcular el arqueo neto.

De forma que el arqueo neta toma como valor 18071'553 NT.

3. FRANCOBORDO

El francobordo se puede definir como una la distancia vertical, medida en la sección media del buque, entre el borde superior de la línea de cubierta y el borde superior de la línea de francobordo/carga correspondiente.

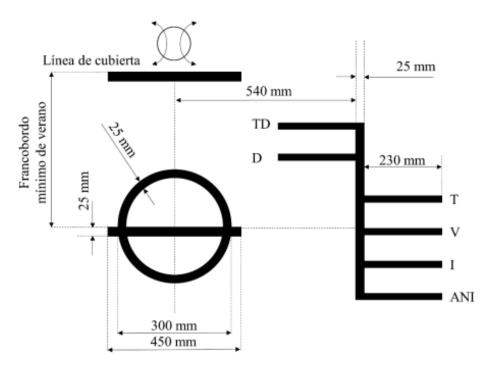


Ilustración 1. Marcas y líneas de francobordo.

CUADERNILLO 4. CÁLCULOS DE ARQUITECTURA NAVAL.

Puede considerarse como un elemento de gran importancia en el diseño de un buque y cuyo valor viene establecido por el Convenio Internacional de Líneas de Máxima Carga de 1966, redactado por la Organización Marítima Internacional (OMI).

Se establecen tres funciones fundamentales del francobordo:

- Como reserva de flotabilidad, para cuando el buque navegue entre olas, el agua embarcada resultante de los movimientos de este deberá ser mínima.
- En el caso de que se produzca una inundación en el buque, exista una reserva de flotabilidad que evite el hundimiento del buque o en caso inevitable de pérdida del buque, se retrase el máximo tiempo posible.
- El francobordo aumenta el ángulo de estabilidad nula, referido a la estabilidad transversal del buque.

Es preciso indicar que la dimensión principal para llevar a cabo el cálculo del francobordo es la eslora de francobordo, la cual se define como el máximo de los siguientes valores, medidos al 85 % del mínimo puntal de trazado:

- 96% de la eslora desde el extremo de la roda hasta el extremo del codaste.
- La eslora desde el extremo de la roda hasta el eje de la mecha del timón.

3.1 Capítulo I. Generalidades

3.1.1 Regla 3.1 – Eslora

Se tomará el valor mayor de los dos comentados anteriormente.

96% de L (m)	188,552
L mecha del timón-roda (m)	187,352

Tabla 3. Esloras de francobordo calculadas.

3.1.2 Regla 3.4 – Manga

Se selecciona la máxima manga del buque, 28'586 metros.

3.1.3 Regla 3.5 – Puntal de trazado

Será el puntal a la mitad de la eslora de francobordo:

Tabla 4: Puntal de trazado.

3.1.4 Regla 3.6 – Puntal de francobordo

El puntal de francobordo se define como la suma del puntal de trazado en el centro del buque más el espesor de la cubierta de francobordo en el costado. Se puede suponer un espesor aproximado de 22 mm de la chapa de trancanil:

Puntal de trazado (m)	15,847
Espesor chapa trancanil (mm)	22
Puntal de francobordo (m)	15,869

Tabla 5. Puntal de francobordo calculado.

3.1.5 Regla 3.7 – Coeficiente de bloque

El coeficiente de bloque se determinará a partir del volumen del desplazamiento de trazado, con el 85% del puntal mínimo del trazado y la eslora y manga máximas:

$$C_b = \frac{\nabla}{LBT\ 0.85} = \mathbf{0.715}$$

3.2 Capítulo III. Francobordos

3.2.1 Regla 27 – Tipos de buques

- Tipo A: Se trata de buques para transportar únicamente cargas líquidas a granel que tienen una alta integridad de la cubierta expuesta a la intemperie y una gran resistencia a la inundación, debido a su alto grado de compartimentación o subdivisión.
- Tipo B: Son todos aquellos buques que no cumplan las condiciones referidas al tipo de buque anterior.

Nuestro buque lo definimos como **tipo B**, ya que no cumple los requisitos para ser de tipo A.

3.2.2 Regla 28 - Francobordo tabular

El francobordo para los buques tipo B se calcula mediante la tabla 28.2 del Convenio. Entrando en la tabla con una eslora de 188´552 metros, y mediante interpolación lineal, obtenemos un valor de francobordo de **3071´93 milímetros**.

L (m)	Francobordo (mm)
188	3062
188,552	3071,93
189	3080

Tabla 6. Cálculo de francobordo.

3.2.3 Regla 30 – Corrección por coeficiente de bloque

Cuando el coeficiente de bloque sea superior a 0´68, el francobordo tabular obtenido en la regla 28, se multiplicará por el factor.

$$\frac{C_b + 0'68}{1'36} = 1'0257$$

En este caso, el coeficiente de bloque tiene un valor de 0'715, por lo que aplicará la corrección. El valor del francobordo tabular corregido queda como **3150'99 milímetros**.

3.2.3 Regla 31 – Corrección por puntal

En este caso, D excede el valor de $\frac{L}{15}$, por lo que el francobordo se aumentará en:

$$\left(D - \frac{L}{15}\right)R = 824'72 \, mm$$

siendo R = 250 para esloras mayores de 120 m

De esta forma el nuevo francobordo corregido da un valor de 3975´71 milímetros.

3.2.4 Regla 37 - Reducción por superestructura

Cuando la longitud total efectiva de superestructuras sea inferior a 1 L, la reducción del francobordo será un porcentaje obtenido de la tabla siguiente:

		Longitud efectiva total de superestructuras y troncos									
	0	0,1 L	0,2 L	0,3 L	0,4 L	0,5 L	0,6 L	0,7 L	0,8 L	0,9 L	1 L
Porcentaje de reducción para todos los tipos de superestructuras	0	7	14	21	31	41	52	63	75,3	87,7	100

Tabla 7. Correcciones de reducción de francobordo por superestructura.

L castillo (m)	19,458
% L francobordo (m)	10%
Corrección castillo	7
L toldilla (m)	38,083
% L toldilla (m)	20%
Corrección toldilla	14

Tabla 8. Valores de las correcciones que aplican.

$$C = \frac{1070}{100} (14 + 7) = 224'7 \, mm$$

Finalmente, se aplica una reducción de 224'7 milímetros sobre el último valor del francobordo obtenido, quedando entonces un francobordo corregido de **3751'01 milímetros**.

3.2.5 Francobordo de verano

Es el obtenido tras la última corrección:

$$FB_{verano} = 3751'01 mm$$

 $T_{\text{max}\,verano} = 12'362 m$

3.2.6 Francobordo tropical y de agua dulce

El francobordo tropical mínimo será el francobordo de verano menos 1/48 del calado de verano, medido desde el canto alto de la quilla al centro del disco de la marca de francobordo.

$$FB_{tropical} = FB_{verano} - \frac{1}{48}T_{\text{max}\,verano} = 3750'76\,mm$$

3.2.7 Francobordo de invierno y para el Atlántico Norte

El francobordo de invierno mínimo será el francobordo de verano más 1/48 del calado de verano, medido desde el canto alto de la quilla al centro del disco de la marca de francobordo.

$$FB_{invierno} = FB_{verano} + \frac{1}{48}T_{\text{max}\,verano} = 3751'27 \, mm$$

3.2.8 Resumen de francobordos calculados

Francobordo de verano (mm)	3751′01
Francobordo de tropical y de agua dulce (mm)	3750′76
Francobordo de invierno y del Atlántico Norte (mm)	3751′27

Tabla 9. Francobordos obtenidos mediante el Convenio Internacional sobre Líneas de Carga.

4. CURVAS HIDROSTÁTICAS

Las curvas hidrostáticas se han obtenido a través del programa *Maxsurf Stability*, al que se le introduce buque modelado en *Maxsurf Modeler*. Las características hidrostáticas del buque intacto son las siguientes:

Draft Amidships m	12,362
Displacement t	55427
Draft at FP m	12,362
Draft at AP m	12,362
Draft at LCF m	12,362
WL Length m	190,516
Beam max extents on WL m	28,568
Wetted Area m^2	8554,844
Waterpl. Area m^2	4884,986
Prismatic coeff. (Cp)	0,812
Block coeff. (Cb)	0,804
Max Sect. area coeff. (Cm)	0,99
Waterpl. area coeff. (Cwp)	0,889
LCB from zero pt. (+ve fwd) m	96,775
LCF from zero pt. (+ve fwd) m	92,954

KB m	6,513
KG m	15,181
BMt m	5,504
BML m	230,327
GMt m	-3,164
GML m	221,659
KMt m	12,017
KML m	236,84
Immersion (TPc) tonne/cm	50,071
MTc tonne.m	664,257

Tabla 10. Características hidrostáticas obtenidas de Maxsurf Stability.

4.1 Trimado de -1'5 metros

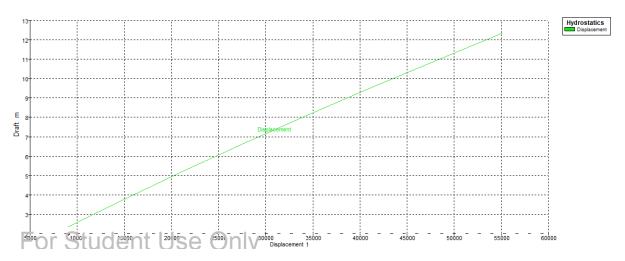
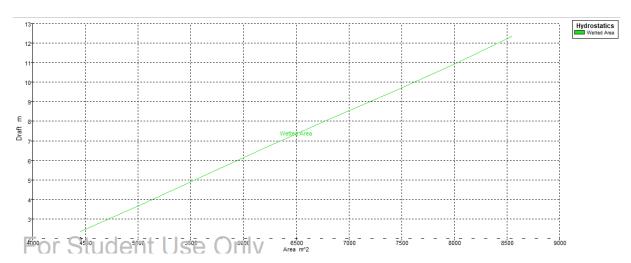

Dueft Amidehine m	2.262	2 701	F 210	C C 40
Draft Amidships m	2,362	3,791	5,219	6,648
Displacement t	9021	15000	21191	27594
Heel deg	0	0	0	0
Draft at FP m	3,112	4,541	5,969	7,398
Draft at AP m	1,612	3,041	4,469	5,898
Draft at LCF m	2,392	3,808	5,223	6,638
Trim (+ve by stern) m	-1,5	-1,5	-1,5	-1,5
WL Length m	181,273	179,144	175,676	179,947
Beam max extents on WL m	28,563	28,568	28,568	28,568
Wetted Area m^2	4448,486	5046,551	5624,052	6202,594
Waterpl. Area m^2	4005,585	4155,21	4301,089	4441,268
Prismatic coeff. (Cp)	0,666	0,721	0,765	0,769
Block coeff. (Cb)	0,55	0,633	0,693	0,71
Max Sect. area coeff. (Cm)	0,945	0,966	0,974	0,978
Waterpl. area coeff. (Cwp)	0,774	0,812	0,857	0,864
LCB from zero pt. (+ve fwd) m	109,351	106,204	104,35	102,921
LCF from zero pt. (+ve fwd) m	102,301	100,672	99,055	97,356
KB m	1,281	2,008	2,742	3,483
KG m	12,362	12,362	12,362	12,362
BMt m	27,148	17,249	12,656	10,023
BML m	793,672	523,369	409,92	346,794
GMt m	15,98	6,833	2,99	1,109
GML m	782,504	512,953	400,253	337,88
KMt m	28,429	19,256	15,398	13,506
KML m	794,927	525,36	412,648	350,266
Immersion (TPc) tonne/cm	41,057	42,591	44,086	45,523
MTc tonne.m	382,25	416,654	459,29	504,861
RM at 1deg = GMt.Disp.sin(1) tonne.m	2515,957	1788,879	1105,686	534,248
Max deck inclination deg	0,4654	0,4654	0,4654	0,4654
Trim angle (+ve by stern) deg	-0,4654	-0,4654	-0,4654	-0,4654

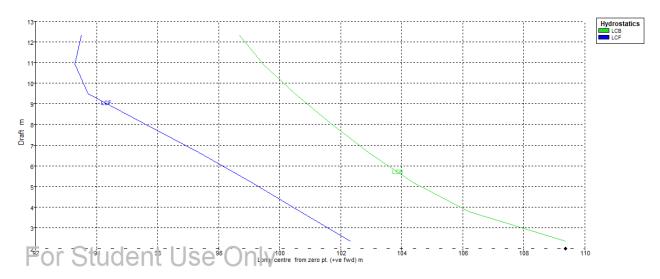
Tabla 11. Características hidrostáticas para condición de buque intacto. Trimado -1'5 m.

Draft Amidships m	8,076	9,505	10,933	12,362
Displacement t	34200	41012	48010	55123
Heel deg	0	0	0	0
Draft at FP m	8,826	10,255	11,683	13,112
Draft at AP m	7,326	8,755	10,183	11,612
Draft at LCF m	8,051	9,465	10,89	12,321
Trim (+ve by stern) m	-1,5	-1,5	-1,5	-1,5
WL Length m	184,61	188,994	189,925	190,84
Beam max extents on WL m	28,568	28,568	28,568	28,568
Wetted Area m^2	6796,225	7413,957	8001,432	8549,778
Waterpl. Area m^2	4579,532	4728,343	4821,476	4893,683
Prismatic coeff. (Cp)	0,769	0,768	0,78	0,789
Block coeff. (Cb)	0,719	0,724	0,74	0,754
Max Sect. area coeff. (Cm)	0,982	0,984	0,987	0,988
Waterpl. area coeff. (Cwp)	0,868	0,876	0,889	0,898
LCB from zero pt. (+ve fwd) m	101,665	100,492	99,457	98,672
LCF from zero pt. (+ve fwd) m	95,526	93,715	93,295	93,499
KB m	4,23	4,983	5,741	6,498
KG m	12,362	12,362	12,362	12,362
BMt m	8,315	7,122	6,224	5,523
BML m	307,344	283,215	256,113	232,727
GMt m	0,159	-0,273	-0,404	-0,341
GML m	299,187	275,82	249,484	226,863
KMt m	12,545	12,104	11,964	12,021
KML m	311,563	288,188	261,845	239,218
Immersion (TPc) tonne/cm	46,94	48,466	49,42	50,16
MTc tonne.m	554,07	612,542	648,6	677,165
RM at 1deg = GMt.Disp.sin(1) tonne.m	94,684	-195,228	-338,837	-328,23
Max deck inclination deg	0,4654	0,4654	0,4654	0,4654
Trim angle (+ve by stern) deg	-0,4654	-0,4654	-0,4654	-0,4654

Tabla 12. Características hidrostáticas para condición de buque intacto. Trimado -1'5 m.

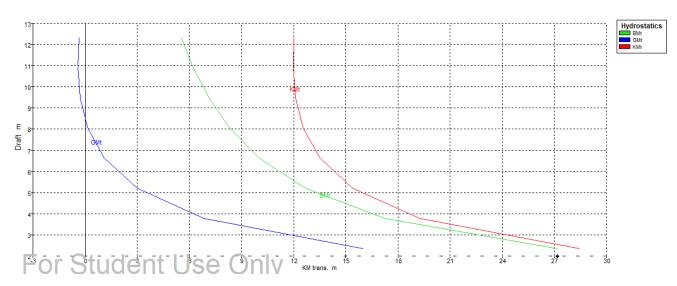

CUADERNILLO 4. CÁLCULOS DE ARQUITECTURA NAVAL.

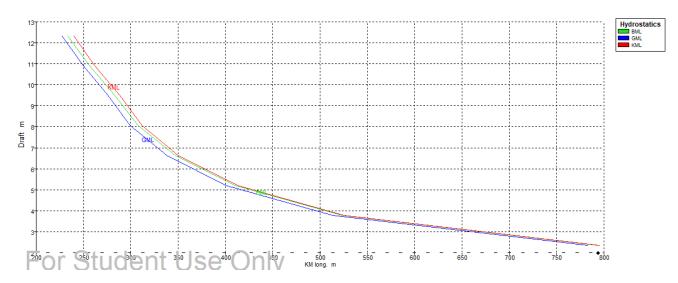
Gráfica 1. Desplazamiento-calado para trimado de -1'5 m.

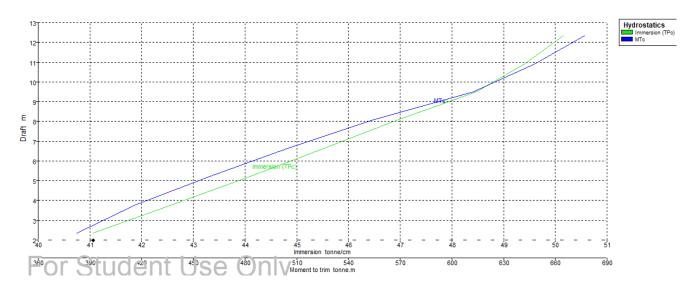


Gráfica 2. Área máxima sección-calado para trimado de -1'5 m.

Gráfica 3. Superficie mojada-calado para trimado de -1'5 m.


CUADERNILLO 4. CÁLCULOS DE ARQUITECTURA NAVAL.


Gráfica 4. Abscisa del centro de carena y centro de flotación-calado para trimado de -1'5 m.


Gráfica 5. KB-calado para trimado de 1'5 m.

Gráfica 6. GM, KM, BM transversales-calado para trimado de 1'5 m.

Gráfica 7. GM, KM, BM longitudinales-calado para trimado de 1'5 m.

Gráfica 8. MTC, TCI-calado para trimado 1'5 m.

4.2 Trimado de 0 metros

Draft Amidships m	2,362	3,791	5,219	6,648
Displacement t	8912	14945	21195	27663
Heel deg	0	0	0	0
Draft at FP m	2,362	3,791	5,219	6,648
Draft at AP m	2,362	3,791	5,219	6,648
Draft at LCF m	2,362	3,791	5,219	6,648
Trim (+ve by stern) m	0	0	0	0
WL Length m	180,917	180,117	177,017	181,662
Beam max extents on WL m	28,552	28,568	28,568	28,568
Wetted Area m^2	4450,706	5054,446	5651,712	6239,568
Waterpl. Area m^2	4042,907	4194,289	4342,109	4489,036

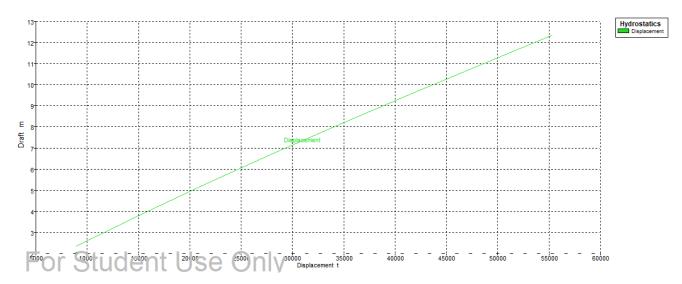
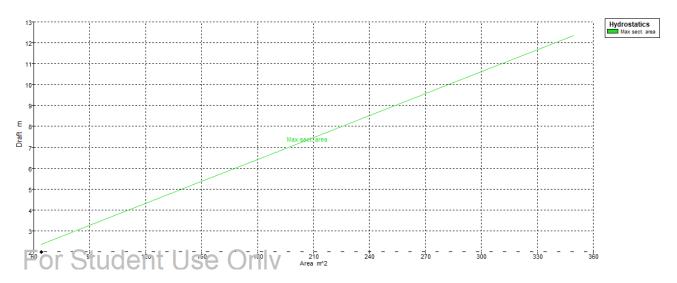
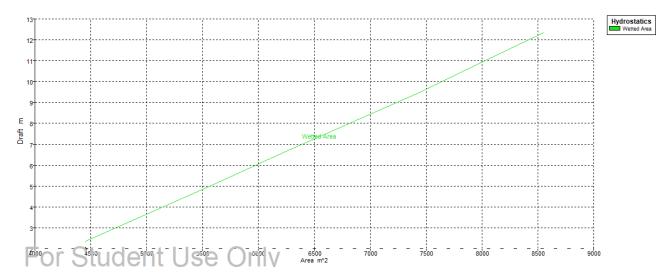

Prismatic coeff. (Cp)	0,752	0,773	0,803	0,797
Block coeff. (Cb)	0,713	0,748	0,783	0,782
Max Sect. area coeff. (Cm)	0,948	0,967	0,976	0,981
Waterpl. area coeff. (Cwp)	0,783	0,815	0,859	0,865
LCB from zero pt. (+ve fwd) m	102,836	101,901	100,973	100,047
LCF from zero pt. (+ve fwd) m	101,385	99,659	97,88	96,154
KB m	1,241	1,984	2,729	3,48
KG m	12,362	12,362	12,362	12,362
BMt m	27,747	17,43	12,748	10,078
BML m	826,204	541,534	422,193	357,854
GMt m	16,626	7,052	3,115	1,196
GML m	815,083	531,155	412,56	348,971
KMt m	28,988	19,414	15,477	13,558
KML m	827,445	543,517	424,922	361,333
Immersion (TPc) tonne/cm	41,44	42,991	44,507	46,013
MTc tonne.m	393,35	429,85	473,506	522,74
RM at 1deg = GMt.Disp.sin(1) tonne.m	2585,946	1839,356	1152,312	577,366
Max deck inclination deg	0	0	0	0
Trim angle (+ve by stern) deg	0	0	0	0

Tabla 13 . Características hidrostáticas para condición de buque intacto. Trimado 0 m.

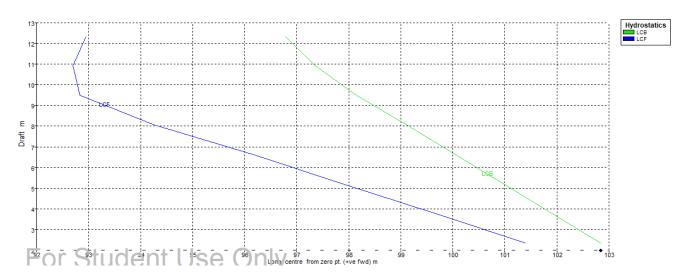

Draft Amidships m	8,076	9,505	10,933	12,362
Displacement t	34342	41223	48234	55341
Heel deg	0	0	0	0
Draft at FP m	8,076	9,505	10,933	12,362
Draft at AP m	8,076	9,505	10,933	12,362
Draft at LCF m	8,076	9,505	10,933	12,362
Trim (+ve by stern) m	0	0	0	0
WL Length m	186,42	188,691	189,605	190,516
Beam max extents on WL m	28,568	28,568	28,568	28,568
Wetted Area m^2	6841,974	7445,813	7997,278	8554,844
Waterpl. Area m^2	4632,916	4750,807	4822,03	4884,986
Prismatic coeff. (Cp)	0,791	0,795	0,804	0,811
Block coeff. (Cb)	0,779	0,785	0,795	0,802
Max Sect. area coeff. (Cm)	0,985	0,987	0,989	0,99
Waterpl. area coeff. (Cwp)	0,87	0,881	0,89	0,898
LCB from zero pt. (+ve fwd) m	99,106	98,147	97,36	96,775
LCF from zero pt. (+ve fwd) m	94,252	92,833	92,698	92,954
KB m	4,236	4,997	5,756	6,513
KG m	12,362	12,362	12,362	12,362
BMt m	8,351	7,13	6,211	5,504
BML m	317,649	285,66	254,716	230,327
GMt m	0,224	-0,235	-0,394	-0,345
GML m	309,522	278,295	248,11	224,478
KMt m	12,586	12,127	11,968	12,017

KML m	321,884	290,657	260,472	236,84
Immersion (TPc) tonne/cm	47,487	48,696	49,426	50,071
MTc tonne.m	575,591	621,227	648,034	672,705
RM at 1deg = GMt.Disp.sin(1) tonne.m	134,417	-168,899	-331,909	-333,16
Max deck inclination deg	0	0	0	0
Trim angle (+ve by stern) deg	0	0	0	0

Tabla 14 . Características hidrostáticas para condición de buque intacto. Trimado 0 m.



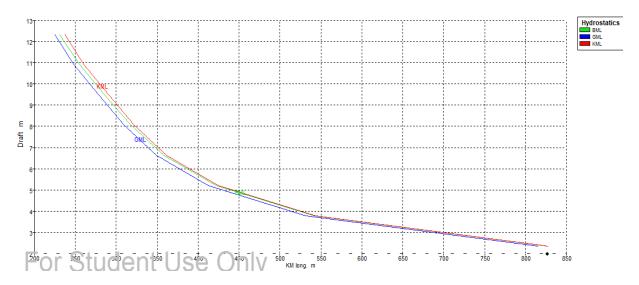
Gráfica 9. Desplazamiento-calado para trimado de 0 m.



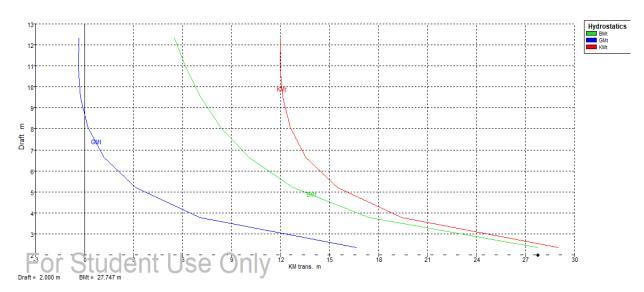
Gráfica 10. Área máxima sección-calado para trimado de 0 m.

CUADERNILLO 4. CÁLCULOS DE ARQUITECTURA NAVAL.

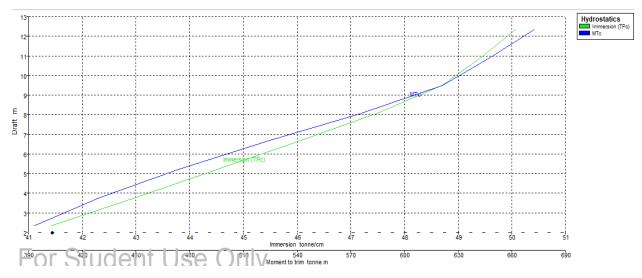
Gráfica 11. Superficie mojada-calado para trimado de 0 m.



Gráfica 12. LCB, LCF-calado para trimado de 0 m.



Gráfica 13. KB-calado para trimado de 0 m.


CUADERNILLO 4. CÁLCULOS DE ARQUITECTURA NAVAL.

Gráfica 14. KM, GM, BM longitudinal-calado para trimado de 0 m.

Gráfica 15. KM, GM, BM transversal-calado para trimado de 0 m.

Gráfica 16. MTC, TCI-calado para rimado de 0 m.

4.3 Trimado de 1'5 metros

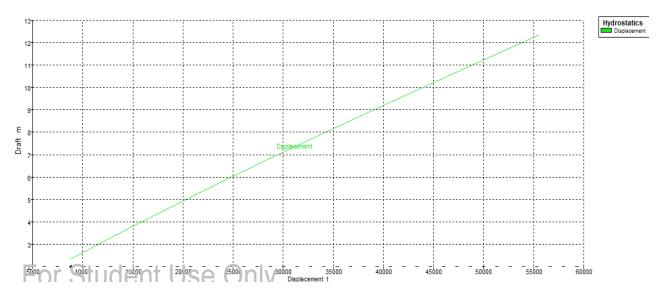
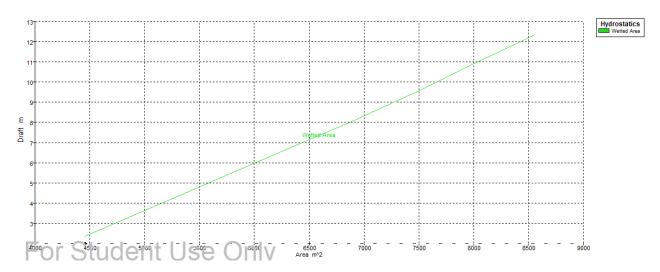
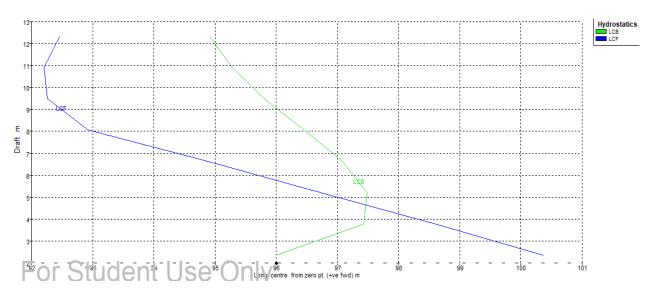

Draft Amidships m	2,362	3,791	5,219	6,648
Displacement t	8834	14926	21242	27778
Heel deg	0	0	0	0
Draft at FP m	1,612	3,041	4,469	5,898
Draft at AP m	3,112	4,541	5,969	7,398
Draft at LCF m	2,348	3,791	5,234	6,678
Trim (+ve by stern) m	1,5	1,5	1,5	1,5
WL Length m	179,509	181,567	184,808	183,516
Beam max extents on WL m	28,565	28,568	28,568	28,568
Wetted Area m^2	4453,096	5063,655	5675,007	6281,45
Waterpl. Area m^2	4076,616	4238,686	4386,92	4538,76
Prismatic coeff. (Cp)	0,665	0,71	0,729	0,759
Block coeff. (Cb)	0,554	0,629	0,666	0,706
Max Sect. area coeff. (Cm)	0,938	0,96	0,97	0,976
Waterpl. area coeff. (Cwp)	0,795	0,817	0,831	0,866
LCB from zero pt. (+ve fwd) m	95,996	97,429	97,49	97,085
LCF from zero pt. (+ve fwd) m	100,359	98,593	96,722	94,879
KB m	1,259	2	2,749	3,505
KG m	12,362	12,362	12,362	12,362
BMt m	28,12	17,56	12,815	10,119
BML m	857,22	561,805	435,432	369,082
GMt m	16,996	7,189	3,193	1,25
GML m	846,097	551,434	425,811	360,213
KMt m	29,378	19,56	15,564	13,624
KML m	858,451	563,787	438,167	372,575
Immersion (TPc) tonne/cm	41,785	43,447	44,966	46,522
MTc tonne.m	404,744	445,696	489,801	541,827
RM at 1deg = GMt.Disp.sin(1) tonne.m	2620,408	1872,736	1183,91	606,021
Max deck inclination deg	0,4654	0,4654	0,4654	0,4654
Trim angle (+ve by stern) deg	0,4654	0,4654	0,4654	0,4654

Tabla 15. Características hidrostáticas para condición de buque intacto. Trimado 1'5 m.

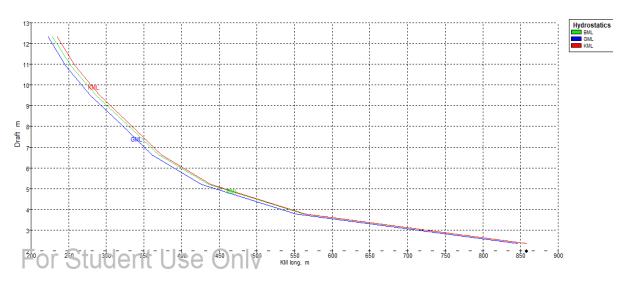
Draft Amidships m	8,076	9,505	10,933	12,362
Displacement t	34537	41465	48481	55580
Heel deg	0	0	0	0
Draft at FP m	7,326	8,755	10,183	11,612
Draft at AP m	8,826	10,255	11,683	13,112
Draft at LCF m	8,122	9,556	10,985	12,412
Trim (+ve by stern) m	1,5	1,5	1,5	1,5
WL Length m	187,541	188,393	189,301	190,208
Beam max extents on WL m	28,568	28,568	28,568	28,568
Wetted Area m^2	6896,531	7472,734	8008,159	8560,656

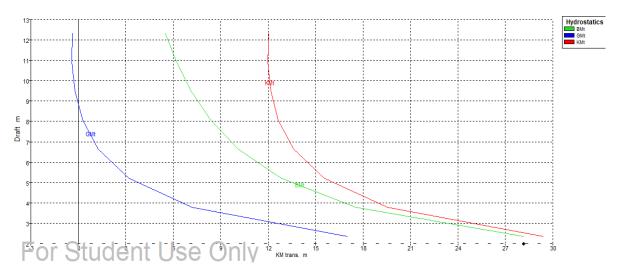
Waterpl. Area m^2	4689,434	4764,576	4820,935	4876,897
Prismatic coeff. (Cp)	0,763	0,777	0,788	0,797
Block coeff. (Cb)	0,719	0,738	0,754	0,766
Max Sect. area coeff. (Cm)	0,98	0,983	0,985	0,987
Waterpl. area coeff. (Cwp)	0,875	0,885	0,891	0,898
LCB from zero pt. (+ve fwd) m	96,457	95,798	95,279	94,901
LCF from zero pt. (+ve fwd) m	92,922	92,264	92,208	92,467
KB m	4,268	5,033	5,791	6,546
KG m	12,362	12,362	12,362	12,362
BMt m	8,375	7,126	6,194	5,483
BML m	328,491	286,179	252,942	227,959
GMt m	0,264	-0,226	-0,404	-0,363
GML m	320,38	278,828	246,344	222,113
KMt m	12,643	12,158	11,984	12,028
KML m	332,748	291,203	258,725	234,497
Immersion (TPc) tonne/cm	48,067	48,837	49,415	49,988
MTc tonne.m	599,164	626,057	646,713	668,491
RM at 1deg = GMt.Disp.sin(1) tonne.m	159,285	-163,604	-341,845	-352,236
Max deck inclination deg	0,4654	0,4654	0,4654	0,4654
Trim angle (+ve by stern) deg	0,4654	0,4654	0,4654	0,4654


Tabla 16. Características hidrostáticas para condición de buque intacto. Trimado 1'5 m.

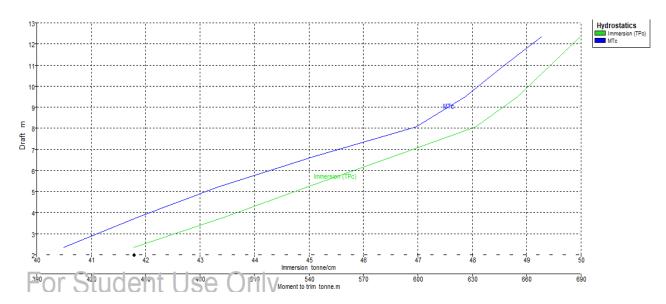

Gráfica 17. Desplazamiento-calado para trimado de 1'5 m.

Gráfica 18. Área máxima sección-calado para trimado de 1'5 m.

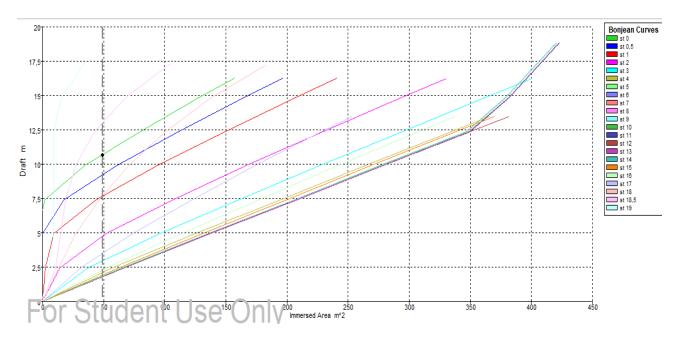

Gráfica 19. Superficie mojada-calado para trimado de 1'5 m.


Gráfica 20. LCB, LCF-calado para trimado de 1'5 m.

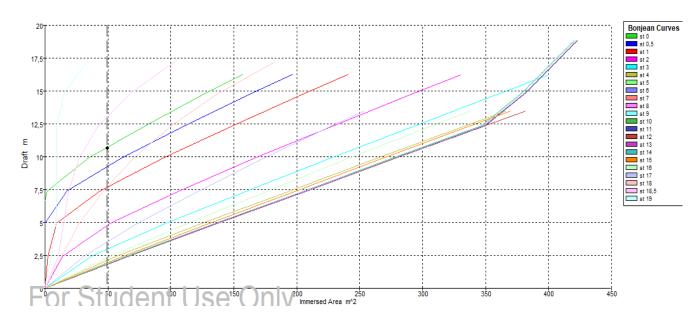
Gráfica 21. KB-calado para trimado de 1'5 m.



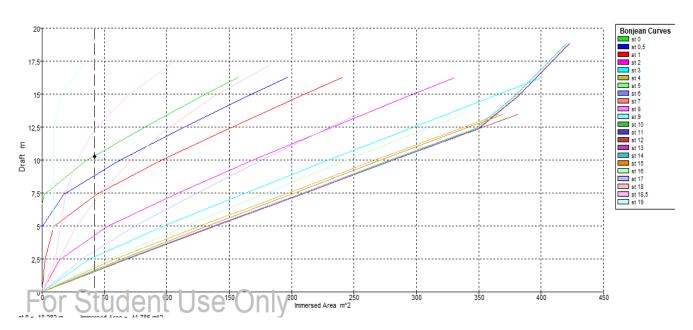
Gráfica 22. KM, GM, BM longitudinal-calado para trimado de 1'5 m.


Gráfica 23. KM, GM, BM transversal-calado para trimado de 1´5 m.

CUADERNILLO 4. CÁLCULOS DE ARQUITECTURA NAVAL.


Gráfica 24. MTC, TCI-calado para trimado de 1'5 m.

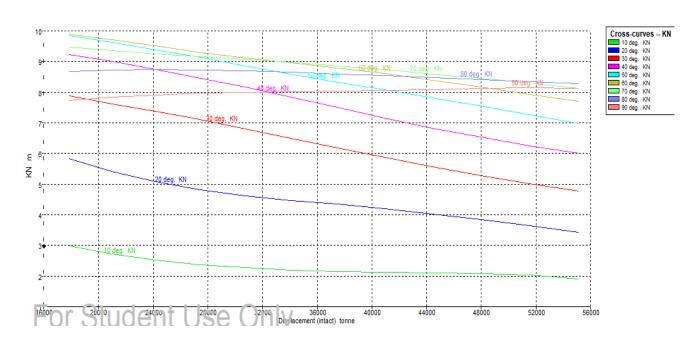
5. CURVAS DE BONJEAN



Gráfica 25. Curvas de Bonjean para trimado de -1'5 m.

CUADERNILLO 4. CÁLCULOS DE ARQUITECTURA NAVAL.

Gráfica 26. Curvas de Bonjean para trimado de 0 m.

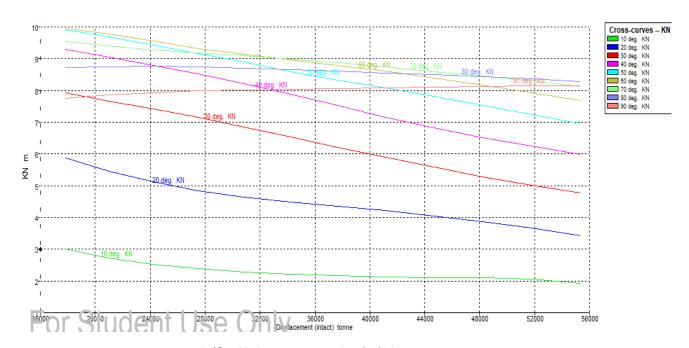

Gráfica 27. Curvas de Bonjean para trimado de 1'5 m.

6. CURVAS KN

6.1 Trimado de -1'5 metros

Displacement t	Draft Amidships m	Trim m	KN 10 deg.	KN 20 deg.	KN 30 deg.	KN 40 deg.	KN 50 deg.	KN 60 deg.	KN 70 deg.	KN 80 deg.	KN 90 deg.
17857	4,456	-1,5	2,994	5,837	7,883	9,234	9,845	9,892	9,479	8,679	7,719
20995	5,175	-1,5	2,715	5,422	7,622	9,003	9,623	9,718	9,363	8,715	7,833
24187	5,893	-1,5	2,517	5,087	7,382	8,741	9,381	9,514	9,247	8,74	7,912
27432	6,612	-1,5	2,375	4,823	7,115	8,461	9,129	9,294	9,172	8,728	7,966
30728	7,331	-1,5	2,273	4,62	6,812	8,164	8,861	9,114	9,079	8,692	8,001
34075	8,05	-1,5	2,201	4,469	6,494	7,846	8,581	8,962	8,975	8,644	8,023
37473	8,768	-1,5	2,152	4,347	6,178	7,508	8,322	8,792	8,862	8,595	8,042
40926	9,487	-1,5	2,12	4,203	5,872	7,156	8,08	8,602	8,736	8,543	8,064
44429	10,206	-1,5	2,102	4,032	5,574	6,824	7,821	8,394	8,599	8,485	8,09
47966	10,925	-1,5	2,09	3,842	5,282	6,53	7,545	8,172	8,451	8,422	8,115
51530	11,643	-1,5	2,037	3,641	5,01	6,258	7,259	7,937	8,294	8,353	8,138
55123	12,362	-1,5	1,899	3,421	4,777	5,998	6,976	7,696	8,13	8,28	8,134

Tabla 17. Curvas KN para trimado de -1'5 m.

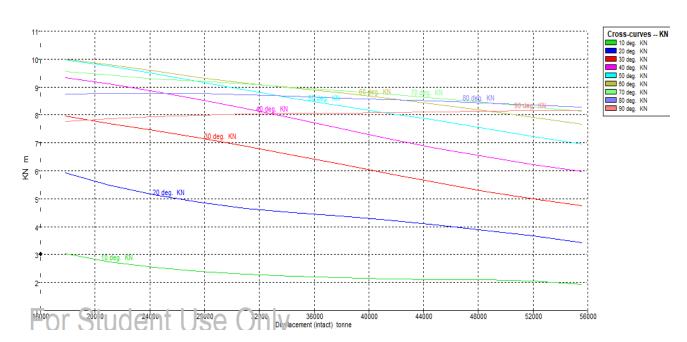

Gráfica 28. Curvas KN para trimado de -1'5 m.

CUADERNILLO 4. CÁLCULOS DE ARQUITECTURA NAVAL.

6.2 Trimado de 0 metros

Displacement t	Draft Amidships m	Trim m	KN 10 deg.	KN 20 deg.	KN 30 deg.	KN 40 deg.	KN 50 deg.	KN 60 deg.	KN 70 deg.	KN 80 deg.	KN 90 deg.
17829	4,456	0	3,015	5,883	7,927	9,287	9,914	9,951	9,528	8,712	7,742
20998	5,175	0	2,731	5,458	7,661	9,057	9,687	9,77	9,403	8,741	7,851
24221	5,893	0	2,529	5,115	7,423	8,797	9,435	9,554	9,275	8,764	7,929
27499	6,612	0	2,385	4,845	7,158	8,516	9,168	9,32	9,195	8,748	7,983
30830	7,331	0	2,281	4,638	6,855	8,208	8,887	9,129	9,094	8,706	8,016
34215	8,05	0	2,209	4,484	6,535	7,878	8,594	8,972	8,983	8,653	8,035
37653	8,768	0	2,158	4,364	6,214	7,525	8,328	8,796	8,866	8,601	8,052
41137	9,487	0	2,124	4,221	5,897	7,16	8,081	8,601	8,737	8,547	8,074
44651	10,206	0	2,104	4,052	5,586	6,821	7,817	8,391	8,599	8,489	8,099
48190	10,925	0	2,094	3,864	5,283	6,523	7,538	8,167	8,45	8,426	8,124
51754	11,643	0	2,051	3,659	5,004	6,249	7,25	7,931	8,293	8,357	8,148
55341	12,362	0	1,918	3,426	4,768	5,987	6,966	7,689	8,129	8,284	8,143

Tabla 18. Curvas KN para trimado de 0 m.


Gráfica 29. Curvas KN para trimado de 0 m.

CUADERNILLO 4. CÁLCULOS DE ARQUITECTURA NAVAL.

6.3 Trimado de 1'5 metros

Displacement t	Draft Amidships m	Trim m	KN 10 deg.	KN 20 deg.	KN 30 deg.	KN 40 deg.	KN 50 deg.	KN 60 deg.	KN 70 deg.	KN 80 deg.	KN 90 deg.
17841	4,456	1,5	3,034	5,919	7,968	9,326	9,967	10,001	9,564	8,743	7,766
21043	5,175	1,5	2,746	5,489	7,697	9,105	9,74	9,808	9,432	8,761	7,871
24300	5,893	1,5	2,542	5,141	7,452	8,846	9,479	9,58	9,296	8,78	7,945
27613	6,612	1,5	2,397	4,869	7,185	8,557	9,196	9,341	9,21	8,762	7,996
30982	7,331	1,5	2,293	4,659	6,884	8,237	8,898	9,141	9,106	8,717	8,029
34409	8,05	1,5	2,218	4,501	6,565	7,891	8,595	8,973	8,988	8,663	8,048
37879	8,768	1,5	2,165	4,372	6,238	7,524	8,323	8,791	8,865	8,607	8,065
41378	9,487	1,5	2,13	4,23	5,91	7,15	8,07	8,593	8,734	8,551	8,086
44896	10,206	1,5	2,108	4,065	5,587	6,808	7,803	8,38	8,594	8,492	8,109
48437	10,925	1,5	2,095	3,88	5,273	6,508	7,522	8,155	8,445	8,428	8,134
51998	11,643	1,5	2,049	3,666	4,989	6,232	7,234	7,92	8,287	8,359	8,159
55580	12,362	1,5	1,927	3,417	4,752	5,969	6,95	7,678	8,124	8,287	8,151

Tabla 19. Curvas KN para trimado de 1'5 m.

Gráfica 30. Curvas KN para trimado de 1'5 m.

BIBLIOGRAFÍA

- ALMANSA, M. J. (2020-2021). Apuntes de la asignatura de proyectos. Universidad Politécnica de Cartagena.
- ALVARIÑO CASTRO , R., AZPÍROZ AZÍROZ, J., & MEIZOSO FERNÁNDEZ, M. (1997). *El proyecto básico del buque mercante*. Madrid: Fondo editorial de Ingeniería Naval: Colegio Oficial de Ingenieros Navales.
- DGMM. (2004). Convenio Internacional sobre líneas de carga de 1966 y Protocolo de 1988. Madrid: Dirección General de la Marina Mercante. Ministerio de Fomento.

Escuela Ingeniería Técnica Naval y Superior Oceánica

UNIVERSIDAD POLITÉCNICA DE CARTAGENA GRADO EN ARQUITECTURA NAVAL E INGENIERÍA DE SISTEMAS MARINOS

ANTEPROYECTO DE UN BUQUE GRANELERO DE 45.000 TPM

CUADERNILLO 5. DISPOSICIÓN GENERAL

CUADERNILLO 5. DISPOSICIÓN GENERAL

ÍNDICE

1. IN	TRODUCCIÓN	. 2
2. DE	EFINICIÓN DE SUPERFICIES LÍMITES DE ESPACIOS	. 2
2.1 🗅	Distribución en eslora	. 2
2.:	1.1 Mamparos transversales	. 2
2.:	1.2 Mamparos longitudinales	. 7
2.2 F	łabilitación	. 8
2.2	2.1 Tripulación	. 9
2.2	2.2 Disposición de cubiertas	10
2.3 E	spacios de carga	12
2.4 T	anques	13
2.4	4.1 Tanques de lastre	13
2.4	4.2 Tanques de consumos	16
BIBLIO	GRAFÍA	18

1. INTRODUCCIÓN

A continuación, se va a definir la disposición general de nuestro granelero, que estará directamente relacionada con el servicio a desarrollar por el buque.

Se trata de un proceso iterativo, que depende de multitud de factores que se irán definiendo a lo largo del proyecto del buque. Según los *apuntes de la asignatura de proyectos*¹, podemos dividir el buque en los siguientes espacios:

- Espacios de almacenamiento de carga.
- Espacios de manipulación de carga.
- Espacios de maquinaria.
- Espacios de alojamientos.
- Espacios para tanques de lastre.
- Espacios para tanques de consumos

Los espacios mencionados irán adimensionados según las normas de las Sociedades de Clasificación, respecto a la disposición general y su interacción con la estructura del buque.

2. DEFINICIÓN DE SUPERFICIES LÍMITES DE ESPACIOS

El espaciado y dimensiones de las zonas del buque está condicionado por los espaciados de los elementos estructurales. Una vez la estructura esté definida, se definen las superficies límites de los espacios.

2.1 Distribución en eslora

2.1.1 Mamparos transversales

Según el documento *Common Structural Rules for Bulk Carriers and Double Hull Oil Tankers*² los buques graneleros deben contar con los siguientes mamparos estancos:

- Un mamparo de colisión.
- Un mamparo en el pique de popa.

2

¹ (ALMANSA, 2020-2021)

² (IACS, 2022)

 Un mamparo a proa de la cámara de máquinas y un mamparo en el extremo de popa de la cámara de máquinas, que puede ser el mamparo de popa del pique.

Por otro lado, el convenio SOLAS establece el número mínimo de mamparos estancos para buques de más de 150 metros de eslora y con cámara de máquinas a popa.

Length (m)	Number of bulkheads for ships with aft machinery (1)	Number of bulkheads for other ships						
L < 65	3	4						
65 ≤ L < 85	4	5						
85 ≤ L < 105	4	5						
105 ≤ L < 120	5	6						
120 ≤ L < 145	6	7						
145 ≤ L < 165	7	8						
165 ≤ L < 190	8	9						
L ≥ 190	$L \ge 190$ to be defined on a case by case basis							
(1) After peak bulkhead and aft machinery bulkhead are the same.								

Tabla 1. Número de mamparos estancos mínimos según el SOLAS.

En consecuencia, se eligen un número de 8 mamparos estancos, los cuales se distribuirán de la forma más uniforme posible. Se puede afirmar que el buque tendrá estructura transversal en los extremos de proa y popa, y en la cámara de máquinas. Los mamparos del pique de proa y popa serán soldados, el resto serán corrugados. En general, los mamparos se pueden dividir de la siguiente manera:

- Pique de popa, a popa del mamparo 1.
- Cámara de máquinas, entre los mamparos 1 y 2.
- Bodegas de carga número 1, entre los mamparos 2 y 3.
- Bodega de carga número 2, entre los mamparos 3 y 4.
- Bodega de carga número 3, entre los mamparos 4 y 5.
- Bodega de carga número 4, entre los mamparos 5 y 6.
- Bodega de carga número 5, entre los mamparos 6 y 7.
- Bodega de carga número 6, entre los mamparos 7 y 8.
- Pique de proa, a proa del mamparo número 8.

Las posiciones exactas de los mamparos se calcularán más adelante.

2.1.1.1 Mamparo de colisión

El mamparo de colisión tiene que estar situado entre una distancia mínima y máxima de la perpendicular de proa, teniendo en cuenta la protuberancia en eslora del bulbo, según el *Common Structural Rules for Bulk Carriers and Double Hull Oil Tankers*³.

Siendo:

$$f_1 = min(0'05 L_{pp}, 10) = 9'233 m$$

$$f_2 = max(0'08 L_{pp}, 0'05 L_{pp} + 3) = 14'773 m$$

En consecuencia, el mamparo de colisión se situará en algún punto entre el valor mínimo y máximos, desde la perpendicular de proa. En este caso se dispondrá en un valor del 40% superior al mínimo exigido, lo que coloca el mamparo de colisión a 12´926 metros de la perpendicular de proa.

Según reglamento, en los finos de proa y popa debe haber una separación mínima entre cuadernas de 600 milímetros. Si escogemos una eslora total de **15´657 metros** del pique de proa, tendremos **26 cuadernas** separadas la distancia mínima indicada.

2.1.1.2 Mamparo de popa

El mamparo de popa de cámara de máquinas deberá albergar la bocina. Por lo tanto, se elegirá la cuaderna de construcción más a popa que cumpla este requerimiento. No hay reglamentación específica para la longitud del pique de popa, pero se puede tomar como el 4´5% de la eslora entre perpendiculares en buques de eslora superior a 100 metros. En este caso, se tienen 8´417 metros de longitud desde la perpendicular de popa al mamparo de popa de la cámara de máquinas.

Además, se debe tener en cuenta la separación mínima entre cuadernas mencionada anteriormente de 600 milímetros. En este caso, el pique de popa se extiende 6´248 metros a popa de la perpendicular, por lo que tenemos una eslora total de **14´665 metros** y **24 cuadernas**.

³ (IACS, 2022)

2.1.1.3 Eslora de la cámara de máquinas

Como ya se ha comentado, la cámara de máquinas se situará a popa del buque, la eslora de la cámara de máquinas puede estimarse mediante la formulación dada por el *Proyecto Básico del Buque Mercante*⁴, de esta forma, conoceremos también la posición del mamparo a proa de la cámara de máquinas.

Se repiten los cálculos que se realizaron en el Cuadernillo 2, pero ahora con los datos finales de nuestro buque, tras las transformaciones paramétricas. Finalmente, obtenemos una eslora de cámara de máquinas de 19´118 metros, para un motor diésel lento de 2 tiempos, de 10562 kW y 115 rpm.

BHP (CV)	14164,327
BHP (kW)	10562,338
Lcm (m)	19,118

Tabla 2. Nuevos cálculos de estimación de la propulsión y la eslora de cámara de máquinas.

No se ha elegido aún la distancia de las claras entre cuadernas, según reglamento debe estar entre 500 y 1000 milímetros. Por lo que se toma la decisión de aumentar la eslora de la cámara de máquinas a 19´5 metros, obteniendo así 26 cuadernas con una clara entre ellas de 750 milímetros. Además, se añaden 6 cuadernas adicionales para la incorporación de dos cofferdams a proa y popa de la cámara de máquinas, aumentado así la eslora total a **24 metros**, con un sumatorio de **32 cuadernas**.

2.1.1.4 Zona de bodegas

La zona de bodegas se encontrará situada entre el cofferdam situado a proa de la cámara de máquinas y el pique de proa del buque. La eslora de la zona de bodegas se puede estimar mediante la diferencia con las esloras ya conocidas.

$$L_{bodegas} = 184'671 - 12'926 - 24 - 8'417 = 139'328 m$$

Según reglamento de Bureau Veritas, como se nos indica en los apuntes de la asignatura de proyectos⁵, debe existir un espaciado mínimo entre cuadernas según la siguiente formulación:

⁴ (ALVARIÑO CASTRO , AZPÍROZ AZÍROZ, & MEIZOSO FERNÁNDEZ, 1997)

⁵ (ALMANSA, 2020-2021)

$$E_O = 0.720 \left(\frac{L}{100}\right)^{0.25} = 0.782 \, m$$

Se toma la decisión de escoger un espaciado entre cuadernas de 0'800 metros, para así obtener 6 bodegas de carga con 23'221 metros de eslora y 29 cuadernas cada una.

2.1.1.5 Resumen de mamparos transversales

A continuación, se muestra el resumen de las zonas acotadas anteriormente, con su correspondiente número de cuadernas y su eslora.

Zona	Eslora (m)	Nº cuadernas	Clara de cuadernas (mm)
Pique de popa	14,665	24	600
Cámara de máquinas (+2 Cofferdams)	24	32	750
Bodega 1	23,221	29	800
Bodega 2	23,221	29	800
Bodega 3	23,221	29	800
Bodega 4	23,221	29	800
Bodega 5	23,221	29	800
Bodega 6	23,221	29	800
Pique de proa	15,657	26	600

Tabla 3. Resumen de zonas y cuadernas en la eslora total del buque.

Por tanto, los mamparos transversales mencionados anteriormente quedan de la siguiente forma:

- Mamparo 1: Al incorporarse un cofferdam, realmente son dos mamparos. Este cofferdam separa el pique de popa de la cámara de máquinas, situado el mamparo más a popa a 8'417 metros de la perpendicular de popa. Coincide con la cuaderna 24.
- Mamparo 2: También se incorpora un cofferdam, por lo que son dos mamparos.
 Este cofferdam separa la cámara de máquinas de la bodega 1, situado el mamparo más a proa a 32´417 metros de la perpendicular de popa. Coincide con la cuaderna 56.
- Mamparo 3: Separa la bodega 1 de la bodega 2, está situado a 55´638 metros de la perpendicular de popa. Coincide con la cuaderna 85.

- Mamparo 4: Separa la bodega 2 de la bodega 3, está situado a 78'859 metros de la perpendicular de popa. Coincide con la cuaderna 114.
- Mamparo 5: Separa la bodega 3 de la bodega 4, está situado a 102´08 metros de la perpendicular de popa. Coincide con la cuaderna 143.
- Mamparo 6: Separa la bodega 4 de la bodega 5, está situado a 125´301 metros de la perpendicular de popa. Coincide con la cuaderna 172.
- Mamparo 7: Separa la bodega 5 de la bodega 6, está situado a 148´522 metros de la perpendicular de popa. Coincide con la cuaderna 201.
- Mamparo 8: Separa la bodega 6 del pique de proa, está situado a 171´743 metros de la perpendicular de popa. Coincide con la cuaderna 230.

Ilustración 1. Situación de los mamparos transversales del buque.

Se debe tener en cuenta que la numeración de las cuadernas se realiza desde el extremo de popa a proa.

2.1.2 Mamparos longitudinales

2.1.2.1 Doble casco

Se trata de la zona de unión entre el doble fondo y la cubierta principal. Según reglamento, *Common Structural Rules for Bulk Carriers and Double Hull Oil Tankers*⁶, debe haber una separación mínima de 1 metro entre el forro y el doble casco.

En este caso, se toma la decisión de elegir una separación de 1 metros por cada banda. Por lo que tendremos dos mamparos longitudinales, que serán inclinados para mejorar la estiba.

⁶ (IACS, 2022)

CUADERNILLO 5. DISPOSICIÓN GENERAL

2.1.2.2 Doble fondo

La estructura del doble fondo será mayoritariamente longitudinal. Según el reglamento anteriormente mencionado, *Common Structural Rules for Bulk Carriers and Double Hull Oil Tankers*⁷, debe extenderse desde el mamparo del pique de popa al mamparo de colisión, de forma que ocupe todas las bodegas y la cámara de máquinas.

Por otro lado, el reglamento también nos indica que en la zona de carga la altura del doble fondo no debe ser menor a 2 metros o B/20, en este caso se escoge una altura de 2 metros en la zona de carga. La altura del doble fondo en la cámara de máquinas debe estar entre 1´5 y 2´5 metros, se ha elegido una altura de 1´5 metros para la cámara de máquinas.

Se debe mencionar que no habrá continuidad estructural entre el doblo fondo de la cámara de máquinas y de la zona de bodegas, debido a la existencia del cofferdam entre ambas.

2.1.2.3 Espaciado entre longitudinales

Los mamparos longitudinales deberán apoyar sobre los refuerzos longitudinales, al igual que pasaba con la estructura transversal. La separación entre estos refuerzos según reglamento no debe ser inferior a 600 milímetros, en nuestro caso se escoge una separación de 840 milímetros.

2.2 Habilitación

Los espacios comunes en un buque de carga van situados entre el nivel inferior de la superestructura y el nivel de oficiales. El comedor de la tripulación suele ir a babor y el de oficiales a estribor, con sus oficios y salas de estar respectivas junto a dichos comedores. La cocina estará situada entre los comedores, de manera que la comida se pueda distribuir cómoda y rápidamente a través de los oficios. Se debe poder acceder desde la cocina directamente a la gambuza o despensa. Se sitúa ésta junto a la cocina o bien en una cubierta inferior a la misma, comunicándose entre ellas en este último caso, mediante una escala y montacargas. El puente de gobierno, la derrota y el local radio siempre van en el nivel más alto de la superestructura, mientras que espacios como lavandería, enfermería y pañoles irán normalmente en el nivel más bajo de la misma.

⁷ (IACS, 2022)

2.2.1 Tripulación

Los tripulantes de un buque son aquellas personas necesarias para que el buque navegue y cumpla su función. La cantidad de tripulación mínima que deben navegar en el buque se determina en base al cuadro indicador de tripulaciones mínimas para buques mercantes y de pesca. Este cuadro hace referencia al número mínimo, pero no al máximo. Normalmente el número de tripulantes del buque es función del tipo de buque, la potencia propulsora, el arqueo, etc....

Según los *apuntes de la asignatura de construcción naval*⁸, podemos clasificar la tripulación de un buque mercante jerárquicamente, de la siguiente forma:

- Oficiales de puente o de cubierta: Son el capitán del barco y el resto de oficiales de puente.
- Oficiales de máquinas: Son el jefe de máquinas y el resto de oficiales de máquinas o maquinistas.
- Oficial radiotelegrafista u oficial radio: Es el encargado de las comunicaciones del buque.
- Personal de cubierta: es el que se encarga del manejo y maniobra del buque. Está formado por el contramaestre, marineros y timoneles.
- Personal de máquinas: es el que se encarga del manejo, mantenimiento y reparación de las máquinas y sistemas auxiliares del buque. Está formado por el jefe de electricidad, mecánicos, engrasadores y electricistas.
- Personal de fonda: es el encargado de atender las necesidades de la tripulación y pasaje en lo que se refiere a comidas y limpieza. Está formado por el mayordomo, cocineros, pinches, camareros, y personal de limpieza y lavandería.

En consecuencia, en nuestro buque tenemos la siguiente distribución de la tripulación:

Puente de mando		Zona de máquinas	5	Servicios		Varios	
Capitán	1	Jefe de Máquinas	1	Cocinero	1	Reserva de Oficiales	1
1º Oficial Puente	1	1º Oficial Máquinas	1	Camareros	2	Reserva de Tripulación	1
2º Oficial Puente	1	2º Oficial Máquinas	1	Mayordomo	1	Propietario	1
3º Oficial Puente	1	3º Oficial Máquinas	1			Práctico	1
Contramaestre	1	Engrasadores	3				
Marineros	5	Electricista	1				

Tabla 4. Distribución de la tripulación a bordo.

^{8 (}Pérez, 2019-2020)

Total Oficiales	8
Total Tripulación	14
Total Varios	4
TOTAL	26

Tabla 5. Número total de tripulación según su rango.

2.2.2 Disposición de cubiertas

La altura en la zona de habilitación viene condicionada por la visibilidad desde el puente de gobierno. Según reglamento, la altura de cada cubierta no debe ser inferior a 2´60 metros aproximadamente. Cabe mencionar que las distintas cubiertas que formen la superestructura estarán comunicadas con escaleras interiores y exteriores a una banda y otra del buque.

Además, se debe contar con el espacio ocupado por el guardacalor, que comunicará la cámara de máquinas con la chimenea, para así permitir la expulsión de los gases de exhaustación generados por la planta propulsora.

Por otro lado, para realizar el reparto de las distintas zonas se debe tener en cuenta que las tuberías de lavandería, aseos y cocina se encuentren alineadas verticalmente, así simplificaremos la construcción y se disminuirán los costes de construcción.

2.2.2.1 Cubierta A

En esta cubierta se sitúan gran parte de los espacios comunes y varios locales de sistemas auxiliares, como el módulo de aire acondicionado, la maquinaria frigorífica, el grupo de emergencia, el local de contraincendios, entre otros.

Al ser la cubierta inmediatamente contigua a la cámara de máquinas, se situará un vestuario donde los trabajadores de máquinas puedan cambiarse la ropa. En consecuencia, se ha situado también la lavandería en esta cubierta para proporcionar una mayor comodidad en el día a día. También se situará la gambuza, la cual se dividirá en distintas partes independientes para separar los víveres según su tipología y forma de conservación. Por otro lado, se dispondrá de la enfermería del buque.

CUADERNILLO 5. DISPOSICIÓN GENERAL

2.2.2.2 Cubierta B

En esta cubierta se ubican las zonas enfocadas al recreo y espacios comunes de la tripulación, donde existirá duplicidad en los locales para separar los oficiales del resto de tripulación. Se encuentran locales como el comedor, el salón, la cocina, la biblioteca y el gimnasio.

2.2.2.3 Cubierta C

En esta cubierta se ubicarán los camarotes para la tripulación excepto para los oficiales. Estos camarotes no son individuales, se compartirán entre dos personas. En consecuencia, habrá un total de 8 camarotes, cada uno de ellos con un aseo. Por otro lado, podemos encontrar una sala de ocio.

2.2.2.4 Cubierta D

Se encuentran los camarotes de los segundos y terceros oficiales de mando y máquinas, el camarote del práctico y el camarote para un oficial extra, por si fuera necesario. Los camarotes serán individuales y tendrán aproximadamente 14 metros cuadrados. En esta cubierta también se ubica otra lavandería y un pañol.

2.2.2.5 Cubierta E

En esta cubierta se encontrarán los 3 camarotes más amplios, con unos 30 metros cuadrados aproximadamente, para el capitán, el jefe de máquinas y el armador. Serán camarotes totalmente individuales que cuentan con su aseo y salón propio. Por otro lado, tendremos en esta misma cubierta dos camarotes para los primeros oficiales de puente y máquinas, con características similares a los camarotes anteriores. También se dispondrá de lavandería, algunos pañoles y una sala de reuniones.

2.2.2.6 Cubierta del puente de navegación

Se encuentra en la cubierta más elevada y debe estar a una altura tal que permita la visibilidad establecida según el reglamento. Según el SOLAS, la distancia a proa sin visibilidad desde el puente de mando debe ser inferior al menor de los siguientes valores:

- Dos veces la eslora del buque.
- 500 *m*.

El valor más pequeño de estas opciones es dos veces la eslora del buque, 387'38 metros.

Otro aspecto importante, es el ángulo de inclinación de la ventana del puente de mando respecto a la vertical, según el reglamento debe estar entre 10 y 25º. Además, el arco de visión desde el puente debe ser como mínimo de 225º. A ambas bandas del puente de navegación se sitúan dos alerones exteriores, que quedan por fuera de la línea del costado del buque aproximadamente un metro.

2.3 Espacios de carga

La cubierta principal, donde se encuentran las tapas de escotillas para las bodegas, se recomienda que tenga un pequeño arrufo y brusca para así facilitar el desembarque de agua. Para nuestro buque se ha escogido un valor de brusca igual a 630 mm, de forma trapezoidal. En total encontraremos 6 tapas de escotilla, correspondientes a cada una de las bodegas de carga. Se diseñarán de forma que sean suficiente resistente y cumplan perfectamente con su funcionalidad durante su vida operativa. En buques graneleros, normalmente se seleccionan tapas de escotillas tipo de desplazamiento lateral o *side rolling*, las cuales se abren en dirección transversal. En este caso, son las tapas que se han elegido para el buque, aunque tienen un alto peso y empacho, pero tienen un fácil mantenimiento y son duraderas. Las tapas de escotilla tendrán las siguientes dimensiones:

	Cuaderna Pp	Cuaderna Pr	Eslora (m)	Manga (m)
Tapa Bodega 1	59	82	18,4	16
Tapa Bodega 2	88	111	18,4	16
Tapa Bodega 3	117	140	18,4	16
Tapa Bodega 4	146	169	18,4	16
Tapa Bodega 5	175	198	18,4	16
Tapa Bodega 6	202	225	18,4	16

Tabla 6. Dimensiones de las tapas de escotilla de bodega.

Como se observa en la tabla adjunta, todas las bodegas tienen la misma eslora y manga, por lo que el volumen de carga coincidirá de una a otra. Para calcular el volumen de cada una, se deben tener en cuenta los refuerzos interiores, que vamos a estimarlos como el 1 % del volumen total. En consecuencia, el volumen de cada bodega se indica a continuación.

	Cuaderna Pp	Cuaderna Pr	Eslora (m)	Manga (m)	Puntal (m)	Vol. inicial (m3)	Refuerzos (%)	Vol. real (m3)
Bodega 1	56	85	23,221	26,56	11,5	7092,622	1	7021,696
Bodega 2	85	114	23,221	26,56	11,5	7092,622	1	7021,696
Bodega 3	114	143	23,221	26,56	11,5	7092,622	1	7021,696
Bodega 4	143	172	23,221	26,56	11,5	7092,622	1	7021,696
Bodega 5	172	201	23,221	26,56	11,5	7092,622	1	7021,696
Bodega 6	201	230	23,221	26,56	11,5	7092,622	1	7021,696
								42130,176

Tabla 7. Características de las bodegas de carga.

Finalmente, cabe recordar que la cantidad de carga transportada por el buque siempre será función del factor de estiba de esta, no es lo mismo transportar carbón, sal o grano. la misma.

2.4 Tanques

El cálculo exacto de los tanques debe justificarse teniendo en cuenta todos los tanques de cámara de máquinas (tanques de combustible, de lodos, de aceites...) y tanques de lastre y agua, entre otros.

2.4.1 Tanques de lastre

El volumen total de tanques de lastre, según graneleros similares, variará entre los 17000 y 19000 m^3 de capacidad total. Este volumen debe ser suficiente para que el buque pueda navegar correctamente y la hélice quede totalmente sumergida.

En la situación en la que los tanques no se llenen por completo, se debe tener en cuenta el fenómeno de superficies libres, que afectará de forma negativa a la estabilidad del buque.

- <u>Tanques de lastre en los piques de proa y popa</u>: Afectarán bastante en la estabilidad del buque, sobre todo en la estabilidad longitudinal (asiento). Serán de más capacidad que el resto.
- <u>Tanque de tolvas altas</u>: Son los situados por debajo de la cubierta principal, en las esquinas superiores de las bodegas. Al tener una posición elevada, influyen considerablemente en la estabilidad del buque.

- <u>Tanques de doble fondo y casco (pantoque y costados)</u>: Son fundamentales para conseguir un calado mínimo. Los tanques de doble fondo serán 6, uno por bodega, y 12 en el doble casco, 6 a cada banda del buque.

Tanques de lastre	Densidad de carga (t/m3)	Volumen (m3)	Volumen real (m3)	Peso (t)
Pique de popa	1,025	14950,628	14352,602	14711,418
Bodega 1 DF (Er)	1,025	547,273	525,382	538,516
Bodega 1 DF (Br)	1,025	547,273	525,382	538,516
Bodega 1 TL (Er)	1,025	279,181	268,014	274,715
Bodega 1 TL (Br)	1,025	279,181	268,014	274,715
Bodega 1 TS (Er)	1,025	84,809	81,417	83,452
Bodega 1 TS (Br)	1,025	84,809	81,417	83,452
Bodega 2 DF (Er)	1,025	547,273	525,382	538,516
Bodega 2 DF (Br)	1,025	547,273	525,382	538,516
Bodega 2 TL (Er)	1,025	279,181	268,014	274,715
Bodega 2 TL (Br)	1,025	279,181	268,014	274,715
Bodega 2 TS (Er)	1,025	84,809	81,417	83,452
Bodega 2 TS (Br)	1,025	84,809	81,417	83,452
Bodega 3 DF (Er)	1,025	547,273	525,382	538,516
Bodega 3 DF (Br)	1,025	547,273	525,382	538,516
Bodega 3 TL (Er)	1,025	279,181	268,014	274,715
Bodega 3 TL (Br)	1,025	279,181	268,014	274,715
Bodega 3 TS (Er)	1,025	84,809	81,417	83,452
Bodega 3 TS (Br)	1,025	84,809	81,417	83,452
Bodega 4 DF (Er)	1,025	547,273	525,382	538,516
Bodega 4 DF (Br)	1,025	547,273	525,382	538,516
Bodega 4 TL (Er)	1,025	279,181	268,014	274,715
Bodega 4 TL (Br)	1,025	279,181	268,014	274,715
Bodega 4 TS (Er)	1,025	84,809	81,417	83,452
Bodega 4 TS (Br)	1,025	84,809	81,417	83,452
Bodega 5 DF (Er)	1,025	547,273	525,382	538,516
Bodega 5 DF (Br)	1,025	547,273	525,382	538,516
Bodega 5 TL (Er)	1,025	279,181	268,014	274,715
Bodega 5 TL (Br)	1,025	279,181	268,014	274,715
Bodega 5 TS (Er)	1,025	84,809	81,417	83,452
Bodega 5 TS (Br)	1,025	84,809	81,417	83,452
Bodega 6 DF (Er)	1,025	410,454	394,036	403,887
Bodega 6 DF (Br)	1,025	410,454	394,036	403,887
Bodega 6 TL (Er)	1,025	265,222	254,613	260,979
Bodega 6 TL (Br)	1,025	265,222	254,613	260,979
Bodega 6 TS (Er)	1,025	84,809	81,417	83,452
Bodega 6 TS (Br)	1,025	84,809	81,417	83,452
Pique de proa	1,025	653,088	626,964	642,638
Total			25187,824	25817,520

Tabla 8. Capacidad de los tanques de lastre del buque.

<u>_</u>	Pos. Long.	Pos. Long.	Pos. Trans.	Pos. Trans.	Pos. Vert.	Pos. Vert.
Tanque	Рр	Pr	Er	Br	Inf.	Sup.
Pique de popa	-6,738	8,4175	11,491	-11,491	8,547	14,556
Bodega 1	32,435	55,615	13,284	-13,284	2	13,5
Bodega 1 DF (Er)	32,435	55,615	13,284	1,5	0	2
Bodega 1 DF (Br)	32,435	55,615	-1,5	-13,284	0	2
Bodega 1 TL (Er)	32,435	55,615	14,284	13,284	2	11,587
Bodega 1 TL (Br)	32,435	55,615	-13,284	-14,284	2	11,587
Bodega 1 TS (Er)	32,435	55,615	14,284	11,464	11,587	13,5
Bodega 1 TS (Br)	32,435	55,615	-11,464	-14,284	11,587	13,5
Bodega 2	55,615	78,814	13,284	-13,284	2	13,5
Bodega 2 DF (Er)	55,615	78,814	13,284	1,5	0	2
Bodega 2 DF (Br)	55,615	78,814	-1,5	-13,284	0	2
Bodega 2 TL (Er)	55,615	78,814	14,284	13,284	2	11,587
Bodega 2 TL (Br)	55,615	78,814	-13,284	-14,284	2	11,587
Bodega 2 TS (Er)	55,615	78,814	14,284	11,464	11,587	13,5
Bodega 2 TS (Br)	55,615	78,814	-11,464	-14,284	11,587	13,5
Bodega 3	78,814	102,015	13,284	-13,284	2	13,5
Bodega 3 DF (Er)	78,814	102,015	13,284	1,5	0	2
Bodega 3 DF (Br)	78,814	102,015	-1,5	-13,284	0	2
Bodega 3 TL (Er)	78,814	102,015	14,284	13,284	2	11,587
Bodega 3 TL (Br)	78,814	102,015	-13,284	-14,284	2	11,587
Bodega 3 TS (Er)	78,814	102,015	14,284	11,464	11,587	13,5
Bodega 3 TS (Br)	78,814	102,015	-11,464	-14,284	11,587	13,5
Bodega 4	102,015	125,215	13,284	-13,284	2	13,5
Bodega 4 DF (Er)	102,015	125,215	13,284	1,5	0	2
Bodega 4 DF (Br)	102,015	125,215	-1,5	-13,284	0	2
Bodega 4 TL (Er)	102,015	125,215	14,284	13,284	2	11,587
Bodega 4 TL (Br)	102,015	125,215	-13,284	-14,284	2	11,587
Bodega 4 TS (Er)	102,015	125,215	14,284	11,464	11,587	13,5
Bodega 4 TS (Br)	102,015	125,215	-11,464	-14,284	11,587	13,5
Bodega 5	125,215	148,415	13,284	-13,284	2	13,5
Bodega 5 DF (Er)	125,215	148,415	13,284	1,5	0	2
Bodega 5 DF (Br)	125,215	148,415	-1,5	-13,284	0	2

Bodega 5 TL (Er)	125,215	148,415	14,284	13,284	2	11,587
Bodega 5 TL (Br)	125,215	148,415	-13,284	-14,284	2	11,587
Bodega 5 TS (Er)	125,215	148,415	14,284	11,464	11,587	13,5
Bodega 5 TS (Br)	125,215	148,415	-11,464	-14,284	11,587	13,5
Bodega 6	148,415	171,748	13,284	-13,284	2	13,5
Bodega 6 DF (Er)	148,415	171,748	13,284	1,5	0	2
Bodega 6 DF (Br)	148,415	171,748	-1,5	-13,284	0	2
Bodega 6 TL (Er)	148,415	171,748	14,284	13,284	2	11,587
Bodega 6 TL (Br)	148,415	171,748	-13,284	-14,284	2	11,587
Bodega 6 TS (Er)	148,415	171,748	14,284	11,464	11,587	13,5
Bodega 6 TS (Br)	148,415	171,748	-11,464	-14,284	11,587	13,5
Pique de proa	171,748	180,235	9,253	-9,253	0	11,875

Tabla 9. Posición de los tanques de lastres y bodegas del buque.

2.4.2 Tanques de consumos

Los más pequeños se situarán en la misma cámara de máquinas, el resto estarán ubicados en el cofferdam de proa, el costado, el pantoque y el doble fondo de la cámara de máquinas. Serán los tanques de aguas aceitosas, de aguas sanitarias, de HFO, de MDO, entre otros. El volumen de cada uno de ellos se estima mediante el gasto másico de combustible del motor seleccionado, se llevará a cabo en el siguiente cuadernillo.

TANQUES HFO	Volumen (m3)	Volumen real (m3)	Densidad de carga (t/m3)	Peso (t)
Tanque almacén HFO 1 <4,5% S, Er	284,922	249,931	0,991	282,357
Tanque almacén HFO 2 <4,5% S, Er	284,922	273,525	0,991	271,063
Tanque almacén HFO 1 <4,5% S, Br	284,922	249,931	0,991	282,357
Tanque almacén HFO 2 <4,5% S, Br	284,922	273,525	0,991	271,063
Tanque almacén HFO <1,5% S, Er	174,531	153,097	0,991	172,960
Tanque almacén HFO <1,5% S, Br	174,531	153,097	0,991	172,960
Tanque almacén HFO <0,1% S, Er	126,273	110,766	0,991	125,137
Tanque almacén HFO <0,1% S, Br	126,273	110,766	0,991	125,137
Tanque servicio diario HFO, Er	63,673	55,854	0,991	63,100
Tanque servicio diario HFO, Br	63,673	55,854	0,991	63,100
Tanque de sedimentación HFO, Er	63,673	55,854	0,991	63,100
Tanque de sedimentación HFO, Br	63,673	55,854	0,991	63,100
Tanque de reboses	12,734	12,225	0,991	12,115
Tanque de lodos	21,948	21,070	0,991	20,880
Total	2030,668	1831,346		1988,428

Tabla 10. Volúmenes de los tanques de HFO del buque.

CUADERNILLO 5. DISPOSICIÓN GENERAL

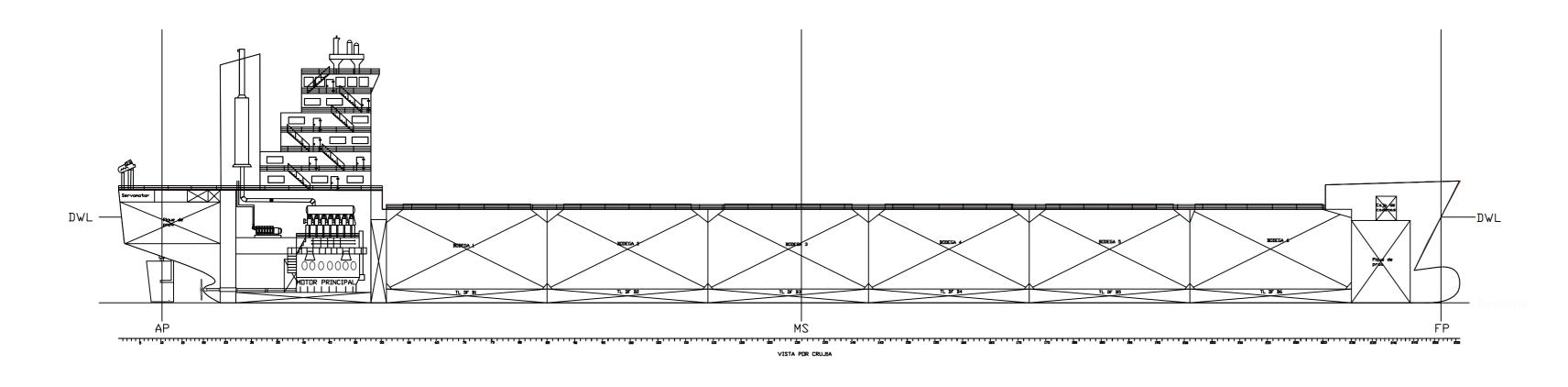
TANQUES MDO	Volumen bruto (m3)	Volumen neto (m3)	Densidad de carga (t/m3)	Peso (t)
Tanque almacén MDO, Er	83,921	73,61491228	0,88	73,85048
Tanque almacén MDO, Br	83,921	73,61491228	0,88	73,85048
Tanque servicio diario MDO, Er	21,526	18,88245614	0,88	18,94288
Tanque servicio diario MDO, Br	21,526	18,88245614	0,88	18,94288
Tanque de reboses	4,305	3,776315789	0,88	3,7884
Total	215,199	188,7710526		189,3751

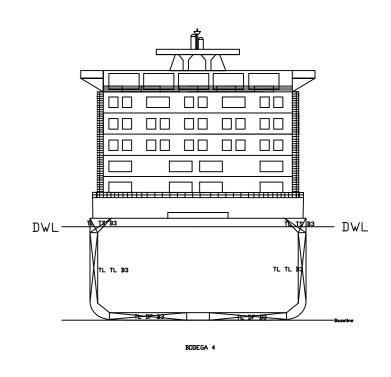
Tabla 11. Volúmenes de los tanques de MDO del buque.

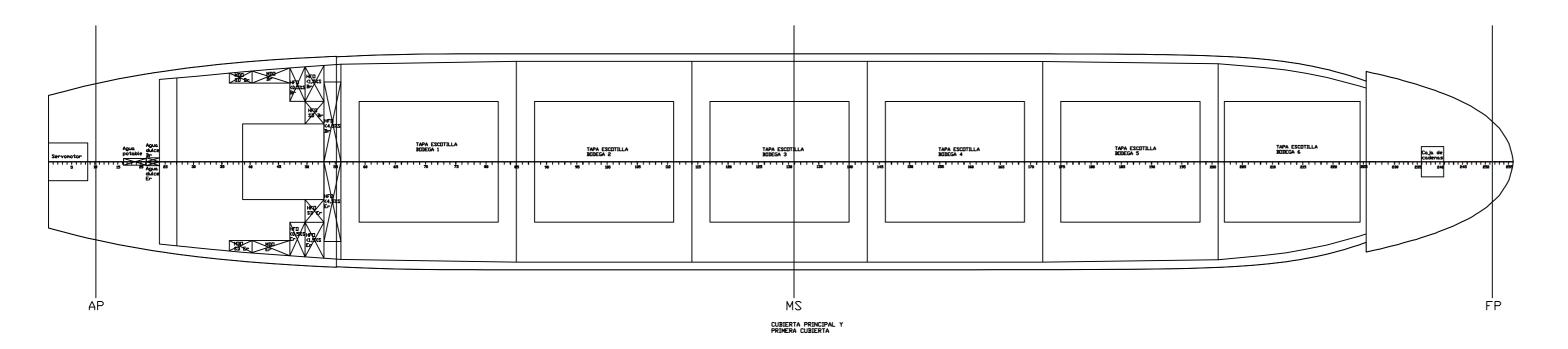
TANQUES DE ACEITES	Volumen bruto (m3)	Volumen neto (m3)	Densidad de carga (t/m3)	Peso (t)
Tanque almacén aceite lubricante motor, Er	17,100	15,000	0,95	16,245
Tanque almacén aceite lubricante motor, Br	17,100	15,000	0,95	16,245
Tanque servicio diario aceite motor	5,700	5,000	0,95	5,415
Tanque servicio diario lubricante cojinetes	5,700	5,000	0,89	5,073
Tanque de aceite sucio	64,690	56,746	0,89	57,574
Total	110,290	96,746		100,552

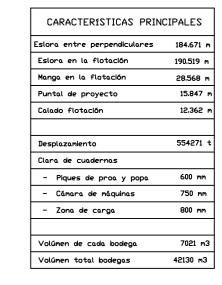
Tabla 12. Volúmenes de los tanques de aceite del buque.

TANQUES DE AGUA DULCE	Volumen bruto (m3)	Volumen neto (m3)	Densidad de carga (t/m3)	Peso (t)
Tanque agua dulce, Er	12,500	12,019	1	12,500
Tanque agua dulce, Br	12,500	12,019	1	12,500
Tanque agua potable	36,400	35,000	1	36,400
Total	61,400	59,038	_	61,400

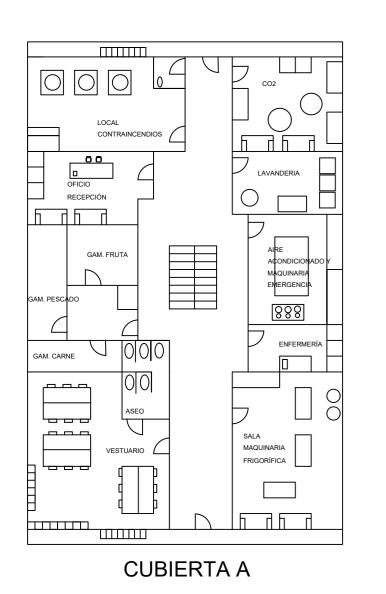

Tabla 13. Volúmenes de los tanques de agua dulce del buque.

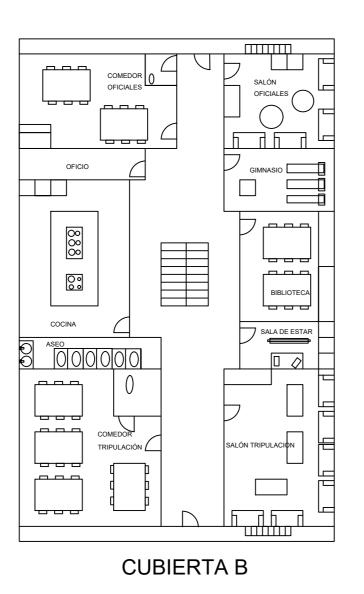

BIBLIOGRAFÍA

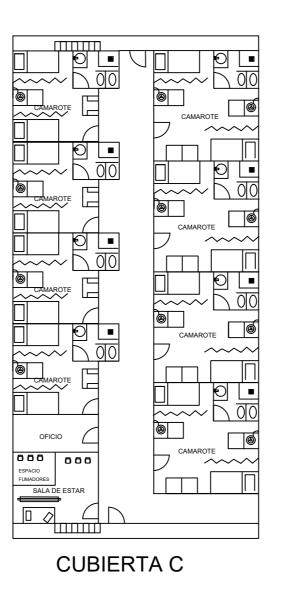

- ALMANSA, M. J. (2020-2021). Apuntes de la asignatura de proyectos. Universidad Politécnica de Cartagena.
- ALVARIÑO CASTRO , R., AZPÍROZ AZÍROZ, J., & MEIZOSO FERNÁNDEZ, M. (1997). *El proyecto básico del buque mercante*. Madrid: Fondo editorial de Ingeniería Naval: Colegio Oficial de Ingenieros Navales.
- IACS. (2022). Common Structural Rules for Bulk Carries and Double Hull Oil Tankers.
- Pérez, J. E. (2019-2020). *Apuntes de la asignatura de construcción naval.* Cartagena: Universidad Politécnica de Cartagena.

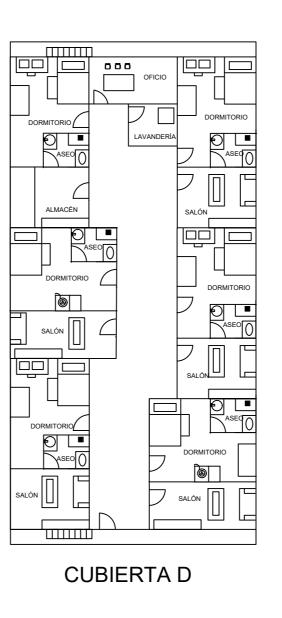

																					/										
CI	Ι Λ	D	T	D	NI	TT	T		\ 5	7	T	١٦	C	17	\mathbf{D}_{i}	\cap	C	т		T	\cap	N	T A	\sim	\mathbf{r}	N	TT	71	•	Λ	T
	\mathcal{A}		ır.	ĸ	II N		- 4	А.	,	•	н.	, ,		м	7	U	۲.٦	м	ι.	ш	. ,	13		ιт	г.	13	JГ	7.1	Λ.	\boldsymbol{A}	н.

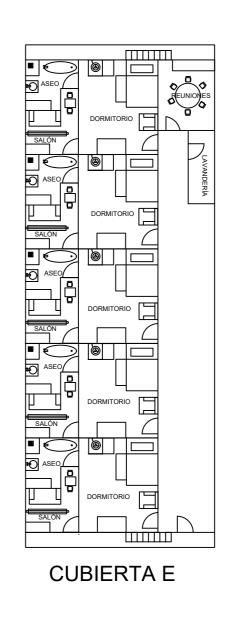
ANEXO I: PLANO DE DISPOSICIÓN GENERAL

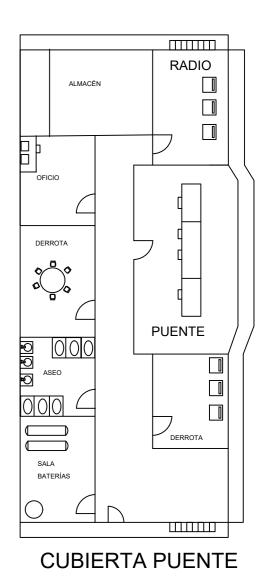





	TL DF B1 TL DF B2 TL DF B3	
	T. IF B6	
	ACLL Br Reboses TONEL DE MIDIEGAS Pique de produ	
	1 1 2 ACM SD E- 2 1 3 1 4 1 5 1 4 1 5 1 5 1 5 1 5 1 5 1 5 1 5	萝
	ACLM Er Lodos	
	TL DF B2 TL DF B2 TL DF B3 TL DF B3	
A	\widetilde{MS}	
	DOBLE FONDO	


Unive	ersidad Polit	técnica
de C	Cartagena	
ANTEPRO' GRANELEI		
DISPOSIC		
ESCALA	ARCHIVO: Disposicion general.dwf	FDD: ANGEL PEDREÑO RUBIO
1:500	FECHA: Agosto 2023	
	PLAND Nº2 Nº HDJAS: 1	


ANEXO II: PLANO DE HABILITACIÓN



Universidad Politécnica de Cartagena

ANTEPROYECTO DE UN BUQUE GRANELERO DE 45000 TPM

HABILITACIÓN

FDO: ÁNGEL

ARCHIVO:
ESCALA

ARCHIVO:
Habilitación.dwg

1:200

PLANO Nº3 Nº HOJAS: 1

Ingeniería

UNIVERSIDAD POLITÉCNICA DE CARTAGENA GRADO EN ARQUITECTURA NAVAL E INGENIERÍA DE SISTEMAS MARINOS

ANTEPROYECTO DE UN **BUQUE GRANELERO DE** 45.000 TPM

CUADERNILLO 6. RESISTENCIA AL AVANCE, PROPULSIÓN Y MOTORIZACIÓN.

ÍNDICE

1.	. INTRODUCCIÓN	3
2.	CÁLCULO DE LA POTENCIA DE REMOLQUE	3
	2.1 Resistencia al avance	4
	2.1.1 Resistencia viscosa	4
	2.1.2 Resistencia de los apéndices	5
	2.1.3 Resistencia por formación de olas	6
	2.1.4 Resistencia de presión inducida por el bulbo	7
	2.1.5 Resistencia debida al coeficiente de correlación modelo-buque	7
	2.1.6 Resistencia al avance total y potencia de remolque	8
3.	SELECCIÓN DEL MOTOR	9
4.	DISEÑO DEL PROPULSOR	11
	4.1 Huelgos entre hélice y casco	11
	4.2 Selección del propulsor	12
	4.2.1 Coeficiente de estela	13
	4.2.2 Coeficiente de succión	14
	4.2.3 Potencia entregada al propulsor	14
	4.2.4 Serie B de Wageningen	14
	4.2.5 Curva de funcionamiento del propulsor	16
5.	DISEÑO DEL TIMÓN	19
	5.1 Área del timón	19
	5.2 Altura del timón	20
	5.3 Cuerda del timón	20
	5.4 Relación de compensación	20
	5.5 Relación de alargamiento	20
	5.6 Relación de espesor	21
	5.7 Fuerzas y par	21
	5.8 Diámetro de la mecha del timón	22
	5.9 Potencia del servomotor	23
6.	MANIOBRABILIDAD	24
	6.1 Diámetro de giro	24
	6.2 Diámetro de evolución	24
	6.3 Condición de avante	25
	6.4 Condición de caída	25
	6.5 Facilidad de gobierno	25

CUADERNILLO 6. RESISTENCIA AL AVANCE, PROPULSIÓN Y MOTORIZACIÓN.

6.6 Facilidad de parada	26
BIBLIOGRAFÍA	27

1. INTRODUCCIÓN

En este cuadernillo se va a estimar tanto la potencia propulsora como las características del propulsor, necesarias para que el buque navegue en unas condiciones óptimas y acordes a las del diseño realizado. Para ello, inicialmente se debe estudiar la resistencia al avance de la carena en nuestro buque y a continuación, el comportamiento del propulsor seleccionado.

Los datos reales de nuestro buque son:

Dimensión	Real
LOA (m)	193,693
LBP (m)	184,671
B (m)	28,568
D (m)	15,847
T (m)	12,362
TPM (t)	45000
Δ (t)	55427
∇ (m3)	54075
v (kn)	15
Cb	0,804
Cm	0,99
Ср	0,812
Cf	0,889
LP (m)	79,784

Tabla 1. Datos reales del buque.

2. CÁLCULO DE LA POTENCIA DE REMOLQUE

La potencia de remolque o efectiva es la potencia necesaria para vencer la resistencia al avance de la carena del buque al navegar a una determinada velocidad. Puede obtenerse como:

$$EHP = \frac{Rt \ V}{75} \ (CV)$$

Por tanto, se debe calcular inicialmente la resistencia al avance.

2.1 Resistencia al avance

Para su cálculo se ha escogido el **método de Holtrop y Mennen**, el cuál se basa en la ITTC-57 y la dividen en 5 componentes:

$$R_T = R_V + R_{AP} + R_W + R_B + R_A$$

- $R_T = Resistencia total$
- $R_V = Resistencia viscosa$
- R_{AP} = Resistencia de los apéndices
- $R_W = Resistencia por formación de olas$
- $R_B = Resistencia de presión inducida por el bulbo$
- R_A = Resistencia debida al coeficiente de correlación buque modelo

Para aplicar el método mencionado, se deben cumplir una serie de requisitos. Como observamos a continuación, nuestro buque los cumple.

Tipo buque	Ср	Fn	L/B	В/Т
Granelero	0,73-0,85	<0,24	5,1-7,1	2,4-3,2
	0,812	0,177	6,780	2,409

Tabla 2. Rango de valores a cumplir por el método.

2.1.1 Resistencia viscosa

Se calcula como:

$$Rv = \frac{1}{2} Sm V^2 C_F \rho (1 + K_1)$$

Obteniendo el coeficiente de fricción según la ITTC-57.

$$C_F = \frac{0'075}{(\log Rn - 2)^2}$$

La viscosidad cinemática del agua salada a 15 grados puede aproximarse a un valor de $1'18732\ 10^{-6}\ m^2/s$.

Obteniendo $(1 + K_1)$ mediante la siguiente formulación:

$$\begin{split} (1+k_1) &= 0.93 \\ &+ 0.487118 \, C_{14} \, \left(\frac{B}{L_F}\right)^{1.06806} \left(\frac{T}{L_F}\right)^{0.46106} \left(\frac{L_F}{L_R}\right)^{0.121563} \left(\frac{L_F^3}{\nabla}\right)^{0.36486} \\ &- C_P)^{-0.604247} \end{split} \tag{1}$$

Siendo:

$$\frac{L_R}{L_F} = 1 - C_P + \frac{0.06 \ C_P \ LCB}{4 \ C_P - 1}$$

$$C_{14} = 1 + 0.011 * C_{STERN}$$

El valor de C_{STERN} es de 10.

2.1.2 Resistencia de los apéndices

Se estima de la siguiente forma:

$$R_{AP} = \frac{1}{2} S_{AP} V^2 C_F \rho (1 + k_2)_{eq}$$

 $(1+k_2)_{eq}$ se puede calcular como:

$$(1+k_2)_{eq} = \frac{\sum S_i (1+k_2)_i}{\sum S_i}$$

Finalmente, $1+k_2$ se obtiene de la tabla a continuación.

Tipo de apéndice	(1+k2)
Timón buque 1 hélice	1,3- 1,5
Timón buque 2 hélices	2,8
Timón y quillote	1,5- 2,0
Quillote solo	1,5- 2,0
Arbotantes	3
Henchimientos protectores	3
Henchimientos integrados	2
Ejes	2,0-4,0
Aletas estabilizadoras	2,8
Domo	2,7
Quillas de balance	1,4

Tabla 3. Valor de $1 + k_2$ según el tipo de apéndice.

Para este caso, el valor de $1+k_2$ será de 1´4 al tener solo una hélice y un timón.

2.1.3 Resistencia por formación de olas

Se emplea la siguiente formulación:

$$R_W = \rho \, g \, \nabla \, C_1 \, C_2 \, C_5 \, e^{m_1 \, F n^d + m_2 \cos(\lambda \, F n^{-2})}$$

Donde,

$$C_1 = 2223105 * C_7^{3.78613} \left(\frac{T}{B}\right)^{1.07961} (90 - i_E)^{-1.37565}$$

 $i_E=$ semiángulo de entrada a la flotación en grados.

$$C_7 = \frac{B}{L_F}$$
; para valores de $\frac{B}{L_F} = [0.11 \text{-} 0.25]$
$$C_2 = e^{-1.89} \sqrt{C_3}$$

$$0.56 * A_{PT}^{1.5}$$

$$C_3 = \frac{0.56 * A_{BT}^{1.5}}{B T (0.31 * \sqrt{A_{BT}} + T_{PR} - h_B)}$$

Siendo A_{BT} el área transversal del bulbo en la vertical de la intersección de la flotación con el perfil de proa y h_B la altura del centro de gravedad del bulbo en la perpendicular de proa.

$$C_{5} = 1 - \frac{0.8 \, A_{TR}}{B \, T_{m} \, C_{M}}$$

$$m_{1} = 0.014047 \, \frac{L_{F}}{T} - 1.75254 \frac{\overline{V^{\frac{1}{3}}}}{L_{F}} - 4.79323 \frac{B}{L_{F}} - C_{16}$$

$$C_{16} = 8.07981 \, C_{P} - 13.8673 \, C_{P}^{2} + 6.984388 \, C_{P}^{3} \, para \, C_{P} < 0.80$$

$$d = -0.9$$

$$m_{2} = C_{15} \, C_{P}^{2} \, 0.4 \, e^{-0.1 \, Fn^{-2}}$$

$$C_{15} = -1.69385 \, para \, \frac{L_{F}^{3}}{V} < 512$$

$$\lambda = 1.446 \, C_{P} - 0.03 \, \frac{L_{F}}{R}; \, para \, \frac{L_{F}}{R} < 12$$

2.1.4 Resistencia de presión inducida por el bulbo

Se calculará como:

$$R_B = 0.11 e^{-P_B^{-2}} \frac{F n_i^3 A_{BT}^{1.5} \rho g}{(1 + F n_i^2)}$$

Siendo P_B un coeficiente para la parte que emerge y Fni es el referido a la inmersión.

$$P_{B} = \frac{0.56 \sqrt{A_{BT}}}{(T_{PR} - 1.5 h_{B})}$$

$$Fn_{i} = \frac{V}{\sqrt{g (T_{PR} - h_{B} - 0.25 \sqrt{A_{BT}}) + 0.15 V^{2}}}$$

2.1.5 Resistencia debida al coeficiente de correlación modelo-buque

Debida a la interacción de los fluidos (aire y agua) con el buque, por lo que es función de la rugosidad del buque. Se calcula mediante la siguiente formulación:

$$R_A = \frac{1}{2} \rho S V^2 C_A$$

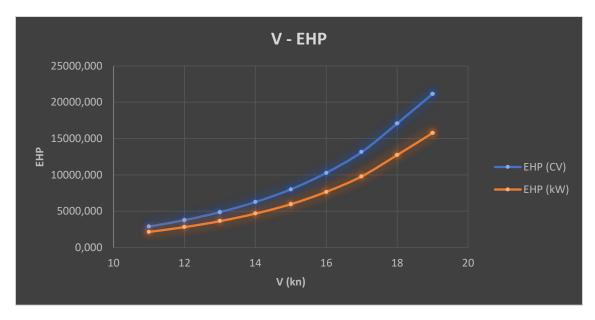
 ${\it C_A}$ es el coeficiente de correlación, se puede aproximar mediante la siguiente fórmula. Vamos a suponer una rugosidad de 145 μ m.

$$C_A = 0.006 (L_F + 100)^{-0.16} - 000205 + 0.003 \left(\frac{L_F}{7.5}\right)^{0.5} C_B^4 C_2 (0.04 - C_4)$$

$$C_2 = e^{-1.89 \sqrt{C_3}}$$

$$C_3 = 1 - \frac{0.8 A_{TR}}{B T_m C_M}$$

$$C_4 = 0.04 \ para \frac{T_{PR}}{L_F} > 0.06$$


2.1.6 Resistencia al avance total y potencia de remolque

Se programa un archivo Excel con toda la formulación expuesta, para así finalmente obtener la resistencia al avance del buque y la potencia de remolque para nueve velocidades distintas.

Vb (kn)	Vb (m/s)	Rv (kg)	Rap (kg)	Rw (kg)	Rb (kg)	Ra (kg)	Rt (kg)	EHP (CV)	EHP (kW)
11	5,658	29349,657	150,999	461,955	3033,664	5355,069	38351,345	2893,430	2157,631
12	6,173	34552,199	177,766	1189,793	3629,194	6372,975	45921,927	3779,558	2818,417
13	6,687	40150,837	206,570	2669,458	4246,703	7479,394	54752,961	4881,920	3640,448
14	7,202	46142,042	237,394	5365,156	4878,340	8674,327	65297,259	6269,930	4675,487
15	7,716	52522,592	270,221	9609,389	5517,322	9957,773	77877,296	8012,016	5974,560
16	8,230	59289,518	305,035	16684,380	6157,921	11329,733	93766,587	10289,820	7673,119
17	8,745	66440,077	341,824	26425,783	6795,398	12790,206	112793,288	13151,397	9806,996
18	9,259	73971,719	380,573	42282,082	7425,901	14339,193	138399,468	17086,245	12741,213
19	9,774	81882,061	421,270	56106,917	8046,358	15976,694	162433,300	21167,441	15784,561

Tabla 4. Resistencia al avance y potencia de remolque para el rango de velocidades expuesto.

Para nuestra velocidad de servicio de 15 nudos, obtenemos una resistencia al avance de 77877´296 kg y una potencia de remolque o efectiva de 8012´016 CV (5974´560 KW).

Gráfica 1. Velocidad del buque frente a potencia de remolque.

3. SELECCIÓN DEL MOTOR

Antes de seleccionar el motor de nuestro buque, es necesario conocer la potencia al freno del mismo, que a la velocidad de contrato fijada debe cumplir con la potencia de remolque o efectiva calculada anteriormente.

$$BHP = \frac{EHP}{\eta_P}$$

Donde,

$$\eta_P = \eta_D * \eta_M$$

- η_M es el rendimiento mecánico de la línea de ejes.
 - η_D es el rendimiento cuasi-propulsivo.

Además, se debe añadir a la expresión un coeficiente corrector, ya que el motor nunca trabaja al 100 % de su capacidad. Este coeficiente es K_P y se puede tomar como el 85 %. El rendimiento mecánico podemos aproximarlo al 95 %, mientras que el rendimiento cuasi-propulsivo lo estimaremos mediante la formulación del Canal del Pardo (se toman 115 rpm).

$$\eta_D = 0.943 - 0.000187 \, N \, \sqrt{L_{PP}} + 0.023 \frac{B}{T} - 0.2 \, C_B + 0.00013 \, N \, C_B \, \sqrt{L_{PP}} = 0'706$$

$$= 70'6 \%$$

Por lo que la potencia mínima a instalar para cumplir con los 15 nudos de contrato será:

$$BHP = \frac{EHP}{\eta_D \ \eta_M \ K_P} = 10479'937 \ kW = 14053'826 \ CV$$

Finalmente, podemos seleccionar el motor propulsor del buque en función de esta potencia. Se ha seleccionado el motor MAN B&W S50ME-C8-TII, con 7 cilindros, que suministra una potencia de 11620 kW.

MAN B&W S50ME-C8-TII

Power and Speed

	Cyl.	L ₁ kW	
			MEP SFOC bar g/kWh
	5 6	8,300 9,960	MCR Minimum at Part Load
Stroke:	7	11,620	1,660 - L1 20.0 172 168
2,000 mm	8 9	13,280 14,940	1,410 - L ₃ 16.0 166 162
			1,130
			108 127 r/min

Ilustración 1. Motor seleccionado para el buque.

4. DISEÑO DEL PROPULSOR

4.1 Huelgos entre hélice y casco

Estos huelgos vienen impuestos por las distintas Sociedades de Clasificación, en este caso se va a seguir lo indicado por la *Lloyd's Register*.

Buques 1 hélice	a	b	С	d
3 palas	1′20 K D _P	1′8 K D _P	0′12 D _P	0′03 D _P
4 palas	1 K D _P	1′5 K D _P	0′12 D _P	0′03 D _P
5 palas	0′85 K D _P	1′275 K D _P	0′12 D _P	0′03 D _P
6 palas	0′75 K D _P	1′125 K D _P	0′12 D _P	0′03 D _P

Tabla 5. Huelgos recomendados según la Lloyd's Register.

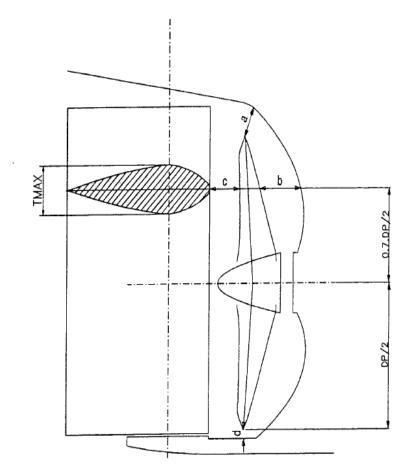


Ilustración 2. Huelgos mínimos recomendados.

Inicialmente, se debe calcular el diámetro del propulsor a partir de la potencia a instalar, en CV, y el número de revoluciones.

$$D_P = 15.75 \frac{BHP^{0.2}}{N^{0.6}} = 6'17 m$$

A continuación,

$$K = \left(0.10 + \frac{L_{PP}}{3050}\right) \left(2.56 C_B \frac{BHP}{L_{PP}^2} + 0.30\right) = 0'149$$

Por lo que para nuestro diámetro máximo de 6´17 metros del propulsor, los huelgos quedan de la siguiente forma:

Buques 1 hélice	а	b	С	d
3 palas	1,103	1′654	0′74	0′185
4 palas	0′919	1′378	0′74	0′185
5 palas	0′781	1′172	0′74	0′185
6 palas	0′689	1′034	0′74	0′185

Tabla 6. Huelgos recomendados según la Lloyd's Register.

Finalmente, se ha comprobado en la disposición general si esos huelgos mínimos son correctos y cumplen con nuestro diseño de las formas de popa.

4.2 Selección del propulsor

Dicha elección se realiza en función de la potencia instalada, vibraciones, cavitación o rendimiento. Normalmente los buques graneleros, potencia media y una sola hélice, suelen llevar propulsores de cuatro palas.

Si aumentamos la potencia instalada sin variar el número de palas, con las revoluciones constantes, se origina un crecimiento del diámetro de la hélice que puede verse limitado por los huelgos con el codaste. La relación área/disco normalmente viene limitado por la cavitación, por lo que se debe elegir un valor mínimo de la misma. Por otro lado, al aumentar la relación, se disminuye el rendimiento del propulsor, por lo que habrá que encontrar una situación de compromiso entre ambas casuísticas.

4.2.1 Coeficiente de estela

Para la formulación de Taylor,

$$w = 0'5 * Cb - 0'10 = 0'302$$

Para la formulación del Canal de Hamburgo,

$$w = 0'7 * Cp - 0'2 = 0'368$$

Para la formulación de Holtrop y Mennen,

$$w = C_9 C_{20} C_V \frac{L_{wl}}{T_{PP}} \left(0'050776 + 0'93405 C_{11} \frac{C_V}{1 - C_{P1}} \right) + 0'27915 C_{20} \sqrt{\frac{B}{L_{wl}} (1 - C_{P1})} + C_{19}C_{20}$$

Donde,

$$C_8 = \frac{B S_m}{L_{wl} D_P T_{PP}} si \frac{B}{T_{PP}} < 5$$

$$C_9 = C_8 si C_8 < 28$$

$$C_{11} = 0'08333333 \left(\frac{T_{PP}}{D_P}\right)^3 + 1'333333 si \frac{T_{PP}}{D_P} > 2$$

$$C_{19} = \frac{0'18567}{1'3571 - C_M} - 0'71276 + 0'38648 C_P si C_P > 0.70$$

$$C_{20} = 1 + 0'015 C_{stern}$$

$$C_{P1} = 1'45 * C_P - 0'315 - 0'0225 X_B$$

$$C_V = (1 + k) C_F + C_A - 1'3219 * 1'496 * 10^{-3} + 3'7 * 10^{-4}$$

Aplicando la formulación expuesta, se obtiene un valor del coeficiente de estela de 0´23 para el diámetro máximo.

CUADERNILLO 6. RESISTENCIA AL AVANCE, PROPULSIÓN Y MOTORIZACIÓN.

Por lo que se tomará un valor medio entre los tres calculados, quedando finalmente el coeficiente de estela como **0**′**3**.

4.2.2 Coeficiente de succión

Se empleará la formulación expuesta por Holtrop.

$$\boldsymbol{t} = \frac{0'25014*\left(\frac{B}{LWL}\right)^{0'28959}*\left(\frac{\sqrt{B*T}}{Dp}\right)^{0'264}}{(1-Cp+0'0225*XB)^{0'01762}} + 0'00015*Cstern = \boldsymbol{0'2}$$

4.2.3 Potencia entregada al propulsor

Queda como:

$$DHP_{WAG} = BHP * \eta_M * \eta_R * \frac{75}{76} * \frac{1}{1'026} = 9878'364 \ CV$$

Por tanto, la velocidad de avance será:

$$Va = V(1 - w) = 10'5 kn = 5'4 m/s$$

4.2.4 Serie B de Wageningen

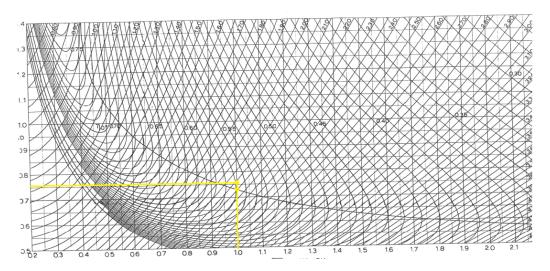
Con los datos obtenidos y las conclusiones expuestas, pasamos a seleccionar el propulsor. Inicialmente se calcula:

$$Bp = \frac{n * \sqrt{DHP}}{Va^{2'5}} = 32$$

Con este dato, ya podemos entrar en la gráfica $B_p - \frac{1}{I} \cos 0'1739 \sqrt{B_p}$.

CUADERNILLO 6. RESISTENCIA AL AVANCE, PROPULSIÓN Y MOTORIZACIÓN.

$$\frac{1}{I}opt = \frac{nD}{V_A} = 2'2$$


$$Dopt = \left(\frac{1}{J}\right) opt * \frac{Va}{n} = 6'219 m$$

Como el diámetro óptimo obtenido es mayor que el máximo calculado, se debe estimar de nuevo.

$$\left(\frac{1}{I}\right)max = n * \frac{Dmax}{Va} = 2'182$$

Dmax (m)	6′17
H/D	0′76
η0	0′56

Tabla 7. Características del propulsor.

Gráfica 2. Serie de B Wageningen.

A continuación, se debe comprobar que no se produce cavitación con el valor de la relación área/disco arrojado. Para ello se empleará el método de *Keller*, que nos proporciona el valor mínimo de dicha relación para que no se origine cavitación.

$$\left(\frac{AE}{AO}\right)min = \frac{(1'3 + 0'3 * Z) * T}{(P0 - Pv) * D^2} + K = 0'33$$

Donde Z es el número de palas, T es el empuje de la hélice (kg), P0 la presión estática en el eje, (que será $Pa + \rho gh$) (kg/m2), Pv es la presión de vapor del agua (Kg/m2), D el diámetro de la hélice, (m) y K es una constante que será igual a 0´2 para buques de una hélice.

En consecuencia, se comprueba que cumplimos la condición de no cavitación y la de diámetro máximo. Finalmente, se tiene un propulsor de 4 palas, como es recomendable en estos buques, con una relación AE/AO de 0´55, una relación H/D de 0´76, un η_0 de 0´56 y un η_R de 1´1.

4.2.5 Curva de funcionamiento del propulsor

A partir de la serie B de Wageningen y un conjunto de polinomios, se pueden representar gráficamente las curvas K_T y K_O , así como el empuje y el par.

$$K_T = \sum C_{s,t,u,v} (J)^s \left(\frac{H}{D}\right)^t \left(\frac{Ae}{Ao}\right)^u (Z)^v$$

$$K_Q = \sum C_{s,t,u,v} (J)^s \left(\frac{H}{D}\right)^t \left(\frac{Ae}{Ao}\right)^u (Z)^v$$

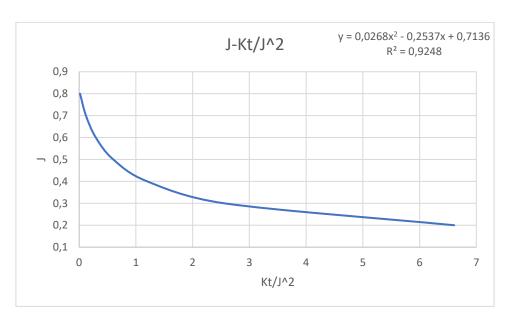
Se debe tener en cuenta que los exponentes de las expresiones son distintos para empuje y para par. A continuación, se va a programar un archivo Excel para expresar el resultado de las expresiones y representarlos gráficamente, para ello se empleará la siguiente formulación:

$$K_T = \sum_{i=0}^{n_1} \sum_{i=0}^{n_2} \sum_{i=0}^{n_3} a_{ijk} \left(\frac{Ae}{Ao}\right)^i \left(\frac{H}{D}\right)^j (J)^k$$

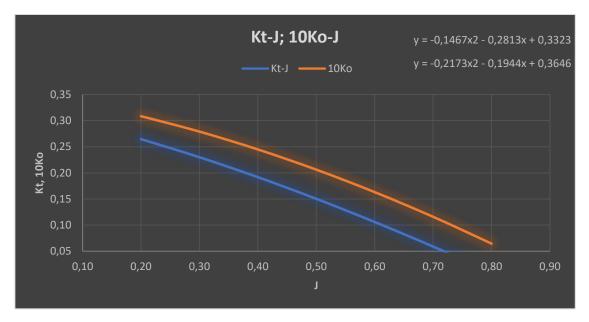
$$10K_Q = \sum_{i=0}^{n_1} \sum_{j=0}^{n_2} \sum_{i=0}^{n_3} b_{ijk} \left(\frac{Ae}{Ao}\right)^i \left(\frac{H}{D}\right)^j (J)^k$$

$$J = \frac{V_A}{nD}$$

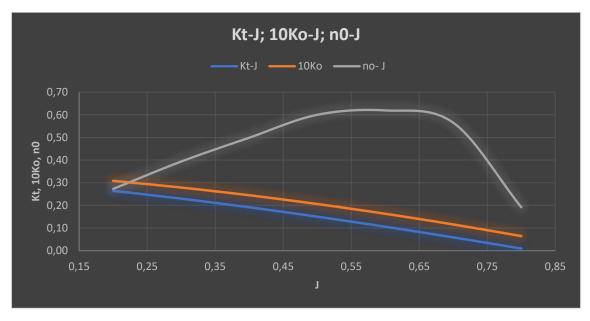
$$\delta_{opt} = \sum_{i=0}^{n1} \sum_{i=0}^{n2} c_{ijk} \left(\frac{Ae}{Ao} \right)^i \left(\frac{\sqrt{Bp}}{10} \right)^j$$


$$\frac{H}{D} = \sum_{i=0}^{n_1} \sum_{i=0}^{n_2} \sum_{i=0}^{n_3} d_{ijk} \left(\frac{Ae}{Ao} \right)^i \left(\frac{\sqrt{Bp}}{10} \right)^j \left(\frac{\delta}{100} \right)^k$$

$$\eta_0 = \sum_{i=0}^{n_1} \sum_{i=0}^{n_2} \sum_{i=0}^{n_3} e_{ijk} \left(\frac{Ae}{Ao} \right)^i \left(\frac{\sqrt{Bp}}{10} \right)^j \left(\frac{\delta}{100} \right)^k$$


Finalmente se obtienen los siguientes resultados de los coeficientes de empuje, par y rendimiento.

J	KT	10Ко	KT/J^2	no
0,2	0,26435147	0,30836862	6,60878677	0,27288175
0,3	0,23008091	0,27902796	2,60722735	0,39371962
0,4	0,19189726	0,24487087	1,22840225	0,49891274
0,5	0,16802506	0,2228262	0,62008101	0,60008221
0,6	0,10572884	0,16300885	0,30711873	0,61939324
0,7	0,05871313	0,11575466	0,12991109	0,56510312
0,8	0,00972247	0,06458552	0,01519137	0,19167459


Tabla 8. Resultados obtenidos.

Gráfica 3. Curva J-Kt/J^2.

Gráfica 4. Curvas Kt-J, 10Ko-J.

Gráfica 5. Curvas Kt-J, 10Ko-J, nO-J.

5. DISEÑO DEL TIMÓN

El timón es el apéndice más importante, ya que nos permite el gobierno del buque. Existen diferentes geometrías de timones, cada una de ellas es característica para un tipo de buque y aporta unas cualidades de maniobrabilidad distintas. Podemos encontrar timones suspendidos, semi-suspendidos, apoyados y de doble sustentación. En este caso, se ha optado por un timón semi-suspendido.

Estos criterios de maniobrabilidad están regulados por la Organización Marítima Internacional (OMI), debiendo cumplir unos mínimos. La maniobrabilidad del buque se puede dividir en facilidad de evolución, facilidad de gobierno y facilidad de cambio de rumbo. En este caso, para buques de una hélice, el timón debe situarse en crujía, de forma que el borde de ataque de la pala del timón cubra por completo la hélice.

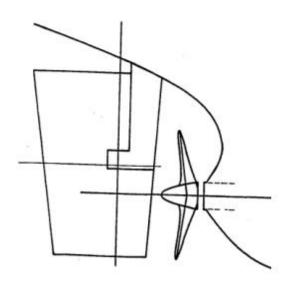


Ilustración 3. Timón semi-suspendido.

5.1 Área del timón

Según la Sociedad de Clasificación DNV, se puede emplear la siguiente formulación Donde f toma el valor 1´025 para timones semi-suspendidos.

$$AT = \frac{L * T}{100} * \left(f + 25 * \left(\frac{B}{L} \right)^2 \right) = 37'647 m^2$$

CUADERNILLO 6. RESISTENCIA AL AVANCE, PROPULSIÓN Y MOTORIZACIÓN.

Además, debemos encontramos en un rango de valores determinados por el autor Saunders. La relación entre L*T (área de deriva) y área de la pala del timón, debe estar entre 1'7-2'1 %. En nuestro caso, tenemos un **1'9** %, por que estamos dentro del rango recomendado.

5.2 Altura del timón

Se estimará a partir del plano de formas, donde tenemos una altura libre en la perpendicular de popa (situación donde irá la mecha del timón) de 8 metros. Se recomienda dejar unos huelgos de aproximadamente el 7 %, por lo que estos huelgos serán de 0´4 metros cada uno. En consecuencia, obtenemos una altura de timón de **7´2 metros**.

5.3 Cuerda del timón

Se puede obtener de la siguiente relación:

$$AT = C * H$$

De forma que tenemos una cuerda del timón de 5'228 metros.

5.4 Relación de compensación

Mide la superficie de la pala del timón distribuida alrededor del eje de giro de este. Se pueden dar dos casuísticas:

- Timón compensado: Cuando hay parte de la superficie de la pala a proa del eje de giro.
- Timón descompensado: Cuando toda la superficie de la pala está a popa del eje de giro.

En este caso, se ha optado por un timón compensado. Los autores recomiendan una relación de compensación de entre el 25-32 %.

5.5 Relación de alargamiento

Se define como la relación entre la altura y cuerda del timón. Debemos llegar a una situación de compromiso, ya que para relaciones grandes se consigue mayor maniobrabilidad a

ángulos bajos, y para relaciones pequeñas se consigue buena maniobrabilidad para ángulos grandes del timón. Se recomienda estar por encima de 1´4 para buques de una hélice.

$$\lambda = \frac{h}{c} = 1'4$$

5.6 Relación de espesor

Normalmente se suelen elegir perfiles tipo NACA. El concepto de esta relación es comprobar que la pala tendrá un buen desprendimiento de flujo y un centro de presiones adecuado antes los distintos ángulos de giro. El ángulo de desprendimiento debe encontrarse entre 15-23º, siendo las relaciones de espesores más empleadas las de 0´12, 0´15 y 0´18.

$$\delta_g = 7'11 (1 + 7E) \left(1 + \frac{1'25}{\lambda} \right) \left(1 + 0'048 \sqrt{ln \left(1 + \frac{8 K_T}{\pi J^2} \right)} \right) \frac{H}{D}$$

De forma que para las tres relaciones de espesores obtenemos:

E	$oldsymbol{\delta_g}$
0′12	19′72
0′15	21′97
0′18	24′14°

Tabla 9: Relaciones de espesores y ángulos de desprendimiento.

En consecuencia, de los resultados obtenidos se selecciona el perfil NACA 0015.

5.7 Fuerzas y par

La fuerza generada sobre el timón puede aproximarse como:

$$Fr = 132 * X1 * X2 * X3 * At * V^2 * t$$

Siendo,

$$X1 = \frac{\frac{h^2}{At} + 2}{3}$$

- X2: Coeficiente función del tipo pala, para la serie NACA 00, este coeficiente toma el valor 1´1 para avante y 0´80 para ciar.
- X3: Es función de la posición del timón respecto de la hélice. En buques con el timón situado detrás de la hélice, este coeficiente toma el valor de 1.
- Para la velocidad ciando se tomará la mitad de la velocidad del buque.

Obteniendo los siguientes resultados de la fuerza cuando el buque va avante y cuando está ciando.

	V (kn)	X1	X2	Х3	F (N)
Avante	15	1,126	1,1	1	1384489
Ciando	7,5	1,126	0,8	1	251725

Tabla 10. Resultados de las fuerzas obtenidos.

El par puede obtenerse como:

$$Q_R = F_R * r$$
$$r = c * (\propto -k)$$

Donde c es cuerda del timón, \propto será 0´33 para la condición de avante y de 0´66 para la condición de ciar, y k es el factor de compensación, que se toma como 0´3. El valor del brazo no será menor de 0´1*c.

	r	Q (Nm)
Avante	0,5228	723811
Ciando	1,88208	473767

Tabla 11. Resultados del par obtenidos.

5.8 Diámetro de la mecha del timón

Se va a emplear el método de la IACS, donde se sigue la siguiente formulación:

$$D = 4'2 \sqrt[3]{Q_R k} = 377'1 mm$$

Donde k se puede suponer como 1 y el par es el de la condición de avante.

Por otro lado, se debe comprobar que según la IACS se cumple un mínimo por momentos flectores, este será el diámetro real de la mecha.

$$M_f = \frac{F_R * h}{8} = 1246040'1 Nm$$

$$D_E = D \int_0^6 1 + \frac{4}{3} \left[\frac{M_f}{Q_R} \right]^2 = 430'874 mm$$

5.9 Potencia del servomotor

Mecanismo encargado de hacer que gire el timón cuando el oficial en puente de guardia lo demanda. Suele ir instalado en la popa, en la zona superior al timón (finos de popa) y requiere normalmente de una gran potencia para vencer las fuerzas y momentos anteriormente calculados.

Se puede estimar como:

$$P_{sv} = Q_{R_{av}} * w$$

Donde w es la velocidad angular del timón, la cual debe permitir meter 30° de timón a una banda y posteriormente 35° a la banda contraria, en un tiempo de 28 segundos. Esto se traduce en un valor de w de 0´0405 rad/s. Se considera un rendimiento de la maquinaria del 70 %, de forma que la potencia queda finalmente como:

$$P_{sv} = \frac{Q_{R_{av}} * w}{0.7} = 41877.636 W = 56.023 CV$$
 (122)

6. MANIOBRABILIDAD

Estudia la facilidad de evolución, característica del buque para realizar cambios de rumbo importantes. Las cualidades que mejor definen la maniobrabilidad son el diámetro de giro y el diámetro de evolución.

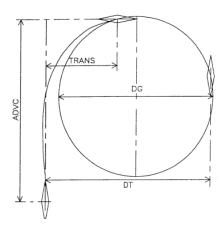


Ilustración 4. Evolución del buque.

6.1 Diámetro de giro

Para buques de una hélice se sigue la siguiente formulación:

$$DG = Lpp * \left(4'19 - \frac{203 * Cb}{\emptyset} + 47'7 * \frac{t}{Lpp} - 13 * \frac{B}{Lpp} + \frac{194}{\emptyset} - 35'8 * \frac{At}{Lpp * T} + 7'79 * \frac{Ab}{Lpp * T}\right)$$

Donde \emptyset es el ángulo del timón, t el asiento del buque que se tomará como nulo, At es la superficie proyectada de la pala del timón y Ab superficie proyectada del bulbo.

Se obtiene un diámetro de giro de **585'834 metros**. Este valor debe ser menor o igual a 3'02 Lpp=590'947 metros, por lo que sí se cumple la condición.

6.2 Diámetro de evolución

Para buques de una hélice se sigue la siguiente formulación:

$$DT = Lpp * \left(0'91 * \frac{DG}{Lpp} + 0'234 * \frac{V}{\sqrt{Lpp}} + 0'675\right) = 681'539 m$$

Según la OMI, este valor no debe exceder de cinco veces la eslora entre perpendiculares. Se comprueba que se cumple esta condición (5Lpp=923´355).

6.3 Condición de avante

Para buques de una hélice se sigue la siguiente formulación:

$$Av = Lpp * \left(0'519 * \frac{DT}{Lpp} + 1'33\right) = 599'331 m$$

6.4 Condición de caída

Para buques de una hélice se sigue la siguiente formulación:

$$Trans = Lpp * \left(0'497 * \frac{DT}{Lpp} - 0'065\right) = 326'721 m$$

6.5 Facilidad de gobierno

Se define como la relación entre el primer ángulo de rebasamiento y la expresión Cb*B/Lpp, para buques graneleros sigue la formulación siguiente:

- Para el ángulo de rebasamiento de 10º en maniobra en Z:

$$delo = 10 * 3'20 * \left(Cb * \frac{B}{Lpp} + 0'10\right)$$
$$= 7'192 + 20 \% margen = 8'63^{\circ}$$

- Para el ángulo de rebasamiento de 20º en maniobra en Z:

$$delo = 20 * 5'20 * \left(Cb * \frac{B}{Lpp} + 0'019\right) = 14'951 + 20 \% \ margen = 17'941^{\circ}$$

CUADERNILLO 6. RESISTENCIA AL AVANCE, PROPULSIÓN Y MOTORIZACIÓN.

Según la OMI se deben cumplir unos criterios para estas maniobras en Z. Sabiendo que Lpp/V=23´93 segundos, los criterios serán los siguientes:

- Cuando se realiza la maniobra de 10º en 10º, el ángulo de rebasamiento no debe ser mayor de:

$$5 + 0'5 * \left(\frac{Lpp}{V}\right) = 16'966^{\circ}$$

Sí se cumple este criterio $(16'966^{\circ} > 8'63^{\circ})$.

- Cuando se realiza la maniobra de 20º en 20º, el ángulo de rebasamiento no debe ser mayor de 25º. Sí se cumple este criterio (25º > 17´941º).

6.6 Facilidad de parada

Se mide en función de la distancia recorrida (*RH*) después de dar atrás toda (*crash stop*). Esta distancia es función del parámetro de potencia (*PP*).

$$PP = 0'305 * V^3 * \frac{\Delta}{PBA * Dp} = 2205'927$$

$$RH = 0'305 e^{\left(0'773 - 5'10^{-5}*PP + 0'617*ln(PP)\right)} * \Delta^{\frac{1}{3}} = 2608'222 m$$

Según la OMI se debe cumplir que esta distancia no supere 15 veces la eslora entre perpendiculares del buque, 15Lpp=2770´065, por lo que sí se cumple el criterio.

BIBLIOGRAFÍA

- ALVARIÑO CASTRO , R., AZPÍROZ AZÍROZ, J., & MEIZOSO FERNÁNDEZ, M. (1997). *El proyecto básico del buque mercante*. Madrid: Fondo editorial de Ingeniería Naval: Colegio Oficial de Ingenieros Navales.
- ALMANSA, M. J. (2020-2021). Apuntes de la asignatura de proyectos. Universidad Politécnica de Cartagena.
- DNV GL SE. (2015). *Rules for Classification and Construction. Ship Technology.* Hamburgo: DNV GL SE.
- Turbo, M. D. (2014). MAN B&W S50ME-B9.3-TII Project Guide. Copenhagen.

Ingeniería

UNIVERSIDAD POLITÉCNICA DE CARTAGENA GRADO EN ARQUITECTURA NAVAL E INGENIERÍA DE SISTEMAS MARINOS

ANTEPROYECTO DE UN **BUQUE GRANELERO DE** 45.000 TPM

CUADERNILLO 7. RESISTENCIA LONGITUDINAL Y SITUACIONES DE CARGA.

ÍNDICE

1.	INT	RODUCCIÓN	3
2.	TIP	OLOGÍA DE CARGA A TRANSPORTAR	3
3.	CRI	ITERIOS	4
	3.1	Criterios de estabilidad de la OMI para buque intacto	4
	3.2	Criterios de estabilidad del SOLAS para buque intacto	4
4.	DIS	TRIBUCIÓN DEL PESO DE ACERO	4
	4.1 Pe	esos	6
	4.2 Ce	entros de gravedad	6
5.	DIS	TRIBUCIÓN DE LOS TANQUES	7
6.	DIS	TRIBUCIÓN DE PESOS	8
7.	SIT	UACIONES DE CARGA	8
		alida de puerto, con el 100 % de la carga distribuida de manera homogénea (factor a 1´25 m³/t) y con el 100 % de consumibles	9
	7.1	.1 Partida de pesos	9
	7.1	.2 Equilibrio	. 12
	7.1	.3 Resistencia longitudinal	. 13
	7.1	.4 Estabilidad a grandes ángulos	. 14
		egada a puerto, con el 100 % de la carga distribuida de manera homogénea (factor a 1´25 m³/t) y con el 10 % de consumibles	. 16
		.1 Partida de pesos	
	7.2	.2 Equilibrio	. 19
	7.2	.3 Resistencia longitudinal	. 21
	7.2	.4 Estabilidad a grandes ángulos	. 22
		alida de puerto, con carga distribuida de manera homogénea (factor estiba 1´4 m³/t) odegas 2, 4 y 6, y con el 100 % de consumibles	
	7.3	.1 Partida de pesos	. 24
	7.3	.2 Equilibrio	. 27
		.3 Resistencia longitudinal	
	7.4	Estabilidad a grandes ángulos	. 31
		egada a puerto, con carga distribuida de manera homogénea (factor estiba 1´4 m³/t) odegas 2, 4 y 6, y con el 10 % de consumibles	
		.1 Partida de pesos	
		.2 Equilibrio	
	7.4	.3 Resistencia longitudinal	. 38
	7.4	.4 Estabilidad a grandes ángulos	. 40

CUADERNILLO 7. RESISTENCIA LONGITUDINAL Y SITUACIONES DE CARGA.

7.5 Salida de puerto, con el 100 % de la carga distribuida de manera homogénea (factor estiba 1´55 m³/t) y con el 100 % de consumibles.	43
7.5.1 Partida de pesos	43
7.5.2 Equilibrio	46
7.5.3 Resistencia longitudinal	47
7.5.4 Estabilidad a grandes ángulos	49
7.6 Llegada a puerto, con el 100 % de la carga distribuida de manera homogénea (factor estiba 1´55 m³/t) y con el 10 % de consumibles.	51
7.6.1 Partida de pesos	51
7.6.2 Equilibrio	55
7.6.3 Resistencia longitudinal	56
7.6.4 Estabilidad a grandes ángulos	58
7.7 Salida de puerto en lastre con los consumibles al 100 % y buen tiempo	60
7.7.1 Partida de pesos	60
7.7.2 Equilibrio	63
7.7.3 Resistencia longitudinal	65
7.7.4 Estabilidad a grandes ángulos	67
7.8 Llegada a puerto en lastre con los consumibles al 10 % y buen tiempo	70
7.8.1 Partida de pesos	70
7.8.2 Equilibrio	73
7.8.3 Resistencia longitudinal	74
7.8.4 Estabilidad a grandes ángulos	76
7.9 Inundación de la bodega 2	78
7.9.1 Partida de pesos	78
7.9.2 Equilibrio	82
7.9.3 Resistencia longitudinal	83
7.9.4 Estabilidad a grandes ángulos	85
7.10 Inundación del pique de proa	87
7.10.1 Partida de pesos	87
7.10.2 Equilibrio	90
7.10.3 Resistencia longitudinal	91
7.10.4 Estabilidad a grandes ángulos	93
BLIOGRAFÍA	96

1. INTRODUCCIÓN

Finalmente, en este último cuadernillo, se van a simular distintas situaciones de carga que puede que experimente nuestro buque durante su ciclo de vida., comprobando en cada una de las situaciones que se cumple con los requisitos exigidos de resistencia longitudinal y estabilidad, entre otros.

Estos criterios serán mayoritariamente los definidos por la OMI (Organización Marítima Internacional), SOLAS (Convenio Internacional de Seguridad en la Mar) y Sociedades de Clasificación para resistencia longitudinal.

Las simulaciones mencionadas se llevarán a cabo con el programa *Maxsurf Stability*, donde introduciremos el modelo de nuestro buque diseñado en el cuadernillo 4 de disposición general.

2. TIPOLOGÍA DE CARGA A TRANSPORTAR

La OMI, en su código de prácticas de seguridad de cargas a granel, expone algunas de las cargas que suelen transportar los graneleros con más frecuencia, así como su densidad y factor de estiba.

Material	Densidad (t/m³)	Factor estiba (m³/t)
Alfalfa	0′614	1′68
Carbón	0′960	1′16
Abonos sin nitratos	0′912	1′15
Astillas de mármol	0′654	1′53
Azúcar	0′813	1′30
Urea	0′750	1′27
Pallets de madera	0′675	1′50

Tabla 1. Tipos de carga a transportar.

Es importante saber que el factor de estiba se define como la relación entre el volumen que ocupa la carga y su peso, esto se debe tener en cuenta a la hora de diseñar las distintas condiciones de carga.

3. CRITERIOS

Los criterios de estabilidad que se deben cumplir vienen ya establecidos en el programa a usar, *Maxsurf Stability*. Cuando se hagan las simulaciones de las distintas condiciones de carga se debe comprobar que no incumplimos estos criterios.

3.1 Criterios de estabilidad de la OMI para buque intacto

Los siguientes tres criterios son los referidos al área contenida por la curva GZ entre esos grados.

- "A.749(18) Ch3- Design criterio applicable to all ships":
 - Area 0 to 30 (>0,055 m·rad).
 - Area 0 to 40 (>0,090 m·rad).
 - Area 30 to 40 (>0,030 m·rad).
 - Max GZ at 30 or greater (>0,200 m).
 - Angle of maximum GZ (>25 deg).
 - Initial GMt (>0,150 m).

3.2 Criterios de estabilidad del SOLAS para buque intacto

- "MSC.23(59) Adoption of the International Code for the Safe Carriage of Grain in Bulk- Ch 7. Stability requirements":

Grain heeling arm.

- Angle of equilibrium (<12 deg).
- GZ area between limits type 1 (>0,075 m·rad).
- Value of FMt at (>0,300 m).

4. DISTRIBUCIÓN DEL PESO DE ACERO

El peso del acero del buque se estimó en uno de los primeros cuadernillos, pero ahora se va a calcular de nuevo de forma más exacta. Para estudiar su distribución a lo largo de la eslora se va a utilizar el método de *Biles*.

Este método consiste en la aproximación del buque como dos trapecios en proa y popa, y una parte central rectangular. De forma que se calcula el peso del acero distribuido y el centro de gravedad en cada una de las partes.

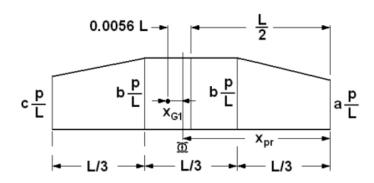


Ilustración 1. Distribución del peso del acero según Biles.

Inicialmente se va a calcular de nuevo el peso del acero continuo y su centro de gravedad, empleando la formulación de *Osorio*. Obteniendo así los siguientes resultados:

$$P = \left(\frac{L}{B}\right)^{1'376} \left(\frac{BD}{100}\right)^{0'7449} (0'0542 - 0'0017 C_B) * 1000 = 4773'861 t$$

A continuación, vamos a distribuirlo mediante el método de Biles como se ha mencionado. Sabemos que el centro de gravedad desde la sección media está a 3´2 metros a popa:

$$x_{G_1} = x_{Pr} - \left(0'0056 * L + \frac{L}{2}\right) = 2'165 m$$

Siendo y la variación de la ordenada de popa, el centro de gravedad se debe trasladar una distancia:

$$\Delta x = x_g - x_{g1} = -3'2 - 2'165 = -5'365 m$$
$$y = \frac{54}{7} * \frac{\Delta x P}{L^2} = 5'793 \frac{t}{m}$$

A continuación, dividimos la eslora del buque en tres partes, de 61´557 cada una. Los valores de las constantes empleadas en la formulación son los siguientes, en nuestro caso se trata de formas llenas.

Coeficientes	Formas finas	Formas llenas
a	0.566	0.596
b	1.195	1.174
c	0.653	0.706

Tabla 2. Valores de las constantes a, b y c.

4.1 Pesos

- Trapecio de popa:

$$P_{trapecio\;Pp} = P_{REC} + P_{TRI} = \left(y + c * \frac{p}{L}\right) * \frac{L}{3} + \frac{1}{2} * \left(\frac{p}{L}(b - c) - y\right) * \frac{L}{3} = 1674'109\;t$$

Zona central:

$$P_{centro} = b * \frac{p}{L} * \frac{L}{3} = 1868'171 t$$

Trapecio de proa:

$$P_{trapecio\ Pr} = P_{REC} + P_{TRI} = \left(a * \frac{p}{L} - y\right) * \frac{L}{3} + \frac{1}{2} * \frac{L}{3} * \left(b * \frac{p}{L} - \left(a * \frac{p}{L} - y\right)\right) = 1229'989\ t$$

Se comprueba que los cálculos realizados son correctos, ya que el sumatorio de estos pesos es aproximadamente igual al peso total del acero calculado inicialmente.

$$1674'109 + 1868'171 + 1229'989 = 4772'269 \approx 4773'861$$

4.2 Centros de gravedad

Se van a calcular respecto a la sección media y a la perpendicular de popa.

$$\bar{x} = \frac{L}{6} * \frac{m_f - m_a}{m_f + m_a}$$

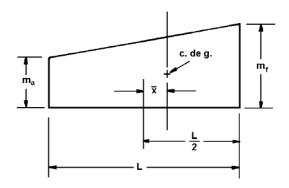


Ilustración 2. Posición del centro de gravedad de un trapecio.

- Trapecio de popa:

$$m_a = c * \frac{p}{L} + y = 24'043 t$$
; $m_f = b * \frac{p}{L} = 30'4 t$
 $\bar{x}_{trapecio\ Pp} = 3'593 m$

 $x_{cdg\,pp} = -57'964\,m\,respecto\,SM;\,34'371\,m\,respecto\,P_{PP}$

- Zona central:

$$x_{cdac} = 0 \text{ m respecto SM}$$
; 92'335 m respecto P_{PP}

- Trapecio de proa:

$$m_a = a * \frac{p}{L} - y = 9'613 t$$
; $m_f = b * \frac{p}{L} = 30'4 t$
 $\bar{x}_{trapecio\ Pr} = 15'989 m$

 $x_{cdg pp} = 45'568 m respecto SM; 137'903 m respecto P_{PP}$

5. DISTRIBUCIÓN DE LOS TANQUES

Se introducen en el programa, con sus dimensiones, coordenadas, permeabilidad y densidad de los fluidos a contener por cada uno. Estos datos ya se calcularon en cuadernillos anteriores.

6. DISTRIBUCIÓN DE PESOS

Se calculan los pesos del buque con los datos obtenidos en cuadernillos anteriores, así como sus centros de gravedad para introducirlos en el programa.

Conociendo el desplazamiento arrojado por el programa y sabiendo que el peso muerto es el sumatorio de estos consumibles más la capacidad de bodegas, podemos estimar una capacidad de bodegas de:

Capacidad bodegas (t) =
$$\Delta - PR - Consumbles = 55341 - 10433'456 - 2402'425 = 42505'119 t$$

7. SITUACIONES DE CARGA

Se simularán las condiciones de carga descritas a continuación:

- 1. Salida de puerto, con el 100 % de la carga distribuida de manera homogénea (factor estiba 1´25 m3/t) y con el 100 % de consumibles.
- 2. Llegada a puerto, con el 100 % de la carga distribuida de manera homogénea (factor estiba 1'25 m3/t) y con el 10 % de consumibles.
- 3. Salida de puerto, con carga distribuida de manera homogénea (factor estiba 1'4 m3/t) en las bodegas 2, 4 y 6, y con el 100 % de consumibles.
- 4. Llegada a puerto, con carga distribuida de manera homogénea (factor estiba 1'4 m3/t) en las bodegas 2, 4 y 6, y con el 10 % de consumibles.
- 5. Salida de puerto, con el 100 % de la carga distribuida de manera homogénea (factor estiba 1'55 m3/t) y con el 100 % de consumibles.
- 6. Llegada a puerto, con el 100 % de la carga distribuida de manera homogénea (factor de estiba 1'55 m³/t) y con el 10 % de consumibles.

- 7. Salida de puerto en lastre con los consumibles al 100 % y buen tiempo.
- 8. Llegada a puerto en lastres con los consumibles al 10 % y buen tiempo.
- 9. Inundación de la bodega 2.
- 10. Inundación del pique de proa.

7.1 Salida de puerto, con el 100 % de la carga distribuida de manera homogénea (factor estiba $1'25 \text{ m}^3/\text{t}$) y con el 100 % de consumibles.

7.1.1 Partida de pesos

Zona	Cantidad	Masa por unidad (t)	Masa total (t)	Xg (m)	Yg (m)	Zg (m)
POPA	1	1674,109	1674,109	34,371	0	10,2
CENTRO	1	1868,171	1868,171	92,335	0	10,2
PROA	1	1229,989	1229,989	137,903	0	10,2
MAQUINARIA	1	984,409	984,409	20,158	0	7,014
EQUIPO Y HABILITACION	1	1213,292	1213,292	90,862	0	17,261
VIVERES	1	4,42	4,42	28,92	0	25
TRIPULACIÓN	1	3,25	3,25	28,92	0	25
TANQUES HFO	1	7,151	7,151	28,957	0	9,563
TANQUES MDO	1	0,162	0,162	20,563	0	19,162
TANQUES ACEITE	1	4,742	4,742	12,918	0	1
TANQUES AGUA DULCE	1	2,641	2,641	6,239	0	15,836
BODEGA 6	1	7021,696	7021,696	44,025	0	7,642
BODEGA 5	1	7021,696	7021,696	67,246	0	7,642
BODEGA 4	1	7021,696	7021,696	90,467	0	7,642
BODEGA 3	1	7021,696	7021,696	113,688	0	7,642
BODEGA 2	1	7021,696	7021,696	136,909	0	7,642

BODEGA 1	1	7021,696	7021,696	160,13	0	7,642
SUPERESTRUCTURA POPA	1	718,925	718,925	22,09	0	23,066
GUARDACALOR	1	83,605	83,605	12,396	0	27,954
CASTILLO PROA	1	208,292	208,292	179,495	0	15,611
BRAZOLAS ESCOTILLAS	1	120,247	120,247	99,223	0	18,124
TOLDILLA	1	250,731	250,731	14,051	0	15,326
PIQUES	1	1947,343	1947,343	89,284	0	7,936
DF B1 Er	0%	406,94	0	55,237	1,406	0
DF B1 Br	0%	406,94	0	55,237	-1,406	0
DF B2 Er	0%	543,082	0	74,405	2,449	0
DF B2 Br	0%	543,082	0	74,405	-2,449	0
DF B3 Er	0%	546,824	0	92,129	4,389	0
DF B3 Br	0%	546,824	0	92,129	-4,389	0
DF B4 Er	0%	546,84	0	112,721	4,558	0
DF B4 Br	0%	546,84	0	112,721	-4,558	0
DF B5 Er	0%	543,43	0	130,198	2,769	0
DF B5 Br	0%	543,43	0	130,198	-2,769	0
DF B6 Er	0%	356,432	0	149,261	1,594	0
DF B6 Br	0%	356,432	0	149,261	-1,594	0
TL B1 Er	0%	128,598	0	51,672	13,343	2
TL B1 Br	0%	128,598	0	51,672	-13,343	2
TL B2 Er	0%	227,419	0	67,338	13,742	2
TL B2 Br	0%	227,419	0	67,338	-13,742	2
TL B3 Er	0%	227,698	0	90,418	13,751	2
TL B3 Br	0%	227,698	0	90,418	-13,751	2
TL B4 Er	0%	227,413	0	113,597	13,75	2
TL B4 Br	0%	227,413	0	113,597	-13,75	2
TL B5 Er	0%	211,335	0	135,92	13,695	2
TL B5 Br	0%	211,335	0	135,92	-13,695	2
TL B6 Er	0%	49,284	0	150,409	12,647	2
TL B6 Br	0%	49,284	0	150,409	-12,647	2
TS B1 Er	0%	33,73	0	46,289	13,691	11,587
TS B1 Br	0%	33,73	0	46,289	-13,691	11,587
TS B2 Er	0%	45,349	0	67,218	13,784	11,587
TS B2 Br	0%	45,349	0	67,218	-13,784	11,587
TS B3 Er	0%	45,367	0	90,414	13,784	11,587
TS B3 Br	0%	45,367	0	90,414	-13,784	11,587

TS B4 Er	0%	45,331	0	113,609	13,784	11,587
TS B4 Br	0%	45,331	0	113,609	-13,784	11,587
TS B5 Er	0%	43,367	0	136,535	13,761	11,587
TS B5 Br	0%	43,367	0	136,535	-13,761	11,587
TS B6 Er	0%	15,07	0	153,346	13,606	11,587
TS B6 Br	0%	15,07	0	153,346	-13,606	11,587
TS HFO, Er	100%	57,327	57,327	28,699	6,472	6,436
HFO 1 <4,5% S, Er	100%	108,912	108,912	31,075	5,504	4,553
HFO 2 <4,5% S, Er	100%	184,267	184,267	31,061	6,428	10,13
HFO 1 <4,5% S, Br	100%	108,912	108,912	31,075	-5,504	4,553
HFO 2 <4,5% S, Br	100%	184,267	184,267	31,061	-6,428	10,13
HFO <1,5% S, Er	100%	110,391	110,391	28,704	10,151	9,615
HFO <1,5% S, Br	100%	110,391	110,391	28,704	-10,151	9,615
HFO <0,1% S, Er	100%	79,143	79,143	26,448	10,047	9,928
HFO <0,1% S, Br	100%	79,143	79,143	26,448	-10,047	9,928
TSD HFO, Er	100%	57,327	57,327	28,699	6,472	6,436
TSD HFO, Br	100%	57,327	57,327	28,699	-6,472	6,436
AGUA POTABLE	100%	36	36	5,15	0	15,413
TS HFO, Br	100%	39,834	39,834	26,379	-1,496	1,173
REBOSES HFO	0%	26,998	0	33,09	0	0
LODOS	0%	13,359	0	33,126	0,987	0,009
MDO Er	100%	79,16	79,16	23,192	11,224	10,08
MDO Br	100%	79,16	79,16	23,192	-11,224	10,08
TSD MDO Er	100%	21,12	21,12	25,648	10	16,6
TSD MDO Br	100%	21,12	21,12	25,648	-10	16,6
ACLM Er	100%	18,139	18,139	17,131	0,871	1,884
ACLM Br	100%	18,139	18,139	17,131	-0,871	1,884
TSD ACM	100%	6,512	6,512	15,701	0,233	1,353
TSD LUCO	100%	6,101	6,101	28,648	0,499	1,158
ACSU	0%	86,883	0	13,081	0	0,905
AGUA DULCE Er	100%	12,5	12,5	7,534	0,518	15,414

AGUA DULCE Br	100%	12,5	12,5	7,534	-0,518	15,414
PIQUE POPA	0%	3021,812	0	5,349	0	8,547
PIQUE PROA	0%	1433,106	0	175,074	0	0
Total Loadcase			57452,716	94,196	0	10,237
FS correction						0
VCG fluid						10,237

Tabla 3. Partida de pesos para salida de puerto al 100 % (factor de estiba 1'25 m^3/t).

7.1.2 Equilibrio

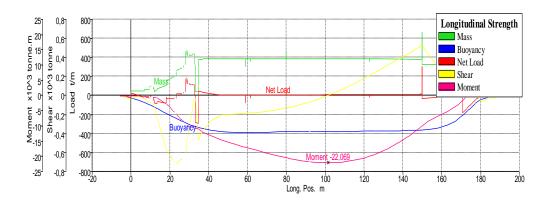

CAI	RÁCTERÍSTI	CAS DE EQUILIBRO	
Calado medio (m)	11,861	Centro de carena (LCB)	94,163
Desplazamiento (t)	57453	Centro de flotación (LCF)	89,027
Heel deg	0	KB (m)	6,211
Calado en la perpendicular de popa (m)	11,338	KG (m)	10,237
Calado en la perpendicular de proa (m)	12,384	BMt (m)	7,027
Calado en el centro de flotación (m)	11,878	BML (m)	229,534
Trimado (+ para popa) (m)	1,046	GMt corregido (m)	3,001
Eslora de la flotación (m)	190,857	GML (m)	225,507
Manga de la flotación (m)	31,57	KMt (m)	13,238
Superficie mojada (m2)	8776,668	KML (m)	235,741
Área de flotación (m2)	5281,5	Toneladas por cm de inmersión (TCI) (t/ cm)	54,188
Coeficiente prismático (Cp)	0,781	MTc (t·m)	703,976
Coeficiente de bloque (Cb)	0,754	Radio metacéntrico (t·m)	3008,743
Coeficiente de la maestra (Cm)	0,988	Máxima inclinación de la cubierta (deg)	0,3256
Coeficiente de la flotación (Cf)	0,877	Ángulo de trimado (+ por popa) (deg)	0,3256

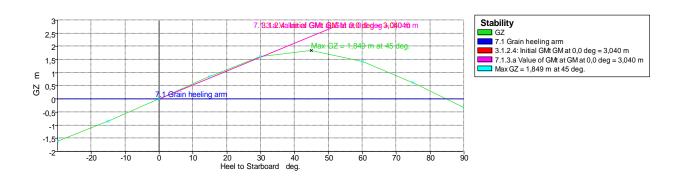
Tabla 4. Equilibrio para salida de puerto al 100 % (factor de estiba 1'25 m³/t).

7.1.3 Resistencia longitudinal

Sección	Posición longitudinal (m)	Peso (t/m)	Empuje (t/m)	Carga (t)	Fuerza cortante (x10^3 t)	Momento (x10^3 tm)
PP	0	21,067	-22,646	-1,578	-0,054	-0,101
1	8,365	62,989	-83,229	-20,24	-0,053	-0,3
2	16,731	96,606	-171,295	-74,689	-0,464	-2,071
3	25,096	279,348	-258,728	20,621	-0,685	-7,331
4	33,462	40,914	-327,25	-286,336	-0,124	-10,684
5	41,827	384,471	-369,303	15,168	-0,256	-13,458
6	50,193	385,447	-383,431	2,015	-0,197	-15,298
7	58,558	386,423	-385,544	0,878	-0,188	-16,912
8	66,924	386,736	-384,577	2,159	-0,174	-18,428
9	75,289	386,696	-383,236	3,46	-0,15	-19,799
10	83,655	386,656	-381,757	4,898	-0,116	-20,926
11	92,02	386,616	-380,234	6,382	-0,069	-21,724
12	100,385	386,576	-378,696	7,88	-0,009	-22,041
13	108,751	386,536	-377,156	9,38	0,063	-21,828
14	117,116	386,496	-375,601	10,895	0,149	-20,932
15	125,482	385,593	-373,954	11,639	0,244	-19,352
16	133,847	382,862	-371,869	10,993	0,338	-16,879
17	142,213	380,132	-368,633	11,499	0,432	-13,69
18	150,578	328,614	-360,848	-32,233	0,503	-9,714
19	158,944	325,884	-337,319	-11,435	0,307	-6,438
20	167,309	323,153	-263,473	59,68	0,453	-3,61
21	175,675	36,235	-112,58	-76,345	0,13	0,179
PR	184,04	26,181	-19,205	6,976	-0,024	0,117

Tabla 5. Resistencia longitudinal para salida de puerto al 100 % (factor de estiba 1'25 m³/t).

Gráfica 1. Análisis de resistencia longitudinal para salida de puerto al 100 % (factor de estiba 1'25 m³/t).


7.1.4 Estabilidad a grandes ángulos

Ángulo de escora	-30	-15	0	15	30	45	60	75	90
GZ (m)	-1,613	-0,849	0	0,849	1,612	1,849	1,441	0,633	-0,325
Área bajo la curva GZ (m·deg)	24,8238	6,3646	-0,0001	6,3645	24,8221	50,78	75,4503	91,0004	93,3072
Desplazamiento (t)	58319	58319	58319	58319	58319	58319	58319	58319	58319
Calado en proa (m)	12,934	12,349	12,33	12,35	12,938	15,286	19,801	32,376	n/a
Calado en popa (m)	12,08	12,216	12,305	12,215	12,076	12,198	12,806	14,575	n/a
Eslora de la flotación (m)	191,51	191,268	191,26	191,268	191,512	192,494	194,961	194,775	192,616
Manga en la flotación (m)	32,605	32,684	31,57	32,684	32,603	27,238	23,636	22,124	21,652

CUADERNILLO 7. RESISTENCIA LONGITUDINAL Y SITUACIONES DE CARGA.

Superficie mojada (m2)	9558,885	8965,306	8943,696	8965,287	9558,939	10037,531	10216,621	10313,855	10386,435
Área de la flotación (m2)	4977,408	5470,814	5288,341	5470,782	4977,142	4377,379	3680,934	3319,362	3227,161
Coeficiente prismático (Cp)	0,797	0,793	0,792	0,793	0,797	0,803	0,804	0,811	0,823
Coeficiente de bloque (Cb)	0,524	0,612	0,782	0,612	0,524	0,551	0,586	0,621	0,662
Centro de carena LCB (m)	95,25	95,246	95,247	95,249	95,259	95,3	95,338	95,376	95,404
Centro de la flotación LCF (m)	88,134	89,663	89,29	89,664	88,133	88,785	89,198	88,47	87,395
Máxima inclinación en cubierta (deg)	30,0008	15,0001	0,0079	15,0001	30,0008	45,004	60,006	75,0048	90
Ángulo de trimado (+ por popa) (deg)	-0,2658	-0,0414	-0,0079	-0,042	-0,2685	-0,9614	-2,1768	-5,5246	n/a

Tabla 6. Estabilidad a grandes ángulos para salida de puerto al 100 % (factor de estiba 1´25 m³/t).

 $Gr\'{a}fica$ 2. Estabilidad a grandes ángulos para salida de puerto al 100 % (factor de estiba 1´25 m³/t).

Code	Criteria	Value	Units	Actual	Status
A.749(18) Ch3 - Design criteria applicable to all ships	3.1.2.1: Area 0 to 30	3,1513	m.deg	24,8221	Pass
A.749(18) Ch3 - Design criteria applicable to all ships	3.1.2.1: Area 0 to 40	5,1566	m.deg	41,7336	Pass
A.749(18) Ch3 - Design criteria applicable to all ships	3.1.2.1: Area 30 to 40	1,7189	m.deg	16,9115	Pass
A.749(18) Ch3 - Design criteria applicable to all ships	3.1.2.2: Max GZ at 30 or greater	0,2	m	1,849	Pass
A.749(18) Ch3 - Design criteria applicable to all ships	3.1.2.3: Angle of maximum GZ	25	deg	45	Pass
A.749(18) Ch3 - Design criteria applicable to all ships	3.1.2.4: Initial GMt	0,15	m	3,04	Pass
Ch 7. Stability Requirments	7.1.1.a Angle of equilibrium	12	deg	0	Pass
Ch 7. Stability Requirments	7.1.2 GZ area between limits type 1	4,2972	m.deg	41,7264	Pass
Ch 7. Stability Requirments	7.1.3.a Value of GMt at	0,3	m	3,04	Pass

Tabla 7. Criterios para salida de puerto al 100 % (factor de estiba 1'25 m³/t).

7.2 Llegada a puerto, con el 100 % de la carga distribuida de manera homogénea (factor estiba $1'25 \text{ m}^3/\text{t}$) y con el 10 % de consumibles.

7.2.1 Partida de pesos

Zona	Cantidad	Masa por unidad (t)	Masa total (t)	Xg (m)	Yg (m)	Zg (m)
POPA	1	1641,93	1641,93	32,092	0	9,093
CENTRO	1	1869,41	1869,41	92,02	0	9,093
PROA	1	1264,1	1264,1	148,469	0	9,093
MAQUINARIA	1	740	740	20,158	0	6,954

EQUIPO Y HABILITACION	1	1201,28	1201,28	91,128	0	18,576
VIVERES	1	4,9	4,9	28,92	0	22,995
TRIPULACIÓN	1	3,5	3,5	28,92	0	25
TANQUES HFO	1	7,151	7,151	29,257	0	12,073
TANQUES MDO	1	0,162	0,162	25,648	0	19,162
TANQUES ACEITE	1	4,742	4,742	25,147	0	1,15
TANQUES AGUA DULCE	1	2,641	2,641	9,9	0	19,22
BODEGA 6	1	8319,19	8319,19	46,828	0	9,95
BODEGA 5	1	7171,72	7171,72	69,508	0	9,95
BODEGA 4	1	8319,19	8319,19	92,188	0	9,95
BODEGA 3	1	7171,72	7171,72	114,868	0	9,95
BODEGA 2	1	8319,19	8319,19	137,548	0	9,95
BODEGA 1	1	6147,19	6147,19	160,228	0	9,95
SUPERESTRUCTURA POPA	1	842,595	842,595	28,135	0	25,06
GUARDACALOR	1	77,606	77,606	15,727	0	33,432
CASTILLO PROA	1	206,23	206,23	182,137	0	19,67
BRAZOLAS ESCOTILLAS	1	120,247	120,247	99,223	0	18,124
TOLDILLA	1	255,84	255,84	13,57	0	19,157
PIQUES	1	1318,766	1318,766	154,04	0	5,412
DF B6	0%	560,918	0	56,816	-1,24	0
DF E6	0%	560,918	0	56,816	1,24	0
DF B5	0%	533,88	0	73,303	-2,35	0
DF E5	0%	533,88	0	73,303	2,35	0
DF B4	0%	620,339	0	93,503	-4,933	0
DF E4	0%	620,339	0	93,503	4,933	0
DF B3	0%	534,792	0	114,545	-5,136	0
DF E3	0%	534,792	0	114,545	5,136	0
DF B2	0%	619,249	0	134,302	-3,174	0
DF E2	0%	619,249	0	134,302	3,174	0
DF B1	0%	436,919	0	154,288	-1,488	0

DF E1	0%	436,919	0	154,288	1,488	0
TL B6	0%	405,225	0	51,895	-14,667	2
TL E6	0%	405,225	0	51,895	14,667	2
TL B5	0%	418,856	0	69,549	-14,966	2
TL E5	0%	418,856	0	69,549	14,966	2
TL B4	0%	485,993	0	92,19	-14,972	2
TL E4	0%	485,993	0	92,19	14,972	2
TL B3	0%	418,788	0	114,861	-14,972	2
TL E3	0%	418,788	0	114,861	14,972	2
TL B2	0%	467,015	0	136,958	-14,919	2
TL E2	0%	467,015	0	136,958	14,919	2
TL B1	0%	142,32	0	152,458	-14,058	2
TL E1	0%	142,32	0	152,458	14,058	2
TS B6	0%	93,353	0	47,513	-14,981	15
TS E6	0%	93,351	0	47,513	14,981	15
TS B5	0%	87,176	0	69,508	-15,035	15
TS E5	0%	87,176	0	69,508	15,035	15
TS B4	0%	101,124	0	92,188	-15,035	15
TS E4	0%	101,124	0	92,188	15,035	15
TS B3	0%	87,165	0	114,867	-15,035	15
TS E3	0%	87,165	0	114,867	15,035	15
TS B2	0%	99,612	0	137,423	-15,021	15
TS E2	0%	99,609	0	137,423	15,021	15
TS B1	0%	48,761	0	156,011	-14,838	15
TS E1	0%	48,758	0	156,011	14,838	15
TS HFO, Er	10%	65,406	6,541	30,648	3	11,91
HFO 1 <4,5% S, Er	10%	274,348	27,435	30,891	8,482	2,921
HFO 2 <4,5% S, Er	10%	282,435	28,243	30,648	3	2,775
HFO 1 <4,5% S, Br	10%	282,435	28,243	30,648	-3	2,775
HFO 2 <4,5% S, Br	10%	274,348	27,435	30,891	-8,482	2,921
HFO <1,5% S, Er	10%	211,35	21,135	26,014	5,711	3,082
HFO <1,5% S, Br	10%	211,35	21,135	26,014	-5,711	3,082
HFO <0,1% S, Er	10%	167,538	16,754	21,45	5,515	4,331
HFO <0,1% S, Br	10%	167,538	16,754	21,45	-5,515	4,331

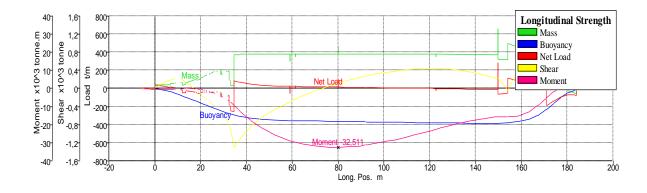
TSD HFO, Er	10%	65,406	6,541	30,648	3	14,11
TSD HFO, Br	10%	65,406	6,541	30,648	-3	14,11
AGUA POTABLE	10%	36	3,6	9,9	0	17,29
TS HFO, Br	10%	65,406	6,541	30,648	-3	11,91
REBOSES HFO	100%	26,998	26,998	31,649	-0,986	1,165
LODOS	100%	13,359	13,359	31,651	1,993	1,176
MDO Er	10%	79,16	7,916	25,648	10	17,425
MDO Br	10%	79,16	7,916	25,648	-10	17,425
TSD MDO Er	10%	21,12	2,112	25,648	10	16,06
TSD MDO Br	10%	21,12	2,112	25,648	-10	16,06
ACLM Er	10%	18,139	1,814	28,78	2,088	0,253
ACLM Br	10%	18,139	1,814	28,78	-2,088	0,253
TSD ACM	10%	6,512	0,651	28,662	-0,488	0,129
TSD LUCO	10%	6,101	0,61	28,662	0,488	0,129
ACSU	100%	86,883	86,883	23,968	0	1,322
AGUA DULCE Er	10%	12,5	1,25	10,4	1,25	19,315
AGUA DULCE Br	10%	12,5	1,25	10,4	-1,25	19,315
Total Loadcase			55380,882	98,167	0	10,238
FS correction						0,018
VCG fluid						10,256

Tabla 8. Partida de pesos para llegada a puerto al 10 % (factor de estiba 1'25 m^3/t).

7.2.2 Equilibrio

CARACTERÍSTICAS DE EQUILIBRIO							
Draft Amidships m	LCB from zero pt. (+ve fwd) m	98,205					
Displacement t	55380	LCF from zero pt. (+ve fwd) m	91,351				
Heel deg	0	KB m	6,016				

Draft at FP m	12,542	KG fluid m	10,256
Draft at AP m	10,469	BMt m	7,179
Draft at LCF m	11,498	BML m	221,818
Trim (+ve by stern) m	-2,073	GMt corrected m	2,939
WL Length m	186,56	GML m	217,578
Beam max extents on WL m	31,57	KMt m	13,195
Wetted Area m^2	8560,464	KML m	227,819
Waterpl. Area m^2	5166,92	Immersion (TPc) tonne/cm	53,013
Prismatic coeff. (Cp)	0,772	MTc tonne.m	654,716
Block coeff. (Cb)	0,732	RM at 1deg = GMt.Disp.sin(1) tonne.m	2841,045
Max Sect. area coeff. (Cm)	0,987	Max deck inclination deg	0,6453
Waterpl. area coeff. (Cwp)	0,877	Trim angle (+ve by stern) deg	-0,6453

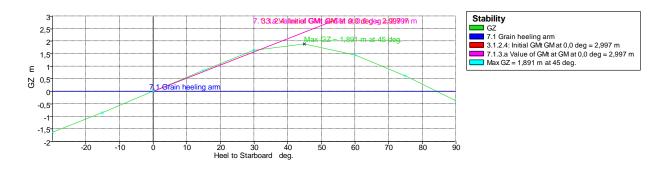

Tabla 9. Equilibrio para llegada a puerto al 10 % (factor de estiba 1'25 m3/t).

7.2.3 Resistencia longitudinal

Sección	Posición Iongitudinal (m)	Peso (t/m)	Empuje (t/m)	Carga (t)	Fuerza cortante (x10^3 t)	Momento (x10^3 tm)
PP	0	17,485	-1,385	16,099	-0,001	-0,601
1	8,365	55,823	-45,555	10,268	0,201	-0,449
2	16,731	89,44	-127,19	-37,75	0,021	-0,093
3	25,096	173,879	-212,361	-38,482	-0,343	-2,277
4	33,462	33,748	-282,437	-248,689	-1,011	-7,99
5	41,827	377,306	-328,968	48,337	-0,842	-17,779
6	50,193	378,281	-348,224	30,057	-0,53	-24,18
7	58,558	379,257	-355,292	23,965	-0,305	-28,588
8	66,924	379,57	-359,004	20,566	-0,12	-31,141
9	75,289	379,53	-362,265	17,265	0,038	-32,329
10	83,655	379,49	-365,385	14,105	0,171	-32,348
11	92,02	379,45	-368,639	10,812	0,276	-31,336
12	100,385	379,41	-371,505	7,905	0,353	-29,51
13	108,751	379,371	-374,555	4,815	0,408	-27,192

14	117,116	379,331	-377,592	1,738	0,434	-24,51
15	125,482	378,427	-380,543	-2,116	0,436	-21,712
16	133,847	375,697	-383,107	-7,411	0,394	-19,094
17	142,213	372,966	-384,518	-11,552	0,314	-16,971
18	150,578	321,449	-381,798	-60,349	0,172	-15,689
19	158,944	451,442	-364,867	86,576	0,463	-15,101
20	167,309	375,164	-296,209	78,955	1,112	-9,38
21	175,675	14,699	-132,158	-117,459	0,678	-1,021
PR	184,04	22,165	-19,712	2,453	-0,024	0,722

Tabla 10. Resistencia longitudinal para llegada a puerto al 10 % (factor de estiba 1´25 m3/t).


Gráfica 3. Resistencia longitudinal para llegada a puerto al 10 % (factor de estiba 1'25 m3/t).

7.2.4 Estabilidad a grandes ángulos

Ángulo de escora	-30	-15	0	15	30	45	60	75	90
GZ (m)	-1,639	-0,839	0	0,839	1,639	1,891	1,464	0,622	-0,368
Área bajo la curva GZ (m∙deg)	24,8781	6,2918	0	6,2918	24,8783	51,3548	76,5167	92,161	94,067
Desplazamiento (t)	56585	56588	56590	56586	56588	56587	56587	56588	56588
Calado en proa (m)	13,482	12,844	12,827	12,845	13,479	15,966	20,938	34,843	n/a

Calado en popa (m)	10,802	11,092	11,185	11,091	10,805	10,49	9,923	8,44	n/a
Eslora de la flotación (m)	191,754	188,966	188,608	188,962	191,753	192,815	195,178	194,58	192,11
Manga en la flotación (m)	31,948	32,684	31,57	32,684	31,95	27,802	24,132	22,295	21,691
Superficie mojada (m2)	9373,17	8803,03	8777,74	8802,86	9373,37	9839,46	10005,4	10103	10133
Área de la flotación (m2)	4994,79	5405,34	5220,33	5405,26	4994,89	4393,41	3680,71	3325	3246,7
Coeficiente prismático (Cp)	0,767	0,774	0,775	0,774	0,767	0,771	0,772	0,78	0,793
Coeficiente de bloque (Cb)	0,516	0,597	0,742	0,597	0,516	0,52	0,553	0,594	0,633
Centro de carena LCB (m)	97,389	97,367	97,368	97,37	97,383	97,426	97,481	97,535	97,568
Centro de la flotación LCF (m)	88,635	90,933	90,639	90,934	88,634	88,508	88,632	87,761	86,296
Máxima inclinación en cubierta (deg)	30,0079	15,009	0,5112	15,0091	30,0079	45,0127	60,0148	75,011	90
Ángulo de trimado (+ por popa) (deg)	-0,8341	-0,5454	-0,5112	-0,5461	-0,8324	-1,7043	-3,4253	- 8,1642	n/a

Tabla 11. Estabilidad a grandes ángulos para llegada a puerto al 10 % (factor de estiba 1´25 m3/t).

Gráfica 4. Estabilidad a grandes ángulos para llegada a puerto al 10 % (factor de estiba 1'25 m3/t).

Code	Criteria	Value	Units	Actual	Status
A.749(18) Ch3 - Design criteria applicable to all ships	3.1.2.1: Area 0 to 30	3,1513	m.deg	24,8783	Pass
A.749(18) Ch3 - Design criteria applicable to all ships	3.1.2.1: Area 0 to 40	5,1566	m.deg	42,1099	Pass
A.749(18) Ch3 - Design criteria applicable to all ships	3.1.2.1: Area 30 to 40	1,7189	m.deg	17,2317	Pass
A.749(18) Ch3 - Design criteria applicable to all ships	3.1.2.2: Max GZ at 30 or greater	0,2	m	1,891	Pass
A.749(18) Ch3 - Design criteria applicable to all ships	3.1.2.3: Angle of maximum GZ	25	deg	45	Pass
A.749(18) Ch3 - Design criteria applicable to all ships	3.1.2.4: Initial GMt	0,15	m	2,997	Pass
Ch 7. Stability Requirments	7.1.1.a Angle of equilibrium	12	deg	0	Pass
Ch 7. Stability Requirments	7.1.2 GZ area between limits type 1	4,2972	m.deg	42,1025	Pass
Ch 7. Stability Requirments	7.1.3.a Value of GMt at	0,3	m	2,997	Pass

Tabla 12. Criterios para llegada a puerto al 10 % (factor de estiba 1'25 m3/t).

7.3 Salida de puerto, con carga distribuida de manera homogénea (factor estiba $1'4 \text{ m}^3/\text{t}$) en las bodegas 2, 4 y 6, y con el 100 % de consumibles

7.3.1 Partida de pesos

Referencia	Cantidad	Masa por unidad (t)	Masa total (t)	Xg (m)	Yg (m)	Zg (m)
POPA	1	1641,93	1641,93	32,092	0	9,093
CENTRO	1	1869,41	1869,41	92,02	0	9,093
PROA	1	1264,1	1264,1	148,469	0	9,093
MAQUINARIA	1	740	740	20,158	0	6,954
EQUIPO Y HABILITACION	1	1201,28	1201,28	91,128	0	18,576
VIVERES	1	4,9	4,9	28,92	0	22,995

TRIPULACIÓN	1	3,5	3,5	28,92	0	25
TANQUES HFO	1	7,151	7,151	27,25	0	12,073
TANQUES MDO	1	0,162	0,162	25,648	0	19,162
TANQUES ACEITE	1	4,742	4,742	25,147	0	1,15
TANQUES AGUA DULCE	1	2,641	2,641	9,9	0	19,22
BODEGA 6	1	7424,88	7424,88	46,828	0	9,95
BODEGA 5	1	0	0	69,508	0	9,95
BODEGA 4	1	7424,88	7424,88	92,188	0	9,95
BODEGA 3	1	0	0	114,868	0	9,95
BODEGA 2	1	7424,88	7424,88	137,548	0	9,95
BODEGA 1	1	0	0	160,228	0	9,95
SUPERESTRUCTURA POPA	1	842,595	842,595	24,365	0	25,06
GUARDACALOR	1	77,606	77,606	15,727	0	33,432
CASTILLO PROA	1	206,23	206,23	182,137	0	19,67
BRAZOLAS ESCOTILLAS	1	120,247	120,247	99,223	0	18,124
TOLDILLA	1	255,84	255,84	13,57	0	19,157
PIQUES	1	1318,766	1318,766	92,02	0	5,412
DF B6	0%	560,918	0	34,786	-0,668	0
DF E6	0%	560,918	0	34,786	0,668	0
DF B5	0%	533,88	0	59,127	-0,895	0
DF E5	0%	533,88	0	59,127	0,895	0
DF B4	0%	620,339	0	80,146	-2,156	0
DF E4	0%	620,339	0	80,146	2,156	0
DF B3	0%	534,792	0	104,487	-3,51	0
DF E3	0%	534,792	0	104,487	3,51	0
DF B2	0%	619,249	0	125,506	-2,945	0
DF E2	0%	619,249	0	125,506	2,945	0
DF B1	0%	436,919	0	149,847	-1,164	0
DF E1	0%	436,919	0	149,847	1,164	0
TL B6	0%	405,225	0	43,747	-9,675	2
TL E6	0%	405,225	0	43,747	9,675	2

TL B5	0%	418,856	0	59,127	-9,969	2
TL E5	0%	418,856	0	59,127	9,969	2
TL B4	0%	485,993	0	80,146	-9,981	2
TL E4	0%	485,993	0	80,146	9,981	2
TL B3	0%	418,788	0	104,487	-9,981	2
TL E3	0%	418,788	0	104,487	9,981	2
TL B2	0%	467,015	0	125,506	-9,979	2
TL E2	0%	467,015	0	125,506	9,979	2
TL B1	0%	142,32	0	149,847	-9,834	2
TL E1	0%	142,32	0	149,847	9,834	2
TS B6	0%	93,353	0	34,786	-9,848	15
TS E6	0%	93,351	0	34,786	9,848	15
TS B5	0%	87,176	0	59,127	-10,023	15
TS E5	0%	87,176	0	59,127	10,023	15
TS B4	0%	101,124	0	80,146	-10,023	15
TS E4	0%	101,124	0	80,146	10,023	15
TS B3	0%	87,165	0	104,487	-10,023	15
TS E3	0%	87,165	0	104,487	10,023	15
TS B2	0%	99,612	0	125,506	-10,023	15
TS E2	0%	99,609	0	125,506	10,023	15
TS B1	0%	48,761	0	149,847	-9,987	15
TS E1	0%	48,758	0	149,847	9,987	15
TS HFO, Er	100%	65,406	65,406	30,648	3	12,9
HFO 1 <4,5% S, Er	100%	274,348	274,348	30,678	8,94	7,174
HFO 2 <4,5% S, Er	100%	282,435	282,435	30,648	3	7,05
HFO 1 <4,5% S, Br	100%	282,435	282,435	30,648	-3	7,05
HFO 2 <4,5% S, Br	100%	274,348	274,348	30,678	-8,94	7,174
HFO <1,5% S, Er	100%	211,35	211,35	25,685	5,971	7,96
HFO <1,5% S, Br	100%	211,35	211,35	25,685	-5,971	7,96
HFO <0,1% S, Er	100%	167,538	167,538	20,734	5,947	8,349
HFO <0,1% S, Br	100%	167,538	167,538	20,734	-5,947	8,349
TSD HFO, Er	100%	65,406	65,406	30,648	3	15,1
TSD HFO, Br	100%	65,406	65,406	30,648	-3	15,1

AGUA POTABLE	100%	36	36	10,4	0	17,69
TS HFO, Br	100%	65,406	65,406	30,648	-3	12,9
REBOSES HFO	0%	26,998	0	30,164	0	0
LODOS	0%	13,359	0	30,164	0,668	0,009
MDO Er	100%	79,16	79,16	25,648	10	19,449
MDO Br	100%	79,16	79,16	25,648	-10	19,449
TSD MDO Er	100%	21,12	21,12	25,648	10	16,6
TSD MDO Br	100%	21,12	21,12	25,648	-10	16,6
ACLM Er	100%	18,139	18,139	28,662	2,456	1,236
ACLM Br	100%	18,139	18,139	28,662	-2,456	1,236
TSD ACM	100%	6,512	6,512	28,648	-0,499	1,158
TSD LUCO	100%	6,101	6,101	28,648	0,499	1,158
ACSU	0%	86,883	0	20,187	0	0
AGUA DULCE Er	100%	12,5	12,5	10,4	1,25	20,44
AGUA DULCE Br	100%	12,5	12,5	10,4	-1,25	20,44
PIQUE POPA	0%	3021,812	0	-5,808	0	12,26
PIQUE PROA	0%	1433,106	0	170,798	0	0
Total Loadcase			34279,156	83,259	0	10,431
FS correction						0
VCG fluid						10,431

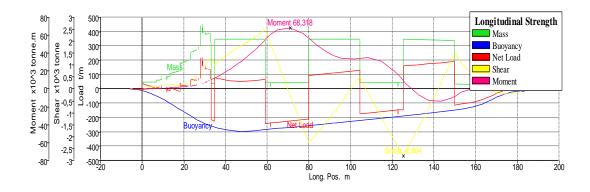
Tabla 13. Partida de pesos de salida de puerto al 100 % en bodegas 2, 4 y 6 (factor de estiba 1'4 m3/t).

7.3.2 Equilibrio

CARACTERÍSTICAS DE EQUILIBRIO							
Calado medio (m)	Centro de carena (LCB)	82,98					
Desplazamiento (t)	. 1 34283		89,167				
Heel deg	0	KB (m)	4,208				

Calado en la perpendicular de popa (m)	3,253	KG (m)	10,431
Calado en la perpendicular de proa (m)	11,571	BMt (m)	11,389
Calado en el centro de flotación (m)	7,541	BML (m)	360,516
Trimado (+ para popa) (m)	8,318	GMt corregido (m)	5,159
Longitud línea de agua (m)	194,887	GML (m)	354,286
Manga máxima (m)	31,57	KMt (m)	15,585
Superficie mojada (m2)	7030,584	KML (m)	364,356
Área de flotación (m2)	5155,697	Toneladas por cm de inmersión (TCI) (t/ cm)	52,897
Coeficiente prismático (Cp)	0,596	MTc (t·m)	659,956
Coeficiente de bloque (Cb)	0,489	Radio metacéntrico (t·m)	3086,788
Coeficiente de la maestra (Cm)	0,968	Ángulo de inclinación de la cubierta (grados)	2,5878

Coeficiente de la flotación (Cf)	0,838	Ángulo de trimado (+ por popa) (grados)	2,5878
-------------------------------------	-------	--	--------

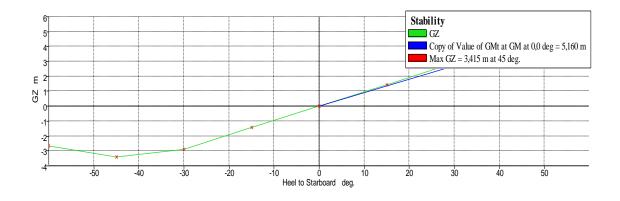

Tabla 14. Equilibrio para salida de puerto al 100 % en bodegas 2, 4 y 6 (factor de estiba 1'4 m3/t).

7.3.3 Resistencia longitudinal

Sección	Posición longitudinal (m)	Peso (t/m)	Empuje (t/m)	Carga (t)	Fuerza cortante (x10^3 t)	Momento (x10^3 tm)
PP	0	21,067	-11	10,067	-0,019	-0,037
1	8,365	62,989	-57,654	5,335	0,137	0,62
2	16,731	121,053	-130,56	-9,507	0,163	2
3	25,096	266,701	-203,106	63,594	0,401	3,965
4	33,462	40,914	-258,673	-217,759	1,267	10,946
5	41,827	347,759	-289,651	58,108	1,495	21,4
6	50,193	348,735	-293,517	55,218	1,961	36,039
7	58,558	349,71	-285,201	64,51	2,455	54,296
8	66,924	45,225	-273,579	-228,353	0,637	66,68

9	75,289	45,185	-261,496	-216,311	-1,223	64,203
10	83,655	349,944	-249,27	100,673	-1,875	49,483
11	92,02	349,904	-236,398	113,506	-0,982	37,361
12	100,385	349,864	-224,7	125,164	0,019	33,721
13	108,751	45,026	-212,404	-167,378	-0,222	34,731
14	117,116	44,986	-200,1	-155,114	-1,566	26,703
15	125,482	348,881	-187,737	161,144	-2,785	8,978
16	133,847	346,15	-175,124	171,026	-1,392	-7,997
17	142,213	343,42	-161,838	181,581	0,081	-13,717
18	150,578	35,891	-146,155	-110,264	1,391	-7,222
19	158,944	33,161	-122,651	-89,491	0,549	0,783
20	167,309	30,43	-78,146	-47,716	-0,045	2,766
21	175,675	36,235	-27,692	8,542	-0,203	1,375
PR	184,04	26,181	-11,737	14,444	-0,052	0,181

Tabla 15. Resistencia longitudinal para salida de puerto al 100 % en bodegas 2, 4 y 6 (factor de estiba 1´4 m3/t).


Gráfica 5. Resistencia longitudinal para salida de puerto al 100 % en bodegas 2, 4 y 6 (factor de estiba 1'4 m3/t).

7.4 Estabilidad a grandes ángulos

Ángulo de escora	-60	-45	-30	-15	0	15	30	45	60
GZ (m)	-2,642	-3,415	-2,916	-1,419	0	1,419	2,916	3,415	2,642
Área bajo la curva GZ (m·deg)	136,07	90,6364	43,15	10,64	0	10,64	43,149	90,63	136,066
Desplazamiento (t)	34278	34279	34279	34279	34279	34279	34280	34279	34279
Calado en proa (m)	-3,582	0,799	2,819	3,255	3,251	3,256	2,82	0,8	-3,572
Calado en popa (m)	9,036	10,363	11,161	11,472	11,57	11,471	11,16	10,36	9,029
Eslora de la flotación (m)	187,617	193,641	195,94	195,4	194,9	195,4	195,944	193,6	187,636
Manga en la flotación (m)	24,806	28,882	34,467	32,684	31,57	32,684	34,466	28,88	24,806

Superficie mojada (m2)	6873,78	6854,42	6917	7046,3	7031	7046,3	6917,12	6854	6874,01
Área de la flotación (m2)	3636,97	4385,22	5164,9	5284,4	5156	5284,4	5164,96	4385	3637,14
Coeficiente prismático (Cp)	0,727	0,671	0,616	0,599	0,596	0,599	0,616	0,671	0,727
Coeficiente de bloque (Cb)	0,473	0,394	0,349	0,438	0,489	0,438	0,349	0,394	0,473
Centro de carena LCB (m)	82,952	82,972	82,984	82,974	82,97	82,979	82,987	82,98	82,966
Centro de la flotación LCF (m)	86,269	86,82	86,571	88,907	89,17	88,909	86,572	86,82	86,272
Máxima inclinación en cubierta (deg)	60,0194	45,0386	30,076	15,197	2,589	15,197	30,0762	45,04	60,0194
Ángulo de trimado (+ por popa) (deg)	3,9223	2,9747	2,595	2,5564	2,589	2,5557	2,5946	2,974	3,917

Tabla 16. Estabilidad a grandes ángulos para salida de puerto al 100 % en bodegas 2, 4 y 6 (factor de estiba 1'4 m3/t).

Gráfica 6. Estabilidad a grandes ángulos para salida de puerto al 100 % en bodegas 2, 4 y 6 (factor de estiba 1´4 m3/t).

Code	Criteria	Value	Units	Actual	Status
A.749(18) Ch3 - Design criteria applicable to all ships	3.1.2.1: Area 0 to 30	3,1513	m.deg	43,0604	Pass
A.749(18) Ch3 - Design criteria applicable to all ships	3.1.2.1: Area 0 to 40	5,1566	m.deg	73,7461	Pass
A.749(18) Ch3 - Design criteria applicable to all ships	3.1.2.1: Area 30 to 40	1,7189	m.deg	30,6857	Pass
A.749(18) Ch3 - Design criteria applicable to all ships	3.1.2.2: Max GZ at 30 or greater	0,2	m	3,384	Pass
A.749(18) Ch3 - Design criteria applicable to all ships	3.1.2.3: Angle of maximum GZ	25	deg	45	Pass
A.749(18) Ch3 - Design criteria applicable to all ships	3.1.2.4: Initial GMt	0,15	m	5,125	Pass
Ch 7. Stability Requirments	7.1.1.a Angle of equilibrium	12	deg	0	Pass
Ch 7. Stability Requirments	7.1.2 GZ area between limits type 1	4,2972	m.deg	73,733	Pass
Ch 7. Stability Requirments	7.1.3.a Value of GMt at	0,3	m	5,125	Pass

Tabla 17. Criterios para salida de puerto al 100 % en bodegas 2, 4 y 6 (factor de estiba 1'4 m3/t).

7.4 Llegada a puerto, con carga distribuida de manera homogénea (factor estiba $1'4 \text{ m}^3/\text{t}$) en las bodegas 2, 4 y 6, y con el 10 % de consumibles

7.4.1 Partida de pesos

Zona	Cantidad	Masa por unidad (t)	Masa total (t)	Xg (m)	Yg (m)	Zg (m)
POPA	1	1641,93	1641,93	32,092	0	9,093
CENTRO	1	1869,41	1869,41	92,02	0	9,093
PROA	1	1264,1	1264,1	148,469	0	9,093
MAQUINARIA	1	740	740	20,158	0	6,954

EQUIPO Y HABILITACION	1	1201,28	1201,28	91,128	0	18,576
VIVERES	1	4,9	4,9	28,92	0	22,995
TRIPULACIÓN	1	3,5	3,5	28,92	0	25
TANQUES HFO	1	7,151	7,151	27,25	0	12,073
TANQUES MDO	1	0,162	0,162	25,648	0	19,162
TANQUES ACEITE	1	4,742	4,742	25,147	0	1,15
TANQUES AGUA DULCE	1	2,641	2,641	9,9	0	19,22
BODEGA 6	1	7424,88	7424,88	46,828	0	9,95
BODEGA 5	1	0	0	69,508	0	9,95
BODEGA 4	1	7424,88	7424,88	92,188	0	9,95
BODEGA 3	1	0	0	114,868	0	9,95
BODEGA 2	1	7424,88	7424,88	137,548	0	9,95
BODEGA 1	1	0	0	160,228	0	9,95
SUPERESTRUCTURA POPA	1	842,595	842,595	24,365	0	25,06
GUARDACALOR	1	77,606	77,606	15,727	0	33,432
CASTILLO PROA	1	206,23	206,23	182,137	0	19,67
BRAZOLAS ESCOTILLAS	1	120,247	120,247	99,223	0	18,124
TOLDILLA	1	255,84	255,84	13,57	0	19,157
PIQUES	1	1318,766	1318,766	92,02	0	5,412
DF B6	0%	560,918	0	56,818	-1,24	0
DF E6	0%	560,918	0	56,818	1,24	0
DF B5	0%	533,88	0	73,31	-2,346	0
DF E5	0%	533,88	0	73,31	2,346	0
DF B4	0%	620,339	0	93,498	-4,933	0
DF E4	0%	620,339	0	93,498	4,933	0
DF B3	0%	534,792	0	114,544	-5,136	0
DF E3	0%	534,792	0	114,544	5,136	0
DF B2	0%	619,249	0	134,303	-3,174	0
DF E2	0%	619,249	0	134,303	3,174	0
DF B1	0%	436,919	0	154,28	-1,487	0

DF E1	0%	436,919	0	154,28	1,487	0
TL B6	0%	478,008	0	51,658	-14,503	2
TL E6	0%	478,008	0	51,658	14,503	2
TL B5	0%	483,216	0	69,543	-14,851	2
TL E5	0%	483,216	0	69,543	14,851	2
TL B4	0%	560,65	0	92,19	-14,857	2
TL E4	0%	560,65	0	92,19	14,857	2
TL B3	0%	483,148	0	114,862	-14,857	2
TL E3	0%	483,148	0	114,862	14,857	2
TL B2	0%	541,672	0	137,049	-14,803	2
TL E2	0%	541,672	0	137,049	14,803	2
TL B1	0%	181,675	0	152,901	-14,333	2
TL E1	0%	181,675	0	152,901	14,333	2
TS B6	0%	108,859	0	47,415	-14,865	15
TS E6	0%	108,859	0	47,415	14,865	15
TS B5	0%	100,543	0	69,508	-14,92	15
TS E5	0%	100,543	0	69,508	14,92	15
TS B4	0%	116,63	0	92,188	-14,92	15
TS E4	0%	116,63	0	92,188	14,92	15
TS B3	0%	100,532	0	114,867	-14,92	15
TS E3	0%	100,532	0	114,867	14,92	15
TS B2	0%	115,118	0	137,44	-14,906	15
TS E2	0%	115,118	0	137,44	14,906	15
TS B1	0%	59,842	0	156,437	-14,645	15
TS E1	0%	59,842	0	156,437	14,645	15
TS HFO, Er	100%	62,324	62,324	30,648	3	12,9
HFO 1 <4,5% S, Er	10%	261,419	26,142	30,891	8,482	2,921
HFO 2 <4,5% S, Er	10%	269,125	26,913	30,648	3	2,775
HFO 1 <4,5% S, Br	10%	269,125	26,913	30,648	-3	2,775
HFO 2 <4,5% S, Br	10%	261,419	26,142	30,891	-8,482	2,921
HFO <1,5% S, Er	10%	201,39	20,139	26,014	5,711	3,082
HFO <1,5% S, Br	10%	201,39	20,139	26,014	-5,711	3,082
HFO <0,1% S, Er	10%	159,643	15,964	21,45	5,515	4,331
HFO <0,1% S, Br	10%	159,643	15,964	21,45	-5,515	4,331

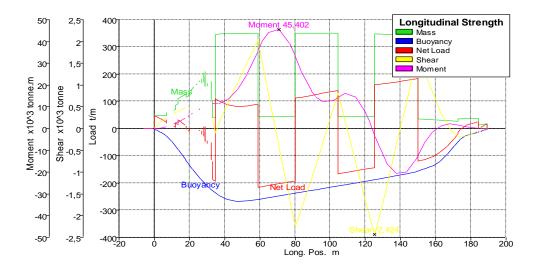
TSD HFO, Er	10%	62,324	6,232	30,648	3	14,11
TSD HFO, Br	10%	62,324	6,232	30,648	-3	14,11
AGUA POTABLE	10%	37,5	3,75	8,15	0	19,315
TS HFO, Br	100%	62,324	62,324	30,648	-3	12,9
REBOSES HFO	100%	25,726	25,726	31,649	-0,986	1,165
LODOS	100%	12,73	12,73	31,651	1,993	1,176
MDO Er	10%	75,562	7,556	25,648	10	17,425
MDO Br	10%	75,562	7,556	25,648	-10	17,425
TSD MDO Er	10%	20,16	2,016	25,648	10	16,06
TSD MDO Br	10%	20,16	2,016	25,648	-10	16,06
ACLM Er	10%	19,094	1,909	28,78	2,088	0,253
ACLM Br	10%	19,094	1,909	28,78	-2,088	0,253
TSD ACM	10%	6,855	0,685	28,662	-0,488	0,129
TSD LUCO	10%	6,855	0,685	28,662	0,488	0,129
ACSU	100%	97,621	97,621	23,968	0	1,322
AGUA DULCE Er	10%	12,5	1,25	10,4	1,25	19,315
AGUA DULCE Br	10%	12,5	1,25	10,4	-1,25	19,315
PIQUE POPA	0%	1676,133	0	3,347	0,013	12,26
PIQUE PROA	0%	1871,417	0	176	0	0
BODEGA 6	0%	8378,454	0	47,036	0	2
BODEGA 5	0%	7228,937	0	69,508	0	2
BODEGA 4	0%	10750,723	0	92,188	0	2
BODEGA 3	0	7228,936	0	114,868	0	2
BODEGA 2	0	8385,566	0	137,548	0	2
BODEGA 1	0	6937,21	0	159,271	0	2
Total Loadcase			32317,829	86,65	0	10,453
FS correction						0,024
VCG fluid						10,477

Tabla 18. Partida de pesos para llegada a puerto al 10 % en bodegas 2, 4 y 6 (factor de estiba 1´4 m3/t).

7.4.2 Equilibrio

CARAC	ΓERÍSTICAS	DE EQUILIBRIC)
Calado medio (m)	7,22	Centro de carena (LCB)	86,423
Desplazamiento (t)	32317	Centro de flotación (LCF)	90,621
Heel deg	0	KB (m)	3,951
Calado en la perpendicular de popa (m)	3,995	KG (m)	10,477
Calado en la perpendicular de proa (m)	10,444	BMt (m)	11,655
Calado en el centro de flotación (m)	7,269	BML (m)	353,603
Trimado (+ para popa) (m)	6,449	GMt corregido (m)	5,125
Eslora de la flotación (m)	191,255	GML (m)	347,073
Manga de la flotación (m)	31,57	KMt (m)	15,599
Superficie mojada (m2)	6916,979	KML (m)	357,337
Área de flotación (m2)	5073,573	Toneladas por cm de inmersión (TCI) (t/ cm)	50,736

Coeficiente prismático (Cp)	0,633	MTc (t·m)	609,458
Coeficiente de bloque (Cb)	0,531	Radio metacéntrico (t·m)	2890,733
Coeficiente de la maestra (Cm)	0,966	Máxima inclinación de la cubierta (deg)	2,0068
Coeficiente de la flotación (Cf)	0,84	Ángulo de trimado (+ por popa) (deg)	2,0068


Tabla 19. Equilibrio para llegada a puerto al 10 % en bodegas 2, 4 y 6 (factor de estiba 1'4 m3/t).

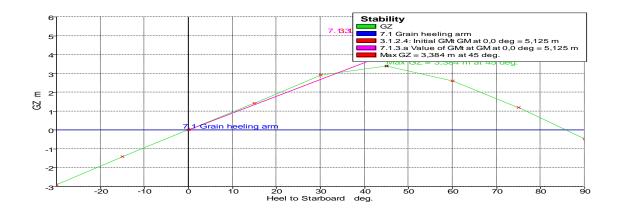
7.4.3 Resistencia longitudinal

Sección	Posición longitudinal (m)	Peso (t)	Empuje (t)	Carga (t)	Fuerza cortante (x10^3 t)	Momento (x10^3 tm)
PP	0	48,852	-1,229	47,623	-0,001	-0,008
1	8,365	64,443	-36,871	27,573	0,295	1,326
2	16,731	121,053	-105,163	15,89	0,46	4,501
3	25,096	170,125	-175,082	-4,957	0,465	8,421
4	33,462	40,914	-229,4	-188,486	0,122	11,517
5	41,827	347,758	-260,806	86,952	0,596	13,392

6	50,193	348,735	-266,356	82,379	1,295	21,624
7	58,558	349,712	-260,798	88,914	2,006	35,117
8	66,924	45,225	-252,144	-206,919	0,378	44,628
9	75,289	45,185	-243,072	-197,886	-1,315	40,761
10	83,655	349,942	-233,861	116,081	-1,824	25,842
11	92,02	349,904	-224,277	125,627	-0,815	14,593
12	100,385	349,865	-215,328	134,537	0,276	12,764
13	108,751	45,026	-206,051	-161,025	0,102	16,178
14	117,116	44,986	-196,765	-151,779	-1,203	11,078
15	125,482	348,879	-187,421	161,457	-2,406	-3,529
16	133,847	346,15	-177,823	168,327	-1,024	-17,353
17	142,213	343,42	-167,538	175,883	0,415	-20,142
18	150,578	35,891	-154,746	-118,855	1,665	-11,069
19	158,944	33,161	-133,648	-100,487	0,741	-1,108
20	167,309	30,43	-89,164	-58,734	0,052	2,103
21	175,675	36,235	-32,029	4,206	-0,173	1,198
PR	184,04	14,177	-14,025	0,152	-0,044	0,161

Tabla 20. Resistencia longitudinal para llegada a puerto al 10 % en bodegas 2, 4 y 6 (factor de estiba 1´4 m3/t).

Gráfica 7. Resistencia longitudinal para llegada a puerto al 10 % en bodegas 2, 4 y 6 (factor de estiba 1'4 m3/t).


7.4.4 Estabilidad a grandes ángulos

Heel to Starboard	-30	-15	0	15	30	45	60	75	90
GZ (m)	-2,911	-1,415	0	1,415	2,911	3,384	2,605	1,198	-0,483
Área bajo la curva GZ (m∙deg)	43,0611	10,6146	-0,0006	10,614	43,06	90,2708	135,2	163,7	169,06
Desplazamiento (t)	32318	32318	32318	32318	32318	32318	32318	32318	32318
Calado en proa (m)	3,655	4,008	3,994	4,009	3,653	1,851	- 1,831	-12,95	n/a
Calado en popa (m)	9,94	10,336	10,445	10,334	9,941	8,74	6,346	0,569	n/a
Eslora de la flotación (m)	195,974	191,59	191,258	191,59	196	195,287	190,6	188,95	193,1

CUADERNILLO 7. RESISTENCIA LONGITUDINAL Y SITUACIONES DE CARGA.

Manga en la flotación (m)	33,8	32,684	31,57	32,684	33,8	29,373	25,21	22,458	21,541
Superficie mojada (m2)	6816,04	6935,86	6917,05	6935,8	6816	6734,17	6781	6766,3	6814,7
Área de la flotación (m2)	5114,15	5207,64	5073,65	5207,5	5114	4395,98	3713	3351,8	3209,5
Coeficiente prismático (Cp)	0,643	0,637	0,633	0,637	0,643	0,688	0,747	0,772	0,754
Coeficiente de bloque (Cb)	0,358	0,453	0,531	0,453	0,358	0,387	0,465	0,557	0,639
Centro de carena LCB (m)	86,437	86,419	86,42	86,425	86,43	86,437	86,46	86,47	86,506
Centro de la flotación LCF (m)	88,17	90,392	90,62	90,394	88,17	88,081	87,28	87,127	88,423
Máxima inclinación en cubierta (deg)	30,0433	15,1174	2,0074	15,117	30,04	45,0201	60,01	75,003	90
Ángulo de trimado (+ por popa) (deg)	1,9558	1,9693	2,0074	1,9684	1,957	2,1435	2,544	4,2013	n/a

Tabla 21. Estabilidad a grandes ángulos para llegada a puerto al 10 % en bodegas 2, 4 y 6 (factor de estiba 1'4 m3/t).

Gráfica 8. Estabilidad a grandes ángulos para llegada a puerto al 10 % en bodegas 2, 4 y 6 (factor de estiba 1'4 m3/t).

Code	Criteria	Value	Units	Actual	Status
A.749(18) Ch3 - Design criteria applicable to all ships	3.1.2.1: Area 0 to 30	3,1513	m.deg	43,0604	Pass
A.749(18) Ch3 - Design criteria applicable to all ships	3.1.2.1: Area 0 to 40	5,1566	m.deg	73,7461	Pass
A.749(18) Ch3 - Design criteria applicable to all ships	3.1.2.1: Area 30 to 40	1,7189	m.deg	30,6857	Pass
A.749(18) Ch3 - Design criteria applicable to all ships	3.1.2.2: Max GZ at 30 or greater	0,2 m		3,384	Pass
A.749(18) Ch3 - Design criteria applicable to all ships	3.1.2.3: Angle of maximum GZ	25	deg	45	Pass
A.749(18) Ch3 - Design criteria applicable to all ships	3.1.2.4: Initial GMt	0,15	m	5,125	Pass
Ch 7. Stability Requirments	7.1.1.a Angle of equilibrium	12	deg	0	Pass
Ch 7. Stability Requirments	7.1.2 GZ area between limits type 1	4,2972	m.deg	73,733	Pass
Ch 7. Stability Requirments	7.1.3.a Value of GMt at	0,3	m	5,125	Pass

Tabla 22. Criterios para llegada a puerto al 10 % en bodegas 2, 4 y 6 (factor de estiba 1'4 m3/t).

7.5 Salida de puerto, con el 100 % de la carga distribuida de manera homogénea (factor estiba 1'55 m 3 /t) y con el 100 % de consumibles.

7.5.1 Partida de pesos

Zona	Cantidad	Masa por unidad (t)	Masa total (t)	Xg (m)	Yg (m)	Zg (m)
POPA	1	1641,93	1641,93	32,092	0	9,093
CENTRO	1	1869,41	1869,41	92,02	0	9,093
PROA	1	1264,1	1264,1	148,469	0	9,093
MAQUINARIA	1	740	740	20,158	0	6,954
EQUIPO Y HABILITACION	1	1201,28	1201,28	91,128	0	18,576
VIVERES	1	4,9	4,9	28,92	0	22,995
TRIPULACIÓN	1	3,5	3,5	28,92	0	25
TANQUES HFO	1	7,151	7,151	27,25	0	12,073
TANQUES MDO	1	0,162	0,162	25,648	0	19,162
TANQUES ACEITE	1	4,742	4,742	25,147	0	1,15
TANQUES AGUA DULCE	1	2,641	2,641	9,9	0	19,22
BODEGA 6	1	6707,35	6707,35	46,828	0	9,95
BODEGA 5	1	5782,2	5782,2	69,508	0	9,95
BODEGA 4	1	6707,35	6707,35	92,188	0	9,95
BODEGA 3	1	5782,2	5782,2	114,868	0	9,95
BODEGA 2	1	6707,35	6707,35	137,548	0	9,95
BODEGA 1	1	4956,17	4956,17	160,228	0	9,95
SUPERESTRUCTURA POPA	1	842,595	842,595	24,365	0	25,06
GUARDACALOR	1	77,606	77,606	15,727	0	33,432
CASTILLO PROA	1	206,23	206,23	182,137	0	19,67
BRAZOLAS ESCOTILLAS	1	120,247	120,247	99,223	0	18,124

TOLDILLA	1	255,84	255,84	13,57	0	19,157
PIQUES	1	1318,766	1318,766	92,02	0	5,412
DF B6	0%	560,918	0	34,786	-0,668	0
DF E6	0%	560,918	0	34,786	0,668	0
DF B5	0%	533,88	0	59,127	-0,895	0
DF E5	0%	533,88	0	59,127	0,895	0
DF B4	0%	620,339	0	80,146	-2,157	0
DF E4	0%	620,339	0	80,146	2,157	0
DF B3	0%	534,792	0	104,487	-3,51	0
DF E3	0%	534,792	0	104,487	3,51	0
DF B2	0%	619,249	0	125,506	-2,945	0
DF E2	0%	619,249	0	125,506	2,945	0
DF B1	0%	436,919	0	149,847	-1,164	0
DF E1	0%	436,919	0	149,847	1,164	0
TL B6	0%	405,225	0	43,747	-9,675	2
TL E6	0%	405,225	0	43,747	9,675	2
TL B5	0%	418,856	0	59,127	-9,969	2
TL E5	0%	418,856	0	59,127	9,969	2
TL B4	0%	485,993	0	80,146	-9,981	2
TL E4	0%	485,993	0	80,146	9,981	2
TL B3	0%	418,788	0	104,487	-9,981	2
TL E3	0%	418,788	0	104,487	9,981	2
TL B2	0%	467,015	0	125,506	-9,979	2
TL E2	0%	467,015	0	125,506	9,979	2
TL B1	0%	142,32	0	149,847	-9,834	2
TL E1	0%	142,32	0	149,847	9,834	2
TS B6	0%	93,353	0	34,786	-9,848	15
TS E6	0%	93,351	0	34,786	9,848	15
TS B5	0%	87,176	0	59,127	-10,023	15
TS E5	0%	87,176	0	59,127	10,023	15
TS B4	0%	101,124	0	80,146	-10,023	15
TS E4	0%	101,124	0	80,146	10,023	15
TS B3	0%	87,165	0	104,487	-10,023	15
TS E3	0%	87,165	0	104,487	10,023	15
TS B2	0%	99,612	0	125,506	-10,023	15
TS E2	0%	99,609	0	125,506	10,023	15
TS B1	0%	48,761	0	149,847	-9,987	15
TS E1	0%	48,758	0	149,847	9,987	15
TS HFO, Er	100%	65,406	65,406	30,648	3	12,9
HFO 1 <4,5% S, Er	100%	274,348	274,348	30,678	8,94	7,174

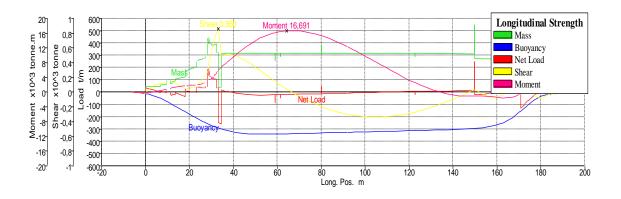
HFO 2 <4,5% S, Er	100%	282,435	282,435	30,648	3	7,05
HFO 1 <4,5% S, Br	100%	282,435	282,435	30,648	-3	7,05
HFO 2 <4,5% S, Br	100%	274,348	274,348	30,678	-8,94	7,174
HFO <1,5% S, Er	100%	211,35	211,35	25,685	5,971	7,96
HFO <1,5% S, Br	100%	211,35	211,35	25,685	-5,971	7,96
HFO <0,1% S, Er	100%	167,538	167,538	20,734	5,947	8,349
HFO <0,1% S, Br	100%	167,538	167,538	20,734	-5,947	8,349
TSD HFO, Er	100%	65,406	65,406	30,648	3	15,1
TSD HFO, Br	100%	65,406	65,406	30,648	-3	15,1
AGUA POTABLE	100%	36	36	10,4	0	17,69
TS HFO, Br	100%	65,406	65,406	30,648	-3	12,9
REBOSES HFO	0%	26,998	0	30,164	0	0
LODOS	0%	13,359	0	30,164	0,668	0,009
MDO Er	100%	79,16	79,16	25,648	10	19,449
MDO Br	100%	79,16	79,16	25,648	-10	19,449
TSD MDO Er	100%	21,12	21,12	25,648	10	16,6
TSD MDO Br	100%	21,12	21,12	25,648	-10	16,6
ACLM Er	100%	18,139	18,139	28,662	2,456	1,236
ACLM Br	100%	18,139	18,139	28,662	-2,456	1,236
TSD ACM	100%	6,512	6,512	28,648	-0,499	1,158
TSD LUCO	100%	6,101	6,101	28,648	0,499	1,158
ACSU	0%	86,883	0	20,187	0	0
AGUA DULCE Er	100%	12,5	12,5	10,4	1,25	20,44
AGUA DULCE Br	100%	12,5	12,5	10,4	-1,25	20,44
PIQUE POPA	0%	3021,812	0	-5,808	0	12,26
PIQUE PROA	0%	1433,106	0	170,798	0	0
Total Loadcase			48647,136	92,828	0	10,289
FS correction						0
VCG fluid						10,289

Tabla 23. Partida de pesos para salida de puerto al 100 % (factor de estiba 1´55 m3/t).

7.5.2 Equilibrio

CARACT	ERÍSTICAS	DE EQUILIBRI	0
Calado medio (m)	10,2	Centro de carena (LCB)	92,759
Desplazamiento (t)	48647	Centro de flotación (LCF)	89,729
Heel deg	0	KB (m)	5,356
Calado en la perpendicular de popa (m)	8,887	KG (m)	10,289
Calado en la perpendicular de proa (m)	11,514	BMt (m)	8,176
Calado en el centro de flotación (m)	10,233	BML (m)	258,093
Trimado (+ para popa) (m)	2,627	GMt corregido (m)	3,242
Eslora de la flotación (m)	188,126	GML (m)	253,16
Manga de la flotación (m)	31,57	KMt (m)	13,531
Superficie mojada (m2)	8117,2	KML (m)	263,423
Área de flotación (m2)	5197,69	Toneladas por cm de inmersión (TCI) (t/ cm)	53,328

Coeficiente prismático (Cp)	0,755	MTc (t·m)	669,175
Coeficiente de bloque (Cb)	0,702	Radio metacéntrico (t·m)	2752,761
Coeficiente de la maestra (Cm)	0,982	Máxima inclinación de la cubierta (deg)	0,8179
Coeficiente de la flotación (Cf)	0,875	Ángulo de trimado (+ por popa) (deg)	0,8179

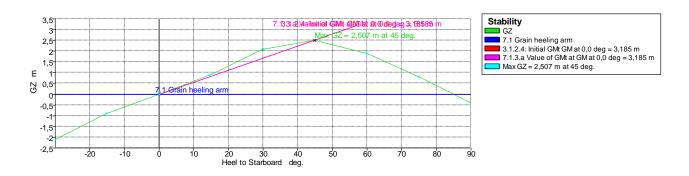

Tabla 24. Equilibrio para salida de puerto al 100 % (factor de estiba 1'55 m3/t).

7.5.3 Resistencia longitudinal

Sección	Posición longitudinal (m)	Peso (t/m)	Empuje (t/m)	Carga (t)	Fuerza cortante (x10^3 t)	Momento (x10^3 tm)
PP	0	21,067	-10,397	10,67	-0,016	-0,026
1	8,365	62,989	-62,745	0,244	0,124	0,629
2	16,731	121,053	-144,694	-23,641	0,072	1,614
3	25,096	266,701	-226,913	39,788	0,151	2,226
4	33,462	40,914	-291,15	-250,236	0,781	6,18
5	41,827	318,304	-329,879	-11,575	0,491	10,543

6	50,193	319,279	-341,347	-22,067	0,339	13,985
7	58,558	320,255	-341,13	-20,875	0,155	16,128
8	66,924	320,568	-337,835	-17,267	-0,002	16,663
9	75,289	320,528	-334,164	-13,636	-0,132	16,107
10	83,655	320,488	-330,355	-9,867	-0,23	14,583
11	92,02	320,448	-326,5	-6,051	-0,298	12,369
12	100,385	320,409	-322,63	-2,222	-0,331	9,702
13	108,751	320,369	-318,758	1,61	-0,334	6,899
14	117,116	320,329	-314,873	5,456	-0,303	4,221
15	125,482	319,425	-310,906	8,519	-0,245	1,872
16	133,847	316,695	-306,556	10,139	-0,166	0,174
17	142,213	313,964	-301,19	12,775	-0,072	-0,86
18	150,578	271,899	-291,873	-19,974	0,025	-1,018
19	158,944	269,169	-269,008	0,161	-0,07	-1,302
20	167,309	266,438	-203,895	62,543	0,147	-1,298
21	175,675	36,235	-82,191	-45,956	0,018	0,495
PR	184,04	26,181	-19,042	7,139	-0,024	0,117

Tabla 25. Resistencia longitudinal para salida de puerto al 100 % (factor de estiba 1'55 m3/t).


Gráfica 9. Resistencia longitudinal para salida de puerto al 100 % (factor de estiba 1´55 m3/t).

7.5.4 Estabilidad a grandes ángulos

Ángulo de escora	-30	-15	0	15	30	45	60	75	90
GZ (m)	-2,102	-0,894	0	0,894	2,101	2,507	1,905	0,83	-0,406
Área bajo la curva GZ (m∙deg)	29,172	6,7055	-0,0001	6,705	29,171	63,736	96,8301	117,348	120,5276
Desplazamiento (t)	48417	48417	48417	48417	48417	48417	48417	48417	48417
Calado en proa (m)	9,381	9,256	9,217	9,257	9,383	10,264	11,608	14,827	n/a
Calado en popa (m)	11,182	11,469	11,576	11,47	11,18	10,799	10,25	9,191	n/a
Eslora de la flotación (m)	190,07	188,839	188,411	188,8	190,07	190,42	193,299	194,833	194,977
Manga en la flotación (m)	33,188	32,684	31,57	32,68	33,186	28,085	24,387	22,361	22,284

Superficie mojada (m2)	8471,6	8213,29	8193,07	8213	8471,5	8811,4	8964,28	9057,73	9037,731
Área de la flotación (m2)	5444	5376,64	5205,61	5377	5443,9	4461,8	3760,34	3449,88	3392,367
Coeficiente prismático (Cp)	0,779	0,763	0,76	0,763	0,779	0,824	0,831	0,833	0,839
Coeficiente de bloque (Cb)	0,482	0,574	0,711	0,574	0,482	0,518	0,564	0,617	0,658
Centro de carena LCB (m)	93,072	93,066	93,064	93,07	93,078	93,114	93,152	93,181	93,198
Centro de la flotación LCF (m)	90,445	89,821	89,691	89,82	90,445	88,873	90,183	90,721	90,549
Máxima inclinación en cubierta (deg)	30,004	15,0144	0,7344	15,01	30,004	45	60,0002	75,0005	90
Ángulo de trimado (+ por popa) (deg)	0,5609	0,6889	0,7344	0,689	0,5595	0,1667	-0,4229	-1,7539	n/a

Tabla 26. Estabilidad a grandes ángulos para salida de puerto al 100 % (factor de estiba 1'55 m3/t).

Gráfica 10. Estabilidad a grandes ángulos para salida de puerto al 100 % (factor de estiba 1'55 m3/t).

Code	Criteria	Value	Units	Actual	Status
A.749(18) Ch3 - Design criteria applicable to all ships	3.1.2.1: Area 0 to 30	3,1513	m.deg	29,1714	Pass
A.749(18) Ch3 - Design criteria applicable to all ships	3.1.2.1: Area 0 to 40	5,1566	m.deg	51,5382	Pass
A.749(18) Ch3 - Design criteria applicable to all ships	3.1.2.1: Area 30 to 40	1,7189	m.deg	22,3668	Pass
A.749(18) Ch3 - Design criteria applicable to all ships	3.1.2.2: Max GZ at 30 or greater	0,2	m	2,507	Pass
A.749(18) Ch3 - Design criteria applicable to all ships	3.1.2.3: Angle of maximum GZ	25	deg	45	Pass
A.749(18) Ch3 - Design criteria applicable to all ships	3.1.2.4: Initial GMt	0,15	m	3,185	Pass
Ch 7. Stability Requirments	7.1.1.a Angle of equilibrium	12	deg	0	Pass
Ch 7. Stability Requirments	7.1.2 GZ area between limits type 1	4,2972	m.deg	51,5295	Pass
Ch 7. Stability Requirments	7.1.3.a Value of GMt at	0,3	m	3,185	Pass

Tabla 27. Criterios para salida de puerto al 100 % (factor de estiba 1'55 m3/t).

7.6 Llegada a puerto, con el 100 % de la carga distribuida de manera homogénea (factor estiba $1'55 \text{ m}^3/\text{t}$) y con el 10 % de consumibles.

7.6.1 Partida de pesos

Referencia	Cantidad	Masa por unidad (t)	Masa total (t)	Xg (m)	Yg (m)	Zg (m)
POPA	1	1641,93	1641,93	32,092	0	9,093

CENTRO	1	1869,41	1869,41	92,02	0	9,093
PROA	1	1264,1	1264,1	148,469	0	9,093
MAQUINARIA	1	740	740	20,158	0	6,954
EQUIPO Y HABILITACION	1	1201,28	1201,28	91,128	0	18,576
VIVERES	1	4,9	4,9	28,92	0	22,995
TRIPULACIÓN	1	3,5	3,5	28,92	0	25
TANQUES HFO	1	7,151	7,151	27,25	0	12,073
TANQUES MDO	1	0,162	0,162	25,648	0	19,162
TANQUES ACEITE	1	4,742	4,742	25,147	0	1,15
TANQUES AGUA DULCE	1	2,641	2,641	9,9	0	19,22
BODEGA 6	1	6707,35	6707,35	46,828	0	9,95
BODEGA 5	1	5782,2	5782,2	69,508	0	9,95
BODEGA 4	1	6707,35	6707,35	92,188	0	9,95
BODEGA 3	1	5782,2	5782,2	114,868	0	9,95
BODEGA 2	1	6707,35	6707,35	137,548	0	9,95
BODEGA 1	1	4956,17	4956,17	160,228	0	9,95
SUPERESTRUCTURA POPA	1	842,595	842,595	24,365	0	25,06
GUARDACALOR	1	77,606	77,606	15,727	0	33,432
CASTILLO PROA	1	206,23	206,23	182,137	0	19,67
BRAZOLAS ESCOTILLAS	1	120,247	120,247	99,223	0	18,124
TOLDILLA	1	255,84	255,84	13,57	0	19,157
PIQUES	1	1318,766	1318,766	92,02	0	5,412
DF B6	0%	560,918	0	56,816	-1,24	0
DF E6	0%	560,918	0	56,816	1,24	0
DF B5	0%	533,88	0	73,303	-2,35	0
DF E5	0%	533,88	0	73,303	2,35	0
DF B4	0%	620,339	0	93,503	-4,933	0
DF E4	0%	620,339	0	93,503	4,933	0
DF B3	0%	534,792	0	114,545	-5,136	0

DF E3	0%	534,792	0	114,545	5,136	0
DF B2	0%	619,249	0	134,302	-3,174	0
DF E2	0%	619,249	0	134,302	3,174	0
DF B1	0%	436,919	0	154,288	-1,488	0
DF E1	0%	436,919	0	154,288	1,488	0
TL B6	0%	405,225	0	51,895	-14,667	2
TL E6	0%	405,225	0	51,895	14,667	2
TL B5	0%	418,856	0	69,549	-14,966	2
TL E5	0%	418,856	0	69,549	14,966	2
TL B4	0%	485,993	0	92,19	-14,972	2
TL E4	0%	485,993	0	92,19	14,972	2
TL B3	0%	418,788	0	114,861	-14,972	2
TL E3	0%	418,788	0	114,861	14,972	2
TL B2	0%	467,015	0	136,958	-14,919	2
TL E2	0%	467,015	0	136,958	14,919	2
TL B1	0%	142,32	0	152,458	-14,058	2
TL E1	0%	142,32	0	152,458	14,058	2
TS B6	0%	93,353	0	47,513	-14,981	15
TS E6	0%	93,351	0	47,513	14,981	15
TS B5	0%	87,176	0	69,508	-15,035	15
TS E5	0%	87,176	0	69,508	15,035	15
TS B4	0%	101,124	0	92,188	-15,035	15
TS E4	0%	101,124	0	92,188	15,035	15
TS B3	0%	87,165	0	114,867	-15,035	15
TS E3	0%	87,165	0	114,867	15,035	15
TS B2	0%	99,612	0	137,423	-15,021	15
TS E2	0%	99,609	0	137,423	15,021	15
TS B1	0%	48,761	0	156,011	-14,838	15
TS E1	0%	48,758	0	156,011	14,838	15
TS HFO, Er	10%	65,406	6,541	30,648	3	11,91
HFO 1 <4,5% S, Er	10%	274,348	27,435	30,891	8,482	2,921
HFO 2 <4,5% S, Er	10%	282,435	28,244	30,648	3	2,775
HFO 1 <4,5% S, Br	10%	282,435	28,244	30,648	-3	2,775
HFO 2 <4,5% S, Br	10%	274,348	27,435	30,891	-8,482	2,921
HFO <1,5% S, Er	10%	211,35	21,135	26,014	5,711	3,082
HFO <1,5% S, Br	10%	211,35	21,135	26,014	-5,711	3,082

CUADERNILLO 7. RESISTENCIA LONGITUDINAL Y SITUACIONES DE CARGA.

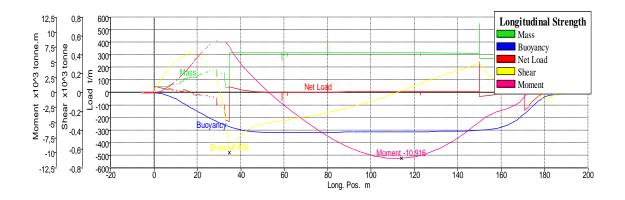
HFO <0,1% S, Er	10%	167,538	16,754	21,45	5,515	4,331
HFO <0,1% S, Br	10%	167,538	16,754	21,45	-5,515	4,331
TSD HFO, Er	10%	65,406	6,541	30,648	3	14,11
TSD HFO, Br	10%	65,406	6,541	30,648	-3	14,11
AGUA POTABLE	10%	36	3,6	10,4	0	16,34
TS HFO, Br	10%	65,406	6,541	30,648	-3	11,91
REBOSES HFO	100%	26,998	26,998	31,649	-0,986	1,165
LODOS	100%	13,359	13,359	31,651	1,993	1,176
MDO Er	10%	79,16	7,916	25,648	10	17,425
MDO Br	10%	79,16	7,916	25,648	-10	17,425
TSD MDO Er	10%	21,12	2,112	25,648	10	16,06
TSD MDO Br	10%	21,12	2,112	25,648	-10	16,06
ACLM Er	10%	18,139	1,814	28,78	2,088	0,253
ACLM Br	10%	18,139	1,814	28,78	-2,088	0,253
TSD ACM	10%	6,512	0,651	28,662	-0,488	0,129
TSD LUCO	10%	6,101	0,61	28,662	0,488	0,129
ACSU	100%	86,883	86,883	23,968	0	1,322
AGUA DULCE Er	10%	12,5	1,25	10,4	1,25	19,315
AGUA DULCE Br	10%	12,5	1,25	10,4	-1,25	19,315
PIQUE POPA	0%	3021,812	0	3,347	0,013	12,26
PIQUE PROA	0%	1433,106	0	176	0	0
Total Loadcase			46575,302	95,733	0	10,292
FS correction						0,021
VCG fluid						10,313

Tabla 28. Partida de pesos para llegada a puerto al 10 % (factor de estiba 1'55 m3/t).

7.6.2 Equilibrio

CARACT	ERÍSTICAS	DE EQUILIBRIO	
Calado medio (m)	9,825	Centro de carena (LCB)	95,702
Desplazamiento (t)	46575	Centro de flotación (LCF)	91,371
Heel deg	0	KB (m)	5,122
Calado en la perpendicular de popa (m)	9,51	KG (m)	10,313
Calado en la perpendicular de proa (m)	10,139	BMt (m)	8,428
Calado en el centro de flotación (m)	9,827	BML (m)	254,868
Trimado (+ para popa) (m)	0,629	GMt corregido (m)	3,237
Longitud línea de agua (m)	184,416	GML (m)	249,677
Manga máxima (m)	31,57	KMt (m)	13,55
Superficie mojada (m2)	7917,366	KML (m)	259,989
Área de flotación (m2)	5107,182	Toneladas por cm de inmersión (TCI) (t/ cm)	52,4

Coeficiente prismático (Cp)	0,796	MTc (t·m)	631,863
Coeficiente de bloque (Cb)	0,772	Radio metacéntrico (t·m)	2631,18
Coeficiente de la maestra (Cm)	0,985	Ángulo de inclinación de la cubierta (gradoS)	0,196
Coeficiente de la flotación (Cf)	0,877	Ángulo de trimado (+ por popa) (grados)	0,196

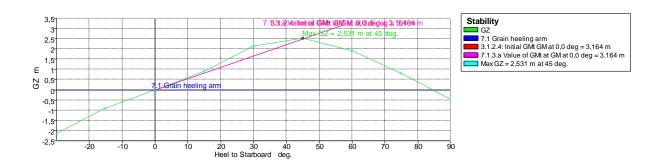

Tabla 29. Equilibrio para llegada a puerto al 10 % (factor de estiba 1'55 m3/t).

7.6.3 Resistencia longitudinal

Sección	Posición longitudinal (m)	Peso (t/m)	Empuje (t/m)	Carga (t)	Fuerza cortante (x10^3 t)	Momento (x10^3 tm)
PP	0	21,067	-0,103	20,964	0	-0,003
1	8,365	62,989	-37,665	25,324	0,303	1,393
2	16,731	121,053	-115,268	5,785	0,427	4,505
3	25,096	168,581	-196,175	-27,595	0,296	7,678
4	33,462	40,914	-260,641	-219,727	-0,371	8,191
5	41,827	318,304	-300,637	17,667	-0,411	4,001

6	50,193	319,279	-314,525	4,754	-0,33	0,968
7	58,558	320,255	-317,119	3,136	-0,299	-1,671
8	66,924	320,568	-316,764	3,804	-0,269	-4,036
9	75,289	320,528	-316,037	4,491	-0,234	-6,153
10	83,655	320,488	-315,172	5,316	-0,193	-7,952
11	92,02	320,448	-314,262	6,186	-0,145	-9,391
12	100,385	320,409	-313,338	7,07	-0,09	-10,364
13	108,751	320,369	-312,412	7,957	-0,027	-10,863
14	117,116	320,329	-311,471	8,857	0,044	-10,783
15	125,482	319,425	-310,449	8,977	0,12	-10,147
16	133,847	316,695	-309,033	7,662	0,189	-8,825
17	142,213	313,964	-306,583	7,382	0,251	-7,004
18	150,578	271,899	-300,037	-28,138	0,291	-4,678
19	158,944	269,169	-279,359	-10,19	0,119	-3,057
20	167,309	266,438	-214,6	51,838	0,245	-1,838
21	175,675	36,235	-88,454	-52,219	0,042	0,425
PR	184,04	26,181	-19,034	7,147	-0,024	0,115

Tabla 30. Resistencia longitudinal para llegada a puerto al 10 % (factor de estiba 1´55 m3/t).


Gráfica 11. Resistencia longitudinal para llegada a puerto al 10 % (factor de estiba 1'55 m3/t).

7.6.4 Estabilidad a grandes ángulos

Ángulo de escora	-30	-15	0	15	30	45	60	75	90
GZ (m)	-2,135	-0,891	0	0,891	2,135	2,531	1,915	0,816	-0,463
Área bajo la curva GZ (m·deg)	29,376	6,6819	0,0003	6,6823	29,3772	64,3728	97,7212	118,21	120,8546
Desplazamiento (t)	46685	46686	46690	46682	46686	46686	46686	46686	46686
Calado en proa (m)	9,947	9,796	9,756	9,796	9,945	10,949	12,682	16,975	n/a
Calado en popa (m)	9,905	10,286	10,399	10,284	9,907	9,093	7,42	3,327	n/a
Eslora de la flotación (m)	189,959	185,604	185,256	185,6	189,966	190,706	193,792	195,03	194,85
Manga en la flotación (m)	33,127	32,684	31,57	32,684	33,127	28,612	24,679	22,431	22,128

Superficie mojada (m2)	8281,98	8042,31	8021,897	8042	8282,077	8618,71	8762,2	8829,3	8825,04
Área de la flotación (m2)	5430,46	5298,38	5127,72	5298,3	5430,629	4467,85	3776,69	3467,3	3337,126
Coeficiente prismático (Cp)	0,797	0,798	0,795	0,798	0,797	0,801	0,795	0,798	0,804
Coeficiente de bloque (Cb)	0,481	0,587	0,77	0,587	0,481	0,493	0,535	0,591	0,632
Centro de carena LCB (m)	95,581	95,562	95,559	95,564	95,574	95,616	95,679	95,713	95,737
Centro de la flotación LCF (m)	91,237	91,245	91,104	91,247	91,235	89,609	89,983	89,852	90,718
Máxima inclinación en cubierta (deg)	30	15,0007	0,2003	15,001	30	45,0015	60,0034	75,003	90
Ángulo de trimado (+ por popa) (deg)	-0,0133	0,1525	0,2003	0,152	-0,0117	-0,5779	-1,6378	-4,241	n/a

Tabla 31. Estabilidad a grandes ángulos para llegada a puerto al 10 % (factor de estiba 1'55 m3/t).

Gráfica 12. Estabilidad a grandes ángulos para llegada a puerto al 10 % (factor de estiba 1'55 m3/t).

Code	Criteria	Value	Units	Actual	Status
A.749(18) Ch3 - Design criteria applicable to all ships	3.1.2.1: Area 0 to 30	3,1513	m.deg	29,3772	Pass
A.749(18) Ch3 - Design criteria applicable to all ships	3.1.2.1: Area 0 to 40	5,1566	m.deg	52,0476	Pass
A.749(18) Ch3 - Design criteria applicable to all ships	3.1.2.1: Area 30 to 40	1,7189	m.deg	22,6703	Pass
A.749(18) Ch3 - Design criteria applicable to all ships	3.1.2.2: Max GZ at 30 or greater	0,2	m	2,531	Pass
A.749(18) Ch3 - Design criteria applicable to all ships	3.1.2.3: Angle of maximum GZ	25	deg	45	Pass
A.749(18) Ch3 - Design criteria applicable to all ships	3.1.2.4: Initial GMt	0,15	т	3,164	Pass
Ch 7. Stability Requirments	7.1.1.a Angle of equilibrium	12	deg	0	Pass
Ch 7. Stability Requirments	7.1.2 GZ area between limits type 1	4,2972	m.deg	52,0385	Pass
Ch 7. Stability Requirments	7.1.3.a Value of GMt at	0,3	m	3,164	Pass

Tabla 32. Criterios para llegada a puerto al 10 % (factor de estiba 1'55 m3/t).

7.7 Salida de puerto en lastre con los consumibles al 100 % y buen tiempo

7.7.1 Partida de pesos

Zona	Cantidad	Masa por unidad (t)	Masa total (t)	Xg (m)	Yg (m)	Zg (m)
POPA	1	1641,93	1641,93	32,092	0	9,093
CENTRO	1	1869,41	1869,41	92,02	0	9,093
PROA	1	1264,1	1264,1	148,469	0	9,093

MAQUINARIA	1	740	740	20,158	0	6,954
EQUIPO Y HABILITACION	1	1201,28	1201,28	91,128	0	18,576
VIVERES	1	4,9	4,9	28,92	0	22,995
TRIPULACIÓN	1	3,5	3,5	28,92	0	25
TANQUES HFO	1	7,151	7,151	27,25	0	12,073
TANQUES MDO	1	0,162	0,162	25,648	0	19,162
TANQUES ACEITE	1	4,742	4,742	25,147	0	1,15
TANQUES AGUA DULCE	1	2,641	2,641	9,9	0	19,22
BODEGA 6	1	0	0	46,828	0	9,95
BODEGA 5	1	0	0	69,508	0	9,95
BODEGA 4	1	0	0	92,188	0	9,95
BODEGA 3	1	0	0	114,868	0	9,95
BODEGA 2	1	0	0	137,548	0	9,95
BODEGA 1	1	0	0	160,228	0	9,95
SUPERESTRUCTURA POPA	1	842,595	842,595	24,365	0	25,06
GUARDACALOR	1	77,606	77,606	15,727	0	33,432
CASTILLO PROA	1	206,23	206,23	182,137	0	19,67
BRAZOLAS ESCOTILLAS	1	120,247	120,247	99,223	0	18,124
TOLDILLA	1	255,84	255,84	13,57	0	19,157
PIQUES	1	1318,766	1318,766	92,02	0	5,412
DF B6	100%	560,918	560,918	47,568	-6,818	1,059
DF E6	100%	560,918	560,918	47,568	6,818	1,059
DF B5	100%	533,88	533,88	69,516	-7,209	1,008
DF E5	100%	533,88	533,88	69,516	7,209	1,008
DF B4	100%	620,339	620,339	92,188	-7,216	1,006
DF E4	100%	620,339	620,339	92,188	7,216	1,006
DF B3	100%	534,792	534,792	114,868	-7,217	1,006
DF E3	100%	534,792	534,792	114,868	7,217	1,006
DF B2	100%	619,249	619,249	137,536	-7,208	1,008

DF E2	100%	619,249	619,249	137,536	7,208	1,008
DF B1	100%	436,919	436,919	158,945	-6,396	1,049
DF E1	100%	436,919	436,919	158,945	6,396	1,049
TL B6	100%	478,008	478,008	48,131	-14,84	8,843
TL E6	100%	478,008	478,008	48,131	14,84	8,843
TL B5	100%	483,216	483,216	69,509	-14,918	8,511
TL E5	100%	483,216	483,216	69,509	14,918	8,511
TL B4	100%	560,65	560,65	92,188	-14,919	8,51
TL E4	100%	560,65	560,65	92,188	14,919	8,51
TL B3	100%	483,148	483,148	114,865	-14,918	8,511
TL E3	100%	483,148	483,148	114,865	14,918	8,511
TL B2	100%	541,672	541,672	137,326	-14,891	8,552
TL E2	100%	541,672	541,672	137,326	14,891	8,552
TL B1	100%	181,675	181,675	155,077	-14,649	9,368
TL E1	100%	181,675	181,675	155,077	14,649	9,368
TS B6	100%	108,859	108,859	47,373	-14,868	16,352
TS E6	100%	108,857	108,857	47,373	14,868	16,352
TS B5	100%	100,543	100,543	69,508	-14,92	16,35
TS E5	100%	100,543	100,543	69,508	14,92	16,35
TS B4	100%	116,63	116,63	92,188	-14,92	16,35
TS E4	100%	116,63	116,63	92,188	14,92	16,35
TS B3	100%	100,532	100,532	114,867	-14,92	16,35
TS E3	100%	100,532	100,532	114,867	14,92	16,35
TS B2	100%	115,118	115,118	137,464	-14,909	16,352
TS E2	100%	115,115	115,115	137,463	14,909	16,352
TS B1	100%	59,842	59,842	156,97	-14,724	16,401
TS E1	100%	59,839	59,839	156,97	14,724	16,401
TS HFO, Er	0%	65,406	0	28,176	2	11,8
HFO 1 <4,5% S, Er	100%	274,348	274,348	30,678	8,94	7,174
HFO 2 <4,5% S, Er	100%	282,435	282,435	30,648	3	7,05
HFO 1 <4,5% S, Br	100%	282,435	282,435	30,648	-3	7,05
HFO 2 <4,5% S, Br	100%	274,348	274,348	30,678	-8,94	7,174
HFO <1,5% S, Er	100%	211,35	211,35	25,685	5,971	7,96
HFO <1,5% S, Br	100%	211,35	211,35	25,685	-5,971	7,96
HFO <0,1% S, Er	100%	167,538	167,538	20,734	5,947	8,349

HFO <0,1% S, Br	100%	167,538	167,538	20,734	-5,947	8,349
TSD HFO, Er	100%	65,406	65,406	30,648	3	15,1
TSD HFO, Br	100%	65,406	65,406	30,648	-3	15,1
AGUA POTABLE	100%	37,5	37,5	8,15	0	20,44
TS HFO, Br	0%	65,406	0	28,176	-2	11,8
REBOSES HFO	0%	26,998	0	30,164	0	0
LODOS	0%	13,359	0	30,164	0,668	0,009
MDO Er	100%	79,16	79,16	25,648	10	19,449
MDO Br	100%	79,16	79,16	25,648	-10	19,449
TSD MDO Er	100%	21,12	21,12	25,648	10	16,6
TSD MDO Br	100%	21,12	21,12	25,648	-10	16,6
ACLM Er	100%	18,139	18,139	28,662	2,456	1,236
ACLM Br	100%	18,139	18,139	28,662	-2,456	1,236
TSD ACM	100%	6,512	6,512	28,648	-0,499	1,158
TSD LUCO	100%	6,101	6,101	28,648	0,499	1,158
ACSU	0%	86,883	0	20,187	0	0
AGUA DULCE Er	100%	12,5	12,5	10,4	1,25	20,44
AGUA DULCE Br	100%	12,5	12,5	10,4	-1,25	20,44
PIQUE POPA	0%	1676,133	0	-5,808	0	12,26
PIQUE PROA	100%	1871,416	1871,416	174,907	0	8,8
Total Loadcase			27018,59	90,674	0	8,305
FS correction						0
VCG fluid						8,305

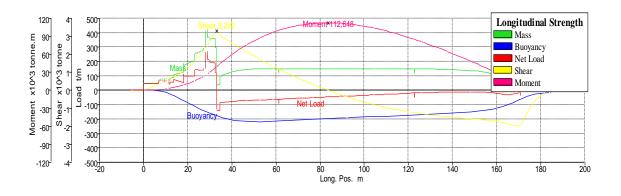
Tabla 33. Partida de pesos para salida de puerto en lastre con consumibles al 100 %.

7.7.2 Equilibrio

CARACTERÍSTICAS DE EQUILIBRIO					
Calado medio (m)	6,018	Centro de carena (LCB)	90,558		

Desplazamiento (t)	27019	Centro de flotación (LCF)	93,5
Heel deg	0	KB (m)	3,187
Calado en la perpendicular de popa (m)	4,01	KG (m)	8,305
Calado en la perpendicular de proa (m)	8,025	BMt (m)	13,878
Calado en el centro de flotación (m)	5,986	BML (m)	386,829
Trimado (+ para popa) (m)	4,015	GMt corregido (m)	8,758
Eslora de la flotación (m)	183,925	GML (m)	381,71
Manga de la flotación (m)	31,57	KMt (m)	17,062
Superficie mojada (m2)	6378,314	KML (m)	389,925
Área de flotación (m2)	4890,548	Toneladas por cm de inmersión (TCI) (t/ cm)	50,177
Coeficiente prismático (Cp)	0,678	MTc (t·m)	560,386
Coeficiente de bloque (Cb)	0,581	Radio metacéntrico (t·m)	4129,944

Coeficiente de la maestra (Cm)	0,973	Máxima inclinación de la cubierta (deg)	1,2498
Coeficiente de la flotación (Cf)	0,842	Ángulo de trimado (+ por popa) (deg)	1,2498

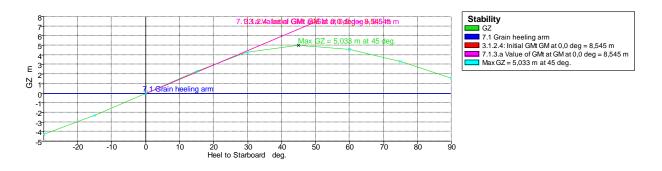

Tabla 34. Equilibrio para salida de puerto en lastre con consumibles al 100 %.

7.7.3 Resistencia longitudinal

Sección	Posición Iongitudinal (m)	Peso (t/m)	Empuje (t/m)	Carga (t)	Fuerza cortante (x10^3 t)	Momento (x10^3 tm)
PP	0	21,067	0	21,067	0	0,001
1	8,365	77,989	-6,318	71,671	0,441	1,725
2	16,731	121,053	-59,747	61,306	0,975	7,744
3	25,096	266,701	-124,502	142,199	1,839	18,986
4	33,462	40,914	-177,046	-136,132	3,248	40,459
5	41,827	132,757	-208,557	-75,8	2,508	64,251
6	50,193	148,344	-216,371	-68,027	1,911	82,699
7	58,558	151,121	-213,927	-62,806	1,362	96,379

8	66,924	151,665	-208,593	-56,928	0,862	105,641
9	75,289	151,696	-202,88	-51,184	0,41	110,922
10	83,655	151,678	-197,028	-45,35	0,006	112,644
11	92,02	151,644	-191,088	-39,444	-0,349	111,185
12	100,385	151,605	-185,215	-33,609	-0,654	106,944
13	108,751	151,565	-179,298	-27,733	-0,911	100,368
14	117,116	151,516	-173,373	-21,857	-1,118	91,846
15	125,482	150,513	-167,392	-16,879	-1,278	81,806
16	133,847	147,316	-161,158	-13,842	-1,406	70,555
17	142,213	142,942	-154,258	-11,316	-1,511	58,34
18	150,578	134,747	-144,836	-10,089	-1,599	45,333
19	158,944	108,856	-127,009	-18,152	-1,705	31,55
20	167,309	60,944	-85,957	-25,013	-1,915	16,468
21	175,675	211,79	-31,874	179,916	-0,85	3,016
PR	184,04	26,181	-14,411	11,77	-0,042	0,149

Tabla 35. Resistencia longitudinal para salida de puerto en lastre con consumibles al 100 %.


Gráfica 13. Resistencia longitudinal para salida de puerto en lastre con consumibles al 100 %.

7.7.4 Estabilidad a grandes ángulos

Ángulo de escora	-30	-15	0	15	30	45	60	75	90
GZ (m)	-4,29	-2,305	0	2,305	4,29	5,033	4,596	3,333	1,616
Área bajo la curva GZ (m·deg)	66,7512	17,288	- 0,0003	17,2877	66,7509	136,675	208,8922	268,3614	305,482
Desplazamiento (t)	26919	26918	26918	26918	26918	26918	26918	26918	26918
Calado en proa (m)	3,711	4,183	4,172	4,184	3,711	1,727	-2,378	-13,978	n/a
Calado en popa (m)	7,392	7,978	8,101	7,978	7,392	5,426	1,305	-10,533	n/a
Eslora de la flotación (m)	188,44	185,085	184,1	185,083	188,439	191,893	189,613	188,469	192,93
Manga en la flotación (m)	30,798	32,651	31,57	32,651	30,798	27,79	25,05	22,336	21,051

Superficie mojada (m2)	6179,69	6444,22	6428,4	6444,21	6179,64	6028,39	6046,041	6058,777	6129,84
Área de la flotación (m2)	4652,33	5005,19	4899,3	5005,14	4652,29	4229,87	3671,993	3281,46	3159
Coeficiente prismático (Cp)	0,701	0,687	0,682	0,687	0,701	0,712	0,753	0,794	0,809
Coeficiente de bloque (Cb)	0,383	0,454	0,587	0,454	0,383	0,391	0,448	0,553	0,673
Centro de carena LCB (m)	90,797	90,797	90,8	90,8	90,797	90,8	90,822	90,869	90,912
Centro de la flotación LCF (m)	91,527	93,1	93,393	93,101	91,527	90,839	87,477	88,348	89,325
Máxima inclinación en cubierta (deg)	30,0149	15,0424	1,2228	15,0423	30,0149	45,0058	60,0017	75,0002	90
Ángulo de trimado (+ por popa) (deg)	1,146	1,1816	1,2228	1,181	1,1459	1,1516	1,1464	1,0724	n/a

Tabla 36. Estabilidad a grandes ángulos para salida de puerto en lastre con consumibles al 100 %.

Gráfica 14. Estabilidad a grandes ángulos para salida de puerto en lastre con consumibles al 100 %.

CUADERNILLO 7. RESISTENCIA LONGITUDINAL Y SITUACIONES DE CARGA.

Code	Criteria	Value	Units	Actual	Status
A.749(18) Ch3 - Design criteria applicable to all ships	3.1.2.1: Area 0 to 30	3,1513	m.deg	66,7509	Pass
A.749(18) Ch3 - Design criteria applicable to all ships	3.1.2.1: Area 0 to 40	5,1566	m.deg	112,1285	Pass
A.749(18) Ch3 - Design criteria applicable to all ships	3.1.2.1: Area 30 to 40	1,7189	m.deg	45,3776	Pass
A.749(18) Ch3 - Design criteria applicable to all ships	3.1.2.2: Max GZ at 30 or greater	0,2	m	5,033	Pass
A.749(18) Ch3 - Design criteria applicable to all ships	3.1.2.3: Angle of maximum GZ	25	deg	45	Pass
A.749(18) Ch3 - Design criteria applicable to all ships	3.1.2.4: Initial GMt	0,15	m	8,545	Pass
Ch 7. Stability Requirments	7.1.1.a Angle of equilibrium	12	deg	0	Pass
Ch 7. Stability Requirments	7.1.2 GZ area between limits type 1	4,2972	m.deg	112,1128	Pass
Ch 7. Stability Requirments	7.1.3.a Value of GMt at	0,3	m	8,545	Pass

Tabla 37. Criterios para salida de puerto en lastre con consumibles al 100 %.

7.8 Llegada a puerto en lastre con los consumibles al 10 % y buen tiempo

7.8.1 Partida de pesos

Zona	Cantidad	Masa por unidad (t)	Masa total (t)	Xg (m)	Yg (m)	Zg (m)
POPA	1	1641,93	1641,93	32,092	0	9,093
CENTRO	1	1869,41	1869,41	92,02	0	9,093
PROA	1	1264,1	1264,1	148,469	0	9,093
MAQUINARIA	1	740	740	20,158	0	6,954
EQUIPO Y HABILITACION	1	1201,28	1201,28	91,128	0	18,576
VIVERES	1	4,9	4,9	28,92	0	22,995
TRIPULACIÓN	1	3,5	3,5	28,92	0	25
TANQUES HFO	1	7,151	7,151	27,25	0	12,073
TANQUES MDO	1	0,162	0,162	25,648	0	19,162
TANQUES ACEITE	1	4,742	4,742	25,147	0	1,15
TANQUES AGUA DULCE	1	2,641	2,641	9,9	0	19,22
BODEGA 6	1	0	0	46,828	0	9,95
BODEGA 5	1	0	0	69,508	0	9,95
BODEGA 4	1	0	0	92,188	0	9,95
BODEGA 3	1	0	0	114,868	0	9,95
BODEGA 2	1	0	0	137,548	0	9,95
BODEGA 1	1	0	0	160,228	0	9,95
SUPERESTRUCTURA POPA	1	842,595	842,595	24,365	0	25,06
GUARDACALOR	1	77,606	77,606	15,727	0	33,432
CASTILLO PROA	1	206,23	206,23	182,137	0	19,67
BRAZOLAS ESCOTILLAS	1	120,247	120,247	99,223	0	18,124
TOLDILLA	1	255,84	255,84	13,57	0	19,157

PIQUES	1	1318,766	1318,766	92,02	0	5,412
DF B6	100%	560,918	560,918	47,568	-6,818	1,059
DF E6	100%	560,918	560,918	47,568	6,818	1,059
DF B5	100%	533,88	533,88	69,516	-7,209	1,008
DF E5	100%	533,88	533,88	69,516	7,209	1,008
DF B4	100%	620,339	620,339	92,188	-7,216	1,006
DF E4	100%	620,339	620,339	92,188	7,216	1,006
DF B3	100%	534,792	534,792	114,868	-7,217	1,006
DF E3	100%	534,792	534,792	114,868	7,217	1,006
DF B2	100%	619,249	619,249	137,536	-7,208	1,008
DF E2	100%	619,249	619,249	137,536	7,208	1,008
DF B1	100%	436,919	436,919	158,945	-6,396	1,049
DF E1	100%	436,919	436,919	158,945	6,396	1,049
TL B6	100%	478,008	478,008	48,131	-14,84	8,843
TL E6	100%	478,008	478,008	48,131	14,84	8,843
TL B5	100%	483,216	483,216	69,509	-14,918	8,511
TL E5	100%	483,216	483,216	69,509	14,918	8,511
TL B4	100%	560,65	560,65	92,188	-14,919	8,51
TL E4	100%	560,65	560,65	92,188	14,919	8,51
TL B3	100%	483,148	483,148	114,865	-14,918	8,511
TL E3	100%	483,148	483,148	114,865	14,918	8,511
TL B2	100%	541,672	541,672	137,326	-14,891	8,552
TL E2	100%	541,672	541,672	137,326	14,891	8,552
TL B1	100%	181,675	181,675	155,077	-14,649	9,368
TL E1	100%	181,675	181,675	155,077	14,649	9,368
TS B6	100%	108,859	108,859	47,373	-14,868	16,352
TS E6	100%	108,857	108,857	47,373	14,868	16,352
TS B5	100%	100,543	100,543	69,508	-14,92	16,35
TS E5	100%	100,543	100,543	69,508	14,92	16,35
TS B4	100%	116,63	116,63	92,188	-14,92	16,35
TS E4	100%	116,63	116,63	92,188	14,92	16,35
TS B3	100%	100,532	100,532	114,867	-14,92	16,35
TS E3	100%	100,532	100,532	114,867	14,92	16,35
TS B2	100%	115,118	115,118	137,464	-14,909	16,352
TS E2	100%	115,115	115,115	137,463	14,909	16,352
TS B1	100%	59,842	59,842	156,97	-14,724	16,401
TS E1	100%	59,839	59,839	156,97	14,724	16,401
TS HFO, Er	10%	65,406	6,541	30,648	3	11,91
HFO 1 <4,5% S, Er	10%	274,348	27,435	30,891	8,482	2,921
HFO 2 <4,5% S, Er	10%	282,435	28,244	30,648	3	2,775

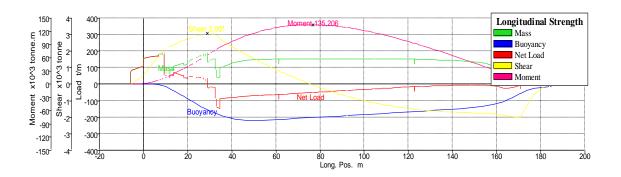
HFO 1 <4,5% S, Br	10%	282,435	28,244	30,648	-3	2,775
HFO 2 <4,5% S, Br	10%	274,348	27,435	30,891	-8,482	2,921
HFO <1,5% S, Er	10%	211,35	21,135	26,014	5,711	3,082
HFO <1,5% S, Br	10%	211,35	21,135	26,014	-5,711	3,082
HFO <0,1% S, Er	10%	167,538	16,754	21,45	5,515	4,331
HFO <0,1% S, Br	10%	167,538	16,754	21,45	-5,515	4,331
TSD HFO, Er	10%	65,406	6,541	30,648	3	14,11
TSD HFO, Br	10%	65,406	6,541	30,648	-3	14,11
AGUA POTABLE	10%	37,5	3,75	8,15	0	19,315
TS HFO, Br	10%	65,406	6,541	30,648	-3	11,91
REBOSES HFO	100%	26,998	26,998	31,649	-0,986	1,165
LODOS	100%	13,359	13,359	31,651	1,993	1,176
MDO Er	10%	79,16	7,916	25,648	10	17,425
MDO Br	10%	79,16	7,916	25,648	-10	17,425
TSD MDO Er	10%	21,12	2,112	25,648	10	16,06
TSD MDO Br	10%	21,12	2,112	25,648	-10	16,06
ACLM Er	10%	18,139	1,814	28,78	2,088	0,253
ACLM Br	10%	18,139	1,814	28,78	-2,088	0,253
TSD ACM	10%	6,512	0,651	28,662	-0,488	0,129
TSD LUCO	10%	6,101	0,61	28,662	0,488	0,129
ACSU	100%	86,883	86,883	23,968	0	1,322
AGUA DULCE Er	10%	12,5	1,25	10,4	1,25	19,315
AGUA DULCE Br	10%	12,5	1,25	10,4	-1,25	19,315
PIQUE POPA	100%	1676,133	1676,133	2,262	0,073	15,099
PIQUE PROA	100%	1871,416	1871,416	174,907	0	8,8
Total Loadcase			26752,351	89,739	0,005	8,601
FS correction						0,037
VCG fluid						8,637

Tabla 38. Partida de pesos para llegada a puerto en lastre con consumibles al 10 %.

7.8.2 Equilibrio

CARÁCT	ERÍSTICAS	DE EQUILIBRIC)
Calado medio (m)	5,968	Centro de carena (LCB)	89,606
Desplazamiento (t)	26753	Centro de flotación (LCF)	93,273
Heel deg	0	KB (m)	3,181
Calado en la perpendicular de popa (m)	3,743	KG (m)	8,637
Calado en la perpendicular de proa (m)	8,193	BMt (m)	14,023
Calado en el centro de flotación (m)	5,938	BML (m)	393,609
Trimado (+ para popa) (m)	4,45	GMt corregido (m)	8,566
Eslora de la flotación (m)	184,35	GML (m)	388,151
Manga de la flotación (m)	31,57	KMt (m)	17,201
Superficie mojada (m2)	6359,803	KML (m)	396,675
Área de flotación (m2)	4900,907	Toneladas por cm de inmersión (TCI) (t/ cm)	50,283

Coeficiente prismático (Cp)	0,665	MTc (t·m)	564,242
Coeficiente de bloque (Cb)	0,564	Radio metacéntrico (t·m)	3999,37
Coeficiente de la maestra (Cm)	0,973	Máxima inclinación de la cubierta (deg)	1,3851
Coeficiente de la flotación (Cf)	0,842	Ángulo de trimado (+ por popa) (deg)	1,3851

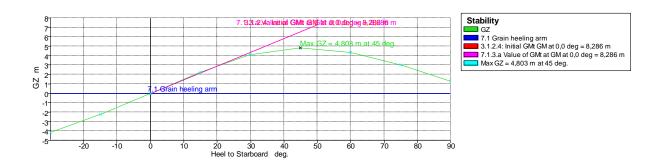

Tabla 39. Equilibrio para llegada a puerto en lastre con consumibles al 10 %.

7.8.3 Resistencia longitudinal

Sección	Posición longitudinal (m)	Peso (t/m)	Empuje (t/m)	Carga (t)	Fuerza cortante (x10^3 t)	Momento (x10^3 tm)
PP	0	128,902	0	128,902	0,561	1,573
1	8,365	188,207	-7,622	180,585	1,966	12,012
2	16,731	121,053	-62,206	58,847	2,574	31,477
3	25,096	168,839	-127,03	41,809	2,957	54,592
4	33,462	40,914	-179,397	-138,483	2,92	79,954
5	41,827	132,757	-210,702	-77,946	2,161	100,928

6	50,193	148,344	-218,021	-69,678	1,549	116,401
7	58,558	151,121	-214,988	-63,867	0,988	126,998
8	66,924	151,665	-209,014	-57,349	0,482	133,105
9	75,289	151,696	-202,649	-50,953	0,029	135,199
10	83,655	151,678	-196,144	-44,466	-0,37	133,752
11	92,02	151,644	-189,488	-37,844	-0,715	129,185
12	100,385	151,605	-183,023	-31,418	-1,004	121,945
13	108,751	151,565	-176,453	-24,888	-1,24	112,524
14	117,116	151,516	-169,874	-18,358	-1,421	101,355
15	125,482	150,513	-163,241	-12,728	-1,549	88,91
16	133,847	147,316	-156,363	-9,047	-1,639	75,55
17	142,213	142,942	-148,836	-5,894	-1,701	61,56
18	150,578	134,747	-138,882	-4,135	-1,742	47,152
19	158,944	108,856	-120,872	-12,016	-1,797	32,39
20	167,309	60,944	-80,77	-19,826	-1,958	16,745
21	175,675	211,79	-29,916	181,874	-0,862	3,083
PR	184,04	26,181	-13,512	12,67	-0,045	0,156

Tabla 40. Resistencia longitudinal para llegada a puerto en lastre con consumibles al 10 %.


Gráfica 15. Resistencia longitudinal para llegada a puerto en lastre con consumibles al 10 %.

7.8.4 Estabilidad a grandes ángulos

Ángulo de escora	-30	-15	0	15	30	45	60	75	90
GZ (m)	-4,141	-2,24	-0,005	2,231	4,133	4,803	4,325	3,026	1,296
Área bajo la curva GZ (m·deg)	64,6927	16,8334	-0,1345	16,699	64,4329	131,45	199,9101	255,041	287,4576
Desplazamiento (t)	26863	26863	26863	26863	26863	26863	26863	26863	26863
Calado en proa (m)	3,294	3,825	3,821	3,826	3,295	1,204	-3,216	-15,727	n/a
Calado en popa (m)	7,774	8,32	8,439	8,319	7,773	5,895	1,993	-9,051	n/a
Eslora de la flotación (m)	189,591	186,055	184,987	186,052	189,589	192,43	188,077	187,737	192,557
Manga en la flotación (m)	31,082	32,667	31,57	32,667	31,081	28,166	25,046	22,356	21,133

Superficie mojada (m2)	6169,561	6442,45	6427,89	6442,44	6169,51	6024,5	6021,348	6050,02	6121,079
Área de la flotación (m2)	4658,436	5024,31	4920,38	5024,25	4658,38	4232,9	3650,131	3277,63	3155,145
Coeficiente prismático (Cp)	0,679	0,668	0,664	0,668	0,679	0,697	0,748	0,785	0,8
Coeficiente de bloque (Cb)	0,373	0,445	0,562	0,445	0,373	0,381	0,448	0,548	0,66
Centro de carena LCB (m)	89,352	89,356	89,358	89,36	89,353	89,352	89,369	89,406	89,449
Centro de la flotación LCF (m)	90,707	92,604	92,987	92,606	90,708	89,946	86,293	87,81	88,916
Máxima inclinación en cubierta (deg)	30,022	15,0594	1,4375	15,0593	30,022	45,009	60,0033	75,0007	90
Ángulo de trimado (+ por popa) (deg)	1,3943	1,3992	1,4375	1,3986	1,394	1,4602	1,6212	2,0776	n/a

Tabla 41. Estabilidad a grandes ángulos para llegada a puerto en lastre con consumibles al 10 %.

Gráfica 16.Estabilidad a grandes ángulos para llegada a puerto en lastre con consumibles al 10 %.

Code	Criteria	Value	Units	Actual	Status
A.749(18) Ch3 - Design criteria applicable to all ships	3.1.2.1: Area 0 to 30	3,1513	m.deg	64,4329	Pass
A.749(18) Ch3 - Design criteria applicable to all ships	3.1.2.1: Area 0 to 40	5,1566	m.deg	107,9985	Pass
A.749(18) Ch3 - Design criteria applicable to all ships	3.1.2.1: Area 30 to 40	1,7189	m.deg	43,5656	Pass
A.749(18) Ch3 - Design criteria applicable to all ships	3.1.2.2: Max GZ at 30 or greater	0,2	m	4,803	Pass
A.749(18) Ch3 - Design criteria applicable to all ships	3.1.2.3: Angle of maximum GZ	25	deg	45	Pass
A.749(18) Ch3 - Design criteria applicable to all ships	3.1.2.4: Initial GMt	0,15	m	8,286	Pass
Ch 7. Stability Requirments	7.1.1.a Angle of equilibrium	12	deg	0	Pass
Ch 7. Stability Requirments	7.1.2 GZ area between limits type 1	4,2972	m.deg	107,9829	Pass
Ch 7. Stability Requirments	7.1.3.a Value of GMt at	0,3	m	8,286	Pass

Tabla 42. Criterios para llegada a puerto en lastre con consumibles al 10 %.

7.9 Inundación de la bodega 2

7.9.1 Partida de pesos

Zona	Cantidad	Masa por unidad (t)	Masa total (t)	Xg (m)	Yg (m)	Zg (m)
POPA	1	1641,93	1641,93	32,092	0	9,093

CENTRO	1	1869,41	1869,41	92,02	0	9,093
PROA	1	1264,1	1264,1	148,469	0	9,093
MAQUINARIA	1	740	740	20,158	0	6,954
EQUIPO Y HABILITACION	1	1201,28	1201,28	91,128	0	18,576
VIVERES	1	4,9	4,9	28,92	0	22,995
TRIPULACIÓN	1	3,5	3,5	28,92	0	25
TANQUES HFO	1	7,151	7,151	27,25	0	12,073
TANQUES MDO	1	0,162	0,162	25,648	0	19,162
TANQUES ACEITE	1	4,742	4,742	25,147	0	1,15
TANQUES AGUA DULCE	1	2,641	2,641	9,9	0	19,22
SUPERESTRUCTURA POPA	1	842,595	842,595	24,365	0	25,06
GUARDACALOR	1	77,606	77,606	15,727	0	33,432
CASTILLO PROA	1	206,23	206,23	182,137	0	19,67
BRAZOLAS ESCOTILLAS	1	120,247	120,247	99,223	0	18,124
TOLDILLA	1	255,84	255,84	13,57	0	19,157
PIQUES	1	1318,766	1318,766	92,02	0	5,412
BODEGA 6 (Damaged)	1	8378,454	8378,454	46,837	0	9,856
BODEGA 5	Damaged					
BODEGA 4	1	10750,723	10750,723	92,188	0	9,85
BODEGA 3	1	7228,936	7228,936	114,868	0	9,85
BODEGA 2	1	8385,566	8385,566	137,548	0	9,85
BODEGA 1	1	6937,21	6937,21	159,899	0	9,978
DF B6 (Damaged)	0%	560,918	0	56,818	-1,24	0
DF E6 (Damaged)	0%	560,918	0	56,818	1,24	0
DF B5	Damaged					
DF E5	Damaged					

DF B4	0%	620,339	0	93,498	-4,933	0
DF E4	0%	620,339	0	93,498	4,933	0
DF B3	0%	534,792	0	114,544	-5,136	0
DF E3	0%	534,792	0	114,544	5,136	0
DF B2	0%	619,249	0	134,303	-3,174	0
DF E2	0%	619,249	0	134,303	3,174	0
DF B1	0%	436,919	0	154,28	-1,487	0
DF E1	0%	436,919	0	154,28	1,487	0
TL B6 (Damaged)	0%	478,008	0	51,658	-14,503	2
TL E6 (Damaged)	0%	478,008	0	51,658	14,503	2
TL B5	Damaged					
TL E5	Damaged					
TL B4	0%	560,65	0	92,19	-14,857	2
TL E4	0%	560,65	0	92,19	14,857	2
TL B3	0%	483,148	0	114,862	-14,857	2
TL E3	0%	483,148	0	114,862	14,857	2
TL B2	0%	541,672	0	137,049	-14,803	2
TL E2	0%	541,672	0	137,049	14,803	2
TL B1	0%	181,675	0	152,901	-14,333	2
TL E1	0%	181,675	0	152,901	14,333	2
TS B6 (Damaged)	0%	108,859	0	47,415	-14,865	15
TS E6 (Damaged)	0%	108,859	0	47,415	14,865	15
TS B5	Damaged					
TS E5	Damaged					
TS B4	0%	116,63	0	92,188	-14,92	15
TS E4	0%	116,63	0	92,188	14,92	15
TS B3	0%	100,532	0	114,867	-14,92	15
TS E3	0%	100,532	0	114,867	14,92	15
TS B2	0%	115,118	0	137,44	-14,906	15
TS E2	0%	115,118	0	137,44	14,906	15
TS B1	0%	59,842	0	156,437	-14,645	15
TS E1	0%	59,842	0	156,437	14,645	15
PIQUE POPA	0%	1676,133	0	3,347	0,013	12,26
PIQUE PROA	0%	1871,417	0	176	0	0
HFO 1 <4,5% S, Er	100%	261,419	261,419	30,678	8,94	7,174

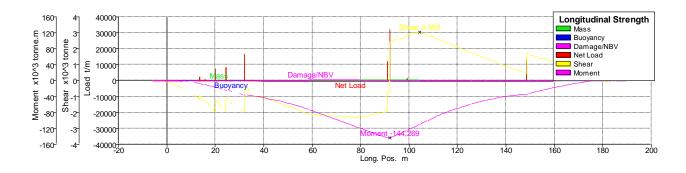
HFO 2 <4,5% S, Er	100%	269,125	269,125	30,648	3	7,05
HFO 1 <4,5% S, Br	100%	269,125	269,125	30,648	-3	7,05
HFO 2 <4,5% S, Br	100%	261,419	261,419	30,678	-8,94	7,174
HFO <1,5% S, Er	100%	201,39	201,39	25,685	5,971	7,96
HFO <1,5% S, Br	100%	201,39	201,39	25,685	-5,971	7,96
HFO <0,1% S, Er	100%	159,643	159,643	20,734	5,947	8,349
HFO <0,1% S, Br	100%	159,643	159,643	20,734	-5,947	8,349
TSD HFO, Er	100%	62,324	62,324	30,648	3	15,1
TSD HFO, Br	100%	62,324	62,324	30,648	-3	15,1
TS HFO, Er	0%	62,324	0	30,648	3	11,8
TS HFO, Br	0%	62,324	0	30,648	-3	11,8
REBOSES HFO	0%	25,726	0	31,857	0	0
LODOS	0%	12,73	0	33,111	0,931	0,009
MDO Er	100%	75,562	75,562	25,648	10	19,449
MDO Br	100%	75,562	75,562	25,648	-10	19,449
TSD MDO Er	100%	20,16	20,16	25,648	10	16,6
TSD MDO Br	100%	20,16	20,16	25,648	-10	16,6
ACLM Er	100%	19,094	19,094	28,662	2,456	1,236
ACLM Br	100%	19,094	19,094	28,662	-2,456	1,236
TSD ACM	100%	6,855	6,855	28,648	-0,499	1,158
TSD LUCO	100%	6,855	6,855	28,648	0,499	1,158
ACSU	0%	97,621	0	24,691	0	0
AGUA DULCE Er	100%	12,5	12,5	10,4	1,25	20,44
AGUA DULCE Br	100%	12,5	12,5	10,4	-1,25	20,44
AGUA POTABLE	100%	37,5	37,5	8,15	0	20,44
Total Loadcase			53455,633	98,592	0	10,195
FS correction						0
VCG fluid						10,195

Tabla 43. Partida de pesos para la inundación de la bodega 2.

7.9.2 Equilibrio

CARAC	TERÍSTICAS	DE EQUILIBRIO	
Calado medio (m)	12,965	LCB from zero pt. (+ve fwd) m	98,591
Desplazamiento (t)	53458	LCF from zero pt. (+ve fwd) m	91,462
Heel deg	0	KB m	6,806
Calado en la perpendicular de popa (m)	12,881	KG fluid m	10,195
Calado en la perpendicular de proa (m)	13,05	BMt m	6,419
Calado en el centro de flotación (m)	12,966	BML m	242,874
Trimado (+ para popa) (m)	0,169	GMt corrected m	3,031
Eslora de la flotación (m)	191,483	GML m	239,485
Manga de la flotación (m)	31,57	KMt m	13,225
Superficie mojada (m2)	9220,686	KML m	249,68
Área de flotación (m2)	4677,654	Immersion (TPc) tonne/cm	46,777

Coeficiente prismático (Cp)	0,688	MTc tonne.m	695,628
Coeficiente de bloque (Cb)	0,678	RM at 1deg = GMt.Disp.sin(1) tonne.m	2827,47
Coeficiente de la maestra (Cm)	0,99	Max deck inclination deg	0,0526
Coeficiente de la flotación (Cf)	0,774	Trim angle (+ve by stern) deg	0,0526

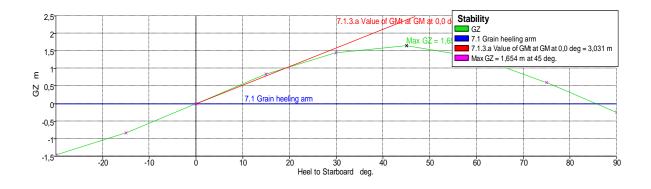

Tabla 44. Equilibrio para la inundación de la bodega 2.

7.9.3 Resistencia longitudinal

Sección	Posición Iongitudinal (m)	Peso (t/m)	Empuje (t/m)	Daños (t/m)	Carga	Fuerza cortante (x10^3 t)	Momento (x10^3 t·m)
PP	0	0	-32,959	0	-32,959	-0,098	-0,211
1	8,365	15	-96,822	0	-81,822	-0,603	-2,883
2	16,731	0	-186,466	0	-186,466	-1,404	-11,209
3	25,096	118,503	-274,888	0	-156,386	-1,208	-24,563
4	33,462	0	-344,211	0	-344,211	-0,551	-36,796

5	41,827	344,235	-387,057	0	-42,822	-1,166	-45,173
6	50,193	344,235	-402,277	0	-58,042	-1,6	-56,656
7	58,558	344,235	-405,581	0	-61,346	-2,104	-72,128
8	66,924	0	-405,893	396,425	-9,467	-2,206	-90,255
9	75,289	0	-405,843	396,252	-9,591	-2,286	-109,048
10	83,655	441,327	-405,66	0	35,667	-2,201	-128,204
11	92,02	32323,1	-405,433	0	31917,668	0,893	-144,264
12	100,385	441,327	-405,193	0	36,134	2,909	-122,093
13	108,751	344,235	-404,95	0	-60,715	2,787	-97,464
14	117,116	344,235	-404,692	0	-60,457	2,28	-76,281
15	125,482	344,235	-404,338	0	-60,103	1,776	-59,294
16	133,847	344,235	-403,525	0	-59,29	1,276	-46,575
17	142,213	344,235	-401,516	0	-57,281	0,787	-37,957
18	150,578	344,235	-394,721	0	-50,486	1,594	-30,64
19	158,944	343,931	-371,275	0	-27,344	1,25	-18,895
20	167,309	307,541	-294,066	0	13,475	1,199	-8,882
21	175,675	0	-129,839	0	-129,839	0,385	-0,962
PR	184,04	0	-19,255	0	-19,255	0,058	-0,111

Tabla 45. Resistencia longitudinal para la inundación de la bodega 2.


Gráfica 17. Resistencia longitudinal para la inundación de la bodega 2.

7.9.4 Estabilidad a grandes ángulos

Heel to Starboard	-30	-15	0	15	30	45	60	75	90
GZ (m)	-1,456	-0,842	0	0,842	1,456	1,654	1,314	0,602	-0,252
Área bajo la curva GZ (m∙deg)	23,551	6,3155	-0,0001	6,3154	23,549	46,873	69,131	83,503	86,13
Desplazamiento (t)	53456	53456	53457	53456	53455	53456	53452	53456	53456
Calado en proa (m)	13,648	12,886	12,88	12,887	13,651	16,194	21,246	35,465	n/a
Calado en popa (m)	12,869	12,964	13,051	12,963	12,866	13,131	14,119	16,938	n/a
Eslora de la flotación (m)	191,8	191,486	191,483	191,49	191,8	192,85	195,15	194,462	191,87

Manga en la flotación (m)	32,939	32,684	31,57	32,684	32,942	26,79	23,339	21,992	21,62
Superficie mojada (m2)	9939,96	9233,09	9220,65	9233,1	9940	10375	10528	10607,2	10663
Área de la flotación (m2)	4248,92	4827,37	4677,67	4827,4	4248,7	3802,8	3219,5	2907,9	2828,1
Coeficiente prismático (Cp)	0,698	0,69	0,688	0,69	0,698	0,706	0,709	0,717	0,73
Coeficiente de bloque (Cb)	0,459	0,539	0,678	0,539	0,459	0,497	0,526	0,554	0,588
Centro de carena LCB (m)	98,593	98,588	98,588	98,59	98,601	98,641	98,674	98,714	98,744
Centro de la flotación LCF (m)	89,651	92,112	91,461	92,113	89,65	91,23	91,479	90,627	89,343
Máxima inclinación en cubierta (deg)	30,0007	15	0,0532	15	30,001	45,004	60,006	75,0052	90
Ángulo de trimado (+ por popa) (deg)	-0,2424	0,0242	0,0532	0,0237	-0,244	- 0,9536	- 2,2176	-5,7487	n/a

Tabla 46. Estabilidad a grandes ángulos para inundación de la bodega 2.

Gráfica 18. Estabilidad a grandes ángulos para inundación de la bodega 2.

7.10 Inundación del pique de proa

7.10.1 Partida de pesos

Zona	Cantidad	Masa por unidad (t)	Masa total (t)	Xg (m)	Yg (m)	Zg (m)
POPA	1	1641,93	1641,93	32,092	0	9,093
CENTRO	1	1869,41	1869,41	92,02	0	9,093
PROA	1	1264,1	1264,1	148,469	0	9,093
MAQUINARIA	1	740	740	20,158	0	6,954
EQUIPO Y HABILITACION	1	1201,28	1201,28	91,128	0	18,576
VIVERES	1	4,9	4,9	28,92	0	22,995
TRIPULACIÓN	1	3,5	3,5	28,92	0	25
TANQUES HFO	1	7,151	7,151	27,25	0	12,073
TANQUES MDO	1	0,162	0,162	25,648	0	19,162
TANQUES ACEITE	1	4,742	4,742	25,147	0	1,15
TANQUES AGUA DULCE	1	2,641	2,641	9,9	0	19,22
SUPERESTRUCTURA POPA	1	842,595	842,595	24,365	0	25,06
GUARDACALOR	1	77,606	77,606	15,727	0	33,432
CASTILLO PROA	1	206,23	206,23	182,137	0	19,67
BRAZOLAS ESCOTILLAS	1	120,247	120,247	99,223	0	18,124
TOLDILLA	1	255,84	255,84	13,57	0	19,157
PIQUES	1	1318,766	1318,766	92,02	0	5,412
BODEGA 6 (Damaged)	1	8378,454	8378,454	46,837	0	9,856
BODEGA 5	1	7228,937	7228,937	69,508	0	9,85
BODEGA 4	1	10750,723	10750,723	92,188	0	9,85
BODEGA 3	1	7228,936	7228,936	114,868	0	9,85

BODEGA 2	1	8385,566	8385,566	137,548	0	9,85
BODEGA 1	1	6937,21	6937,21	159,899	0	9,978
DF B6 (Damaged)	0%	560,918	0	56,818	-1,24	0
DF E6 (Damaged)	0%	560,918	0	56,818	1,24	0
DF B5	0%	533,88	0	73,31	-2,346	0
DF E5	0%	533,88	0	73,31	2,346	0
DF B4	0%	620,339	0	93,498	-4,933	0
DF E4	0%	620,339	0	93,498	4,933	0
DF B3	0%	534,792	0	114,544	-5,136	0
DF E3	0%	534,792	0	114,544	5,136	0
DF B2	0%	619,249	0	134,303	-3,174	0
DF E2	0%	619,249	0	134,303	3,174	0
DF B1	0%	436,919	0	154,28	-1,487	0
DF E1	0%	436,919	0	154,28	1,487	0
TL B6 (Damaged)	0%	478,008	0	51,658	-14,503	2
TL E6 (Damaged)	0%	478,008	0	51,658	14,503	2
TL B5	0%	483,216	0	69,543	-14,851	2
TL E5	0%	483,216	0	69,543	14,851	2
TL B4	0%	560,65	0	92,19	-14,857	2
TL E4	0%	560,65	0	92,19	14,857	2
TL B3	0%	483,148	0	114,862	-14,857	2
TL E3	0%	483,148	0	114,862	14,857	2
TL B2	0%	541,672	0	137,049	-14,803	2
TL E2	0%	541,672	0	137,049	14,803	2
TL B1	0%	181,675	0	152,901	-14,333	2
TL E1	0%	181,675	0	152,901	14,333	2
TS B6 (Damaged)	0%	108,859	0	47,415	-14,865	15
TS E6 (Damaged)	0%	108,859	0	47,415	14,865	15
TS B5	0%	100,543	0	69,508	-14,92	15
TS E5	0%	100,543	0	69,508	14,92	15
TS B4	0%	116,63	0	92,188	-14,92	15
TS E4	0%	116,63	0	92,188	14,92	15
TS B3	0%	100,532	0	114,867	-14,92	15
TS E3	0%	100,532	0	114,867	14,92	15
TS B2	0%	115,118	0	137,44	-14,906	15
TS E2	0%	115,118	0	137,44	14,906	15

TS B1	0%	59,842	0	156,437	-14,645	15
TS E1	0%	59,842	0	156,437	14,645	15
PIQUE POPA	Damaged					
PIQUE PROA	0%	1871,417	0	176	0	0
HFO 1 <4,5% S, Er	100%	261,419	261,419	30,678	8,94	7,174
HFO 2 <4,5% S, Er	100%	269,125	269,125	30,648	3	7,05
HFO 1 <4,5% S, Br	100%	269,125	269,125	30,648	-3	7,05
HFO 2 <4,5% S, Br	100%	261,419	261,419	30,678	-8,94	7,174
HFO <1,5% S, Er	100%	201,39	201,39	25,685	5,971	7,96
HFO <1,5% S, Br	100%	201,39	201,39	25,685	-5,971	7,96
HFO <0,1% S, Er	100%	159,643	159,643	20,734	5,947	8,349
HFO <0,1% S, Br	100%	159,643	159,643	20,734	-5,947	8,349
TSD HFO, Er	100%	62,324	62,324	30,648	3	15,1
TSD HFO, Br	100%	62,324	62,324	30,648	-3	15,1
TS HFO, Er	0%	62,324	0	30,648	3	11,8
TS HFO, Br	0%	62,324	0	30,648	-3	11,8
REBOSES HFO	0%	25,726	0	31,857	0	0
LODOS	0%	12,73	0	33,111	0,931	0,009
MDO Er	100%	75,562	75,562	25,648	10	19,449
MDO Br	100%	75,562	75,562	25,648	-10	19,449
TSD MDO Er	100%	20,16	20,16	25,648	10	16,6
TSD MDO Br	100%	20,16	20,16	25,648	-10	16,6
ACLM Er	100%	19,094	19,094	28,662	2,456	1,236
ACLM Br	100%	19,094	19,094	28,662	-2,456	1,236
TSD ACM	100%	6,855	6,855	28,648	-0,499	1,158
TSD LUCO	100%	6,855	6,855	28,648	0,499	1,158
ACSU	0%	97,621	0	24,691	0	0
AGUA DULCE Er	100%	12,5	12,5	10,4	1,25	20,44
AGUA DULCE Br	100%	12,5	12,5	10,4	-1,25	20,44

AGUA POTABLE	100%	37,5	37,5	8,15	0	20,44
Total Loadcase			60684,571	95,127	0	10,153
FS correction						0
VCG fluid						10,153

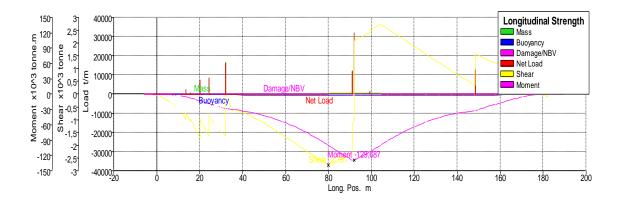
Tabla 47. Partida de pesos para la inundación del pique de proa.

7.10.2 Equilibrio

CARAC	CTERÍSTICA	S DE EQUILIBRIO	
Calado medio (m)	12,787	LCB from zero pt. (+ve fwd) m	95,123
Desplazamiento (t)	60681	LCF from zero pt. (+ve fwd) m	93,318
Heel deg	0	KB m	6,68
Calado en la perpendicular de popa (m)	12,767	KG fluid m	10,153
Calado en la perpendicular de proa (m)	12,806	BMt m	6,422
Calado en el centro de flotación (m)	12,786	BML m	183,744
Trimado (+ para popa) (m)	0,038	GMt corrected m	2,948
Eslora de la flotación (m)	191,437	GML m	180,27

Manga de la flotación (m)	31,57	KMt m	13,102
Superficie mojada (m2)	9143,168	KML m	190,423
Área de flotación (m2)	5066,219	Immersion (TPc) tonne/cm	50,662
Coeficiente prismático (Cp)	0,793	MTc tonne.m	594,377
Coeficiente de bloque (Cb)	0,784	RM at 1deg = GMt.Disp.sin(1) tonne.m	3122,061
Coeficiente de la maestra (Cm)	0,99	Max deck inclination deg	0,012
Coeficiente de la flotación (Cf)	0,838	Trim angle (+ve by stern) deg	0,012

Tabla 48. Equilibrio para la inundación del pique de proa.


7.10.3 Resistencia longitudinal

Sección	Posición Iongitudinal (m)	Peso (t/m)	Empuje (t/m)	Daños (t/m)	Carga	Fuerza cortante (x10^3 t)	Momento (x10^3 t·m)
PP	0	0	-28,841	8,632	-20,21	-0,045	-0,079
1	8,365	15	-91,51	11,806	-64,704	-0,422	-1,794
2	16,731	0	-180,448	0	-180,448	-1,163	-8,313

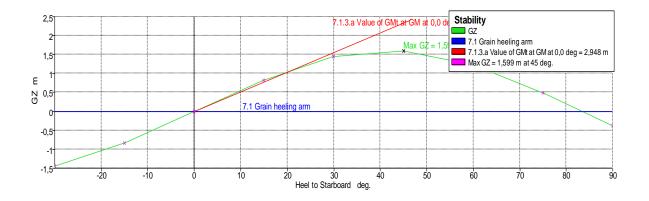
3	25,096	118,503	-268,44	0	-149,937	-0,915	-19,438
4	33,462	0	-337,557	0	-337,557	-0,203	-28,989
5	41,827	344,235	-380,39	0	-36,155	-0,762	-34,218
6	50,193	344,235	-395,737	0	-51,502	-1,141	-42,092
7	58,558	344,235	-399,224	0	-54,989	-1,591	-53,497
8	66,924	344,235	-399,724	0	-55,489	-2,054	-68,754
9	75,289	344,235	-399,861	0	-55,626	-2,519	-87,891
10	83,655	441,327	-399,865	0	41,462	-2,63	-110,245
11	92,02	32323,1	-399,826	0	31923,275	0,512	-129,686
12	100,385	441,327	-399,773	0	41,554	2,574	-110,514
13	108,751	344,235	-399,717	0	-55,482	2,496	-88,497

14	117,116	344,235	-399,646	0	-55,411	2,033	-69,564
15	125,482	344,235	-399,48	0	-55,245	1,57	-54,474
16	133,847	344,235	-398,859	0	-54,624	1,11	-43,307
17	142,213	344,235	-397,048	0	-52,813	0,659	-35,919
18	150,578	344,235	-390,483	0	-46,248	1,503	-29,52
19	158,944	343,931	-367,379	0	-23,447	1,193	-18,394
20	167,309	307,541	-290,884	0	16,658	1,172	-8,733
21	175,675	0	-128,182	0	-128,182	0,379	-0,942
PR	184,04	0	-19,2	0	-19,2	0,058	-0,111

Tabla 49. Resistencia longitudinal para la inundación del pique de proa.

Gráfica 19. Resistencia longitudinal para la inundación del pique de proa.

7.10.4 Estabilidad a grandes ángulos


Heel to Starboard	-30	-15	0	15	30	45	60	75	90
GZ (m)	-1,448	-0,83	0	0,829	1,445	1,599	1,225	0,491	-0,379
Área bajo la curva GZ (m·deg)	23,3045	6,2226	-0,008	6,215	23,2715	46,1085	67,292	80,1597	80,9956
Desplazamiento (t)	60684	60680	60687	60683	60685	60685	60685	60685	60685

Calado en proa (m)	13,304	12,721	12,77	12,719	13,307	15,641	20,227	33,062	n/a
Calado en popa (m)	13,044	12,829	12,805	12,835	13,047	13,815	15,83	21,459	n/a
Eslora de la flotación (m)	191,657	191,418	191,44	191,417	191,658	192,623	194,99	194,7	192,475
Manga en la flotación (m)	32,807	32,684	31,57	32,684	32,803	26,544	23,067	21,74	21,533
Superficie mojada (m2)	9897,389	9171,65	9143,6	9172,45	9898,75	10400,8	10614	10727,9	10820,02
Área de la flotación (m2)	4686,348	5311,01	5066,3	5308,28	4685,77	4184,05	3553,4	3206,15	3110,659
Coeficiente prismático (Cp)	0,802	0,793	0,793	0,793	0,802	0,812	0,814	0,824	0,837
Coeficiente de bloque (Cb)	0,528	0,617	0,784	0,617	0,528	0,574	0,61	0,642	0,679
Centro de carena LCB (m)	95,116	95,126	95,126	95,125	95,13	95,155	95,18	95,205	95,225
Centro de la flotación LCF (m)	90,427	92,533	93,319	92,576	90,424	91,55	91,821	91,147	90,259
Máxima inclinación en cubierta (deg)	30,0001	15	0,0109	15	30,0001	45,0014	60,002	75,002	90

CUADERNILLO 7. RESISTENCIA LONGITUDINAL Y SITUACIONES DE CARGA.

Ángulo de trimado (+ por popa) (deg)	-0,081 0,0337	0,0109 0,0361	-0,0807 -0,5684	- 1,3687	6075 n/a
--	---------------	---------------	-----------------	-------------	----------

Tabla 50. Resistencia longitudinal para la inundación del pique de proa.

Gráfica 20. Resistencia longitudinal para la inundación del pique de proa.

Code	Criteria	Value	Units	Actual	Status	Margin
Ch 7. Stability Requirments	7.1.1.a Angle of equilibrium	12	deg	0	Pass	99,97
Ch 7. Stability Requirments	7.1.2 GZ area between limits type 1	4,2972	m.deg	38,2327	Pass	789,71
Ch 7. Stability Requirments	7.1.3.a Value of GMt at	0,3	m	2,948	Pass	882,67

Tabla 51. Criterios para la inundación del pique de proa.

BIBLIOGRAFÍA

- ALMANSA, M. J. (2020-2021). Apuntes de la asignatura de proyectos. Universidad Politécnica de Cartagena.
- MARTÍNEZ, A. (2020-2021). Apuntes de la asignatura de cálculo estructural. Universidad Politécnica de Cartagena.

CALVO MARTÍNEZ, M. (2019). Trabajo de Fin de Grado. Cálculos del anteproyecto de un buque granelero de 45000 TPM. Cartagena. Universidad Politécnica de Cartagena.